

London: ALDINE PUBLISHING Co., 9, Red Lion Court, Fleet Street, E.C.

THE

BOYS' FIRST-RATE POCKET LÍBRARY.

ONE PENNY EACH, or Post Free for $1 \frac{1}{2} d$. in Stamps. Beantifal Coloured Covers.
VOLUMES NOW READY.

1. THE TROUBLESOME BROTHERS, Tom Briggs " Major" and Phil Briggs "Minor
2. OUR SCHOOL, AND ALL ABOUT THE BOYS
3. SAM SKYLARK, or the Middies of the Gun Room
4. FRIENDLESS FRED, a Story of London Streets
. TOM, THE MIDSHIPMAN, or Honour for the Briave
THE CAVAI ${ }^{\text {IED }}$ CADTAIN his Δ diventures on the Highways of Old Landon

- FOUGHT FI

GENERAL
LIFE FOR MORGAN,

1. TRACKED
2. RECKLESS
3. NICE BOYS
4. THE WILD
5. BILLY BRIC
6. SAM SLAB
7. THE SLAS
8. DOCTOR C
9. THE KING
O. THE WILD
10. IN STEEL
11. THE MERC
12. THE BANK
13. THE CANA
14. IRONCLAD
15. THE SOLD
16. THE DIAMI
17. THE OCAE
18.
19.
20.

RON
THE FRON
3. THE HUNT
34. DEADWOO
35. DOUBLE D
36. BUFFALO
37. WILD IVAN
38. THE PHAN
39. DICK IN D
40. DEADWOO
41. CALAMITY
42. DICK DAR
43. CORDURO
44. THE SEA
45. ROVERS O
46. DEADWOO
47. DEADWOO
48. DEADWOO
49. BLOND BILL, or Deadwood Dick's Discovery
50. A GAME OF GOLD, or Deadwood Dick's Big Strike
51. THE "PICKED PARTY," or Deadwood Dick of Deadwood
52. DEADWOOD DICK'S DREAM. A Mining Tale of Tombstone
53. THE DWARF AVENGER, or Deadwood Dick's Ward
54. DEATH NOTCH TOWN, or Deadwood Dick's Doom
55. GIPSY JACK OF JIMTOWN, or Deadwood Dick in Durango
56. SUGAR-COATED SAM, or the Black Gowns of Grim Guich
57. GOLD-DUST DICK. A Romance of Roughs and Toughs
58. THE SPIRIT OF SWAMP LAKE, or Deadwood Dick's Divide

DEADWOOD DICK'S DEATH TRAIL FROM OCEAN TO OCEA
60. DEADWOQD DICK'S BIG DEAL, or the Gold Brick of Oregon
61. DEADWOOD DICK'S DOZEN, or the Fakir of Phantom Flats
62. DEADWOO风2mick'S DUCATS, or Rainy Days at the Diggings
63. DEADWOOE ${ }^{-1} C K$ SENTENCED, or the Terrible Vendetta
64. DEADWOOD LICK'S DEMAND, or the Fairy Face of Faro Fiats.
65. DEADWOOD DICK IN DEAD CITY
66. DEADWOOD DICK'S DIAMONDS, or the Mystery of Joan Porter
67. DEADWOOD DICK IN NEW YORK, or a Cute Case
68...DEADWOOD DICK S DUST, or the Chained Hand
69. DEADWOOD DICK, JUNIOR, or the Sign of the Crimson Cross
70. NICKEL-PLATED NED
71. SUNFLOWER SAM OF.SHASTA
72. FLUSH FAN THE FERRET
73. PHILO FLY OF PHENIX, or Deadwood Dick, Junior's, Racket at Ciain No. 10.

6. If two different numbers be divisible by auy one number, their sun and their difference will also be divisible by that number.
7. If severed different numbers, divided by 3, be alded or multiplied together, their sum and their prodnet will also be divisible by 3 .
8. If two numbers, divisible by 9 , be added together, the smo of the figares in the anount will be either 9 , or a number divisible by 9 .
9. If any number be multiplied by 9 , or by any other number divisible by 9 , the amount of the figures of the product will be either 9 , or a number divisible by 9 .
10. In every arithmetical progression, if the first and last term be each multiplied by the number of terms, aud the suin of the two products be divided by 2 , the quotient will be the sum of the series.
11. In every geometric progression, if any two terins be inultiplied together, their product will be equal to that term, which nonswers to the sum of these two indices. Thns, in the series-

$$
\begin{array}{ccccc}
1 & 2 & 3 & 4 & 5 \\
2 & 4 & 8 & 10 & 32
\end{array}
$$

If the third and fourth terms 8 and 16 be moltiplied together, the product 128 will be the seventh term of the series. In like manner, if the fifth term be multiplied intoitself, the product will be the twentieth term, and if that sum be multiplied into itself, the product will be the tweaticth tem. Therefore, to find the last, or any other term of a geometric series it is not necessary to continne the series beyond a few of the first terms.

Previous to the numerical recreations, we shall here describe certain mechanical methods of performing arithmetical calculations, such as are not only in themselves entertaining, but will be fonnd more or less useful to the young reader.

Arithmetic.

THE blind mathematician, Dr. Saunderson, adopted a very ingenious device for performing arithmetical operations by the sense of tonch.

Small cubes of wood were provided, and in one face of each, nine holes were pierced, thus :

$$
\begin{array}{llllll}
1 & 2 & 3 & 0 & 0 & 0 \\
4 & 5 & 6 & 0 & 0 & 0 \\
7 & 8 & 9 & 0 & 0 & 0
\end{array}
$$

These holes represented the nime
digits, as in the figure, and to denote any Ggure, a small peg was inserted into thic hole corresponding to it. If the number consisted of several figures, more cubes were used one foreach. A cipher was rep. resented by a pes of different shape from that of the others, and inserted in the central hole.
'To perform any arithmetical process, a square board was provided, ylivided by ridges into recesses of the same width as the cubes, and by this the cubes were retained in the required horizontal and perpendicular lines. Suppose it was necessary to add together the numbers 763, 124, 859, the cubes and pegs would be arranged thas:

0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0
	0	0	0	c	0	0	0	0
0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0
0	0	0	0	c	0	0	0	0
0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0
The	Abacus.							

T IHIS instrument is used for teaching numeration, and the first principles of arithmetic.

Upon a frame are placed, wires parallel to one another andatequal distances. Ten small balls are strung upon each wire, being placed as in the margin. The right wire denotes wits, the next tens, and so on, 7 th wire being the place of millions. In haing the abacus, all the balls are first ranged at one end, and a number of them are then moved to the other end of each wire, to correspond to the figures required. The example given in the margin is 15.781 , the height of Momnt Dlane.

Progression.

$I^{\text {F }}$F a hundred stones be placed in a straight line, at the distance of a yard from each other, the first being at the same distance from a basket, how many yards must the person walk who engages to pick them up, onc by onc, and put them into the basket? It is evident that to pick up the first stone, and put it into the basket, the person must walk two yards ; for the second, he must wall four ;
for the third, six; and so on, increasing by two, to the hundredth.

The number of yards, therefore, which the person must walk will be equal to the sum of the progression, 2, 4, 6, \&e, the last term of which is $200(22)$. But the sum of the progression is equal to 202, the sum of the two extremes, multiplied by 50 , or half the number of terms; that is to say, 10,100 yards, which makes more than $5 \frac{1}{2}$ miles.

The famous forty-five.

HOW can number 45 be divided into four such parts that, if to the first part you add 2 , from the second part you subtract 2. the third part you multiply by 2 , and the fourth part yon divide by 2 , the sum
of the addition, the remainder of the subtraction, the product of the multiplication, and the quotient of the division must be all equal ?

45
Ficquired to subtract 45 from 45, and lenve 45 as a remainder? SoLution. $-9+8+7+6+5+4+3+2+1=45$

$$
\frac{1+2+8+4+5+6+7+8+9=45}{8+6+4+1+9+7+5+3+2=45}
$$

Subtraction.

FROMI 1 mile subtract 7 furlongs, 39 rods, 5 yards, 1 foot, 5 inches.
miles, furiongs, rods, yards, feet, inches.

Trom	1	0	0	0	0	0
Take	0	7	39	5	1	5
	0	0	0	0	0	1

In this problem, instead of borrowing 1 foot, wo borrow $\frac{1}{2}$ a foot $=6$ inches, from which we take 5 inches, and 1 remains; we then carry $\frac{1}{2}$ to 1 , and borrowing $\frac{1}{2}$ a yard=11 feet, wo have $1 \frac{1}{2}$ from $1 \frac{1}{2}=0$, and afterwards proceed as nsual.

The expunged figure.

IN the first place desire a person to write down sccretly, in a line any number of figures he may choose, and add them together as units; having done this, tell him to subtract that sum from the line of figures originally set down; then desire him to strike out any figure he pleases, and add the remaining figures in the line together as units, (as in the first instance,) and inform you of the result, when you will tell him the figure he has struck out.
76542.24 24

76518 its, make a total of 24 ; deduct 24 from the first linc, and 76518 remain; if 5 , the centre figure be struck out, the total will be 22 . If 8 , the first figure be struck out, 19 will be the total.

In order to ascertain which figure has been struck out, you make a mental sum one multiple of 9 higher than the total given. If 22 bo given as the total, thon 3 times 9 are 27 , and 22 from 27 show that 5 was struck out. If 19 be given, that sum deducted from 27 shows 8.

Should the total be equal multiples of 9 , as 18, 27. 30, then 9 has been cxpunsed.

With very little practice any person may porform this with rapidity, it is therefore needless to give any further cxamples. The ouly way in which a person can fail in solving this riddle is when either the number 9 or a cipher is struck out, as it then becomes impossible to tell which of the two it is, the sum of
the figure in the line being an even number of nincs in both cases.

The mysterious addition.

$I^{1}$$T$ is required to name the quotiont of five or throe lines of figures-cach line consisting of five or more figuresonly secing the first line before the other lines are even put down. Any person may write down the first line of figures for you. How do you find the quotient?

Example.-When the first lino of figures is set down, subtract 2 from the last right-hand figure, and place it before the first figure of the line, and that is the quotiont for five lines. For example, suppose the figures given are 86,214 , the quotient will be 286,212 . You may allow any person to put down the two first and the fourth lines, but you must always set down the third and fifth lines, and in doing so, always make up 9 with the line above, as in the following example,

80,214 Therefore in the annexed
42,680 diagram you will see that you
57,319 have made 9 in the third and
$62,85 \cdot 1$ fitth lines with the lines above
$: 37,145$ them. If the person desire
——— to put down the figures should
Qt. 268,212 set down a 1 or 0 for the last figure, you must say we will have another figure, and another, and so on matil he sets down something above 1 or 2 .

In solving the puzzle with 67,850 three lines, you subtract 1 47,318 from the last figure, and place
52,781 it before the first figure, and
———make up the third line your.
Qt 167,855 self to 9 . For cxample :67,856 is given, and the quotient will be 167,855 , as shown in the above diagram.

To tell at what hour a person intends to rise.

LET the person set the hand of the dial of a watch at any hour he pleases and tell you what hour that is ; and to the nim. ber of that hour you add in your mind 12 ; then tell him to count privately the number of that amount upon the dial, beginning with the next hour to that on which ho proposes to rise, and counting back. wards, first reckoning the number of the
hour at which he has placed the hand. For example:-

Suppose the hour at which he intends to rise be 8 , and that he has placed the hand at 5 ; you will add 12 to 5 , and tell him to count 17 on the dial, first reckoning 5 , the hour at which the index stands, and cornting backwards from the hour at which he intends to rise; and the number 17 will necessarily end at eight, which shows that to be the hour he chose.

To find the difference between two numbers the greater of which is unknown.

IWKE as many nines as there are figures in the smallest number, and subtract that sum from the number of nincs. Let another person add the difference to the largest number, and taking away the first figure of the amount add it to the last figure, and that sum will be the differenco of the two numbers.

For example: John, who is 22, tclls Thomas, who is older, that he can discover the difference of their ages; he therefore privately deducts 22 from 99 (his age consisting of two figures, he of course takes two nines) ; the difference, which is 77 , he tells Thomas to add to his age, and to take away the first figuro from the amount, and add it to the last figure and that will be the difference of thicir ages ; thus,-

The difierence between John's age and 99 is......................... 77

To which Thomas adding his age.. 85

$$
\text { The sum is. } 112
$$

Then by taking away the first figure 1, and adding it to the figure 2, the sum is............. . 13
Which add to John's age......... 22
Gives the age of Thomas........ 35

The Remainder.

A very pleasing way to arrive at an arithmetical sum, without the use of either slate or pencil, is to ask a person to think of a figure, then double it, then add a certain figure to it, now halve the whole sum, and finally to subtract from that the figure first thought of. You are then to tell the thinker what is the remainder.

The key to this lock of figures is, that half, of whatever sum you request to be
added during the working of the sum is the remanded. In the example giveu, five is the half of ten, the number requested to be added. Any amount may be added, but the operation is simplified by giving only even numbers, as they will divide withont fractions.

Example.

Add 10 to it. 10
Halve it............................. . 2$)^{24}$
Which will leave................... 12
Subtract the number thought of.... 7
The Remarnder will be........... 5
A person having an equal number of counters or pieces of money in eash hand, to find how many he has altogether.
Request the person to convey any num.
R ber, as 4, for example, from the one hand to the other, and then ask how many times the less number is contained in the greater. Let us suppose that he says the one is the triple of the other; and in this case, multiply 4 , the number of the comters conveyed, by 3 , and add to the product the same number, which will make 16. Lastly, take 1 from 3, and if 16 , be divided by the remainder 2 , the quotient will be the number contained in each hand, and consequently the whole number is 16 .

This curious problem deserves another example. Let us again suppose that 4 counters are passed from one hand to the other, and the less number is contained in the greater $2 \frac{1}{3}$ times. In this case we must, as before, multiply 4 by 21 , which will give $9 \frac{1}{3}$; to which if 4 be added, we shall have $18 \frac{1}{3}$, or 40 : if 1 , then, be taken from $2 \frac{1}{3}$, the remainder will be $1 \frac{1}{3}$, or $\frac{4}{3}$, by which, if $\frac{40}{3}$ be divided, the quotient 10 will be the number of counters in each hand.

-The three jealous Husbands.

Π HREE jealous husbands, A, B, C, with their wives, being ready to pass by night over a river, find at the water side a boat which can carry but two at a time, and for want of a waterman they are compelled to row themselves over the river at several times. The question is how those six persons shall pass, two at a time, so
that none of the three wives may be found in the company of one or two men unless her husbaud be present?

This may be effected in two or three ways; the following may be as good as any:-Let A and wife go over-let A re-turn-let B 's and C's wires go over-A's wife returns- B and C go over- B and wife return, A and B go over-C's wife return's, and Λ 's and B 's wives go overthen C comes back for his wifc. Simple as this question may appear, it is found in the works of Alcuin, who flourished a thousand years ago, hundreds of years before the art of printing was invented.

The false scales.

A. CHEESE being put into one of the to weigh 16 lbs ., and when put into the other only 9 lbs . What is the true weight?

The true weight is a mean proportional between the two false ones, and is found by extracting the square root of their product. Thus $16 \times 9=144$; and square root $144=12$ lbs., the woight required.

The apple woman.

A POOR woman, carrying a basket of apples, was met by three boys, the first of whom bought half of what she had, and then gave her back 10 ; the sccond boy bought a third of what remained, and gave her back 2 ; and the third bought half of what she had now left and returned her 1 ; after which she found she had 12 apples remaining, What number had she at first?

From the twelve romaining, deduct 1, and 11 is the ntumber she sold the last boy, which was half she had; her number at that time, thercfore, was 22. From 22 deduct 2 , and the remaining 20 was $\frac{?}{3}$ of her prior stock, which was therefore 30. From 30 deduct 10 , and the remainder 20 is half her original stock; consequently she had at first 40 apples.

The Graces and Muses.

THE three Graces, carrying each an equal number of oranges, were met by the nine Muses, who asked for some of them : and each Grace haviag given to each Muse the same number, it was then found that they had all equal shares, How many had the Graces at first?

The least number that nill nuswer this question is twelve; for if we suppose that each Grace gave one to each Muse, the latter would each have three, and there
would remain three for each Grace. (Any multiple of 12 will answer the conditions of the question.)

The Jesuitical Teacher.

ATEACHER, laving fiftcen young ladies under her care, wished them to take a walk each day of the week. They were to wall in five divisions of

sun.	MON.	tue.	WED.	тHU.	Fri.		sht.
a b c	a d	$\because \mathrm{k} \quad \mathrm{n}$	a	a^{a}	${ }^{\text {a }}$ f f l	2	in
d e f	bee li	$b 10$	b f m	b i p	$b \begin{array}{lll}\text { b } & \text { d }\end{array}$	b	g
g h	c m ${ }^{\prime}$	c f i	c^{c} g $\quad \mathrm{n}$	d k	c h	c	${ }^{\circ} \mathrm{o}$
k 1 m	f k o	d h m	d i o	e m n	e i k	d	1 p
n 0	i 1 l	eg	h k p	g 1	m		f n

Atithmetical Puzzle.

If from 6 you take 9 , and from 9 you talse 10 ; and if 50 from 40 be taken, there will just half a dozen remain.
ANSWER.

From SIX \mid From IX \mid From XL
Tuke IX Take X/Talse I
S I XRems.

The' money game.

APLRRSON having in one hand a piece of goll, and in the other a piece of silver, you may tell in which hand he has the gold, and in which the silver, by the following method: Some value, represented by an even number, such as 8 , must be assigned to the gold; and a value represented by an odd number, such as three, must be assigned to the silver ; after which, desire the person to maltiply the number in the right hand by any even number whatever, such as 2, and that in the left by an odd number as 3 ; then bid him add together the two products, and if the whole sum be odd, the gold will be in the right hand, and the silver in the left; if the sum be cven, the contrary will be the case,
To conceal the artifice better, it will be sufficient to ask whether the sum of the two products can be halved without a remainder; for in that case the total will be even, and in the contrary caso odd.

It may be readily seen, that the pieces, iustead of being in the two hands of the same person, may be supposed to be in the hauds of two persons, one of whom has the even number, or piece of gold, and
the other the odd number, or piece of silver. The same operations may then be performed in regard to these two persons, as are performed in regard to the two hands of the same person, calling the one privately the right, and the other the left.

The philosopher's pupils.

70 find a number of which the half, shall be equal to itself.

This was a favourite problem among the ancient Grecian arithmeticians, who stated the question in the following mauner: "Tell us, illustrious Pythagoras, how many pupils frequent thy school?" "One half," replied the philosopher, "study mathematics, one fourth natural philosophy, one seventh observe silence, and there are three females besides."
The answer is, $28: 14+7+4+3=28$.

To discover a square number.

ASQUARE number is a number produced by the multiplication of any number into itself; thus, 4 multiplied by 4 being the square root from which it springs. The extraction of the square root of any number takes some time; and aiter all your labour you may perhaps fud that the number is not a square number. To save this trouble, it is worth knowing that every square number ends either with a $1,4,5,6$, or 9 , or with two cyphers, preceded by one of these numbers.

Another property of a square number is, that if it be divided by 4 , the remainder, if any, will be 1-thus, the square of five
is 25 , and 25 divided by 4 leaves a remainder of 1 ; and again, 16 , being a square number, can be divided by 4 without leaving a remainder.

The Sheepfold.

AFARMER had a pen made of 50 hurdles, capable of holding 100 sheep only: supposing he wanted to make it sufficiently large to hold double that number, how many addional hurdles would he have occasion for?
Answer.-Two. There were 24 hurdles on each side of the pen; a hurdle at the top. and another at the bottom; so that, by moving one of the sides a little back, and placing an additional hurdle at the top and bottom, the size of the pen would be exactly doubled.

Countrywoman and eggs.

ACOUNTRYWOMAN carried eggs to a garrison, where she had three guards to pass. She sold to the first guard half the number she had, and half an ogg more; to the second, the half of what remained, and an half egg besides ; and to the third guard she sold the half of the remainder, and half another egg. When she arrived at the market-place, she lad three dozen still to sell; how was thisipossible, without breaking any of the eggs? It would seem at the first view that this is impossible, for how can half an egg be sold without breaking any of the eggs? The possibility of all this seeming impossibility will be evident, when it is considered, that,by taking the greater half of an odd number, we take the exact half $+\frac{1}{2}$. When the countrywoman passed the first guard she had 295 eggs ; by selling to that guard 148, which is the half $+\frac{1}{2}$, she had 147 remaining; to the second guard she disposed of 74 , which is the major half of 147; and, of course, after selling 37 out of 74 to the last. guard, she had still three dozen remaining.

How to rub out twenty chalks at five times, rubbing out every time an odd one.
T^{0} do this trick, you must make twenty 1. chalks, or long strokes, upon a board as in the margin:
Then begin and count backwards, as $20,19,18,17$, rub 1 2 -
out these four ; then proceed saying, 16, 15, 14, 13, rub out these four ; and begin again, 12, 11, 10, 9, aud rub out these; and proceed again, 8, $7,6,5$, then rub out these ; and lastly say, 4, 3, 2 , 1 , when these fow are rubbed out. The whole twenty are rubbed out at five times, and every time an odd onc, that is, 17 th, 13th1, 9th, 5th, and 1st.
This is a trick which, if once seen, may be easily returned; and the puzzle at first is, it not occurring iumediately to the mind to begin to rub them out backwards. It is as simple as anything possibly can be.

Odd or even.

$7^{\text {VERY odd number multiplied by an }}$ odd number prodaces an odd number; every odd number multiplied by an even number produces an even number; and every even number multiplied by an even number also produces an even number. So, again, an even number added to an even number, and au odd number added to an odd number, produce an even number; while an odd an even number added together produce an odd num. ber.

If any one holds an odd number of counters in one hand, and an even number in the other, it is not difficult to dis. cover in which hand the odd or even num. ber is. Desire the party to multiply the number in the right hand by an even num. ber, and that in the left hand by an odd number, then to add the two sums together, and tell you the last figure of the product, if it is even, the odd number will be in the right hand; and if odd, in the left hand; thus, supposing there are 5 counters in the right hand, and 4 in the left hand, multiply 5 by 2 , and 4 by 3 , thus: $5 \times 2=10,4 \times 3=12$, and then adding 10 to 12 , you have $10+12=22$, the last figure of which, 2 , is even, and the odd number will consequently be in the right hand.

The old woman and her eggs.

A
T a time when eggs were scarce, an old woman who possessed some remarkably good-laying hens, wishing to
whige her neighbours, sent her daughter round with it basket of egers to three of them; at the first house, which was the squire's, she left half the number of egrs she had and half a ove over; at the second she left half of what remained and half an egg over; and at the third she again left half of the remainder, and half a one over; she returned with one egg in her basket, not having broken any. Required-the number she set out with. Ans. 15 eggs.

The figures, up to 100, arranged so as to make 505 in each column, when counted in ten columns perpendicularly and the same when counted in ten files horizontally.

The dice guessed unseen.

Apair of dice being thrown, to find the number of points on each die with. cut seeing them. Tell the person who casts the die to double the number of points upon one of them, and add 5 to it then to multiply the sum produced by 5 , and to add to the product the number of points upon the other die. This being done, desire him to tell you the amount, and, having thrown out 25 , the remainder will be a number consisting of two figures the first of which, to the left, is the number of points on the first die, and the second figure, to the right, the number on the other. Thus:

Suppose the number of points of the first dic which comes up to be 2, and that of the other $\ddot{3}$; then, if to four, the double of the points of the first, there be added 5 , and the sum produced, 9 , be multiplied by 5 , the product will be 45 ; to which, if 3 , the number of points on the other die, be added, 48 will be produced, from which, if 25 be subtracted, 23 will remain; the first figure of which is 2 , the number of points on the first die, and the second figure 3, the pumber on the other.

The Sovereign and the Sage.

Asovereign being desirous to confer a liberal reward on one of his courtiers who had performed some very important service, desired him to ask whatever he thought proper, assuring him it should be granted. 'I'he courtier, who was well acquainted with the science of numbers, only requested that the monarch would give him a quantity of wheat equal to that which would arise from one grain doubled sixty-three times successively. The value of the reward was immense ; for it will be found by calculation that the sixty-fourth term of the double progression divided by $1,2,4,8,16,32$, \&c., is 9223372036854775808 . But the sum of all the terms of a donble progression, beginning with 1 , may be obtained by doubling the last term, and subtracting from it 1. The number of the grains of wheat, therefore, in the present case, will be 18446744078709551615. Now, if a pint contain 9216 grains of wheat, a gallon will contain 73728; and, as eight gallous make one bushel, if we divide the above result by eight times 73728 we shall have 31274997411295 for the number of the bushels of wheat equal to the above number of grains, a quantity greater than the whole surface of the earth could produce in several years, and which in value would exceed all the riches, perhaps on the globe.

December and May.

A N old man married a young woman; their united ages amounted to C. The man's age multiplied by 4 and divided by 9 , gives the woman's age. What were their respective ages?

Answar.- -'The man's age, 60 years 12 weeks; the woman's age, 30 years 40 weeks.

The Mathematical Fortune Teller.

PROCURE six cards, and having ruled them the same as the following diagrams, write in the figures neatly and legibly.

Request the person to give you the cards containing the number, and then add the right hand upper corner figures together, which will give the correct answer. For example: suppose 10 is the

9	10	11	12	13	8
14	15	24	25	26	27
28	29	30	31	40	41
42	43	44	45	46	47
56	57	58	59	60	13

17	18	19	20	21	16
22	23	24	25	20	27
25	29	30	31	48	49
50	51	52	50	54	55
50	57	58	59	30	60

Itis required to tell the number thought of by any person, the numbers being coutained in the cards, and such numbers not to exceed 60 . How is this done?

33	34	35	36	37	32
38	39	40	41	42	43
44	45	40	47	48	49
-50	51	52	53	54	55
56	57	58	59	60	41

number thought of, the cards with 2 and 8 in the corners will be given, which makes the answer 10, and so on with the others.

The knowing Shepherd.

ASHEPHERD was going to market with some sheep, when he met a man who said to him, "Good morning, friend, with your score." "No," said the shepherd. "I have not a score; but if I had as many more, half as many more, and two sheep and a half, I should have just a score." How many sheep had he?

He had 7 sheep: as many more 7 ; half as many more, $3 \frac{1}{2}$; and $2 \frac{3}{3}$; making in all 20.

The certain game.

TWO persons agree to take, alternately numbers less than a given number, for example, 11 , and to add them together till one of them has reached a certain sum such as 100. By what means can one of them infalliably attain to that number before the other?

The whole artifice in this consists in immediately making choice of the numbers, $1,12,23,34$, and so on , or of a series which continually increases by 11, up to 100. Let us suppose that tho first person, who knows the game, makes choice of 1 ; it is evident that his adversary, as lie must count less than 11, can at most reach-11, by adding 10 to it. The first will then take 1 , which will make 12 and whatever number the second may add the first will certainly win, provided he continually add the number which forms the coraplement of that of his adversary to 11 ; that is to say, if the latter take 8 , he must take 3 ; if 9 he must take 2 ; and so on. By following this method he will infalliably attain to 89 , and it will then be impossible for the second to prevent him from getting first to 100 ; for whatever number the second takes he can attain only to 99 ; after which the first may say-" and 1 make 100." Between two persons who are equally acquainted with the. game, he who begins must necessarily win.

The magical century.

IF the number 11 be multiplied by any one of the nine digits, the two figures of the product will always be alike, as appears in the following example :-

| 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 11 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| 11 | 22 | $\frac{33}{34}$ | -44 | $\frac{55}{66}$ | $\frac{77}{88}$ | $\frac{99}{7}$ | | |

Now, if another person and yourself have fifty counters a-piece, and agree never to stalie more than ten at a time, jou may tell him that if he permit you to stake first, you always complete the even century before him.

In order to succeed, you must first stake 1, and remembering the order of the above series, constantly add to what he stakes as many as will make one more than the numbers $11,22,33$, \&c., of which it is composed, till you come to 80 , after which your opponent cannot possibly reach tho even century himself, or prevent you from reaching it.

If your opponent has no knowledge of numbers, you may stake any other number first, tunder 10, provided you subsequently take care to secure oue of the last terms, 56, 67, 78, \&c.; or you may even let him stake first, if you take care afterwards to secure one of these numbers.

This exercise may be performed with other numbers, but, in order to succeed, you must divide the number to be attained by a number which is a unit greater than what yon can stake each time, and the remainder will then be the number you must first stake. Suppose, for example the number to be attained be 52 (making use of a pack of cards instead of counters), and that youl are never to add more than 6 ; then, dividing 52 by 7, the remainder, which is 3 , will be the number which you must first stake; and whatever your opponent stakes, you must add as much to it as will make it equal to 7, the num. ber by which you divided, and so in con. tinuation.

The unlucky hatter.

APERSON went into a hatter's shop and bought a hat for a sovereign and gave in payment a five-pound note. The hatter called on a friend near by, who changed the note for him, and the man having received his change went his way. Shortly afterwards the tailor's friend dis. covered the note to be a counierieit, and called upon the hatter, who was compel. led forthwith to borrow five-pounds of another friend to redeem it with; so the forged note was left on the hatter's hands. The question is, what did he lose -was it five-pounds beside the hat or was it five-pounds including the hat?
This question is often given with names and circumstances as a real transaction, and if the company knows such personsso
much the better, as it serves to withdraw attention from the question; and in almost every case the first impression is, that the hatter lost five-pounds besides the hat, though it is evident he was paid for the hat, and had he kept the sovereign he needed only to have borrowed four-pound additional to redeem the note.

The basket of nuts.

APERSON remarked that when he counted over his basket of nuts, two by two, three by three, four by four, five by five, or six by six, there was one renaining; but when he counted them by sevens, there was no remainder. How many had he?

The least common multiple of $2,3,4,5$, and 6 being 60 , it is evident, that if 61 were divisible by 7 , it would answer the :conditions of the questions. This not being the case, however let $60 \times 2+1,60 \times 3$ $+1,60 \times 4+1$, \&c., be tried successively, and it will be found that $301=60+5+1$, is divisible by 7 ; and consequently this number answers the conditions of the question. If to this we add 420 , the least common multiple of $2,3,4,5,6$ and 7 , the sum 721 will be another answer; and by adding perpetually 420 , we may find as many answers as we please.

The united digits.

ARRANGE the figures 1 to 9 in such order that, by alding them together they amount to 100 .
15
90
47
98
2

100

Quaint Questions.

WHATis the difference between twenty four quart bottles, aad four and twenty quart bottles?

Ans.- 56 quarts difference.
What three figures, multiplied by 4, will make precisely 5 ?

Ans.-1 $\frac{1}{4}$, or $1 \cdot 25$.
What is the difference between six dozen dozen, and half-a-dozen dozen!

Ans.-792: Six dozen dozen being 864 and half-a-dozen dozens, 72.

Place three sixes together, so as to make seven.

Ans.-66.
Add one to nine and make it twenty.
Ans.-IX-cross the I, it makes XX.
Place four fives so as to make six and a half. Ans. 5_{5}^{5}

A room with eight corners had a cat in each comer, seven cats before each cat, and a cat on every cat's tail. What was the total number of cats? Ans. Eight cats.

Prove that soven is the half of twolve. Ans.-Place the Romm figures on a piece of paper, and draw a line through the middle of it, the upper will be VII.

The council of ten.

TEN cards or counters, numbered from one to ten, or the first ten playing cards of any suit disposed in a circular form may be employed with great convenience for performing this feat. The accompanying figure shows the cards thus arranged, number one, or the ace, designated by A. and the ten by h.

Having placed the cards in the above order, desi e abystinder to think of a card or number, and when he lias done so, to touch any other card or number. Reguest him then to add to the number of the card touched the number of the cards employed, which in this case is ten. Then desire him to count the sum in an order contrary to that of the natural numbers, beginning at the card he-tonched, and assigning it the number of the card he thought of. By count. ing in this manner, he will end at the number or card he thought of, and consequently you will immediately know it.

Thus, for example, suppose the person had thought of 3 C , and touched 6 I ; then, if 10 be added to 6 , the smowill be 16; and if that mumber be counted from F , the number tonched, towards B D E C A, and soon, in the retrograde order, comnting F three, the number thought
of, E five, D six, and so round to sixteen, that number will terminate at C , showing that the person thought of 3 , the number which corresponds to C.

A greater or less number of cards or counters may be employed at pleasure;
but in every instance the whole number of cards must be added to the number of the card touched.

This trick done on the dial of a watch, using the figures thereon, is even more surprising.

The two Travellers.

Two travellers trudged along the road together, Talking, as travellers do, about the weather; When, lo: beside their path the foremost spies Three casks, and loud exclaims "A prize, a prizel" One large, two small, but all of various size. This way and that they gazed, and all around.
Each wondering if an owner might be found:
But not a soul was there-the coast was clear,
So to the barrels they at once drew near,
And both agree whatever may be there
In friendly partnership they'll fairly share.
Two they find empty, but the other full,
And straightway from his pocket one doth pull
A large clasp knife. A heavy stone lay handy, And thus in time they found their prize was brandy.
'Tis tasted and approved; their lips they smack, And each pronounces 'tis the famed Cognac.
"Won't we have many a jolly night, my boy!
May no ill luck our present hopes destroy!"
'Twas fortumate one knew the mathematies, And had a smattering of hydrostatics;
Then measured he the casks, and said, "I see This is eight gallons, those are five and three." The question then was how they might divide The brandy, so that each should be supplied With just four gallons, neither less nor more. With eight, and five, and three they puzzle sore, Filled up the five-filled up the three, in vain: At length a happy thought came o'er the brain Of one; 'twas done, and each went home content, And their good dames declared t'was excellent. With those three casks they made division true; I found the puzzle out, say, friend, can you?

The five-gallon barrel was filled first, and from that the three-gallon barrel, thus leaving two gallons in the five-gallon barrel ; the three-gallon barrel was then emptied into the eight-gallon barrel, and the two gallons ponred from the five-gallon barrel into the empty three-gallon barrel ; the five-gallon barrel was then filled, i and one gallon poured into the three-gallon barrel, therefore leaving four gallons in the five-gallon barrel, one gallon in the eight-gallon barrel, and three gallons in the three-gallon barrel, which was then emptied into the eightgallon barrel. Thus each person had
four gallons of brandy in the eight and five-gallon barrels respectively.

The Fox, Goose and Corn.

A countryman having a Fox, a Goose, and a peck of Corn, came to a river, where it so happened that he could carry but one over at a time. Now as no two were to be left together that might destroy each other, he was at his wit's end, for says he "Though the corn can't eat the goose, nor the goose eat the fox; yet the fox can eat the grose, and the goose eat
the com." How shall he carry them over, that they shall not destroy each other?

Let him first take over the Goose, leaving the Fox and Corn; then let him talic over the Fox and bring the Goose back; then take over the Corn; and lastly take over the Goose again.

The visitors to the Grystal Palace.

IN a family consisting of 8 young people, it was agreed that 3 at a time should visit the Crystal Palace, and that the visit should be repeated each day as long as a different trio could be selected. Iu how many days were the possible combinations of $\ddot{3}$ out of 8 completed?

We must multiply $8 \times 7 \times 6$, and also $3 \times 2 \times 2$, and divide the product of the former, 330 , by the product of the latter, 6 ; the result is 56 , the number of visits, a different three going each time. So much gratified were they with the results of their agreement, that they wished to be allowed another series of visits, to be continued as many days as they could group 3 together in difforent order when starting. If Paterfamilias had granted such permission lie would have had to wait 56 multiplied by $3 \times 2 \times 1$, or 336 days, before this "new series" of visits would have come to a finis.

How many clanges can be given to 7 notes of a piano?
${ }^{7}$ Hat is to say, in how many ways can 7 keys be struck in succession, so that there shall be some difference in the order of the notes each time?

The result of multiplying
$7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1$
is 5,040 , the number of changes.

The Arithmetical Triangle.

IJIIS name has been given to a con. trivance said to have originted with the famous Pascal, or to have been perfected by him.

1
21
$\begin{array}{llll}3 & 3 & 1\end{array}$
$\begin{array}{llll}4 & 6 & 4 & 1\end{array}$
$\begin{array}{llll}5 & 10 & 10 & 5 \\ 1\end{array}$
$615 \quad 2015 \quad 6 \quad 1$
$\begin{array}{llllll}7 & 2135 & 35 & 21 & 7 & 1\end{array}$
$82856705628 \quad 8 \quad 1$
\&c. $\& c$.

This peculiar series of numbers is thus formed: Write down the numbers 1,2 , 3 , \&c., as far as you please, in a vertical row. On the right hand of 2 place 1 , add them together, and place 3 under the 1 ; then 3 added to $3=0$, which place under the $3 ; 4$ and 6 are 10 , which place under the 6 , and so on as far as you wish. This is the second vertical row, and the third is formed from the second in a similar way. This triangle has the property of informing us, without the trouble of cal. culation, how many combinations can be made, taking any number at a time out of a larger number.

Suppose the guestion were that just given; how many selections can be made of 3 at a time out of 5 ? On the horizontal row commeucing with 8 , look for the third number; this is 56 , which is the answer.

How many different deals can de made with 13 cards out of 52 .
110 discover this we must make a con1 tinued multiplication of $52 \times 51 \times 50$ $\times 49 \times 18 \times 47 \times 46 \times 45 \times 44 \times 43 \times 4.2 \times 41$ $\times 40$, being 13 terms for the 13 cards, also a continued multiplication of $13+12$ $\times 11 \times 10 \times 9 \times 8 \times 7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1$, and, having found the two products, we must divido one by the other, and the quotient is the number of different deals out of 52 cards. This " sum," the to looks so formidable with uatural figures, is a very short one by logarithms.

The Three Graces.

THREE articlos, or three names inscri. bed on eards, having been distributed between three persons, you are to tell which article or card each person has.
Designate three persons in your own mind, as 1st, 2d, and 3d, and the three articles, a, e, I. Provide 24 counters, and give 1 to the first person, 2 to the 2 d 3 to the 3d. Place the remaining 18 ou the table. Request that the three persons will distribute among themselyes the three articles, and, that, having done so, the person who has the one which you have sccretly denoted by A , will take as many counters as he may have already; the holder of E must take twice as many as he may have; and the holder of 1 must take four times as many. Then leave the room, in order that the
distribution of articles and of counters may bo made unobserved by you. We will suppose that the three articles are three cards, on which are the words Clara, Rosa, Emily, which you will yourself secretly denote by the letters $A, \mathrm{x}, \mathrm{I}$. Suppose also that in the division the first person has Emily (I), the second has Clara (A), and the third has Rosa (E), then the 1st will take four times as mony counters as he has (1), and will therefore take 4 ; the $2 d$ will take as many as he has (2), and will therefore take 2 ; the $3 d$ will take 6 , being twice as many as he has (3). On the table will be left six counters. The distribution having been made, you will return and observe the number of counters on the table, from which you can find who is the holder of each card by the following method.

It is plain that if the cards held by the 1st and $2 d$ can be told, that held by the

3 d will be known. It wlll bo found that only six numbers cau remain, viz. 1. 2, 3, $5,6.7$, never four, and never more than 7 . Now the 6 combinatious of a, c, and i, here given, represent the articles held by the 1 st and 21 persons.

$$
\begin{array}{ccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 \\
0 & 0 & 5 & & 6
\end{array}
$$

In the case supposed, 6 counters being on the table, the combination $i a$ indicates that the first person has the card yon havo called I (bintily), the $2 d$ has a (Clara), so that the 3 d has E (Rosa),

In order to recollect the combinations of A, E, and I, it will be best to keep in memory some 7 words which form a sentence, and whieh contain these vowels in the order just given.

Ouryoung friends can amuse themselves in forming a sentence for themselves, but as examples we supply three.

1	2	3	4	5	6	$\mathbf{7}$
$a e$	$e a$	$a i$	-	$e i$	$i a$	$i e$
James	easy	admires	now reigning	with abride		
Anger,	fear,	pain	may	be hid	with a smile	
Graceful	Emma, charming she reigns	in all circles				

Or, if they prefor Latin, they can use the jentametermade up by the inventor of this beautiful pastime:
$\begin{array}{ccccc}1: & 2 & 3 & 5 & 6 \\ \text { Salve certa } & 7 \\ \text { animae semita } & 7 \\ \text { vita }\end{array}$

Another Method.

TIIE performer must mentally distinguish the articles by the letters A, B, C, and the persons as $1 \mathrm{st}, 2 \mathrm{~d}$, and 3 d . The persons having made their choice give 12 counters to the 1st, 24 to the $2 d$, and 36 to the 3 d . Then request the lst persou to add together the half of the counters of the person who has chosen A, the $3 d$ of the person who has chosen b, and the 4th of those of the person who has chosen \mathbf{c}, and then ask the sum, which must be cither $23,24,25,27,28$, or 29 , as in the following table,

First.	Second.	Third.	
12	24	36	
A	B	c	23
A	C	B	24
I	A	C	2.5
C	A	B	27
B	C	A	28
C	B	A.	29

This table showathat if the sumbe 25 , for example, the 1 st person must have chosen b , the $2 \mathrm{~d}_{\mathrm{a}}$, and the 3 d c ; or if it
be 28 the 1st must have chosen m , the 2 d c , and the 3 d A .

Another Method.

THREE things having been divided be tween three persons, you are to determine the holder of each.

Call the persons in your mind 1st, 2 d , 3d.

Give to the 1st a card on which you have written the number 12 ; to the 2 d the number 24 ; to the 3 d 36 .

The three things you denote as a, e, r.
To simplify it youmay have three cards with a name upon each, of which the inifial letters are a, e, I, as Anna, Emma, Isabel.
Request your friends to divide between them the three articles, and thon to add together certain parts of the numbers on their cards, as follows:

Whoever has a must supply one half of the number on his card;

Whoever has E must supply one-third; whoever has I must supply one-fourth.
This half, third, and fourth having been added together, the sum must be announced to you on your return; and from this number you can tell who has A, who has e, and who has I.
If the No. is the 1st has the 2nd has the 3rd has

63	A	L	I
24	A	I	L
24	B	A	I
67	I	A	E
27	B	1	A
28	I	E	A

The sum which will be given to you can be one of six only. There are only six ways in which the articles can be divided, and there is a definite number for each of them.

The number 26 can never occur, and to recolloct the six which do occur, and which you perceive are consecutive, you need take note only of what the 1st and 2nd persons have.

23	24	15	26	27	28	29
$a e$	$a i$	$e a$	-	$i a$	$e i$	$i e$

If you make up a line of good (or bad) English, having the vowels in the order hero given, you will find it will aid you in their recollection. We give one as a specimen: ae ai ea - ia ei ic
Brave, dashing seat, like a giant revives itsolf.

The United Digits.

0^{N}N prge eleven we showed how to place the figures, 1 to 9 , so that they might by adding them together amount to 100 . Until now it has been believed that there was only one way to do this without using fractions. We give another:

82
-57
89
6
1
100.
Figune a Person
out of the Sum of
Numbers.

To Tell what Figune a Person
has struck out of the Sum of
Two given Numbers. SSUME those numbers ouly that are divisible by 9 ; such, for instance, as $18,36,63,81,117,126,162,261,315$,

360, 891, \&c. Ask a person to choose any two of these numbers, and after adding them together in his mind, strike out from the sum any one of the figures he pleases. Then desire him to tell you the sum of the remaining figuros; and it follows that the number which you are obliged to add to this amount, to make it 9 or 18 , is the one he struck out. Thus:
Suppose he choose the numbers 117 and 360 , making together 477, and that he strike out the centre figure, the two other figures will, added together, produce 11 , which, to make 18 , requires 7 , the number struck out.

Dividing the Beer.

During the siege of Sebastopol, when the troops were on 'short allowance,' a can of cight pints of porter was ordered to be equally divided between two messes: but having only a five pint can, and one that held three pints, it was found impossible to make this division, till one of the clever sappers suggested the following method; and, to understand it, we will put down the contents of each of three cans at each stage of the process; commencing with:
$8: 3$ pte pispts
The 8 -pint can full, and the others empty - $-\quad-800$

1. Filled the $\bar{\sigma}$-pint can - $-3 \quad 5 \quad 0$
2. Filled the 3 -pint can from the 5 -pint
3. Pour tho contents of 3 -pint with the 8 -pint - - $6 \geq 0$
4. Transfor the 2 -pints from the 5-pints to the 3 -pint - $\begin{array}{llll}-6 & 0 & 2\end{array}$
5. Fill the δ-pint from the 8 -pint $-\quad-\quad-1$ o 2
6. Fill up the 3 -pint from the 5 pint $-\quad-\quad-1$ \& 3
7. Pour the 3 -pints into the 8 -pint, completing - - 4 ± 0
This was a dexterous experient feat of the worthy sapper, the only objections to it being the time the thirty men hat to wait, and the rosulting flat condition of the beor.

The Difficult Case of Wine.

AGENTLEMAN hatia bottle containing 12 pints of wine, 6 of which he was lesirons of giving to a friemet, but he had nothing to measure it with, except 2 other bottles, one of 7 pints and the other of 5. How did he contrive to put 6 pints into the 7 -pint bottle?

12-pt. 7-pt. 5-pt.
Before he commenced, the con-
tents of the bottles were - 1200

1. He filled the 5 -pint - 705
2. Emptied the 5 -pint into the 7-pint

750
?. Filled again the 5 -pint from the 12-pint

255
4. Filled up the 7 -pint from the 5

273
5. Emptied the 7 -pint into the 12 -pint

903
6. Poured the 3 pints from the 5 into the 7 .

930
7. Filled the 5 -pint from the 12-pint

435
8, Filled up the 7 -pint from the 5 -pint

471
9. Emptied the 7 -pint into the 101
10. Poured 1 pint from the 5 pint into the 7-pint - - 1110
11. Filled the 5 -pint from the 12 -pint

G15
12. Poured the contents of the 5 -pint into the 7-pint - - 660

The wine and the tables.

ACERTAIN hotel-keeper was dexterous in contrivances to produce a large appearance with small means. In the dining-room were three tables, between which he could divide 21 bottles, of which 7 only were full, 7 half full, and 7 apparently just emptied, and in such a manner that each table had the same number of bottles, aud the same quantity of winc. He did this in two ways.

Table Full Half-full Empty.

1	.2	3	2
2	.2	3	2
3	.3	1	3

Table Full Half.full Empty.

1	.3	1	3
2	.3	1	3
3	.1	5	1

He also perforned a similar exploit with 24 bottles, 8 full, 8 half-full, and 8 empty.

Table Ful	Huff-ful	Empty.
. 3	2	3
. 3	2	2
3.2	4	3
Table Full	Half-full	Empt
. 2	4	
8.2	4	2
2. 4	0	4

Also with 27 bottles, 9 fuil, 9 half. ful, and 9 empty :

Table	Full	Hall-full	Emptr.
$\mathbf{1}$.2	5	2
2	-3	3	3
3	-4	1	4
Table	Full	IIalf-full	Emptr.
1	.1	7	1
2	.	4	1
3	.4	1	4
			4

The three Travellers.

THREE men met at a caravansary or ian, in Persia; and two of them brought their provisions along wit' them according to the custom of the co intry; but the third not having provided any, proposed to the others that they should cat together, and he would pay the value of his proportion. This being agreed to, A produced 5 loaves, and B 3 loaves, all of which the travellers ate together, and C paid 8 pieces of money as the value of his share, with which the others were satisfied, but quarrelled about the division ot it. Upon this the matter was referred to the judge, who decided impartially. "What was his decision?

At first sight it would seem that the money should bo divided according to the bread furnished; but we must con. sider that, as the 3 ate 8 loaves, each one ate $2 \frac{2}{3}$ loaves of the bread he furnished. This from 5 would leave $2 \frac{1}{3}$ loaves furnished the stranger by A; and $3-2 \frac{2}{3}=\frac{1}{3}$ furnished by B, hence $2 \frac{1}{3}$ to $\frac{9}{3}=7$ to 1 , is the ration in which the money is to be divided. If you imagine A and B to furnish, and C to consume all, then the division will be according to amounts furnished.

Which counter has been thought of out of sixteen.

TAKE sixteen pieces of card, and number them 1 to 16. Arrange them in two rows, as at A B.

A	B	C	B	D	M	E	B	F	N	G	B
\mathbf{H}											
1	9	1	9	2	2	2	9	4	2	2	9
6											
2	10	3	10	4	4	6	10	8	6	110	5
3	11	5	11	6	6	1	11	3	1	411	8
4	12	7	12	8	8	5	12	7	5	312	7
5	13	13		1	13		4	13			
6	14	14		3	14		8		14		
7	15	15	5	15		3		15			
8	16	16		7	16		7		16		

Desire the person to think of one of the umbers, and to tell you in which row it is. Suppose he fixes on 6 ; he will tell you that the row A contains the number he thought of.

Wake up the row A, and arrange the numbers on avch side of the row B, as shown at C D, so that the first number of the row A may be the first of the row C, the second of A be the first of D. the third of A be the second of C, and so ou.

Ask in which of the rows, C or D , is the number thought of; in the case supposed it is in D.
l'ake up the rows CD, and put one underneath the other as at M, taking care that the half-row in which is the number thought of, shall be above the other.

Divide it again into two rows, as at E F, on each side of B, in the same way as beforc. Ask arain in which row it is; it is now in E.
llace one row under the other, as at N , and divide again into two rows, which which will now be as G H,

You will be informed that the number is in row H, and you may then announce it to be the top number of that row.

The number thought of will always be at the top of one of the rows after three transposilions. If there wero 32 counters it would be at the top after four transpositions.

Curious Properties of some figures.

SFFLECT any two numbers you please, and you will find that one of the two, their amount when added together, or their difference, is always three, or a number divisible by 3.

Thus, if the numbers are 3 and 8 , the first number is 3 ; let the numbers be 1 and 2 , their sum is 3 ; let them be 4 and 7, the difference is 3. Again 15 and 22, the first number is divisible by $3 ; 17$ and 26 , their difference is divisible by $3, \& c$.

All the odd numbers above 3, that can only be divided by 1 , can be divided by 6 , by the addition or subtraction of a unit. For instance, 13 can only be divided by 1 ; but after deducting 1 , the remainder can be divided by 6 ; for example $5+1=6 ; 7-1=6 ; \quad 17+1=18 ; \quad 19-1$ $=18 ; 25-1=24$, and so on.

If you multiply 5 by itself, and the quotient again by itself, and the second
quotient by itself, the last figure of each quotient will always be 5 . Thus $5 \times 5=$ $25 ; 25 \times 25=125 ; 125 \times 125=625$, \&c. Again, if you proceed in the same manner with the figure 6, the last figure will constantly be 6 ; thus, $6 \times 6=36 ; 36 \times 36=$ $216 ; 216 \times 216=1,290$, and so on.

To multiply by 2 is the same as to multiply by 10 and divide by 5 .

Any number of figures you may wish to multiply by 5 , will give the same result if divided by 2-a much quicker operation than the former; but you must remember to annex a cipher to the answer where there is no remainder, and where there is a remainder, anncx a 5 to the answer. Thus, multiply 464 by 5 , the answer will be 2320 ; divide the same number by 2 , and you have 232, and as there is no remainder you add a cipher. Now, take 357 and multiply by 5 -the answer is 1785. On dividing 357 by 2 , there is 178 and a remainder; you therefore place 5 at the right of the line, and the result is again 1785.

There is something more curious in the properties of the number 9. Any number multiplied by 9 produces a sum of figures which, added together, continually makes 9. For example all the first multiples of 9 , as $18,27,36,45,54,63,72,81$ sum up 9 each. Each of them multipled by any number whatever produces a similar result; as 8 times 81 are 648 , these added together make 18,1 and 8 are 9. Multiply 648 by itsclf, the product is 419 , 904 -the sum of these digits is 27,2 and 7 are 9 . The rule is invariable. Take any number whatever and multiply it by 9 ; or any multiple of 9 , and the sum will consist of figures which, added together continually number 9 . As $17 \times 18=306$, 6 and 3 are $9 ; 117 \times 27=3,159$, the figures sum up to 18,8 and 1 are $9 ; 4591 \times 72=$ 330,552 , the figures sum up ta 18,8 and 1 are 9. Again, $87,363 \times 54=4,717,422$; added together, the product is 27 , or 2 and 7 are 9, and so always. If any row of two or more figures be reversed and subtracted from itself, the figures composing the remainder, will, when added horizontally, be a multiple of nine:

42	886	320
24	688	1623
$\overline{19}-8 \times 2$	$\overline{198-9 \times 2}$	$\overline{1638}-9 \times 2$

If a multiplicand be formed of the dig. its in their regular order, omitting the 8 , a multiplier may be found by a rule, which
will give a product, each figure of which shall be the same. Thus if 12345679 be given, and it be required to find a multiplier which shall give the product all in 2 , that multiplier will be 18 ; if in 3 , the multiplier will be 27 ; if all 4 , it will be 36 -and so forth.

12345679 18	123.15079 27	$\begin{array}{r} 12315679 \\ 86 \end{array}$
98705432	86419753	74074074
12345679	24691358	37037037
222222222	338380838	44444444

The rule by which the multiplier is discovered, (but which we do not attempt to explain) is this: Multiply the last figme (the 9) of the multiplicand by the fignte of which you wish the product to be composed, and that number will be the required multiplier. Thas, when it was required to have the product composed of 2 , the 2 , multipied by 9 gives 18 , the multiplicr; 3 multiplied by 9 gives 27 , the multiplier gives the product in 3 ; \&c.

If a figure with a number of ciphers attached to it, be divided by 9 , the quotient will be composed of one firure only, namely, the first figure of tho dividend, as-

$$
\frac{9) 600,000}{06,6600-6} \quad \frac{9) 40,000}{4,444-4}
$$

If any sum of figures can be divided by 9 as, 61
the amount of these figures, when added together, can be divided by 9 :-thus, 5 , 4,9 , added together, make 18, which is divisible by 9 . If the sum 549 is multiplied by any figure, the product can also be divided by 9 , as-

To multiply by 9 , add a cipher, and deduct the sum that is to be multiplied: thus,
$\left.\begin{array}{r}48,260 \\ 4,326 \\ 38,934\end{array}\right\}$ Produces the same result $\left\{\begin{array}{r}4,326 \\ 9 \\ \hline 38,934\end{array}\right.$

In the same manner, to multiply by 99
add two ciphers ; by 999 , three ciphers, kc. These properties of the figure 9 will enable the young arithmetician to perform an amusing trick, quite sufficient to excite the wonder of the uninitated.

Any series of numbers that can be divided by 9 , as $365,472,821,754$, \&c., being shown, a person may be requested to multiply secretly either of these series by any figure he pleases, to strike out one number of the quotient, bnd to let you know the figures which remain, in any order he likes; you will then, by the assistance of the knowledge of the above
properties of 9 , easily declare
the number which has been 365472 erased. Thus, suppose 365,4729 6 are the numbers chosen, and 2 - the multiplier is six ; if then, 1

219232 is struck out, the number returned to you will be

The amount of these numbers is 19 ; but 19, divided by 9 , leaves a remainder of 1 ; you, therefore, want 1 to complete another 9:8, then, is the number erased.

The component figures of the product made by the multiplication of every digit into the number 9 , when added together, make Nine.

The order of these component figures is reversed after the said number has been multiplied by 5 .

The component figures of the amount of the multipliers (viz. 45,) when added together, make Nine.

The amount by the several products, or multiplies of 9 , gives for a quotient, 45 ; that is, $4+5=$ Nine.

The amount of the first product (viz. 9) when added to the other product, whose respective componeat figures make 9 , is, 81 ; which is the square of Nine.

The said number 81, when added to the above mentioned amount of the several products, or multiples of 9 (viz. 405) make 480 , which, if divided by 9 , gives for a quotient 54 : that is, $5+4=$ Nine.

It is also observable, that the number of changes that may be rung on nine bells is 362,880 ; which figures, added together make 27 ; that is, $2+7=$ Nine.

And the quotient of 362,880 , divided by 9 , will be 40,320 ; that is $4+0+3+2+0$ $=$ Nine.

If the number 37 be multiplied by any of the progressive numbers arising from the multiplication of 3 with any of the
units, the figures in the quotient will be similar, and the result may be known beforchand by merely inspecting the progressive numbers, thus, $3,6,9,12,15,18,21$, 24,27 , \&e., are the progressive numbers formed by 3 multiplied by the units 1 to 9 ; and the result of the multiplication of any of these numbers with 37 may be seen infollowing exnmples : $-37 \times 3=111 ; 37 \times$ $6=222 \times 37 \times 12=444 ; 37 \times 24=888$; by which in appears that the numbers of which the quotient is formed nre the same as the units, by which number 3 was multiplied to obtain the respective progressive numbers. Thus- 3 multiplied by 2 is equal to 6 , and 37 multiplied by 9 is equal to 222 ; so, again, 4 multiplied by 3 produces 12, and 37 multiplied by 12 is equal to 444, and so on.

The industrious Frog.

THERE was a woll 30 feet deep, and, at the bottom, a, frog anxious to get ont. He got up 3 feet per day, but regularly fell back 2 feet at night. Required the number of days necessary to enable him to get out?
The frog appears to have cleared one foot per day, and at the end of 27 days, he would be 27 feet up, or within 3 feet of the top, and the next day he would get out. Ho would therefore be 28 days getting out.

The Mathematical Blacksmith:

AA BLACKSMITH had a stone weighing A 40 lbs . A mason coming into the shop, hammer in liand, struck it and broke it into four pieces. "There," says the smith, " you have ruined my weight." " No," says the mason, "I have made it bctter, for whereas you could before weigh but 40 lbs . with it, now you can weigh every pound from 1 to 40 ." Re-quired-size of the pieces?
$4 n \mathrm{~s} .1,3,0,27$; for in any geometrical series proceeding in a triple ration, each term is 1 more than twice the sum of all the preceding, and the above series nighlt proceed to nay extent. In using the weights, they must be put in one or both scales, as may be necossary; as forexample, to weigh 2 , put 1 in one scale, and 3 in the other.

The Doctor and his Pupils.

0LD Dr. Brazenose took a school, and had four and twenty boys as boirlers. These he placed in dormitories thus:-

So that there were nine boys on each side of the establislment, while tho worthy doctor occupied the centre chamber himself. Strange to say, however, despite the old gentleman's engle cye, it was suspected the boys were in the habit of slipping out after dark four at a time. One night the doctor resolved to find out all about it. So, after le imaginer the four had departed, he made \approx round of the rooms. Much to his astonishment, however, there were still nine on cach side in this way :-

The four boys who wont out brought back four chums from a neighbouring academy who, against all rules, remained for the night. Nevertheless, the doctor on his next round could only find nine boys to a side. This is how the young rascals maraged it:-

ly and by four more chums arriced, and stole up to the dornitories ou tiptos; but when the watchful dominic again paid the corridors a visit, thero were still bat nine to a side (though cight extra bojs were present) thus:-

Four more lads, missing their companions, now went to the opposite academy in search of them, and they, too, entered unperceived. Twelve strange youths were now the guests of Dr. Brazenose's four and twenty pupils, yet when the doctor, hearing an unwonted talking and laughing, stole out to discover the cause of the strange voices, the number to a side was still the same, in this fashion:-

Next night Dr. Brazonose's boys slipped out in a body of six, leaving their fellowpupils behind disposed in their rooms thus:-

But that night the doctor discovered the secret, and henceforward the nocturnal games were put a stop to. It will be seen that the old boy's mistake lay in counting each corner room twice.

The Seven Apple Women.

GEVEN women sat at their apple-stalls.
The first had twenty apples, the seoond forty, the third sixty, the fourth
eighty, the fifth a hunded, the sixth a hundred and twenty, the seventh a hundred and forty. All sold their apples at the same rate, and when their stocks were disposed of, every one had taken exactly the same sum. What were the rate at which the apples were sold ?

Answer.-Seven a penny and threcpence a piece for all that were over.
$20=$ two penayworth +6 threepences $=20 \mathrm{~d}$.
$40=$ five pennyworth +5 threcpences $=20 \mathrm{~d}$.
$60=$ eight pennyworth +4 threcpences $=20 \mathrm{~d}$.
$80=$ eleven pennyworth +3 threcpences $=20 \mathrm{~d}$.
$100=$ fourtcen pennyworth +2 three. pences $=20 \mathrm{~d}$.
$120=$ scventeen pennyworth +1 threc. pence $=20 \mathrm{~d}$.
$140=$ twenty pennyworth $=20 \mathrm{~d}$.

The Farmer's Sons.

A WELL-TO-DO farmer dicd, and left A his property to his three sons in shares. The eldest son was to have one half as his share, the second a third, and the thirl a ninth. All went well till they began to divide the live-stock, when it was found there wore seventeen cows upon the farm, and over these the brothers began to squabble. It would hardly do to slaughter the animals for they were of an exceedingly fine breed; still they could not see how else the division was to be accomplished. In their quandary they applied to on old friend of their father.

This gentleman thought for a time, and then an idea struck him.
"Takc one of my cows," said he, " it originally belonged to your own herd, and I fancy we can manase it."
The cow was brought over to the farm and now as there were cighteen, the division was accomplished.

The eldest got 9 cows
The second 6
The third 2
17
So, you see, their old friend got back his cow after all.

The Shepherds.

rךWo shepherds were feeding their
one to the other, " Jack, give me one of your sheep, and I shall have as many as you."
"Nay, "replied the other greedily,
"Give me one of yours and I shall have as many again as you,

How many sheep had each?
The first had fire, the second had seven

The Ten Tens.

TAKE ten pieces of card, and upon each write any ten words; there is no restriction as to the initial letter of nine of the words, but the last word on each card must commence with certain letters which you must in your own mind associate with the numbers 1 to 10 , so that by knowing the initial letter of the last word
on each card, youcan determine its num. ber.

Here are ten cards, (call these the Selecting Cards), which we give by way of example, though our readers will per. haps prefer having words of their own selection.

Jane.	Ellen.	George.	James	Newton.
Mary.	Fanny	William	Clement.	Davy.
Matilda.	Caroline.	Frederick.	Edward.	Morse.
Sarah.	Isabel.	Robert.	Ralph.	Fulton.
Rosa.	Flora.	Edmund.	Francis.	Franklin.
Elizabeth.	Laura.	John.	Edwin,	Arago.
Harriet.	Maria.	Alfred.	Walter.	Spurzheim.
Ann.	Frances.	Albert.	Charles.	Laplace.
Emily.	Edith.	Henry.	Samuel.	Steers.
Emma.	Dorothea.	Isaac.	Theodore.	Herschel.
Sister.	Rose.	Friendship.	Putnan.	Clay.
Brother.	Violet.	Happiness.	Lafayette.	Webster.
Uncle.	Lupin.	Industry.	Steuben.	Calhoun.
Aunt.	Daisy.	Ambition.	Scott.	Benton.
Grandmother.	Tuip.	Energy.	Taylor.	Jefferson.
Grandfather.	Peony.	Fidelity.	Green.	Adams.
Nephew.	Hyacinth.	Affection.	Harrison.	Madison.
Niece.	Pink.	Hope.	Hamiltun,	Jackson.
Cousin.	Suowdrop.	Justice.	Wayue.	Monroe.
Father.	Lily	Order.	Washington	Nipoleon.

For these the key words are, "Edith Flown," so that the letters

$$
\begin{array}{cccccccccc}
& \text { E } & \text { D } & \text { I } & \text { T } & \text { II } & \text { F } & \text { L } & 0 & \text { W } \\
\text { Stand for } \\
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10
\end{array}
$$

For the success of the game, the key words and the numbers denoted by their letters, must be carefully concealed.

Take ten other cards, which call the "grouped cards" and upon one write down the first word from each of the selecting cards, being careful to write them in the same order. Let another card contain all the words which are second from the top, and so on till all the words have been grouped together. As an example, we give the lst and 4th gro:ped cards.

1st.	4th.
Jane.	Sarah.
Ellen.	Isabel.
George.	Robert.
James.	Ralph,

Newton.	Fulton.
Sister.	Aunt.
Rose.	Daisy.
Friendship.	Ambition.
Patman.	Scott.
Clay.	Benton.

The object of the game is to guess which of the words from any of the selecting cards any personmay have fixed upon.

Let any one choose a card out of the selecting cards, and after he has fixed upon a wowd, give it back to your when receiving it , carefully note the last word upon it, which will give you, by the aid of the key word, the number of the card; this you must keep secret, and you then give him all the grouped cards. \%and
request him to show you the cards which contain the words he fixed upon.

You can then aunounce the word, for the number of the word from the top on the grouped card is the samo as the number of the selecting card, from which he made his choice.

Suppose he made his choice from the card which has Theodore for its last word -this is No. 4 ; when he shows you the grouped card, which he says contains tho selected word, you will know that Ralph, the fourth from the top, is the name he fixed upon.

Both Ways Right.

A IRRANGE the figures from 1 to 100 in such a way that thoy may count 505 in either file or column,

10	92	93	7	5	96	4	98	99	1
11	19	18	84	85	86	87	13	12	90
71	29	28	77	76	75	24	23	22	80
70	62	63	37	36	35	34	68	69	31
40	52	53	44	46	45	47	58	59	61
51	42	43	54	56	55	57	48	49	50
41	32	33	67	65	66	64	38	39	60
30	79	78	27	26	25	74	73	72	21
81	89	88	14	15	16	17	83	82	20
100	9	8	94	95	6	93	3	2	91

Napier's Rods.
THE object of this contrivance is to render arithmetical multiplication more easy, and to secure its correctness; it was much used by astronomers before the invention of logarithms.

To appreciate the merits of this inven. tion, we must consider the process of multiplication as usually performed. Suppose we had to multiply 8,679 by 8 :

8,679
8
69,432

We first multiply 9 by $8=72$, and putting down 2 as the first figure in the product, carry the 7 to add to the next product of 7 by $8=56$; this gives us 63 , and 3 being put down as the second figure; 6 is carried to add to the product of 6 by 8 , and so on.

A blunder may be made in each part of this process; for 1st, we may reckon 8 times 9 as some other number than 72 ; 2d, after multiplying the 7 by the 8 , wo might add to the resulting 56 some other figure than the 7 , which we carried; $3 d$, we may add 66 to seven inaccurately,

making some other sum of it than the right one, 63. Errors in a long multiplication problem are usually made in one of these three ways, and to prevent such errors, Lord Napier* introduced this useful contrivance. Thin strips of card, wood or bone, 9 times as long as they are broad, are each divided into 9 equal shares, a figure is printed or written on the top square, and in each of these squares underneath is the product of multiplying that figure by $2,3,4$, $\& c$. up to 9 .

To uso these in multiplication, select the strips, the top figures of which make the number to be multiplied. For example:

To multiply 8,679 by 8 , look at the eighth line of squares from the top, and on that line will be found the product of each of the integers 8, 6, 7,9, when multiplied by 8 . We have then to write down the 2 as the first figure of the procluct add 7 and 6 together $=13$; write 3 as the next figure, carry 1 to add to the sum of 8 and 5 , and so on.

The reason for dividing the figures in each square by a diagonal line, and for placing the left hand figme higher thau the right is, that the eye may be thus assisted in adding the carried figure of one slip to the unit of the next.
'L'o provide for the occurrence of more than one of the same figures in the multiplicand, there should be several slips or rods for each of the digits.

In practice the rods are placed on a flat piece of wood, with two ridges at right angles, by which they are preserved in a proper position.

This instrument can be made useful in "divisions," by making by means of it a table of the product of the divisor, multiplied by each of the numbers 1 to 9.

[^0]
Magic Squares.

Observe the figwres in this square,

THE 64 numbers are so arranged in the 64 squares as to produce the sum of 260 in each of the lines. This arrangement has also other remarkable qualities. Each group of 8 numbers standing in a circle around the centre of the diagran amounts to 260 . There are six such circles; the smallest consists of the numbers $22.28,38,44,19,29.85$, 3 nd 45 : the largest of $8,10,56,58,1,15,49$, and 63. The sam of the 4 centre numbers, plus the four corner numbers, is 260 ; and the diagonal cross of 8 numbers in the middle of the board sums 260 . An en. thusiast will discover other qualities.

To discover two or more numbers that a person has thought of.

1st Case.-Where each of the numbers is less than 10, Suppose the numbers thought of were $2,3,5$.

EXAMPLE.

1. Desire him to donble the first number making
2. To add 1 to it 5
3. To multiply by 5 - - 25
4. To add the second number . 28

There being a third number, repeat this
process-
5. To double it
6. To add 1 to it
7. To multiply by 5 - - 285
8. To add the third number - . 290

Andt o proceed in the same manner for as many numbers as were thought of. Let him tell you the last sum prodnced (in this case 290). Then, if there were two numbers thought of, you must substract 5 ; if three, 55 ; if four, 555 . You must here substrast 55 , leaving a remainder of 235 , which are the numbers thought of, 2,3 and 5.
$2 d$ Case.-Where one or more of the numbers are 10, or more than 10, and where there is an odd number of num. bers thought of.

Suppose he fixes upon five numbers viz. $4,6,9,15,16$.

He must add together the numbers as follows, and tell yon the various sums.

1. The sum of the 1st aud $2 d \ldots 10$
2. The sum of the 2 d and $3 \mathrm{~d} .-15$
3. The sum of the $8 d$ and 4 th . - 24
4. The sum of the 4 th and 5 th $\ldots 31$
5. The sum of the 19t and last . . 20

You must then add together the 1 st, $3 d$, and 5 th sums, viz. $10+24+20=$ 54 , and the 2 d and 4 th, $15+31=46$; take one from the other, leaving 8 . The half of this is the 1st number, 4 ; if you take this from the sum of the 1st and $2 d$ you will have the $.2 d$ number, 6 ; this taken from the sum of the 2 d and 8 d will give you the $3 d, 9$; and so on for the other numbers.
$3 d$ Case.-Where one or more of the numbers are 10 , or more than 10 , and where an even number or numbers has been thought of.

Suppose he fixes on six numbers, viz. 2, 6, 7, 15, 16, 18. He must add together the numbers as follows, and tell you the sum in each case:-

1. The sum of the Ist and 2d - . 8
2. The sum of the 2 d and 3 d . . 13
3. The sum of the 3 d and 4 th $\ldots 22$
4. The sum of the 4 th and 5th - 31
5. The sum of the 5 th and 6th - 34
6. The sum of the 2d and last - 24 You must then add together the $2 \mathrm{~d}, 4$ th and 6 th sums, $13+31+24=68$, and the 3 d and 5 th sums, $22+34=56$, Subtract one from the other, leaving 12 ; the 2 d number will be 6 , the half of this ; take the $2 d$ from the sum of the 1 st and $2 d$ you will get the 1st; take the $2 d$ from the sum of the $2 d$ and $3 d$, and you will hare the $3 d$, and so on.

A^{1}PERSON having an equal number of counters in each hand, it is required to find how many he has altogether.

Suppose he has 16 counters, or 8 in each hand. Desire him to transfer from one hand to the other a certain number of them, and to tell you the number so transferred. Suppose it be 4, the hands now contain 12. Then ask him how many times the smaller number is contained in the larger; in this case it is $\mathbf{3}$ times. You must then multiply the number transferred, 4 , by the 3 , making 12 , and add the 4, making 16 ; then divide 19 by the 3 minus 1 ; this will bring 8 , the number in each hand.

In most cases fractions will occur in the process; when 10 counters are in each hand, and if four be transferred, the hands will contain 6 and 14.

He will divide 14 by 6 and inform you that the quotient is $2 \frac{2}{6}$ or $2 \frac{1}{3}$.

You multiply 4 by $2 \frac{2}{3}$, which is $9 \frac{2}{9}$.
Add 4 to this, making 131, equal to 40.

Subtract one from $2 \frac{1}{3}$, leaving $1 \frac{1}{3}$ or $\frac{4}{3}$.
Divide ${ }^{40}$ by $\frac{4}{3}$, giving 10 , the number in each hand,

The Mysterious Halvings.

To tell the number a person has thought of.

$0^{\text {NE of the company must fix upon }}$ any numbers from 1 to 15 ; this he keeps secret, as well as the numbers produced by the succeeding operations:
Suppose he fixes on - 8

Pripleit - - 27	

Iralve it*-1sthalwing-(larger half) 14
Triple it - 42
Halve it-2d halving 21
Triple it - $\quad . \quad$ - - . . 63
Halve it-3d halving-(larger half) 32
Triple it - - : . . . 96
IIalve it-4th halving . . - . 48
He need not inform you that 48 is the figure produced, but he must let you know in which four halvings he was obliged to take a "larger half;" having ascertained this point, you discover the

[^1]number fixed upon in the following manner. Carry in your mind, or on a slip) of paper, the following list of names in which the letter A occurs in one or more of the three syllables of all except the last.

The three syllables are intended to represent the 1st, 2d, and 3d halvings, and the occurrence of the letter a corresponds to the occurrence of a "larger half" in one or more of these three halvings. Having been informed where the larger half was taken, refer to the word which has Δ in the corresponding syllable and against it stand two numbers, one of which was the number thought of; and of these two, the right hand number is the correct one if a larger half was taken in the 4th stage, and the left hand one if the 4 th halving zvas exact.
In the example given, a larger half occurred in the 1st and 3d stage; this points us to Car-ro-way, and the halving in the 4th stage being exact, shows us that 8 was the number fixed upon.
If the 4th halving If a larger half occurs is cxact. in the 4th halving.

It will be observed that there is always a difference of 8 between the numbers of the columns, so that it is necessary to recollect only one of them. Perhaps some of our readers who wish to be adepts in this game, would prefer recollecting the above table if put in this form:

$$
\begin{array}{cccccccc}
2.3 & 1.2 & 3 & 1-2.3 & 1.3 & 2 & \text { none } \\
\hline 1 & 2 & 3 & 4 & 8 & 13 & 15
\end{array}
$$

where the upper line denotes the cases in which the "larger half" was taken, and the lower line the numbers of the left hand column above given,
Another Method.

The person having chosen any number from one to fifteen, he is to add one to that number, and triple the amount. Then,

1st. He is to take half of that triple, and triple that half.

2nd. To take the half of the last triple and triple that half.
3rd. To take the half of the last triple.

4th. To take the half of the last half.
In this operation there are four distinct cases or stages where the half is to be taken. The three first are denctel by one of the eight following Latin words, each word being composed of three syllables, and the syllables containing the letter i corresponding in numerical order with the cases where the half camot be taken without a fraction ; consequently, in those cases the person who makes the deduction is to add one to the number to be divided. The fourth case shows which of the two numbers corresponding to each word has been chosen. For if the fourth half can be taken without adding ono, the number chosen is in the first, or left-hand column; but if not, it is in the second column to the right.

The words.	The numbers denoted.	
Mi -ser-is	8	0
Ob-tin-git	1	9
Ni-mi-um	2	10
No-tar-i	3	11
In-fer-nos	4	12
Or-di-nes	13	6
Ti-mi-di	${ }_{6}$	14
Te-ne-aut	15	7

Fxample.-Suppose the numberchosen to be nine, to which is to be added one, making ten, and which last, being tripled gives thirty. Then:

1st case. The half of the triple is 15 which tripled, makes 45
2nd case The half of that triple, 1 being added to make an even number, is 23 and that tripled makes 69 3rd case. The half of the last triple, 1 being added, is

35
4th case. The half of the last hall, 1
being again added, is
18
Here we see, that in the second and third case, one had to be added and, looking at the table, we find that the only correspouding word laving an i in its second and third syllables is Ob-tin-git, which represents the figures one and nine. Then, as one had to be added in the fourth case, we know by the rule, that the figure in the second column, 9 , is the one required. Observe, that if no addition be required at any of the four stages, the number thought of will be fifteen; and if one addition only be required at the fourth stage, the number will be seven.

Odd Magic Squares.

SYQUARES of this lind are formed of the top line, (see the first table, thus. Imagine an exterior line of 2 would fall into the exterior squares above the magic square you wish to form, and another exterior line on the right hand of it. These tro imaginary lines are shown in the figure.

Then attend to the two following rules:
1st. In placing the numbers in the squares we must go in the ascending oblique direction from left to right ; any number which, by pursuing this direction, would fall into the exterior line, must be carried along that line of squares, whether vertical or horizontal, to the last square. Thus, 1 having been placed in the centre
square above the fourth vertical line; it must be therefore carried down to the lowest square of that line; then, ascending obliquely, 3 fulls in the square, but four falls out of it, to the end of a horizantal line, and it must be carried along that line to the extreme left, and there placed. Resuming our oblique ascension to the right, we pilace 5 , where the reader sees it, and would place 6 in the middle of the top band, but finding it occupied by 1 , we look for the direction to the

					30	39	48	1	10	19	28
					38	47	7	9	18	27	29
17	24	1	8	15	40		8	17	20	35	
23	5	7	14								
					5	14	16	25	34	36	45
4	6	13	20	22	13	15	24	33	42	44	4
10	12	19	21	3							
					21	23	32	41	43	3	12
11	18	25	2	9	09	31	40	49		11	20
					22	31	40	49	2	11	20

2d Rule, which prescribes that, when in ascending obliquely we come to a square already occupied, we must place the number, which according to the first rule should go into that occupied square, directly under the last number placed. Thus, in ascending with $4,5,6$, the 6
must be placed directly under the 5 , because the square next to 5 in oblique direction is "engaged."

Magic squares of this class, however large in the number of compartments, can be casily filled up by attending to these two rules.

The Arithmetical Boomerang.

TIHE boomerang is an instrument of peculiar form, used by the natives of New South Wales, for the purpose of killing wild fowl and small animals. If projected forwards, it at first proceeds in a straight line, but afterwards rises in the air, and after performing sundry peculiar gyrations, returns in the direction of the place whence it was thrown.
tical processes by which you can divine a number thought of by another. Yon throw forwards the number by means of addition and multiplication, and then, by means of subtraction and division, you bring it back to the original starting point making it proceed in a track so circnitons as to evade the superficial notice of the tyro.

The term is applied to those arithme.

To find a number thought of.

First Met7od.

TIIIS is an arithmetical trick which. to those who are unacquainted with it, seems very surprising; but, when explained it is very simple. For instance, ask a person to think of any number under 10. When he says he has done so, desire him to treble that number. Then ask him whether the sum of the number he has thought of (now multiplied by 3) be odd or eren; if odd, tell him to add 1 to make the smmeven. He is next to halve the sum, and then treble that half. Again ask whether the amount be odd or even If odd, add 1 , (as before) to make it even and then halve it. Now ask how many nines are contained in the remainder. The secret is, to bear in mind whether the first sum be odd or even; if odd, retain 1 in the memory; if odd a second time, re. tain 2 more (making in all 3 to be retained in the memory;) to which add 4 for every nine contained in the remainder.

For example, No. 7 is odd the first and also the second time; and the remainder (17) contains one ninc: so that 1 , added to 2 , make 3 , and 3 , added to 4 , make 7 , the number thought of. No. 1 is odd the first time (retain 1), and even the second (of which no notice is taken), but the remainder is not equal to nine. No. 2 is even the first and odd the second time (retain 2), but the remainder contains no nine. No. 8 is odd the first and the second time, still there is no nine in the remainder. No. 4 is even both times, and contains one nine. No. 5 is odd the first time and the remainder contains one ninc. No. 6 is odd the sccond trme, and contains one nine in the remainder. No. 8 is even both times, and the remainder contains two nines. No notice need be taken of any overplus of a remainder, after being divided by ninc.

The following are illustrations of the result with cach number:

3	$\begin{array}{llll}4 & 5 & 0 & 7\end{array}$	9
3	$\begin{array}{llll}3 & 3 & 3\end{array}$	$3{ }^{3}$
$\overline{3}$ -	- - -	2)2 97
Add ${ }_{1}^{3}$ 2) ${ }^{\text {- }}$ Add ${ }_{1}^{9}$		2)24 ${ }^{2}{ }^{27}$
2) $\left.4 \quad 3 \quad 3 \begin{array}{ll}3\end{array}\right) 10$	$\begin{array}{lllll}3 & 2) 16 & 3 & 2) 22\end{array}$	3 2)28
$\bigcirc \overline{9}$	2)18 18	2)36 14
$3 \mathrm{Add} 1{ }^{3}$	- 3Add ${ }^{3}$)
- -	9)9 - - -	9)18 -
$\text { 2) }(2) 10{ }^{2}{ }^{15}{ }^{15}$	$\left.\square_{1}{ }^{2) 24}-2\right) 28-\operatorname{Add} 1$	$2^{24} 42$
$3 \quad 5 \quad-7$	9) 12 0) 14 -	9)21
	1117	2
8	9)17	
	1	

Second Method.
EXAMPLE.
Let a person think of a number, say 6

1. Let him multiply it by 3 - 18
2. Add 1 - - \quad - 19
3. Multiply by 3 - - - 57
4. Add to this the number thought of 63

Let him inform you what is the number produced; it will always end with 3 . Strike off the 3, and inform him that he thought of 6 .

Third Method.
EXAMPLE.
Suppose the number thought of to be 6

1. Let him double it - - . 12
2. Add 4 16
3. Multiply by 5 - . . . 80
4. Add 12 - 92
5. Multiply by 10 - - . . 920

Let him inform you what is the number produced. You must in every case silbtract 320 ; the remainder is, in this ex-
ample, 600 ; strike on the two ciphers, and announce 6 as the number thought of.

Fourth Method.

Desire a person to think of a number, say 6. He must then proceed-

> EXAMPLE.

1. To multiply this number by itself 36
2. So take 1 from the number thought of - - - - - 5
3. To multiply this by itself - . 25
4. To tell you the difference between this product and the former $\quad-11$
You must then add 1 to it . 12
And halve this number - - - 6
Which will be the number thonght of. Fifth Method.
Desire a person to think of a number, say 6. He must then proceed as follows:

EXAMPLE.

1. Add 1 to it - . . . 7
2. Multiply by 3 - - . . 21
3. Add 1 again - . . - . 22
4. Add the number thought of - 28

Let him tell you the figures produced (28) :
5. You then substract 4 from it - 24
C. And divide by 4

Which you can say is the number thought of.

> Sixilh Method.
> example.

Suppose the number thought of $\quad 6$

1. Let him double it - - - 12
2. Desire him to add to this any number
you tell him, say 4 - - 16
3. To halve it

- 8

You can then tell him that if he will subtract from this the number he thought of, the remainder will be, in the case supposed, 2.

Note.-The remainder is always half of the number you tell him to add.

Who wears the ring.

TIISS is an elegant application of the principles involved in discorcring a number fixed upon. The number of persons participating in the game should not exceed nine. One of them puts a ring on one of his fingers, and it is your object to discover-1st, The wearer of the ring. 2d. The hand. 3d. The finger. 4th. The joint.

The company being seated in order the persons must be numbered $1,2,3$, \&c. ; the thumb must be termed the first finger,
the fore finger being the second; the joint nearest the extremity must be called the first joint ; the right hand is one, and the left hand two.

These preliminaries having been arranged, leave the room in order that the ring may be placed unobserved by jou. We will suppose that the third person has the ring on the right hand, third finger, and first joint; your oblect is to discover the figures 3131.

Desire one of the company to perform secretly the following arithmetical operations:

1, Donble the number of the person who has the ring; in the case supposed, this will produce....................... . 6
2. Add 5.................................... 11
3. Multiply by 5.......................... 55
4. Add 10 65
5. Add the number denoting the
hand . 66
6. Multiply by $10 \ldots .$. 660
7. Add the number of the finger . . 663
8. Multiply' by $10 \ldots . .$. 6630
9. Add the aumber of the joint. . 6631

He must apprise you of the figures now produced, 6666 ; you will then in all cases substract from it 3535 ; in the present instance there will remain $31 \bar{\partial} 1$, denoting the person No. 3, tho hand No, 1, the finger No. 3, and the joint No. 1.

The Astonished Farmer.

Aand B took each 30 pigs to market; A sold his at three for a pound, $1 ;$ at two for a pound, and together they received 25 pounds. A afterwards took 60 alone, which he sold as before, at five for two pounds, and received but 24 pounds; what became of the other pound?

This is rather a catch question, the insinuation that the first lot were sold at the rate of five for two pounds being only true in part. They commence selling at that rate, but, after making ten sales, A's pigs are exhausted, and they have receiver 20 pounds; B still has ten, which he sells at "two for a pound," and of course receives five pounds; whereas had he sold them at the rate of five for two pounds, he would have received but four pounds. Hence the difficulty is easily settled.

How to tell a person's age. - YOUNG ladies of a marriageable dge clo not like to tell how old they aro, but you can find out by following the subjoined instructions. Let the person whose age is to be discovered do the figuring. Suppose, for example, that her age is fifteen, and that she was born in August. Let her put down the number of the month in which she was born, and tell her to proceed as follows :-

Number of month	- 8
Multiply by 2	6
Add 5	21
Multiply by 50	1050
Then add the ago (15)	- 1065
Subtract 365, leaving	- 700
Add 115	Sl

She then annomees the result 815 , whereupon you inform her that her age is fifteen, and August, or tho eighth month, is the month of her birth, for the two Agures to the right in the result will always indicate the age, and the remaining figure or figures the month the birthday falls in. This rule never fails for all ages up to one humtred. In ages under ten a cypher will apperr in the result, hat no account is taken of this.

The Market Woman's Puzzle.

AMARKET-WOMAN bought 190 apples at two a halfpenny, and 120 more of another sort at three for a halfpenny; but not liking her bargain, she mixed them together, and sold them out again at five for a penny, thinking she would get the same sum; but on counting up her money, she found, to her surprise, that she had lost twopence. How did this happen?

On the first view of the question there does not appoar to be any loss; but if it be supposed that in selling five apples for a penny she gave three of the latter sort, viz: those at three for a halfpenny, and two of the former, viz: those at two for a halfpenny, she would receive just the same money as she bought them for; but this will not be throughout the whole, for admitting that she sells them as above, it must be evident that the latter stock would be exhausted first, and consequently she must sell as many of the former as remained overplus at five for a pemy, which she bought at the rate of two for a halfpenny, or four for a penny, and would therefore lose. It will be readily fround that when she had sold all
the latter sort in the above manner, she would only have sold eighty of the former, for there are as many threes in one hundred and twenty as twos in eighty; then tho remaining forty must be sold at five for a penny, which were bought at the rate of four for a penny, viz: -

If $1: 1: 10: 10$,	Prime cost of 40 of the first sort.
5:1 : : $10: 8$	Selling price of ditto.
9	Pence Loss.

The Drover's Problem.

One morning I chaned with a drover to meet, Who was driving some sheep up to town,
Which seemed very near realy to drop from the heat, Whereupon I exclamed wial a frown:
"Don't you think it is wrong to treat animals so, Why not take etter cars of ynur flock?"
"I woutd do so," said he, "cut I're some miles to go Between this and cleven o"clock."
" Well, supposing you have," I replied, "you should let Them have rest now and then by the way."
"So 1 will, my good friend, if you think I can get There in time for the marlict to-day.
"Now, as you seem to know such a lot about sheep, Perhaps you'll tell us how many I've got?"
"No, a casual glance, as they stand in a heap, Won't permit of it, so l cannot."
" Well, supposing as how I'd as many agaiu, Half as many, and seven, as trte
Λ s vou're there, it would pay me to ride up by train, Because I should have thirty-two."
There were ten sheep in the llock; ten, as many aryain ; five, half as many; and soven besides. Total : thirty-two.

More Queer Questions.

I^{F}you cut up thirty yards of cloth into onc-yard pieces, and cut one yard off every day, how long will it take?

Ans: Twenty-nine days.
What two numbers multiplied together will produce 7 ?

Ans: 7 and 1.
What is the difference between twice 25 and twice 5 and 20 ?

Ans: Twice 25 is 50 . Twice 5 , and 20 is thirty-difference 20.

What is the two-thirds of three-fourths of elevenpence-halfpenny?

Ans: Five-pence three-farthings. The two-thirds of the three-fourths of anything are just one-half the whole.

How much is a third and half-a-third of five?

Ans: Two and a half. There are exactly three-thirds in five, therefore a third and half-a-third make exactly half.

Divitu the number 50 into two such : parts that, if tho greater part be divided : by seren, and the lesser multiplied by three, the sum of the quotiont and the product will make 50 ?

Ans: 35 and 15.
If a goose weighs 10 ll s. and half its its own weight, what is the weight of the goose?

Ans: 20 lbs. 10 lbs., and 10 lbs. for half its own weight.
Λ suail clinning up a post 20 fect ligh, asconds five feot overy day and slips down four feet every night. How long will it take to get to the top of the post?

Ans: if days. It is perlaps unnocessary to point out that the snail would gain no foot a day for 15 days, and on the 16th day reach the top of the pole, and there remain.
Λ train starts claily from Sian Erancisco to Now York, and one daily from Now York to Sim Francises, the jommey lasting five days. How many trains will a traveller meet in journeying from New York to Sun Franciseo?

Ans: Ten. About nincty-nino persons nut of a hundred would say five trains, as a matter of coursc. The fact is overlooked that every day during the joumey a frosh train is starting from the other end, while there are five trains on the way to legin with. Consequently the traveller will moet not five tarins, but ten.

The unfair Division.

AGENTLEMAN ronted a farm and contracted to give to his landlord two-fifths of the proluce; but prior to tho time of dividing the corn the tenant used 45 bushols. When the general division was made, it was proposed to give the landlord 18 bushels from the hoap in licu of his share of the 45 bushels which the tenant had used, and then to begin and"divide the remainder as though none had been used. Would this method have been correct?

No. The landlort would lose seven and one-fifth bushols by such an arrangement, as tho rent wonld entitle him to two-fifths of the 18 . The tenant shoukl give him 18 bushels from his own share aiter the division is completed, otherwise the landlord would only receive twosevenths of the first 63 bushels.

To find six times thirteen in twelve.

PTACE your figures thins:$1,2,3,4,5,6,7,8,9,10,11,12$, and taking always the first and last, figure torether, you say:-

Peculiar Properties of the Numbers 37 and 73.
$\prod^{\top H E}$ number 37 boing multipliod by each of the numbers in the arithmetical progression-3, 6, 9, 12, 15, 18, 91 , 24,27 , all products will bo composed of three similar figures, and the sum is always equal to tho number by which 37 was multiplied:

37	37	37	87	87	37	37	87	87
3	6	9	12	15	18	21	$\underline{21}$	27
111	2e92	313	414	5π.	Gat	777	888	909

Tho number 78 being multipliod 1 s cach of the afore-givon progression, the products will terninate by one of the nino digits--1, 2. 3, 4, 5, 6, 7, 8, 9 in a reverse. Again, if we refer to the sums produced by the multiplication of 73 by $8,6,0,12$, and 15 , it will he found that by reading the two figures to the left of each amount backwards, it will give 1, 2 , $3,4,5,0,7,8,9,0$.

The Basket of Eggs.

A WOMAN carrying eggs to mazket was asked how many she hat. Sho replied that whon she comited them by twos there was ono left! when by threes there was one left; and whon by fous there was one left; but when she counted them by fives there were none loft. How many had sho?

The least number that can be divider by 2,3 , and 4 respectively, without a romainder, is twelve; and that there may be ono remaining, the number must he 18; but this is not divisible by 5 without a remainder. The next greater number is 24 , to which add 1 , and it becomes 25 ; this is divisiblo by 5 without a remainder, and is therefore the number required.

A Tell-Tale Table.

THERE is a good deal of amusement in the following table of figures. It will enable yon to tell how old the young ladies are. Just hand this table to a young lady and request her to tell you in which column or columns her age is contained, add together the ligures at the top of the column in which her age is foumd, and you have the great socret. Thus, suppose her age to be seventeen, you will find that number in the first and fifth columns. Add the first figures of these columus and you have her age. Here is the magical table:-

1	2	4	8	16	32
3	8	5	9	17	33
5	6	6	10	18	34
7	7	7	11	19	35
9	10	12	12	20	36
11	11	13	13	91	37
13	14	14	14	29	88
15	15	15	15)	23	39
17	18	20	21	24	40
19	19	91	25	25	41
91	2.	22	26	26	42
23	29	23	$\underline{2}$	27	43
25	26	28	28	28	44
27	97	29	99	29	45
29	30	30	30	30	46
31	31	31	31	81	47
33	31	36	40	48	48
35	35	37	41	49	49
:7	88	38	42	50	b0
39	39	39	43	51	51
41	42	44	41	6.	82
43	43	4.5	45	53	53
45	46	46	46	54	54
47	47	47	47	55	55
49	50	52	56	56	56
51	¢,	53	57	57	67
53	5.	54	. 58	58	58
50	55	55	59	69	59
57	58	60	60	60	60
59	69	61	61	61	61
61	62	62	62	62	62
63	63	63	63	63	63

To divide a number in two and have no remainder.

IET us suppose 8888 . Run a line through the middle horizontally, and only ciphors will remain.

The Landlord Tricked.

TWENTY-ONE persons sat down to dinner at an inn, with the landlord at the head of the table. When dinner was finished, it was resolved that one of
the number should pay the whole score; to be decided as follows:-A person should commence counting the company, and every seventh man was to rise from his seat, until all were countecl out but one, who was to be the individual who should pay the whole bill. One of the waiters was fixed upon to comnt the company out, who, owing his master a grudge, resolved to make lim the person who should have to pay. How must he proceed to accomplish this?-Commence with the sixth from the landlord.

To let a Person Select several Numbers out of a Bag, and to tell him the Number which shall exactly Divide the Sum of those he has chosen.

PROVIDE a small bag divided into two parts: into one of which put several tickets, numbering $6,9,15,36$, $63,120,213,309$, and any other number divisible by 3 ; and in the other part put as many other tickets marked with the No. 3 only. Ask any of the company to draw a landful of tickets from the first part, and, after showing thom to the company, put them into the bag again: open it a second time, and desire anyone to take out as many tickets as lie thinks proper. When he has dono so, you open privately the other part of the bag, and tell him to take out of it one ticket only. You may safely pronounce tlat the ticket shall contain the number by which the amount of the other numbers is divisible; for as each of these numbers can be divided by 3 , their sum total must evidently be divisible by that number.

A little ingenuity may dirersify this feat by marking the tickets in one part of the bag with any numbers which aro divisible by 9 only, the properties of both 9 and 3 being the same; and it shouli never be exhilited to the same company twice without being varied.

A Quibble.

WHAT is the diference between twenty fou-quart bottles, and four-and-twenty quart bottles?

Fifty-six quarts difference; twouty four-quart bottles equals 80 quarts, from which doluct $\because I$, there remains 66 .

The Partial Reprieve.

T^{0}arrange 30 criminals in such a manner, that by counting them in succession, always beginning again at the first, and rejecting every ninth person, 15 of them may be saved:

Arrange the criminals according to the order of the vowels in the following Latin verse:

4521	31	12	231	321
Populcam	Virgam	Mater	Megrina	Ferebat

Because O is the fourth in the order of the vowels, you must begin by four of those whom you wish to save; next to these place five of those whom you wish to punish, and so on alternately, according to the figures which stand over the vowels of the above verse.

The Cabbage Women.

THREE women went to market with cabbaces, the first having 50 to sell, the second 30 , the third no more than 10 . All three sold out, and at the same rate, and each made the same sum of money by her cabbages. How were they sold?

Opening the market, cabbages wore selling at 7 a pemmy, at which rato the first woman sold 49 , and received sevenpence; the second sold 28 , receiving fourpence; whilst the third sold a single ponnyworth; she, however, had 3 cabbages remaining, whilst her companions had but 1 and 2 respectively. In the course of the clay, the demand increasing, she advanced her price to threepence each, for which she sold her throe last cabbages, and received ninepence. Her companions following her example, sold their remaining cabbages for threepence, each, and also realized the sum of tenpence. Thus: -

1st, for 49 cabbages, got 7 7 .		2ud, for 28 cabbages,got 4d.		
and for 1	3d.	and for ${ }^{2}$	"	6 d.
50	10d.	30		104.
	3d. for 7 cabbares, got 1d.			
	and for 3 -10			

By Adding 5 to 6 to Make 9.

DRAW six vertical lines, and by adding five other lines to them, let the whole form nine.

To Add a Figure to any given Number which shall render it Divisible by Nine.

Add the figures together in your mind which compose the number named; and the figure which must be added to the sum produced, in order to render it divisible by 9 , is the one required.

Suppose the given number to be 4,623; add those together and 15 will be produced; now 15 requires 3 to render it divisible by 9 , and that number, three, being added to 4,623 , causes the same divisibility.

$$
\text { 9) } \frac{3}{\frac{3}{514}}
$$

This exercise may be diversified by your specifying, before the sum is named, the particular place where the figure shall be inserted to make the number divisible by 9 ; for it is exactly the same thing whether the figure be put at the end of the number or between any two of its digits. Thus:-

$$
\text { 9) } 46[3] 23
$$

5147

The Dinner Party.

A CLUB of seven persons agreed to dino togother every day successively so long as they conld sit down to table differently arranged. How many dinners would bo necessary for that purpose? It may be easily found, by the rules of simple progression, that the club must dine together 5,040 times before they could exhaust all the arrangements possible, which would require above thirteen years.

An Expensive Navy.

IF you could buy a hundred ships, giving a farthing for the first, a halfpenny for the second, a penny for the third, twopence for the fourth, and so on to the last, doubling the sum each time, the whole amount paid would be $£ 557,750$, $707,053,344,041,463,074,442 \quad 18 \mathrm{~s}$. 73 ${ }^{\frac{3}{4} \mathrm{~d} .-\mathrm{a}}$ sum which in words runs thus: 557 quadrillions, 750,707 trillions, 53,344 billions, 41,463 millions, 74 thousand, 442 pounds, eighteen shillings and seven pence three farthings. This amount in sovereigns would weigh $3,557,083,500$, $327,499,123,418$ tons.

BOYS' FIRST-RATE POCKET LIBRARY.-Continued.

74. BOZEMAN BILL OF BIG BRACE, or Deadwood Dick's Corral
75. HUMBOLT HARRY THE HURRICANE, or Deadwood Dick Junior's Dog Defestive
76. MOLL MYSTERY, or Deadwood Dick, Junior in Deadwood
77. PRINCE PISTOL, or Deadwood Dick, Junior's, Compact
78. MONTE CRISTO UUNIOR, or Deadwood Dick, Junior's, Inheritance
79. DEADWOOD DICK'S DELIVERANCE, or Fatal Footsteps
80. DEADWOOD DICK'S PROTEGEE, or Baby Bess the Girl Gold Miner
81. DEADWOOD DICK'S THREE, or the "Bellerin Bull" of Bismark
82. DEADWOOD DICK'S DANGER DUCKS, or the Owls of Oregan
83. DEADWOOD DICK'S DEATH HUNT, or the Way of the Transgressor
84. THE GHOULS OF GALVESTON, or Deadwood Dick in Texas
85. DEADWOOD DICK JUNIOR, THE WILD WEST VIDOCQ, or Leonora the Locator
86. DEADWOOD DICK ON HIS METAL, or Captain Crimson Cow!
87. UNRAVELLING A TWISTED SKEIN, or Deadwood Dick in Gotham
88. DEADWOOD DICK IN BOSTON, or the Cool Case
89. "RATS" THE BOY FERRET1 or Deadwood Dick among the Crooks
90. THE ANARCHIST'S DAUGHTER, or Deadwood Dick in Chicago
91. DEADWOOD DICK AFLOAT, or the Prisoner of the Weird Isles
92. COOL KATE, or the Queen of Crooks. Deadwood Dick in Denver.
93. DEADWOOD DICK'S DECREE, or the Rise and Fall of "Jackpot" City
94. DEADWOOD DICK IN THE WEIRD RIVER BASIN. A Romance of Mount Mab
95. DEADWOOD DICK IN CONEY ISLAND, or the "Piping" of Polly Pilgrim
96. DEADWOOD DICK'S LEADVILLE LAY, or Bristol and Buckle's Bocm
97. TURNING THE TABLES, or Deadwood Dick in Detroit
98. THE CLINCHER CAMPAIGN, or Deadwood Dick in Cincinnati
99. JIM JIMSON, the Preacher of Pokerville, or Deadwood Dick in Nevada
100. GOLCONDA THE GLADIATOR, or Deadwood Dick in No-Man's Land
101. SAWDUST SAM'S LAST GREEN GAME, or Deadwood Dick after the Queer
102. A RUM RACKET-4-11.44, or Deadwood Dick in Buffalo. A Mystery
103. A RACE FOR A RUTHLESS ROQUE, or Deadwood Dick's Chase acress the Continert
104. DEADWOOD DICK AMONG THE SMUGGLERS, or Cleaning Out the Gulf Gang
105. DEADWOOD DICK'S INSURANCE CASE, or Carroling a Cunning Trio
106. THE MOUNTALN AMAZON'S DOUBLE GAME, or Deadwood Dick back in the Mines
107. "GATHERED IN," or Deadwood Dick in Durango
108. BOB WOOLF, THE BORDER RUFFIAN, or the Girl Dead-Shot
109. CALIFORNIA' JOE'S FIRST TRAIL. A Story of the Destroying Angels
110. JIM BLUDSOE, JUNIOR, THE BOY PHCENIX
111. GILT-EDGED DICK, THE SPONT DETECTIVE, or the Road Agent's Daughter
112. BONANZA BILL, MINER, or Madam Mystery, the Femaie Forger
113. JACK HOYLE, THE YOUNG SPECULAJOR, or the Road to fortune
114. THE "SEA LANCE," or the Winged Witch of the Ocean
115. BOSS BOB AND HIS NONDESCBIPT PARD
116. CAPTAIN FOX, or Boss Bob's Boss Job
117. SOLID SAM, or the Branded Brows
118.. CALIFORNIA JOE'S WAR TRAIL
118. DEADWOOD DICK'S DISCOVERY, or Found a Fortune
119. DEADWOOD DICK'S ADVENTURES IN "HONEYSUCKLE" TOWN
120. WATCH-EYE, THE SHADOW I By Deadwood Dick
121. DEADWOOD DICK AT DANGER DIVIDE, or Developing the Dead Secret
122. BLACK JOHN: Or the Outlaw's Retreat
123. MUSTANG SAM! The King of the Plains
124. HURRICANE BILL., A Romance of the "Evil Land"
125. DEADWOOD DICK'S DROP, or the Sojourn at Satan's Spring
126. NEW YORK NELL, the Boy-Gir! Detective
127. NOBBY NICK OF NEVADA, or the Scamps of the Sierras
128. ANTELOPE ABE, THE BOY GUIDE
129. MUSTANG MERLE, THE YOUNG RANCHER
130. THE THREE SPOTTERS, or Running in the Rogues
131. THE STREET SPOTTERS' WEIRD HUNT
132. DANDY DICK, DETECTIVE
133. DANDY DICK'S DOUBLE
134. DEADWOOD DICK'S DAZZLE, or the Nemesis of Nutmeg Bonanza
135. DEADWOOD DICK IN SAN FRANCISCO
136. DEADWOOD DICK'S STILL HUNT. A Romance and a Baffling Mystery.
137. DEADWOOD DICK IN JACKPOT, or Old Socdolager's Surprise Party
138. DEADWOOD DICK'S DISGUISE, or The Curious Case at Coftin Camp
139. DEADWOOD DICK'S DOMINOES, or the Rival Camp
140. MISSOURI JOE, THE WHITE TERROR, or the Scourge of the Laramie
141. DEADWOOD DICK'S DEPUTY, or Missouri Joe's Secret Trail
142. OLD AVALANCHE, the Great Annihitator
143. WILD EDNA, or Old Avalanches Retaliation
144. BUCK TAYLOR, THE COMANCHE CAPTIVE, or Buckskin Sam to the Rescue
145. RUTH REDMOND, THE GIRL SHADOWER, or the Rivals of Buckskin
146. DAINTY LANCE, THE BOY SPORT, or the Bank Breakers' Decoy Duck
147. DEADWOOD DICK'S DOUBLE DEAL, or the All-Around Surprise
148. CYCLONE KIT, THE YOUNG GLAIATOR, or The Locked Valley
149. DEADWOOD DICK'S DEATHWATCH, or the Moving Mystery at Mexican Mustang 151. APOLLO BILL, THE TRAIL TORNADO
150. PANTHER PAUL, THE PRAIRIE PIRATE, or Dainty Lance to the Fescue

OTHERS IN ACTIVE PREPARATION.

London: ALDINE PUBLISHING Co., 9, Red Lion Court, Fleet Strect, E.C.

THE ALDINE BOYS OWN Mailc and Trick HaNDBOOKS.

ONE PENNY "EACEY.

VOLLUMES NOIE'READY

No 1." THE MAGIC OF NUMBERS.
No 2. CAPITAL TRICKS AND DECEPTIONS WITH CARDS. No 3. MAGIC TOYS; AND HOW TO MAKE THEM. No 4. TRICKS IN MECHANICS.
WILL BE READY IN JANUARY.

No 5. SLEIGHT OF HAND.

No 6. MAGICAL TRICKS WITH CHEMICALS.
No 7. CURIOUS AND AMUSING PUZZLES.
No 8. AMUSEMENTS IN ELECTRICITY, MAGNETISM, . AND GALYANISM.

Abstract

** These attractive little volumes of "Natural Magic" are designed for social amusement in the home circle. It is intended that much useful knowledge, as well as entertainment, should be gathered, even by the elders of the family. As for the performer himself; a careful study of this series will enable him to convert the parlour, at any desirable moment, into a place of genuine entertainment, and nicely fill up a void in the category of indoor recreations. The little volumes will present an ever-changing, always-tempting, stay-at-home inducement, and in this shape becomes a moral assistant of no unimportant description, as well as a piquant source of good-humoured bamboozlement.

LONDON:

ALDINE POBBLISHING COMPANY, 9, Red Lion Court, Fleet Street, E.C.

[^0]: * Ancestor of the fighting and writing Napier's of later days.

[^1]: *When an exact half cannot be taken withont a frnction, he must take tbe larger half-you must toll him this before be commences. IIere it is the larger hale

