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1

PREFACE.

rpHE earlier part of this book contains an account of certain

-^ Mathematical Recreations : this is followed by some Essays

on subjects most of which are directly concerned with historical

mathematical problems. I hasten to add that the conclusions

are of no practical use, and that most of the results are not

new. If therefore the reader proceeds further he is at least fore-

warned. At the same time I think I may say that many of the

questions discussed are interesting, not a few are associated

with the names of distinguished mathematicians, while hitherto

several of the memoirs quoted have not been easily accessible

to English readers. A great deal of additional matter has been

inserted since the work was first issued in 1892.

The book is divided into two parts, but in both parts

I have excluded questions which involve advanced mathematics.

The First Part now consists of ten chapters, in which are

described various problems and amusements of the kind usually

termed Mathematical Recreations, Several of the questions

mentioned in the first five chapters are of a somewhat trivial

character, and had they been treated in any standard English

work to which I could have referred the reader, I should have

left them out: in the absence of such a work, I thought it

better to insert them and trust to the judicious reader to

omit them altogether or to skim them as he feels inclined.

I may add that in discussing problems where the complete



VI PREFACE

solutions are long or intricate I have been generally content

to indicate memoirs or books where the methods are set

out at length, and to give a few illustrative examples. In

several cases I have also stated problems which still await

solution.

The Second Part now consists of eleven chapters, mostly

dealing with Historical Questions. It is with some hesitation

that I have included in this part chapters on String Figures,

Astrology, and Ciphers, but I think they may be interesting to

my readers, even though the subjects are only indirectly con-

nected with Mathematics.

I have inserted detailed references, as far as I know them,

to the sources of the various questions and solutions given;

also, wherever I have given only the result of a theorem,

I have tried to indicate authorities where a proof may be found.

In general, unless it is stated otherwise, I have taken the

references direct from the original works; but, in spite of

considerable time spent in verifying them, I dare not suppose

that they are free from all errors or misprints. I shall be

grateful for notices of additions or corrections which may occur

to any of my readers.

I am indebted to my friend Mr G. N. Watson for his

kindness in reading the proof-sheets of this (the fifth) edition,

and for many helpful suggestions and comments.

w. w. rousp: ball.

Trinity College, Cambridge.

October, 1911.

NOTE TO THE SIXTH EDITION (1914).

In this edition, besides trivial corrections and changes, a

few additional recreations have be^n inserted, and Chapter XVIII

has been re-written.
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PART I.

i^latl^ematiral J^etrfatfonE!.

" Les hommes ne sont jamais jylus ingenieux que dans Vinvention

desjeux; Vesprit s'y trouve d son aise Apres lesjeux qui dependent

uniquement des nomhres viennent les jeux ou entre la situation

Apres les jeux oil ne/Urent que le nomhre et la situation viendraient

les jeux ou entre le 7nouvement..,.Enjin il serait a souhaiter qu^on

eut un cours entier desjeux, traiies mathematiquement." (Leibnitz:

letter to De Montmort, July 29, 1715.)

B. R.



2

CHAPTER I.

ARITHMETICAL RECREATIONS.

I commence by describing some arithmetical recreations.

The interest excited by statements of the relations between

numbers of certain forms has been often remarked, and the

majority of works on mathematical recreations include several

such problems, which, though obvious to any one acquainted

with the elements of algebra, have to many who are ignorant

of that subject the same kind of charm that mathematicians

find in the more recondite propositions of higher arithmetic.

I devote the bulk of this chapter to these elementary

problems.

Before entering on the subject, I may add that a large

proportion of the elementary questions mentioned here are

taken from one of two sources. The first of these is the classical

Prohlhnes plaisans et delectables, by Claude Caspar Bachet,

sieur de Meziriac, of which the first edition was published in

1612 and the second in 1624 : it is to the edition of 1624 that

the references hereafter given apply. Several of Bachet's

problems are taken from the writings of Alcuin, Pacioli di

Burgo, Tartaglia, and Cardan, and possibly some of them are

of oriental origin, but I have made no attempt to add such

references. The other source to which I alluded above is

Ozanam's Beci^eations mathematiques et physiques. The greater

portion of the original edition, published in two volumes at

Paris in 1694, was a compilation from the works of Bachet,

Mydorge, and Leurechon : this part is excellent, but the same

cannot be said of the additions due to Ozanam. In the

Biocjraphie Universelle allusion is made to subsequent editions
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issued in 1720, 1735, 1741, 1778, and 1790; doubtless these

references are correct, but the following editions, all of which

I have seen, are the only ones of which I have any knowledge.

In 1696 an edition was issued at Amsterdam. In 1723—six

years after the death of Ozanam—one was issued in three

volumes, with a supplementary fourth volume, containing,

among other things, an appendix on puzzles. Fresh editions

were issued in 1741, 1750 (the second volume of which bears

the date 1749), 1770, and 1790. The edition of 1750 is said to

have been corrected by Montucla on condition that his name

should not be associated with it; but the edition of 1790 is

the earliest one in which reference is made to these corrections,

though the editor is referred to only as Monsieur M***.
Montucla expunged most of what was actually incorrect in the

older editions, and added several historical notes, but un-

fortunately his scruples prevented him from striking out the

accounts of numerous trivial experiments and truisms which

overload the work. An English translation of the original

edition appeared in 1708, and I believe ran through four

editions, the last of them being published in Dublin in 1790.

Montucla's revision of 1790 was translated by C. Hutton, and

editions of this were issued in 1803, in 1814, and (in one

volume) in 1840 : my references are to the editions of 1803

and 1840.

I proceed to enumerate some of the elementary questions

connected with numbers which for nearly three centuries

have formed a large part of most compilations of mathe-

matical amusements. They are given here largely for their

historical—not fur their arithmetical—interest ; and perhaps a

mathematician may well omit this chapter.

Many of these questions are of the nature of tricks or puzzles,

and I follow the usual course and present them in that form.

I may note however that most of them are not worth proposing,

even as tricks, unless either the method employed is disguised

or the result arrived at is different from that expected
; but, as

I am not writing on conjuiing, I refrain from alluding to the

1 o
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means of disguising the operations indicated, and give merely

a bare enumeration of the steps essential to the success of the

method used, though I may recall the fundamental rule that

no trick, however good, will bear immediate repetition, and that,

if it is necessary to appear to repeat it, a different method of

obtaining the result should be used.

To FIND A NUMBER SELECTED BY SOME ONE. There are

innumerable ways of finding a number chosen by some one,

provided the result of certain operations on it is known. I

confine myself to methods typical of those commonly used.

Any one acquainted with algebra will find no difficulty in

framing new rules of an analogous nature.

First Method*, (i) Ask the person who has chosen the

number to treble it. (ii) Enquire if the product is even or

odd: if it is even, request him to take half of it; if it is odd,

request him to add unity to it and then to take half of it.

(iii) Tell him to multiply the result of the second step by 3.

(iv) Ask how many integral times 9 divides into the latter

product : suppose the answer to be n. (v) Then the number

thought of was 2n or 2?i + 1, according as the result of step (i)

was even or odd.

The demonstration is obvious. Every even number is of

the form 2n, and the successive operations applied to this give

(i) 6n, which is even; (ii) J6w = 37i; (iii) SxSn = 9n; (iv)

^9n = n; (v) 2n. Every odd number is of the form 2?i + 1, and

the successive operations applied to this give (i) Qn + 3, which

is odd; (ii) i(6?i + 3 + 1) = 871 + 2
;

(iii) 3(8?i + 2) = 9/^ + 6;

(iv) ^ (9n + 6) = n+ a remainder
;

(v) 2?i + 1, These results

lead to the rule given above.

Second Methodf. Ask the person who has chosen the

number to perform in succession the following operations,

(i) To multiply the number by 5. (ii) To add 6 to the product,

(iii) To multiply the sum by 4. (iv) To add 9 to the product,

(v) To multiply the sum by 5. Ask to be told the result of

the last operation: if from this product 165 is subtracted, and

* Baehet, Prohlejiies, Lyons, 1624, problem i, p. 53.

t A similar rule was given by Baehet, problem iv, p. 74.
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then the remainder is divided by 100, the quotient will be the

number thought of originally.

For let n be the number selected. Then the successive

operations applied to it give (i) bn; (ii) 5?i + 6
;

(iii) 20/1 + 24;

(iv) 20?i + 33, (v) 100;i + 165. Hence the rule.

Third Method*. Request the person who has thought of

the number to perform the following operations, (i) To

multiply it by any number you like, say, a. (ii) To divide the

product by any number, say, 6. (iii) To multiply the quotient

by c. (iv) To divide this result by d. (v) To divide the final

result by the number selected originally, (vi) To add to the

result of operation (v) the number thought of at first. Ask for

the sum so found : then, if acjhd is subtracted from this sum,

the remainder will be the number chosen originally.

For, if 71 was the number selected, the result of the first four

operations is to form nac/bd ; operation (v) gives ac/bd ; and

(vi) gives n -^ (ac/bd), which number is mentioned. But ac/bd

is known ; hence, subtracting it from the number mentioned,

71 is found. Of course a, b, c, d may have any numerical values

it is liked to assign to them. For example, if a =12, 6 = 4,

c = 7, d = S it is sufficient to subtract 7 from the final result in

order to obtain the number originally selected.

Fourth Methudf, Ask some one to select a number less

than 90. Request him to perform the following operations,

(i) To multiply it by 10, and to add any number he pleases,

a, which is less than 10. (ii) To divide the result of step (i)

by 3, and to mention the remainder, say, b. (iii) To multiply

the quotient obtained in step (ii) by 10, and to add any number

he pleases, c, which is less than 10. (iv) To divide the result

of step (iii) by 3, and to mention the remainder, say d, and

the third digit (from the right) of the quotient; suppose

this digit is e. Then, if the numbers a, b, c, d, e are known,

the original number can be at once determined. In fact, if

the number is ^x + y, where a; :}> 9 and yi^^, and if r is the

* Bachet, problem v, p. 80.

t Educational Times, London, May 1, 180o, vol. xlviii, p. 234.
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remainder when a — h-^o(c — d) is divided by 9, we have

0) = e, y = 9 —r.

The demonstration is not difficult. Suppose the selected num-

ber is 9^+1/. Step (i) gives 90a; + IO1/ + a. Let y -h a = Sn -\- b,

then the quotient obtained in step (ii) is 30a; + 3?/ + n. Step

(iii) gives .300a; + SOy + lOn + c. Let n + c = Sm + d, then the

quotient obtained in step (iv) is lOOx + lOy -{ Sn -\- m, which I

will denote by Q. Now the third digit in Q must be x, because,

since y :^ S and a :|> 9, we have n :}> 5 ; and since n:^ 5 and c :^ 9,

we have w
::f> 4 ; therefore lOy + 8n + m r)^ 99. Hence the third

or hundreds digit in Q is x.

Again, from the relations y -\- a = Sn + b and n-\-c= 3m + d,

we have 9m — y = a — b + S(c — d) : hence, if r is the remainder

when a — b + S(c — d) is divided by 9, we have y = 9 — r. [This

is always true, if we make r positive ; but if a—b-\-S(c — d)

is negative, it is simpler to take y as equal to its numerical

value ; or we may prevent the occurrence of this case by

assigning proper values to a and c] Thus ob and y are both

known, and therefore the number selected, namely 9x-\-y, is

known.

Fifth Method*. Ask any one to select a number less

than 60. Request him to perform the following operations,

(i) To divide it by 3 and mention the remainder; suppose it

to be a. (ii) To divide it by 4, and mention the remainder;

suppose it to be b. (iii) To divide it by 5, and mention the

remainder; suppose it to be c. Then the number selected is

the remairider obtained by dividing 40a + 456 + 36c by 60.

This method can be generalized and then will apply to any

number chosen. Let a', b\ c', ... be a series of numbers prime

to one another, and let p be their product. Let n be any

number less than ^, and let a, 6, c, ... be the remainders

when n is divided by a , b', c\ ... respectively. Find a number

A which is a multiple of the product b'c'd' ... and which

exceeds by unity a multiple of a. Find a number B which is

a multiple of a'c'd' ... and which exceeds by unity a multiple

* Bachet, problem vi, p. 84 : Bachet added, on p. 87, a note on the previous

history of the problem.
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of h', and similarly find analogous numbers C\ D, Rules

for the calculation of A, B, G,... are given in the theory of

numbers, but in general, if the numbers a', h' , c\ ... are small,

the corresponding numbers A, J5, C, ... can be found by in-

spection. I proceed to show that n is equal to the remainder

when Aa -\- Bh -\- Gc \- . . . is divided by p.

Let N = Aa + 56 + (7c + ..., and let M {x) stand for a

multiple of x. Now A = M{a')-\-l, therefore Aa = M {a') -\- a.

Hence, if the first term in N, that is Aa, is divided by a, the

remainder is a. Again, 5 is a multiple of ac'd' Therefore

Bh is exactly divisible by a Similarly Gc, Dd,... are each

exactly divisible by a\ Thus every term in N, except the first,

is exactly divisible by a'. Hence, if N is divided by a', the

remainder is a. Also if n is divided by a\ the remainder is a.

Therefore N-7i = M{a).

Similarly N~n = M(b'),

N-n = M{c'\

But a\ b\ c', ... are prime to one another.

.-. N-n = M(a'b'c\..) = M(p),

that is, N=M{jp) + n.

Now n is less than p, hence if N is divided by p, the

remainder is n.

The rule given by Bachet corresponds to the case of a' = 3,

y = 4, c'=5, p = 60, ^ = 40, 5 = 45, 0=36. If the number

chosen is less than 420, we may take a' = 3, 6' = 4, c' = b., d' = 1

,

p = 420, il = 280, 5 = 105, (7=336, i) = 120.

To FIND THE RESULT OF A SERIES OF OPERATIONS PER-

FORMED ON ANY NUMBER {unknown to the operator) without

ASKING ANY QUESTIONS. All rules for solving such problems

ultimately depend on so arranging the operations that the

number disappears from the final result. Four examples will

suffice.

First Example*. Request some one to think of a number.

Suppose it to be n. Ask him (i) to multiply it by any number

you please, say, a; (ii) then to add, say, 6; (iii) then to divide

* Bachet, problem viii, p. 102.
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the sum by, say, c. (iv) Next, tell him to take ajc of the

number originally chosen; and (v) to subtract this from the

result of the third operation. The result of the first three

operations is {na + 6)/c, and the result of operation (iv) is najc :

the difference between these is hjc, and therefore is known to

you. For example, if a = 6, 6 = 12, c = 4, then ajc = \\, and the

final result is 3.

Second Example*. Ask A to take any number of counters

that he pleases : suppose that he takes n counters, (i) Ask

some one else, say B, to take p times as many, where p is

any number you like to choose, (ii) Request A to give q of

his counters to B, where q is any number you like to select,

(iii) Next, ask B to transfer to ^ a number of counters equal

to p times as many counters as A has in his possession. Then

there will remain in B's hands q{p-\-^) counters: this number

is known to you ; and the trick can be finished either by

mentioning it or in any other way you like.

The reason is as follows. The result of operation (ii) is

that B has pn + q counters, and A has n — g counters. The

result of (iii) is that B transfers p{n — q) counters to A : hence

he has left in his possession {pn + q)~- p(n — q) counters, that

is, he has q(p-^l).

For example, if originally A took any number of counters,

then (if you chose p equal to 2), first you would ask B to take

twice as many counters as A had done ; next (if you chose q

equal to 3) you would ask A to give 3 counters to B; and then

you would ask B to give to A a, number of counters equal to

twice the number then in A's possession ; after this was done

you would know that B had 3(2 + 1), that is, 9 left.

This trick (as also some of the following problems) may be

performed equally well with one person, in which case A may
stand for his right hand and B for his left hand.

Third Example. Ask some one to perform in succession

the following operations, (i) Take any number of three digits,

in which the difference between the first and last digits exceeds

unity, (ii) Form a new number by reversing the order of

* Bachet, problem xiii, p. 123 : Bachet presented the above trick in a form,

somewhat more general, but less effective in practice.
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the digits, (iii) Find the difference of these two numbers,

(iv) Form another number by reversing the order of the digits

in this difference, (v) Add together the results of (iii) and (iv).

Then the sum obtained as the result of this last operation will

be 1089.

An illustration and the explanation of the rule are given

below.

(i) 237 100a + 106 + c

(ii) 732 100c + 106 + g

(iii) 495 lOO(a-c-l) + 90 + (10 + c-a)

(iv) _594 100(10 + c-a)+ 90 + (a-c-l)
(v) 1089 900 +180 + 9

The result depends only on the radix of the scale of notation in

which the number is expressed. If this radix is r, the result is

(r - 1) (r + 1)=^ ; thus if r = 10, the result is 9 x 11^, that is, 1089.

Fourth Example*, The following trick depends on the

same principle. Ask some one to perform in succession the

following operations, (i) To write down any sum of money

less than £12, in which the difference between the number of

pounds and the number of pence exceeds unity, (ii) To

reverse this sum, that is, to write down a sum of money ob-

tained from it by interchanging the numbers of pounds and

pence, (iii) To find the difference between the results of

(i) and (ii). (iv) To reverse this difference, (v) To add to-

gether the results of (iii) and (iv). Then this sum will be

£12. 185. lid

For instance, take the sum £10. 17^. od.', we have

£ s. d.

(i) 10 17 5

(ii) 5 17 10

(iii) 4 19 7

(iv) 7 19 4

(v) 12 18 11

« Educational Times Reprints, 1890, vol. i.iii, p. 78.
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The following analysis explains the rule, and shows that the

final result is independent of the sum written down initially.

£ s. d.

(i) a h c

(ii) c h a

(iii) a-c- 1 19 c-a + 12

(iv) c-a + 12 19 a-c- 1

(v) 11 38 11

Mr J. H. Schooling has used this result as the foundation

of a slight but excellent conjuring trick. The rule can be

generalized to cover any system of monetary units.

Problems involving Two Numbers. I proceed next to

give a couple of examples of a class of problems which involve

two numbers.

First Example'^. Suppose that there are two numbers, one

even and the other odd, and that a person A is asked to select

one of them, and that another person B takes the other. It is

desired to know whether A selected the even or the odd number.

Ask A to multiply his number by 2, or any even number, and B
to multiply his by 3, or any odd number. Request them to add

the two products together and tell you the sum. If it is even,

then originally A selected the odd number, but if it is odd, then

originally A selected the even number. The reason is obvious.

Second Example^. The above rule was extended by Bachet

to any two numbers, provided they are prime to one another

and one of them is not itself a prime. Let the numbers be

m and n, and suppose that n is exactly divisible by p. Ask A
to select one of these numbers, and B to take the other. Choose

a number prime to p, say q. Ask A to multiply his number by

q, and B to multiply his number by ^. Request them to add the

products together and state the sum. Then A originally selected

m or n, according as this result is not or is divisible byp. The
numbers, m = 7, n = 15, _p = 3, ^^ = 2, will illustrate the rest.

Problems depending on the Scale of Notation. Many
of the rules for finding two or more numbers depend on the

* Bachet, problem ix, p. 107. + Bachet, problem xi, p. 113.
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fact that in arithmetic an integral number is denoted by

a succession of digits, where each digit represents the product

of that digit and a power of ten, and the number is equal

to the sum of these products. For example, 2017 signifies

(2 X lO") + (0 X 10^) + (1 X 10) + 7 ; that is, the 2 represents

2 thousands, i.e. the product of 2 and 10^ the represents

hundreds, i.e. the product of and 10^; the 1 represents

1 ten, i.e. the product of 1 and 10, and the 7 represents 7 units.

Thus every digit has a local value. The application to tricks

connected with numbers will be understood readily from three

illustrative examples.

First Example*. A common conjuring trick is to ask a boy

among the audience to throw two dice, or to select at random

from a box a domino on each half of which is a number. The

boy is then told to recollect the two numbers thus obtained, to

choose either of them, to multiply it by 5, to add 7 to the

result, to double this result, and lastly to add to this the other

number. From the number thus obtained, the conjurer sub-

tracts 14, and obtains a number of two digits which are the

two numbers chosen originally.

For suppose that the boy selected the numbers a and h.

Each of these is less than ten—dice or dominoes ensuring this.

The successive operations give (i) ^a] (ii) 5a 4- 7; (iii) 10a + 14;

(iv) 10(1 + 14 + 6. Hence, if 14 is subtracted from the final

result, there will be left a number of two digits, and these

digits are the numbers selected originally. An analogous trick

might be performed in other scales of notation if it was thought

necessary to disguise the process further.

Second Example^. Similarly, if three numbers, say, a, h, c,

are chosen, then, if each of them is less than ten, they can be

* Some similar questions were given by Bachet in problem xii, p. 117 ; by

Oughtred or Leake in the Mathematicall Recreations, commonly attributed to

the former, London, 1653, problem xxxiv; and by Ozanam, part i, chapter x.

Probably the Mathematicall Recreations were compiled by Leake, but as the

work is usually catalogued under the name of W. Oughtred, I shall so describe

it: it is founded on the similar work by J. Leurechon, otherwise known as

n. van Etten, published in 1G26.

t Bachet gave some similar (Questions in problem xii, p. 117.
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found by the following rule, (i) Take one of the numbers, say, a,

and multiply it by 2. (ii) Add 3 to the product, (iii) Multiply

this by 5, and add 7 to the product, (iv) To this sum add the

second number, b. (v) Multiply the result by 2. (vi) Add 3

to the product, (vii) Multiply by 5, and, to the product, add

the third number, c. The result is 100a+ 106 + c + 235. Hence,

if the final result is known, it is sufficient to subtract 235 from

it, and the remainder will be a number of three digits. These

digits are the numbers chosen originally.

Third Example*. The following rule for finding the age

of a man born in the 19th century is of the same kind. Take

the tens digit of the year of birth
;

(i) multiply it by 5 ;
(ii) to

the product add 2 ;
(iii) multiply the result by 2 ;

(iv) to this

product add the units digit of the birth-year
;
(v) subtract the

sum from 120. The result is the man's age in 1916.

The algebraic proof of the rule is obvious. Let a and b be

the tens and units digits of the birth-year. The successive opera-

tions give (i) 5a; (ii) 5a + 2; (iii) lOci + 4; (iv) 10a + 4 + 6;

(v) 120- (10a + 6), which is his age in 1916. The rule can be

easily adapted to give the age in any specified year.

Fourth Example^. Another such problem but of more

difficulty is the determination of all numbers which are in-

tegral multiples of their reversals. For instance, among
numbers of four digits, 8712 = 4 x 2178 and 9801 = 9 x 1089

possess this property.

Other Problems with numbers in the denary scale.

I may mention here two or three other problems which seem

to be unknown to most compilers of books of puzzles.

First Problem. The first of them is as follows. Take any

number of three digits : reverse the order of the digits : sub-

tract the number so formed from the original number : then, if

the last digit of the difference is mentioned, all the digits in

the difference are known.

* A similar question was given by Laisant and Perrin in their Algebre, Paris,

1892; and in L' Illustration for July 13, 1895.

t L'lntermediaire des Matheinaticiens , Paris, voL xv, 1908, pp. 228, 278;

vol. XVI, 1909, p. 34; vol. xix, 1912, p. 128.
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For suppose the number is 100a + 106 + c, that is, let a be
the hundreds digit of the number chosen, h be the tens digit,

and c be the units digit. The number obtained by reversing

the digits is 100c 4- 106 + a. The difference of these numbers is

equal to (100a + c) - (100c + a), that is, to 99 (a - c). But a - c

is not greater than 9, and therefore the remainder can only be

99, 198, 297, 396, 495, 594, 693, 792, or 891—in each case the

middle digit being 9 and the digit before it (if any) being

equal to the difference between 9 and the last digit. Hence, if

the last digit is known, so is the whole of the remainder.

Second Problem. The second problem is somewhat similar

and is as follows, (i) Take any number
;

(ii) reverse the digits

;

(iii) find the difference between the number formed in (ii) and
the given number; (iv) multiply this difference by any number
you like to name; (v) cross out any digit except a nought;

(vi) read the remainder. Then the sum of the digits in the

remainder subtracted from the next highest multiple of nine

will give the figure struck out. This is clear since the result

of operation (iv) is a multiple of nine, and it is known that

the sum of the digits of every multiple of nine is itself a

multiple of nine.

Empirical Problems. There are also numerous empirical

problems, such as the following. With the ten digits, 9, 8, 7, 6,

5, 4, 3, 2, 1, 0, express numbers whose sum is unity : each digit

being used only once, and the use of the usual notations for

fractions being allowed. With the same ten digits express

numbers whose sum is 100. With the nine digits, 9, 8, 7, 6, 5,

4, 3, 2, 1, express four numbers whose sum is 100. To the

making of such questions there is no limit, but their solution

involves little or no mathematical skill.

Four Digits Problem. I suggest the following problem as

being more interesting. With the digits 1, 2, ... w, express the

consecutive numbers from 1 upwards as far as possible, say to

p : four and only four digits, all different, being used in each

number, and the notation of the denary scale (including

decimals), as also algebraic sums, products, and positive

integral powers, being allowed. If the use of the symbols
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for square roots and factorials (repeated if desired a finite

number of times) is also permitted, the range can be ex-

tended considerably, say to q consecutive integers. If w = 4,

I make jp = 88, (? = 264 ; if n = 5, _p = 231, ^ = 790 ; with the

four digits 0, 1, 2, 3, ^^ = 36, q — 40. The problem is not easy,

and these limits may be too low.

Four Fours Problem. Another traditional recreation is,

with the ordinary arithmetic and algebraic notation, to express

the consecutive numbers as far as possible in terms of four

" 4's." Everything turns on what we mean by ordinary notation.

I take it that this allows the use of the denary scale {ex. gr.

numbers like 44) and decimals ; the symbols for factorials and

square roots (repeated if desired a finite number of times) ; and

the symbols for addition, subtraction, multiplication, division,

and brackets; but I consider that indices (other than first

powers), not expressible by a " 4 " or " 4's," and roots (other

than square roots) are excluded ; and that though a number

like 2 can be expressed by one " 4," numbers like "2 and 22 are

inadmissible. On these assumptions we can express every

number up to and including 112. If we also allow the use of

subfactorials * we can thus express every number up to and

including 87 7 f. The similar problems of the expression by

four"9's" in ordinary notation up to 132, and by four"3's,"

with the use of subfactorials, up to 153, present no difficulty.

Problems with a series of things which are numbered.

Any collection of things which can be distinguished one from

the other—especially if numbered consecutively—afford easy

concrete illustrations of questions depending on these ele-

mentary properties of numbers. As examples I proceed to

enumerate a few familiar tricks. The first two of these are

commonly shown by the use of a watch, the last four may be

exemplified by the use of a pack of playing cards. I present

them in these forms.

* Subfactorial n is written n| or n j and is equal to

n\ (l-l/l! + l/2!-l/3! + ...±l/n!).

+ For the method used to obtain these results and extensions of them, see

the Mathematical Gazette, May, 1912.
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First Example*. The first of these examples is connected

with the hours marked on the face of a watch. In this

puzzle some one is asked to think of some hour, say, w, and

then to touch a number that marks another hour, say, n.

Then if, beginning with the number touched, he taps each

successive hour marked on the face of the watch, going in the

opposite direction to that in which the hands of the watch

move, and reckoning to himself the taps as m, {m + 1 ), &c.,

the (7i + 12)th tap will be on the hour he thought of For

example, if he thinks of v and touches ix, then, if he taps

successively IX, Viii, VII, Vi, ..., going backwards and reckoning

them respectively as 5, 6, 7, 8, . .
.
, the tap which he reckons as

21 will be on the v.

The reason of the rule is obvious, for he arrives finally at

the (n + 12 — m)th hour from w^hich he started. Now, since he

goes in the opposite direction to that in which the hands of

the watch move, he has to go over {n — m) hours to reach the

hour m : also it will make no difierence if in addition he goes

over 12 hours, since the only effect of this is to take him

once completely round the circle. Now (ti + 12 — m) is always

positive, since n is positive and m is not greater than 12, and

therefore if we make him pass over (?^+ 12 — m) hours we can

give the rule in a form which is equally valid whether m is

greater or less than n.

Second Example. The follow*ing is another well-kno^vn

watch-dial problem. If the hours on the face are tapped suc-

cessively, beginning at vii and proceeding backwards round the

dial to VI, V, &c., and if the person who selected the number

counts the taps, beginning to count from the number of the hour

selected (thus, if he selected x, he would reckon the first tap

as the 11th), then the 20th tap as reckoned by him will be on

the hour chosen.

For suppose he selected the ?ith hour. Then the 8th tap

is on XII and is reckoned by him as the {n -\- 8)th ; and the tap

* Bachet, problem xx, p. 155; Ougbtied or Leake, Mathematkall Rccrea-

tiovs, London, 1653, p. 28.
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which he reckons as (n + p)th. is on the hour (20 — p). Hence,

putting p = 20 — n, the tap which he reckons as 20th is on the

hour n. Of course the hours indicated by the first seven taps

are immaterial : obviously also we can modify the presentation

by beginning on the hour viii and making 21 consecutive taps,

or on the hour ix and making 22 consecutive taps, and so on.

Third Example. The following is another simple example.

Suppose that a pack of n cards is given to some one who is asked

to select one out of the first m cards and to remember (but not to

mention) what is its number from the top of the pack ; suppose

it is actually the icth card in the pack. Then take the pack,

reverse the order of the top m cards (which can be easily

effected by shuffling), and transfer y cards, where y<n — m,

firom the bottom to the top of the pack. The effect of this is

that the card originally chosen is now the (y •{• m — x + l)th.

from the top. Return to the spectator the pack so rearranged,

and ask that the top card be counted as the (x-\- l)th, the next

as the (x + 2)th, and so on, in which case the card originally

chosen will be the (y + m + l)th. Now y and m can be chosen

as we please, and may be varied every time the trick is per-

formed ; thus any one unskilled in arithmetic will not readily

detect the method used.

Fourth Example*. Place a card on the table, and on it

place as many other cards from the pack as with the number

of pips on the card will make a total of twelve. For example,

if the card placed first on the table is the five of clubs, then

seven additional cards must be placed on it. The court cards

may have any values assigned to them, but usually they are

reckoned as tens. This is done again with another card, and

thus another pile is formed. The operation may be repeated

either only three or four times or as often as the pack will

permit of such piles being formed. If finally there are p such

piles, and if the number of cards left over is r, then the sum

of the number of pips on the bottom cards of all the piles will

be 13 ( p - 4) + r.

For, if a? is the number of pips on the bottom card of a pile,

* A particular case of this problem was given by Bachet, problem xvn, p. 138.
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the number of cards in that pile will be 13 — a?. A similar

argument holds for each pile. Also there are 52 cards in the

pack ; and this must be equal to the sum of the cards in the

p piles and the r cards left over.

.-. (13-^,) + (13-a'.3)+... + (13-^p) + r = 52,

.*. ISp — (x^-{-Xo-\- ... -\- Xp) + ?' = 52,

,\ {Ci-\-a;o+ ... +Xp = ISp — 52 + r

= 13(j^-4)+ r.

More generally, if a pack of n cards is taken, and if in each

pile the sum of the pips on the bottom card and the number of

cards put on it is equal to m, then the sum of the pips on the

bottom cards of the piles will be {m + l)p + r — n. In an ecarte

pack 71= 32, and it is convenient to take m= 15.

Fifth Example. It may be noticed that cutting a pack

of cards never alters the relative position of the cards provided

that, if necessary, we regard the top card as following im-

mediately after the bottom card in the pack. This is used in

the following trick*. Take a pack, and deal the cards face

upwards on the table, calling them one, two, three, &c. as you

put them down, and noting in your own mind the card first

dealt. Ask some one to select a card and recollect its number.

Turn the pack over, and let it be cut (not shuffled) as often as

you like. Enquire what was the number of the card chosen.

Then, if you deal, and as soon as you come to the original first

card begin (silently) to count, reckoning this as one, the

selected card will appear at the number mentioned. Of course,

if all the cards are dealt before reaching this number, you

must turn the cards over and go on counting continuously.

Sixth Example. Here is another simple question of this

class. Remove the court cards from a pack. Arrange the

remaining 40 cards, faces upwards, in suits, in four lines thus.

In the first line, the 1, 2, ... 10, of suit ^; in the second line, the

10, 1, 2, ... 9, of suit B; in the third line, the 9, 10, 1, ... 8, of

suit C; in the last line, the 8, 9, 10, 1, ... 7, of suit D. Next

take up, face upwards, the first card of line 1, put below it the

Bachet, problem xix, p. 152.

B. R. 2
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first card of line 2, below that the first card of line 3, and below

that the first card of line 4. Turn this pile face downwards.

Next take up the four cards in the second column in the same

way, turn them face downwards, and put them below the first

pile. Continue this process until all the cards are taken up.

Ask someone to mention any card. Suppose the number of

pips on it is n. Then if the suit is A, it will be the 4nth card

in the pack ; if the suit is B, it will be the (4?i + 3)th card ; if

the suit is C, it will be the (4?i + 6)th card ; and if the suit is D,

it will be the {4m + 9)th card. Hence by counting the cards,

cyclically if necessary, the card desired can be picked out. It is

easy to alter the form of presentation, and a full pack can be

used if desired. The explanation is obvious.

Medieval Problems in Arithmetic. Before leaving the

subject of these eleaientary questions, I may mention a few

problems which for centuries have appeared in nearly every

collection of mathematical recreations, and therefore may claim

what is almost a prescriptive right to a place here.

Fii'st Example. The following is a sample of one class of

these puzzles. A man goes to a tub of water with two jars,

of which one holds exactly 3 pints and the other 5 pints. How
can he bring back exactly 4 pints of water ? The solution

presents no difficulty.

Second Example*. Here is another problem of the same

kind. Three men robbed a gentleman of a vase, containing

24 ounces of balsam. Whilst running away they met a

glass-seller, of whom they purchased three vessels. On reaching

a place of safety they wished to divide the booty, but found

that their vessels contained 5, 11, and 13 ounces respectively.

How could they divide the balsam into equal portions ?

Problems like this can be worked out only by trial.

Third Example f. The next of these is a not uncommon
* Some similar problems were given by Bachet, Appendix, problem in,

p. 206; problem ix, p. 233: by Oughtred or Leake in the Mathematicall

Recreations, p. 22: and by Ozanam, 1803 edition, vol. i, p. 174; 1840 edition,

p. 79. Earlier instances occur in Tartaglia's writings.

+ Bachet, problem xxii, p. 170.
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game, played by two people, say A and B. A begins by

mentioning some number not greater than (say) six, B may
add to that any number not greater than six, A may add

to that again any number not greater than six, and so on.

He wins who is the first to reach (say) 50. Obviously, if A
calls 43, then whatever B adds to that, A can win next time.

Similarly, if A calls 36, B cannot prevent A's calling 43 the

next time. In this way it is clear that the key numbers are

those forming the arithmetical progression 43, 36, 29, 22, 15,

8, 1 ; and whoever plays first ought to win.

Similarly, if no number greater than m may be added at

any one time, and n is the number to be called by the victor,

then the key numbers will be those forming the arithmetical pro-

gression whose common difference is m + 1 and whose smallest

term is the remainder obtained by dividing n by m + 1.

The same game may be played in another form by placing

p coins, matches, or other objects on a table, and directing each

player in turn to take away not more than m of them. Who-
ever takes away the last coin wins. Obviously the key numbers

are multiples of m + 1, and the first player who is able to leave

an exact multiple of (m + 1) coins can win. Perhaps a better

form of the game is to make that player lose who takes away

the last coin, in which case each of the key numbers exceeds

by unity a multiple of m + 1.

Another variety* consists in placing p counters in the form

of a circle, and allowing each player in succession to take away

not more than m of them which are in unbroken sequence

:

m being less than p and greater than unity. In this case

the second of the two players can always win.

These games are simple, but if we impose on the original

problem the restriction that each player may not add the

same number more than (saj-) three times, the analysis

becomes by no means easy. I have never seen this ex-

tension described in print, and I will enunciate it at length.

Suppose that each player is given eighteen cards, three

of them marked 6, three marked 5, three marked 4, three

* S. Loyd, Tit-Bits, London, July 17, Aug. 7, 1897.

2—2
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marked 3, three marked 2, and three marked 1. They play

alternately ; A begins by playing one of his cards ; then B plays

one of his, and so on. He wins who first plays a card which

makes the sum of the points or numbers on all the cards

played exactly equal to 50, but he loses if he plays a card

which makes this sum exceed 50. The game can be played

by noting the numbers on a piece of paper, and it is not

necessary to use cards.

Thus suppose they play as follows. A takes a 4, and scores 4;

B takes a 3, and scores 7; A takes a 1, and scores 8; B takes a 6,

and scores 14; ^ takes a 3, and scores 17 ; jB takes a 4, and scores

21 ; ^ takes a 4, and scores 25; B takes a 5, and scores 30 ; A
takes a 4, and scores 34 ; B takes a 4, and scores 38 ; A takes a

5, and scores 43. B can now win, for he may safely play 3,

since A has not another 4 wherewith to follow it; and if A
plays less than 4, B will win the next time. Again, suppose

they play thus. A, 6; B, S; A, 1; B, Q; A, S; B, 4>; A, 2;

B,5;A,1;B,5;A,2;B,5;A,2;B,S, ^ is now forced to

play 1, and B wins by playing 1.

A slightly different form of the game has also been sug-

gested. In this there are put on the table an agreed number

of cards, say, for example, the four aces, twos, threes, fours, fives,

and sixes of a pack of cards—twenty-four cards in all. Each

player in turn takes a card. The score at any time is the sum

of the pips on all the cards taken, whether by A or B. He
wins who first selects a card which makes the score equal, say,

to 50, and a player who is forced to go beyond 50 loses.

Thus, suppose they play as follows. A takes a 6, and scores

6; B takes a 2, and scores 8; A takes a 5, and scores 13;

B takes a 2, and scores 15; A takes a 5, and scores 20; B
takes a 2, and scores 22; A takes a 5, and scores 27 ; jB takes

a 2, and scores 29 ; A takes a 5, and scores 34 ; B takes a

6, and scores 40 ; A takes a 1, and scores 41 ; B takes a 4, and

scores 45 ; A takes a 3, and scores 48 ; B now must take 1, and

thus score 49 ; and A takes a 1, and wins.

In these variations the object of each player is to get to

one of the key numbers, provided there are sufficient available
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remaining numbers to let him retain the possession of each

subsequent key number. The number of cards used, the points

on them, and the number to be reached can be changed at will

;

and the higher the number to be reached, the more difficult

it is to forecast the result and to say whether or not it is an

advantage to begin.

Fourth Example. Here is another problem, more difficult

and less well known. Suppose that m counters are divided

into ?i heaps. Two players play alternately. Each, when his

turn comes, may select any one heap he likes, and remove from

it all the counters in it or as many of them as he pleases.

That player loses who has to take up the last counter.

To solve it we may proceed thus*. Suppose there are a^

counters in the rth heap. Express a^ in the binary scale, and

denote the coefficient of 2^ in it by drp. Do this for each

heap, and let 8p be the sum of the coefficients of 2^ thus

determined. Thus Sp = dip + d^p + cl^p-^ ..., Then either Sq,

Sx,S^,... are all even, which we may term an A arrangement,

or they are not all even, which we may term a B arrangement.

It will be easily seen that if one player, P, has played so as

to get the counters in any A arrangement (except that of an

even number of heaps each containing one counter), he can

force a win. For the next move of his opponent, Q, must bring

the counters to a 5 arrangement. Then P can make the next

move to bring the counters again to an A arrangement, other

than the exceptional one of an even number of heaps each con-

taining only one counter. Finally this will leave P a winning

position, ex. gr. two heaps each containing 2 counters.

If that player wins who takes the last counter, the rule is

easier. For if one player P has played so as to get the counters

in any B arrangement, he can force a win, since the next move

of his opponent Q must bring the counters to an A arrangement.

Then P can make the next move to bring the counters again to

a B arrangement. Finally this will leave P a winning position.

Fifth Exajiiple. The following medieval problem is some-

what more elaborate. Suppose that three people, P, y, R,

* From a letter to me by Mr R. K. Morcom, August 2, 1910.
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select three things, which we may denote by a, e, i respec-

tively, and that it is desired to find by whom each object was

selected*.

Place 24 counters on a table. Ask P to take one counter,

Q to take two counters, and R to take three counters. Next,

ask the person who selected a to take as many counters as he

has already, whoever selected e to take twice as many counters

as he has already, and whoever selected i to take four times as

many counters as he has already. Note how many counters

remain on the table. There are only six ways of distributing

the three things among P, Q, and R ; and the number of counters

remaining on the table is different for each way. The remainders

may be 1, 2, 3, 5, 6, or 7. Bachet summed up the results in

the mnemonic line Par fer (1) Cesar (2) jadis (3) devint (5) si

grand (6) prince (7). Corresponding to any remainder is a

word or words containing two syllables : for instance, to the

remainder 5 corresponds the word devint. The vowel in the

first syllable indicates the thing selected by P, the vowel in

the second syllable indicates the thing selected by Q, and of

course R selected the remaining thing.

Extension. M. Bourlet, in the course of a very kindly

notice f of the second edition of this work, gave a much neater

solution of the above question, and has extended the problem

to the case of n people, Po, Pj, Pg, ..., Pn-i, each of whom
selects one object, out of a collection of n objects, such as

dominoes or cards. It is required to know which domino or

card was selected by each person.

Let us suppose the dominoes to be denoted or marked by

the numbers 0, 1, ..., n — 1, instead of by vowels. Give one

counter to Pj, two counters to Pg, and generally k counters to

Pji. Note the number of counters left on the table. Next

ask the person who had chosen the domino to take as many
counters as he had already, and generally whoever had chosen

the domino h to take n^ times as many dominoes as he had

already: thus if P^ had chosen the domino numbered h,

* Bachet, problem xxv, p. 187.

t Bulletin dcs Sciences Matliematiques, Paris, 1893, vol. xvii, pp. 105

—

107.



CII. l] ARITHMETICAL RECREATIONS 23

he would take n^k counters. The total number of counters

taken is '^n^k. Divide this by n, then the remainder will be

the number on the domino selected by Pq ; divide the quotient

by ??, and the remainder will be the number on the domino

selected by Pi ; divide this quotient by n, and the remainder

will be the number on the domino selected by P^ ; and so on.

In other words, if the number of counters taken is expressed in

the scale of notation whose radix is n, then the {h-\- l)th digit

from the right will give the number on the domino selected byP/^.

Thus in Bachet's problem with 3 people and 3 dominoes,

we should first give one counter to Q, and two counters to P,

while P would have no counters ; then we should ask the

person who had selected the domino marked or a to take

as many counters as he had already, whoever had selected the

domino marked 1 or e to take three times as many counters as

he had already, and whoever had selected the domino marked 2

or i to take nine times as many counters as he had already.

By noticing the original number of counters, and observing

that 3 of these had been given to Q and P, we should know
the total number taken by P, Q, and P. If this number were

divided by 3, the remainder would be the number of the

domino chosen by P ; if the quotient were divided by 3 the re-

mainder would be the number of the domino chosen by Q; and the

final quotient would be the number of the domino chosen by P.

Eojj^loration Problems. Another common question is con-

cerned with the maximum distance into a desert which could

be reached from a frontier settlement by the aid of a party of

n explorers, each capable of carrying provisions that would last

one man for a days. The answer is that the man who reaches

the greatest distance will occupy nal{n + 1) days before he

returns to his starting point. If in the course of their journey

they may make depots, the longest possible journey will occupy

^ a (1 + i + J + . . . + Ijn ) days.

TJie Josephiis Problem. Another of these antique problems

consists in placing men round a circle so that if every mth man
is killed, the remainder shall be certain specified individuals.

Such problems can be ea«ily tsolvcd ompiricaliy.
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Hegesippus* says that Josephus saved his life by such

a device. According to his account, after the Romans had

captured Jotapat, Josephus and forty other Jews took refuge

in a cave. Josephus, much to his disgust, found that all

except himself and one other man were resolved to kill them-

selves, so as not to fall into the hands of their conquerors.

Fearing to show his opposition too openly he consented, but

declared that the operation must be carried out in an orderly

way, and suggested that they should arrange themselves round

a circle and that every third person should be killed until but

one man was left, who must then commit suicide. It is alleged

that he placed himself and the other man in the 31st and 16th

place respectively.

The medieval question was usually presented in the following

form. A ship, carrying as passengers 15 Turks and 15

Christians, encountered a storm, and, in order to save the ship

and crew, one-half of the passengers had to be thrown into the

sea. Accordingly the passengers were placed in a circle,and every

ninth man, reckoning from a certain point, was cast overboard.

It is desired to find an arrangement by which all the Christians

should be saved
"f*.

In this case we must arrange the men thus

:

GGGGTTTTTGCTGGGTCTTGGTTTGTTGGT,
where G stands for a Christian and T for a Turk. The order

can be recollected by the positions of the vowels in the follow-

ing line : From numbers aid and art, never will fame depart,

where a stands for l,e for 2, i for 3, o for 4, and u for 5. Hence

the order is o Christians, u Turks, &c.

If every tenth man were cast overboard, a similar mnemonic

line is Rex paphi cum gente bona dat signa serena. An oriental

setting of this decimation problem runs somewhat as follows.

Once upon a time, there lived a rich farmer who had 30 children,

15 by his first wife who was dead, and 15 by his second wife. The

latter woman was eager that her eldest son should inherit the

property. Accordingly one dny she said to him, " Dear Husband,

* De Bello Judaico, bk. in, chaps. 16—18.

t Bachet, problem xxiii, p, 174. The same problem had been previously

enunciated by Tavtaglia.
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you are getting old. We ought to settle who shall be your

heir. Let us arrange our 30 children in a circle, and counting

from one of them remove every tenth child until there remains

but one, who shall succeed to your estate." The proposal

seemed reasonable. As the process of selection went on, the

farmer grew more and more astonished as he noticed that the

first 14 to disappear were children by his first ^vife, and he ob-

served that the next to go would be the last remaining member
of that family. So he suggested that they should see what
would happen if they began to count backwards from this lad.

She, forced to make an immediate decision, and reflecting that

the odds were now 15 to 1 in favour of her family, readily

assented. Who became the heir ?

In the general case n men are arranged in a circle which is

closed up as individuals are picked out. Beginning anywhere,

we continually go round, picking out each mth man until only

r are left. Let one of these be the man who originally occu-

pied the pth place. Then had we begun with n+1 men, he

would have originally occupied the (p-f-m)th place when
p-{-m is not greater than n+1, and the (p + m. — n — l)th.

place when p + m is greater than n + 1. Thus, provided there

are to be r men left, their original positions are each shifted

forwards along the circle ?n places for each addition of a single

man to the original group*.

Now suppose that with n men the last survivor (r = 1)

occupied originally the p\h place, and that with {n-\-x) men
the last survivor occupied the yih. place. Then, if we confine

ourselves to the lowest value of x which makes y less than m,

we have y=(p-\- mx) —(n + x).

Based on this theorem we can, for any specified value of n,

calculate rapidly the position occupied by the last survivor of

the company. In effect, Tait found the values of n for which

a man occupying a given position p, which is less than m,

would be the last survivor, and then by repeated applications

of the proposition, obtained the position of the survivor for

intermediate values of n.

* P. G. Tait, Collected Scientljic Fa^en, Cambridge, vol. n. 1900, pp. 432—435.
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every Kh man is selected, all the Christians will be picked out

for punishment. The problem is to find a, 6, h, and k.

I suggest as a similar problem, to find an arrangement of c

Turks and c Christians arranged in a circle, so that if beginning

at a particular man, say the first, every hth. man is selected, all

the Turks will be picked out, but if, beginning at the same man,

every A;th man is selected, all the Christians will be picked out.

This makes an interesting question because it is conceivable

that the operator who picked out the victims might get confused

and take h instead of h, or vice versa, and so consign all his

iriends to execution instead of those whom he had intended to

pick out. The problem is, for any given value of c, to find an

arrangement of the men and the corresponding suitable values

of h and h. Obviously if c = 2, then for an arrangement like

T C G T Si solution is A = 4, A; = 3. If c = 3, then for an arrange-

ment like TO TOOT a solution is /t = 7, A; = 8. If c = 4, then

for an arrangement like T G T T G T G C a solution is h = 9,

A; = 5 ; and so on. Is it possible to give similar arrangements

for higher numbers ?

ADDENDUM.
Note. Page 13. Solutions of the ten digit problems are

35/70 + 148/296 = 1, or -01234 + -98765 = 1;

and 50 + 49 + 1/2 + 38/76 = 100.

A solution of the nine digit problem is

1-234 + 98-765=100, or 97 + 8/12 + 4/6 + 5/3 = 100;

but if an algebraic sum is permissible a neater solution is

123-45-67 + 89 = 100,

where the digits occur in their natural order.

Note. Page 18. There are several solutions of the division of 24 ounces

under the conditions specified. One of these solutions is as follows:

The vessels can contain 24 oz. 13 oz. 11 oz. 5 oz.

Their contents originally are... 24... 0... 0... 0...

First, make their contents 0... 8... 11... 5...

Second, make their contents ... 16... 8... 0... 0...

Third, make their contents ... 16 ... ... 8 ... ...

Fourth, make their contents ... 3 ... 13 ... 8 ... ...

Fifth, make their contents 3 ... 8 ... 8 ... 5 ...

Lastly, make their contents ... 8... 8... 8... 0...

Note. Pages 26—27. The simplpst solution of the five Christians and five

Turks problem isa=l, /i = ll, 6= 9, A= 29.
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CHAPTER 11.

ARITHMETICAL RECREATIONS CONTINUED.

I devote this chapter to the description of some arithmetical

fallacies, a few additional problems, and notes on one or two

problems in higher arithmetic.

Arithmetical fallacies. I begin by mentioning some

instances of demonstrations* leading to arithmetical results

which are obviously impossible. I include algebraical proofs as

well as arithmetical ones. Some of the fallacies are so patent

that in preparing the first and second editions I did not think

such questions worth printing, but, as some correspondents

expressed a contrary o])inion, I give them for what they are

worth.

First Fallacy. One of the oldest of these—and not a very

interesting specimen—is as follows. Suppose that a = 6, then

ah = a\ .'. ah-¥ = a''- h\ .'. 6 (a - 6) = (a + b) (a - h).

.'. b = a-\-b. .-. b = 2b. .*. 1 = 2.

* Of the fallacies given in the text, the first and second are well known

;

the third is not new, but the earliest work in which I recollect seeing it is

my Algebra, Cambridge, 1890, p. 430; the fourth is given in G. Chrystal's

Algebra, Edinburgh, 1839, vol. ii, p. 150 ; the sixth is due to G. T. Walker,

and, I believe, has not appeared elsewhere than in this book ; the seventh

is due to D'Alembert; and the eighth to F. Galton. It may be worth re-

cording (i) that a mechanical demonstration that 1 = 2 was given by R. Chartres

in Knowledge, July, 1891; and (ii) that J. L. F. Bertrand pointed out that

a demonstration that 1== -1 can be obtained from the proposition in the

Integral Calculus that, if the limits are constant, the order of integration is

indifferent ; hence the integral to x (from x= to a;= l) of the integral to y (from

y = Otoy — l)oia, function <p should be equal to the integral to y (from y = to

y= l) of the integral to x (from x= to x = l) of (p, but if tp={x'^~ y^)l{x'^ + y")-,

this gives lir= - \ir.



CH. Il] ARITHMETICAL RECREATIONS 29

Second Fallacy. Another example, the idea of which is due

to John Bernoulli, may be stated as follows. Wc have (—1)'*= 1.

Take logarithms, .-. 2 log(- 1) = log 1 = 0. .*. log (- 1) = 0.

.-. -l=eo. .-. -1 = 1.

The same argument may be expressed thus. Let a; be a

quantity which satisfies the equation e*= — 1. Square both

sides,

• » 6/ •
— J. • • • ^*tf •—- yjm • • ^ — \Jm • . C/ — O •

Bute^=-1 and e'=i, .'. -1 = 1.

The error in each of the foregoing examples is obvious, but

the fallacies in the next examples are concealed somewhat

better.

Third Fallacy. As yet another instance, we know that

\og{l -\-oo) = x — ^x'^ + ^a:^—

If a;= 1, the resulting series is convergent; hence we have

log2 = l-i + i-i + i-i + |-i + i-....

.-. 21og2 = 2-l + f-i + |-J + |-i + f-....

Taking those terms together which have a common denominator,

we obtain

21og2 = H-i-J+i + f-i+4...
= i-i + i-i + i-
= log 2.

Hence 2 = 1.

Fourth Fallacy. This fallacy is very similar to that last

given. We have

log2 = l-i+i-i + i-i + ...

={a+j+i+...)+(4+i+K--)i-2(i+j+H--)

= 0.

Fifth Fallacy. We have

^ax \/b = \/ab.

Hence V- 1 x V- 1 = V(- 1) (- 1),

therefore, (V^)- = S^T, that is, - 1 = 1.
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Sixth Fallacy. The following demonstration depends on

the fact that an algebraical identity is true whatever be the

symbols used in it, and it will appeal only to those who are

familiar with this fact. We have, as an identity,

V« — y = i \/y — X (i),

where % stands either for + V— 1 or for — V— 1. Now an

identity in x and y is necessarily true whatever numbers x and

y may represent. First put x — a and y = h,

,*. s/a — h^is/h — a (ii).

Next put x=^h and y = a,

.*. \/h — a = i^a — h (iii).

Also since (i) is an identity, it follows that in (ii) and (iii) the

symbol i must be the same, that is, it represents + V— 1 or

— V— 1 in both cases. Hence, from (ii) and (iii), we have

^/a-h^/b — a = ^^^/b — a^/a — b,

.•. 1 = i\

that is, 1 = — 1.

Seventh Fallacy. The following fallacy is due to D'Alem-

bert*. We know that if the product of two numbers is equal

to the product of two other numbers, the numbers will be in

proportion, and from the definition of a proportion it follows

that if the first term is greater than the second, then the third

term will be greater than the fourth : thus, if ad = be, then

aib = c : d, and if in this proportion a>b, then c> d. Now if

we put a = d = l and b = c= — l we have four numbers which

satisfy the relation ad = be and such that a>b; hence, by the

proposition, c> d, that is, — 1 > 1, which is absurd.

Eighth Fallacy. The mathematical theory of probability

leads to various paradoxes : of these one specimenf will suffice.

Suppose three coins to be thrown up and the fact whether each

comes down head or tail to be noticed. The probability that

all three coins come down head is clearly (1/2)', that is, is 1/8

;

* Opuscules Mathematiques, Paris, 1761, vol. i, p. 201.

+ See Nature, Feb. 15, Marcli 1, 1894, vol. xlix, pp. 365—360, 413.
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similarly the probability that all three come down tail is 1/8 ;

hence the probability that all the coins come down alike (i.e.

either all of them heads or all of them tails) is 1/4. But, of

three coins thus thrown up, at least two must come down alike :

now the probability that the third coin comes down head is 1/2

and the probability that it comes down tail is 1/2, thus the

probability that it comes down the same as the other two coins

is 1/2 : hence the 'probability that all the coins come down

alike is 1/2. I leave to my readers to say whether either of

these conflicting conclusions is right, and, if so, which is

correct.

Arithmetical Problems. To the above examples I may add

the following standard questions, or recreations.

The first of these questions is as follows. Two clerks, A and

B, are engaged, ^ at a salary commencing at the rate of (say)

£100 a year with a rise of £20 every year, .B at a salary

commencing at the same rate of £100 a year with a rise of £5

every half-year, in each case payments being made half-yearly

;

which has the larger income ? The answer is B ; for in the

first year A receives £100, but B receives £50 and £55 as

his two half-yearly paj^ments and thus receives in all £105. In

the second year A receives £120, but B receives £60 and £65

as his two half-yearly payments and thus receives in all £125.

In fact B will always receive £5 a year more than A.

Another simple arithmetical problem is as follows. A hymn-

board in a church has four grooved rows on which the numbers

of four hymns chosen for the service are placed. The hymn-

book in use contains 700 hymns. What is the smallest number

of single figured numerals which must be kept in stock so

that the numbers of any four different hymns selected can be

displayed ? How will the result be affected if an inverted 6

can be used for a 9 ? The answers are 86 and 81.

As another question take the following. A man bets l/?ith

of his money on an even chance (say tossing heads or tails

with a penny): he repeats this again and again, each time

betting 1/nth of all the money then in his possession. If,

finally, the number of times he has won is equal to the number
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of times he has lost, has he gained or lost by the transaction ?

He has, in fact, lost.

Here is another simple question to which not unfrequently

I have received incorrect answers. One tumbler is half-full

of wine, another is half-full of water : from the first tumbler

a teaspoonful of wine is taken out and poured into the

tumbler containing the water: a teaspoonful of the mixture

in the second tumbler is then transferred to the first tumbler.

As the result of this double transaction, is the quantity of

wine removed from the first tumbler greater or less than the

quantity of water removed from the second tumbler ? In my
experience the majority of people will say it is greater, but

this is not the case.

Here is another paradox dependent on the mathematical

theory of probability. Suppose that a player at bridge or whist

asserts that an ace is included among the thirteen cards dealt

to him, and let p be the probability that he has another ace

among the other cards in his hand. Suppose, however, that

he asserts that the ace of hearts is included in the thirteen

cards dealt to him, then the probability, q, that he has another

ace among the other cards in his hand is greater than was the

probability p in the first case. For, if r is the probability that

when he has one ace it is the ace of hearts, we have p = r .q^

and since p, q, r are proper fractions, we must have q greater

than p, which at first sight appears to be absurd.

Permutation Problems. Many of the problems in per-

mutations and combinations are of considerable interest. As

a simple illustration of the very large number of ways in which

combinations of even a few things can be arranged, I may note

that there are 500,291833 different ways in which change for a

sovereign can be given in current coins*, including therein the

obsolescent double-florin, and crown ; also that as many as

19,958400 distinct skeleton cubes can be formed with twelve

differently coloured rods of equal length f; while there are no less

than (52!)/(13!/, that is, 53644,737765,488792,839237,440000

* The Tribune, September 3. 1906.

t Mathematical Tripos, Cambridge, Part I, 1894.
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possible diflPerent distributions of hands at bridge or whist with

a pack of fifty-two cards.

Voting Problems. As a simple example on combinations

I take the cumulative vote as affecting the representation of

a minority. If there are p electors each having r votes of which

not more than 5 may be given to one candidate, and n men
are to be elected, then the least number of supporters who can

secure the election of a candidate must exceed pr/{ns + r).

The Knights of the Bound Table. A far more difficult

permutation problem consists in finding as many arrangements

as possible of n people in a ring so that no one has the same

two neighbours more than once. It is a well-known proposition

that n persons can be arranged in a ring in (n— l)!/2 different

ways. The number of these arrangements in which all the

persons have different pairs of neighbours on each occasion

cannot exceed (n — l)(n — 2)/2, since this gives the number of

ways in which any assigned person may sit between every

possible pair selected from the rest. But in fact it is always

possible to determine (n — l)(n — 2)/2 arrangements in which

no one has the same two neiglibours on any two occasions.

Solutions for various values of 7i have been given. Here

for instance (if n = 8) are 21 arrangements* of eight persons.

Each arrangement may be placed round a circle, and no one

has the same two neighbours on any two occasions.

1.2.3.4.5.6.7.8
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The Manage Problem*. Another difficult permutation

problem, suggested by Lucas, is concerned with the number x

of possible arrangements of n married couples, seated alternately

man and woman, round a table, the n wives being in assigned

positions, and the n husbands so placed that a man does not sit

next to his wife.

The solution involves the theory of discordant permutations,

and is far from easy. I content myself with noting the results

when n does not exceed 10. When n = 3, ^ = 1 ; when ?i = 4,

iz; = 2 ; when 9i = 5, ic = 13 ; when ?i = 6, a; = 80 ; when n = *7,

x = 5l9; when n = 8, a; = 4738; when w=9, 0^ = 43387; and

when n = 10, a;=439792.

Bachet's Weights Problem f. It will be noticed that a

considerable number of the easier problems given in the last

chapter either are due to Bachet or were collected by him in

his classical Prohlhnes. Among the more difficult problems

proposed by him was the determination of the least number of

weights which would serve to weigh any integral number of

pounds from 1 lb. to 40 lbs. inclusive. Bachet gave two

solutions : namely, (i) the series of weights of 1, 2, 4, 8, 16,

and 32 lbs.
;

(ii) the series of weights of 1, 3, 9, and 27 lbs.

If the weights may be placed in only one of the scale-pans,

the first series gives a solution, as had been pointed out in

1556 by Tartaglia|.

Bachet, however, assumed that any weight might be placed

in either of the scale-pans. In this case the second series gives

the least possible number of weights required. His reasoning

is as follows. To weigh 1 lb. we must have a 1 lb. weight. To

weigh 2 lbs. we must have in addition either a 2 lb. weight or

a 3 lb. weight ; but, whereas with a 2 lb. weight we can weigh

1 lb., 2 lbs., and 3 lbs., with a 3 lb. weight we can weigh

1 lb., (3 - 1) lbs., 3 lbs., and (3 4- 1) lbs. Another weight of

,. 9 lbs. will enable us to weigh all weights from 1 lb. to 13 lbs.

;

and we get thus a greater range than is obtainable with any

* Theorie des Nomhres, by E. Lucas, Paris, 1891, pp. 215, 491—495.

+ Bachet, Appendix, problem v, p. 215.

X Trattato de' numeri e misure, Venice, 1556, voL ii, bk. i, chap, xvi, art. 32.
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weight less than 9 lbs. Similarly weights of 1, 3, 9, and

27 lbs. suffice for all weights up to 40 lbs., and weights of

1, 3, 3^, ..., 3"~^ lbs. enable us to weigh any integral number
of pounds from 1 lb. to (1 + 3 + 3^ + . . .

3"-^) lbs., that is, to

i(3"-l)lbs.

To determine the arrangement of the weights to weigh any

given mass we have only to express the number of pounds in

it as a number in the ternary scale of notation, except that in

finding the successive digits we must make every remainder

either 0, 1 , or — 1 : to effect this a remainder 2 must be written

as 3 — 1, that is, the quotient must be increased by unity, in

which case the remainder is — 1. This is explained in most

text-books on algebra.

Bachet's argument does not prove that his result is unique

or that it gives the least possible number of weights required.

These omissions have been supplied by Major MacMahon,

who has discussed the far more difficult problem (of which

Bachet's is a particular case) of the determination of all possible

sets of weights, not necessarily unequal, which enable us to

weigh any integral number of pounds from 1 to n inclusive,

(i) when the weights may be placed in only one scale-pan, and

(ii) when any weight may be placed in either scale-pan. He
has investigated also the modifications of the results which are

necessary when we impose either or both of the further condi-

tions (a) that no other weighings are to be possible, and (b) that

each weighing is to be possible in only one way, that is, is to

be unique*.

The method for case (i) consists in resolving l-\-x-\-x- + ...-\-x^

into factors, each factor being of the form 1 + x^ -{-
x^^ -{-... + x^"^;

the number of solutions depends on the composite character of

n -}- 1. The method for case (ii) consists in resolving the expres-

sion a:-" -f a;-"+^ + ...-|-^~^-f-l+a;-l-...-h a;"-^ + x'"- into factors,

each factor being of the form x'"^^ -+-... -I- x'"' -j-l -\-x^-\- ... + a;"""; ^

the number of solutions depends on the composite character of

2n -I- 1.

* See his article in the Quarterly Journal of Matheviatics, 16S6, vol. xxi,

pp. 367—373. An account of the method is given in Nature, Dec. 4, 1600,

vol. XLii, pp. 113—114.

3-2
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Bachet's problem falls under case (ii), n = 40. MacMahon's

analysis shows that there are eight such ways of factorizing

a}~*° + x~^^ + , . . 4- 1 + . . . + '^"^ + ^^ First, there is the expres-

sion itself in which a = 1, m=40. Second, the expression is

equal to (1 — x^^)/a^^ (1 — x), which can be resolved into the

product of (1 —x^)la;{l — x) and (1 — a;^^)/a^^(l — a;^); hence it

can be resolved into two factors of the form given above, in

one of which a = l, m = 1, and in the other a = 3, m = 13.

Third, similarly, it can be resolved into two such factors, in

one of which a = l, m = 4, and in the other a =9, m = 4.

Fourth, it can be resolved into three such factors, in one of

which a = l, m = l, in another a = 3, m=l, and in the other

a = 9, m = 4. Fifth, it can be resolved into two such factors,

in one of which a = 1, w = 13, and in the other a = 27, m = 1.

Sixth, it can be resolved into three such factors, in one of

which a=l, m = l, in another a = 3, m = 4, and in the other

a =27, m=l. Seventh, it can be resolved into three such

factors, in one of which a = 1, m = 4, in another a = 9, m = 1,

and in the other a = 27, m= 1. Eighth, it can be resulved into

four such factors, in one of which a = 1, m = 1, in another a = 3,

m = 1, in another a = 9, m = 1, and in the other a = 27, m = 1.

These results show that there are eight possible sets of

weights with which any integral number of pounds from 1 to

40 can be weighed subject to the conditions (ii), (a), and (6).

If we denote p weights each equal to w by w^, these eight

solutions are 1^°; 1, 3'^; l\ 9'; 1, 3, 9*; V\ 27; 1, S\ 27;

1\ 9, 27; 1, 3, 9, 27. The last of these is Bachet's solution:

not only is it that in which the least number of weights are

employed, but it is also the only one in which all the weights

are unequal.

Problems in Higher Arithmetic. Many mathematicians

take a special interest in the theorems of higher arithmetic:

such, for example, as that every prime of the form 4?i+ 1 and

every power of it is expressible as the sum of two squares*, and

that the first and second powers can be expressed thus in only

one way. For instance, 13 = 3^ + 2\ 13^ = 12-^ + 5^, 13^ = 46^ + 9^,

* Fermat's Diophantus, Toulouse, 1670, bk. m, prop. 22, p. 127; or

Brassinne's Precis, Paris, 1853, p. 65.
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and so on. Similarly 41 = :>2f 4^ 41-= 40•^ + 0^ 4l='= 28(r + lir>2,

and so on. Propositions such as the one just (jiiotcd may be

found in text-books on the theory of numbers and therefore

lie outside the limits of this work, but there are one or two

questions in higher arithmetic involving points not yet

quite cleared up which may find a place here. I content

myself with the facts and shall not give the mathematical

analysis.

Primes. The first of these is concerned with the possibility

of determining readily whether a given number is prime or not.

No test applicable to all numbers is known, though of course

we can get tests for numbers of certain forms. It is difficult to

believe that a problem which has completely baffled all modern

mathematicians could have been solved in the seventeenth

century, but it is interesting to note that in 1643, in answer

to a question in a letter whether the number 100895,598109

was a prime, Fermat replied at once that it was the product of

898423 and 112303, both of which were primes. How many

mathematicians to-day could answer such a question with

ease ?

Mersexne's Numhers* Another illustration, confirmatory

of the opinion that Fermat or some of his contemporaries had

a test by which it was possible to find out whether numbers of

certain forms were prime, may be drawn from Mersenne's Cogitata

Physico-Matliematica which was published in 1644. In the

preface to that work it is asserted that in order that 2^-1 may

be prime, the only values of _p, not greater than 257, which are

possible are 1, 2, 3, 5, 7, 13, 17, 19, 31, 67, 127, and 257. To

these numbers 89 must be added. Some years ago I gave

reasons for thinking that the number 67 is a misprint for 61.

With these corrections the statement appears to be true, and

it has now been verified for all except fifteen values of p:

namely, 101, 103, 107, 109, 137, 139, 149, 157, 167, 193, 199,

227, 229, 241, and 257. Of these values, Mersenne asserted

that p = 257 makes 2^-1 a prime, and that the other values

* For rererences, see chapter x\ below.



38 ARITHMETICAL RECREATIONS [CH. II

make 2^ — 1 a composite number. The demonstration of the

prime character of 2^— 1 when jj = 127 has not been published

:

and the verification in this case has not been corroborated by

independent work.

Mersenne's revsult could not have been obtained empirically,

and it is impossible to suppose that it was worked out for every

case ; hence it would seem that whoever first enunciated it was

acquainted with certain theorems in higher arithmetic which

have not been re-discovered.

Perfect Numbers*. The theory of perfect numbers de-

pends directly on that of Mersenne's Numbers. A number is

said to be perfect if it is equal to the sum of all its integral

subdivisors. Thus the subdivisors of 6 are 1, 2, and 3; the

sum of these is equal to 6; hence 6 is a perfect number.

It is probable that all perfect numbers are included in the

formula 2^"^ (2^ — 1), where 2^ - 1 is a prime. Euclid proved

that any number of this form is perfect; Euler showed that

the formula includes all even perfect numbers; and there is

reason to believe—though a rigid demonstration is wanting

—

that an odd number cannot be perfect. If we assume that the

last of these statements is true, then every perfect number is

of the above form. It is easy to establish that every number

included in this formula (except when ^ = 2) is congruent to

unity to the modulus 9, that is, when divided by 9 leaves a

remainder 1; also that either the last digit is a 6 or the last

two digits are 28.

Thus, ifj9= 2, 3, 5, 7,13, 17, 19, 31, 61, then by Mersenne's rule

the corresponding values of 2^ — 1 are prime; they are 3, 7, 31,

127, 8191, 131071, 524287, 2147483647, 2305843009213693951;

and the corresponding perfect numbers are 6, 28, 496, 8128,

33550336, 8589869056, 137438691328, 2305843008139952128,

and 2658455991569831744654692615953842176.

* On the theory of perfect numbers, see bibliographical references by

H. Brocard, L'IntermSdiaire des Mathematiciens, Paris, 1S95, vol. n, pp. 52— 54;

and 1905, vol. xii, p. 19. The first volume of the second edition of the French

translation of this book contains (pp. 280—294) a summary of the leading

investigation on Perfect Numbers, as also some remarks on Amicable Numbers.
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Euler's BiQiTADRATE THEOREM*. Another theorem,

believed to be true but as yet unproved, is that the arith-

metical sum of the fourth powers of three numbers cannot

be the fourth power of a number; in other words, we cannot

find values of x, y, z, v, which satisfy the equation x* + y* + z*=^v*.

The proposition is not true of an algebraical sum, for Euler gave

more than one solution of the equation x* -{-
y* = z* -\- v*, for

instance, x = 542, y = 103, z = 859, v = 514.

Goldbach's Theorem. Another interesting problem in

higher arithmetic is the question whether there are any even

integers which cannot be expressed as a sum of two primes.

Probably there are none. The expression of all even integers

not greater than 5000 in the form of a sum of two primes has

been effected
-f-,

but a general demonstration that all even

integers can be so expressed is wanting.

Lagrange's Theorem:!:. Another theorem in higher arith-

metic which, as far as I know, is still unsolved, is to the effect

that every prime of the form 4?2 — 1 is the sum of a prime of

the fbrm 4n 4- 1 and of double another prime also of the form

4?i + 1 ; for example, 23 = 13 + 2 x 5. Lagrange, however, added

that it was only by induction that he arrived at the result.

Fermat's Theorem on Binary Powers. Fermat enriched

mathematics with a multitude of new propositions. With one

exception all these have been proved or are believed to be

true. This exception is his theorem on binary powers, in which

he asserted that all numbers of the form 2"* + 1, where m= 2",

are primes §, but he added that, though he was convinced of

the truth of this proposition, he could not obtain a valid

demonstration.

• See Euler, Commentationes Arithmeticae CoUectae, St Petersburg, 1849,

vol. I, pp. 473—476 ; vol. ii, pp. 450—456.

t Transactions of the Halle Academy {Naturforschung), vol. lxxii, Halle,

1897, pp. 5—214: see also L'IntermSdiaire des Mathematiciens, 1903, vol. x,

and 1904, vol. xi.

+ Nouveaiix Blemoires de VAcademie Royale des Sciences, Berlin, 1775, p. 356.

§ Letter of Oct. 18, 1G40, Opera^ Toulouse, 1079, p. 162 : or Brassinne's

Pricis, p. 143.
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It may be shown that 2'^ + 1 is composite if m is not a power

of 2, but of course it does not follow that 2'** + 1 is a prime

if m is a power of 2, say, 2^ As a matter of fact the theorem

is not true. In 1732 Euler* showed that if n= 5 the formula

gives 4294,967297, which is equal to 641 x 6,700417 : curiously

enough, these factors can be deduced at once from Fermat's

remark on the possible factors of numbers of the form 2*" + 1,

from which it may be shown that the prime factors (if any)

of 2^'- + 1 must be primes of the form 64?i + 1.

During the last thirty years it has been shown f that the

resulting numbers are composite when ?i= 6, 7, 8, 9, 11, 12, 18,

23, 36, 38 and 73. The digits in the last of these numbers are

so numerous that, if the number were printed in full with the

type and number of pages used in this book, many more

volumes would be required than are contained in all the public

libraries in the world. I believe that Eisenstein asserted that

the number of primes of the form 2'" + 1, where m = 2", is

infinite: the proof has not been published, but perhaps it

might throw some light on the general theory.

Fermat's Last Theorem. I pass now to another assertion

made by Fermat which hitherto has not been proved. This,

which is sometimes known as Fermat's Last Theorem, is to the

effect^ that no integral values of x, y, z can be found to satisfy

the equation x^ ^ y^ — z^\ if n is an integer greater than 2.

* Commentarli Academiae Scientiarum Petropolitanae, St Petersburg, 1738,

vol. VT, p. 104 ; see also Novi Comm. Acad. Sci. Petrop., St Petersburg, 1764,

vol. IX, p. 101 : or Commentationes Arithmeticae Collectae, St Petersburg, 1849,

vol. I, pp. 2, 357.

t For the factors and bibliographical references, see A. J. C. Cunningham

and A. E. Western, Transactions of the London Mathematical Society, 1903,

series 2, vol. i, p. 175 ; and J. C. Morehead and A. E. Western, Bulletin of the

American Mathematical Society, 1909, vol. xvi, pp. 1—6.

X Fermat's enunciation will be found in his edition of Diophantus, Toulouse,

1670, bk. II, qu. 8, p. 61 ; or Brassinne's Precis, Paris, 1853, p. 53. For

bibliographical references, see the article on the theory of numbers in the

Encyclopedic des Sciences Mathematiques : considerable additions are embodied

in the French translation of this book which is therefore generally preferable to

the German original. See also L'Intermediaire des Mather.iaticiens, Paris, 1908,

vol. XV, p. 2S4.
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This proposition has acquired extr.K^rdiriary celebrity from the

fact that no general demonstration of it has been given, but

there is no reason to doubt that it is true.

Fermat seems to have discovered its truth first* for the case

n = 3, and then for the case n = 4). His proof for the former

of these cases is lost, but that for the latter is extant f, and a

similar proof for the case of n = 3 was given by Euler
J:.

These

proofs depend upon showing that, if three integral values of

as, y, z can be found which satisfy the equation, then it will be

possible to find three other and smaller integers which also

satisfy it: in this way finally we show that the equation must

be satisfied by three values which obviously do not satisfy it.

Thus no integral solution is possible. It would seem that this

method is inapplicable except when ?i = 3 and n = 4.

Fermat's discovery of the general theorem was made later.

A demonstration can be given on the assumption that every

number can be resolved in one and only one way into the

product of primes and their powers. This assumption is true

of real numbers, but it is not true when complex factors are

admitted. For instance 10 can be expressed as the product of

3+1 and 3 - i, or of 3 4- 2 and 3 - 1, or of 2, 2 + i, and 2 - 1.

It is possible that Fermat made some such erroneous supposition,

though it is perhaps more probable that he discovered a rigorous

demonstration. At any rate he asserts definitely that he had

a valid proof—demonstratio mirabilis sane—and the fact that

no theorem on the subject which he stated he had proved has

been subsequently shown to be false must weigh strongly in

his favour; the more so because in making the one incorrect

statement in his writings (namely, that about binary powers)

he added that he could not obtain a satisfactory demonstration

of it.

It must be remembered that Fermat was a mathematician

of quite the first rank who had made a special study of the

theory of numbers. The subject is in itself one of peculiar

* See a Letter from Fermat quoted in my History of Mathematics, London,

chapter xv.

t Fermat's Diophanttts, note on p. 339; or Brassinne's Precis, p. 127.

+ Euler's Algebra (English trans. 1797), vol. n, chap, xv, p. 2-17.
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interest and elegance, but its conclusions have little practical

importance, and since his time it has been discussed by only

a few mathematicians, while even of them not many have made

it their chief study. This is the explanation of the fact that

it took more than a century before some of the simpler results

which Fermat had enunciated were proved, and thus it is not

surprising that a proof of the theorem which he succeeded in

establishing only towards the close of his life should involve

great difficulties.

In 1823 Legendre* obtained a proof for the case of n = 5;

in 1832 Lejeune Dirichletf gave one for n=14; and in 1840

Lame and Lebesgue J gave proofs for w = 7.

The proposition appears to be true universally, and in 1849

Kummer§, by means of ideal primes, proved it to be so for all

numbers except those (if any) which satisfy three conditions.

The proof is complicated and difficult, and there can be little

doubt is based on considerations unknown to Fermat. It is not

known whether any number can be found to satisfy these con-

ditions. It was shown a considerable time ago, that there is no

number less than 100 which does so. Recently the method has

been developed by L. E. Dickson ||. His calculations show that

Fermat's result is true if n is less than 6857. But mere

numerical verifications have little value ; no one doubts the

truth of the theorem, and its interest lies in the fact that we

have not yet succeeded in obtaining a rigorous general demon-

stration of it. The general problem was also attacked on other

lines by Sophie Germain, who showed that it was true for all

numbers except those (if any) which satisfied certain defined con-

ditions. I may add that to prove the truth of the proposition

when n is greater than 4, obviously it is sufficient to confine

* Reprinted in his Theorie des Nombi'es, Paris, 1830, vol. n, pp. 361—368

:

see also pp. 5, 6.

t Crelle's Journal, 1832, vol. ix, pp. 390—393.

X Liouville's Journal, 1841, vol. v, pp. 195—215, 276—279, 348—349.

§ References to Kummer's Memoirs are given in Smith's Report to the

British Association on the Theory of Numbers, London, 1860.

II
See L'Intermediaire des Mathematiciens, Paris, 1908, vol. xv, pp. 247—248

;

Messenger of Mathematics, Cambridge, 1908, vol. xxxviii, pp. 14—32 ; and

Quarterly Journal of Mathematics, Cambridge, 1908, vol. xl, pp. 27—45.
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ourselves to cases where « is a prime. A prize * of 100;000 marks
has been offered for a general proof, to be given betore 2U07.

Naturally there has been much speculation as to how Fer-

mat arrived at the result. The modern treatment of higher

arithmetic is founded on the special notation and processes

introduced by Gauss, who pointed out that the theory of

discrete magnitude is essentially different from that of con-

tinuous mngnitude, but until the end of the last century the

theory of numbers was treated as a branch of algebra, and such

proofs by Fermat as are extant involve nothing more than

elementary geometry and algebra, and indeed some of his

arguments do not involve any symbols. This has led some

writers to think that Fermat used none but elementary

algebraic methods. This may be so, but the following remark,

which I believe is not generally known, rather points to the

opposite conclusion. He had proposed, as a problem to the

English mathematicians, to show that there was only one

integral solution of the equation a?'^ + 2 = 3/' : the solution

evidently being x = b, 2/ = 3- On this he has a notef to the

effect that there was no difficulty in finding a solution in

rational fractions, but that he had discovered an entirely new

method—sane pulcherrima et subtilissima—which enabled him

to solve such questions in integers. It was his intention to

write a work \ on his researches in the theory of numbers, but

it was never completed, and we know but little of his methods

of analysis. I venture however to add my private suspicion

that continued fractions played a not unimportant part in his

researches, and as strengthening this conjecture I may note

that some of his more recondite results—such as the theorem

that a prime of the form 4n -f 1 is expressible as the sum of

two squares—may be established with comparative ease by

properties of such fractions.

Ulntermidiaire des Mathematiciens, vol. xv, pp. 217—218, for references

and details.

t Fermat's Diophantus, bk. vi, prop. 19, p. 320; or Brassinne's Pricis,

p. 122.

I Fermat's Diophantus, bk. iv, prop. 31, p. 181 ; or Brassinne's Precis, p. 82.
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CHAPTER TIL

GEOMETRICAL KECREATIONS.

In this chapter and the next one I propose to enumerate

certain geometrical questions the discussion of which will not

involve necessarily any considerable use of algebra or arithmetic.

Unluckily no writer like Bachet has collected and classified

problems of this kind, and I take the following instances from

my note-books with the feeling that they represent the subject

but imperfectly. Most of this chapter is devoted to questions

which are of the nature of formal propositions: the next chapter

contains a description of various trivial puzzles and games,

which the older writers would have termed geometrical.

In accordance with the rule I laid down for myself in the

preface, I exclude the detailed discussion of theorems which

involve advanced mathematics. Moreover (with one or two

exceptions) I exclude any mention of the numerous geomet-

rical paradoxes which depend merely on the inability of the

eye to compare correctly the dimensions of figures when their

relative position is changed. This apparent deception does

not involve the conscious reasoning powers, but rests on the

inaccurate interpretation by the mind of the sensations derived

through the eyes, and I do not consider such paradoxes as

coming within the domain of mathematics.

Geometrical Fallacies. Most educated Englishmen are

acquainted with the series of logical propositions in geometry

associated with the name of Euclid, but it is not known so

generally that these propositions were supplemented originally

by certain exercises. Of such exercises Euclid issued three
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series: two containing easy theorems or problems, and the

third consisting of geometrical fallacies, the errors in which

the student was required to find.

The collection of fallacies prepared by Euclid is lost, and
tradition has not preserved any record as to the nature of the

erroneous reasoning or conclusions; but, as an illustration of

such questions, I append a few demonstrations, leading to

obviously impossible results. Perhaps they may amuse any one

to whom they are new. I leave the discovery of the errors to

the ingenuity of my readers.

First Fallacy*. To prove that a right angle is equal to an

angle which is greater than a right angle. Let ABCD be a

rectangle. From A draw a line AE outside the rectanole,

equal to AB or DC and making an acute angle with AB, as

indicated in the diagram. Bisect CB in H, and through H
draw HO at right angles to CB. Bisect CE in K, and through

K draw KO at right angles to CE. Since CB and CE are not

parallel the lines HO and KO will meet (say) at 0. Join OA,

OE, OC, and OD.

The triangles ODC and OAE are equal in all respects.

For, since KO bisects CE and is perpendicular to it, we have

* I believe that this and the fourth of these fallacies were first published

in this book. They particularly interested Mr C. L. Dodgson ; see the Lewis

Carroll Picture Book, London, 1899, pp. 20-4, 2Gu, where they appear in the

form in which I originally gave them.
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00= OE. Similarly, since HO bisects GB and DA and is per-

pendicular to them, we have OD = OA. Also, by construction,

DC = AE. Therefore the three sides of the triangle ODC are

equal respectively to the three sides of the triangle OAE.
Hence, by Euc. I. 8, the triangles are equal ; and therefore the

angle ODG is equal to the angle OAE.
Again, since HO bisects DA and is perpendicular to it, we

have the angle ODA equal to the angle OAD.
Hence the angle ADC (which is the difference of ODC and

ODA) is equal to the angle DAE (which is the difference of

OAE and OAD). But ADC is a right angle, and DAE is

necessarily greater than a right angle. Thus the result is

impossible.

Second Fallacy*. To prove that a part of a line is equal to

the whole line. Let ABC be a triangle; and, to fix our ideas,

let us suppose that the triangle is scalene, that the angle B is

acute, and that the angle A is greater than the angle G. From
A draw AD making the angle BAD equal to the angle (7, and

cutting BG in D. From A draw AE perpendicular to BG.

The triangles ABG, ABD are equiangular; hence, by Euc.

VI. 19, /SABG : ISABD = AG' : AD\

Also the triangles ABG, ABD are of equal altitude; hence, by

Euc. VI. 1,

l\ABG'. AABD = BG:BD,
.-. AG':AD'=BG : BD.

. AG^ _AD'
•'• BG ~ BD •

* See a note by M, Ooccoz in UIllustration, Paris, Jan. 12, 1895.
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Hence, by Enc. ii. 13,

AB' + BG^ -2BG.be ^ AB'^ BD'-2BD . BE
BG ~ BD '

.\^+BG-2BE=^~ + BD- 2BE,

.
^^' BD-^^' EC

•
^^^ - B^ '^^ _ ^B^ - BG . BD

BG BD •

.\ BG = BD,

a result which is impossible.

Third Fallacy*. To prove that the sum of the lengths of two

sides of any triangle is equal to the length of the third side.

A^
, , , ,D

Let ABG be a triangle. Complete the parallelogram of

which AB and BG are sides. Divide AB into n + 1 equal

parts, and through the points so determined draw n lines

parallel to BG. Similarly, divide BG into n + 1 equal parts,

and through the points so determined draw n lines parallel to

AB. The parallelogram ABGD is thus divided into (n + 1)^

equal and similar parallelograms.

I draw the figure for the case in which n is equal to 3,

then, taking the parallelograms of which ^C is a diagonal, as

indicated in the diagram, we have

AB +BG^AG + HJ + KL + MN
+GH-^JK + LM + NG.

A similar relation is true however large n may be. Now
let n increase indefinitely. Then the lines AG, GH, &c. will

* The Canterbury Puzzles, by H. E. Dudeney, London, 1907, pp. 26—28.
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get smaller and smaller. Finally the points (r, J, i, ... will

approach indefinitely near the line AG, and ultimately will lie

on it; when this is the case the sum of AG and GH will be

equal to AH, and similarly for the other similar pairs of lines.

Thus, ultimately,

AB +BC^AH + HK + KM + MG
= AG,

a result which is impossible.

Fourth Fallacy. To prove that every triangle is isosceles.

Let ABG be any triangle. Bisect BG in D, and through D
draw DO perpendicular to BG. Bisect the angle BAG by AO.

First. If DO and ^0 do not meet, then they are parallel.

Therefore ^10 is at ri-ht angles to BG. Therefore AB = AG.

Second. If DO and AO meet, let them meet in 0. Draw

OE perpendicular to AG. Draw OF
perpendicular to AB. Join OB, OG.

Let us begin by taking the case

where is inside the triangle, in

which case E falls on ^C and F on

BG.

The triangles AOF and AOE are

equal, since the side ^0 is common,

angle OAF= angle OAE, and angle OFA = angle OEA. Hence

AF=AE. Also, the triangles BOF axid GOE are equal. For

since OD bisects BG at right angles, we have OB = 00] also,

since the triangles AOF and AOE are equal, we have

0F= OE; lastly, the angles at F and E are right angles.

Therefoie, by Euc. I. 47 and I. 8, the triangles BOF and GOE
are equal. Hence FB = EG.

Therefore AF + FB ^ AE { EG, that is, AB = AG.

The same demonstration will cover the case where DO and

AO meet at D, as also the case where they meet outside BG
but so near it that E and F fall on AG and AB and not on

AG and AB produced.

Next take the case where DO and AO meet outside the

triangle, and E and F fall on AG and AB produced. Draw
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OE perpenrlionlar to AC produced. Draw OF perpendicular

to ^^ produced. Join OB, 00.

Following the same argument as before, from the equality

of the triangles AOF and AOE, we obtain AF=AE\ and,

from the equality of the triangles BOF and GOE, we obtain

FB = EG. Therefore AF-FB = AE-EG, that is, AB = A G.

Thus in all cases, w^hether or not DO and AO meet, and
whether they meet inside or outside the triangle, we have

AB=AG: and therefore every triangle is isosceles, a result

which is impossible.

Fifth Fallacy'*. To prove that 'ttJ^ is equal to ir/S. On the

hypothenuse, BO, of an isosceles right-angled triangle, DBG,
describe an equilateral triangle ABO, the vertex A being on

the same side of the base as D is. On QA take a point H so

that OH = GD. Bisect BD in K. Join HK and let it cut OB
(produced) in L. Join DL. Bisect DL at 31, and through

M draw MO perpendicular to DL. Bisect HL at N, and

through N draw NO perpendicular to HL. Since DL and HL
intersect, therefore MO and NO will also intersect ; moreover,

since BDG is a right angle, MO and NO both slope away from

DG and therefore they will meet on the side of DL remote

from A. Join 00, OD, OH, OL.

The triangles OMD and OML are equal, hence OD = OL.

Similarly the triangles ONL and ONH are equal, hence

OL = OH. Therefore OD = OH. Now in the triangles OCD
and OGH, we have OD = OH, GD = GH (by construction), and

* This ingenious fallacy is due to Captain Turton : it appeared for the first

time in the third edition of this work.

B. R. 4
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OG common, hence (by Euc. I. 8) the angle OCD is equal to the

angle OGH. Hence the angle BGD is equal to the angle BGH,
that is, 7r/4 is equal to 7r/3, which is absurd.

Sixth Fallacy*. To prove that, if two opposite sides of a

quadrilateral are equal, the other two sides must he parallel.

Let ABGD be a quadrilateral such that AB is equal to DG.

Bisect AD in M, and through M draw MO at right angles to

AD. Bisect BG in N, and draw NO at right angles to BG.

If MO and NO are parallel, then AD and BG (which are at

right angles to them) are also parallel.

If MO and NO are not parallel, let them meet in ; then

must be either inside the quadrilateral as in the left-hand

diagram or outside the quadrilateral as in the right-hand

diagram. Join OA, OB, OG, OD.

Since OM bisects AD and is perpendicular to it, we have

OA = OD, and the angle 0AM equal to the angle ODM.
Similarly OB = 00, and the angle OBN is equal to the angle

OGN. Also by hypothesis AB = DG, hence, by Euc. i. 8, the

triangles OAB and ODG are equal in all respects, and therefore

the angle AOB is equal to the angle DOG,

Hence in the left-hand diagram the sum of the angles

AOM, AOB is equal to the sum of the angles DOM, DOG;
and in the right-hand diagram the difference of the angles

AOM,AOB is equal to the difference of the angles DOM, DOG;
and therefore in both cases the angle MOB is equal to the

angle MOG, i.e. OM (or OM produced) bisects the angle BOG,

But the angle NOB is equal to the angle NOG, i.e. ON bisects

the angle BOG] hence OM and ON coincide in directioa

* i^lathesis, October, 1893, series 2, vol. in, p. 224.
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Therefore AD and DC, which are perpendicular to this direc-

tion, must be parallel. This result is not uuiversally true,

and the above demonstration contains a flaw.

Seventh Fallacy. The following argument is taken from a

text-book on electricity, published in 1889 by two distinguished

mathematicians, in which it was presented as valid. A given

vector OP of length I can be resolved in an infinite number

of ways into two vectors OM, MP, of lengths l\ I", and we

can make Vjl" have any value we please from nothing to

infinity. Suppose that the system is referred to rectangular

axes Ox, Oy\ and that OP, OM, MP make respectively angles

6, 6'y 6" with Ox. Hence, by projection on Oy and on Ox,

we have
Z sin (9 = V sin 6' + I" sin 6\

Zcos(9 = rcos^'-}-rcos6'".

n sin 9' -I- sin 6"
\ tan^ =• •

ncos6' + cos
/' >

where n^Vjl". This result is true whatever be the value of n.

But n may have any value {ex. gr. ?i=x, or n = 0), hence

tan 6 — tan 6' = tan 9"^ which obviously is impossible.

Eighth Fallacy*. Here is a fallacious investigation of the

value of tt: it is founded on well-known quadratures. The

area of the semi-ellipse bounded by the minor axis is (in the

usual notation) equal to ^irab. If the centre is moved off to

an indefinitely great distance along the major axis, the ellipse

degenerates into a parabola, and therefore in this particular

limiting position the area is equal to two-thirds of the circum-

scribing rectangle. But the first result is true whatever be

the dimensions of the curve.

.'. ^7rah= |a X 26,

.-. 7r=8/3,

a result which obviously is untrue.

Ninth Fallacy. Ever-y ellipse is a circle. The focal distance

of a point on an ellipse is given (in the usual notation) in terms

* Tliis was communicated to me hy Mr 11, Chai ties.

1 o
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of the abscissa by the formula r=a+ex. Hence dr/dx=e.

From this it follows that r cannot have a maximum or minimum
value. But the only closed curve in which the radius vector

has not a maximum or minimum value is a circle. Hence, every

ellipse is a circle, a result which obviously is untrue.

Geometrical Paradoxes. To the above examples I may

add the following questions, which, though not exactly falla-

cious, lead to results which at a hasty glance appear impossible.

First Paradox. The first is a problem, sent to me by

Mr W. Ronton, to rotate a plane lamina (say, for instance, a

sheet of paper) through four right angles so that the effect is

equivalent to turning it through only one right angle.

Second Paradox. As in arithmetic, so in geometry, the

theory of probability lends itself to numerous paradoxes.

Here is a very simple illustration. A. stick is broken at

random into three pieces. It is possible to put them together

into the shape of a triangle provided the length of the

longest piece is less than the sum of the other two pieces

{cf. Euc. L 20), that is, provided the length of the longest

piece is less than half the length of the stick. But the

probability that a fragment of a stick shall be half^ the

original length of the stick is 1/2. Hence the probability that

a triangle can be constructed out of the three pieces into

which the stick is broken would appear to be 1/2. This is not

true, for actually the probability is 1/4.

Third Paradox. The following example illustrates how

easily the eye may be deceived in demonstrations obtained by

actually dissecting the figures and re-arranging the parts. In

fact proofs by superposition should be regarded with consider-

able distrust unless they are supplemented by mathematical

reasoning. The well-known proofs of the propositions Euclid

I. 32 and Euclid I. 47 can be so supplemented and are valid.

On the other hand, as an illustration of how deceptive a non-

mathematical proof may be, I here mention the familiar paradox

that a square of paper, subdivided like a chessboard into

64 small squares, can be cut into four pieces which being put
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together form a figure containing 65 suoh small squares*. This

is effected by cutting the original square into four pieces in the

manner indicated by the thick lines in the first figure. If these

four pieces are put together in the shape of a rectangle in the

way shown in the second figure it will appear as if this rectangle

contains 65 of the small squares.

This phenomenon, which in my experience non-mathema-

ticians find perplexing, is due to the fact that the edges of

the four pieces of paper, which in the second figure lie along

__J-
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These numbers are obtained by finding convergents to the con-

tinued fraction 111
1+

1 4.1 + 1 +
—•

A similar paradox for a square of 17 cells, by which it was

shown that 289 was equal to 288, was alluded to by Ozanam*,

who gave also the diagram for dividing a rectangle of ll by 3

into two rectangles whose dimensions appear to be 5 by 4 and

7 by 2.

Turtons Seventy - Seven Puzzle. A far better dissection

puzzle was invented by Captain Turton. In this a piece of

cardboard, 11 inches by 7 inches, subdivided into 77 small

equal squares, each 1 inch by 1 inch, can be cut up and

re-arranged so as to give 78 such equal squares, each 1 inch

by 1 inch, of which 77 are arranged in a rectangle of the same

dimensions as the original rectangle from one side of which

projects a small additional square. The construction is in-

genious, but cannot be described without the use of a model.

The trick consists in utilizing the fact that cardboard has a

sensible thickness. Hence the edges of the cuts can be

bevelled, but in the model the bevelling is so slight as to be

imperceptible save on a very close scrutiny. The play thus

given in fitting the pieces together permits the apparent pro-

duction of an additional square.

Colouring Maps. I proceed next to mention the geo-

metrical proposition that not more than four colours are neces-

sary in order to colour a map of a country {divided into districts)

in such a way that no two contiguous districts shall he of the

same colour. By contiguous districts are meant districts having

a common line as part of their boundaries: districts which touch

only at points are not contiguous in this sense.

The problem was mentioned by A. F. Mobiusf in his

Lectures in 1840, but it was not until Francis Guthrie J com-

* Ozanam, 1803 edition, vol. i, p. 299.

t Leipzig Transactions {Math.-jyhys. Glasse), 1885, vol. xxxvir, pp. 1—6.

:J:
See Proceedings 0/ the Royal Society of Edinburgh, July 19, 1880, vol. x,

p. 728.
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municated it to De Morgan about 1850 that attention was

generally called to it : it is said that the fact had been familiar

to practical map-makers for a long time previously. Through

De Morgan the proposition then became generally known ; and

in 1878 Cayley* recalled attention to it by stating that he could

not obtain any rigorous proof of it.

Probably the following argument, though not a formal

demonstration, will satisfy the reader that the result is true.

Let A, B, G be three contiguous districts, and let X be any

other district contiguous with all of them. Then X must

lie either wholly outside the external boundary of the area

ABC or wholly inside the internal boundary, that is, it must

occupy a position either like X or like X\ In either case

there is no possible way of drawing another area Y whicli shall

be contiguous with A,B,G, and X. In other words, it is possible

to draw on a plane four areas which are contiguous, but it is

not possible to draw five such areas. If ^, By C are not con-

tiguous, each with the other, or if X is not contiguous with

A, B, and G, it is not necessary to colour them all differently,

and thus the most unfavourable case is that already treated.

* Proceedings of the London Mathematical Society, 1878, vol. ix, p. 148, and

Proceedings of the Royal Geographical Society, London, 1879, N.S., vol. i,

pp. 259-261, where some of the difificulties ar« indicated.
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Moreover any of the above areas may diminish to a point and

finally disappear without affecting the argument.

That we may require at least four colours is obvious from

the above diagram, since in that case the areas A, B, G, and X
would have to be coloured differently.

A proof of the proposition involves difficulties of a high

order, which as yet have baffled all attempts to surmount them.

This is partly due to the fact that if, using only four colours, we

build up our map, district by district, and assign definite colours

to the districts as we insert them, we can always contrive the

addition of two or three fresh districts which cannot be coloured

differently from those next to them, and which accordingly

upset our scheme of colouring. But by starting afresh, it

would seem that we can always re-arrange the colours so as

to allow of the addition of such extra districts.

The argument by which the truth of the proposition was

formerly supposed to be demonstrated was given by A.B.Kempe*
in 1879, but there is a flaw in it.

In 1880, Tait published a solution f depending on the

theorem that if a closed network of lines joining an even

number of points is such that three and only three lines meet

at each point then three colours are sufficient to colour the

lines in such a way that no two lines meeting at a point are of

the same colour; a closed network being supposed to exclude

the case w^iere the lines can be divided into two groups

between which there is but one connecting line.

This theorem may be true, if we understand it with the

limitation that the network is in one plane and that no line

* He sent his first demonstration across the Atlantic to the American Journal

of Mathematics, 1879, vol. ii, pp. 193—200; but subsequently he communicated

it in simplified forms to the London Mathematical Society, Transactions, 1879,

vol. X, pp. 229—231, and to Nature, Feb. 26, 1880, vol. xxi, pp. 399—400. The
flaw in the argument was indicated in articles by P. J. Heawood in the Quarterly

Journal of Mathematics, Loudon, 1890, vol. xxiv, pp. 332—338; and 1897,

vol, XXXI, pp. 270—285.

t Proceedings of the Royal Society of Edinburgh, July 19, 1880, vol. x,

p. 729 ; Philosophical Magazine, January, 1884, series 5, vol. xvu, p. 41 ; and

Collected Scientific Papers, Cambridge, vol. ii, 1800, p. 93.
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meets any other line except at one of the vertices, \vhich is all

that we require for the map theorem; but it has not been proved.

Without this limitation it is not correct. For instance the

accompanying figure, representing a closed network in three

dimensions of 15 lines formed by the sides of two pentagons

and the lines joining their corresponding angular points,

cannot be coloured as described by Tait. If the figure is in

three dimensions, the lines intersect only at the ten vertices

of the network. If it is regarded as being in two dimensions,

only the ten angular points of the pentagons are treated as

vertices of the network, and any other point of intersection of

the lines is not regarded as such a vertex. Expressed in tech-

nical language the difficulty is this. Petersen* has shown that

a graph (or network) of the 2nth. order and third degree and

without offshoots (or feuilles) can be resolved into three graphs

of the 2?ith order and each of the first degree, or into two graphs

of the 2nth. order one being of the first degree and one of the

second degree. Tait assumed that the former resolution was

the only one possible. The question is whether the limitations

mentioned above exclude the second resolution.

Assuming that the theorem as thus limited can be estab-

lished, Tait's argument that four colours will suffice for a map
is divided into two parts and is as follows.

* See J. Petersen of Copenhagen, VIntermedinire des MatMmaticiens, vol. v,

1898, pp. 225—227; and vol. vi, 1899, pp. 30—38. Also Acta Madiematica,

Stockholm, vol. xv, 1891, pp. 193—220.
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First, suppose that the boundary lines of contiguous dis-

tricts form a closed network of lines joining an even number

of points such that three and only three lines meet at each

point. Then if the number of districts is 71 + 1, the number of

boundaries will be Sn, and there will be 2n points of junction;

also by Tait's theorem, the boundaries can be marked with three

colours /3, 7, 8 so that no two like colours meet at a point of

junction. Suppose this done. Now take four colours, A,B,G, D,

wherewith to colour the map. Paint one district with the colour

A; paint the district adjoining A and divided from it by the

line y8 with the colour B ; the district adjoining A and divided

from it by the line 7 with the colour 0; the district adjoining J.

and divided from it by the line B with the colour I). Proceed

in this way so that a line /3 always separates the colours A
and B, or the colours G and D; a line 7 always separates

A and (7, or D and B; and a line S always separates A and D,

or B and G. It is easy to see that, if we come to a district

bounded by districts already coloured, the rule for crossing each

of its boundaries will give the same colour : this also follows

from the fact that, if we regard ^, 7, 8 as indicating certain

operations, then an operation like B may be represented as

equivalent to the effect of the two other operations y8 aad 7
performed in succession in either order. Thus for such a map
the problem is solved.

In the second case, suppose that at any point four or more

boundaries meet, then at any such point introduce a small

district as indicated below: this will reduce the problem to

the first case. The small district thus introduced may be

>c
coloured by the previous rule; but after the rest of the map is

coloured this district will have served its purpose, it may be

then made to contract without limit to a mere point and will

disappear leaving the boundaries as they were at first.

Although a proof of the four-colour theorem is still wanting,

no one has succeeded in constructing a plane map which requires
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more than four tints to colour it, and there is no reason to

doubt the correctness of the statement that it is not necessary

to have more than four colours for any plane map. The
number of ways in which such a map can be coloured with four

tints has been also considered*, but the results are not suffi-

ciently interesting to require mention here.

I believe that in the corresponding question with solids in

space of three dimensions not more than six tints are required

to colour the exposed surfaces, but I have never seen any

attempt to prove this extension of the problem.

Physical Configuration of a Country. As I have been

alluding to maps, I may here mention that the theory of

the representation of the physical configuration of a country

by means of lines drawn on a map was discussed by Cayley

and Clerk Maxwellf. They showed that a certain relation

exists between the number of hills, dales, passes, &c. which

can co-exist on the earth or on an island. I proceed to give a

summary of their nomenclature and conclusions.

All places whose heights above the mean sea level are equal

are on the same level. The locus of such points on a map is

indicated by a contour-line. Roughly speaking, an island is

bounded by a contour-line. It is usual to draw the successive

contour-lines on a map so that the difference between the

heights of any two successive lines is the same, and thus the

closer the contour-lines the steeper is the slope, but the

heights are measured dynamically by the amount of work to

be done to go from one level to the other and not by linear

distances.

A contour-line in general will be a closed curve. This

curve may enclose a region of elevation: if two such regions

• See A. G. Dixon, Messenger of MatJiematics, Cambridtje, 1902-3, vol. xxxii,

pp. 81—83.

t Cayley on ' Contour and Slope Lines,' VhiloRophical Marjazine, London,

October, 1859, eeiies 4, vol. xvui, pp. 264—268 ; Collected Works, vol. iv,

pp. 108—111. J. Clerk Maxwell on 'Hills and Dales,' Philosophical Magazine,

December, 1870, series 4, vol. xl, p|). 421—127; Collected Works, vol. ii,

pp. 233—240.
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meet at a point, that point will be a crunode (i.e. a real double

point) on the contour-line through it, and such a point is

called a pass. The contour-line may enclose a region of de-

pression: if two such regions meet at a point, that point

will be a crunode on the contour-line through it, and such

a point is called a fork or bar. As the heights of the corre-

sponding level surfaces become greater, the areas of the regions

of elevation become smaller, and at last become reduced to

points: these points are the summits of the corresponding

mountains. Similarly as the level surface sinks the regions of

depression contract, and at last are reduced to points: these

points are the bottoms, or immits, of the corresponding valleys.

Lines drawn so as to be everywhere at right angles to

the contour-lines are called lines of slope. If we go up a line

of slope generally we shall reach a summit, and if we go

down such a line generally we shall reach a bottom: we may

come however in particular cases either to a pass or to a fork.

Districts whose lines of slope run to the same summit are

hills. Those whose lines of slope run to the same bottom are

dales. A watershed is the line of slope from a summit to a

pass or a fork, and it separates two dales. A watercourse is

the line of slope from a pass or a fork to a bottom, and it

separates two hills.

\i n-\-l regions of elevation or of depression meet at a

point, the point is a multiple point on the contour-line drawn

through it; such a point is called a pass or a fork of the

ni\i order, and must be counted as n separate passes (or forks).

If one region of depression meets another in several places at

once, one of these must be taken as a fork and the rest as

passes.

Having now a definite geographical terminology we can

apply geometrical propositions to the subject. Let h be the

number of hills on the earth (or an island), then there will be

also h summits ; let d be the number of dales, then there will

be also d bottoms ; let p be the whole number of passes, pi that

of single passes, p^ of double passes, and so on ; let / be the

whole number of forks, /i that of single forks, f of double
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forks, and so on ; let w be the number of watercourses, then

there will be also w watersheds. Hence, by the theureuis of

Cauchy and Euler,

A = 1 + j9j + 2j[;., + . .
.

,

and w=^ (p, +/i) + 3 (p^ +/;) 4- ....

These results can be extended to the case of a multiply-

connected closed surface.

ADDENDUM.

N'ote. Page 52. The required rotation of the lamina can be effected

thus. Suppose that the result is to be equivalent to turning it through

a right angle about a point 0. Describe on the lamina a square OAlJC,

Rotate the lamina successively through two right angles about the

diagonal OB as axis and through two right angles about the side OA as

axis, and the required result will be attained.
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CHAPTER IV.

GEOMETRICAL RECREATIONS CONTINUED.

Leaving now the question of formal geometrical proposi-

tions, I proceed to enumerate a few games or puzzles which

depend mainly on the relative position of things, but I post-

pone to cliapter x the discussion of such amusements of

this kind as necessitate any considerable use of arithmetic or

algebra. Some writers regard draughts, solitaire, chess, and

such like games as subjects for geometrical treatment in the

same way as they treat dominoes, backgammon, and games

with dice in connection with arithmetic: but these discussions

require too many artificial assumptions to correspond with the

games as actually played or to be interesting.

The amusements to which I refer are of a more trivial

description, and it is possible that a mathematician may like to

omit this chapter. In some cases it is difficult to say whether

they should be classified as mainly arithmetical or geometrical,

but the point is of no importance.

Statical Games of Position. Of the innumerable statical

games involving geometry of position I shall mention only

three or four.

Three-in-a-row. First, I may mention the game of three-

in-a-row, of which noughts and crosses, one form of merrilees,

and go-bang are well-known examples. These games are

played on a board—generally in the form of a square con-

taining n" small squares or cells. The common practice is for

one player to place a white counter or piece or to make a cross

on each small square or cell which he occupies : his opponent
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similarly uses black counters or pieces or makes a nought on

each cell which he occupies. Whoever first gets three (or any

other assigned number) of his pieces in three adjacent cells

and in a straight line wins. There is no difficulty in giving

the complete analysis for boards of 9 cells and of 16 cells: but

it is lengthy and not particularly interesting. M(^st of these

games were known to the ancients*, and it is for that reason

I mention them here.

Three-in-a-row. Extension. I may, however, add an elegant

but difficult extension which has not previously found its way,

so far as I am aware, into any book of mathematical recreations.

The problem is to place n counters on a plane so as to form as

many rows as possible, each of which shall contain three and

only three counters f.

It is easy to arrange the counters in a number of rows

equal to the integral part of {n — iy/8. This can be effected by

the following construction. Let P be any point on a cubic.

Let the tangent at P cut the curve again in Q. Let the tangent

at Q cut the curve in A. Let PA cut the curve in B, QB cut

it in G, PC cut it in D, QD cut it in E, and so on. Then the

counters must be placed at the points P, Q, A, B, .,.. Thus 9

counters can be placed in 8 such rows ; 10 counters in 10 rows

;

15 counters in 24 rows ; 81 counters in 800 rows ; and so on.

If however the point P is a pluperfect point of the nth

order on the cubic, then Sylvester proved that the above con-

struction gives a number of rows equal to the integral part of

(n — l){n— 2)16. Thus 9 counters can be arranged in 9 rows,

which is a well-known and easy puzzle; 10 counters in 12 rows;

15 counters in 30 rows ; and so on.

Even this however is an inferior limit and may be ex-

ceeded—for instance, Sylvester stated that 9 counters can be

placed in 10 rows, each containing three counters ; I do not

know how he placed them, but one way of so arranging them is

* Becq de Fouqui^res, Lc Jeiix dcs Anciens, second edition, Paris, 1873,

chop. XVIII.

t Educational Times Reprints, 18G8, vol. viii, p. lOO; Ihid. 188G, vol. xt.v,

pp. 127—128.
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by putting them at points whose coordinates are (2, 0), (2, 2),

(2, 4), (4, 0), (4, 2), (4, 4), (0, 0), (3, 2), (6, 4) ; another way

is by putting them at the points (0, 0), (0, 2), (0, 4), (2, 1),

(2, 2), (2, 3), (4, 0), (4, 2), (4, 4) ; more generally, the angular

points of a regular hexagon and the three points (at infinity) of

intersection of opposite sides form such a group, and therefore

any projection of that figure will give a solution. At present it

is not possible to say what is the maximum number of rows of

three which can be formed from n counters placed on a plane.

Extension to p-in-a-row. The problem mentioned above at

once suggests the extension of placing n counters so as to form

as many rows as possible, each of which shall contain p and only

p counters. Such problems can be often solved immediately by

placing at infinity the points of intersection of some of the lines,

and (if it is so desired) subsequently projecting the diagram

thus formed so as to bring these points to a finite distance. One

instance of such a solution is given above.

As examples I may give the arrangement of 10 counters in

5 rows, each containing 4 counters ; the arrangement of 16

counters in 1 5 rows, each containing 4 counters ; the arrange-

ment of 18 counters in 9 rows, each containing 5 counters ; and

the arrangement of 19 counters in 10 rows, each containing 5

counters. These problems I leave to the ingenuity of my readers.

Tesselation. Another of these statical recreations is known

as tesselatioD, and consists in the formation of geometrical

designs or mosaics covering a plane area by the use of tiles of

given geometrical forms.

If the tiles are regular polygons, the resulting forms can be

found by analysis. For instance, if we confine ourselves to the

use of like tiles each of which is a regular polygon of n sides, we

are restricted to the use of equilateral triangles, squares, or hex-

agons. For suppose that to fill the space round a point where

one of the angles of the polygon is situated we require m poly-

gons. Each interior angle of the polygon is equal to (n—2)7r/n.

Hence m (n — 2) w/n = 27r. Therefore (m - 2) (n - 2) = 4. Now
from the nature of the problems m is greater than 2, and so

is n. If m = 3, ?i = 6. If m > 3, then n<6, and since n>2,
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we have in this case only to consider the vahies n = 3, 7i=4,

and ?i = 5. If w = 3 we have m = 6. If n = 4 we have in = 4.

If n= 5, m is non-integral, and this is impossible. Thus the

only solutions are m — S and n = 6, m=4 and w = 4, ?/i=6

and n = 3 *.

If, however, we allow the use of unlike tiles (ex. gr. regular

hexagons, squares, and triangles), we can construct numerous

geometrical designs covering a plane area; though it is im-

possible to make such designs by the use of starred concave

polygons f.

The use of colours not only adds variety to the patterns, but

introduces new considerations. One formation of a pavement by

the employment of square tiles of two colours is illustrated by

the common chess-board. In this the cells are coloured alter-

nately white and black, or sometimes white and red. Another

variety of a pavement made with square tiles of two colours was

invented by SylvesterJ, who termed it anallagmatic. In the

ordinary chess-board, if any two rows or any two columns are

placed in juxtaposition, cell to cell, the cells which are side by

side are either all of the same colour or all of different colours.

In an anallagmatic arrangement, the cells are so coloured (with

two colours) that when any two columns or any two rows are

placed together side by side, half the cells next to one another

are of the same colour and half are of different colours

Anallagmatic pavements composed of m^ cells or square

tiles can be easily constructed by the repeated use of the four

elementary anallagmatic arrangements given in the angular

spaces of the accompanying diagram. In these fundamental

forms A represents one colour and B the other colour. The

diamond-shaped figure in the middle of the diagram represents

an anallagmatic pavement of 256 tiles which is symmetrical

about its diagonals. In half the rows and half the columns

* Monsieur A. Hermann has proposed an analogous theorem for polygons

covering the surface of a sphere.

t On this, see the second edition of the French translation of this work,

Paris, 1908, vol. ii, pp. 26—37.

X See Mathematical Questions from the Educational Times, London, vol. x,

1868, pp. 74—76 ; vol. lvi, 1892, pp. 97—99. The results are closely connected

with theorems in the theory of equaiions,

B. E. 6
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each line has 10 white tiles and 6 black tiles, and in the re-

maining rows and columns each line has 6 white tiles and

10 black tiles. Such an arrangement, where the difference

between the number of white and black tiles used in each line

is constant, and equal to Vm, is called isochromatic. If m is

odd or oddly even, it is impossible to construct anallagmatic

boards which are isochromatic.

A
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possible ' designs increases with startling rapidity*. I content

myself with giving two illustrations of designs of pavements

constructed with sixty-four such tiles, all exactly alike.

Examples of Tesselated Pavements.

If more than two colours are used, the problems become

increasingly difficult. As a simple instance of this class of

problems I may mention one, sent to me by a correspondent

who termed it Cross-Fours, wherein sixteen cardboard squares

or tiles are used, the upper half of each being yellow, red, pink,

or blue, and the lower half being gold, green, black, or white,

no two tiles being coloured alike. Such tiles can be arranged

in the form of a square so that in each vertical, horizontal, and

diagonal line there shall be 8 colours and no more : they can be

also arranged so that in each of these ten lines there shall be 6

colours and no more, or 5 colours and no more, or 4 colours and

no more. Puzzles of this kind are but little known ; they are

however not uninstructive.

Colour-Cube Problem. As an example of a recreation

analogous to tesselation I will mention the colour-cube problem f.

Stripped of mathematical technicalities the problem may
be enunciated as follows. A cube has six faces, and if six

colours are chosen we can paint each face with a diHPeient

colour. By permuting the order of the colours we can obtain

* On this, see Lucas, Recreations Mathematiques, Paris, 1882-3, vol. ii, part 4

:

hereafter I shall refer to this work by the name of the author.

t By Major MacMahon ; an abstract of his paper, read before the London
Mathematicid Society on Feb. 9, 1893, was given in Naiwe, Feb. 23, 1893,

vol. xLvn, p. 406.

6-2
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thirty such cubes, no two of which are coloured alike. Take

anv one of these cubes, K, then it is desired to select eight out

of the remaining twenty-nine cubes, such that they can be

arranged in the form of a cube (whose linear dimensions are

double those of any of the separate cubes) coloured like the

cube K, and placed so that where any two cubes touch each

other the faces in contact are coloured alike.

Only one collection of eight cubes can be found to satisfy

these conditions. These eight cubes can be determined by the

following rule. Take any face of the cube K: it has four

angles, and at each angle three colours meet. By permuting the

colours cyclically we can obtain from each angle two other

cubes, and the eight cubes so obtained are those required. A
little consideration will show that these are the required cubes,

and that the solution is unique.

For instance suppose that the six colours are indicated

by the letters a, 6, c, d, e, f. Let the cube K be put on a

table, and to fix our ideas suppose that the face coloured /
is at the bottom, the face coloured a is at the top, and the

faces coloured 6, c, d, and e front respectively the east, north,

west, and south points of the compass. I may denote such an

arrangement by (/; a; 6, c, d, e). One cyclical permutation

of the colours which meet at the north-east corner of the top

face gives the cube (/; c; a, 6, d, e\ and a second cyclical

permutation gives the cube (/; h\ c, a, d, e). Similarly

cyclical permutations of the colours which meet at the north-

west corner of the top face of^ give the cubes (/; d\ b,a, c, e)

and (/; c ; h^d, a, e). Similarly from the top south-west corner

of K we get the cubes (/; e ; 6, c, a, d) and (/; d\ b, c, e, a)

:

and from the top south-east corner we get the cubes

(/; e; a, c, d, b) and (/; 6 ; e, c, d, a).

The eight cubes being thus determined it is not difficult to

arrange them in the form of a cube coloured similarly to K,

and subject to the condition that faces in contact are coloured

alike; in fact they can be arranged in two ways to satisfy

these conditions. One such way, taking the cubes in the

numerical order given above, is to put the cubes 3, 6, 8, and 2
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at the SE, NE, NW, and SW corners of the bottom face ; of

course each placed with the colour /at the bottom, while 3 and
6 have the colour b to the east, and 2 and 8 have the colour d
to the west : the cubes 7, 1, 4, and 5 will then form the SE, NE,
NW, and SW corners of the top face; of course each placed

with the colour a at the top, while 7 and 1 have the colour 6 to

the east, and 5 and 4 have the colour d to the west. If K is

not given, the difficulty of the problem is increased. Similar

puzzles in two dimensions can be made.

Tangrams. The formation of designs by means of seven

pieces of wood, namely, a square, a rhombus, and five triangles,

known as tans, of fixed traditional shapes, is one of the oldest

amusements in the East. Many hundreds of figures represent-

ing men,women, birds, beasts, fish, houses, boats, domestic objects,

designs, &c. can be made, but the recreation is not mathematical,

and I reluctantly content myself with a bare mention of it.

Dynamical Games of Position. Games which are played

by moving pieces on boards of various shapes—such as merrilees,

fox and geese, solitaire, backgammon, draughts, and chess

—

present more interest. In general, however, they permit of so

many movements of the pieces that any mathematical analysis

of them becomes too intricate to follow out completely. Games
in which the possible movements are very limited may be

susceptible of mathematical treatment. One or two of these are

given later : here I shall confine myself mainly to puzzles and

simple amusements.

Shunting Problems. The first I will mention is a little

puzzle which I bought some years ago and which was described

as the "Great Northern Puzzle." It is typical of a good many
problems connected with the shunting of trains, and though it

rests on a most improbable hypothesis, I give it as a specimen

of its kind.

The puzzle shows a railway, DBF, with two sidings, DBA
and FGA, connected at A. The portion of the rails at A
which is common to the two sidings is long enough to permit

of a single wagon, like P or Q, running in or out of it ; but is

too short to contain the whole of an engine, like R. Hence, if
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an engine rnns up one siding, such as DBA, it must come back

the same way.

Initially a small blork of wood, P, coloured to represent

a wagon, is placed at 5 ; a similar block, Q, is placed at G \ and

a longer block of wood, R, representing an engine, is placed at

E. The problem is to use the^ engine R to interchange the

wagons P and Q, without allowing any flying shunts.

Another shunting puzzle, on sale in the streets in 1905,

under the name of the " Chifu-Chemulpo Puzzle," is made as

follows. A loop-line BGE connects two points B and ^ on a

railway track AF, which is supposed blocked at both ends, as

shown in the diagram. In the model, the track AF is 9 inches

long, AB = EF= If inches, and AH = FK=^BG== DE^l inch.

H K

On the track and loop are eight wagons, numbered succes-

sively 1 to 8, each one inch long and one-quarter of an

inch broad, and an engine, e, of the same dimensions.

Originally the wagons are on the track from A \>o F and in the

order 1, 2, 3, 4, 5, 6, 7, 8, and the engine is on the loop. The
construction and the initial arrangement ensure that at any one

time there cannot be more than eight vehicles on the track.

Also if eight vehicles are on it only the penultimate vehicle

at either end can be moved on to the loop, but if less than eight

are on the track then the last two vehicles at either end can be

moved on to the loop. If the points at each end of the ioop-

line are clear, it will hold four, but not more than four, vehicles.

The object is to reverse the order of the wagons on the track.
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SO that from ^ to i^ they will be numbered successively 8 to 1

;

and to do this by means which will involve as few transferences

of the engine or a wagon to or from the loop as is possible.

Twenty-six moves are required, and there is more than one

solution in 26 moves.

Other shunting problems are not uncommon, but these two

examples will suffice.

Ferry-Boat Problems, Everybody is familiar with the story

of the showman who was travelling with a wolf, a .s^oat, and a

basket of cal>bages ; and for obvious reasons was unable to leave

the wolf alone with the goat, or the goat alone with the cabbages.

The only means of transporting them across a river was a boat

80 small that he could take in it only one of them at a time. The

problem is to show how the passage could be effected*.

A somewhat similar problem is to arrange for the passage of

a river by three men and three boys who have the use of a boat

which will not carry at one time more than one man or two

boys. Fifteen passages are required f.

Problems like these were proposed by Alcuin, Tartaglia, and

other medieval writers. The following is a common type of such

questions. Three J beautiful ladies have for husbands three

men, who -are young, gallant, and jealous. The party are

travelling, and find on the bank of a river, over which they

have to pass, a small boat which can hold no more than two

persons. How can they cross the river, it being agreed that, in

order to avoid scandal, no woman shall be left in the society of

a man unless her husband is present ? Eleven passages are

required. With two married couples five passages are required.

The similar problem with four married couples is insoluble.

Another similar problem is the case of n married couples

who have to cross a river by means of a boat which can be

rowed by one person and will carry ?i — 1 people, but not m^re,

with the condition that no woman is to be in the society of a

man unless her husband is present. Alcuin's problem given

* Ozanam, 1803 edition, vol. i, p. 171 ; 1840 edition, p. 77.

t H. E. Dudeney, The Tribune, October 4, 1906.

X Bachet, Appendix, problem iv, p. 212.
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above is the case of n=S. Let y denote the number of passages

from one bank to the other which will be necessary. Then it

has been shown that if 7i=3, 3/= 11; if w = 4, y = 9; and if

w > 4, 2/ = 7.

The following analogous problem is due to the late E.

Lucas*. To find the smallest number x of persons that a boat

must be able to carry in order that n married couples may by

its aid cross a river in such a manner that no woman shall

remain in the company of any man unless her husband is

present ; it being assumed that the boat can be rowed by one

person only. Also to find the least number of passages, say y,

from one bank to the other which will be required. M. Delannoy

has shown that if 71 = 2, then a; = 2, and y= 5. If n = S, then

a; = 2, and 3/ = 11. If n = 4, then a? =3, and y = 9. If n=o,
then a) = S, and 3/ = 11. And finally if n > 5, then ^ = 4, and

y = 2n—l.

M. De Fonteney has remarked that, if there was an island

in the middle of the river, the passage might be always effected

by the aid of a boat which could carry only two persons. If there

are only two or only three couples the island is unnecessary, and

the case is covered by the preceding method. His solution,

involving Sn — S passages, is as follows. The first nine passages

will be the same, no matter how many couples there may be

:

the result is to transfer one couple to the island and one couple

to the second bank. The result of the next eight passages is

to transfer one couple fi-om the first bank to the second bank,

this series of eight operations must be repeated as often as

necessary until there is left only one couple on the first bank,

only one couple on the island, and all the rest on the second

bank. The result of the last seven passages is to transfer all the

couples to the second bank. It would however seem that if n

is greater than 3, we need not require more than 6n — 7 passages

from land to land.

M. G. Tarry has suggested an extension of the problem,

which still further complicates its solution. He supposes that

* Lucas, vol. I, pp. 15—18, 237—238.
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each husband travels with a harem of m wives or concubines
;

moreover, as Moliammedan women are brought up in seclusion,

it is reasonable to suppose that they would be unable to row a

boat by themselves without the aid of a man. But perhaps the

difficulties attendant on the travels of one wife may be deemed
sufficient for Christians, and I content myself with merely

mentioning the increased anxieties experienced by Moham-
medans in similar circumstances.

Geodesies. Geometrical problems connected with finding

the shortest routes from one point to another on a curved

surface are often difficult, but geodesies on a flat surface or flat

surfaces are in general readily determinable.

I append one instance*, though I should have hesitated to

do so, had not experience shown that some readers do not readily

see the solution. It is as follows. A room is 30 feet long,

12 feet wide, and 12 feet high. On the middle line of one of

the smaller side walls and one foot from the ceiling is a wasp.

On the middle line of the opposite wall and 11 feet from the

ceiling is a fly. The wasp catches the fly by crawling all the

way to it: the fly, paralysed by fear, remaining still. The
problem is to find the shortest route that the wasp can

follow.

To obtain a solution we observe that we can cut a sheet of

paper so that, when folded properly, it will make a model to

scale of the room. This can be done in several ways. If, when

the paper is again spread out flat, we can join the points repre-

senting the wasp and the fly by a straight line lying wholly on

the paper we shall obtain a geodesic route between them.

Thus the problem is reduced to finding the way of cutting out

the paper which gives the shortest route of the kind.

Here is the diagram corresponding to a solution of the

above question, where A represents the floor, B and D the

longer side-walls, G the ceiling, and W and F the positions on

the two smaller side-walls occupied initially by the wasp and fly.

• This is due to Mr H. E. Dudeney. I heard a similar question propounded

at Cambridge in 1903, but I first saw it in print in the Daily Hail, London,
February 1, 1905.
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In the diagram the square of the distance between W and F is

(32)2 ^ (24)2; iiej^ce the distance is 40 feet.

w «K

N.

Frohlems with Counters placed in a row. Numerous

dynamical problems and puzzles may be illustrated with a

box of counters, especially if there are counters of two colours.

Of course coins or pawns or cards will serve equally well.

I proceed to enumerate a few of these played with counters

placed in a row.

First Problem with Counters. The following problem must

be familiar to many of my readers. Ten counters (or coins) are

placed in a row. Any counter may be moved over two of those

adjacent to it on the counter next be3^ond them. It is required

to move the counters according to the above rule so that they

shall be arranged in five equidistant couples.

If we denote the counters in their initial positions by the

numbers 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, we proceed as follows. Put

7 on 10, then 5 on 2, then 3 on 8, then 1 on 4, and lastly 9 on

6. Thus they are arranged in pairs on the places originally

occupied by the counters 2, 4, 6, 8, 10.

Similarly by putting 4 on 1, then 6 on 9, then 8 on 3, then

10 on 7, and lastly 2 on 5, they are arranged in pairs on the

places originally occupied by the counters 1, 3, 5, 7, 9.

If two superposed counters are reckoned as only one,

solutions analogous to those given above will be obtained by
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putting 7 on 10, then 5 on 2, then .*> on 8, then 1 on 6, and

lastly 9 on 4 ; or by putting 4 on 1, then 6 on 9, theu 8 on 3,

then 10 on 5, and lastly 2 on 7 *.

There is a somewhat similar game played with eight counters,

but in this ease the four couples finally formed are not equi-

distant. Here the transformation will be effected if we move

5 on 2, then 3 on 7, then 4 on 1, and lastly 6 on 8. This form

of the game is applicable equally to (8 + 2n) counters, for if we

move 4 on 1 we have left on one side of this couple a row of

(8 + 2n — 2) counters. This again can be reduced to one of

(8 + 271 — 4) counters, and in this way finally we have left eight

counters which can be moved in the way explained above.

A more complete generalization would be the case of n

counters, where each counter might be moved over the m
counters adjacent to it on to the one beyond them. For instance

we may place twelve counters in a row and allow the moving

a counter over three adjacent counters. By such movements we

can obtain four piles, each pile containing three counters. Thus,

if the counters be numbered consecutively, one solution can be

obtained by moving 7 on 3, then 5 on 10, then 9 on 7, then 12

on 8, then 4 on 5, then 11 on 12, then 2 on 6, and then 1 on 2.

Or again we may place sixteen counters in a row and allow

the moving a counter over four adjacent counters on to the

next counter available. By such movements we can get four

piles, each pile containing four counters. Thus, if the counters

be numbered consecutively, one solution can be obtained by

moving 8 on 3, then 9 on 14, then 1 on 5, then 16 on 12, then

7 on 8, then 10 on 7, then 6 on 9, then 15 on 16, then 13 on 1,

then 4 on 15, then 2 on 13, and then 11 on 6.

Second Problem with Counters. Another problem f, oi a

somewhat similar kind, is of Japanese origin. Place four florins

(or white counters) and four halfpence (or black counteis)

alternately in a line in contact with one another. It is rec^uired

* Note by J. Fitzpatrick to a French translation of the third edition of tliis

work, Paris, 1898.

t Bibliotheca Mxthematica, 1896, series 3, vol. vi, p. 323; P. G. Tait, Philo-

Bophical Magazine, London, January, 1884, series 5, vol. xvii, p. 39; or Collected

Scientijic i'ajjers^ Cambridge, vol. ii, 1690, p. 93.
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in four moves, each of a pair of two contiguous pieces, without

altering the relative position of the pair, to form a continuous

line of four halfpence followed by four florins.

This can be solved as follows. Let a florin be denoted by a

and a halfpenny by h, and let x x denote two contiguous blank

spaces. Then the successive positions of the pieces may be

represented thus

:

Initially . . . . xxabahabah.
After the first move . . baababaxxb.
After the second move . 6 a abxx a abb.

After the third move . . bxxbaaaabb.
After the fourth move . bbbb aaaax x.

The operation is conducted according to the following rule.

Suppose the pieces to be arranged originally in circular order,

with two contiguous blank spaces, then we always move to the

blank space for the time being that pair of coins which occupies

the places next but one and uext but two to the blank space on

one assigned side of it.

A similar problem with 2n counters

—

n of them being white

and n black—will at once suggest itself, and, if n is greater

than 4, it can be solved in n moves. I have however failed to

find a simple rule which covers all cases alike, but solutions, due

to M. Delannoy, have been given* for the four cases where n is

of the form 4m, 4?7i + 2, 47n + 1, or 4m + 3 ; in the first two cases

the first ^n moves are of pairs of dissimilar counters and the

last ^n moves are of pairs of similar counters; in the last two

cases, the first move is similar to that given above, namely,

of the penultimate and antepenultimate counters to the be-

ginning of the row, the next J (w — 1) moves are of pairs of

dissimilar counters, and the final J (n — 1) moves are of similar

counters.

The problem is also capable of solution if we substitute the

restriction that at each move the pair of counters taken up must

be moved to one of the two ends of the row instead of the

condition that the final arrangement is to be continuous.

* La Nature^ June, 1887, p. 10,
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Tait suggested a varir-.tion of the problem by making it

a condition that the two coins to be moved shall also be made to

interchange places ; in this form it would seem that five moves

are required ; or, in the general case, ti + 1 moves are reijuired.

Problems on a Cliess-hoard with Counters or Pawns. The

following three problems require the use of a chess-board as well

as of counters or pieces of two colours. It is more convenient

to move a pawn than a counter, and if therefore I describe them

as played with pawns it is only as a matter of convenience and

not that they have any connection with chess. The first is

characterized by the fact that in every position not more than

two moves are possible ; in the second and third problems not

more than four moves are possible in any position. With these

limitations, analysis is possible. I shall not discuss the similar

problems in which more moves are possible.

First Problem with Pawns*. On a row of seven squares

on a chess-board 3 white pawns (or counters), denoted in the

diagram by "a"s, are placed on the 3 squares at one end, and

3 black pawns (or counters), denoted by " b "s, are placed on the

3 squares at the other end—the middle square being left vacant.

Each piece can move only in one direction ; the " a " pieces can

move from left to right, and the *' b " pieces from right to left.

If the square next to a piece is unoccupied, it can move on

a
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cells (a term used to describe each of the small squares on a

chess-board) consecutively, then initially the vacant space

occupies the cell 4 and in the successive moves it will occupy

the cells 3, 5, 6, 4, 2, 1, 3, 5, 7, 6, 4, 2, 3, 5, 4. Of these moves,

six are simple and nine are leaps.

Similarly if we have n white pawns at one end of a row of

2w + l cells, and n black pawns at the other end, they can

be interchanged in n (m + 2) moves, by moving in succession

1 pawn, 2 pawns, 3 pawns, ... n — 1 pawns, n pawns, n pawns,

n pawns, n — 1 pawns, ... 2 pawns, and 1 pawn—all the pawns

in each group being of the same colour and different from that

of the pawns in the group preceding it. Of these moves 2n are

simple and n^ are leaps.

Second Problem with Pawns*. A similar game may be

played on a rectangular or square board. The case of a square

board containing 49 cells, or small squares, will illustrate this

sufficiently: in this case the initial position is shown in the

annexed diagram where the " a "s denote the pawns or pieces

a

a
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is the case the pieces in the row containing the vacant cell

can be interchanged. To interchange the pieces in each of

the seven rows will require 15 moves. Hence to interchange all

the pieces will require 15 + (7 x 15) moves, that is, 120 moves.

If we place 2?i(n+l) white pawns and 2n{7i+l) black

pawns in a similar way on a square board of (2/1+1)^ cells,

we can transpose them in 2n (n + 1) (?z + 2) moves: of these

4?i(7i4-l) are simple and 2n^ (^+1) are leaps.

Third Problem with Fawns. The followinsf analoorous

problem is somewhat more complicated. On a square board

of 25 cells, place eight white pawns or counters on the cells

a
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the letters indicating the cells from which the pieces are suc-

cessively moved. It will be noticed that the first twenty-three

moves lead to a symmetrical position, and that the next twenty-

two moves can be at once obtained by writing the first twenty-

two moves in reverse order and interchanging small and capital

letters. Similar problems with boards of various shapes can be

easily constructed.

Probably, were it worth the trouble, the mathematical theory

of games such as that just described might be worked out by the

use of Vandermonde's notation, described later in chapter vi, or

by the analogous method employed in the theory of the game of

solitaire*.

Problems on a Chess-hoard with Chess-pieces. There are

several mathematical recreations with chess-pieces, other than

pawns. Some of these are given later in chapter VI.

Geometrical Puzzles with Rods, etc. Another species

of geometrical puzzles, to which here I will do no more than

allude, are made of steel rods, or of wire, or of wire and string.

Numbers of these are often sold in the streets of London for a

penny each, and some of them afford ingenious problems in the

geometry of position. Most of them could hardly be discussed

without the aid of diagrams, but they are inexpensive to

construct, and in fact innumerable puzzles on geometry of position

can be made with a couple of stout sticks and a ball of string, or

with only a box of matches : several examples are given in

various recent English works. Most of them exemplify the

difiiculty of mentally realizing the effect of geometrical altera-

tions in a figure unless they are of the simplest character.

Paradromic Rings. The fact just stated is illustrated

by the familiar experiment of making paradromic rings by

cutting a paper ring prepared in the following manner.

* On the theory of the solitaire, see Reiss, 'Beitrage zur Theorie des Solitdr-

Spiels,^ Crelle's Joiirnal, Berlin, 1858, vol. uv, pp. oil—379 ; and Lucas, vol. i,

part V, pp. 89—141.



CH. IV] GEOMETRICAL RECREATIONS 81

Take a strip of paper or piece of tape, say, for convenience,

an inch or two wide and at least nine or ten inches long, rule a

line in the middle down the length AB of the strip, gum one

end over the other end B, and we get a ring like a section of

a cylinder. If this ring is cut by a pair of scissors along the

ruled line we obtain two rings exactly like the first, except that

they are only half the width. Next suppose that the end A is

twisted through two right angles before it is gummed to B
(the result of which is that the back of the strip at A is gummed
over the front of the strip at B), then a cut along the line will

produce only one ring. Next suppose that the end A is twisted

once completely round {i.e. through four right angles) before it

is gummed to B, then a similar cut produces two interlaced

rings. If any of my readers think that these results could be

predicted off-hand, it may be interesting to them to see if they

can predict correctly the effect of again cutting the rings formed

in the second and third experiments down their middle lines in

a manner similar to that above described.

The theory is due to J. B. Listing* who discussed the case

when the end A receives m half-twists, that is, is twisted through

mir, before it is gummed to B.

Ifm is even we obtain a surface which has two sides and two

edges, which are termed paradromic. If the ring is cut along

a line midway between the edges, we obtain two rings, each

of which has m half-twists, and which are linked together \m
times.

If m is odd we obtain a surface having only one side and

one eJge. If this ring is cut along its mid-line, we obtain only

one ring, but it has 2m half-twists, and if m is greater than

unity it is knotted.

ADDENDUM.

Note. Page 64. One method of arranging 16 counters in 15 lines, as

stated in the text, is as follows. Draw a regular re-entrant pentagon

vertices A\j ^2) -^3? -^4> ^5, <^rid centre 0. The sides intersect in five

* Vorstadien zur Topologic, Die Studieii, Gottingen, 1647, part x.

B. R. 6
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points Biy ... B^. These latter points may be joined so as to form a

smaller regular re-entrant pentagon whose sides intersect in five points

Ci, ... Cs. The 16 points indicated are arranged as desired {The Canter-

bury Puzzles, 1907, p. 140).

An arrangement of 18 counters in 9 rows, each containing 5 counters,

can be obtained thus. From one angle, A of an equilateral triangle

AA'A!\ draw lines AB, AE inside the triangle making any angles with

A A'. Draw from A' and A" lines similarly placed in regard to A'A" and

A"A. Let A'D' cut A"E" in F, and A'E' cut A"D" in G. Then AFG is

a straight line. The 3 vertices of the triangle and the 15 points of inter-

section of AD, AE, AF, with the similar pencils of Unes drawn from A'y A",

will give an arrangement as required.

An arrangement of 19 counters in 10 rows, each containing 5 counters,

can be obtained by placing counters at the 19 points of intersection of the

10 Hnes .^= ±a, x= ±6, y= ±a, y= ±b, y= ±x: of these points two are

at infinity.

Note. Page 69. The Great Northern Shunting Problem is effected thus,

(i) R pushes P into A. (ii) R returns, pushes ^ up to P in ^, couples

Q to P, draws them both out to F, and then pushes them to E. (iii) P
is now uncoupled, R takes Q back to A, and leaves it there, (iv) R returns

to P, takes P back to (7, and leaves it there, (v) R running successively

through F, i>, B comes to -4, draws Q out, and leaves it at B.

Note. Page 70. One solution of the Chifu-Chemulpo Puzzle is as

follows. Move successively wagons 2, 3, 4 up, i.e. on to the loop line.

[Then push 1 along the straight track close to 5 ; this is not a " move."]

Next, move 4 down, i.e. on to the straight track and push it along to 1.

Next, move 8 up, 3 down to the end of the track and keep it there tempo-

rarily, 6 up, 2 down, e down, 3 up, 7 up. [Then push 5 to the end of the

track and keep it there temporarily.] Next, move 7 down, 6 down, 2 up,

4 up. [Then push e along to 1.] Next, move 4 down to the end of the track

and keep it there temporarily, 2 down, 5 up, 3 down, 6 up, 7 up, 8 down
to the end of the track, e up, 5 down, 6 down, 7 down. In this solution

we moved e down to the track at one end, then shifted it along the track,

and finally moved it up to the loop from the other end of the track. We
might equally well move e down to the track at one end, and finally

move it back to the loop from the same ^nd. In this solution the pieces

successively moved are 2, 3, 4, 4, e, 8, 7, 3, 2, 6, 5, 5, 6, 3, 2, 7, 2, 5, C, 3,

7, e, 8, 5, 6, 7.
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CHAPTER y.

MECHANICAL RECREATIONS.

I proceed now to enumerate a few questions connected with

mechanics which lead to results that seem to me interesting

from a historical point of view or paradoxical. Problems in

mechanics generally involve more difficulties than problems in

arithmetic, algebra, or geometry, and the explanations of some

phenomena—such as those connected with the flight of birds

—

are still incomplete, while the explanations of many others of an

interesting character are too difficult to find a place in a non-

technical work. Here I exclude all transcendental meclianics,

and confine myself to questions which, like those treated in the

preceding chapters, are of an elementary character. The

results are well-known to mnthematicians.

I assume that the reader is acquainted with the funda-

mental ideas of kinematics and dynamics, and is familiar with

the three Newtonian laws ; namely, first that a body will

continue in its state of rest or of uniform motion in a straight

line unless compelled to change that state by some external

force : second, that the change of momentum per unit of time

is proportional to the external force and takes place in the

direction of it: and third, that the action of one body on

another is equal in magnitude but opposite in direction to the

reaction of the second body on the first. The first and second

laws state the principles required for solving any question on

the motion of a particle under the action of given forces. The

third law supplies the additional principle required for the

solution of problems in which two or more particles iniiuence

one another.

6-2
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Motion. The difficulties connected with the idea of motion

have been for a long time a favourite subject for paradoxes,

some of which bring us into the realm of the philosophy of

mathematics.

Zeno's Paradoxes on Motion. One of the earliest of these

is the remark of Zeno to the effect that since an arrow cannot

move where it is not, and since also it cannot move where it is

(that is, in the space it exactly fills), it follows that it cannot

move at all. The answer that the very idea of the motion

of the arrow implies the passage from where it is to where it is

not was rejected by Zeno, who seems to have thought that the

appearance of motion of a body was a phenomenon caused by

the successive appearances of the body at rest but in different

positions.

Zeno also asserted that the idea of motion was itself incon-

ceivable, for what moves must reach the middle of its course

before it reaches the end. Hence the assumption of motion

presupposes another motion, and that in turn another, and so

ad infinitum. His objection was in fact analogous to the

biological difficulty expressed by Swift:

—

" So naturalists observe, a flea hath smaller fleas that on him prey.

And these have smaller fleas to bite 'em. And so proceed ad infinitum."

Or as De Morgan preferred to put it

" Great fleas have little fleas upon their backs to bite 'em,

And little fleas have lesser fleas, and so ad infinitum.

And the great fleas themselves, in turn, have greater fleas to go on;

While these have greater still, and greater still, and so on."

Achilles and the Tortoise. Zeno's paradox about Achilles

and the tortoise is known even more widely. The assertion

was that if Achilles ran ten times as fast as a tortoise, yet

if the tortoise had (say) 1000 yards start it could never be

overtaken. To establish this, Zeno argued that when Achilles

had gone the 1000 yards, the tortoise would still be 100 yards

in front of him ; by the time he had covered these 100 yards,

it would still be 10 yards in front of him ; and so on for ever.

Thus Achilles would get nearer and nearer to the tortoise

but would never overtake it. Zeno regarded this as confirming

his view that the popular idea of motion is self-contradictory.
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Zeno's Paradox on Time. The fallacy of Achilles and the

Tortoise is usually explained by saying that though the time

required to overtake the tortoise can be divided into an infinite

number of intervals, as stated in the argument, yet these

intervals get smaller and smaller in geometrical progression, and

the sum of them all is a finite time : after the lapse of that

time Achilles would be in front of the tortoise. Probably Zeno

would have replied that this explanation rests on the assump-

tion that space and time are infinitely divisible, an assumption

which he would not have admitted. He seems further to have

contended that while, to an accurate thinker, the notion of

the infinite divisibility of time was impossible, it was equally

impossible to think of a minimum measure of time. For

suppose, he argued, that t is the smallest conceivable interval,

and suppose that three horizontal lines composed of three

consecutive spans ahc, a'b'c', a"h"c" are placed so that a, a\ a"

are vertically over one another, as also h, h\ h" and c, c', c".

Imagine the second line moved as a whole one span to the right

in the time r, and simultaneously the third line moved as a

whole one span to the left. Then 6, a', c" will be vertically over

one another. And in this duration r (which by hypothesis is

indivisible) a' must have passed vertically over the space a"h"

and the space 6V. Hence the duration is divisible, contrary

to the hypothesis.

Tke Paradox of Tristram Shandy. Mr Russell has enun-

ciated* a paradox somewhat similar to that of Achilles and the

Tortoise, save that the intervals of time considered get longer

and longer during the course of events. Tristram Shandy, as

we know, took two years writing the history of the first two days

of his life, and lamented that, at this rate, material would

accumulate faster than he could deal with it, so that he could

never finish the work, however long he lived. But had he

lived long enough, and not wearied of his task, then, even if his

life had continued as eventfuUy as it began, no part of his

biograpliy would have remained unwritten. For if he wrote the

events of ihe first day in the first year, he would write the

* B. A. W. Russell, Principles oj Mathematics, Cambridge, 1903, vol. i, p. 368.
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events of the nth day in the nth. year, hence in time the events

of any assigned day would be written, and therefore no part of

his biography would remain unwritten. This argument might

be put in the form of a demonstration that the part of a

magnitude may be equal to the whole of it.

Questions, such as those given above, which are concerned

with the continuity of space and time involve difficulties of a

high order. Many of the resulting perplexities are due to the

assumption that the number of things in a collection of them is

greater than the number in a part of that collection. This

is axiomatic for a finite number of things, but must not be

assumed as being necessarily true of infinite collections.

Angular Motion. A non-mathematician finds additional

difficulties in the idea of angular motion. For instance, there

is a well-known proposition on motion in an equiangular spiral

which shows that a body, moving with uniform velocity and

as slowly as we please, may in a finite time whirl round a fixed

point an infinite number of times. To a non- mathematician

the result seems paradoxical if not impossible.

The demonstration is as follows. The equiangular spiral

is the trace of a point P, which moves along a line OP, the

line OP turning round a fixed point with uniform angular

velocity while the distance of P from decreases with the

time in geometrical progression. If the radius vector rotates

through four right angles we have one convolution of the

curve. All convolutions are similar, and the length of each

convolution is a constant fraction, say 1/nth, that of the con-

volution immediately outside it. Inside any given convolu-

tion there are an infinite number of convolutions which get

smaller and smaller as we get nearer the pole. Now suppose

a point Q to move uniformly along the spiral from any point

towards the pole. If it covers the first convolution in a seconds,

it will cover the next in ajn seconds, the next in ajn^ seconds, and

so on, and will finally reach the pole in

(a -f- ajn \- a/n^ -\- ajn^ -\- )

seconds, that is, in anl{n — 1) seconds. The velocity is uniform,
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and yet in a finite time, Q will have traversed an infinite

number of convolutions and therefore have circled round the

pole an infinite number of times*.

Simple Relative Motion. Even if the philosophical diffi-

culties suggested by Zeno are settled or evaded, the mere idea

of relative motion has been often found to present difficulties,

and Zeno himself failed to explain a simple phenomenon

involving the principle. As one of the easiest examples of

this kind, I may quote the common question of how many
trains going from B to A a, passenger from A to B would

meet and pass on his way, assuming that the journey either

way takes 4J hours and that the trains start from each end

every hour. The answer is 9. Or again, take two pennies,

face upwards on a table and edges in contact. Suppose that

one is fixed and that the other rolls on it without slipping,

making one complete revolution round it and returning to its

initial position. How many revolutions round its own centre

has the rolling coin made ? The answer is 2.

Laws of Motion, I proceed next to make a few remarks on

points connected with the laws of motion.

The first law of motion is often said to define force, but

it is iu only a qualified sense that this is true. Probably

the meaning of the law is best expressed in Clifford's phrase,

that force is " the description of a certain kind of motion "

—

in other words it is not an entity but merely a convenient

way of stating, without circumlocution, that a certain kind of

motion is observed.

It is not difficult to show that any other interpretation

lands us in difficulties. Thus some authors use the law to

justify a definition that force is that which moves a body or

changes its motion; yet the same writers speak of a steam-

engine moving a train. It would seem then that, according

to them, a steam-engine is a force. That such statements

are current may be fairly reckoned among mechanical

paradoxes.

* The proposition is put in this form in J. Richard's Philosophic de$

Mathematiques, Paris, 1903, pp. 119—120.
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The idea of force is difficult to grasp. How many people,

for instance, could predict correctly what would happen in a

question as simple as the following ? A rope (whose weight

may be neglected) hangs over a smooth pulley ; it has one end

fastened to a weight of 10 stone, and the other end to a sailor

of weight 10 stone, the sailor and the weight hanging in the

air. The sailor begins steadily to climb up the rope ; will the

weight move at all ; and, if so, will it rise or fall ? In fact, it

will rise.

It will be noted that in the first law of motion it is asserted

that, unless acted on by an external force, a body in motion

continues to move (i) with uniform velocity, and (ii) in a

straight line.

The tendency of a body to continue in its state of rest

or of uniform motion is called its inertia. This tendency

may be used to explain various common phenomena and

experiments. Thus, if a number of dominoes or draughts are

arranged in a vertical pile, a sharp horizontal blow on one of

those near the bottom will send it out of the pile, and those

above will merely drop down to take its place—in fact they

have not time to change their relative positions before there

is sufficient space for them to drop vertically as if they were

a solid body. On this principle depends the successful per-

formance of numerous mechanical tricks and puzzles.

The statement about inertia in the first law may be taken

to imply that a body set in rotation about a principal axis

passing through its centre of mass will continue to move with

a uniform angular velocity and to keep its axis of rotation fixed

in direction. The former of these statements is the assumption

on which our measurement of time is based as mentioned below

in chapter XX. The latter assists us to explain the motion of

a projectile in a resisting fluid. It affords the explanation of

why the barrel of a rifle is grooved ; and why, similarly, anyone

who has to throw a flat body of irregular shape (such as a card)

in a given direction usually gives it a rapid rotatory motion

about a principal axis. Elegant illustrations of the fact just

mentioned are afforded by a good many of the tricks of acrobats,
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though the full explanation of most of them also introduces

other considerations. Thus it is a common feat to toss on to

the top surface of an umbrella a penny so that it alights on its

edge, and then, by turning round the stick of the umbrella

rapidly, to cause the coin to rotate. By twisting the umbrella

at the proper rate, the coin can be made to appear stationary

and standing upright, though the umbrella is moving away
underneath it, while by diminishing or increasing the angular

velocity of the umbrella the penny can be made to run forwards

or backwards. This is not a difficult trick to execute : it was

introduced by Japanese conjurers.

The tendency of a body in motion to continue to move
in a straight line is sometimes called its centrifugal force.

Thus, if a train is running round a curve, it tends to move in

a straight line, and is constrained only by the pressure of the

rails to move in the required direction. Hence it presses on

the outer rail of the curve. This pressure can be diminished

to some extent both by raising the outer rail, and by putting

a guard rail, parallel and close to the inner rail, against which

the wheels on that side also will press.

An illustration of this fact occurred in a little known inci-

dent of the American civil war*. In the spring of 1862 a

party of volunteers from the North made their way to the

rear of the Southern armies and seized a train, intendins" to

destroy, as they passed along it, the railway which was the

main line of communication between various confederate corps

and their base of operations. They were however detected

and pursued. To save themselves, they stopped on a sharp

curve and tore up some rails so as to throw the engine which

was following them off the line. Unluckily for themselves

they were ignorant of dynamics and tore up the inner rails of

the curve, an operation which did not incommode their

pursuers, who were travelling at a high speed.

The second law gives us the means of measuring mass,

force, and therefore work. A given agent in a given time can

do only a definite amount of work. This is illustrated by the

Capturing a Locomotive by W. Pittenger, London, 1882, p. 104.



90 MECHANICAL RECREATIONS [CH. V

fact that although, by means of a rigid lever and a fixed

fulcrum, any force however small may be caused to move an}^

mass however large, yet what is gained in power is lost in

speed—as the popular phrase runs.

Montucla* inserted a striking illustration of this principle

founded on the well-known story of Archimedes who is said

to have declared to Hiero that, were he but given a fixed

fulcrum, he could move the world. Montucla calculated the

mass of the earth and, assuming that a man could work inces-

santly at the rate of 116 foot-lbs. per second, which is a very

high estimate, he found that it would take over three billion

centuries, i.e. 3 x 10^^ years, before a particle whose mass was

equal to that of the earth was moved as much as one inch

against gravity at the surface of the earth : to move it one inch

along a horizontal plane would take about 74,000 centuries.

Stability of Equilibrium. It is known to all those who

have read the elements of mechanics that the centre of gravity

of a body, which is resting in equilibrium under its own weight,

must be vertically above its base : also, speaking generally, we

may say that, if every small displacement has the effect of

raising the centre of gravity, then the equilibrium is stable,

that is, the body when left to itself will return to its original

position ; but, if a displacement has the effect of lowering the

centre of gravity, then for that displacement the equilibrium

is unstable; while, if every displacement does not alter the

height above some fixed plane of the centre of gravity, then

the equilibrium is neutral. In other words, if in order to cause

a displacement work has to be done against the forces acting

on the body, then for that displacement the equilibrium is stable,

while if the forces do work the equilibrium is unstable.

A good many of the simpler mechanical toys and tricks

afford illustrations of this principle.

Magic Bottles\. Among the most common of such toys are

the small bottles—trays of which may be seen any day in the

streets of London—which keep always upright, and cannot

* Ozanam, 1803 edition, vol. ii, p. 18; 1840 edition, p. 202.

t Ozanam, 1803 edition, vol. n, p. 15 ; 1840 edition, p. 201.
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be upset until their owner orders them to lie down. Such a

bottle is made of thin glass or varnished paper fixed to the

plane surface of a solid hemisphere or smaller segment of

a sphere. Now the distance of the centre of gravity of a

homogeneous hemisphere from the centre of the sphere is

three-eighths of the radius, and the mass of the glass or

varnished paper is so small compared with the mass of the

lead base that the centre of gravity of the whole bottle is

still within the hemisphere. Let us denote the centre of the

hemisphere by G, and the centre of gravity of the bottle by G.

If such a bottle is placed with the hemisphere resting on a

horizontal plane and GO vertical, any small displacement on the

plane will tend to raise G, and thus the equilibrium is stable.

This may be seen also from the fact that when slightly dis-

placed there is brought into play a couple, of whicli one force

is the reaction of the table passing through C and acting

vertically upward, and the other the weight of the bottle

acting vertically downward at G. If G is below (7, this couple

tends to restore the bottle to its original position.

If there is drop^^ed into the bottle a shot or nail so heavy

as to raise the centre of gravity of the whole above C, then

the equilibrium is unstable, and, if any small displacement is

given, the bottle falls over on to its side.

Montucla says that in his time it was not uncommon to

see boxes of tin soldiers mounted on lead hemispheres, and

when the lid of the box was taken off the whole reg-iment

sprang to attention.

In a similar way we may explain how to balance a pencil

in a vertical position, with its point resting on the top of one's

finger, an experiment which is described in nearly every book

of puzzles*. This is effected by taking a penknife, of which

one blade is opened through an angle of (say) 120°, and sticking

the blade in the pencil so that the handle of the penknife is

below the fiuger. The centre of gravity is thus brought below

the point of support, and a small displacement given to the

Ex. gr. Oughtre>l, Muthematicall Rccrealions, p. 2-i ; Ozanam, 1803 eJilion,

vol. II, p. 14; 1810 edition, p. 2U0.
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pencil will raise the centre of gravity of the whole : thus the

equilibrium is stable.

Other similar tricks are the suspension of a bucket over

the edge of a table by a couple of sticks, and the balancing of

a coin on the edge of a wine-glass by the aid of a couple of

forks*—the sticks or forks being so placed that the centre of

gravity of the whole is vertically below the point of support

and its depth below it a maximum.

The toy representing a horseman, whose motion continually

brings him over the edge of a table into a position which seems

to ensure immediate destruction, is constructed in somewhat

the same way. A wire has one end fixed to the feet of the

rider; the wire is curved downwards and backwards, and at

the other end is fixed a weight. When the horse is placed so

that his hind legs are near the edge of the table and his fore-

feet over the edge, the weight is under his hind feet. Thus

the whole toy forms a pendulum with a curved instead of a

straight rod. Hence the farther it swings over the table, the

higher is the centre of gravity raised, and thus the toy tends

to return to its original position of equilibrium.

An elegant modification of the prancing horse was brought

out at Paris in 1890 in the shape of a toy made of tin and in

the figure of a man-f-. The legs are pivoted so as to be movable

about the thighs, but with a wire check to prevent too long

a step, and the hands are fastened to the top of a fl -shaped

wire weighted at its ends. If the figure is placed on a narrow

sloping plauk or strip of wood passing between the legs of the

n, then owing to the -shaped wire any lateral displacement

of the figure will raise its centre of gravity, and thus for any

such displacement the equilibrium is stable. Hence, if a slight

lateral disturbance is given, the figure will oscillate and will

rest alternately on each foot: when it is supported by one foot

the other foot under its own weight moves forwards, and thus

the figure will walk down the plank though with a slight

* Oughtred, p. oO; Ozanam, 1803 edition, vol. ii, p. 12; 1840 edition,

p. 199.

t La Nature, Paris, Much, 1891,
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reeling motion. Shortly after the publication of the third

edition of this book an improved form of this toy, in the

shape of a walking elephant made in heavy metal, was issued

in England, and probably in that form it is now familiar to

all who are interested in noticing street toys.

Columbus's Egg. The toy known as Columbus's egg depends

on the same principle as the magic bottle, though it leads to

the converse result. The shell of the egg is made of tin and

cannot be opened. Inside it and fastened to its base is a

hollow truncated tin cone, and there is also a loose marble

inside the shell. If the egg is held properly, the marble runs

inside the cone and the egg will stand on its base, but so long

as the marble is outside the cone, the egg cannot be made to

stand on its base.

Cones running up hill*. The experiment to make a double

cone run up hill depends on the same principle as the toys

above described ; namely, on the tendency of a body to take a

position so that its centre of gravity is as low as possible. In

this case it produces the optical effect of a body moving by

itself up a hill.

Usually the experiment is performed as follows. Arrange

two sticks in the shape of a V, with the apex on a table and

the two upper ends resting on the top edge of a book placed

on the table. Take two equal cones fixed base to base, and place

them with the curved surfaces resting on the sticks near the

apex of the V, the common axis of the cones being horizontal

and parallel to the edge of the book. Then, if properly

arranged, the cones will run up the plane formed by the sticks.

The explanation is obvious. The centre of gravity of the

cones moves in the vertical plane midway between the two

sticks and it occupies a lower position as the points of contact

on the sticks get farther apart. Hence as the cone rolls up

the sticks its centre of gravity descends.

Perpetual Motion, The idea of making a machine which

once set going would continue to go for ever by itself has been

* Ozunam, 18U3 edition, vol. ii, p. 49 ; 1840 editiou, p. 216.
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the ignis fatuus of self-taught mechanicians in much the same

way as the quadrature of the circle has been that of self-taught

geometricians.

Now the obvious meaning of the third law of motion is

that a force is only one aspect of a stress, and that whenever a

force is caused another equal and opposite one is brought also

into existence—though it may act upon a different body, and

thus be immaterial for the particular problem considered. The

law however is capable of another interpretation*, namely,

that the rate at which an agent does work (that is, its action)

is equal to the rate at which work is done against it (that is,

its reaction). If it is allowable to include in the reaction the

rate at which kinetic energy is being produced, and if work is

taken to include that done against molecular forces, then it

follows from this interpretation that the work done by an

agent on a system is equivalent to the total increase of energy,

that is, the power of doing work. Hence in an isolated system

the total amount of energy is constant. If this is granted,

then since friction and some molecular dissipation of energy

cannot be wholly prevented, it must be impossible to construct

in an isolated system a machine capable of perpetual motion.

I do not propose to describe in detail the various machines

for producing perpetual motion which have been suggested f,

but the machine described below will serve to illustrate one of

the assumptions commonly made by these inventors.

The machine to which I refer consists of two concentric

vertical wheels in the same plane, and mounted on a horizontal

axle through their centre, G. The space between the wheels is

divided into compartments by spokes inclined at a constant

angle to the radii to the points whence they are drawn, and

each compartment contains a heavy bullet. This will be clear

from the diagram. Apart from these bullets, the wheels would

be in equilibrium. Each bullet tends to turn the wheels round

their axle, and the moment which measures this tendency is

* Newton's Principles, last paragraph of the Scholium to the Laws of Motion,

t Several of them have been described in H. Dirck's PerpeLaum Mobile,

London, 1861, 2ud edition, 1870.
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the product of the weight of the bullet and its distance from

the vertical through G.

The idea of the constructors of such machines was that, as

the bullet in any compartment would roll under gravity to the

lowest point of the compartment, the bullets on the right-hand

side of the wheel in the diagram would be farther from the

vertical throuo^h C than those on the left. Hence the sum of

the moments of the weights of the bullets on the right would

be greater than the sum of the moments of those on the left.

Thus the wheels would turn continually in the same direction

as the hands of a watch. The fallacy in the argument is

obvious.

Another large group of machines for producing perpetual

motion depended on the use of a magnet to raise a mass which

was then allowed to fall under gravity. Thus, if the bob of a

simple pendulum was made of iron, it was thought that magnets

fixed near the highest points which were reached by the bob in

the swing of the pendulum would draw the bob up to the same

height in each swing and thus give perpetual motion, but the

inventors omitted to notice that the bob of the pendulum would

gradually get magnetised.

Of course it is only in isolated systems that the total amount

of energy is constant, and, if a source of external energy can be

obtained from which energy is continually introduced into the

system, perpetual motion is, in a sense, possible ; though even

here materials would ultimately wear out. Streams, wind, the
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solar heat, and the tides are among the more obvious of such

sources.

There was at Paris in the latter half of the eighteenth

century a clock which was an ingenious illustration of such

perpetual motion*. The energy which was stored up in it to

maintain the motion of the pendulum was provided by the

expansion of a silver rod. This expansion was caused by the

daily rise of temperature, and by means of a train of levers it

wound up the clock. There was a disconnecting apparatus, so

that the contraction due to a fall of temperature produced no

effect, and there was a similar arrangement to prevent over-

winding. I believe that a rise of eight or nine degrees

Fahrenheit was sufficient to wind up the clock for twenty-four

hours.

By utilizing the rise and fall of the barometer, James Cox,

a London jeweller of the eighteenth century, produced, in an

analogous way, a clock f which ran continuously without

winding up.

I have in my possession a watch which produces the

same effect by somewhat different means. Inside the case is

a steel weight, and if the watch is carried in a pocket this

weight rises and falls at every step one takes, somewhat after

the manner of a pedometer. The weight is raised by the

action of the person who has it in his pocket in taking a

step, and in falling it winds up the spring of the watch.

On the face is a small dial showing the number of hours for

which the watch is wound up. As soon as the hand of this

dial points to fifty-six hours, the train of levers which winds

up the watch disconnects automatically, so as to prevent over-

winding the spring, and it reconnects again as soon as the

watch has run down eight hours. The watch is an excellent

time-keeper, and a walk of about a couple of miles is sufficient

to wind it up for twenty-four hours.

Ozanam, 1S03 edition, vol. ii, p. 105 ; 1840 edition, p. 238.

t A full description of the mechanism will be found in the English Mechanic,

April 30, 1909, pp. 288—289.
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Models. I may add here the observation, which is well

known to mathematicians, but is a perpetual source of disap-

pointment to ignorant inventors, that it frequently happens

that an accurate model of a machine will work satisfactoril}^

while the machine itself will not do so.

One reason for this is as follows. If all the parts of a model

are magnified in the same proportion, say m, and if thereby a

line in it is increased in the ratio m : 1, then the areas and

volumes in it will be increased respectively in the ratios m? : 1

and m^ : 1. For example, if the side of a cube is doubled then

a face of it will be increased in the ratio 4 : 1 and its volume

will be increased in the ratio 8:1.

Now if all the linear dimensions are increased m times

then some of the forces that act on a machine (such, for

example, as the weight of part of it) will be increased I'n? times,

while others which depend on area (such as the sustaining

power of a beam) will be increased only m? times. Hence the

forces that act on the machine and are brought into play by

the various parts may be altered in different proportions, and

thus the machine may be incapable of producing results similar

to those which can be produced by the model.

The same argument has been adduced in the case of animal

life to explain why very large specimens of any particular breed

or species are usually weak. For example, if the linear dimen-

sions of a bird were increased n times, the work necessary to

give the power of flight would have to be increased no less

than n^ times*. Again, if the linear dimensions of a man
of height 5 ft. 10 in. were increased by one-seventh his height

would become 6 ft. 8 in., but his weight would be increased

in the ratio 512 : 843 {i.e. about half as much again), while

the cross sections of his legs, which would have to bear this

weight, would be increased only in the latio 64:49; thus

in some respects he would be less etficieut than before. Of
course the increased dimensions, length of limb, or size of

muscle might be of greater advantage than the relative loss

of strength ; hence the problem of what are the most efficient

* Helmholtz, Gesammelte Ahhandlunrjen, Leipzig, 1881, vol. i, p. 165.

B. R. 7
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proportions is not simple, but the above argument will serve

to illustrate the fact that the working of a machine may not

be similar to that of a model of it.

Leaving now these elementary considerations I pass on to

some other mechanical questions.

Sailing quicker than the Wind. As a kinematical

paradox I may allude to the possibility of sailing quicker than

the wind hloivs, a fact which strikes many people as curious.

The explanation* depends on the consideration of the

velocity of the wind relative to the boat. Perhaps, however,

a non-mathematician will find the solution simplified if I con-

sider first the effect of the wind-pressure on the back of the

sail which drives the boat forward, and second the resistance to

motion caused by the sail being forced through the air.

When the wind is blowing against a plane sail the resultant

pressure of the wind on the sail may be resolved into two

components, one perpendicular to the sail (but which in general

is not a function only of the component velocity in that direc-

tion, though it vanishes when that component vanishes) and

the other parallel to its plane. The latter of these has no

effect on the motion of the ship. The component perpen-

dicular to the sail tends to move the ship in that direction.

This pressure, normal to the sail, may be resolved again into

two components, one in the direction of the keel of the boat,

the other in the direction of the beam of the boat. The

former component drives the boat forward, the latter to lee-

ward. It is the object of a boat-builder to construct the boat

on lines so that the resistance of the water to motion forward

shall be as small as possible, and the resistance to motion in

a perpendicular direction (i.e. to leeward) shall be as large as

possible ; and I will assume for the moment that the former

of these resistances may be neglected, and that the latter is

so large as to render motion in that direction impossible.

Now, as the boat moves forward, the pressure of the air

on the front of the sail will tend to stop the motion. As

* Ozanam, 1803 edition, vol. iii, pp. 359, 367 ; 1840 edition, pp. 540, 543.
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long as its component normal to the sail is less than the

pressure of the wind behind the sail and normal to it, the

resultant of the two will be a force behind the sail and normal

to it which tends to drive the boat forwards. But as the

velocity of the boat increases, a time will arrive when the

pressure of the wind is only just able to balance the resisting

force which is caused by the sail moving throingh the air. The

velocity of the boat will not increase beyond this, and the

motion will be then what mathematicians describe as ''steady."

In the accompanying figure, let BAR represent the keel

of a boat, B being the bow, and let SAL represent the sail.

Suppose that the wind is blov/ing in the direction WA with

a velocity u; and that this direction makes an angle 6 with

the keel, i.e. angle V, AR= 6. Suppose that the sail is set so

as to make an angle a with the keel, i.e. angle BAS = a, and

therefore angle WAL = 6 -\- a. Suppose finally that v is the

velocity of the boat in the direction AB.

I have already shown that the solution of the problem

depends on the relative directions and velocities of the wind

and the boat; hence to find the result reduce the boat to rest

by impressing on it a velocity v in the direction BA. The

resultant velocity of v parallel to BA and of u parallel to WA
will be parallel to SL, if v sin a = w sin (^ + a) ; and in this case

the resultant pressure perpendicular to the sail vaoishes.

Thus, for steady motion we have v sin a = t( sin (0 + a).

Hence, whenever sin (^+ a) > sin a, we have v > u. Suppose,

7—2
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to take one instance, the sail to be tixed, that is, suppose a to

be a constant. Then ?; is a maximum if ^ + a = Jtt, that is, if

is equal to the complement of o.. In this case we have

i} — xi cosec a, and therefore v is greater than u. Hence, if the

wind makes the same angle a abaft the beam that the sail

makes with the keel, the velocity of the boat will be greater

than the velocity of the wind.

Next, suppose that the boat is running close to the wind,

so that the wind is before the beam (see figure below), then

in the same way as before we have v sin ol — u sin {6 + a),

or V sin o. — u sin 6, where
<f>
= angle ^VAS = 17— — a. Hence

v=u sin <jb cosec a.

Let w be the component velocity of the boat in the teeth

of the wind, that is, in the direction A W. Then we have

w = v cos BAW = V cos {a+
<l))
= u sin <^ cosec x cos (a + <^). If a

is constant, this is a maximum when
(f>
= lir — ^a; and, if (j>

has this value, then w = -^u {cosec a— 1). This formula shows

that w is greater than u, if sin a < J. Thus, if the sails

can be set so that a is less than sin~^J, that is, rather less

than 19° 29', and if the wind has the direction above assigned,

then the component velocity of the boat in the face of the

wind is greater than the velocity of the wind.

The above theory is curious, but it must be remembered

that in practice considerable allowance has to be made for

the fact that no boat for use on water can be constructed in

which the resistance to motion in the direction of the keel

can be wholly neglected, or which would not drift slightly to

leeward if the wind was not dead astern Still this makes less
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difference than might be thouglit by a landsman. In the case

of boats sailing on smooth ice the assumptions made are sub-

stantially correct, and the practical results are said to agree

closely with the theory.

Boat moved by a Rope. There is a form of boat-racing,

occasionally used at reg.'ittas, which affords a somewhat curious

illustration of certain mechanical principles. The only thing

supplied to the cre^v is a coil of rope, and they have, without

leaving the boat, to propel it from one point to another as

rapidly as possible. The motion is given by tying one end of

the rope to the after thwart, and giving the other end a series

of violent jerks in a direction parallel to the keel. I am told

that in still water a pace of two or three miles an hour can be

thus attained.

The chief cause for this result seems to be that the friction

between the boat and the water retards all relative motion,

but it is not great enough to affect materially motion caused by

a sufficiently big impulse. Hence the usual movements of the

crew in the boat do not sensibly move the centre of gravity of

themselves and the boat, but this does not apply to an impul-

sive movement, and if the crew in making a jerk move their

centre of gravity towards the bow n times more rapidly than

it returns after the jerk, then the boat is impelled forwards

at least n times more than backwards : hence on the whole

the motion is forwards.

Motion of Fluids and Motion in Fluids. The theories

of motion of fluids and motion in fluids involve considerable

difficulties. Here I will mention only one or two instances

—

mainly illustrations of Hauksbee's Law.

Haiihshees Law. When a fluid is in motion the pressure

is less than when it is at rest*. Thus, if a current of air is

* See BesJint, Hydromechanics, Cambridge, 18G7, art. 119, where however

it is assumed that the pressure is proportional to the density. Hauksbee was

the earliest writer who called attention to the problem, but I do not know who

first explained the phenomenon; some references to it are given by Willis,

Camhridije PhilowpJdcal Traiiaactiona, 1830, vol. in, pp. 129—140.
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moving in a tube, the pressure on the sides of the tube is less

than when the air is at rest—and the quicker the air moves

the smaller is the pressure. This fact was noticed by Hauksbee

nearly two centuries ago. In an elastic perfect fluid in which

the pressure is proportional to the density, the law connecting

the pressure, 'p, and the steady velocity, v, is ^ = Tla"'^, where

n and a are constants : the establishment of the corresponding

formula for gases where the pressure is proportional to a power

of the density presents no difficulty.

The principle is illustrated by a twopenny toy, on sale in

most toy-shops, called the pneumatic mystery. This consists

of a tube, with a cup-shaped end in which rests a wooden ball.

If the tube is held in a vertical position, with the mouthpiece

at the upper end and the cup at the lower end, then, if anyone

blows hard through the tube and places the ball against the

cup, the ball will remain suspended there. The explanation is

that the pressure of the air below the ball is so much greater

than the pressure of the air in the cup that the ball is

held up.

The same effect may be produced by fastening to one end of

a tube a piece of cardboard having a small hole in it. If a piece

of paper is placed over the hole and the experimenter blows

through the tube, the paper will not be detached from the card

but will bend so as to allow the egress of the air.

An exactly similar experiment, described in many text-

books on hydromechanics, is made as follows. To one end of a

straight tube a plane disc is fitted which is capable of sliding

on wires projecting from the end of the tube. If the disc is

placed at a small distance from the end, and anyone blows

steadily into the tube, the disc will be drawn towards the tube

instead of being blown off the wires, and will oscillate about a

position near the end of the tube.

In the same way we may make a tube by placing two books

on a table with their backs parallel and an inch or so apart and

laying a sheet of newspaper over them. If anyone blows

steadily through the tube so formed, the paper will be sucked in

instead of being blown out.
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The following experimeQt is explicable by the same aigii-

ment. On the top of a vertical axis balance a thin horizontal

rod. At each end of this rod fasten a small vertical square or

sail of thin cardboard—the two sails being in the same plane.

If anyone blows close to one of these squares and in a direction

parallel to its plane, the square will move towards the side on

which one is blowing, and the rod with the two sails will rotate

about the axis.

The experiments above described can be performed so as

to illustrate Hauksbee's Law ; but unless care is taken other

causes will be also introduced which affect the phenomena : it

is however unnecessary for ray purpose to go into these details.

Cut on a Tennis-Bail. Racquet and court-tennis players

know that if a strong cut is given to a ball it can be made

to rebound off a vertical wall and then (without striking the

floor or any other wall) return and hit the wall again. This

affords another illustration of Hauksbee's Law The effect had

been noticed by Isaac Newton, who, in his letter to Oldenburg,

February, 1672, N.S., says "I remembered that I had often seen

*'a tennis-ball struck with an oblique racket describe such

"a curve line. For, a circular as well as a progressive motion

" being communicated to it by that stroke, its parts on that side

" where the motions conspire, must press and beat the contiguous

"air more violently than on the other; and there excite a

"reluctancy and re-action of the air proportionably greater.

" And. . .globular bodies," thus acquiring " a circulating motion. .

.

" ought to feel the greater resistance from the ambient aether

" on that side where the motions conspire, and thence be con-

" tinually bowed to the other."

The question was discussed by Magnus in 1837 and by Tait

in various papers from 1887 to 1896. The explanation* is that

the cut causes the ball to rotate rapidly about an axis through

* See Magnus on ^ Die Abiveichung der Geschosse^ in the Ahliandlungen der

Alcademie der Wissenschajten, Berlin, 1852, pp. 1—23; Lord Rayleigh, ' On the

irregular flight of a tennis ball,' Messenger of Mathematics, Cambridge, 1878,

vol. vn, pp. 14—16; and P. G. Tait, Transactions Royal Society, Edinburgh,

vol. xxTii, 1893; or Collected Scientific Papers^ Cambridge, vol. u, 1900,

pp. 356—387, and references therein.
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its centre of fio^ure, and the friction of the surface of the ball on

the air produces a sort of whirlpool. This rotation is in addition

to its motion of translation. Suppose the ball to be spherical

and rotating about an axis through its centre perpendicular to

the plane of the paper in the direction of the arrow-head, and at

the same time moving through still air from left to right

parallel to FQ. Any motion of the ball perpendicular to PQ
will be produced by the pressure of the air on the surface of the

ball, and this pressure will, by Hauksbee's Law, be greatest

where the velocity of the air relative to the ball is least, and vice

versa. To find the velocity of the air relative to the ball we may

reduce the centre of the ball to rest, and suppose a stream

of air to impinge on the surface of the ball moving with a

velocity equal and opposite to that of the centre of the ball.

The air is not frictionless, and therefore the air in contact with

the surface of the ball will be set in motion by the rotation of

the ball and will form a sort of whirlpool rotating in the direction

of the arrow-head in the figure. To find the actual velocity of

this air relative to the ball we must consider how the motion

due to the whirlpool is affected by the motion of the stream of

air parallel to QP. The air at A in the whirlpool is moving

against the stream of air there, and therefore its velocity is

retarded : the air at B in the whirlpool is moving in the same

direction as the stream of air there, and therefore its velocity is

increased. Hence the relative velocity of the air at A is less

than at B, and, since the pressure of the air is greatest where

the velocity is least, the pressure of the air on the surface of the

ball at A is greater than on that at B. Hence the ball is forced

by this pressure in the direction from the line PQ, which we may
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suppose to represent the section of the vertical wall in a racquet-

court. In other words, the ball tends to move at right angles to

the line in which its centre is movincr and in the direction

in which the surface of the front of the ball is being carried by

the rotation. Sir J. J. Thomson has pointed out that if we

consider the direction in which the nose (or foremost point) of

the ball is travelling, we may sum up the results by saying that

the ball always follows its nose. Lord Rayleigh has shown that

the line of action of resulting force on the ball is perpendicular

to the plane containing the direction (m) of motion of the centre

of the ball and the axis (s) of spin, and its magnitude varies

directly as the velocity of translation, the velocity of spin, and

the sine of the angle between the lines m and s.

In the case of a lawn tennis-ball, the shape of the ball is

altered by a strong cut, and this introduces additional compli-

cations.

Sp{7i on a Cricket-Ball. The curl of a cricket-ball in its

flight through the air, caused by a spin given by the bowler

in delivering the ball, is explained by the same reasoning.

Thus suppose the ball is delivered in a direction lying in a

vertical plane containing the middle stumps of the two wickets.

A spin round a horizontal axis parallel to the crease in a

direction which the bowler's umpire would describe as positive,

namely, counter clock-wise, will, in consequence of the friction

of the air, cause it to drop, and therefore decrease the length

of the pitch. A spin in the opposite direction will cause it to

rise, and therefore lengthen the pitch. A spin round a vertical

axis in the positive direction, as viewed from above, will make
it curl sideways in the air to the left, that is, from leg to off.

A spin in the opposite direction will make it curl to the right.

A spin given to the ball round the direction of motion of the

centre of the ball will not sensibly affect the motion through

the air, though it would cause the ball, on hitting the ground,

to break. Of course these various kinds of spin can be combined.

Flight of Golf-Balls. The same argument explains the

effect of the spin given to a golf-ball by impact with the club.

Here the motion takes place for a longer interval of time^ and
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additional complications are introduced by the fact that the

velocities of translation and rotation are retarded at different

rates and that usually there will be some wind blowing in

a cross direction. But generally we may say that the effect of

the under-cut given by a normal stroke is to cause the ball

to rise, and therefore to lengthen the carry. Also, if a wind is

blowing across the line to the hole from right to left, a drive, if

the player desires a long carry and has sufficient command over

his club, should be pulled ; but an approach shot, if it is desired

that the ball should fall dead, should be sliced because then the

ball as soon as it meets the wind will tend to fall dead. Con-

versely, if the wind is blowing across the course from left to

right, the drive should be sliced if a long carry is desired, and

an approach shot sViould be pulled if it is desired that the ball

should fall dead.

The questions involving the application of Hauksbee's Law

are easy as compared with many of the problems in fluid motion.

The analysis required to attack most of these problems is beyond

the scope of this book, but one of them may be worth mentioning

even though no explanation is given.

The Theory of the Flight of Birds. A mechanical problem of

great interest is the explanation of the means by which birds are

enabled to fly for considerable distances with no (perceptible)

motion of the wings. Albatrosses, to take an instance of special

difficulty, have been known to follow for some days ships sailing

at the rate of nine or ten knots, and sometimes for considerable

periods there is no motion of the wings or body which can

be detected, while even if the bird moved its wings it is not

easy to understand how it has the muscular energy to propel

itself so rapidly and for such a length of time. Of this

phenomenon various explanations* have been suggested.

Notable among these are Sir Hiram Maxim's of upward air-

currents. Lord Rayleigh's of variations of the wind velocity at

different heights above the ground, Dr S. P. Langley's of the

* See G. H. Bi-yan in the Transactions of the British Association for 1896,

vol. Lxvi, pp. 726—723.
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incessant occurrence of crusts of wind separated by lulls, and

Dr Br3'-an's of vortices in the atmosphere.

It now seems reasonably certain that the second and third of

these sources of energy account for at least a portion of the

observed phenomena. The effect of the third cause may be

partially explained by noting that the centre of gravity of the

bird with extended wings is slightly below the aeroplane or wing

surface, so that the animal forms a sort of parachute. The effect

of a sudden gust of wind upon such a body is that the aeroplane

is set in motion more rapidly than the suspended mass, causing

the structure to heel over so as to receive the wind on the under

surface of the aeroplane, and this lifts the suspended mass

giving it an upward velocity. When the wind falls the greater

inertia of the mass carries it on upwards causing the aeroplane

to again present its under side to the air; and if while the

parachute is in this position the wind is still blowing from the

side, the suspended mass is again lifted. Thus the more the

bird is blown about, the more it rises in the air ; actually birds

in flight are carried up by a sudden side gust of wind as we

should expect from this theory.

The fact that the bird is in motion tends also to keep it up,

for it has been recently shown that a horizontal plane under

the action of gravity falls to the ground more slowly if it is

travelling through the air with horizontal velocity than it would

do if allowed to fall vertically, hence the bird's forward motion

causes it to fall through a smaller height between successive

gusts of wind than it would do if it were at rest. Moreover it

has been proved experimentally that the horse-power required

to support a body in horizontal flight by means of an aeroplane

is less for high than for low speeds : hence when a side-wind

(that is, a wind at right angles to the bird's course) strikes the

bird, the lift is increased in consequence of the bird's lorward

velocity.

CuriosA Physica. When I was writing the first edition

of these Recreations, I put together a chapter, following this

one, on " Some Piiysical Questions," dealing with problems such

as, in the Theory of Sound, the explanation of the fact that in
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some of Captain Parry's experiments the report of a cannon,

when fired, travelled so much more rapidly than the sound

of the human voice that observers heard the report of the

cannon when fired before that of the order to fire it* : in the

Kinetic Theory of Gases, the complications in our universe that

might be produced by "Maxwell's demon "f : in the Theory of

Optics, the explanation of the Japanese "magic mirrors/'J

which reflect the pattern on the back of the mirror, on which

the light does not fall : to which I might add the theory of the

" spectrum top," by means of which a white surface, on which

some black lines are drawn, can be moved so as to give the

impression§ that the lines are coloured (red, green, blue, slate,

or drab), and the curious fact that the colours change with the

direction of rotation : it has also been recently shown that if two

trains of waves, whose lengths are in the ratio m — 1 : ??i + 1, be

superposed, then every mth wave in the system will be big

—

thus the current opinion that every ninth wave in the open sea

is bigger than the other waves may receive scientific confirma-

tion. There is no lack of interesting and curious phenomena

in physics, and in some branches, notably in electricity and

magnetism, the difficulty is rather one of selection, but I felt

that the connection with mathematics was in general either too

remote or t(jo technical to justify the insertion of such a

collection in a work on elementary mathematical recreations,

and therefore I struck out the chapter. I mention the fact now

partly to express the hope that some physicist will one day give

us a collection of the kind, partly to suggest these questions to

those who are interested in such matters.

* The fact is well authenticated. Mr Earnshaw (Philosophical Transactions,

London, 1860, pp. 133—148) explained it by the acceleration of a wave caused by

the formation of a kind of bore, a view accepted by Clerk Maxwell and most

physicists, but Sir George Airy thought that the explanation was to be found in

physiology; see Airy's Sound, second edition, London, 1871, pp. 141, 142.

t See Theory of Heat, by J. Clerk Maxwell, second edition, London, 1872,

p. 308.

X See a mei-uoir by W. E. Ayrton and J. Perry, Proceedings of the Royal

Society of London, part i, 1879, vol. xxviii, pp. 127—148.

§ See letters from Mr C. E. Benham and others in Nature, 1894-5; and

a paper read by Prof. G. D. Liveing before the Cambridge Philosophical Society,

November 26, 1894.
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CHAPTER Yl,

CHESS BOARD RECREATIONS.

A chess-board and chess-men lend themselves to recreations

many of which are geometrical. The problems are, however, of

a distinct type, and sufficiently numerous to deserve a chapter

to themselves. A few problems which might be included in

this chapter have been already considered in chapter Iv.

The ordinary chess-board consists of 64 small squares, known

as cells, arranged as shown below in 8 rows and 8 columns.

Usually the cells are coloured alternately white and black, or

white and red. The cells may be defined by the numbers 11,

12, &c., where the first digit denotes the number of the column.

18
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n columns. Most of the problems which I shall describe can

be extended to meet the case of a board of n^ cells.

The usual chess-pieces are Kings, Queens, Bishops, Knights,

and Rooks or Castles; there are also Pawns. I assume that

the moves of these pieces are known to the reader.

With the game itself and with chess problems of the usual

type I do not concern myself Particular positions of the pieces

may be subject to mathematical analysis, but in general the

moves open to a player are so numerous as to make it im-

possible to see far ahead. Probably this is obvious, but it may

emphasize how impossible it is to discuss the theory of the

game effectively if I add that it has been shown that there

may be as many as 197299 ways of playing the first four moves,

and nearly 72000 different positions at the end of the first four

moves (two on each side), of which 16556 arise when the players

move pawns only*.

Relative Value of Pieces. The first question to which

I will address myself is the determination of the relative values

of the different chess-pieces f.

If a piece is placed on a cell, the number of cells it com-

mands depends in general on its position. We may estimate

the value of the piece by the average number of cells which it

commands when placed in succession on every cell of the board.

This is equivalent to saying that the value of a piece may

be estimated by the chance that if it and a king are put at

random on the board, the king will be in check : if no other re-

striction is imposed this is called a simple check. On whatever

cell the piece is originally placed there will remain 63 other

cells on which the king may be placed. It is equally probable

that it may be put on any one of them. Hence the chance

that it will be in check is 1/63 of the average number of cells

commanded by the piece.

Vlntermediaire des Mathematiciens, Paris, December, 1903, vol. x, pp.

305—308 : also Royal Engineers Journal, London, August—November, 1889

;

or British Association Transactions, 1890, p. 745.

t H. M. Taylor, Philosophical Magazine^ March, 1876, series 5, vol. i,

pp. 221—229.
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A rook put on any cell commands 14 other cells. Wherever

the rook is placed there will remain 63 cells on which the king

may be placed, and on which it is equally likely that it

will be placed. Hence the chance of a simple check is 14/63,

that is, 2/9. Similarly on a board of rt? cells the chance is

2 (n - \)l{n' - 1), that is, 2/(n + 1).

A knight when placed on any of the 4 corner cells like

11 commands 2 cells. When placed on any of the 8 cells like

12 and 21 it commands 3 cells. When placed on any of the

4 cells like 22 or any of the 16 boundary cells like 13, 14, 15,

16, it commands 4 cells. When placed on any of the 16 cells

like 23, 24, 25, 26, it commands 6 cells. And when placed on

any of the remaining 16 middle cells it commands 8 cells.

Hence the average number of cells commanded by a knight put

on a chess-board is (4x2-1-8x3-1- 20 x4-|- 16x6 + 16 x 8)/64,

that is, 336/64. Accordingly if a king and a knight are put on

the board, the chance that the king will be in simple check

is 336/64 X 63, that is 1/12. Similarly on a board of n^ cells

the chance is 8 (n — 2)/n'^ (n + 1).

A bishop when placed on any of the ring of 28 boundary

cells commands 7 cells. When placed on any ring of the

20 cells next to the boundary cells, it commands 9 cells.

When placed on any of the 12 cells forming the next ring,

it commands 11 cells. When placed on the 4 middle cells

it commands 13 cells. Hence, if a king and a bishop are put

on the board the chance that the king will be in simple check

is (28 X 7 -h 20 X 9 -i- 12 X ll-f 4 X 13)/64 x 63, that is, 5/36.

Similarly on a board of n^ cells, when n is even, the chance

is 2 (2n — l)/3n (n + 1). When n is odd the analysis is longer,

owing to the fact that in this case the number of white cells

on the board differs from the number of black cells. I do not

give the work, which presents no special difficulty.

A queen when placed on any cell of a board commands all

the cells which a bishop and a rook when placed on that cell

would do. Hence, if a king and a queen are put on the board,

the chance that the king will be in simple check is 2/9 + 5/36,

that is, 13/36. Similarly on a board of n^ cells, when n is even,

the chance is 2 {5n — l)/3?i (w + 1).
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On the above assumptions the relative vahies of the rook,

knight, bishop, and queen are 16, 6, 10, 26. According to

Staunton's Chess-Player s Handbook the actual values, estimated

empirically, are in the ratio of 548, 305, 350, 994 ; according to

Von Bilguer the ratios are 540, 350, 360, 1000—the value of a

pawn being taken as 10.

There is considerable discrepancy between the above results

as given by theory and practice. It has been, however, sug-

gested that a better test of the value of a piece would be the

chance that w^hen it and a king were put at random on the

board it would check the king without giving the king the

opportunity of taking it. This is called a safe check as distin-

guished from a simple check.

Applying the same method as above, the chances of a safe

check work out as follows. For a rook the chance of a safe

check is (4 X 12 + 24 X 11 + 36 X 10)/64 x 63, that is, 1/6 ; or

on a board of n^ cells is 2{n — 2)/n (/i + 1). For a knight all

checks are safe, and therefore the chance of a safe check is 1/12

;

or on a. board of ?i^ cells is 8(n — 2)ln^{n + 1). For a bishop

the chance of a safe check is 364/64 x 63, that is, 13/144; or on a

board of n^ cells, when n is even, is 2 (n — 2) {2n — S)ISn^ (n + 1).

For a queen the chance of a safe check is 1036/64 x 63, that is,

37/144 ; or on a board of ri" cells, is 2 {n - 2) {5n - 3)/3?i2 {n + 1),

when n is even.

On this view the relative values of the rook, knight, bishop,

queen are 24, 12, 13, 37 ; while, according to Staunton, experi-

ence shows that they are approximately 22, 12, 14, 40, and

according to Von Bilguer, 18, 12, 12, 33.

The same method can be applied to compare the values

of combinations of pieces. For instance the value of two

bishops (one restricted to white cells and the other to black

cells) and two rooks, estimated by the chance of a simple

check, are respectively 35/124 and 37/93. Hence on this view

a queen in general should be more valuable than two bishops

but less valuable than two rooks. This agrees with experience.

An analogous problem consists in finding the chance that

two kings, put at random on the board, will not occupy adjoin-

ing cells, that is, that neither would (were such a move possible)
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check the other. The chance is 43/48, and therefore the chance

that they will occupy adjoining cells is 5/48. If three kings

are put on the board, the chance that no two of them occupy

adjoining cells is 1061/1488. The corresponding chances* for

a board of n^ cells are (n -l){n- 2) (n^ + Sn- 2)ln^ (n^ - 1) and

(n - 1) (n - 2) (n' + 371^ - 20^1^ - 30n + lS2)/n' (n' - 1) (n^ - 2).

The Eight Queens Problem f. One of the classical

problems connected with a chess-board is the determination

of the number of ways in which eight queens can be placed on

a chess-board—or more generally, in which n queens can be

placed on a board of n" cells—so that no queen can take any

other. This was proposed originally by Franz Nauck in 1850.

In 1874 Dr S. GUntherJ suggested a method of solution by

means of determinants. For, if each symbol represents the cor-

responding cell of the board, the possible solutions for a board

of 71- cells are given by those terms, if any, of the determinant

Ch
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same suffixes lie along bishop's paths : hence, if we retain only

those terms in each of which all the letters and all the suffixes

are different, they will denote positions in which the queens

cannot take one another by moves bishop-wise. It is clear that

the signs of the terms are immaterial.

In the case of an ordinary chess-board the determinant is of

the 8th order, and therefore contains 8!, that is, 40320 terms,

so that it would be out of the question to use this method

for the usual chess-board of 64 cells or for a board of larger

size unless some way of picking out the required terms could

be discovered.

A way of effecting this was suggested by Dr J. VV.L. Glaisher*

in 1874, and so far as I am aware the theory remains as he left

it. He showed that if all the solutions of n queens on a board

of n^ cells were known, then all the solutions of a certain type

for n + 1 queens on a board of {n-{-Vf cells could be deduced,

and that all the other solutions of w + 1 queens on a board of

{n + Xf cells could be obtained without difficulty. The method

will be sufficiently illustrated by one instance of its application.

It is easily seen that there are no solutions when n = 2 and

?i = 3. If n = 4 there are two terms in the determinant which

give solutions, namely, b^c^js/Ss and c^^jb^'y^. To find the solutions

when 71 = 5, Glaisher proceeded thus. In this case, Gllnther's

determinant is

di h Cs (h 65

13.2 as h C5 de

78 ^A «5 ^6 C7

^4 75 ^6 CI7 bs

^5 Se 77 A Ctg

To obtain those solutions (if any) which involve a^ it is sufficient

to append a^ to such of the solutions for a board of 16 cells as

do not involve a. As neither of those given above involves an

a we thus get two solutions, namely, h^c^y^^^a^ and CsfizhyzCto-

* Philosophical Magazine^ London, December, 1874, series 4, vol. xLvin,

pp. 457—487.



CH. Vl] CHESS-BOARD KECEEATIUNS 115

The solutions which involve a^ e^ and 65 can be written down

by symmetry. The eight sohitions thus obtained are all dis-

tinct ; we may call them of the first type.

The above are the only solutions which can involve elements

in the corner squares of the determinant. Hence the remaining

solutions are obtainable from the determinant
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Thus in all there are ten and only ten solutions, namely,

eight of the first type, two of the second type, and none of the

third type.

Similarly, if n = 6, we obtain no solutions of the first type,

four solutions of the second type, and no solutions of the third

type ; that is, four solutions in all. If n = 7, we obtain sixteen

solutions of the first type, twenty-four solutions of the second

tj^pe, no solutions of the third type, and no solutions of the

fourth type ; that is, forty solutions in all. If ?z = 8, we obtain

sixteen solutions of the first type, fifty-six solutions of the second

type, and twenty solutions of the third type, that is, ninety-two

solutions in all.

It will be noticed that all the solutions of one type are not

always distinct. In general, from any solution seven others can

be obtained at once. Of these eight solutions, four consist of

the initial or fundamental solution and the three similar ones

obtained by turning the board through one, two, or three right

angles ; the other four are the reflexions of these in a mirror

:

but in any particular case it may happen that the reflexions

reproduce the originals, or that a rotation through one or two

right angles makes no difference. Thus on boards of 4^, 5^, 6^

7^ 8^ 92, 102 cells there are respectively 1, 2, 1, 6, 12, 46, 92

fundamental solutions ; while altogether there are respectively

2, 10, 4, 40, 92, 352, 724 solutions.

The following collection of fundamental solutions may in-

terest the reader. Each position on the board of the queens

is indicated by a number, but as necessarily one queen is on

each column I can use a simpler notation than that explained

on page 109. In this case the first digit represents the number'

of the cell occupied by the queen in the first column reckoned

from one end of the column, the second digit the number in the

second column, and so on. Thus on a board of 4* cells the

solution 3142 means that one queen is on the 3rd square of the

first column, one on the 1st square of the second column, one

on the 4th square of the third column, and one on the 2nd

square of the fourth column. If a fundamental solution gives

rise to only four solutions the number which indicates it is placed



CH. VI] CHESS-BOARD RECREATIONS 117

in curved brackets, ( ) ; if it gives rise to only two solutions the

number which indicates it is placed in square brackets, [ ] ; the

other fundamental solutions give rise to eight solutions each.

On a board of 4^ cells there is 1 fundamental solution

:

namely, [3142].

On a board of 5* cells there are 2 fundamental solutions

:

namely, 14253, [25314]. It may be noted that the cyclic

solutions 14253, 25314, 31425, 42531, 53142 give five super-

posable arrangements by which five white queens, five black

queens, five red queens, five yellow queens, and five blue queens

can be put simultaneously on the board so that no queen can

be taken by any other queen of the same colour.

On a board of 6^ cells there is 1 fundamental solution:

namely, (246135). The four solutions are superposable. The

puzzle for this case is sold in the streets of London for a penny,

a small wooden board being ruled in the manner shown in

the diagram and having holes drilled in it at the points marked

by dots. The object is to put six pins into the holes so that

no two are connected by a straight line.

On a board of 7^^ cells there are 6 fundamental solutions

:

namely, 1357246, 3572461, (5724613), 4613572, 3162574,

(2574136). It may be noted that the solution 1357246 gives

by cyclic permutations seven superposable arrangements.

On a board of 8- cells there are 12 fundamental solutions

:

namely, 25713864, 57138642, 71386425, 82417536, 68241753,

36824175,64713528,36814752,36815724, 72418536, 26831475,

(64718253). The arrangement in this order is due to Mr Oram.

It will be noticed that the 10th, 11th, and 12th solutions some-

what resemble the 4th, 6th, and 7th respectively. The 6th
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solution is the only one in which no three queens are in a

straight line. It is impossible* to find eight superposable so-

lutions ; but we can in five typical ways pick out six solutions

which can be superposed, and to some of these it is possible to

add 2 sets of 7 queens, thus filling 62 out of the 64 cells with

6 sets of 8 queens and 2 sets of 7 queens, no one of which

can take another of the same set. Here is such a solution

:

16837425, 27368514, 35714286, 41586372, 52473861, 68241753,

73625140, 04152637. Similar superposition problems can be

framed for boards of other sizes.

On a board of 9^ cells there are 46 fundamental solutions,

and on a board of 10- cells there are 92 fundamental solutions

;

these were given by Dr A. Peinf. On a board of 11=* cells

there are 341 fundamental solutions ; these have been given by

Dr T. B. SpragueJ.

On any board empirical solutions may be found with but

little difiiculty, and Mr Derrington has constructed the following

table of solutions

:

2.4.1

2.4.1
3

3

for a board of 4? cells

2.4.6.1.3.5
2.4.6.1.8.5.7
2.4.6.8.3.1.7.5
2.4.1.7.9.6.3.5.8
2. 4. 6. 8. 10. 1.3. 5. 7.

9

2. 4. 6. 8. 10. 1.3. 5. 7. 9. 11

2. 4. 6. 8. 10. 12. 1.3. 5. 7. 9. 11

2 . 4 . 6 . 8 . 10 . 12 . 1 . 3 . 5 . 7 . 9 . 11 . 13

9 . 7 . 5 . 3. 1 . 13 . 11 . 6 . 4 . 2 . 14 . 12 . 10 .

8

15 . 9 . 7 . 5 . 3 . 1 . 13 . 11 . 6 . 4 . 2 . 14 . 12 . 10 .

8

2 . 4 . 6 . 8 . 10 . 12 . 14 . 16 . 1 . 3 . 5 . 7 . 9 . 11 . 13 . 15

2 . 4 . 6 . 8 . 10 . 12 . 14 . 16 . 1 . 3 . 5 . 7 . 9 . 11 . 13 . 15 . 17

2 . 4 . 6 . 8 . 10 . 12 . 14 . 16 . 18 . 1 . 3 . 5 . 7 . 9 . 11 . 13 . 15 . 17

2 . 4 . 6 . 8 . 10 . 12 . 14 . 16 . 18 . 1 . 3 . 5 . 7 . 9 . 11 . 13 . 15 . 17 . 19

12 . 10 . 8 . 6 . 4 . 2 . 20 . 18 . 16 . 14 . 9 . 7 . 5 . 3 . 1 . 19 . 17 . 15 . 13

21 . 12 . 10 . 8 . 6 . 4 . 2 . 20 . 18 . 16 . 14 . 9 . 7 . 5 . 3 . 1 . 19 . 17 . 15

11

13.11

62

72

8-^

92

102

11"

12-

13-

142

152

1G2

172

182

192

20-

212

•t

i>

»»

>>

>i

>»

>»

»>

»>

>»

»>

>>

)»

»)

* See G. T. Bennett, The Messenger of Mathematics, Cambridge, June, 1909,

vol. XXXIX, pp. 19—21.

t Aufstellung von n Koniginnen auf einem Schachbrett von n^ Feldern,

Leipzig, 1889.

X Proceedings of the Edinburgh Mathematical Society, vol. xvii, 1898-9,

pp. 43—68.
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and so on. The rule is obvious except when n is of the form

6m 4- 2 or Qin + 3.

Maximum Pieces Problem*. The Eight Queens Problem

suggests the somewhat analogous question of finding the

maximum number of kings—or more generally of pieces of

one t3rpe—which can be put on a board so that no one can

take any other, and the number of solutions possible in each

case.

In the case of kings the number is 16; for instance, one

solution is when they are put on the cells 11, 13, 15, 17, 31, 33,

35, 37, 51, 53, 55, 57, 71, 73, 75, 77. For queens, it is obvious

that the problem is covered by the analysis already given, and

the number is 8. For bishops the number is 14, the pieces

being put on the boundary cells; for instance one solution is

when they are put on the cells 11, 12, 13, 14, 15, 16, 17, 81, 82,

83, 84, 85, 86, 87, there are 256 fundamental solutions. For

knights the number is 32 ; for instance, they can be put on all

the white or on all the black cells, and there are 2 fundamental

solutions. For rooks it is obvious that the number is 8, and

there are in all 8 ! solutions.

Minimum Pieces Problem*. Another problem of a some-

what similar character is the determination of the minimum
number of kings—or more generally of pieces of one type

—

which can be put on a board so as to command or occupy all

the cells.

For kings the number is 9 ; for instance, they can be put on

the cells 11, 14, 17, 41, 44, 47, 71, 74, 77. For queens the

number is 5; for instance, they can be put on the cells 18, 35,

41, 76, 82. For bishops the number is 8; for instance, they can

be put on the cells 41, 42, 43, 44, 45, 46, 47, 48. For knights

the number is 12; for instance, they can be put on the cells

26, 32, 33, 35, 36, 43, 56, 63, 64, 66, 67, and 73—constituting

four triplets arranged symmetrically. For rooks the number
is 8, and the solutions are obvious.

* Mr H. E. Dudcney has written on these problems m the WeeJdy Dispatch.
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For queens the problem has been also discussed for a board

of n^ cells where n has various values*. One queen can be

placed so as to command all the cells when n = 2 or 3, and

there is only 1 fundamental solution. Two queens are required

when 71 = 4 ; and there are 3 fundamental solutions, namely,

when they are placed on the cells 11 and 33, or on the cells 12

and 42, or on the cells 22, 23: these give 12 solutions in all.

Three queens are required when ?i = 5 ; and there are 37 funda-

mental solutions, giving 186 solutions in all. Three queens

are also required when n = 6, but there is only 1 fundamental

solution, namely, when the}?- are put on the cells 11, 35, and

53, giving 4 solutions in all. Four queens are required when

71 = 7, one solution is when they are put on the cells 12, 26,

41, 55.

Jaenisch proposed also the problem of the determination of

the minimum number of queens which can be placed on a board

of n^ cells so as to command all the unoccupied cells, subject to

the restriction that no queen shall attack the cell occupied by

any other queen. In this case three queens are required when

71 = 4, for instance, they can be put on the cells 11, 23, 42 ; and

there are 2 fundamental solutions, giving 16 solutions in all.

Three queens are required when ti = 5, for instance, they can be

put on the cells 11, 24, 43, or on the cells 11, 34, 53 ; and there

are 2 fundamental solutions in all. Four queens are required

when w = 6, for instance, when they are put on the cells 13, 36,

41, 64; and there are 17 fundamental solutions. Four queens

are required when n=*I, and there is only 1 fundamental solu-

tion, namely, that already mentioned, when they are put on the

cells 12, 26, 41, 55, which gives 8 solutions in all. Five queens

are required when n=8, and there are no less than 91 funda-

mental solutions ; for instance, one is when they are put on the

cells 11, 23, 37, 62, 76.

I leave to any of my readers who may be interested in such

questions the discussion of the corresponding problems for the

* C. F. de Jaenisch, Applications de VAnalyse Mathematique au Jeu des

Echecs, St Petersburg, 1862, Appendix, p. 244 et seg.; see also L'Intermediaire

des MatkcmaticienB, Paris, 1901, vol. viii, p. 88.
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other pieces *, and of the number of possible solutions in each

case.

A problem of the same nature would be the determination

of the minimum number of queens (or other pieces) which

can be placed on a board so as to protect one another and

command all the unoccupied cells. For queens the number

is 5 ; for instance, they can be put on the cells 24, 34, 44,

54 and 84. For bishops the number is 10; for instance, they

can be put on the cells 24, 25, 34, 35, 44, 45, 64, 65, 74, and 75.

For knights the number is 14; for instance, they can be put on

the cells 32, 33, 36, 37, 43, 44, 45, 46, 63, 64, 65, 66, 73, and 76:

the solution is semi-symmetrical. For rooks the number is 8,

and a solution is obvious. I leave to any who are interested

in the subject the determination of the number of solutions in

each case.

In connexion with this class of problems, I may mention

two other questions, to which Captain Turton first called my
attention, of a somewhat analogous character.

The first of these is to place eight queens on a chess-board

so as to command the fewest possible squares. Thus, if queens

are placed on cells 21, 22, 62, 71, 73, 77, 82, 87, eleven cells on

the board will not be in check; the same number can be

obtained by other arrangements. Is it possible to place the

eight queens so as to leave more than eleven cells out of check?

I have never succeeded in doing so, nor in showing that it is

impossible to do it.

The other problem is to place m queens (m being less than

5) on a chess-board so as to command as many cells as possible.

For instance, four queens can be placed in several ways on the

board so as to command 58 cells besides those on which the

queens stand, thus leaving only 2 cells which are not com-

manded; for instance, queens may be placed on the cells 35, 41,

* The problem for knights was discussed in Ulntermidiaire des Mathe-

maticiens, Paris, 189G, vol. in, p. 58; 1897, vol. iv, pp. 15—17, 254; 1898, vol.

V, pp. 87, 230—231.
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76, and 82. Analogous problems with other pieces will suggest

themselves.

There are endless similar questions in which combinations

of pieces are involved. For instance, if queens are put on the

cells 35, 41, 76, and 82 they command or occupy all but two

cells, and these two cells may be commanded or occupied by a

queen, a king, a rook, a bishop, or a pawn. If queens are put

on the cells 22, 35, 43, and 54 they command or occupy all but

three cells, and two of these three cells may be commanded by

a knight which occupies the third of them.

Re-Entrant Paths on a Chess-Board. Another problem

connected with the chess-board consists in moving a piece in

such a manner that it shall move successively on to every pos-

sible cell once and only once.

KnigMs Re-Entrant Path. I begin by discussing the

classical problem of a knight's tour. The literature* on this

subject is so extensive that I make no attempt to give a full

account of the various methods for solving the problem, and

I shall content myself by putting together a few notes on some

of the solutions I have come across, particularly on those due

to De Moivre, Euler, Vandermonde, WarnsdorfF, and Roget.

On a board containing an even number of cells the path

may or may not be re-entrant, but on a board containing an

odd number of cells it cannot be re-entrant. For, if a knight

begins on a white cell, its first move must take it to a black

cell, the next to a white cell, and so on. Hence, if its path

passes through all the cells, then on a board of an odd number

of cells the last move must leave it on a cell of the same colour

as that on which it started, and therefore these cells cannot be

connected by one move.

* For a bibliography see A. van der Linde, Geschichte und Literatur des

Schachspiels, Berlin, 1874, vol. ii, pp. 101—111. On the problem and its

history see a memoir by P. Volpicelli in Atti della Reale Accademia dei Linceiy

Rome, 1872, vol. xxv, pp. 87—162 : also Applications de VAnalyse Mathematique

au Jeu des Echecs, by C. F. de Jaenisch, 3 vols., St Petersburg, 1862-3; and

General Parmentier, Association Franraise pour I'avancement des ScienceSf 1891,

1892, 1894.
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The earliest solutions of which I have any knowledge are

those given at the beginning of the eighteenth century by De
Montmort and De Moivre*. They apply to the ordinary chess-

board of 64 cells, and depend on dividing (mentally) the board

into an inner square containing sixteen cells surrounded by an

outer ring of cells two deep. If initially the knight is placed

on a cell in the outer ring, it moves round that ring always in

the same direction so as to fill it up completely—only going

into the inner square when absolutely necessary. When the

outer ring is filled up the order of the moves required for

filling the remaining cells presents but little difficulty. If

initially the knight is placed on the inner square the process

must be reversed. The method can be applied to square and

rectangular boards of all sizes. It is illustrated sufficiently by

De Moivre 's solution which is given below, where the numbers

34
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mathematical analysis was made by Euler* in 1759 : it was

due to a suggestion made by L. Bertrand of Geneva, who sub-

sequently (in 1778) issued an account of it. This method is

applicable to boards of any shape and size, but in general

the solutions to which it leads are not symmetrical and their

mutual connexion is not apparent.

Euler commenced by moving the knight at random over

the board until it has no move open to it. With care this

will leave only a few cells not traversed : denote them by

a, h, — His method consists in establishing certain rules

by which these vacant cells can be interpolated into various

parts of the circuit, and by ^vhich the circuit can be made
re-entrant.

The following example, mentioned by Legendre as one of

exceptional difficulty, illustrates the method. Suppose that

55
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re-entrant. This is the case here ii p = 52, q = 51. Thus the

cells 1, 2, 3, ..., 51; 60, 59, ..., 52 form a re-entrant route of 60

moves. Hence, if we replace the numl)ers 60, 59, ..., 52 by 52,

53, . .
.

, 60, the steps will be numbered consecutively. I recom-

mend the reader who wishes to follow the subsequent details

of Euler's argument to construct this square on a piece of paper

before proceeding further.

Next, we proceed to add the cells a, b, d to this route. In

the new diagram of 60 cells formed as above the cell a commands

the cells there numbered 51, 53, 41, 25, 7, 5, and 3. It is in-

different which of these we select : suppose we take 51. Then

we must make 51 the last cell of the route of 60 cells, so that

we can continue with a, b, d. Hence, if the reader will add 9

to every number on the diagram he has constructed, and then

replace 61, 62, ..., 69 by 1, 2, ..,, 9, he will have a route which

starts from the cell occupied originally by 60, the 60th move is

on to the cell occupied originally by 51, and the 61st, 62nd,

63rd moves will be on the cells a, b, d respectively.

It remains to introduce the cell c. Since c commands the

cell now numbered 25, and 63 commands the cell now numbered

24, this can be effected in the same way as the first route was

made re-entrant. In fact, the cells numbered 1, 2, ..., 24; 63,

62, ,.., 25, c form a knight's path. Hence we must replace

63, 62, ..., 25 by the numbers 25, 26, ..., 63, and then we can

fill up c with 64. We have now a route which covers the

whole board.

Lastly, it remains to make this route re-entrant. First, we

must get the cells 1 and 64 near one another. This can be

effected thus. Take one of the cells commanded by 1, such as

28, then 28 commands 1 and 27. Hence the cells 64, 63, ..., 28;

1, 2, ..., 27 form a route; and this will be represented in the

diagram if we replace the cells numbered 1, 2, ..., 27 by 27,

26, ..., 1.

The cell now occupied by 1 commands the cells 26, 38, 54,

12, 2, 14, 16, 28; and the cell occupied by 64 commands the

cells 13, 43, 63, 55. The cells 13 and 14 are consecutive, and

therefore the cells 64, 63, ..., 14; 1, 2, ..., 13 form a route.
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Hence we must replace the numbers 1, 2, ..., 13 by 13, 12, ...,

1, and we obtain a re-entrant route covering the whole board,

which is represented in the second of the diagrams given above.

Euler showed how seven other re-entrant routes can be deduced

from any given re-entrant route.

It is not difficult to apply the method so as to form a route

which begins on one given cell and ends on any other given

cell.

Euler next investigated how his method could be modified

so as to allow of the imposition of additional restrictions.

An interesting example of this kind is where the first 32

moves are confined to one-half of the board. One solution

of this is delineated below. The order of the first 32 moves

58
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whose distances are respectively x and y from the opposite

sides a complementary cell. Thus the cells (a?, y) and (9 — x,

9 — y) are complementary, where x and y denote respectively

the column and row occupied by the cell. Then in Euler's

solution the numbers in complementary cells differ by 32 : for

instance, the cell (3, 7) is complementary to the cell (6, 2), the

one is occupied by 57, the other b}^ 25.

Roget's method, which is described later, can be also applied

to give half-board solutions. The result is indicated above.

The close of Euler's memoir is devoted to showing how the

method could be applied to crosses and other rectangular

figures. I may note in particular his elegant re-entrant sym-

metrical solution for a square of 100 cells.

The next attempt of any special interest is due to Vander-

monde*, who reduced the problem to arithmetic. His idea was

to cover the board by two or more independent routes taken

at random, and then to connect the routes. He defined the

position of a cell by a fraction x/y, whose numerator x is the

number of the cell from one side of the board, and whose

denominator y is its number from the adjacent side of the

board; this is equivalent to saying that x and y are the

co-ordinates of a cell. In a series of fractions denoting a

knight's path, the differences between the numerators of two

consecutive fractions can be only one or two, while the corre-

sponding differences between their denominators must be two

or one respectively. Also x and y cannot be less than 1 or

greater than 8. The notation is convenient, but Vander-

monde applied it merely to obtain a particular solution of

the problem for a board of 64 cells: the method by which

he effected this is analogous to that established by Euler,

but it is applicable only to squares of an even order. The
route that he arrives at is defined in his notation by the

following fractions: 5/5, 4/3, 2/4, 4/5, 5/3, 7/4, 8/2, 6/1, 7/3,

8/1, 6/2, 8/3, 7/1, 5/2, 6/4, 8/5, 7/7, 5/8, 6/6, 5/4, 4/6, 2/5,

1/7, 3/8, 2/6, 1/8, 3/7, 1/6, 2/8, 4/7, 3/5, 1/4, 2/2, 4/1, 3/3,

1/2, 3/1, 2/3, 1/1, 3/2, 1/3, 2/1, 4/2, 3/4, 1/5, 2/7, 4/8, 3/6,

* L'Hiistoire de VAcadeniie des Sciences for 1771, Paris, 1774, pp. 5GG— 574.
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4/4, 5/6, 7/5, 8/7, 6/8, 7/6, 8/8, 6/7, 8/6, 7/8, 5/7, 6/5, 8/4,

7/2, 5/1, 6/3.

The path is re-entrant but unsymmetrical. Had he trans-

ferred the first three fractions to the end of this series he

would have obtained two symmetrical circuits of thirty-two

moves joined unsymmetrically, and might have been enabled

to advance further in the problem. Vandermonde also con-

sidered the case of a route in a cube.

In 1773 Collini* proposed the exclusive use of symmetrical

routes arranged without reference to the initial cell, but con-

nected in such a manner as to permit of our starting from

it. This is the foundation of the modem manner of attacking

the problem. The method was re-invented in 1825 by Prattf,

and in 1840 by Roget, and has been subsequently employed

by various writers. Neither Collini nor Pratt showed skill in

using this method. The rule given by Roget is described later.

One of the most ingenious of the solutions of the knight's

path is that given in 1823 by Warnsdorff|. His rule is that

the knight must be always moved to one of the cells from

which it will command the fewest squares not already traversed.

The solution is not symmetrical and not re-entrant ; moreover

it is difficult to trace practically. The rule has not been

proved to be true, but no exception to it is known : apparently

it applies also to all rectangular boards which can be covered

completely by a knight. It is somewhat curious that in most

cases a single false step, except in the last three or four moves,

will not affect the result.

Wamsdorff added that when, by the rule, two or more cells

are open to the knight, it may be moved to either or any of

them indifferently. This is not so, and with great ingenuity

two or three cases of failure have been constructed, but it

would require exceptionally bad luck to happen accidentally

on such a route.

* Solution du Probleme du Cavalier au Jeu des Echecs, Mannheim, 1778.

+ Studies of Chess, sixth edition, London, 1825.

X H. C. Wamsdorff, Des Rosselsprunges einfachste und allgemeinste Losung,

Schmalkalden, 1823 : see also Jaenisch, vol. ii, pp. 56—61, 273—289.
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The above methods have been applied to boards of various

shapes, especially to boards in the form of rectangles, crosses,

and circles*.

All the more recent investigations impose additional re-

strictions : such as to require that the route shall be re-en-

trant, or more generally that it shall begin and terminate on

given cells.

The simplest solution with which I am acquainted—and

one which I believe is not generally known—is due to Rogetf.

It divides the whole route into four circuits, which can be

combined so as to enable us to begin on any cell and termi-

nate on any other cell of a different colour. Hence, if we like

to select this last cell at a knight's move from the initial cell,

we obtain a re-entrant route. On the other hand, the rule

is applicable only to square boards containing (4ny cells: for

example, it could not be used on the board of the French jeu

des dames
J
which contains 100 cells.

Roget began by dividing the board of 64 cells into four

quarters. Each quarter contains 16 cells, and these 16 cells

can be arranged in 4 groups, each group consisting of 4 cells

which form a closed knight's path. All the cells in each such

path are denoted by the same letter Z, e, a, or p, as the case

may be. The path of 4 cells indicated by the consonants I and

the path indicated by the consonants p are diamond-shaped

:

the paths indicated respectively by the vowels e and a are

square-shaped, as may be seen by looking at one of the four

quarters in figure i below.

Now all the 16 cells on a complete chess-board which are

marked with the same letter can be combined into one circuit,

and wherever the circuit begins we can make it end on any

other cell in the circuit, provided it is of a different colour

to the initial cell. If it is indifferent on what cell the

circuit terminates we mav make the circuit re-entrant, and

* See ex. gr. T. Ciccolini's work Del Cavallo degli Scacchi, Paris, 1836.

t Philosophical Magazine, April, 1840, series 3, vol. xvi, pp. 305—309 ; see

also the Quarterly Journal of Mathematics for 1877, vol. xiv, pp. 354—359.

Some solutions, founded on Eoget's method, are given in the Leisure Hour^

Sept. 13, 1873, pp. 587—590 ; see also Ibid., Dec. 20, lt)73, pp. 813-815.

b. u. 9
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in this case we can make the direction of motion round each

group (of 4 cells) the same. For example, all the cells

marked p can be arranged in the circuit indicated by the

successive numbers 1 to 16 in figure ii below. Similarly all

the cells marked a can be combined into the circuit indicated

by the numbers 17 to 32 ; all the I cells into the circuit 33 to

48 ; and all the e cells into the circuit 49 to 64. Each of the

circuits indicated above is symmetrical and re-entrant. The
consonant and the vowel circuits are said to be of opposite

kinds.

/
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out the cells Z and F, it always will be possible, by the rule

already given, to travel from the initial cell to the cell X in

62 moves, and thence to move to the final cell on the 64th

move.

In both cases however it must be noticed that the cells in

each of the first three circuits will have to be taken in such an

order that the circuit does not terminate on a corner, and it

may be desirable also that it should not terminate on any of

the border cells. This will necessitate some caution. As far

as is consistent with these restrictions it is convenient to make
these circuits re-entrant, and to take them and every group in

them in the same direction of rotation.

As an example, suppose that we are to begin on the cell

numbered 1 in figure ii above, which is one of those in a

p circuit, and to terminate on the cell numbered 64, which is

one of those in an e circuit. This falls under the first rule

:

hence first we take the 16 cells marked jo, next the 16 cells

marked a, then the 16 cells marked I, and lastly the 16 cells

marked e. One way of effecting this is shown in the diagram.

Since the cell 64 is a knight's move from the initial cell the

route is re-entrant. Also each of the four circuits in the

diagram is symmetrical, re-entrant, and taken in the same

direction, and the only point where there is any apparent

breach in the uniformity of the movement is in the passage

from the cell numbered 32 to that numbered 33.

A rule for re-entrant routes, similar to that of Roget, has

been given by various subsequent writers, especially by De
Polignac* and by Laquieref, who have stated it at much
greater length. Neither of these authors seems to have been

aware of Roget's theorems. De Polignac, like Roget, illustrates

the rule by assigning letters to the various squares in the way
explained above, and asserts that a similar rule is applicable to

all even squares.

* Comptes Rendiis, April, 1861 ; and Bulletin de la SorigtS Mathfmatique de

France, 1881, vol. ix, pp. 17—24.

t Bulletin de la Society Matlieinatique de France, 1880, vol. viii, pp. 82

—

102, 132—158.

9—2
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Roget's method can be also applied to two half-boards, as-

indicated in the figure given above on page 126.

The method v^^hich Jaenisch gives as the most fundamental

is not very different from that of Roget. It leads to eight

forms, similar to that in the diagram printed below, in which

the sum of the numbers in every column and every row is 260

;

but although symmetrical it is not in my opinion so easy to

reproduce as that given by Roget. Other solutions, notably

those by Moon and by Wenzelides, were given in former

editions of this work. The two re-entrant routes printed below,

each covering 32 cells, and together covering the board, are

remarkable as constituting a magic square*.

63 22
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Analogous Problems. Similar problems can be constructed

in which it is required to determine routes by which a piece

moving according to certain laws {ex. gr. a chess-piece such as

a king, &c.) can travel from a given cell over a board so as to

occupy successively all the cells, or certain specified cells, once

and only once, and terminate its route in a given cell.

Euler's method can be applied to find routes of this kind:

for instance, he applied it to find a re-entrant route by which

a piece that moved two cells forward like a castle and then one

cell like a bishop would occupy in succession all the black cells

on the board.

King's Re-Entrant Path. As one example here is a re-

entrant tour of a king which moves successively to every cell

61
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If we start from any of the cells mentioned above, the rook

takes sixteen moves. If we start from any cell in the middle

of one of these moves, it will take seventeen moves to cover

this route, but I believe that in most cases wherever the initial

cell be chosen sixteen moves will suffice, though in general the

route will not be symmetrical. On a board of n^ cells it is

possible to find a route by which a rook can move successively

from its initial cell to every other cell once and only once.

Moreover* starting on any cell its path can be made to termi-

nate, if n be even, on any other cell of a different colour, and,

if n be odd, on any other cell of the same colour.

Bishop's Re-Entrant Path. As yet another instance, a bishop

can traverse all the cells of one colour on the board in seven-

teen moves if the initial cell is properly chosenf; for instance,

starting from the cell 11, it may move successively to the cells

55, 82, 71, 17, 28, 46, 13, 31, 86, 68, 57, 48, 15, 51, 84, m, 88.

One more move will bring it back to the initial cell. From

the nature of the case, it must traverse some cells more than

once.

Miscellaneous Problems. We may construct numerous such

problems concerning the determination of routes which cover

the whole or part of the board subject to certain conditions.

I append a few others which may tax the ingenuity of those

not accustomed to such problems.

Routes on a Chess-Board. One of the simplest is the

determination of the path taken by a rook, placed in the cell

11, which moves, one cell at a time, to the cell 88, so that in

the course of its path it enters every cell once and only once.

This can be done, though I have seen good mathematicians

puzzled to effect it. A hasty reader is apt to misunderstand

the conditions of the problem.

Another simple problem of this kind is to move a queen from

the cell 33 to the cell 66 in fifteen moves entering every cell once

* L'Intermediaire des Mathematiciens, Paris, 1901, vol. viii, pp. 153—154.

t H. E. Dudeney, The Tribune, Dec. 3, 1906.
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and only once, and never cro.sying its own track or entering a

cell more than once*.

A somewhat similar, but more difficult, question is the

determination of the greatest distance which can be travelled

by a queen starting from its own square in five consecutive

moves, subject to the condition that it never crosses its own

track or enters a cell more than oncef. In calculating the

distance it may be assumed that the paths go through the

centres of the cells. If the length of the side of a cell is one

inch, the distance exceeds 33"95 inches.

Another familiar problem can be enunciated as follows.

Construct a rectangular board of vm cells by ruling in +

1

vertical lines and n + 1 horizontal lines. It is required to

know how many routes can be taken from the top left-hand

corner to the bottom right-hand corner, the motion being along

the ruled lines and its direction being always either vertically

doTNTiwards or horizontally from left to right. The answer is

the number of permutations of m -I- n things, of which m are

alike of one kind and n are alike of another kind: this is equal to

{m-\-n)\ I mini. Thus on a square board containing 16 cells

(i.e. one-quarter of a chess-board), where m = n = 4, there are 70

such routes ; while on a common chess-board, where m = n = 8,

there are no less than 12870 such routes. A rook, moving ac-

cording to the same law, can travel from the top left-hand cell

to the bottom right-hand cell in (m-\-n — 2)! / (m— 1)! (?i — 1)!

ways. Similar theorems can be enunciated for a parallele-

piped.

Another question of this kind is the determination of the

number of closed routes through mn points arranged in m rows

and n columns, following the lines of the quadrilateral net-work,

and passing once and only once through each point |.

Guarinis Problem. One of the oldest European problems

connected with the chess-board is the following which was

• H. E. Dudeney, The Trihune, Oct. 3, 1906.

+ Ibid., Oct. 2, 1906.

+ See C. F. Sainte-Marie in L^Intermediaire de$ Mathematiciens, Paris,

vol. XI, March, 19U4, pp. 86—88.
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propounded in 1512. It was quoted by Lucas in 1894, but I

believe has not been published otherwise than in his works and

the earlier editions of this book. On a board of nine cells, such

as that drawn below, the two white knights are placed on the

a

D

b
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CHAPTER VII.

MAGIC SQUARES.

<. A Magic Square consists of a number of integers arranged

in the form of a square, so that the sum of the numbers in

every row, in every column, and in each diagonal is the same.

If the integers are the consecutive numbers from 1 to n^ the

square is said to be of the nth order, and it is easily seen

that in this case the sum of the numbers in any row, column,

or diagonal is equal to \n {n^ \- \) \ this number may be

denoted by N. Unless otherwise stated, I confine my account

to such magic squares, that is, to squares formed with consecu-

tive integers from 1 upwards. The same rules however cover

similar problems with 7t^ numbers in arithmetical progression.

Thus the first 16 integers, arranged in either of the forms

given in figures i and ii below, represent magic squares of the

16
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order, and figures xxii and xxiii on pages 163, 164 represent

magic squares of the eighth order.

The formation of these squares is an old amusement, and

in times when mystical philosophical ideas were associated

with particular numbers it was natural that such arrangements

should be deemed to possess magical properties. Magic squares

of an odd order were constructed in India before the Christian

era according to a law of formation which is explained here-

after. Their introduction into Europe appears to have been

due to Moschopulus, who lived at Constantinople in the early

part of the fifteenth century, and enunciated two methods for

making such squares. The majority of the medieval astrologers

and physicians were much impressed by such arrangements.

In particular the famous Cornelius Agrippa (1486—1535) con-

structed magic squares of the orders 3, 4, 5, 6, 7, 8, 9, which were

associated respectively with the seven astrological "planets":

namely, Saturn, Jupiter, Mars, the Sun, Venus, Mercury, and

the Moon. He taught that a square of one cell, in which unity

was inserted, represented the unity and eternity of God ; while

the fact that a square of the second order could not be con-

structed illustrated the imperfection of the four elements, air,

earth, fire, and water; and later writers added that it was

symbolic of original sin. A magic square engraved on a silver

plate was sometimes prescribed as a charm against the plague,

and one, namely, that represented in figure i on the last page,

is drawn in the picture of Melancholy, painted in 1514 by

Albert DUrer : the numbers in the middle cells of the bottom

row give the date of the work. Such charms are still worn in

the East.

The development of the theory was at first due mainly to

French mathematicians. Bachet gave a rule for the construc-

tion of any square of an odd order in a form substantially

equivalent to one of the rules given by Moschopulus. The

formation of magic squares, especially of even squares, was con-

sidered by Frenicle and Format. The theory was continued by

Poignard, De la Hire, Sauveur, D'Ons-en-bray, and Des Ourmes.

Ozanam included in his work an essay on magic squares which
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was ampliiied by Montucla. Like most algebraical problems,

the construction of magic squares attracted the attention of

Euler, but he did not advance the general theory. In 1837 an

elaborate work on the subject was compiled by B. Violle, which

is useful as containing numerous illustrations. I give the

references in a footnote*.

I shall confine myself to establishing rules for the con-

struction of squares subject to no conditions beyond those given

in the definition. I shall commence by giving rules for the

construction of a square of an odd order, and then shall proceed

to similar rules for one of an even order.

It will be convenient to use the following terms. The
spaces or small squares occupied by the numbers are called

cells. The diagonal from the top left-hand cell to the bottom

right-hand cell is called the leading diagonal or left diagonal.

The diagonal from the top right-hand cell to the bottom left-

hand cell is called the right diagonal.

Magic squares of an odd order. I proceed to give three

methods for constructing odd magic squares, but for simplicity

I shall apply them to the formation of squares of the fifth

order ; though exactly similar proofs will apply equally to any

odd square.

* For a sketch of the history of the subject and its bibliography see

S. Giiuther's Gesehichte der mathematischen Wisseu.=^chaften, Leipzig, 1876,

chapter iv ; and W. Ahrens, Mathematische Unterhaltungen und Spiele, Leipzig,

1901, chapter sii. The references in the text are to Bachet, Problemes plaisans,

Lyons, 1624, problem xxi, p. 161 : Fr^nicle, Divers Ouvrages de Mathematique

par Messieurs de VAcademic des Sciences, Paris, 1693, pp. 423—483 ; with an

appendix (pp. 484—507), containing diagrams of all the possible magic squares

of the fourth order, 880 in number : Fermat, Opera Mathematica, Toulouse, 1679,

pp. 173—178 ; or Brassinne's Precis, Paris, 1853, pp. 146—149 : Poignard,

Traite des Quarres Sublimes, Brussels, 1704 : De la Hire, Mimoires de VAcademic

des Sciences for 1705, Paris, 1706, part i, pp. 127—171
;
part ii, pp. 364—382 :

Sauveur, Construction des Quarr€s Magiques, Paris, 1710 : D'Ons-en-bray,

Memoires de VAcadimie des Sciences for 1750, Paris, 1754, pp. 241—271 : Des

Ournies, Mimoires de Mathematique et de Physique (French Academy), Paris,

1763, vol. IV, pp. 196—241 : Ozanam and Montucla, Recreations, part i,

chapter xii : Euler, Commentationes Arithmeticae Collectae, St Petersburg, 1849,

vol. II, pp. 503—602 : Violle, Traiti Complet des Carris Magiques, 3 vols, Paris,

1837-8.
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De la Louhhe*s Method*. If the reader will look at figure iii

he will see one way in which such a square containing 25 cells

can be constructed. The middle cell in the top row is occupied

by 1. The successive numbers are placed in their natural

order in a diagonal line which slopes upwards to the right,

except that (i) when the top row is reached the next number

is written in the bottom row as if it came immediately above

the top rov/
;

(ii) when the right-hand column is reached, the

next number is written in the left-hand column, as if it

immediately succeeded the right-hand column ; and (iii) when

a cell which has been filled up already, or when the top

right-hand square is reached, the path of the series drops to

the row vertically below it and then continues to mount again.

Probably a glance at the diagram in figure iii will make
this clear.

17^
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far as rows and columns are concerned, the square is magic.

Moreover if the square is odd, each of the diagonals will

contain one and only one of each of the unit-digits 1, 2, 3, 4, 5.

Also the leading diagonal will contain one and only one of the

radix-digits 0, 5, 10, 15, 20, the sum of which is 50; and

if, as is the case in the square drawn above, the number 10

is the radix-digit to be added to the unit-digits in the right

diagonal, then the sum of the radix-digits in that diagonal

is also 50. Hence the two diagonals also possess the magical

property.

And generally if a magic square of an odd order n is

constructed by De la Loubere's method, every row and every

column must contain one and only one of each of the unit-

digits 1, 2, 3, ..., 72; and also one and only one of each of the

radix-digits 0, n, 2n, ..., n (n — 1). Hence, as far as rows and

columns are concerned, the square is magic. Moreover each

diagonal will either contain one and only one of the unit-digits

or will contain n unit-digits each equal to ^ (n + 1). It will

also either contain one and only one of the radix-digits or will

contain n radix-digits each equal to ^n(n — l). Hence the

two diagonals will also possess the magical property. Thus the

square will be magic.

I may notice here that, if we place 1 in any cell and fill

up the square by De la Loubere's rule, we shall obtain a

square that is magic in rows and in columns, but it will not

in general be magic in its diagonals.

It is evident that other squares can be derived from De la

Loubere's square by permuting the symbols properly. For

instance, in figure iv, we may permute the symbols 1, 2, 3, 4, 5

in 5 ! ways, and we may permute the symbols 0, 5, 15, 20 in

4 ! ways. Any one of these 5 ! arrangements combined with

any one of these 4 ! arrangements will give a magic square.

Hence we can obtain 2880 inagic squares of the fifth order of

this kind, though only 720 of them are really distinct. Other

squares can however be deduced, for it may be noted that

from any magic square, \xiiether even or odd, other magic

squares of the same order can be formed by the mere inter-
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chano-e of the row and the column which intersect in a cell on

a diagonal with the row and the column which intersect m the

complementary cell of the same diagonal.

*; Bachet proposed* a similar rule. In this, we begin by

placing 1 in the cell above the middle one, and then we write

the successive numbers in a diagonal line sloping upwards to

the right, subject to the condition that when the cases (i) and

(ii) mentioned under De la Loubere's method occur the rules

there given are followed, but when the case (iii) occurs the path

of the series, instead of going on to the cell already occupied,

is continued from one cell to the cell next but one vertically

above it. If this cell is above the top row the path continues

from the corresponding cell in one of the bottom two rows

following the analogy of rule (i) in De la Loubere's method.

Bachet's method leads ultimately to this arrangement ; except

that the rules are altered so as to make the line slope down-

wards. This method also gives 720 magic squares of the fifth

order.

In the notation given later (see pp. 157, 158), De la Loubere's

rule is equivalent to taking steps a = — 1, 6 = 1, and cross-steps

x = l, y = 0. Bachet's form of it, as here enunciated, is equiva-

lent to. taking steps a = - 1, 6 = 1, and cross-steps a? = - 2,

2/ = 0.

- De la Hires Method^. I shall now give another rule for

the formation of odd magic squares. To form an odd magic

square of the order n by this method, we begin by constructing

two subsidiary squares, one of the unit-digits, 1, 2, ..., n, and

the other of multiples of the radix, namely, 0, /i, 2/i, . .
. ,
(n — 1 ) n.

We then form the magic square by adding together the numbers

in the corresponding cells in the two subsidiary squares.

De la Hire gave several ways of constructing such sub-

sidiary squares. I select the following method (props, x and

xiv of his memoir) as being the simplest, but I shall apply it

to form a square of only the fifth order. It leads to the same

results as the second of the two rules given by Moschopulus.

* Bachet, Problem xxi, p. 161.

t Meinoires de I'Academie des Sciences for 1705, part i, pp. 127—171.
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The first of the subsidiary squares (figure v, below) is

constructed thus. First, 3 is put in the top left-hand corner,

and then the numbers 1, 2, 4, 5 are written in the other cells

of the top line (in any order). Next, the number in each cell

of the top line is repeated in all the cells which lie in a diagonal

line sloping downwards to the right (see figure v) according to

the rule (ii) in De la Loubere's method. The cells filled by the

same number form a broken diagonal. It follows that every row

and every column contains one and only one 1, one and only

one 2, and so on. Hence the sum of the numbers in every row

and m every column is equal to 15; also, since we placed 3,

which is the average of these numbers, in the top left-hand

corner, the sum of the numbers in the left diagonal is 15;

3
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that the sum of the numbers in every row, every column,

and each diagonal is equal to 15 + 50, that is, to 65. This is

represented in figure vii. Moreover, no two cells in that figure

contain the same number. For instance, the numbers 21 to 25

can occur only in those five cells which in figure vi are occu-

pied by the number 20, but the corresponding cells in figure v

contain respectively the numbers 1, 2, 3, 4, and 5; and thus

in figure vii each of the numbers from 21 to 25 occurs once

and only once. De la Hire preferred to have the cells in the

subsidiary squares which are filled by the same number con-

nected by a knight's move and not by a bishop's move ; and

usually his rule is enunciated in that form.

By permuting the numbers 1, 2, 4, 5 in figure v we get

4 ! arrangements, each of which combined with that in figure vi

would give a magic square. Similarlyby permuting the numbers

0, 5, 15, 20 in figure vi we obtain 4! squares, each of which might

be combined with any of the 4! arrangements deduced from

figure V. Hence altogether we can obtain in this way 144 magic

squares of the fifth order.

There are various other methods by which odd magic

squares of any order can be constructed, but most or all of them

depend on the form of n. I content myself here with the two

methods described above; later, when discussing pandiagonal

squares, I shall mention another rule for odd magic squares

whose order is higher than three, which permits us to place

a selected number in any cell we like.

Magic squares of an even order. The above methods

are inapplicable to squares of an even order. I proceed to give

two methods for constructing any even magic square of an order

higher than two.

It will be convenient to use the following terms. Two
rows which are equidistant, the one from the top, the other

from the bottom, are said to be complementary. Two columns

which are equidistant, the one from the left-hand side, the

other from the right-hand side, are said to be complementary.

Two cells in the same row, but in complementary columns, are

said to be horizontally related. Two cells in the same column,
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but in complementary rows, are said to be vertically related,

Two cells in complementary rows and columns are said to be

skewly related ; thus, if the cell h is horizontally related to the

cell a, and the cell d is vertically related to the cell a, then the

cells h and d are skewly related; in such a case if the cell c

is vertically related to the cell 6, it will be horizontally related

to the cell d, and the cells a and c are skewly related: the

cells a, h, c, d constitute an associated group, and if the square

is divided into four equal quarters, one cell of an associated

group is in each quarter.

A horizontal interchange consists in the interchange of the

numbers in two horizontally related cells. A vertical inter-

change consists in the interchange of the numbers in two

vertically related cells. A skew interchange consists in the

interchange of the numbers in two skewly related cells. A
cross interchange consists in the change of the numbers in any

^eTland in its horizontally related cell with the numbers in

the cells skewly related to them ; hence, it is equivalent to two

vertical interchanges and two horizontal interchanges.

First Method*, This method is the simplest with which I

am acquainted. Begin by filling the cells of the square with

the numbers 1, 2, ...,7i^in their natural order commencing (say)

with the top left-hand corner, writing the numbers in each row

from left to right, and taking the rows in succession fi:om the

top. I will commence by proving that a certain number of

horizontal and vertical interchanges in such a square must make

it magic, and will then give a rule by which the cells whose

numbers are to be interchanged can be at once picked out.

First we may notice that the sum of the numbers in each

diagonal is equal to N^ where iV = ?i(?i^-|- l)/2; hence the

diagonals are already magic, and will remain so if the numbers

therein are not altered.

Next, consider the rows. The sum of the numbers in the

* It seems to have been first enunciated in 1889 by W. Firth, but later was

independently discovered by various writers: see the Messenger of Mathematics,

Cambridge, September, 1893, vol. xxm, pp. 65—69, and the Monist, Chicago,

1912, vol. XXII, pp. 53—81. I leave my account as originally written, though

perhaps the procedure used by C. Planck in the latter paper is somewhat simpler.

B. R. 10
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a^tli row fi'om the top is N — n^ (n — 1x 4- 1)/2. The sum of the

numbers in the complementary row, that is, the a;th row from

the bottom, is iV + 71^ (n — 2a; + l)/2. Also the number in any

cell in the a?th row is less than the number in the cell vertically

related to it by 71 (?i — 2^7 + 1). Hence, if in these two rows we

make 7?/2 interchanges of the numbers which are situated in

vertically related cells, then we increase the sum of the numbers

in the icth row by ti x ?i {n — 2a) + l)/2, and therefore make that

row magic ; while we decrease the sum of the numbers in the

complementary row by the same number, and therefore make

that row magic. Hence, if in every pair of complementary

rows we make ?i/2 interchanges of the numbers situated in

vertically related cells, the square will be made magic in rows.

But, in order that the diagonals may remain magic, either we

must leave both the diagonal numbers in any row unaltered, or

we must change both of them with those in the cells vertically

related to them.

The square is now magic in diagonals and in rows, and it

remains to make it magic in columns. Taking the original

arrangement of the numbers (in their natural order) we might

have made the square magic in columns in a similar way to

that in which we made it magic in rows. The sum of the

numbers originally in the yth column from the left-hand side is

N — n{n — 2y + 1)/2. The sum of the numbers originally in the

complementary column, that is, the yih column from the right-

hand side, is H + n(n— 2y + l)/2. Also the number originally

in any cell in the yth column was less than the number in the

cell horizontally related to it by n — 2y + 1. Hence, if in these

two columns we had made n/'2 interchanges of the numbers

situated in horizontally related cells, we should have made the

sum of the numbers in each column equal to N. If we had done

this in succession for every pair of complementary columns, we

should have made the square magic in columns. But, as before,

in order that the diagonals might remain magic, either we must

have left both the diagonal numbers in any column unaltered,

or we must have changed both of them with those in the cells

horizontally related to them.
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It remains to show that the vertical and horizontal inter-

changes, which have been considered in the last two paragraphs,

can be made independently, that is, that we can make these

interchanges of the numbers in complementary columns in such

a manner as will not affect the numbers already interchanged in

complementary rows. This will require that in every column

there shall be exactly n/2 interchanges of the numbers in

vertically related cells, and that in every row there shall be

exactly n/2 interchanges of the numbers in horizontally related

cells. I proceed to show how we can always ensure this, if n is

greater than 2. I continue to suppose that the cells are initially

filled with the numbers 1, 2, ..., ti^ in their natural order, and

that we work from that arrangement.

A doubly-even square is one where n is of the form 4m. If

the square is divided into four equal quarters, the first quarter

will contain 2m columns and 2m rows. In each of these columns

take m cells so arranged that there are also m cells in each row^j

and change the numbers in these 2??i^ cells and the 6m^ cells

associated with them by a cross interchange. The result is

equivalent to 27n interchanges in every row and in every

column, and therefore renders the square magic.

One way of selecting the 2m^ cells in the first quarter is to

divide the whole square into sixteen subsidiary squares each

a
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Another way of selecting the 2m^ cells in the first quarter

would be to take the first m cells in the first column, the cells

2 to m+1 in the second column, and so on, the cells m+1 to 2/?i

in the (m + l)th column, the cells m + 2 to 2m and the first cell

in the (m + 2)th column, and so on, and finally the 2mth cell

and the cells 1 to m — 1 in the 2mth column.

A singly-even square is one where n is of the form 2 (2m + 1).

If the square is divided into four equal quarters, the first quarter

will contain 2m + 1 columns and 2m + 1 rows. In each of these

columns take m cells so arranged that there are also m cells in

each row: as, for instance, by taking the first m cells in the

first column, the cells 2 to m + 1 in the second column, and so

on, the cells m + 2 to 2m + 1 in the {m + 2)th column, the cells

m + 3 to 2m + 1 and the first cell in the (m + 3)th column, and

so on, and finally the (2m + l)th cell and the cells 1 to m — 1 in

the (2m+l)th column. Next change the numbers in these

m (2m + 1) cells and the 3m {2m + 1) cells associated with them

by cross interchanges. The result is equivalent to 2m inter-

changes in every row and in every column. In order to make

the square magic we must have n/2, that is, 2m + 1, such inter-

changes in every row and in every column, that is, we must

have one more interchange in every row and in every column.

This presents no difficulty; for instance, in the arrangement

indicated above the numbers in the (2m + l)th cell of the first

column, in the first cell of the second column, in the second cell

of the third column, and so on, to the 2mth cell in the {2m + l)th

column may be interchanged with the numbers in their vertically

related cells ; this will make all the rows magic. Next, the

numbers in the 2mth cell of the first column, in the (2m + l)th

cell of the second column, in the first cell of the third column, in

the second cell of the fourth column, and so on, to the (2m — l)th

cell of the (2m + l)th column may be interchanged with those

in the cells horizontally related to them; and this will make

the columns magic without affecting the magical properties of

the rows.

It will be observed that we have implicitly assumed that m
is not zero, that is, that n is greater than 2; also it would seem
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that, if w = 1 and therefore n= 6, then the numbers in the

diagonal cells must be included in those to which the cross

interchange is applied, but, if n is greater than 6, this is not

necessary, though it may be convenient.

The construction of odd magic squares and of doubly-even

magic squares is very easy. But though the rule given above

for singly-even squares is not difficult, it is tedious of applica-

tion. It is unfortunate that no more obvious rule—such, for

instance, as one for bordering a doubly-even square—can be

suggested for writing down instantly and without thought

singly-even magic squares.

De la Hires Method*. I now proceed to give another way,

due to De la Hire, of constructing any even magic square of an

order higher than two.

In the same manner as in his rule for making odd magic

squares, we begin by constructing two subsidiary squares, one

of the unit-digits 1,2,3, ..., n, and the other of the radix-

digits 0, n, 2n, ..., (n— l)n. We then form the magic square

by adding together the numbers in the corresponding cells in

the two subsidiary squares. Following the analogy of the

notation used above, two numbers which are equidistant from

the ends of the series 1, 2, 3, ..., n are said to be comple-

mentary. Similarly numbers which are equidistant from the

ends of the series 0, n, 2n, ..., (n — l)n are said to be comple-

mentary.

For simplicity I shall apply this method to construct a

magic square of only the sixth order, though an exactly similar

method will apply to any even square of an order higher than

the second.

The first of the subsidiary squares (figure ix) is constructed

as follows. First, the cells in the leading diagonal are filled

with the numbers 1, 2, 3, 4, 5, 6 placed in any order whatever

that puts complementary numbers in complementary positions

* Tlie rule is due to De la Hire (part 2 of his memoir) and is given by

Montucla in his edition of Ozanam's work : I have used the modified enunci-

ation of it inserted in Labosne's edition of Bachet's Problemes, as it saves the

introduction of a third subsidiary square. I do not know to whom the modifi-

cation is due.
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{ex. gr. in the order 2, 6, 3, 4, 1, 5, or in their natural order

1, 2, 3, 4, 5, 6). Second, the cells vertically related to these are

filled respectively with the same numbers. Third, each of the

remaining cells in the first vertical column is filled either with

the same number as that already in two of them or with the

complementary number {ex. gr. in figure ix with a "1" or a "6")

in any way, provided that there are an equal number of each

of these numbers in the column, and subject also to proviso

(ii) mentioned in the next paragraph. Fourth, the cells hori-

zontally related to those in the first column are filled with

the complementary numbers. Fifth, the remaining cells in

the second and third columns are filled in an analogous way

1
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number of each of these numbers in the row, and (ii) that if

any cell in the first row of figure ix and its vertically related

cell are filled with complementary numbers, then the corre-

sponding cell in the first row of figure x and its horizontally

relat/ed cell must be occupied by the same number*. Fourth,

the cells vertically related to those in the first row are filled

with the complementary numbers. Fifth, the remaining cells

in the second and the third rows are filled in an analogous way

to that in which those in the first row were filled: and then the

cells vertically related to them are filled with the complementary

numbers. The square so formed is necessarily magic in rows,

columns, and diagonals.

It remains to show that proviso (ii) in the third step de-

scribed in the last paragraph can be satisfied always. In a

doubly-even square, that is, one in which n is divisible by 4, we

need not have any complementary numbers in vertically related

cells in the first subsidiary square unless we please, but even if

we like to insert them they will not interfere with the satisfac-

tion of this proviso. In the case of a singly-even square, that

is, one in which n is divisible by 2, but not by 4, we cannot

satisfy the proviso if any horizontal row in the first square has

all its vertically related squares, other than the two squares in

the diagonals, filled with complementary numbers. Thus in

the case of a singly-even square it will be necessary in con-

structing the first square to take care in the third step that in

every row at least one cell which is not in a diagonal shall have

its vertically related cell filled with the same number as itself:

this is always possible if n is greater than 2.

The required magic square will be constructed if in each cell

we place the sum of the numbers in the corresponding cells of

the subsidiary squares, figures ix and x. The result of this is

given in figure xi. The square is evidently magic. Also every

number from 1 to 36 occurs once and only once, for the numbers

from 1 to 6 and from 31 to 36 can occur only in the top or the

bottom rows, and the method of construction ensures that the

* The insertion of this step evades the necessity of constructing (as Montucla

did) a third subsidiary square.



J

152 MAGIC SQUARES [CH. VII

same number cannot occur twice. Similarly the numbers from

7 to 12 and from 25 to 30 occupy two other rows, and no

number can occur twice ; and so on. The square in figure i on

page 137 may be constructed by the above rules; and the

reader will have no difficulty in applying them to any other

even square.

Other Methods for Constructing any Magic Square.

The above methods appear to me to be the simplest which have

been proposed. There are however two other methods, of less

generality, to which I will allude briefly in passing. Both

depend on the principle that, if every number in a magic square

is multiplied by some constant, and a constant is added to the

product, the square will remain magic.

The first method applies only to such squares as can be

divided into smaller magic squares of some order higher than

two. It depends on the fact that, if we know how to construct

magic squares of the mth and nth. orders, we can construct one

y of the mnth order. For example, a square of 81 cells may be

V considered as composed of 9 smaller squares each containing

9 cells, and by filling the cells in each of these small squares in

the same relative order and taking the small squares themselves

in the same order, the square can be constructed easily. Such

squares are called Composite Magic Squares.

The second method, which was introduced by Frenicle, con-

sists in surrounding a magic square with a Border, Thus in

figure xii on page 153 the inner square is magic, and it is

surrounded with a border in such a way that the whole square

is also magic. In this manner from the magic square of the

3rd order we can build up successively squares of the orders

5, 7, 9, &c., that is, any odd magic square. Similarly from the

magic square of the 4th order we can build up successively any

higher even magic square.

If we construct a magic square of the first n^ numbers by

bordering a magic square of (n — 2)^ numbers, the usual process

is to reserve for the 4(7i— 1) numbers in the border the first

2 (n - 1) natural numbers and the last 2 (n — 1) numbers. Now
the sum of the numbers in each line of a square of the order
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(n - 2) is i (?? - 2) {(n - 2)»+ 1}, and the averasre is J{(n-2)Hll.

Similarly the average number in a square of the t?th order is

J (n^ + 1). The difference of these is 2 (n — 1). We begin then

by taking any magic square of the order (n — 2), and we add to

every number in it 2(n — 1); this makes the average number

The numbers reserved for the border occur in pairs, n^ and

1, n* — 1 and 2, n^ — 2 and 3, &c., such that the average of each

pair is ^ (n^ + 1), and they must be bordered on the square so

that these numbers are opposite to one another. Thus the

bordered square will be necessarily magic, provided that the

sum of the numbers in two adjacent sides of the external

border is correct. The arrangement of the numbers in the

borders will be somewhat facilitated if the number n^-\-l—p

(which has to be placed opposite to the number p) is denoted

by p, but it is not worth while going into further details here.

1
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I believe that with a little patience a magic square of any

order can be thus built up, and of course it will have the

property that, if each border is successively stripped off, the

square will still remain magic. This is the method of con-

struction commonly adopted by self-taught mathematicians,

some of whom seem to think that the empirical formation of

such squares is a valuable discovery.

I may add here (figure xiii) the following general solution

of a magic square of the fourth order in which any numbers (not

necessarily consecutive) are used*. There are eight indepen-

dent quantities.

V~v
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intersecting sides of two equal concentric squares. It is required

to place the first 16 natural numbers on the corners and points

of intersection of the sides so that the sum of the numbers on

the corner of each square and the sum of the numbers on eycry

15

Magic Star.

Figure xv.

side of each square is equal to 34. Eighteen fundamental solu-

tions exist. One of these is given above*.

There are magic circles, rectangles, crosses, diamonds, and

other figures : also magic cubes, cylinders, and spheres. The

theory of the construction of such figures is of no value, and

I cannot spare the space to describe rules for forming them.

In the above sketch, two questions remain unsolved.

One is the determination of a definite rule for bordering a

square ; such a rule might lead to a simpler method than

that given above for forming oddly-even squares. The other

is the determination of the number of magic squares of the

fifth (or any higher) order. There is, in effect, only one magic

square of the third order though by reflexions and rotations

it can be presented in 9 forms. There are 880 magic squares

of the fourth order, but by reflexions and rotations these v/
can be presented in 7040 forms. De la Hire showed that,

* Communicated to me by Mr K. Strachey.
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apart from mere reflexions and rotations, there were 57600

magic squares of the fifth order which could be formed by the

methods he enumerated. Taking account of other methods, it

would seem that the total number of magic squares of the fifth

order is very large, perhaps exceeding half a million. Notwith-

' standing these two unsolved problems we may fairly say that

the theory of the construction of magic squares as defined

above has been worked out in sufficient detail—though not

exhaustively, since methods other than those given above may

be expounded. Accordingly attention has of late been chiefly

directed to the construction of squares which, in addition to

being magic, satisfy other conditions. I shall term such

squares hyper-magic.

Hypee-Magic Squares. Of hyper-magic squares, I will

deal only with the theory of Pan-Diagonal and of Symmetrical

Squares, though I will describe without going into details what

are meant by Doubly and Trebly Magic Squares.

Pandiagonal Squares. One of the earliest additional

I conditions to be suggested was that the square should be magic

) along the broken diagonals as well as along the two ordinary

diagonals*. Such squares are called Pandiagonal. They are

also known as Nasik, or perfect, or diabolic squares.

For instance, a magic pandiagonal square of the fourth

order is represented in figure ii on page 137. In it the sum

of the numbers in each row, column, and in the two diagonals

is 34, as also is the sum of the numbers in the six broken

diagonals formed by the numbers 15, 9, 2, 8, the numbers

10, 4, 7, 13, the numbers 3, 5, 14, 12, the numbers 6, 4, 11, 13,

the numbers 3, 9, 14, 8, and the numbers 10, 16, 7, 1.

It follows from the definition that if a pandiagonal square

be cut into two pieces along a line between any two roAvs or

* Squares of this type were mentioned by De la Hire, Sauveur, and Euler.

Attention was again called to tbem by A. H. Frost in the Quarterly Journal of

Mathematics, London, 1878, vol. xv, pp. 34—49, and subsequently their properties

have been discussed by several writers. Besides Frost's papers I have made

considerable use of a paper by E. McClintock in the American Journal of Mathe-

matic^, vol. xix, 1897, pp. 99—120.
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any two columns, and the two pieces be interchanged, the new
square so formed will be also pandiagoiially magic. Hence it is

obvious that by one vertical and one horizontal transj)osition

of this kind any number can be made to occupy any specified

cell.

Pandiagonal magic squares of an odd order can be con-

structed by a rule somewhat analogous to that given by De la

Loubere, and described above. I proceed to give an outline of

the method.

If we write the numbers in the scale of notation whose

radix is w, with the understanding that the unit-digits run from

1 to n, it is evident, as in the corresponding explanation of why
De la Loubere's rule gives a magic square, that all we have to

do is to ensure that each row, column, and diagonal (whether

broken or not) shall contain one and only one of each of the

unit-digits, as also one and only one of each of the radix-digits.

7



158 MAGIC SQUARES [CH. VII

to the right, then — a will mean going a cells to the left ; thus

if the 6th upper line is outside the square we take it as

equivalent to the (n — 6)th lower line.

It is clear that a and b cannot be zero, and that if a and b

are prime to n (that is, if each has no divisor other than unity

which also divides n) we can make n — 1 steps from any cell

from which we start, before we come to a cell already occupied.

Thus the first n numbers form a path which will give a different

unit-digit in every row, column, and in one set of n diagonals

;

of the other diagonals, n — 1 are empty, and one contains every

unit-digit—thus they are constructed on magical lines. We
must take some other step (h, k) from the cell n to get to an

unoccupied cell in which we place the number w -h 1. Con-

tinuing the process with n — \ more steps (a, b) we get another

series of n numbers in various cells. If h and h are properly

selected this second series will not interfere with the first series,

and the rows, columns, and diagonals, as thus built up, will

continue to be constructed on magical lines provided h and

k are chosen so that the same unit-digit does not appear

more than once in any row, column, and diagonal. We will

suppose that this can be done, and that another cross-step

Qi, k) of the same form as before enables us to continue filling

in the numbers in compliance with the conditions, and that

this process can be continued until the square is filled. If

this is possible, the whole process will consist of n series of

n steps, each series consisting oi n — \ uniform steps (a, b)

followed by one cross-step (A, k). The numbers inscribed after

the n cross-steps will be n + 1, 2w -- 1, 3n + l, ..., and these

will be themselves connected by uniform steps {u, v\ where

u = {n — \)a-\-h^k— a, mod. n, and v={n — \)b-{-k=k — b.

I proceed to investigate the conditions that a, 6, A, and k

must satisfy in order that the square can be constructed as

above described with uniform steps (a, b) and {h, k). We
notice at once that in order to secure the magic property in

the rows and columns, we must have a and b prime to n ; and

to secure it in the diagonals, we must have a and b unequal

and b-¥ a and 6 — a prime to n. The leading numbers of the
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n sequences of n numbers, namely 1, n-\-l, 2n+ 1, ..., are con-

nected by steps (u, v), where « = h — a and v = k — b. Hence, if

these are to fit in their places, we must also have u and v

unequal, and u, v, n + v, and u — v prime to n. Also a, b, u, and

V cannot be zero. Lastly the cross-steps (h, k) must be so

chosen that in no case shall a cross-step lead to a cell already

occupied. This would happen, and therefore the rule would

fail, if p steps (a, h) from any cell and q steps {u, v) from it,

w^here p and q are each less than n, should lead to the same cell.

Thus, to the modulus n, we cannot have pa = qit, = q(h — a), and

at the same time pb = qv = q {k — b).

It is impossible to satisfy these conditions if n is equal to 3

or to a multiple of 3. For a and b are to be unequal, not zero,

and less than n, and a + 6 is to be less than n and prime to n.

Thus we cannot construct a pandiagonal square of the third

order.

Next I will show that, if n is not a multiple of 3, these

conditions are satisfied when a = l, 6 = 2, h=0, k= — l, and

therefore that in this case these values provide a particular

solution of the general problem. It is at once obvious that

in this case a and b are unequal, not zero, and prime to n,

that 6 -f a and b — a are prime to n, and that the correspond-

ing relations for u and v are true. The remaining condition

for the validity of a rule based on these particular steps is

that it shall be impossible to find integral values of p and q

each less than n, which will simultaneously make p = ^q, and

2p = — dq. This condition is satisfied. Hence, any odd pan-

diagonal square of an order which is not a multiple of 3 can be

constructed by this rule. Thus, to form a pandiagonal square

of the fifth order we may put 1 in any cell; proceed by four

successive steps, like a knight's move, of one cell to the right

and two cells up, writing consecutively numbers 2, 3, 4, 5 in

each cell, until we come to a cell already occupied ; then take

one step, like a rook's move, one cell down, and so on until the

square is filled. This is illustrated by the square delineated

in figure xvi.

Further discussion of the general case depends on whether

or not n is prime ; here I will confine myself to the simpler
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alternative, and assume that n is prime : this will sufficiently

illustrate the theory. From the above relations it follows that

we cannot have pqa (k — h) = pqb (h — a), that is, ^iq (ak — bh) = 0.

Therefore ak — bh cannot be a multiple of n, that is, it must be

prime to n. If this condition is fulfilled, as well as the other

conditions given above, each cross-step {h, k) can be made in

due sequence, and the square can be constructed. The result

that ak — bh is prime to n shows that the cross-step (/i, k) must

be chosen so as to take us to an unoccupied ce'^ not in the

same row, column, or diagonal (broken or not) as the initial

number. By noting this fact we can in general place any two

given numbers in two assigned cells.

There are some advantages in having the cross-steps uniform

with the other steps, since, as we shall see later, the square can

then be written in a form symmetrical about the centre. This

will be effected if we take h — — h,k = a. If n is prime our

conditions are then satisfied if h be any number jfrom 2 to

{n — 1)/2, if a be positive and less than b, and if a^ + 6^ be prime

to n. We can, if we prefer, take h = h, k = — a; but it is not

possible to take h = a and k= ^b, or h = — a and k = b, since

they make u=iO or v = 0.

For instance, if we use a knight's move, we may take a—1,

6 = 2. The square of the seventh order given below (figure xviii)

35
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The construction of singly-even pandiagonal sqnares (that is
those whose order is 4m + 2) is impossible, but that of doubly-
even squares (that is, those whose order is 4m) is possible

Here is one way of constructing a doubly-even square.
Suppose the order of the square is 4m. and as before let us
write the number in a cell in the scale 4m, that is, as 4mp + r
so that p and r are the radix and unit-digits, with the conven-
tion that r- cannot be zero. Place p„p„p„ ..„ p^^ ;„ ^rderm the cells m the bottom row. Proceeding from p. by steps
(^m, 1) fill up 2m cells with it. And proceed similarly with
the other radix-digits. Next place r„ n, ..., r,„ in order in
the cells m the first column. Proceeding from r, by steps
(1, 2m) fill up 2m cells with it. And proceed similarly with
the other unit-digits. Then if we take for r„ r„ ..., r,„, the

the values 0, 1, .... 2m -1, 4m -1, .... 2m, the square will be
pand.agonally magic. I leave the demonstration to my readers
The resulting square in the case when m = 1, « = 4, and the pand r subsidiary squares are shown below. This is the square
represented in figure ii on page 137.

3
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cyclically by steps (1, 3). Again in the square delineated in

figure xviii on page 160, 10, 30, 1, 28, 48, 19, 39 form a magic

group connected cyclically by steps (2, 3).

Symmetrical Squares. It has been suggested that we

might impose on the construction of a magic square of the

order n the condition that the sum of any two numbers in

cells geometrically symmetrical to the centre (eoo. gr. 22 and

28 in figure xviii) shall be constant and equal to n' + 1. Such

squares are called Symmetrical.

The construction of odd symmetrical squares of the order n,

when n is prime to 3 and 5, involves no difficulty. We can

begin by placing the mean number in the middle cell and work

from that, either in both directions or forwards, making the

number 1 follow after n^ ; we can also effect the same result by

constructing any pandiagonal square of the order n and then

transposing a certain number of rows and columns. If the rule

given above on page 160, where a = 1, 6 = 2, A = 2, A; = — 1, be

followed, this will lead to placing the number 1 in the (w+3)/2th

cell of the top row : see, for instance, figure xviii.

Such a square must be symmetrical, for if we begin with

the middle number (n^ -\- 1)/2, which I will denote by m, in the

middle cell, and work from it forwards with the numbers ni + l,

m + 2, ..., and backwards with the numbers m—1, m — 2, ...,

the pairs of cells filled by the numbers m + 1 and m — 1, m + 2

and VI — 2, &c., are necessarily situated symmetrically to the

middle cell and the sum of each pair is 2m. I believe this was

first pointed out by McClintock.

The construction of doubly-even symmetrical pandiagonal

squares is also possible, but the analysis is too lengthy for me

to find room for it here.

In a symmetrical square any n such pairs of numbers

together with the number in the middle cell will form a

magic group. For instance in figure xviii, the group 32, 18,

36, 14, 47, 3, and 25 is magic. So also is the group 47, 3, 35,

15, 13, 37, and 25. Thus in a symmetrical pandiagonal square,

even of a low order, there are hundreds of magic groups of

n numbers whose sum is constant.
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Bouhly-Magic Squares. In another species of hyper-magic

squares the problem is to construct a magic square of the «th

order in such a way that if the number in each cell is replaced

by its mth power the resulting square shall also be magic.

Here for example (see figure xxii) is a magic square* of the

eighth order, the sum of the numbers in each line being equal

5
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n numbers so that the sum of the numbers in each line is the

same. Reciprocally we can arrange n^ lines, numbered con-

secutively to form 2n + 2 pencils, each containing n lines, so

that in each pencil the sum of the numbers designating the

lines is the same.

For instance, figure xxiii represents a magic square of 64

1



CH. VIl] MAGIC SQUARES 165

We can proceed a step further, if the resulting figure is

cut by two other parallel lines perpendicular to the axis, and

if all the points of their intersection with the cross-joins be

joined cross-wise, these new cross-joins will intersect on the

Figure xxiv.

axis of the original pencil or on lines perpendicular to it. The

whole figure will now give 8^ lines, arranged in 244 pencils

each of 8 rays, and will be the reciprocal of a magic cube of

the 8th order. If we reciprocate back again we obtain a

representation in a plane of a magic cube.
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Magic Square Puzzles. Many empirical problems, closely

related to magic squares, will suggest themselves; but most

of them are more correctly described as ingenious puzzles

than as mathematical recreations. The following will serve

as specimens.

Magic Card Square*. The first of these is the familiar

problem of placing the sixteen court cards (taken out of a

pack) in the form of a square so that no row, no column, and

neither of the diagonals shall contain more than one card of

each suit and one card of each rank. The solution presents

no difficulty, and is indicated in figure xxvi below. There

are 72 fundamental solutions, each of which by reflexions

and reversals produces 7 others.

Euler's Officers Problemf. A similar problem, proposed

by Euler in 1779, consists in arranging, if it be possible, thirty-

six officers taken fi:om six regiments—the officers being in

six groups, each consisting of six officers of equal rank, one

drawn from each regiment ; say officers of rank a, h, c, d, e, f,

drawn fi:om the 1st, 2nd, 3rd, 4th, 5th, and 6th regiments

—

in a solid square formation of six by six, so that each row and

each file shall contain one and only one officer of each rank and

one and only one officer from each regiment. The problem is

insoluble.

Extension of Eider^s Problem. More generally we may
investigate the arrangement on a chess-board, containing n^

cells, of n^ counters (the counters being divided into n groups,

each group consisting of n counters of the same colour and

numbered consecutively 1, 2, . .
.

, ti), so that each row and each

column shall contain no two counters of the same colour or

marked with the same number. Such arrangements are termed

Eulerian Squares.

* Ozanam, 1723 edition, vol. iv, p. 434.

t Euler's Comvientationes Arithmeticae, St Petersburg, 1849, vol. n, pp. 802—
361. See also a paper by G. Tarry in the Comptes rendus of the French Associ-

ation for the Advancement of Science, Paris, 1900, vol. ii, pp. 170—203 ; and
various notes in L'Intermediaire des Mathematiciens, Paris, vol. m, 1896,

pp. 17, 90 ; vol. V, 1898, pp. 83, 176, 252 ; vol. vi, 1899, p. 251 ; vol. vn, 1900,

pp. 14, 311.
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For instance, if n = 3, with three red counters a^, a^, a^,

three white counters h^, b^, 63, and three black counters Ci, C2, Cg,

we can satisfy the conditions by arranging them as in figure xxv

below. If ?i = 4, then with counters a^, a^, a^, a^) ^1, ^2, ^3>

K; Ci, C3, C3, C4; di, di, di, di, we can arrange them as in

figure XXvi below. A solution when n ^ 5 is indicated in

figure xxvii.
->

a.



168 MAGIC SQUARES [CH. VII

Magic Domino Squares. Analogous problems can be made
with dominoes. An ordinary set of dominoes, ranging from
double zero to double six, contains 28 dominoes. Each
domino is a rectangle formed by fixing two small square

blocks together side by side: of these 56 blocks, eight are

• • •• •

• • • • •

• • • •• • jV»

• • •
• • • • •

•
•
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•
•

•
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CHAPTER VIII.

tJNICURSAL PROBLEMS.

I propose to consider in this chapter some problems which

arise out of the theory of unicursal curves. I shall commence

with Fillers Problem and Theorems, and shall apply ^he results

briefly to the theories of Mazes and Oeometrical Trees. The

reciprocal unicursal problem of the Hamilton Game will be

discussed in the latter half of the chapter.

Euler's Problem. Euler's problem has its origin in a

memoir* presented by him in 1736 to the St Petersburg

Academy, in which he solved a question then under discussion

as to whether it was possible to take a walk in the town of

Konigsberg in such a way as to cross every bridge in it once

and only once.

The town is built near the mouth of the river Pregel,

which there takes the form indicated below and includes the

island of Kneiphof. In the eighteenth century there were

(and according to Baedeker there are still) seven bridges in

the positions shown in the diagram, and it is easily seen that

with such an arrangement the problem is insoluble. Euler

however did not confine himself to the case of Konigsberg, but

discussed the general problem of any number of islands con-

nected in any way by bridges. It is evident that the question

" ' Solutio problematis ad Geometriam situs pertinentis,' Gommentarii
Academiae Scientiarum Petropolitanae for 1736, St Petersburg, 1741, vol. viii,

pp. 128—140. This has been translated into French by M. Ch. Henry; see

Lucas, vol. I, part 2, pp. 21—33.



CH. VIIl] UNICURSAL PROBLEMS 171

will not be affected if we suppose the islands to diminish to

points and the bridges to lengthen out. In this way we

ultimately obtain a geometrical figure or network. In the

Kdnigsberg problem this figure is of the shape indicated below,

the areas being represented by the points A^ B, G, D, and the

bridges being represented by the lines I, m, n, p, q, r, s.

Euler's problem consists therefore in finding whether a

given geometrical figure can be described by a point moving

so as to traverse every line in it once and only once. A more

general question is to determine how many strokes are neces-

sary to describe such a figure so that no line is traversed twice:

this is covered by the rules hereafter given. The figure may

be either in three or in two dimensions, and it may be repre-

sented by lines, straight, curved, or tortuous, joining a number

of given points, or a model may be constructed by taking a

number of rods or pieces of string furnished at each end with

a hook so as to allow of any number of them being connected

together at one point.

The theory of such figures is included as a particular case
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in the propositions proved by Listing in his Topologie*. I

shall, however, adopt here the methods of Euler, and I shall

begin by giving some definitions, as it will enable me to put

the argument in a more concise form.

A node (or isle) is a point to or from which lines are

drawn. A branch (or bridge or path) is a line connecting two

consecutive nodes. An end (or hook) is the point at each

termination of a branch. The order of a node is the number

of branches which meet at it. A node to which only one

branch is drawn is a free node or a free end. A node at which

an even number of branches meet is an even node : evidently

the presence of a node of the second order is immaterial. A
node at which an odd number of branches meet is an odd node.

A figure is closed if it has no free end : such a figure is often

called a closed network.

A route consists of a number of branches taken in con-

secutive order and so that no branch is traversed twice. A
closed route terminates at a point from which it started.

A figure is described unicursally when the whole of it is

traversed in one route.

The following are Euler's results, (i) In a closed net-

work the number of odd nodes is even, (ii) A figure which

has no odd node can be described unicursally, in a re-entrant

route, by a moving point which starts from any point on it.

(iii) A figure which has two and only two odd nodes can be

described unicursally by a moving point which starts from one

of the odd nodes and finishes at the other, (iv) A figure

which has more than two odd nodes cannot be described com-

pletely in one route; to which Listing added the corollary

that a figure which has 2n odd nodes, and no more, can be

described completely in n separate routes. I now proceed to

prove these theorems.

* Die Studien, Gottingen, 1847, part x. See also Tait on ^Listing's Topologie,^

Philosophical Magazine, London, January, 1884, series 5, vol. xvii, pp. 30—46;

and Collected Scientific Papers, Cambridge, vol. n, 1900, pp. 85—98. The
problem was discussed by J. C. Wilson in his Traversing of Geometrical

Figures, Oxford, 1905.
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First, The number of odd nodes in a closed network is

even.

Suppose the number of branches to be b. Therefore the

number of hooks is 26. Let kn be the number of nodes of

the ?ith order. Since a node of the nth. order is one at which

n branches meet, there are n hooks there. Also since the figure

is closed, n cannot be less than 2.

,*. 2k2 + •3^'3 + 4Ar4 + . . . + nkn + . .. = 26.

Hence Sk^ + bk^ + ... is even,

/. Arg + ^5 + ... is even.

Second. A figure which has no odd node can he described

unicursally in a re-entrant route.

Since the route is to be re-entrant it will make no difference

where it commences. Suppose that we start from a node A.

Every time our route takes us through a node we use up one

hook in entering it and one in leaving it. There are no odd

nodes, therefore the number of hooks at every node is even:

hence, if we reach any node except A, we shall always find

a hook which will take us into a branch previously untraversed.

Hence the route will take us finally to the node A from which

we started. If there are more than two hooks at ^, we can

continue the route over one of the branches from A previously

untraversed, but in the same way as before we shall finally

come back to A.

It remains to show that we can arrange our route so as

to make it cover all the branches. Suppose each branch of

the network to be represented by a string with a hook at each

end, and that at each node all the hooks there are fastened

together. The number of hooks at each node is even, and if

they are unfastened they can be re-coupled together in pairs,

the arrangement of the pairs being immaterial. The whole
network will then form one or more closed curves, since now
each node consists merely of two ends hooked together.

If this random coupling gives us one single curve then the
proposition is proved; for starting at any point we shall go
along eveiy branch and come back to the initial point. But
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if this random coupling produces anywhere an isolated loop, i,

then where it touches some other loop, M, say at the node P,

unfasten the four hooks there (viz. two of the loop L and two

of the loop M) and re-couple them in any other order: then

the loop L will become a part of the loop M, In this way,

by altering the couplings, we can transform gradually all the

separate loops into parts of only one loop.

For example, take the case of three isles, A, B, (7, each

connected with both the others by two bridges. The most

unfavourable way of re-coupling the ends at A, B, C would be

to make ABA, ACA, and BOB separate loops. The loops

ABA and ACA are separate and touch at A; hence we should

re-couple the hooks at A so as to combine ABA and ACA into

A

one loop ABACA. Similarly, by re-arranging the couplings

of the four hooks at B, we can combine the loop BCB with

ABACA and thus make only one loop.

I infer from Euler's language that he had attempted to

solve the problem of giving a practical rule which would

enable one to describe such a figure unicursally without

knowledge of its form, but that in this he was unsuccessful.

He however added that any geometrical figure can be de-

scribed completely in a single route provided each part of it

is described twice and only twice, for, if we suppose that every

iM-anch is duplicated, there will be no odd nodes and the figure

is unicursal. In this case any figure can be described com-

pletely without knowing its form : rules to effect this are

given below.

Third. A figure which has two and only two odd nodes can

he described unicursally hy a point which starts from one of the,

odd nodes and finishes at the other odd node.
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This at once reduces to the second theorem. Let A and Z

be the two odd nodes. First, suppose that Z is not a free

end. We can, of course, take a route from A to Z; if we

imagine the branches in this route to be eliminated, it will

remove one hook from A and make it even, will remove two

hooks from every node intermediate between A and Z and

therefore leave each of them even, and will remove one hook

from Z and therefore will make it even. All the remaining

network is now even: hence, by Euler's second proposition,

it can be described unicursally, and, if the route begins at Z,

it will end at Z. Hence, if these two routes are taken in

succession, the whole figure will be described unicursally, be-

ginning at A and ending at Z. Second, if Z is a free end,

then we must travel from Z to some node, Y, at which more

than two branches meet. Then a route from A to Y which

covers the whole figure exclusive of the path from Y to Z can

be determined as before and must be finished by travelling

from Y to Z.

Fourth. A figure having 2n odd nodes, and no more, can

he described completely in n separate routes, n being a positive

number.

If any route starts at an odd node, and if it is continued

until it reaches a node where no fresh path is open to it, this

latter node must be an odd one. For every time we enter an

even node there is necessarily a way out of it; and similarly

every time we go through an odd node we use up one hook in

entering and one hook in leaving, but whenever we reach it

as the end of our route we use only one hook. If this route

is suppressed there will remain a figure with 2n — 2 odd nodes.

Hence n such routes will leave one or more networks with

only even nodes. But each of these must have some node

common to one of the routes already taken and therefore

can be described as a part of that route. Hence the com-

plete passage will require n and not more than n routes. It

follows, as stated by Euler, that, if there are more than two

odd nodes, the figure cannot be traversed completely in one

route.



176 UMICURSAL PROBLEMS [CH. VIII

The Konigsberg bridges lead to a network with four odd

nodes; hence, by Euler's fourth proposition, it cannot be

described unicursally in a single journey, though it can be

traversed completely in two separate routes.

The first and second diagrams figured below contain only

even nodes, and therefore each of them can be described uni-

cursally. The first of these is a regular re-entrant pentagon

;

the second is the so-called sign-manual of Mohammed, said to

have been originally traced in the sand by the point of his

scimetar without taking it off the ground or retracing any part

of the figure—which, as it contains only even nodes, is possible.

The third diagram is taken fi:om Tait's article : it contains

only two odd nodes, and therefore can be described unicursally

if we start from one of them, and finish at the other.

^4 ^^7
The re-entrant pentagon, figured above, has some interest

from having been used by the Pythagoreans as a sign—known

as the triple triangle or pentagram star—by which they could

recognize one another. It was considered symbolical of health,

and probably the angles were denoted by the letters of the word

vyUta, the diphthong et being replaced by a 6. lamblichus, who
is our authority for this, tells us that a certain Pythagorean, when
travelling, fell ill at a roadside inn where he had put up for

the night ; he was poor and sick, but the landlord, who was a

kind-hearted fellow, nursed him carefully and spared no trouble

or expense to relieve his pains. However, in spite of all efforts,

the student got worse. Feeling that he was djdng and unable

to make the landlord any pecuniary recompense, he asked for

a board on which he inscribed the pentagram star; this he

gave to his host, begging him to hang it up outside so that

all passers by might see it, and assuring him that the result
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would recompense him for his charity. The scholar died and

was honourably buried, and the board was duly exposed. After

a considerable time had elapsed, a traveller one day riding by

saw the sacred symbol ; dismounting, he entered the inn, and

after hearing the story, handsomely remunerated the landlord.

Such is the anecdote, which if not true is at least well found.

As another example of a unicursal diagram I may mention

the geometrical figure formed by taking a (2n + l)gon and

joining every angular point to every other angular point. The
edges of an octahedron also form a unicursal figure. On the

other hand a chess-board, divided as usual by straight lines

into 64 cells, has 28 odd nodes: hence it would require

14 separate pen-strokes to trace out all the boundaries

without going over any more than once. Again, the diagram

on page 117 has 20 odd nodes and therefore would require

10 separate pen-strokes to trace it out.

It is well known that a curve which has as many nodes as

is consistent with its degree is unicursal.

I turn next to discuss in how many ways we can describe a

unicursal figure, all of whose nodes are even*.

Let us consider first how the problem is affected by a path

which starts from a node A of order 2n and returns to it,

forming a closed loop L. If this loop were suppressed we

should have a figure with all its nodes even, the node A
being now of the order 2(w— 1). Suppose the original figure

can be described in N ways, and the reduced figure in N' ways.

Then each of these N' routes passes (n— 1) times through A,

and in any of these passages we could describe the loop L in

either sense as a part of the path. Hence N =2{n — l) N'.

Similarly if the node A on the original figure is ot the order

2 {u + l)y and there are I independent closed loops which start

from and reiurn to -4, we shall have

N= 2hi (m -f- 1) (/z + 2) . . . (71 + ^ - 1 ) iV",

where N' is the number of routes by which the figure obtained

by suppressing these I loops can be described.

* See G. Tarry, Association J^'ranc^aise pour VAvancement de$ Sciences, 1886,

pp. 49—53.

B. R. 12



178 UNICURSAL PROBLEMS [CH. VIII

By the use of these results, we may reduce any unicursal

figure to one in which there are no closed loops of the kind

above described. Let us suppose that in this reduced figure

there are k nodes. We can suppress one of these nodes, say A^

provided we replace the figure by two or more separate figures

each of which has not more than k — 1 nodes. For suppose

that the node A is of the order 2n, Then the 2/1 paths which

meet at A may be coupled in n pairs in 1 . 3 . 5 ... (2?i— 1)

ways and each pair will constitute either a path through J.,

or (in the special case where both members of the pair abut on

another node B) a loop from A, This path or loop will form

a portion of the route through A in which this pair of paths

are concerned. Hence the number of ways of describing the

original figure is equal to the sum of the number of ways of

describing 1.3.5... (2n — 1) separate simpler figures.

It will be seen that the process consists in successively

suppressing node after node. Applying this process continually

we finally reduce the figure to a number of figures without

loops and in each of which there are only two nodes. If in one

of these figures these nodes are each of the order 2/1 it is easily

seen that it can be described in 2 x {2n — 1)! ways.

We know that a figure with only two odd nodes, A and B,

is unicursal if we start at A (or B) and finish at B (or A).

Hence the number of ways in which it can be described uni-

cursally will be the same as the number required to describe

the figure obtained from it by joining A and B. For if we

start at A it is obvious that at the B end of each of the routes

which cover the figure we can proceed along BA to the node

A whence we started.

This theory has been applied by Monsieur Tarry* to deter-

mine the number of ways in which a set of dominoes, running

up to even numbers, can be arranged. This example will serve

to illustrate the general method.

A domino consists of a small rectangular slab, twice as

long as it is broad, whose face is divided into two squares,

* See the second edition of the French Translation of this work, Paris, 1908,

vol. u, pp. 253—263 ; see also Lucas, vol. iv, pp. 145—150.
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which are either blank or markod with 1, 2, 3... dots. An
ordinary set contains 28 dominoes marked 6-6, 6-5, 6-4, 6-3,

6-2, 6-1, 6-0, 5-5, 5-4, 5-3, 5-2, 5-1, 5-0, 4-4, 4-3, 4-2, 4-li

4-0, 3-3, 3-2, 3-1, 3-0, 2-2, 2-1, 2-0, 1-1, 1-0, and 0-0.

Dominoes are used in various games in most, if not all, of

which the pieces are played so as to make a line such that

consecutive squares of adjacent dominoes are marked alike.

Thus if 6-3 is on the table the only dominoes which can be

placed next to the 6 end are 6-6, 6-5, 6-4, 6-2, 6-1, or 6-0.

Similarly the dominoes 3-5, 3-4, 3-3, 3-2, 3-1, or 3-0, can

be placed next to the 3 end. Assuming that the doubles

are played in due course, it is easy to see that such a set of

dominoes will form a closed circuit*. We want to determine

the number of ways in which such a line or circuit can be formed.

Let us begin by considering the case of a set of 15 dominoes

marked up to double-four. Of these 15 pieces, 5 are doubles.

The remaining 10 dominoes may be represented by the sides

and diagonals of a regular pentagon 01, 02, &c. The intersec-

tions of the diagonals do not enter into the representation,

and accordingly are to be neglected. Omitting these from our

consideration, the figure formed by the sides and diagonals of

the pentagon has five even nodes, and therefore is unicursal.

Any unicursal route (ex. gr. 0-1, 1-3, 3-0, 0-2, 2-3, 3-4, 4-1,

1-2, 2-4, 4-0) gives one way of arranging these 10 dominoes.

Suppose there are a such routes. In any such route we may
put each of the five doubles in any one of two positions {ex. gr.

* Hence if we remove one domino, say 5-4, we know that the line formed bj
the rest of the dominoes must end on one side in a 5 and on the other in a 4.

12—2
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in the route given above the double-two can be put between

0-2 and 2-3 or between 1-2 and 2-4). Hence the total

number of unicursal arrangements of the 15 dominoes is 2^a.

If we arrange the dominoes in a straight line, then as we

may begin with any of the 15 dominoes, the total number of

arrangements is 15 .
2**

. a.

We have next to find the number of unicursal routes of

the pentagon delineated above in figure A. At the node

there are four paths which may be coupled in three pairs. If

1 and 2 are coupled, as also 3 and 4, we get figure B.

If 1 and 3 are coupled, as also 2 and 4, we get figure G,

If 1 and 4 are coupled, as also 2 and 3, we get figure D.

Figure B. Figure G. Figure D.

Let us denote the number of ways of describing figure B by 6,

of describing figure C by c, and so on. The effect of suppressing

the node in the pentagon A is to give us three quadrilaterals,

5, C, B. And, in the above notation, we have a = h -\- c-\-d.

Take any one of these quadrilaterals, for instance D. We
can suppress the node 1 in it by coupling the four paths which

meet there in pairs. If we couple 1 2 with the upper of the

paths 1 4, as also 1 3 with the lower of the paths 1 4, we get

Figure E. Figure F.

the figure E. If we couple 1 2 with the lower of the paths 1 4,

as also 1 3 with the upper of the paths 1 4, we again get the

figure E. If we couple 1 2 and 1 3, as also the two paths 1 4,

we get the figure F. Then as above, d = 2e-^f. Similarly

b = 2e +/, and c = 2e +/. Hence a — b-^c-rd = Qe-\-Sf,
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We proceed to consider each of the reduced figures E and

F. First take E, and in it let us suppress the node 4. For

simplicity of description, denote the two paths 2 by y8 and

/9', and the two paths 4 3 by 7 and 7. Then we can couple /?

and 7, as also 13' and 7', or we can couple /S and y, as also /9'

and 7 : each of these couplings gives the figure 0. Or we can

couple /3 and 13', as also 7 and 7 : this gives the figure H. Thus
e=2g + h. Each of the figures G and H has only two nodes.

Hence by the formulae given above, we have ^ = 2.3.2=12,
and /i = 2.2.2 = 8. Therefore e = 2g+h = ^2. Next take

the figure F. This has a loop at 4. If we suppress this

Q^- ^0

Figure G. Figure H. Figure J.

loop we get the figure J, and /= 2j. But the figure /, if

we couple the two lines which meet at 4, is equivalent

to the figure G. Thus /= 2j = 2g = 24. Introducing these

results we have a = 6e + Sf= 192 + 72 = 264. And therefore

iV=15.2^a=126720. This gives the number of possible

arrangements in line of a set of 15 dominoes. In this solution

we have treated an arrangement from right to left as distinct

from one which goes from left to right : if these are treated

as identical we must divide the result by 2. The number of

arrangements in a closed ring is 2^a, that is 8448.

We have seen that this number of unicursal routes for a

pentagon and its diagonals is 264. Similarly the number for

a heptagon is h= 129976320. Hence the number of possible

arrangements in line of the usual set of 28 dominoes, marked

up to double-six, is 28 . 3^ h, which is equal to 7959229931520.

The number of unicursal routes covering a polygon of nine

sides is n = 2l^ 3^^ 5^ . 711 . 40787. Hence the number of

possible arrangements in line of a set of 45 dominoes marked

up to double-eight is 48 . 4^ . n*.

* These numerical conclusions have also been obtained by algebraical

analysis : see M. Reiss, Aniiali di Matematica, Milan, 1871, vol. v, pp. 63—120.
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Mazes. Everyone has read of the labyrinth of Minos in

Crete and of Rosamund's Bower. A few modem mazes exist

here and there—notably one, a very poor specimen of its

kind, at Hampton Court—and in one of these, or at any

rate on a drawing of one, most people have at some time

threaded their way to the interior. I proceed now to consider

the manner in which any such construction may be completely

traversed even by one who is ignorant of its plan.

The theory of the description of mazes is included in

Euler's theorems given above. The paths in the maze are

what previously we have termed branches, and the places

where two or more paths meet are nodes. The entrance to

the maze, the end of a blind alley, and the centre of the maze

are free ends and therefore odd nodes.

If the only odd nodes are the entrance to the maze and the

centre of it—which will necessitate the absence of all blind

alleys—the maze can be described unicursally. This follows

from Euler's third proposition. Again, no matter how many

odd nodes there may be in a maze, we can always find a

route which will take us from the entrance to the centre

without retracing our steps, though such a route will take us

through only a part of the maze. But in neither of the cases

mentioned in this paragraph can the route be determined

without a plan of the maze.

A plan is not necessary, however, if we make use of Euler's

suggestion, and suppose that every path in the maze is dupli-

cated. In this case we can give definite rules for the complete

description of the whole of any maze, even if we are entirely

ignorant of its plan. Of course to walk twice over every path

in a labyrinth is not the shortest way of arriving at the centre,

but, if it is performed correctly, the whole maze is traversed,

the arrival at the centre at some point in the course of the

route is certain, and it is impossible to lose one's way.

I need hardly explain why the complete description of

such a duplicated maze is possible, for now every node is even,

and hence, by Euler's second proposition, if we begin at the

entrance we can traverse the whole maze; in so doing we
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shall at some point arrive at the centre, and finally shall

emerge at the point from which we started. This description

will require us to go over every path in the maze twice, and

as a matter of fact the two passages along any path will be

always made in opposite directions.

If a maze is traced on paper, the way to the centre is

generally obvious, but in an actual labyrinth it is not so easy

to find the correct route unless the plan is known. In order

to make sure of describing a maze without knowing its plan it

is necessary to have some means of marking the paths which

we traverse and the direction in which we have traversed them
—for example, by drawing an arrow at the entrance and end

of every path traversed, or better perhaps by marking the

wall on the right-hand side, in which case a path may not be

entered when there is a mark on each side of it.

Of the various practical rules for threading a maze those

enunciated by M. Tremaux seem to be the simplest*. These

I proceed to explain. For brevity I shall describe a path or a

node as old or new according as it has been traversed once

before or not at all. Then the rules are (i) whenever you come

to a new node, take any path you like
;

(ii) whenever you come

by a new path to an old node or to the closed end of a blind

alley, turn back along the path by which you have just come

;

(iii) whenever you come by an old path to an old node, take a

new path, if there is one, but if not, an old path
;
(iv) of course

a path traversed twice must not be entered. I should add that

on emerging at any node then, of the various routes which are

permitted by these rules, it will be convenient always to select

that which lies next to one's right hand, or always that which

lies next to one's left hand.

Few if any mazes of the type I have been considering

(namely, a series of interlacing paths through which some

route can be obtained leading to a space or building at the

centre of the maze) existed in classical or medieval times.

One class of what the ancients called mazes or labyrinths seems

to have comprised any complicated building with numerous

* Lucas, vol. I, part iii, p. 47 et aecj.
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vaults and passages*. Such a building might be termed a

labyrinth, but it is not what is now usually understood by the

word. The above rules would enable anyone to traverse the

whole of any structure of this kind. I do not know if there

are any accounts or descriptions of Rosamund's Bower other

than those by Drayton, Bromton, and Knyghton: in the

opinion of some, these imply that the bower was merely a

house, the passages in which were confusing and ill-arranged.

Another class of ancient mazes consisted of a tortuous path

confined to a small area of ground and leading to a tree or

shrine in the centre f. This is a maze in which there is no

chance of taking a wrong turning; but, as the whole area

can be occupied by the windings of one path, the distance

to be traversed from the entrance to the centre may be

considerable, even though the piece of ground covered by the

maze is but small.

Figure i. Figure ii.

The traditional form of the labyrinth constructed for the

Minotaur is a specimen of this class. It was delineated on

the reverses of the coins of Cnossus, specimens of which are

not uncommon ; one form of it is indicated in the accompanying

diagram (figure i). The design really is the same as that

* For instance, see the descriptions of the labyrinth at Lake Moeris given

by Herodotus, bk. ii, c. 148; Strabo, bk. xvii, c. 1, art. 37; Diodorus, bk. i,

cc. 61, 66; and Pliny, Hist. Nat., bk. xxxvi, c. 13, arts. 84—89. On these and

other references see A. Wiedemann, Herodots zweites Buck, Leipzig, 1890,

p. 522 et seq. See also Virgil, Aeneid, bk. v, c. v, 588; Ovid, Met., bk. viii, c. 5,

159; Strabo, bk. viii, c. 6.

t On ancient and medieval labyrinths—particularly of this kind—see an

article by Mr E. Trollope in The Archaeological Journal, 1858, vol. xv, pp. 216

—

235, from which much of the historical information given above is derived.
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drawn in fisfiire ii, as can be easily seen by bending round a

circle the rectangular figure there given.

Mr Inwards has suggested* that this design on the coins

of Cnossus may be a survival from that on a token given by

the priests as a clue to the right path in the labyrinth there.

Taking the circular form of the design shown above he sup-

posed each circular wall to be replaced by two equidistant

walls separated by a path, and thus obtained a maze to which

the original design would serve as the key. The route thus

indicated may be at once obtained by noticing that when a

node is reached (i.e. a point where there is a choice of paths)

the path to be taken is that which is next but one to that

by which the node was approached. This maze may be also

threaded by the simple rule of always following the wall on

the right-hand side or always that on the left-hand side.

The labyrinth may be somewhat improved by erecting a few

additional barriers, without affecting the applicability of the

above rules, but it cannot be made really difficult. This

makes a pretty toy, but though the conjecture on which it is

founded is ingenious it has no historical justification. Another

suggestion is that the curved line on the reverse of the coins

indicated the form of the rope held by those taking part in

some rhythmic dance ; while others consider that the form was

gradually evolved from the widely prevalent svastika.

Copies of the maze of Cnossus were frequently engraved on

Greek and Roman gems ; similar but more elaborate designs

are found in numerous Roman mosaic pavements f. A copy

of the Cretan labyrinth was embroidered on many of the state

robes of the later Emperors, and, ajoparently thence, was

copied on to the walls and floors of various churches J. At
a later time in Italy and in France these mural and pavement

decorations were developed into scrolls of great complexity,

but consisting, as far as I know, always of a single line. Some
of the best specimens now extant are on the walls of the

* Knotoledge, London, October, 1892.

t See ex. gr. Breton's Pompeia, p. 303.

f Ozanam, Graphia aureae urbis Romae, pp. 92, 178.
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cathedrals at Lucca, Aix in Provence, and Poitiers; and on

the floors of the churches of Santa Maria in Trastevere at

Rome, San Vitale at Ravenna, Notre Dame at St Omer, and

the cathedral at Chartres. It is possible that they were used

to represent the journey through life as a kind of pilgrim's

progress.

In England these mazes were usually, perhaps always, cut

in the turf adjacent to some religious house or hermitage : and

there are some slight reasons for thinking that, when traversed

as a religious exercise, a jpater or ave had to be repeated at

every turning. After the Renaissance, such labyrinths were

frequently termed Troy-Towns or Julian's Bowers. Some of

the best specimens, which are still extant, or were so until

recently, are those at Rockliff Marshes, Cumberland ; Asenby,

Yorkshire ; Alkborough, Lincolnshire ; Wing, Rutlandshire

;

Boughton-Green, Northamptonshire ; Comberton, Cambridge-

shire; Saffron Walden, Essex; and Chilcombe, near Winchester.

Maze at Hampton Court.

The modern maze seems to have been introduced—probably

from Italy—during the Renaissance, and many of the palaces

and large houses built in England during the Tudor and the

Stuart periods had labyrinths attached to them. Those

adjoining the royal palaces at Southwark, Greenwich, and

Hampton Court were well known from their vicinity to

the capital. The last of these was designed by London and

Wise in 1690, for William III, who had a fancy for such

conceits: a plan of it is given in various guide-books. For

the majority of the sight-seers who enter, it is sufficiently
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elaborate ; but it is an indifferent construction, for it can be

described completely by always following the hedge on one

side (either the right hand or the left hand), and no node is

of an order higher than three.

Unless at some point the route to the centre forks and

subsequently the two forks reunite, forming a loop in which

the centre of the maze is situated, the centre can be reached

by the rule just given, namely, by following the wall on one

side—either on the right hand or on the left hand. No
labyrinth is worthy of the name of a puzzle which can be

threaded in this way. Assuming that the path forks as

described above, the more numerous the nodes and the higher

their order the more difficult will be the maze, and the

difficulty might be increased considerably by using bridges and

tunnels so as to construct a labyrinth in three dimensions.

In an ordinary garden and on a small piece of ground, often

of an inconvenient shape, it is not easy to make a maze which

fulfils these conditions. Here is a plan of one which I put up

in my own garden on a plot of ground which would not allow

of more than 36 by 23 paths, but it will be noticed that none

of the nodes are of a high order.
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Geometrical Trees. Euler's original investigations were

confined to a closed network. In the problem of the maze it

was assumed that there might be any number of blind alleys

in it, the ends of which formed free nodes. We may now

progress one step further, and suppose that the network or

closed part of the figure diminishes to a point. This last

arrangement is known as a ti^ee. The number of unicursal

descriptions necessary to completely describe a tree is called

the base of the ramification.

We can illustrate the possible form of these trees by rods,

having a hook at each end. Starting with one such rod, we

can attach at either end one or more similar rods. Again,

on any free hook we can attach one or more similar rods,

and so on. Every free hook, and also every point where two

or more rods meet, are what hitherto we have called nodes.

The rods are what hitherto we have termed branches or paths.

The theory of trees—which already plays a somewhat

important part in certain branches of modern analysis, and

possibly may contain the key to certain chemical and biological

theories—originated in a memoir by Cayley*, written in

1856. The discussion of the theory has been analytical rather

than geometrical. I content myself with noting the following

results.

The number of trees with n given nodes is n'^~'\ If An is

the number of trees with n branches, and Bn the number of

trees with n free branches which are bifurcations at least,

then

{1 - x)-^ (1 - x^)-^^ (1 - a^)-^' = 1 + A,x + A^oc' + A,x^ + ..,,

(1 - x)-^ (l - x'')-^^- (1 - x')-^^ = l-\-x + 2B,x' + 2B,x' + ....

Philosophical Magazine, March, 1857, series 4, vol. xra, pp. 172—176 ; or

Collected Works, Cambridge, 1890, vol. iii, no. 203, pp. 242—216 : see also the

paper on double partitions, Philosophical Magazine, November, 18G0, series 4,

vol. XX, pp. 337—341. On the number of trees with a given number of nodes,

see the Quarterly Journal of Mathematics, London, 1889, vol. xxiii, pp. 376—378.

The connection with chemistry was first pointed out in Cayley's paper on

isomers, Philosophical Magazine, June, 1874, series 4, vol. xlvii, pp. 444—447,

and was treated more fully in his report on trees to the British Association in

1875, Reports, pp. 257—305.
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Using tliese formulae we can find successively the values of

Ai,A2, ..., and Bi, B^, .... The values of An when n = 2, 3, 4,

5, 6, 7, are 2, 4, 9, 20, 48, 115; and of B^ are 1, 2, 5, 12, 33,

90

I turn next to consider some problems where it is desired

to find a route which will pass once and only once through

each node of a given geometrical figure. This is the reciprocal

of the problem treated in the first part of this chapter, and is

a far more difficult question. I am not aware that the general

theory has been considered by mathematicians, though two

special cases—namely, the Hamiltonian (or Icosian) Game and

the Knight's Path on a Chess-Board—have been treated in

some detail.

The Hamiltonian Game. The Hamiltonian Game consists

in the determination of a route along the edges of a regular

dodecahedron which will pass once and only once through

every angular point. Sir William Hamilton*, who invented

this game—if game is the right term for it—denoted the

twenty angular points on the solid by letters which stand for

various towns. The thirty edges constitute the only possible

paths. The inconvenience of using a solid is considerable,

and the dodecahedron may be represented conveniently in

perspective by a flat board marked as shown in the first of

the annexed diagrams. The second and third diagrams will

answer our purpose equally well and are easier to draw.

* See Quarterly Journal of Mathematics, London, 1862, voL v, p. 305 ; or

Philosophical 2Iagazine, January, 1884, series 5. vol. xvii, p. 42; also Lucas,

vol. II, part vii.
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The first problem is to go "all round the world," that is,

starting from any town, to go to every other town once and

only once and to return to the initial town ; the order of the

n towns to be first visited being assigned, where n is not

greater than five.

Hamilton's rule for effecting this was given at the meeting

in 1857 of the British Association at Dublin. ' At each

angular point there are three and only three edges. Hence,

if we approach a point by one edge, the only routes open to

us are one to the right, denoted by r, and one to the left,

denoted by I. It will be found that the operations indicated

on opposite sides of the following equalities are equivalent,

lrH = rlry rl^r=lrl, lrH = r^, rl^r = l\

Also the operation Z^ or r^ brings us back to the initial point:

we may represent this by the equations

To solve the problem for a figure having twenty angular

points we must deduce a relation involving twenty successive

operations, the total effect of which is equal to unity. By
repeated use of the relation l^^rl^r we see that

1 = ^ = ^2^3 = {rl^r) I' = {rl^Y = K (^^'^) ^1"

= {rH^rlY = jr^ (rl^r) IrlY = {r^Mrl]\

Therefore {r'l'(riyY=l (i),

and similarly {ZV (Zr^j^ = 1 (ii).

Hence on a dodecahedron either of the operations

rrrlllrlrlrrrlllrlrl ... (i),

II I r r r I r I r I I Irrrlrlr... (ii),

indicates a route which takes the traveller through every town.

The arrangement is cyclical, and the route can be commenced

at any point in the series of operations by transferring the

proper number of letters from one end to the other. The

point at which we begin is determined by the order of certain

towns which is given initially.
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Thus, suppose that, we are told that we start from F and

then successively go to B, A^ U, and T, and we want to find

a route from T through all the remaining towns which will

end at F. If we think of ourselves as coming into F from

G, the path FB would be indicated by ^, but if we think of

ourselves as coming into F from E, the path FB would be

indicated by n The path from J5 to ^ is indicated by I,

and so on. Hence our first paths are indicated either by lllr

or hy rllr. The latter operation does not occur either in (i)

or in (ii), and therefore does not fall within our solutions. The
former operation may be regarded either as the 1st, 2nd, 3rd,

and 4th steps of (ii), or as the 4th, 5th, 6th, and 7th steps

of (i). Each of these leads to a route which satisfies the

problem. These routes are

FBA UTPONGDEJKLMQRSHGF,
and FBAVTSRKLMQPONGDEJHGF.

It is convenient to make a mark or to put down a counter

at each corner as soon as it is reached, and this will prevent

our passing through the same town twice.

A similar game may be played with other solids provided

that at each angular point three and only three edges meet.

Of such solids a tetrahedron and a cube are the simplest

instances, but the reader can make for himself any number of

plane figures representing such solids similar to those drawn
on page 189. Some of these were indicated by Hamilton.

In all such cases we must obtain from the formulae analogous

to those given above cyclical relations like (i) or (ii) there

given. The solution will then follow the lines indicated above.

This method may be used to form a rule for describing any

maze in which no node is of an order higher than three.

For solids having angular points where more than three

edges meet—such as the octahedron where at each angular

point four edges meet, or the icosahedron where at each

angular point five edges meet—we should at each point have

more than two routes open to us; hence (unless we suppress

some of the edges) the symbolical notation would have to be
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extended before it could be applied to these solids. I offer

the suggestion to anyone who is desirous of inventing a new

game.

Another and a very elegant solution of the Hamiltonian

dodecahedron problem has been given by M. Hermary. It

consists in unfolding the dodecahedron into its twelve penta-

gons, each of which is attached to the preceding one by only

one of its sides; but the solution is geometrical, and not

directly applicable to more complicated solids.

Hamilton suggested as another problem to start from any

town, to go to certain specified towns in an assigned order,

then to go to every other town once and only once, and to end

the journey at some given town. He also suggested the con-

sideration of the way in which a certain number of towns

should be blocked so that there was no passage through them,

in order to produce certain effects. These problems have not,

so far as I know, been subjected to mathematical analysis.

The problem of the knight's path on a chess-board is some-

what similar in character to the Hamiltonian game. This I

have already discussed in chapter VI.
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CHAPTER IX.

kirkman's school-girls problem.

The Fifteen School-Girls Problem—first enunciated b}'

T. P. Kirkman, and commonly known as Kirhnans Problem

—consists in arranging fifteen things in ditferent sets of

triplets. It is usually presented in the form that a school-

mistress was in the habit of taking her girls for a daily walk.

The girls were fifteen in number, and were arranged in five

row^s of three each so that each girl might have two companions.

The problem is to dispose them so that for seven consecutive

days no girl will walk with any of her school-fellows in any

triplet more than once.

In the general problem, here discussed, we require to

arrange n girls, where n is an odd multiple of 3, in triplets to

walk out for y days, where y = (n — l)/2, so that no girl will

walk with any of her school-fellows in any triplet more than once.

The theory of the formation of all such possible triplets in

the case of nine girls is comparatively easy, but the general

theory involves considerable difficulties. Before describing any

methods of solution, I will give briefly the leading facts in the

history of the problem. For this and much of the material of

this chapter I am indebted to 0. Eckenstein. Detailed refer-

ences to the authorities mentioned are given in the bibliography

mentioned in the footnote*.

* The problem was first published in the Lady's and Gentleman's Diary for

1850, p. 48, and has been the subject of numerous memoirs. A bibliography

of the problem by 0. Eckenstein appeared in the Messenger of Mathematics,

Cambridge, July, 1911, vol. xli, pp. 33—36,

B. R. 13
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The question was propounded in 1850, and in the same year

solutions were given for the cases when n = 9, 15, and 27 ; but

the methods used were largely empirical.

The first writer to subject it to mathematical analysis was

R. E,. Anstice who, in 1852 and 1853, described a method for

solving all cases of the form 12m + 3 when 6m +1 is prime.

He gave solutions for the cases when n=15, 27, 89. Sub-

stantially, his process, in a somewhat simplified form, is covered

by that given below under the heading Analytical Methods.

The next important advance in the theory was due to

B. Peirce who, in 1860, gave cyclical methods for solving all

cases of the form 12?7i + 8 and 24??i + 9. But the processes

used were complicated and partly empirical.

In 1871 A. H. Frost published a simple method applicable

to the original problem when ?i = 15 and to all cases when n is

of the form 2""* — 1. It has been applied to find solutions

when 71 = 15 and ?i = 63.

In 1883 E. Marsden and A. Bray gave three-step cyclical

solutions for 21 girls. These were interesting because Kirkman

had expressed the opinion that this case was insoluble.

Another solution when n = 21, by T. H. Gill, was given in

the fourth edition of this book in 1905. His method though

empirical appears to be applicable to all cases, but for high

values of n it involves so much preliminary work by trial and

error as to be of little value.

A question on the subject which I propounded in the

Educational Times in 1906, attracted the attention of L. A.

Legros, H. E. Dudeney and 0. Eckenstein, and I received from

them a series of interesting and novel solutions. As illustra-

tions of the processes used, Dudeney published new solutions

for 71= 27, S3, 51, 57, 69, 75, 87, 93, 111 ; and Eckenstein for

71= 27, 38, 39, 45, 51, 57, 69, 75, 93, 99, 111, 123, 135.

I now proceed to describe some of the methods applicable

to the problem. We can use cycles and combinations of them.

I confine my discussion to processes where the steps of the

cycles do not exceed three symbols at a time. It will be con-

venient to begin with the easier methods, where however a
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certain amount of arrangement has to be made empirically, and

then to go on to the consideration of the more general method.

One-Step Cycles. As illustrating solutions by one-step

cyclical permutations I will first describe Legros's method.

Solutions obtained by it can be represented by diagrams, and

their use facilitates the necessary arrangements. It is always

applicable when n is of the form 24??! + 3, and seems to be

also applicable when n is of the form 24??i + 9. Somewhat
similar methods were used by Dudeney, save that he made

no use of geometrical constructions.

We have ?i = 2y -f 1 = 24??i + 3 or n= 2y -[-1 - 24m + 9.

We may denote one girl by k, and the others by the numbers

1, 2, 3, ... 2y. Place k -at the centre of a circle, and the

numbers 1, 2, 3, ... 2y at equidistant intervals on the circum-

ference. Thus the centre of the circle and each point on its

circumference will indicate a particular girl. A solution in

which the centre of the circle is used to denote one girl is

termed a central solution.

The companions of k are to be different on each day. If we

suppose that on the first day they are 1 and y+1, on the

second 2 and y + 2, and so on, then the diameters through k

will give for each day a triplet in which k appears. On each

day we have to find 2{y — l)/3 other triplets satisfying the

conditions of the problem. Every triplet formed from the

remaining 2?/ — 2 girls will be represented by an inscribed

triangle joining the points representing these girls. The sides

of the triangles are the chords joining these 2^—2 points.

These chords may be represented symbolically by [1], [2],

[3], ... [i/— 1]; these numbers being proportional to the smaller

arcs subtended. I will denote the sides of a triangle so repre-

sented by the letters p, q, r, and I will use the term triad or

grouping to denote any group of p, q, r which determines the

dimensions of an inscribed triangle. I shall place the numbers

of a triad in square brackets. If p, q, r are proportional to

the smaller arcs subtended, it is clear that ii p -\- q is less

than y, we have p -\-q = r', and if ^ 4- ^^ is greater than y we

have p + q-\-r= 2y. If we like to use arcs larger than the

13—2
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semi-circnmference we mav confine ourselves to the relation

'p-\-q — r. In the geometrical methods described below, we

usually first determine the dimensions of the triangles to be

used in the solution, and then find how they are to be arranged

in the circle.

If (y — l)/3 scalene triangles, whose sides are jt?, g, r, can be

inscribed in the circle so that to each triangle corresponds an

equal complementary triangle having its equal sides parallel to

those of the first and with its vertices at free points, then the

system of 2 (3/
— l)/3 triangles with the corresponding diameter

will give an arrangement for one day. If the system be per-

muted cyclically 3/
— 1 times we get arrangements for the other

y — \ days. No two girls will walk together twice, for each

chord occupies a different position after each permutation, and

as all the chords forming the (3/
— 1)/.3 triangles are unequal the

same combination cannot occur twice. Since the triangles are

placed in complementary pairs, one being y points in front of

the other, it follows that after y — \ permutations we shall

come to a position like the initial one, and the cycle will be

completed. If the circle be drawn and the triangles cut out

to scale, the arrangement of the triangles is facilitated. The

method will be better understood if I apply it to one or two of

the simpler cases.

The first case is that of three girls, a, 6, c, walking out for

one day, that is, w = 3, m = 0, 3/ = 1. This involves no discussion,

the solution being (a. 6. c).

The next case is that of nine girls walking out for four days,

that is, ?i = 9, m = Oj 3/ = 4. The first triplet on the first day

is (1. h. 5). There are six other girls represented by the points

2, 3, 4, 6, 7, 8. These points can be joined so as to form

triangles, and each triangle will represent a triplet. We want

to find one such triangle, with unequal sides, with its vertices

at three of these points, and such that the triangle formed by

the other three points will have its sides equal and parallel to

the sides of the first triangle.

The sides of a triangle are p, q, r. The only possible values

are 1, 2, 3, and they satisfy the condition p + 5 = r. If a

I
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triangle of this shape is placed with its vertices at the points

3, 4, 6, we can construct a complementary equal triangle, four

points further on, having 7, 8, 2 for its vertices. All the points in

the figure are now joined, and form the three triplets for the first

day, namely (k. 1. 5), (3. 4. 6), (7. 8. 2). It is only necessary

to rotate the figure one step at a time in order to obtain the

triplets for the remaining three days. Another similar solution

is obtained from the diameter (1. k. 5), and the triangles (2. 3. 8),

(6. 7. 4). It is the reflection of the former solution.

Figure i.

The next case to which the method is applicable is when

n — 27, m= 1, y = 13. Proceeding as before, the 27 girls must

be arranged with one of them, k, at the centre and the other 26

on the cu'cumference of a circle. The diameter (1. k. 14) gives

the first triplet on the first day. To obtain the other triplets

we have to find four dissimilar triangles which satisfy the con-

ditions mentioned above. The chords used as sides of these

trianoles may be of the lengths represented symbolically by

[1], [2], ... [12]. We have to group these lengths so that

p-{-q = rovp-\-q-^r=2y; if the first condition can be satis-

fied it is the easier to use, as the numbers are smaller. In this

instance the triads [3, 8, 11], [5, 7, 12], [2, 4, 6], [1, 9, 10]

will be readily found. Now if four triangles with their sides

of these lengths can be arranged in a system so that all the

vertices fall on the ends of different diameters (exclusive of the

ends of the diameter 1, k, 14), it follows that the opposite ends of

those diameters can be joined by chords giving a series of equal

triangles, symmetrically placed, each liaving its sides parallel to

those of a triangle of the first system. The following arrangement
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of triangles satisfies the conditions: (4?. 11. 25), (5. 8, 23),

(6. 7. 16), (9. 13. 15). The complementary system is (17. 24. 12),

(18. 21. 10), (19. 20 3), (22. 26. 2). These triplets with

{k. 1. 14) give an arrangement for the first day; and, by

rotating the system cyclically, the a,rrangements for the re-

maining 12 days can be found immediately.

I proceed to give one solution of this type for every remaining case where n
is less than 100. From the result the triads or gi'oupings used can be obtained.

It is sufficient in each case to give an arrangement on the first day, since the

arrangements on the follov.iug days are at once obtainable by cyclical per-

mutations.

I take first the three cases, 33, 57, 81, where n is of the form 24m + 9.

In these cases the arrangements on the other days are obtained by one-step

cyclical permutations.

For 33 girls, a solution is given by the system of triplets (2. 11. 16),

(4. 6. 10), (5. 13. 30), (7. 8. 19), (9. 28. 31), and the complementary system

(18. 27. 32), (20 22. 26), (21. 29. 14), (23. 24. 3), (25. 12. 15). These 10 triplets,

together with that represented by (fc. 1. 17), will give an arrangement for the

first day.

For 67 girls, a possible arrangement of triplets is (18. 13. 50), (20. 11. 28),

(21. 62. 3), (8. 10. 51), (4. 25. 26), (2. 6. 12), (7. 19. 33), (27. 43. 16), (37 14. 17).

These, with the 9 complementary triplets, and the diameter triplet (1. k. 29),

give an arrangement for the first day.

For 81 girls an arrangement for the first day consists of the diameter triplet

(1. ft. 41), the 13 triplets (3. 35. 42), (4. 10. 29), (5. 28. 56), (6. 26. 39), (7. 15. 17),

(8. 11. 32), (13. 27 49), (14. 19. 30), (20. 37- 38), (21. 25. 52), (24. 36. 62),

(18. 33. 63), (31. 40. 74), and the 13 complementary triplets.

I take next the three cases, 51, 75, 99, where n is of the form 24??i + 3. In

these cases the arrangements on the other days are obtained either by one-step

or by two-step cyclical permutations.

For 51 girls, an arrangement for the first day consists of the diameter

triplet (fc. 1. 26), the 8 triplets (2. 9. 36), (4. 7. 25), (6. 10. 19), (8. 14. 22),

(12. 17. 45), (13. 24. 48), (15. 16. 46), (18. 28. 30), and the 8 complementary

triplets

For 75 girls, an arrangement for the first day consists of the diameter triplet

(k. 1. 38), the 12 triplets (2. 44. 55), (4. 11. 19), (5. 50. 66), (6. 52. 57),

(8. 46. 58), (10. 59. 65), (12. 60. 64), (14 24. 68), (16 25. 72), (17. 3. 74),

(33. 34. 73), (30. 32. 63), and the 12 complementary triplets.

For 99 girls an arrangement for the first day consists of the diameter

triplet (1. k. 50), the 16 triplets (2. 17. 47), (3. 9. 68), (4. 44. 82), (5. 12. 75),

(6. 32. 42), (7. 23. 97), (8. 21. 30), (15. 20. 76), (16. 35. 85), (18. 45. 62),

(22. 40. 63), (25. 37. 92), (28. 29. 80), (34. 38. 59), (39. 41. 73), (46. 49. 60),

and the 16 complementary triplets.

It is also possible to obtain, for numbers of the form 24m + 3, solutions

which are uniquely two-step, but in these the complementary triangles are not
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placed symmetrically to each other. I give 27 girls as an instance, ueing the

same triads as in the solution of this case given above. The triplets for the

first day are {k. 1. 14), (2. 12. 3), (21. 5. 22), (20. 24. 26), (11. 15. 17),

(8. 16. 19), (25. 7. 10), (6. 18. 13), and (23. 9. 4). From this tlie arrangements

on the other days can be obtained by a two-step (but not by a one-step) cyclical

permutation.

It is uDnecessary to give more examples, or to enter on the

question of how from one solution others can be deduced, or

how many solutions of each case can be obtained in this way.

The types of the possible triangles are found analytically, but

their geometrical arrangement is empirical. The defect of this

method is that it may not be possible to arrange a given

grouping. Thus when n = 27, we easily obtain 24 different

groupings, but two of them cannot be arranged geometrically

to give solutions ; and whether any particular grouping will

give a solution can, in many cases, be determined only by long

and troublesome empirical work. The same objection applies

to the two-step and three-step methods which are described

below.

Tiuo-Step Cycles. The method used by Legros was extended

by Eckenstein to cases where n is of the form 127?i-f 3. When
n is of this form and m is odd we cannot get sets of comple-

mentary triangles as is required in Legros's method ; hence, to

apply a similar method, we have to find 2(3/ — l)/3 different

dissimilar inscribed triangles having no vertex in common and

satisfying the condition p-\- q = r or p -\- q-\- r = 2y. These

solutions are also central. Since there are 2y points on the

cii'cumference of the circle the permutations, if they are to be

cyclical, must go in steps of two numbers at a time. In

Legros's method we represented one triplet by a diameter. But

obviously it will answer our purpose equally well to represent

it by a triangle with k as vertex and two radii as sides, one

drawn to an even number and the other to an odd number:

in fact this will include the diameter as a particular case.

I begin by considering the case where we use the diameter

(1. k. y) to represent one triplet on the first day. Here the

chords used for sides of the triangles representing the other

triplets must be of lengths [1], [2], ... [y - !]• Also each given
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length must appear twice, and the two equal lines so repre-

sented must start one from an even number and the other

from an odd number, so as to avoid the same combination of

points occurring again when the sj^stem is rotated cyclically.

Of course a vertex cannot be at the point 1 or y, as these

points will be required for the diameter triplet (1. k. y).

These remarks will be clearer if we apply them to a definite

example. I take as an instance the case of 15 girls. As before

we represent 14 of them by equidistant points numbered 1, 2,

3, ... 14 on the circumference of a circle, and one by a point h

at its centre. Take as one triplet the diameter (1. k. 8). Then

the sides p, q, r may have any of the values [1], [2], [3], [4], [5],

[6], and each value must be wsed twice. On examination it will

be found that there are only two possible groupings, namely

[1, 1, 2], [2, 4, 6], [3, 3, 6], '[5, 5, 4], and [1, 2, 3], [1, 4, 5],

[3, 5, 6], [2, 4, 6]. One of the solutions to which the first set of

groupings leads is defined by the diameter (1. k. 8) and the four

triplets (9. 10. 11), (4. 6. 14), (2. 5. 13), (3. 7. 12); see figure ii,

below : of the four triangles used three are isosceles. The

Figure ii. Figure iii.

second set leads to solutions defined by the triplets {k. 1. 8),

(4. 5. 7), (13. 14. 9), (3. 6. 11), (10. 12. 2), or by the triplets

{k. 1. 8), (6. 7. 9), (3. 4. 13), (5. 11. 14), (10. 12. 2): in these

solutions all the triangles used are scalene. If any one of

these three sets of triplets is rotated cyclically two steps at
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a time, we get a solution of the problem for the seven cla3^s

required. Each of these solutions b^ reflection and inversion

gives rise to three others.

Next, if we take {k. 1. 2) for one triplet on the first day we

shall have the points 3, 4,... 14 for the vertices of the four

triangles denoting the other triplets on that day. The sides

must be of the lengths [1], [2], ... [7], of which [2], ... [6] must

be used not more than twice and [1], [7] must be used

only once. The [1] used must start from an even number,

for otherwise the chord denoted by it would, when the system

was rotated, occupy the position joining the points 1 and 2,

which has been already used. The only possible groupings are

[2, 4, 6], [2, 3, 5], [3, 4, 7], [1, 5, 6] ; or [2, 4, 6], [2, 5, 7], [1, 4, 5],

[3, 3, 6] ; or [2, 4, 6], [2, 5, 7], [1, 3, 4], [3, 5, 6]. Each of these

groupings gives rise to various solutions. For instance the first

grouping gives a set of triplets {k. 1. 2), (3. 7. 10), (4. 5. 13),

(6. 9. 11), (8. 12. 14). From this by a cyclical two-step per-

mutation we get a solution. This solution is represented in

figure iii. If we take {k. 1. 4) or {k. 1. 6) as one triplet on the

first day, we get other sets of solutions.

Solutions involving the triplets {k. 1. 2), {k. 1. 4), {k. 1. 6),

{k. 1. 8), and other analogous solutions, can be obtained from

the solutions illustrated i*n the above diagrams by re-arranging

the symbols denoting the girls. For instance, if in figure iii,

where all the triangles used are scalene, we replace the numbers

2, 8, 3, 13, 4, 6, 5, 11, 7, 9, 10, 14 by 8, 2, 13, 3, 6, 4, 11, 5, 9,

7, 14, 10, we get the solution {k. 1. 8), (4. 5. 7), etc., given above.

Again, if in figure iii we replace the symbols 1, 2, 3, 4, 5, 6,

7,^8, 9, 10, 11, 12, 13, 14, k by 12, 2, 10, G, 1, 14, 5, 13, 9,

15, 4, 3, 11, 8, 7, we obtain a solution equivalent to that given

by T. H. Gill and printed in the last edition of this book. In

this the arrangement on the first day is (1. 6. 11), (2. 7. 12),

(3. 8. 13), (4. 9. 14), (5. 10. 15). Tlie arrangements on the other

days are obtained as before by rotating the system so de-

lineated round 7 as a centre two steps at a time. Gill's

arrangement is thus presented in its canonical form as a

central two-stop cyclical jsolution.
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I proceed to give one solution of this type for every remaining case where

n is less than 100. In each case I give an arrangement on the first day; the

arrangements for the other days can be got from it by a two-step cyclical

permutation of the numbers.

In the case of 27 girls, one arrangement on the first day is (fc. 1. 14),

(19. 21. 20), (3. 9. 6), (13. 23. 18), (5. 17. 24), (7. 25. 16), (11. 15. 26), (10. 4. 2),

(12. 22. 8).

In the case of 39 girls, one arrangement for the first day is (fc. 1. 20),

(35. 37. 36), (7. 13. 10), (19. 29. 24), (11. 25. 18), (3. 21. 12), (17. 33. 6),

(15. 27. 2), (23. 31. 8), (5. 9. 26), (4. 16. 32), (14. 34. 38), (22. 28. 30).

In the case of 51 girls, one arrangement for the first day is {k. 1. 26),

(21. 23. 22), (11. 17. 14), (35. 45. 40), (25. 39. 32), (15. 33. 24), (13. 41. 2),

(5. 31. 18), (19. 49. 34), (27. 43. 10), (9. 47. 28), (29. 37. 8), (3. 7. 30),

(4. 20. 46), (6. 36. 42), (12. 16. 44), (38. 48. 50).

In the case of 63 girls, one arrangement for the first day is (&. 1. 32),

(57. 59. 58), (23. 29. 26), (37. 47. 42), (5. 53. 60), (17. 61. 8), (3. 43. 54),

(7. 33. 20), (9. 39. 24), (27. 55. 10), (21. 45. 2), (11. 31. 52), (35. 51. 12),

(13. 25. 50), (41. 49. 14), (15. 19. 48), (16. 18. 36), (6. 34. 38), (46. 56. 62),

(22. 30. 44), (4. 28. 40).

In the case of 75 girls, one arrangement for the first day is (fc. 1. 38),

(23. 25. 24), (3. 9. 6), (29. 39. 34), (7. 21. 14), (51. 69. 60), (33. 55. 44),

(11. 59. 72), (35. 65. 50), (37. 71. 54), (27. 63. 8), (15. 57. 36), (13. 41. 64),

(43. 67. 18), (19. 73. 46), (31. 47. 2), (5. 17. 48), (53. 61. 20), (45. 49. 10),

(30. 32. 52), (22. 26. 66), (56. 62. 70), (12.. 28. 74), (16. 40. 58), (4. 42. 68).

In the case of 87 girls, one arrangement for the first day is (ft. 1. 44),

(61. 63. 62), (73. 79. 76), (35. 45. 40), (11. 83. 4), (25. 43. 34), (59. 81. 70),

(7. 33. 20), (41. 71. 56), (23. 75. 6), (27. 65. 46), (13. 57. 78), (5. 51. 28),

(3. 39. 64), (15. 47. 74), (9. 67. 38), (31. 55. 86), (19. 85. 52), (21. 87. 72),

(17. 29. 66), (69. 77. 30), (49. 53. 8), (10. 12. 24), (22. 26. 84), (18. 54. 60),

(2. 50. 80), (32. 42. 58), (14. 36. 82), (16. 48. 68).

In the case of 99 girls, one arrangement for the first day is {k. 1. 50),

(47. 49. 48), (53. 59. 56), (55. 65. 60), (57. 71. 64), (23. 41. 32), (17. 39. 28),

(63. 89. 76), (5. 35. 20), (3. 67. 84), (9. 69. 88), (29. 85. 8), (27. 79. 4),

(25. 73. 98), (33. 77. 6), (21. 61. 90), (45. 81. 14), (51. 83. 18), (15. 43. 78),

(13. 37. 74), (11. 31. 70), (75. 91. 34), (7. 19. 62), (87. 95. 42), (93. 97. 46),

(58. 94. 96), (40. 44. 66), (10. 16. 26), (30. 38. 82), (68. 80. 2), (22. 36. 92),

(24. 54. 72), (12. 52. 86).

This method may be also represented as a one-step cycle.

For if we denote the girls by a point k at the centre of the

circle, and points aj, 6i, a^, h.^, a^, 63, ... placed in that order

on the circumference, we can re-write the solutions in the

suffix notation, and then the cyclical permutation of the

numbers denoting the suffixes is by one step at a time.

The one-step and two-step methods described above cover
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all cases except those where n is of the form 24m + 21. These

I have failed to bring undt^r analogous rules, but we can solve

them by recourse to the three-step cycles next described.

Three-Step Cycles. The fact that certain cases are soluble

by one-step cycles, and others by two-step cycles, suggests

the use of three-step cycles, and the fact that n is a multiple

of 3 points to the same conclusion. On the other hand, if

we denote the n girls by 1, 2, 3, ... n, and make a cyclical

permutation of three steps at a time (or if we denote

the girls by cti, 6i, Ci, a^, h., Ca, ..., and make a cyclical

permutation of the suffixes one step at a time), we cannot

get arrangements for more than 7i/3 days. Hence there will

remain (n — l)/2 — ??/3 days, that is, (n — 3)/6 days, for which

we have to find other arrangements. In fact, however, we

can arrange the work so that in addition to the cyclical

arrangements for n/S days we can find (n — 3)/6 single triplets

from each of which by a cyclical permutation of the numbers

or suffixes an arrangement for one of these remaining days can

be obtained ; other methods are also sometimes available.

For instance take the case of 21 girls. An arrangement

for the first day is (1. 4. 10), (2. 5. 11), (3. 6. 12), (7. 14. 18),

(8. 15. 16), (9. 13. 17), (19. 20. 21). From this by cyclical

permutations of the numbers three steps at a time, we can

get arrangements for 7 days in all. The arrangement for the

8th day can be got from the triplet (1. 6. 11) by a three-step

cyclical permutation of the numbers in it. Similarly the

arrangement for the 9th day can be got from the triplet

(2. 4. 12), and that for the 10th day from the triplet (3, 5. 10),

by three-step cyclical permutations.

This method was first used by A. Bray in 1883, and was

subsequently developed by Dudeney and Eckenstein. It gives

a solution for every value of n except 15, but it is not so easy

to use as the methods already described, partly because the

solution is in two parts, and partly because the treatment

varies according as n is of the form 18??i-}-3, or 18m 4-9, or

18m + 15. Most of the difficulties in using it arit^e in the case

when n is of the form 18m -f- 15.
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The geometrical representation is sufficiently obvious. In

the methods used by Legros and Eckenstein, previously de-

scribed, the girls were represented by 2y equidistant points

on the circumference of a circle and a point at its centre.

It is evident that we may with equal propriety represent all

the girls by symbols placed at equidistant intervals round

the circumference of a circle : such solutions are termed non-

central. The symbols may be 1, 2, 3, ... n, or letters a,, 6i, Ci,

o^2> &2> C.2, — Any triplet will be represented by a triangle

whose sides are chords of the circle. The arrangement on any

day is to include all the girls, and therefore the triangles re-

presenting the triplets on that day are n/o in number, and as

each girl appears in only one triplet no two triangles can have

a common vertex.

The complete three-step solution will require the determina-

tion of a system of {n— l)/2 inscribed triangles. In the first

part of the solution ?i/3 of these triangles must be selected to

form an arrangement for the first day, so that by rotating this

arrangement three steps at a time we obtain triplets for njZ days

in all. In the second part of the solution we must assure ourselves

that the remaining {n — 3)/6 triangles are such that from each of

them, by a cyclical permutation of three steps at a time, an

arrangement for one of the remaining {n — 3)/6 days is obtainable.

As before we begin by tabulating the possible differences

[1], [2], [3], ... [(?i — l)/2], whose values denote the lengths of

the sides p, q, r of the possible triangles, also, we have either

p + q — r OY p + q + r — n. From these values of p, q, r are

formed triads, and in these triads each difference must be

used three times and only three times. Triangles of these

types must be then formed and placed in the circle so that

the side denoting any assigned difference p must start once

from a number of the form 3m, once from a number of the

form 3m-f-l, and once from a number of the form Sm + 2.

Also an isosceles triangle, one of whose sides is a multiple of

three, cannot be used : thus in any particular triad a 3, 6, 9, ...

cannot appear more than once. Save in some exceptional

cases of high values of n, every triangle, one of whose
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sides is a multiple of 3, must be used in the first part

of the solution. In the whole arrangement every possible

difference will occur n times, and, since any two assigned

numbers can occur together only once, each diiference when

added to a number must start each time from a different

number. I will not go into further details as to how these

trianoles are determined, but I think the above rules will be

clear if I apply them to one or two easy examples.

For 9 girls, the possible differences are [1], [2], [3], [4],

each of which must be used three times in the construction of

four triangles the lengths of whose sides p, q, r are such that

p -^q z=,r OT p + q + r = 9. One possible set of triads formed

from these numbers is [1, 2, 3], [1, 2, 3], [2, 3, 4], and [1, 4, 4].

Every triangle with a side of the length [3] must appear in the

first part of the solution ; thus the triplets used in the first part

of the solution must be obtained from the first three of these

triads. Hence we obtain as an arrangement for the first day

the triplets (1. 3. 9), (2. 4. 7), (5. 6. 8). From this, three-step

cyclical permutations give arrangements for other two days.

The remaining triad [1, 4, 4] leads to a triplet (1. 2. 6) which,

by a three- step cyclical permutation, gives an arrangement for

the remaining day.

If we use the suffix notation, an arrangement for the first

day is a^b^a^, hiC^h^, CiOfaCg. From this, by simple cyclical per-

mutations of the suffixes, we get arrangements for the second

and third days. Lastly, the triplet UibiCi gives, by cyclical

permutation of the suffixes, the arrangement for the fourth day,

namely, (ii&iCi, a^b^c^, a^biCz.

For 15 girls, the . three-step process is inapplicable. The

explanation of this is that two triads are required in the

second part of the solution, and in neither of them may a 3

appear. The triads are to be formed from the differences

[1], [2], ... [7], each of which is to be used three times, and the

condition that in any particular triad only one 3 or one 6 ma}^

appear necessitates that six of the triads shall involve a 3 or

a 6. Hence only one triad will be available for the second part

pf the solution.
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I proceed to give one solution of this type for every remaining case where n

is less than 100. I give some in the numerical, others in the suffix notation.

The results will supply an indication of the process used.

First, I consider those cases where n is of the form 18m + S. In these cases

it is always possible to find 2m triads each repeated thrice, and one equilateral

triad, and to use the equilateral and m triads in the first part of the solution,

the 3 triplets representing any one of these m triads being placed in the circle

at equal intervals from each other in the first day's arrangement. From this,

three-step or one- step cyclical permutations give arrangements for 6m -l- 1 days

in all. In the second part of the solution each of the m remaining triads

is used thrice ; it suffices to give the first triplet on each day, since from it the

other triplets on that day are obtained by a three-step cyclical permutation.

For 21 girls an arrangement for the first day, for the first part of the solution,

is (1. 4. 10), (8. 11. 17), (15. 18. 3), (2. 6. 7), (9. 13. 14), (16. 20. 21), (5. 12. 19).

From this, three-step or one-step cyclical permutations give arrangements for

7 days in all. The first triplets used in the second part of the solution are

(1. 3. 11), (2. 4. 12), (3. 5. 13). Each of these three triplets gives by a three-

step cyclical permutation an arrangement for one of the remaining 3 days.

For 39 girls, arrangements for 13 days can be obtained from the following

arrangement of triplets for the first day: (1. 4. 13), (14. 17. 26), (27. 30. 39),

(2. 8. 23), (15. 21. 36), (28. 34. 10), (7. 11. 12), (20. 24. 25), (33. 37. 38), (3. 5. 19),

(16. 18. 32), (29. 31. 6), (9. 22. 35). From each of the 6 triplets (1. 8. 18),

(2. 9. 19), (3. 10. 20), (1. 9. 20), (2. 10. 21), (3. 11. 22), an arrangement for one

of the remaining 6 days is obtainable.

For 57 girls, arrangements for 19 days can be obtained from the following

arrangement of triplets for the first day: (1. 4. 25), (20. 23. 44), (39. 42. 6),

(2. 8. 17), (21. 27. 36), (40. 46. 55), (3. 15. 33), (22. 34. 52), (41. 53. 14),

(18. 19. 26), (37. 38. 45), (56. 57. 7), (13. 30. 35), (32. 49. 54), (51. 11. 16),

(9. 29. 43), (28. 48. 5), (47. 10. 24), (12. 31. 50). From each of the 9 triplets

(1. 3. 14), (2. 4. 15), (3. 5. 16), (1. 5. 30), (2. 6. 31), (3. 7. 32), (1. 11. 27),

(2. 12. 28), (3. 13. 29), an arrangement for one of the remaining 9 days is

obtainable.

For 75 girls, arrangements for 25 days can be obtained from the following

arrangement of triplets for the first day : (1. 4. 10), (26. 29. 35), (51. 54. 60),

(3. 15. 36), (28. 40. 61), (53. 65. 11), (2. 17. 41), (27. 42. 66), (52. 67. 16),

(13. 31. 58), (38. 56. 8), (63. 6. 33), (14. 21. 22), (39. 46. 47), (64. 71. 72),

(7. 18. 20), (32. 43. 45), (57. 68. 70), (5. 9. 37), (30. 34. 62), (55. 59. 12),

(19. 24. 50), (44. 49. 75), (69. 74. 25), (23. 48. 73). From each of the 12 triplets

(1. 11. 30), (.2. 12. 31), (3. 13. 32), (1. 15. 35), (2. 16. 36), (3. 17. 37), (1. 17. 39),

(2. 18.40), (3. 19. 41), (1. 18. 41), (2. 19. 42), (3. 20. 43), an arrangement for

one of the remaining 12 days is obtainable.

For 93 girls, arrangements for 31 days can be obtained from the following

arrangement of triplets for the first day : (1. 76. 79), (32. 14. 17), (63. 45. 48),

(13. 25. 55), (44. 56. 86), (75. 87. 24), (29. 50. 74), (60. 81. 12), (91. 19. 43),

(20. 26. 59), (51. 57. 90), (82. 88. 28), (3. 30. 39), (34. 61. 70), (65. 92. 8),

(27. 64. 71), (58. 2. 9), (89. 33. 40), (35. 36. 52), (66. 67. 83), (4. 5. 21),

(11. 15. 37), (42. 46. 68), (73. 77. 6), (16. 18. 41), (47. 49. 72), (78. 80. 10),
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(23. 31. 69), (54. 62. 7), (85. 93. 38), (22. 53. 84). From each of the 15 triplets

(1. 14. 42), (2. 15. 43), (3. 16. 41), (1. 33. 44), (2. 34. 45), (3. 35. 46), (1. IT. 30),

(2. 12. 31), (3. 13. 32), (1. 6. 41), (2. 7. 42), (3. 8. 43), (1. 15. 35), (2. 16. 36),

(3. 17. 37), an arrangement for one of the remaining 15 days is obtainable by a

three- step cyclical permutation.

Before leaving the subject of numbers of this type I give two other solutions

of the case when n= 21, one to illustrate the use of the suffix notation, and the

other a cyclical solution which is uniquely three-step.

If we employ the suffix notation, the suffixes, with the type here used, are

somewhat trying to read. Accordingly hereafter I shall write al, a2, ... , instead

of aj, a.j, In the case of 21 girls, an arrangement for the first day is

(al. a2. a4), (61. 62. 64), (cl. c2. c4), (a3. 66. c5), (63. c6. a5), (c3. a6. 65),

(al. 67. cl). From this, by one-step cyclical permutations of the suffixes, we

get arrangements for the 2nd, 3rd, 4th, 5th, 6th and 7th days. The arrange-

ment for the 8th day can be obtained from the triplet (al. 62. c-i) by permuting

the suffixes cyclically one step at a time. Similarly the arrangement for the

9th day can be obtained from the triplet (61. c2. a4) and that for the 10th day

from the triplet (cl. rt2. 64). Thus with seven suffixes we keep 7 for each symbol

in one triplet, and every other triplet depends on one or other of only two

arrangements, namely, (1. 2. 4), or (3. 6. 5). If the solution be written out

at length the principle of the method used will be clear.

Cyclical solutions which are uniquely three-srep can also be obtained for

numbers of the form 18»i-f3; in them the same triads can be used as

before, but they are not placed at equal intervals in the circle. I give 21 girls

as instance. The arrangements on the first 7 days can be obtained from the

arrangement (1. 4. 10), (2. 20. 14), (15. 18. 3), (16. 17. 21), (8. 9. 13), (6. 7. 11),

(5. 12. 19) by a three-step (but not by a one-step) cyclical permutation. From
each of the triplets (1. 3. 11), (2. 4. 12), (3. 5. 13), an arrangement for one of

the remaining 3 days is obtainable.

Next, I consider those cases where n is of the form 18j7H-9. Here, regular

solutions in the suffix notation can be obtained in all cases except in that

of 27 girls, but if the same solutions are expressed in the numerical notation,

the triads are irregular. Accordingly, except when n= 27, it is better to use the

suffix notation. I will deal with the case when n= 27 after considering the

cases when n= 45, 63, 81, 99.

For 45 girls, an arrangement for the first day consists of the 5 triplets

(al. al2. al3), (a2. a9. all), (a5. alO. 615), (a4. 63. c7), (a8. 66. cl4), and the

10 analogous triplets, namely, (61. 612. 613), (cl. cl2. cl3), (62. 69. 611),

(c2. c9. ell), (65. 610. cl5), (c5. clO. al5), (64. c3. a7), (c4. a3. 67), (68. c6. al4),

(c8. a6. 614). From these, by one-step cyclical permutations of the suffixes, the

arrangements for 15 days can be got. Each of the 2 triplets (c4. 63. a7),

(c8.66.al4), the 4 analogous triplets, namely, (a4.c3.67), (64.a3.c7), («8.c6.614),

(68. a6. cl4), and the triplet (al. 61. cl), gives, by a one-step cyclical permuta-

tion of the suffixes, an arrangement for one of the remaining 7 days.

For 63 girls, an arrangement for the first day consists of the 7 triplets

(al. alO. «9), (a5. a8. a3), (a4. al9. alo), (a7. al4. 621), (a20. 611. cl2),

(al6. 613. cl8), (al7. 62, c6), and the 14 analogous triplets. From these, by
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one-step cyclical permutations of the suffixes, the arrangements for 21 days can

be got. Each of the 10 triplets, consisting of the 3 triplets (c20. &11. al2),

(cl6. 613, al8), (cl7. 62. a6), the 6 analogous triplets, and the triplet (al. 61. cl),

gives, by a one-step cyclical permutation of the suffixes, an arrangement for

one of the remaining 10 days.

For 81 girls, an arrangement for the first day consists of the 9 triplets

(a5. al. aS), (a3. alO. ali), {all. a21. a26), (a4. al2. a25), (a9. alS. 627),

{a22. 620. cl9), {a24. 617. cl3), (al6. 66. cl), (a23. 615. c2), and the 18 analogous

triplets. From these, by cyclical permutations of the suffixes, the arrangements

for 27 days can be got. Each of the 13 triplets consisting of the 4 triplets

(c22. 620. al9), (c24. 617. al3), (cl6. 66. al), (c23. 615. a2), the 8 analogous

triplets, and the triplet (al. 61. cl), gives, by a cyclical permutation of the

suffixes, an arrangement for one of the remaining 13 days.

For 99 girls, an arrangement for the first day consists of the 11 triplets

(al. a3. alO), (a2. a6. a20), (a4. al2. a7), (a8. a24. al4), (al6. al5. a28),

(all. a22. 633), (a32. 630. c23), (rt31. 627. cl3), (a29. 621. c26), (a25. 69. cl9),

(al7. 618. c5), and the 22 analogous triplets. From these, by cyclical permuta-

tions of the suffixes, the arrangements for 33 days can be got. Each of the 16

triplets consisting of the 5 triplets (c32. 630. a23), (c31. 627. al3), (c29. 621. a26),

(c25. 69. al9), (cl7. 618. a5), the 10 analogous triplets, and the triplet

(al. 61. cl), gives, by a cyclical permutation of the suffixes, an arrangement for

one of the remaining 16 days.

For 27 girls, an arrangement of triplets for the first day is (1. 7. 10), (14. 17. 8),

(27. 6. 9), (13. 20. 25), (11. 23. 18), (12. 16. 24), (21. 2. 4), (15. 22. 26), (19. 3. 5).

From this, three-step cyclical permutations give arrangements for 9 days in all.

The first triplets on the remaining 4 days are (1. 2. 3), (1. 6. 20), (1. 11. 15),

(1. 17. 27), from each of which, by a three-step cyclical permutation, an arrange-

ment for one of those days is obtainable.

Regular solutions in the numerical notation can also be obtained for all

values of n, except 9, where n is of the form 18??i-i-9. I give 27 girls as

an instance. The first day's arrangement is (1. 2. 4), (10. 11. 13), (19. 20. 22),

(8. 15. 23), (17. 24. 5), (26. 6. 14), (3. 25. 9), (12. 7. 18), (21. 16. 27); from this,

arrangements for 9 days in all are obtained by one-step cyclical permutations.

Each of the three triplets (1. 5. 15), (2. 6. 16), (3. 7. 17) gives an arrangement

for one day by a three-step cyclical permutation. Finally the triplet (1. 10. 19),

represented by an equilateral triangle, gives the arrangement on the last day by

a one-step cyclical permutation.

Lastly, I consider those cases where n is of the form 18ni-|-15. As before,

the solution is divided into two parts. In the first part, we obtain an arrange-

ment of triplets for the first day, from which arrangements for Qm + 5 days are

obtained by three-step cyclical permutations. In the second part, we obtain the

first triplet on each of the remaining Sm -f 2 days, from which the other triplets

on that day are obtained by three-step cyclical permutations.

For 33 girls, an arrangement in the first part is (1. 13. 19), (23. 11. 5),

(3. 15. 21), (2. 4. 7), (12. 14. 17), (28. 30. 33), (6. 16. 25), (10. 20. 29), (8. 18. 27),

(24. 31. 32), (9. 22. 26). The triplets in the second part are (25. 32. 33),

(26. 33. 1), (10. 23. 27), (11. 24. 28), (1. 12. 23).
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For 51 girls, an arrangement in the first part is (17. 34. 51), (49. 16. 10),

(11. 44. 50), (15. 33. 27), (19. 4. 46), (2. 38. 20), (21. 36. 45), (22. 25. 24), (5. 8. 7),

(39. 42. 41), (43. 13. 20). (26. 47. 3), (9. 30. 37), (1. 14. 6), (35. 48. 40), (18. 31. 23),

(28. 32. 12). The triplets in the second part are (29. 33. 13), (30. 34. 14),

(1. 26. 12). (2. 27. 13), (3. 28. 14), (1. 11. 30), (2. 12. 31), (3. 13. 32).

For 69 girls, an arrangement in the first part is (23. 46. 69), (31. 34. 43),

(11. 8. 68), (54. 57. 66), (58. 52. 28), (35. 29. 5), (45. 51. 6), (16. 1. 49),

(62. 47. 26), (39. 24. 3), (4. 55. 42), (50. 32. 19), (27. 9. 65), (40. 67. 18),

(17. 44. 64), (63. 21. 41), (10. 14. 15), (33. 37. 38), (56. 60. 61), (25. 53. 36),

(2. 30. 13), (48. 7. 59), (22. 20. 12). The triplets in the second part are

(23. 21. 13), (24. 22. 14), (1. 8. 33), (2. 9. 34), (3. 10. 35), (1. 17. 36), (2. 18. 37),

(3. 19. 38), (1. 41. 15), (2. 42. 16), (3. 43. 17).

For 87 girls, an arrangement in the first part is (29. 58. 87), (76. 82. 73),

(47. 53. 44), (15. 9. 18), (70. 1. 18), (41. 59. 71), (12. 30. 42), (4. 67. 31),

(2. 26. 62), (60. 84. 33), (40. 79. 25), (11. 50. 83), (69. 21. 54), (43. 64. 63),

(14. 35. 34), (72. 6. 5), (61. 16. 77), (32. 74. 48), (3. 45. 19), (28. 68. 66),

(37. 86. 39), (10. 8. 57), (46. 80. 36), (22. 65. 75), (7. 17. 51), (85. 23. 78),

(52. 20. 27). (49. 56. 81), (55. 38. 24). The triplets in the second part are

(56. 39. 25), (57. 40. 26), (1. 5. 42), (2. 6. 43), (3. 7. 44), (1. 29. 6), (2. 30. 7),

(3. 31. S), (1. 9. 20), (2. 10. 21), (3. 11. 22), (1. 14. 36), (2. 15. 37), (3. 16. 38).

Before proceeding to the consideration of other methods I should add that

it is also possible to obtain irregular solutions of cases where n is of any

of these three forms. As an instance I give a three-step solution of 33 girls.

A possible arrangement in the first part is (1. 4. 10), (14. 23. 26), (9. 15. 30),

(3. 28. 33), (2. 6. 8), (11. 18. 27), (13. 24. 25), (5. 16. 20), (7. 17. 22), (21. 29. 31),

(12. 19. 32). The triplets in the second part are (1. 2. 21), (1. 8. 30), (1. 3. 26),

(1. 15. 20), (1. 17. 18). I describe this solution as irregular, since all, save one,

of the triads used are different.

The Focal Method. Another method of attacking the

problem, comparatively easy to use in practice, is applicable

when n is of the form 24?m + Sp, where p = 6g + 3. It is due

to Eckeustein. Here it is convenient to use a geometrical

repre.sentation by denoting 24;/i + 2p girls by equidistant

numbered points on the circumference of a circle, and the

remaining p girls by lettered points placed inside the circle;

these p points are termed foci. The solution is in two parts.

In the first part, we obtain an order from which the arrange-

ments for 12m-\-p days are deducible by a two-step cycle

of the numbers: in none of these triplets does more than

one focus appear. In the second part, we find the arrange-

ments for the remaining Sq + 1 days ; here the foci and the

numbered points are treated separately, the former being

a R. 14
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arranged by any of the methods used for solving the case of

6g + 3 girls, while of the latter a typical triplet is used on each

of those days, from which the remaining triplets on that day

are obtained by cyclical permutations.

This method covers all cases except when n=15, 21, 39;

and solutions by it for all values of n less than 200 have been

written out. Sets of all the triplets required can be definitely

determined. One way of doing this is by finding the primitive

roots of the prime factors of 4m •}-2q + l, though in the simpler

cases the triplets can be written down empirically without

much trouble. An advantage of this method is that solutions

of several cases are obtained by the same work. Suppose that

we have arranged suitable triangles in a circle, having on

its circumference 12m + p or 3c equidistant points, and let y
be the greatest integer satisfying the indeterminate equation

2a; + 4^/ + 1 = c, where x = or a) = l, and a the highest multiple

of 6 included in x + y, then sokitions of not less than y-hl—a
cases can be deduced. Thus from a 27 circle arrangement

where c = 9, y = 2, x = 0, a = 0, we can by this method deduce

three solutions, namely when n = 57, 69, 81 ; from a 39 circle

arrangement where c=13, 2/ = 3, ^ = 0, a = 0, we can deduce

four solutions, namely when n = 81, 93, 105, 117.

I have no space to describe the method fully, but I will give

solutions for two cases, namely for 33 girls (?i = 33, m = 1, p = 3)

where there are 3 foci, and for 51 girls (?i = 51, m = 1, p = 9)

where there are 9 foci.

For 33 girls we have 3 foci which we may denote by a, b, c,

and 30 points which we may denote by the numbers 1 to 30

placed at equidistant intervals on the circumference of a circle.

Then if the arrangement on the first day is (a. 5. 10), (b. 20. 25),

(c. 15. 30), (1. 2. 14), (16. 17. 29), (4, 28. 2G), (19. 8. 11), (9. 7. 3),

(24. 22. 18), (6. 27. 13), (21. 12. 28), a two-step cyclical per-

mutation of the numbers gives arrangements for 15 days;

that on the second day being (a. 7. 12), (6. 22. 27), &c. The

arrangement on the 16th day is (a. 6. c), (1. 11. 21), (2. 12. 22),

(3. 13. 23), . .(10 20.30).

For 51 girls we have 9 foci which we may denote by a, b, c,
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d, e,f, g, h,j, and 42 points denoted by 1, 2, ... 42, placed at

equidistant intervals on the circumference of a circle. Then if

the arrangement on the first day is (a. 5. 6), (6. 26, 27), (c. 3. 10),

{d. 24. .SI), (e. 19. 34), (/. 40. 13), (g. 39. 16), {k 18. 37), (j. 21. 42),

(9. 11. 22), (30. 32. 1), (35. 41. 2), (14. 20. 23), (17. 29. 12),

(38. 8. 33), (7. 15. 25), (28. 36. 4), a two-step cyclical per-

mutation of the numbers gives arrangements for 21 days.

Next, arrange the 9 foci in triplets by any of the methods

already given so as to obtain arrangements for 4 days. From

the numbers 1 to 42 we can obtain four typical triplets

not already used, namely (1. 5. 21), (2. 6. 22), (3. 7. 23),

(14. 28. 42). From each of these triplets we can, by a three-

step cyclical permutation, obtain an arrangement of the 42 girls

for one day, thus getting arrangements for 4 days in all.

Combining these results of letters and numbers we obtain

arrangements for the 4 days. Thus an arrangement for the

first day would be (a. c.j), (b. d. g), {e.f. h), (1. 5. 21), (4. 8. 24),

(7. 11. 27), (10. 14. 30), (13. 17. 33), (16. 20. 36), (19. 23. 39),

(22. 26. 42;, (25. 29. 3), (28. 32. 6), (31. 35. 9), (34. 38. 12),

(37. 41. 15), (40. 2. 18). For the second day the corresponding

arrangement would be (d. f. c), (e. g. a), {h. j. b), (2. 6. 22),

(5. 9. 25), &c.

Analytical Methods. The methods described above, under

the headings One-Step, Two-Step and Three-Step Cycles, involve

some empirical work. It is true that with a little practice

it is not difficult to obtain solutions by them when n is a low

number, but the higher the value of n the more troublesome

is the process and the more uncertain its success. A general

arithmetical process has, however, been given by which it is

claimed that some solutions for any value of n can be always

obtained. Most of the solutions given earlier in this chapter

can be obtained in this way.

The essential feature of the method is the arrangement of

the numbers by which the girls are represented in an order

such that definite rules can be laid down for grouping them in

pairs and triplets so that the differences of the numbers in each

pair or triplet either are all different or are repeated as often as

14—2
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may be required. The process depends on finding primitive roots

of the prime factors of whatever number is taken as the base

of the solution. When (ri — 1)/2 is prime, of the form 6u + l,

and is taken as base, the order is obtainable at once, and the

rules for grouping the numbers are easy of application ; owing

to considerations of space I here confine myself to such instances,

but similar though somewhat longer methods are applicable

to all cases.

I use the geometrical representation already explained.

We have n—2y + l, and 3/ is a prime of the form 6u + 1. In

forming the triplets we either proceed directly by arranging all

the points in threes, or we arrange some of them in pairs and

make the selection of the third point dependent on those of the

two first chosen, leaving only a few triplets to be obtained

otherwise. In the former case we have to arrange the numbers

in triplets so that each difference will appear twice, and so that

no two differences will appear together more than once. In

the latter case we have to arrange the numbers so that the

differences between the numbers in each pair comprise con-

secutive integers from 1 upwards and are all different. In both

cases, we commence by finding a primitive root of y, say cc. The

residues to the modulus y of the 6w successive powers of oc form

a series of numbers, el, e2, e3, . .
.

, comprising all the integers from

1 to 6w, and when taken in the order of the successive powers,

they can be arranged in the manner required by definite rules.

I will apply the method to the case of 27 girls from which

the general theory, in the restricted case where y is a prime

of the form 6u+l, will be sufficiently clear. In this case

we have n=27, 3/= 13, u=2, and x = 2. I take 13 as the

base of the analysis. I will begin by pairing the points, and

this being so, it is convenient to represent the girls by a point

k at the centre of a circle and points al, 61, a2, b2, ... at

equidistant intervals on the circumference. We reserve k, al3,

613 for one triplet, and we have to arrange the other 24 points

so as to form 8 triangles of certain types. The residues are in

the order 2, 4, 8, 3, 6, 12, 11, 9, 5, 10, 7, 1, and these may be

taken as the suffixes of the remaining ' a 's and ' 6 's.
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First arrange these residues in pairs so that every difference

between the numbers in a pair occurs once. One rule, by which

this can be effected, is to divide the residues into two equal

sections and pair the numbers in the two sections. This gives

(2. 11), (4. 9), (8. 5), (3. 10), (6. 7), (12. 1) as possible pairs.

Another such rule is to divide the residue into six equal

sections, and pair the numbers in the first and second sections,

those in the third and fourth sections, and those in the fifth

and sixth sections. This gives (2. 8), (4. 3), (6. 11), (12. 9),

(5. 7), (10. 1) as possible pairs. Either arrangement can be

used, but the first set of pairs leads only to scalene triangles.

In none of the pairs of the latter set does the sum of the

numbers in a pair add up to 13, and since this may allow the

formation of isosceles as well as of scalene triangles, and thus

increase the variety of the resulting solutions, I will use the

latter set of pairs. We use these basic pairs as suffixes of the

' a 's, and each pair thus determines two points of one of the

triangles required. We have now used up all the ' a 's. The

third point associated with each of these six pairs of points

must be a ' b' and the remaining six ' h 's must be such that

they can be arranged in suitable triplets.

Next, then, we must arrange the 6u residues el, e2, eS, ... in

possible triplets. To do this arrange them cyclically in triplets,

for instance, as shown in the first column of the left half of the

annexed table. We write in the second column the differences

between the first and second numbers in each triplet, in the

third column the differences between the second and third

numbers in each triplet, and in the fourth column the differences

between the third and first numbers in each triplet. If any

of these differences d is greater than Su we may replace it

by the complementary number y — d: that this is permissible

is obvious from the geometrical representation. By shifting

cyclically the symbols in any vertical line in the first column we

change these differences. We can, however, in this way always

displace the second and third vertical lines in the first column

so that the numbers in the second, third, and fourth columns

include the numbers 1 to Sa twice over. This can be effected
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thus. If any term in the residue series is greater than Su re-

place it by its complementary number y — e. In this way, from

the residue series, we get a derivative series dl, cZ2, c?3, ... such

that any Su consecutive terms comprise all the integers from

1 to Su. The first half of this series may be divided into three

equal divisions thus: (1) dly d^, dl, ...
; (2) d2, do, d8, ...;

(3) dS, d6, d9, .... If the displacement is such that the first

numbers in the second, third, and fourth columns are contained

in different divisions, each difference must occur twice, and it

will give a possible solution. Other possible regular arrange-

ments give other solutions. Applying this to our case we have

the residue series, 2, 4, 8, 3, 6, 12, 11, 9, 5, 10, 7, 1. The

derivative series is 2, 4, 5, 3, 6, 1, 2, 4, 5, 3, 6, 1. The three

divisions are (i) 2, 3
;

(ii) 4, 6 ;
(iii) 5, 1. The cyclical arrange-

ment we started wdth and the consequent differences are shown

in the left half of the accompanying table. A cyclical change

2. 4. 8
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of the 'a's on the 13 circle. This gives the following solution,

in which the first six triangles are isosceles: (a2. aS. h5),

(a4. aS. 610), (a6. all. 62), (al2. a9. 64), (a5. a7. 66),

(alO. al. 612), (63. 69. 61), (611. 67. 68), {k. al3. 613).

In the case of 27 girls, we may equally well represent the

points by k at the centre of the circle and 26 equidistant points

1, 2,... 26 on the circumference. The points previously denoted

by a and 6 with the suffix h are now denoted by the numbers

2h—l and 2h. Hence the basic pairs (2. 8), (4. 3), ...become

(3. 15), (7. 5), (11. 21), (23. 17), (9. 13), (19. 1), and the corre-

sponding scalene arrangement for the first day is (3. 15. 20),

(7. 5. 14), ... {k. 25. 26). From this by a two-step cyclical

permutation of the numbers, an arrangement for 13 days can

be got.

The case of 27 girls can also be treated by the direct

formation of triplets. The triplets must be such that each

difference is represented twice, but so that the groups of

differences are different. There are analytical rules for forming

such triplets somewhat analogous to those I have given for

forming basic pairs, but their exposition would be lengthy,

and I will not discuss them here. One set which will answer

our purpose is (1. 12. 5), (2. 3. 10), (4. 6. 9), (8. 11. 7), giving

respectively the differences [2, 6, 4], [1, 6, 5], [2, 3, 5], [3, 4, 1].

Now every difference c? in a 13 circle will correspond to d

or IS — d in a 26 circle, and every residue e in a 13 circle

will correspond to e or 1'3 + e in a 26 circle. Further, a

triplet in the 26 circle must either have tliree even differences,

or one even and two odd differences. Hence from the above

sets we can get the following arrangement for the first day,

(1.25.5) and (14.12.18) with differences [2,6,4], (15.3.10)

and (2. 16. 23) with differences [12, 7, 5], (17. 6. 9) and (4. 19. 22)

with differences [11, 3, 8], (21. 11. 20) and (8. 24. 7) with

differences [10, 9, 1], and {k. 13. 26). From this by either a

one-step or a two-step cyclical permutation of the numbers, an

arrangement for 13 days can be got. I will not go into further

details about the deduction of other similar solutions. A similar

method is always applicable when n is of the form 24m + 3.



216 KIRKMAN S SCHOOL-GIRLS PROBLEM [CH. IX

The process by pairing when 3/ is a prime of the form 6u-\-l

is extremely rapid. For instance, in the case of 15 girls we

have n = 15, 3/ = 7, w = 1, a?= 5. The order of the residues is

5, 4, 6, 2, 3, 1. By our rule we can at once arrange basic pairs

(5. 4), (6. 2), (3. 1). From these pairs we can obtain numerous

solutions. Thus using scalene triangles as above explained, we

get as an arrangement for the first day (a 5, a 4, 62), (a 6. a 2. 61),

(a3. al. 64), (63. 65. 66), (k. al. 67), from which by a one-step

cyclical permutation of the numbers, arrangements for the seven

days can be obtained. Using the basic pairs as bases of

isosceles triangles, we get as an arrangement for the first day

(a5. a4. 61), (a6. a2. 64), (a3. al. 62), (63. 65. 66), {k. al. hi).

Again, take the case of 39 girls. Here we have n = 39,

2/= 19, i^=3, ^=3. The order of the residues is 3, 9, 8; 5, 15, 7;

2, 6, 18 ; 16, 10, 11 ; 14, 4, 12 ; 17, 13, 1. The basic pairs are

(3. 5), (9. 15), (8. 7), (2. 16), &c. These are the sufiixes of the

*a's. The possible triplets which determine what *6's are to

be associated with these, and what ' 6 's are to be left

for the remaining three triangles, can be determined as

follows : From the residue series we obtain the derivative series

3, 9, 8, 5, 4, 7, 2, 6, 1, &c. The divisions are (i) 3, 5, 2; (ii) 9, 4, 6;

(iii) 8, 7, 1. A cyclical arrangement like that given above

leads to the result in the left half of the annexed table which

does not satisfy our condition. A cyclical displacement of the

symbols in the vertical lines in the first column leads to the

arrangement given in the right half of the table, and shows

3. 9. 8
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(a9. al5. 612), (aS. a1. hll), (a2. al6. 69), {aQ, alO. 68),

(al8. all. 65), (al4. all. 66), (a4. al3. 618), (ttl2. al. 616),

(63. 610. 61), (62. 613. 67), (614. 615. 611), (A;. al9. 619).

In the case of 39 girls we may also extend the method

used above by which for 27 girls we obtained the solution

(1. 25. 5), (14. 12. 18), .... We thus get a solution for 39 girls

as follows: (1.25.18), (14.38.31), (27. 12. .5); (15.16.10),

(28. 29. 23), (2. 3. 30); (17. 19. 35), (30. 32. 9), (4. 6. 22);

(21. 24. 33), (34. 37. 7), (8. 11. 20); (13. 26. 39). From this

the arrangements for the first 13 days are obtained either by

a one-step or a three-step cyclical permutation of the numbers.

The single triplets from each of which an arrangement for one

of the other six days is obtainable are (1. 5. 15), (2. 6. 16),

(3. 7. 17); (1. 9. 20), (2. 10. 21), (3. 11. 22). From each of

these the arrangement for one day is obtainable by a three-step

cyclical permutation of the numbers.

These examples of the use of the Focal and Analytical

Methods are given only by way of illustration, but they will

serve to suggest the applications to other cases. When the

number taken as base is composite, the formations of the series

used in the Analytical Method may be troublesome, but the

principle of the method is not affected, though want of space

forbids my going into further details. Eckenstein, to whom
the development of this method is mainly due, can, with the

aid of a table of primitive roots and sets of numbers written on

cards, within half an hour obtain a solution for any case in

which n is less than 500, and can within one hour obtain a

solution for any case in which n lies between 500 and 900.

Number of Solutions. The problems of 9 and of 15 girls

have been subjected to an exhaustive examination. It ha«

been shown that all solutions of the problem of 9 girls are

reducible to one type, and that the number of independent

solutions is 840, where, however, any arrangement on Monday,

Tuesday, Wednesday and Thursday, and the same arrangement

on (say) Monday, Tuesday, Thursday and Wednesday are regarded

as identical. [If they are regarded as different the number of

possible independent solutions is 20,160.] The total number of



218 KIRKMAN'S school-girls problem [CH. IX

possible arrangements of the girls in triplets for four days is

(280)Y4!; hence the probability of obtaining a solution by a

chance arrangement is about 1 in 300,000.

All solutions of the problem of 15 girls are reducible to one

of eleven types, distinguished by the number of cycles required

for expressing them. The number of independent solutions is

said to be 65 x(13!), but I do not vouch for the correctness of the

result. The total number of ways in which the girls can walk

out for a week in triplets is (455)'; so the probability that

any chance way satisfies the condition of the problem is very

small.

Walecki's Theorem. It should be noticed that Walecki

—

quoted by Lucas—has shown that if a solution for the case of

n girls walking out in triplets for (n — l)/2 days is known, then

a solution for Sn girls walking out for (3n — l)/2 days can be

deduced.

For if an arrangement of the n girls Oi, ag, ..., a^ for

(n— l)/2 days is known ; and also one of the n girls h^, h^, ...,&»;

and also one of the n girls Ci, Ca, ..., Cn\ then obviously an

arrangement of these 3n girls for (n — l)/2 days can be written

down at once. A set of n triplets for another day will be given

by ami>m+kCm+2k, where m is put equal to 1, 2, ..., n successivel3\

Here k may have any of the n values, 0, 1, 2, ..., (n — 1) ; but,

wherever a suffix is greater than n, it is to be divided by n and

only the remainder retained. Hence altogether we have an

arrangement for (n — l)/2 + n days, i.e. for (Sn — l)/2 days. We
might also form the known order of arrangements for (n — 1)/2

days for the three sets of girls, and then arrange the girls in

triplets thus: (ci. a^. hn), (02- cl^. &n-iX ••• ('^n- ^7f &i)« from this,

arrangements for n days can be obtained by one-step cyclical

permutations of the a and h suffixes, keeping the c suffixes

unchanged. Hence altogether we get, as before, arrangements

for (ri — l)/2 + n days, i.e. for (8n — l)/2 days.

I have given solutions for all values of n less than 100.

Other solutions for some of these values could also be found by

Walecki's Theorem. By that theorem we can also write down
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solutions for 3'"/i girls where n has any of the values given

above.

Extension to n^ Girls. Peirce suggested the corresponding

problem of arranging n^ girls in n groups, each group containing

n girls, on w + 1 days so that no two girls will be together in

a group on more than one day. We may conveniently represent

the girls by a point k at the centre of a circle and n^ — 1 equi-

distant points on the circumference.

When ?i = 2, we may arrange initially the 4 points in two

pairs, one pair consisting of k and one of the points, say, 3, and

the other pair of the remaining points (1. 2). These two pairs

give the arrangement for the first day. From them, the solu-

tion for the other day is obtained b}- a one-step cyclical

permutation.

When n = 3, we may arrange initially the 9 points in

three triplets, namely, k and the ends of a diameter {k. 4. 8)

;

a triangle (1. 2. 7) ; and the same triangle rotated through 180°,

thus occupying the position (5. 6. 3). These three triplets give

an arrangement for the first day. From them the solutions for

the other days are obtained by one-step cyclical permutations.

When n = 4, we may arrange initially the 16 points in four

quartets, namely, k and three equidistant points, (k. 5. 10. \o);

a quadrilateral (1. 2. 4. 8) ; the same quadrilateral rotated

through 120° and 240°, thus occupying the positions (6. 7. 9. 13)

and (11. 12. 14. 3). These four quartets give an arrangement

for the first day. From them the solutions for the other days

are obtained by one-step cyclical permutations.

When n = 5, we may arrange initially the 25 points in five

quintets, namely, k and four equidistant points, (/j. 6. 12. 18. 24);

a pentagon (2. 3. 5. 13. 22) ; the same pentagon rotated through

90°, 180°, 270°, thus occupying the positions (8. 9. 11. 19. 4),

(14. 15. 17. 1. 10), (20. 21. 23. 7. 16). These five quintets give

an arrangement for the first day. From them the solutions for

the other days are obtained by one-step cyclical permutations.

There is a second solution (k 6. 12. 18. 24), (1. 2. 15. 17. 22), &c.

Hitherto the case when n — (j has baffled all attempts to

find a solution.
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When 72 = 7 we may initially arrange the 49 points in

seven groups namely {k. 8. 16. 24. 32. 40. 48), a group

(1. 2. 5. 11. 31. 36. 38) and the same group rotated through

60°, 120°, 180°, 240°, 300°. There are three other solutions:

in these the second group is either (2. 3. 17. 28. 38. 45. 47), or

(3. 4. 6. 18. 23. 41. 45), or (3. 4. 14. 17. 26. 45. 47).

When n = 8 there are three solutions, due to Ecken stein.

If the first group is {k. 9. 18. 27. 36. 45. 54. 63), the second

groupiseither(1.2.4.8.16.21.32.42), or (2.3.16.22.24.50.55.62),

or (3. 4. 7. 19. 24. 26. 32. 56): the other groups in each solution

heing obtained by successive addition of 9 to the number in the

second group.

When n is composite no general method of attacking the

problem has been discovered, though solutions for various par-

kl, k2, kn.

al, a2, an.

61, 62, bn.
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table. From the arrangement on the second day, the arrange-

ments for the other days are obtained by one-step cyclical

permutations of the suffixes of a, b, &c.; the suffixes of A; being

unaltered. An example will make this clearer. For instance,

when n = 7 the rule gives the arrangements for the first and

second days shown in the second table.

Kirkmans Problem in Quartets. The problem of arranging

4??i girls, where m is of the form 3n + 1, in quartets to walk out

for (4/Ai,— 1)/3 days, so that no girl will walk with any of her

school-fellows in any quartet more than once has been attacked.

Methods snuilar to those given above are applicable, and solu-

tions for all cases where m does not exceed 31, have been written

out. Analogous methods seem to be applicable to corresponding

problems about quintets, sextets, &c.

Bridge Problem. Another analogous question is wherewe deal

with arrangements in pairs instead of triplets. One problem of

this kind is to arrange 4m members of a bridge club for 4m — 1

rubbers so that (i) no two members shall plav toofether as

partners more than once, and (ii) each member shall meet every

other member as opponent twice. The general theory has been

discussed by E. H. Moore. To obtain cyclic solutions we may
proceed thus. Denote the members by a point k at the centre

of a circle and by 4?7i — 1 equidistant points, numbered 1, 2, 3, ...

on the circumference. We can join the points 2, 3, 4, ... by

chords, and these chords with {k. 1) give possible partners at

the m tables in the first rubber. A one-step cyclical permutation

of the numbers will give the arrangements for the other rubbers

if, in the initial arrangement, (i) the lengths of the chords

representing every pair of partners are unequal and thus appear

only once, and (ii) the lengths of the chords representing every

pair of opponents appear only twice. Solutions have been

published for several values of m. In the following examples

for m = 2, 3, 4, 10, I give an arrangement of the card tables

for the first rubber : the arrangements for the subsequent

rubbers being thence obtained by one-step cyclical permutations

of the numbers. If 7?i=2, such an initial arrangement is {k. 1

against 5. 6) and (2. 4 against 3. 7). If m = 3, one such initial
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arrangement is (k. 1 against 5. 6), (2. 11 against 3. 9) and (4. 8

against 7. 10). If m = 4, such an inibial arrangement is {k. 1

against 6. 11), (2. 3 against 5. 9), (4. 12 against 13. 15), and

(7. 10 against 8. 14). One example of a higher number will

suffice; if m = 10 such an initial arrangement is (k. 1 against

14. 27), (2. 9 against 26. 6), (3. 17 against 12. 11), (5. 33 against

23. 21), (15. 39 against 19. 22), (16. 25 against 24. 30), (18, 36

against 34. 7), (28. 32 against 35. 13), (29. 37 against 4. 38) and

(31. 8 against 20. 10). In some cases there are also solutions

not reducible to single cycles.

Sylvesters Corollary. To the original theorem J. J. Sylvester

added the corollary that the school of 15 girls could walk out in

triplets on 91 days until every possible triplet had walked abreast

once, and he published a solution in 1861.

The generalized problem of finding the greatest number of

ways in which co girls walking in rows of a abreast can be

arranged so that every possible combination of b of them may

walk abreast once and only once has been solved for various

cases. Suppose that this greatest number of ways is y. It

is obvious that, if all the cc girls are to walk out each day in

rows of a abreast, then x must be an exact multiple of a and

the number of rows formed each day is oo/a. I confine myself

to these cases. If such an arrangement can be made for z days,

then we have a solution of the problem to arrange x girls to

walk out in rows of a abreast for z days so that they all go out

each day and so that every possible combination of h girls may

walk together once, and only once.

An example where the solution is obvious is if a; = 2n,

a— 2, 6 = 2, in which case 3/ = ?i(27i — 1), z=2n — \. If

we take the case a; =15, a = 3, 6=2, we find 3/ =35; and it

happens that these 35 rows can be divided into 7 sets, each

of which contains all the symbols ; hence ^=7. More generally,

if a?= 5 X 3'^ a = 3, 6= 2, we find y = ^{x-\)ftx, z=-{x-\)l2.

It will be noticed that in the solutions of the original fifteen

school-girls problem and of Walecki's extension of it given above

every possible pair of girls walk together once ; hence we might

infer that in these cases we could determine z as well as y.
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The results of the last paragraph were given by Kirkman

in 1850. In the same memoir he also proved that, if x=9,
(X=3, b = o, then y = 84, ^ = 28; and if x=lo, a = 3, 6 = 3,

2/ =455, ^ = 91, but some of the extensions he gave are not

correct. He showed, however, how 9 girls can be arranged to

walk out 28 times (say 4 times a day for a week) so that in any

day the same pair never are together more than once and so

that at the end of the week each girl has been associated with

every possible pair of her school-fellows. Three years later

he attacked the problem when x — 2^\ a = 4, 6=3, but his

analysis is open to objection. In 1867 S. Bills showed that

if 57 = 15, a = 3, 6 = 2, then y = 35: and the method used

will give the value of y, if a;=2'*— 1, a =3, 6=2. Shortly

afterwards W. Lea showed that if a; =16, a =4, 6 = 3, then

y= 140. These writers did not confine their discussion to cases

where x is an exact multiple of a.

Steiner's Problem. I should add that Kirkman's problem, but

in a somewhat more general form, was proposed independently

by J. Steiner in 1852, and, as enunciated by him, is known as

Steiners Combinatorische Aufgabe. In substance Steiner sought

to find for what values of n it is possible to arrange n things in

triplets, so that every pair of things is contained in one and only

one triplet: any triplet forming part of such an arrangement

is called a triad. Also, if ?i is a number for which such an

arrangement can be formed, he asked whether there are other

arrangements that cannot be obtained from it by permutations

of the things. Other problems proposed by him are as follows.

When such an arrangement of triads has been made, is it

possible to arrange the n things in sets of four, called tetrads,

so that no one of the triads is contained in any tetrad, but

every triplet which is not a triad is contained in one and only

one tetrad ? And generally when an arrangement in ^^-ads

has been made, is it possible to arrange the things in sets of

k -{- 1-ads so that no /i-ad, where ^ :|> A:, is obtained in a

A; + l-ad, and so that every A;-let tliat is not or does not

contain an /i-ad is contained in one and only one k-v 1-ad ?
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CHAPTER X.

MISCELLANEOUS PROBLEMS.

I propose to discuss in this chapter the mathematical theory

of a few common mathematical amusements and games. I

might have dealt with them in the first four chapters, but, since

most of them involve mixed geometry and algebra, it is rather

more convenient to deal with them apart from the problems

and puzzles which have been described already; the arrange-

ment is, however, based on convenience rather than on any

logical distinction.

The majority of the questions here enumerated have no

connection one Avith another, and I jot them down almost at

random.

I shall discuss in succession the Fifteen Puzzle, the Tower

of Hanoi, Chinese Rings, and some miscellaneous Problems

connected with a Pack of Cards.

The Fifteen Puzzle*. Some years ago the so-called

Fifteen Puzzle was on sale in all toy-shops. It consists of a

shallow wooden box—one side being marked as the top—in the

form of a square, and contains fifteen square blocks or counters

numbered 1, 2, 3, ... up to 15. The box will hold just sixteen

such counters, and, as it contains only fifteen, they can be

moved about in the box relatively to one another. Initially

they are put in the box in any order, but leaving the sixteenth

* Thdi'e are two articles on the subject in the American Journal of

Matheviatics, 1879, vol. ii, by Professors Woolsey Johnson and Storey ; but

the whole theory is deducible immediately from the proposition I give in

the tesct.



CH. X] MISCELLANEOUS PROBLEMS

cell or small square empty; the puzzle is to move them so

that finally they occupy the position shown in the first of the

annexed figures.

D Top of Box C

n 4 1 ta
Bottom of Box B

We may represent the various stages in the game by sup-

posing that the blank space, occupying the sixteenth cell, is

moved over the board, ending finally where it started.

The route pursued by the blank space may consist partly of

tracks followed and again retraced, which have no effect on the

arrangement, and partly of closed paths travelled round, which

necessarily are cyclical permutations of an odd number of

counters. No other motion is possible.

Now a cyclical permutation of n letters is equivalent to

n — 1 simple interchanges ; accordingly an odd cyclical permu-

tation is equivalent to an even number of simple interchanges.

Hence, if we move the counters so as to bring the blank space

back into the sixteenth cell, the new order must differ from

the initial order by an even number of simple interchanges. If

therefore the order we want to get can be obtained from this

initial order only by an odd number of interchanges, the

problem is incapable of solution ; if it can be obtained by an

even number, the problem is possible.

Thus the order in the second of the diagrams given

above is deducible from that in the first diagram by six

interchanges ; namely, by interchanging the counters 1 and 2,

15B. R.
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3 and 4, 5 and 6, 7 and 8, 9 and 10, 11 and 12. Hence the one

can be deduced from the other by moving the counters about

in the box.

If however in the second diagram the order of the last

three counters had been 13, 15, 14, then it would have required

seven interchanges of counters to bring them into the order

given in the first diagram. Hence in this case the problem

would be insoluble.

The easiest way of finding the number of simple inter-

changes necessary in order to obtain one given arrangement

from another is to make the transformation by a series of cycles.

For example, suppose that we take the counters in the box in

any definite order, such as taking the successive rows from left

to right, and suppose the original order and the final order to

be respectively

1, 13, 2, 3, 5, 7, 12, 8, 15, 6, 9, 4, 11, 10, 14,

and 11, 2, 3, 4, 5, 6, 7, 1, 9, 10, 13, 12, 8, 14, 15.

We can deduce the second order from the first by 12 simple

interchanges. The simplest way of seeing this is to arrange the

process in three separate cycles as follows :

—

1, 11, 8;

11, 8, 1;

13, 2, 3, 4, 12, 7, 6, 10, 14, 15, 9; 5.

2, 3, 4, 12, 7, 6, 10, 14, 15, 9, 13; 5.

Thus, iLin the first row of figures 11 is substituted for 1, then

8 for 11, then 1 for 8, we have made a cyclical interchange of

3 numbers, which is equivalent to 2 simple interchanges (namely,

interchanging 1 and 11, and then 1 and 8). Thus the whole

process is equivalent to one cyclical interchange of 3 numbers,

another of 11 numbers, and another of 1 number. Hence it is

equivalent to (2 + 10 + 0) simple interchanges. This is an even

number, and thus one of these orders can be deduced from the

other by moving the counters about in the box.

It is obvious that, if the initial order is the same as the

required order except that the last three counters are in the

order 15, 14, 13, it would require one interchange to put them

in the order 13, 14, 15 ; hence the problem is insoluble.

If however the box is turned through a right angle, so as
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to make AB the top, this rotation will be equivalent to 13
simple interchanges. For, if we keep the sixteenth square
always blank, then such a rotation would change any order
such as

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
to 13, 9, 5, 1, 14, 10, 6, 2, 15, 11, 7, 3, 12, 8, 4,

which is equivalent to 13 simple interchanges. Hence it will
change the arrangement from one where a solution is impossible
to one where it is possible, and vice versa.

Again, even if the initial order is one which makes a
solution impossible, yet if the first cell and not the last is left

blank it will be possible to arrange the fifteen counters in their
natural order. For, if we represent the blank cell by 6, this
will be equivalent to changing the order

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 6,

to 6, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15:
this is a cyclical interchange of 16 things and therefore is

equivalent to 15 simple interchanges. Hence it will change
the arrangement from one where a solution is impossible to
one where it is possible, and vice versa.

So, too, if it were permissible to turn the 6 and the 9 upside
down, thus changing them to 9 and 6 respectively, this would be
equivalent to one simple interchange, and therefore would change
an arrang:ement where a solution is impossible to one where
it is possible.

It is evident that the above principles are applicable equally
to a rectangular box containing mn cells or spaces and mn - 1
counters which are numbered. Of course m may be equal to n.
If such a box is turned through a right angle, and m and n are
both even, it will be equivalent to m/i - 3 simple interchanges—
and thus will change an impossible position to a possible one
and vice versa-but unless both m and n are even the rotation
IS equivalent to only an even number of interchanges. Similarly,
if either m or w is even, and it is impossible to solve the problem'
when the last cell is left blank, then it will be possible to solve

'

It by leaving the first cell blank.

15-2
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The problem may be made more difficult by limiting the

possible movements by fixing bars inside the box which will

prevent the movement of a counter transverse to their directions.

We can conceive also of a similar cubical puzzle, but we could

not work it practically except by sections.

The Tower of Hanoi. I may mention next the ingenious

puzzle known as the Tower of Hanoi. It was brought out in

1883 by M. Glaus (Lucas).

It consists of three pegs fastened to a stand, and of eight

circular discs of wood or cardboard each of which has a hole in

the middle through which a peg can be passed. These discs

are of different radii, and initially they are placed all on one

peg, so that the biggest is at the bottom, and the radii of the

successive discs decrease as we ascend : thus the smallest disc

is at the top. This arrangement is called the Tower. The

problem is to shift the discs from one peg to another in such

a way that a disc shall never rest on one smaller than itself,

and finally to transfer the tower {i.e. all the discs in their proper

order) from the peg on which they initially rested to one of the

other pegs.

The method of efiecting this is as follows, (i) If initially

there are n discs on the peg A, the first operation is to transfer

gradually the top n — 1 discs from the peg A to the peg B,

leaving the peg G vacant : suppose that this requires x separate

transfers, (ii) Next, move the bottom disc to the peg G.

(iii) Then, reversing the first process, transfer gradually the

n — l discs from B to 0, which will necessitate x transfers.

Hence, if it requires oc transfers of simple discs to move a tower

of n — 1 discs, then it will require 2^7+1 separate transfers of

single discs to move a tower of n discs. Now with 2 discs it

requires 3 transfers, i.e. 2^—1 transfers ; hence with 3 discs the

number of transfers required will be 2 (2^ - 1) + 1, that is, 2^ - 1.

Proceeding in this way we see that with a tower of n discs it

will require 2" — 1 transfers of single discs to effect the complete

transfer. Thus the eight discs of the puzzle will require 255

single transfers. It will be noticed that every alternate move
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consists of a transfer of the smallest disc from one peg to another,

the pegs being taken in cyclical order : further if the discs be

numbered consecutively 1, 2, 3, ... beginning with the smallest,

all those with odd numbers rotate in one direction, and all those

with even numbers in the other direction.

De Parville gave an account of the origin of the toy which

is a sufficiently pretty conceit to deserve repetition*. In the

great temple at Benares, says he, beneath the dome which

marks the centre of the world, rests a brass plate in which are

fixed three diamond needles, each a cubit high and as thick

as the body of a bee. On one of these needles, at the creation,

God placed sixty-four discs of pure gold, the largest disc resting

on the brass plate, and the others getting smaller and smaller

up to the top one. This is the Tower of Bramah. Day and

night unceasingly the priests transfer the discs from one diamond

needle to another according to the fixed and immutable

laws of Bramah, which require that the priest on duty must

not move more than one disc at a time and that he must place

this disc on a needle so that there is no smaller disc below it.

When the sixty-four discs shall have been thus transferred

from the needle on which at the creation God placed them to

one of the other needles, tower, temple, and Brahmins alike

will crumble into dust, and with a thunderclap the world

will vanish. Would that other writers were in the habit of

inventing equally interesting origins for the puzzles they

produce

!

The number of separate transfers of single discs which the

Brahmins must make to effect the transfer of the tower is

2«^-l, that is, is 18,446744,073709,551615: a number which,

even if the priests never made a mistake, would require many
thousands of millions of years to carry out.

Chinese RiNGSf. A somewhat more elaborate toy, known
as Chinese Rings, which is on sale in most English toy-shops,

* La Nature, Paris, 1884, part i, pp. 285—286.

+ It waa described by Cardan in 1550 in his De Subtilitate, bk. xv,

paragraph 2, ed. Sponius, vol. iii, p. 587 ; by Wallis in his Algebra, Latin edition,

1693, Opera, vol. ii, chap, cxi, pp. 472—478 ; and allusion is made to it also

in Ozanam's Recreations, 1723 edition, vol. iv, p. 439.
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is represented in the accompanying figure. It consists of a

number of rings hung upon a bar in such a manner that the

ring at one end (say A) can be taken off or put on the bar

at pleasure; but any other ring can be taken off or put on

only when the one next to it towards A is on, and all the

rest towards A are off the bar. The order of the rings cannot

be changed.

Only one ring can be taken off or put on at a time. [In

the toy, as usually sold, the first two rings form an exception

to the rule. Both these can be taken off or put on together.

To simplify the discussion I shall assume at first that only one

ring is taken off or put on at a time.] I proceed to show that,

if there are n rings, then in order to disconnect them from the

bar, it will be necessary to take a ring off or to put a ring on

either J
(2**+^ — 1) times or J (2"+^ — 2) times according as n is

odd or even.

Let the taking a ring off the bar or putting a ring on the

bar be called a step. It is usual to number the rings from the

free end A. Let us suppose that we commence with the first

m rings off the bar and all the rest on the bar; and suppose

that then it requires x—1 steps to take off the next ring,

that is, it requires x—1 additional steps to arrange the rings

so that the first m + 1 of them are off the bar and all the

rest are on it. Before taking these steps we can take off
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the (m + 2)th ring and thus it will require x steps from our

initial position to remove the (m+l)th and (m + 2)th rings.

Suppose that these x steps have been made and that thus

the first m + 2 rings are off the bar and the rest on it, and

let us find how many additional steps are now necessary to

take off the {m + 3)th and (m + 4)th rings. To take these off

we begin by taking off the (m + 4)th ring : this requires 1 step.

Before we can take off the {m + 3)th ring we must arrange the

rings so that the (?7i+ 2)th ring is on and the first m 4- 1 rings

are off: to effect this, (i) we must get the (m + l)th ring on

and the first m rings off, which requires x — \ steps, (ii) then

we must put on the (m + 2)th ring, which requires 1 step,

(iii) and lastly we must take the (m + l)th ring off, which re-

quires x — \ steps: these movements require in all j2 (a? — 1) + 1}

steps. Next we can take the (m + 3)th ring off, which requires

1 step ; this leaves us with the first m + 1 rings off, the

(m + 2)th on, the (m + 3)th off and all the rest on. Finally to

take off the (m + 2)th ring, (i) we get the (m+l)th ring on

and the first m rings off, which requires x—1 steps, (ii) we take

off the (m + 2)th ring, which requires 1 step, (iii) we take the

{in-\- l)th ring off, which requires x—\ steps: these movements

require [2 (a; — 1) + 1} steps.

Therefore, if when the first in rings are off it requires x

steps to take off the {in + l)th and (m + 2)th rings, then the

number of additional steps required to take off the {m + 3)th

and (m+4)th rings is 1 + {2(a;- 1) + 1} + 1 + {2 (^- 1) + 1},

that is, is 4a7.

To find the whole number of steps necessary to take off an

odd number of rings we proceed as follows.

To take off the first ring requires 1 step

;

.'. to take off the first 3 rings requires 4 additional steps

;

^ 4,2
• • >> »» «-'

)5 )>
^ 3> ii

In this way we see that the number of steps required to take

off the first 2n-\-\ rings is 1 + 4 + 4- -f ... + 4", which is equal

to J- ( 22'*+=^-!).

To find the number of steps necessary to take off an even

number of rings we proceed in a similar manner.
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To take off the first 2 rings requires 2 steps

;

/. to take off the first 4 rings requires 2x4 additional steps
;

• • « » >» " » )J ^ ^ -X 5, f,

In this way we see that the number of steps required to take

off the first 2n rings is 2 + (2 x 4) + (2 x 4^) + . . . + (2 x 4^-i),

which is equal to |
(22"+i - 2).

If we take off or put on the first two rings in one step

instead of two separate steps, these results become respectively

2^^ and 2''''-'- - 1.

I give the above analysis because it is the direct solution

of a problem attacked unsuccessfully by Cardan in 1550 and by

WalKs in 1693, and which at one time attracted some attention.

I proceed next to give another solution, more elegant

though rather artificial. This, which is due to Monsieur Gros*,

depends on a convention by which any position of the rings

is denoted by a certain number expressed in the binary scale of

notation in such a way that a step is indicated by the addition

or subtraction of unity.

Let the rings be indicated by circles : if a ring is on the

bar, it is represented by a circle drawn above the bar ; if the

ring is off the bar, it is represented by a circle below the bar.

Thus figure i below represents a set of seven rings of which the

first two are off the bar, the next three are on it, the sixth is off

it, and the seventh is on it.

Denote the rings which are on the bar by the digits 1 or

alternately, reckoning from left to right, and denote a ring

which is off the bar by the digit assigned to that ring on the

bar which is nearest to it on the left of it, or by a if there is

no ring to the left of it.

Thus the three positions indicated below are denoted re-

spectively by the numbers written below them. The position

represented in figure ii is obtained from that in figure i by

putting the first ring on to the bar, while the position repre-

sented in figure iii is obtained from that in figure i by taking

the fourth ring off the bar.

* Theorie du Baguenodier, by L. Gros, Lyons, 1872. I take the account of

this from Lucas, vol. i, part 7.
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It follows that every position of the rings is denoted by a

number expressed in the binary scale: moreover, since in going

from left to right every ring on the bar gives a variation (that

is, 1 to or to 1) and every ring off the bar gives a continu-

ation, the effect of a step by which a ring is taken off or put on

the bar is either to subtract unity from this number or to add

unity to it. For example, the number denoting the position of

the rings in figure ii is obtained from the number denoting that

m figure i by adding unity to it. Similarly the number de-

noting the position of the rings in figure iii is obtained from

the number denoting that in figure i by subtracting unity

from it.

O OOP
o o o

o o o o o OOP
o o o o^ Q

1101000 1101001 1100111

Figure i. Figure ii. Figure iii.

The position when all the seven rings are off the bar is

denoted by the number 0000000 : when all of them are on

the bar by the number 1010101. Hence to change from one

position to the other requires a number of steps equal to the

difference between these two numbers in the binary scale. The

first of these numbers is 0: the second is equal to 2^ + 2* + 2^^ -}- 1,

that is, to 85. Therefore 85 steps are required. In a similar

way we may show^ that to put on a set of 2?i 4- 1 rings requires

(1 + 2- + . . . + 2-'') steps, that is, i (22^+2 _ j) g^eps ; and to put

on a set of 2n rings requires (2 + 2^ + . . . + 2^"~^) steps, that is,

J
(2""+i - 2) steps.

I append a table indicating the steps necessary to take off

the first four rings from a set of five rings. The diagrams in

the middle column show the successive position of the rings

after each step. The number following each diagram indicates

that position, each number being obtained from the one above

it by the addition of unity. The steps which are bracketed to-

gether can be made in one movement, and, if thus effected, the

whole process is completed in 7 movements instead of 10 steps:

this is in accordance with the formula given above.
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Gros asserted that it is possible to take from 64 to

80 steps a minute, which in my experience is a rather high

estimate. If we accept the lower of these numbers, it would

be possible to take off 10 rings in less than 8 minutes ; to take

off 25 rings would require more than 582 days, each of ten

hours work ; and to take off 60 rings would necessitate no less

than 768614,336404,564650 steps, and would require nearly

55000,000000 years work—assuming of course that no mistakes

were made.

Initia
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Shuffling a Pack. Any system of shuffling a pack of

cards, if carried out consistently, leads to an arrangement which

can be calculated ; but tricks that depend on it generally require

considerable technical skill.

Suppose for instance that a pack of n cards is shuffled, as

is not unusual, by placing the second card on the first, the third

below these, the fourth above them, and so on. The theo:^ of

this system of shuffling is due to Monge*. The following are

some of the results and are not difficult to prove directly.

If the pack contains Qp + 4 cards, the (2jo 4- 2)th card will

occupy the same position in the shuffled pack. For instance, if

a complete pack of 52 cards is shuffled as described above, the

18th card will remain the 18th card.

Again, if a pack of 10/) + 2 cards is shuffled in this way, the

{2p + l)th and the (6^ + 2)th cards will interchange places. For

instance, if an 6carte pack of 32 cards is shuffled as described

above, the 7 th and the 20th cards will change places.

More generally, one shuffle of a pack of 2p cards will move

the card which was in the o^oth place to the x-fii place, where

a^i = -^ (2p -\- Xq-\-V) if Xq is odd, and Xi = \ (2p — Xo + 2) if Xo is

even, from which the above results can be deduced. By repeated

applications of the above formulae we can show that the effect

of m such shuffles is to move the card which was initially in the

Xoth. place to the a^^th place, where

2»"+ia;;^ = (4j9 + l)(2"^-^±2"^-2± ... ±2 ± 1) ± 2^o + 2"» ± 1,

the sign ± representing an ambiguity of sign.

Again, in any pack of n cards after a certain number of

shufflings, not greater than ?i, the cards will return to their

primitive order. This will always be the case as soon as the

original top card occupies that position again. To determine

* Monge's investigations are printed in the Memoires de VAcadimie des

Sciences, Paris, 1773, pp. 390—412, Among those who have studied the subject

afresh I may in particular mention V. Bouniakowski, Bulletin physico-viatMma-

tique de St Petersbourg, 1857, vol. xv, pp. 202—205, summarised iu the Nouvelles

annales de mathematiques, 1858, pp. G6—67 ; T. de St Laurent, Memoires

de VAcademic de Gard, 1865 ; L. Tanner, Educational Times Re})rints, 1880,

vol. xxxiii, pp. 73—75; M. J. Bourget, Lioxiville's Journal, 1882, pp. 413—434;

and H. F. Baker, Transactions of the British Association for 1910, pp. 520—528.
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the number of shuffles required for a pack of 2p cards, it is

sufficient to put oom = ^o ^'Hd find the smallest value of m which

satisfies the resulting equation for all values of ccq from 1 to 2p.

It follows that, if m is the least number which makes 4"* — 1

divisible by 4p+l, then m shuffles will be required if either

2"* + 1 or 2"* — 1 is divisible by 4p + 1, otherwise 2m shuffles will

be required. The number for a pack of 2^ + 1 cards is the same

as that for a pack of 2p cards. With an ^cart6 pack of 32 cards,

six shuffles are sufficient; with a pack of 2" cards, n + 1 shuffles

are sufficient; with a fall pack of 52 cards, twelve shuffles are

sufficient; with a pack of 13 cards ten shuffles are sufflcient

;

while with a pack of 50 cards fifty shuffles are required ; and

so on.

W. H. H. Hudson* has also shown that, whatever is the

law of shuffling, yet if it is repeated again and again on a pack

of n cards, the cards will ultimately fall into their initial posi-

tions after a number of shufflings not greater than the greatest

possible L.c.M. of all numbers whose sum is n.

For suppose that any particular position is occupied after

the 1st, 2nd, ..., pth. shuffles by the cards Ai, Ao, ..., Ap re-

spectively, and that initially the position is occupied by the

card J-o- Suppose further that after the ^th shuffle Aq returns

to its initial position, therefore Aq = Ap. Then at the second

shuffling -ia succeeds ^1 by the same law by which Ai succeeded

-4o at the first; hence it follows that previous to the second

shuffling A2 must have been in the place occupied by Ai pre-

vious to the first. Thus the cards which after the successive

shuffles take the place initially occupied by A^ are A^, A3, ...,

Ap, All that is, after the pth shuffle Ai has returned to the

place initially occupied by it: and so for all the other cards

xi^} "%} •••, -0._p.-i.

Hence the cards At,, A^, ..., Ap form a cycle of p cards, one

or other of which is always in one or other of p positions in the

pack, and which go through all their changes in p shufflings.

Let the number n of the pack be divided into p, q, r^ ... such

cycles, whose sum is n ; then the L. c. m. of p, q, r, ... is the

• Educational Times Reprints^ London, 1865, vol. 11, p. 105.
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utmost number of shufflings necessary before all the cards will

be brought back to their original places. In the case of a

pack of 52 cards, the greatest L.c.M. of numbers whose sum
is 52 is 180180.

Arrangements by Rows and Columns. A not uncommon
trick, which rests on a species of shuffling, depends on the

obvious fiict that if n^ cards are arranged in the form of a

square of n rows, each containing n cards, then any card will

be defined if the row and the column in which it lies are

mentioned.

This information is generally elicited by first asking in

which row the selected card lies, and noting the extreme left-

hand card of that row. The cards in each column are then

taken up, face upwards, one at a time beginning with the

lowest card of each column and taking the columns in their

order from right to left—each card taken up being placed on

the top of those previously taken up. The cards are then

dealt out again in rows, from left to right, beginning with the

top left-hand corner, and a question is put as to which row

contains the card. The selected card will be that card in the

row mentioned which is in the same vertical column as the

card which was originally noted.

The trick is improved by allowing the pack to be cut as

often as is liked before the cards are re-dealt, and then giving

one cut at the end so as to make the top card in the pack

one of those originally in the top row. For instance, take the

1

5

9

13
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case of 16 cards. The first and second arrangements may be

represented by figures i and ii. Suppose we are told that in

figure i the card is in the third row, it must be either 9, 10,

11, 12: hence, if we know in which row of figure ii it lies, it is

determined. If we allow the pack to be cut between the deals,

we must secure somehow that the top card is either 1, 2, 3,

or 4, since that will leave the cards in each row of figure ii

unaltered though the positions of the rows will be changed.

Determination of a selected pair of cards out of

4?i(7i + l) GIVEN PAIRS*. Another common trick is to throw

twenty cards on to a table in ten couples, and ask someone to

select one couple. The cards are then taken up, and dealt out

in a certain manner into four rows each containing five cards.

If the rows which contain the given cards are indicated, the

cards selected are known at once.

This depends on the fact that the number of homogeneous

products of two dimensions which can be formed out of four

things is 10. Hence the homogeneous products of two dimen-

sions formed out of four things can be used to define ten things

Suppose that ten pairs of cards are placed on a table and

someone selects one couple. Take up the cards in their

1

4
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The first couple (1 and 2) are in the first row. Of the next

couple (3 and 4), put one in the first row and one in the

second. Of the next couple (5 and 6), put one in the first row

and one in the third, and so on, as indicated in the diagram.

After filling up the first row proceed similarly with the second

row, and so on.

Enquire in which rows the two selected cards appear. If

only one line, the mih, is mentioned as containing the cards,

then the required pair of cards are the mth. and (m+ l)th cards

in that line. These occupy the clue squares of that line.

Next, if two lines are mentioned, then proceed as follows.

Let the two lines be the pth and the ^th and suppose q>p.
Then that one of the required cards which is in the qth line

will be the (q — ^)th card which is below the first of the clue

squares in the pth. line. The other of the required cards is in

the pth line and is the {q —p)th card to the right of the second

of the clue squares.

Bachet's rule, in the form in which I have given it, is

applicable to a pack of n(n + l) cards divided into couples,

and dealt in n rows each containing ti + 1 cards ; for there are

^n(n + l) such couples, also there are ^n(n-\-l) homogeneous

products of two dimensions which can be formed out of n

things. Bachet gave the diagrams for the cases of 20, 30, and

42 cards: these the reader will have no difficulty in constructing

for himself, and I have enunciated the rule for 20 cards in a

form which covers all the cases.

I have seen the same trick performed by means of a

sentence and not by numbers. If we take the case of ten

couples, then after collecting the pairs the cards must be dealt

in four rows each containing five cards, in the order indicated

by the sentence Matas dedit nomen Cocis. This sentence must

be imagined as written on the table, each word forming one

line. The first card is dealt on the M. The next card (which

is the pair of the first) is placed on the second m in the sentence,

that is, third in the third row. The third card is placed on

the a. The fourth card (which is the pair of the third) is

placed on the second a, that is, fourth in the first row. Each
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of the next two cards is placed on a t, and so on. Enquire

in which rows the two selected cards appear. If two rows are

mentioned, the two cards are on the letters common to the

words that make these rows. If only one row is mentioned,

the cards are on the two letters common to that row.

The reason is obvious : let us denote each of the first pair

by an a, and similarly each of any of the other pairs by an

e, iy 0, c, d, m, n, s, or t respectively. Now the sentence Matas

dedit nomen Cocis contains four words each of five letters ; ten

letters are used, and each letter is repeated only twice. Hence,

if two of the words are mentioned, they will have one letter in

common, or, if one word is mentioned, it will have two like

letters.

To perform the same trick with any other number of cards

we should require a different sentence.

The number of homogeneous products of three dimensions

which can be formed out of four things is 20, and of these the

number consisting of products in which three things are alike

and those in which three things are different is 8. This leads

to a trick with 8 trios of things, which is similar to that last

given—the cards being arranged in the order indicated by the

sentence Lanata levete livini novoto.

I believe that these arrangements by sentences are well-

known, but I am not aware who invented them.

Gergonne's Pile Problem. Before discussing Gergonne*s

theorem I will describe the familiar three pile problem, the

theory of which is included in his results.

The Three Pile Problem*. This trick is usually performed

as follows. Take 27 cards and deal them into three piles, face

upwards. By " dealing " is to be understood that the top card

is placed as the bottom card of the first pile, the second card in

the pack as the bottom card of the second pile, the third card

as the bottom card of the third pile, the fourth card on the top

of the first one, and so on : moreover I assume that throughout

* The trick is mentioned by Bachet, problem xvni, p. 143, but his analysis

of it is insufficient.



CH. X] MISCELLANEOUS PROBLEMS 24»1

the problem the cards are held in the hand face upwards. The
result can be modified to cover any other way of dealing.

Request a spectator to note a card, and remember in which

pile it is. After finishing the deal, ask in which pile the card

is. Take up the three piles, placing that pile between the

other two. Deal again as before, and repeat the question as

to which pile contains the given card. Take up the three

piles again, placing the pile which now contains the selected

card between the other two. Deal again as before, but in

dealing note the middle card of each pile. Ask again for the

third time in which pile the card lies, and you will know that

the card was the one which you noted as being the middle

card of that pile. The trick can be finished then in any way
that you like. The usual method—but a very clumsy one—is

to take up the three piles once more, placing the named pile

between the other two as before, when the selected card will br

the middle one in the pack, that is, if 27 cards are used it will

be the 14th card.

The trick is often performed with 15 cards or with 21 cards^

in either of which cases the same rule holds.

Gergonne's Generalization. The general theory for a pack

of 7?i"* cards was given by M. Gergonne*. Suppose the pack

is arranged in m piles, each containing m^~'^ cards, and that,

after the first deal, the pile indicated as containing the selected

card is taken up ath ; after the second deal, is taken up 6th

;

and so on, and finally after the mth deal, the pile containing

the card is taken up kth. Then when the cards are collected

after the mth deal the selected card will be nth from the top

where

if m is even, n = Jcni^-^ — pi^-^ + ... ^-hni —.a + l,

if m is odd, n = hn^"'~'^ — jm''^~' + ... —hm + a.

For example, if a pack of 256 cards (i.e. w = 4) was given,

and anyone selected a card out of it, the card could be de-

termined by making four successive deals into four piles of

64 cards each, and after each deal asking in which pile the

• Gergonne's Annates de Mathimatiques, Nismes, 1813-4, voL I7, pp. 276

—

283.

B. R. 16
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selected card lay. The reason is that after the first deal you

know it is one of sixty-four cards. In the next deal these

sixty-four cards are distributed equally over the four piles, and

therefore, if you know in which pile it is, you will know that it

is one of sixteen cards. After the third deal you know it is

one of four cards. After the fourth deal you know which card

it is.

Moreover, if the pack of 256 cards is used, it is immaterial

in what order the pile containing the selected card is taken up

after a deal. For, if after the first deal it is taken up ath,

after the second hth, after the third cth, and after the fourth

dtli, the card will be the (64>d — 16c + 4ib — a + l)th. from the

top of the pack, and thus will be known. We need not take

up the cards after the fourth deal, for the same argument will

show that it is the (64 — 16c + 46 — a + l)th in the pile then

indicated as containing it. Thus if a =3, 6 = 4, c = 1, d = 2,

it will be the 62nd card in the pile indicated after the fourth

deal as containing it and will be the 126th card in the pack

as then collected.

In exactly the same way a pack of twenty-seven cards may
be used, and three successive deals, each into three piles of

nine cards, will suffice to determine the card. If after the

deals the pile indicated as containing the given card is taken

up ath, 6th, and cth respectively, then the card will be the

(9c — 36 + a)th in the pack or will be the (9 — 36 -}- a)th card in

the pile indicated after the third deal as containing it.

The method of proof will be illustrated sufficiently by

considering the usual case of a pack of twenty-seven cards, for

which m = 3, which are dealt into three piles each of nine cards.

Suppose that, after the first deal, the pile containing the

selected card is taken up ath : then (i) at the top of the pack

there are a — 1 piles each containing nine cards
;

(ii) next there

are 9 cards, of which one is the selected card ; and (iii) lastly

there are the remaining cards of the pack. The cards are dealt

out now for the second time : in each pile the bottom 3 (a — 1)

cards will be taken fi:'om (i), the next 3 cards from (ii), and the

remaining 9 — 3a cards from (iii).
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Suppose that the pile now indicated as containing the

selected card is taken up hth : then (i) at the top of the

pack are 9(6—1) cards; (ii) next are 9 — Sa cards; (iii) next

are 3 cards, of which one is the selected card ; and (iv) lastly

are the remaining cards of the pack. The cards are dealt out

now for the third time : in each pile the bottom 3 (6 — 1) cards

will be taken from (i), the next S — a cards will be taken from

(ii), the next card will be one of the three cards in (iii), and the

remaining S — Sh + a cards are from (iv).

Hence, after this deal, as soon as the pile is indicated, it

is known that the card is the (9 — 36 + a.)th from the top

of that pile. If the process is continued by taking up this

pile as cth, then the selected card will come out in the place

9 (c — 1) + (8 — 36 + a) + 1 from the top, that is, will come out

as the (9c — 36 + a')th card.

Since, after the third deal, the position of the card in the

pile then indicated is known, it is easy to notice the card, in

which case the trick can be finished in some way more effective

than dealing again.

If we put the pile indicated always in the middle of the

pack we have a = 2, 6=2, c = 2, hence ti = 9c — 36 + a = 14,

which is the form in which the trick is usually presented, as

was explained above on page 241.

I have shown that if a, 6, c are known, then n is determined.

We may modify the rule so as to make the selected card come

out in any assigned position, say the ?ith. In this case we
have to find values of a, 6, c which will satisfy the equation

n = 9c — 36 + ct, where a, 6, c can have only the values 1, 2,

or 3.

Hence, if we divide w by 3 and the remainder is 1 or 2, this

remainder will be a; but, if the remainder is 0, we must decrease

the quotient by unity so that the remainder is 3, and this

remainder will be a. In other words a is the smallest positive

number (exclusive of zero) which must be subtracted from n

to make the difference a multiple of 3.

Next let p be this multiple, i.e. p is the next lowest integer

to n/3 : then Sp = 9c — 36, therefore ^ = 3c — 6. Hence 6 is

16—2
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the smallest positive number (exclusive of zero) which must

be added to p to make the sum a multiple of 3, and c is that

multiple.

A couple of illustrations will make this clear. Suppose

we wish the card to come out 22nd from the top, therefore

22 = 9c — 36 + a. The smallest number which must be sub-

tracted from 22 to leave a multiple of 3 is 1, therefore a = 1.

Hence 22 = 9c -36 + 1, therefore 7 = 3c -6. The smallest

number which must be added to 7 to make a multiple of 3 is 2,

therefore 6=2. Hence 7 = 3c — 2, therefore c = 3. Thus a = 1,

6 = 2, c = 3.

Again, suppose the card is to come out 21st. Hence

21 = 9c — 36 + a. Therefore a is the smallest number which

subtracted from 21 makes a multiple of 3, therefore a = 3.

Hence 6 = 3c — 6. Therefore 6 is the smallest number which

added to 6 makes a multiple of 3, therefore 6 = 3. Hence

9 = 3c, therefore c = 3. Thus a = 3, 6 = 3, c = 3.

If any difficulty is experienced in this work, we can proceed

thus. Let a=fl? + l, 6 = 3 — 3/, c = z-{-l; then x, y, z may have

only the values 0, 1, or 2. In this case Gergonne's equation

takes the form ^z -\- Zy -\- x — n — 1. Hence, if n — 1 is expressed

in the ternary scale of notation, x, y, z will be determined, and

therefore a, 6, c will be known.

The rule in the case of a pack of m"* cards is exactly similar.

We want to make the card come out in a given place. Hence,

in Gergonne's formula, we are given n and we have to find

a, 6, . .
.

, /j. We can effect this by dividing n continually by m,

with the convention that the remainders are to be alternately

positive and negative and that their numerical values are to be

not greater than m or less than unity.

An analogous theorem with a pack of Im cards can be con-

structed. C. T. Hudson and L. E. Dickson* have discussed the

general case where such a pack is dealt n times, each time into

I piles of m cards ; and they have shown how the piles must be

* Educational Times Reprints, 1868, vol. ix, pp. 89—91 ; and Bulletin of

the American Mathematical Society, New York, April, 1895, vol. i, pp. 184

—

186.
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taken up in order that after the nth deal the selected card may
be rth from the top.

The principle will be sufficiently illustrated by one example

treated in a manner analogous to the cases already discussed.

For instance, suppose that an ecarte pack of 32 cards is dealt

into four piles each of 8 cards, and that the pile which contains

some selected card is picked up ath. Suppose that on dealing

again into four piles, one pile is indicated as containing the

selected card, the selected card cannot be one of the bottom

2 (a — 1) cards, or of the top 8 — 2a cards, but must be one of

the intermediate 2 cards, and the trick can be finished in any

way, as for instance by the common conjuring ambiguity of

asking someone to choose one of them, leaving it doubtful

whether the one he takes is to be rejected or retained.

The Mouse Trap. Treize. I will conclude this chapter

with the bare mention of another game of cards, known as

the Mouse Trap, the discussion of which involves some rather

difficult algebraic analysis.

It is played as follows. A set of cards, marked with the

numbers 1, 2, 3, . .
.
, n, is dealt in any order, face upwards, in

the form of a circle. The player begins at any card and counts

round the circle always in the same direction. If the A;th card

has the number k on it—which event is called a hit—the

player takes up the card and begins counting afresh. According

to Cayley, the player wins if he thus takes up all the cards, and

the cards win if at any time the player counts up to n without

being able to take up a card.

For example, if a pack of only four cards is used and these

cards come in the order 3214, then the player would obtain

the second card 2 as a hit, next he would obtain 1 as a hit,

but if he went on for ever he would not obtain another hit.

On the other hand, if the cards in the pack were initially in

the order 1423, the player would obtain successively all four

cards in the order 1, 2, 3, 4.

The problem may be stated as the determination of what

hits and how many hits can be made with a given number of



246 MISCELLANEOUS PROBLEMS [CH. X

cards ; and what permutations will give a certain number of

hits in a certain order.

Cayley* showed that there are 9 arrangements of a pack

of four cards in which no hit will be made, 7 arrangements in

which only one hit will be made, 3 arrangements in which only

two hits will be made, and 5 arrangements in which four hits

will be made.

Prof. Steenf has investigated the general theory for a pack

of n cards. He has shown how to determine the number of

arrangements in which x is the first hit [Arts. 3—5] ; the

number of arrangements in Avhich 1 is the first hit and x is the

second hit [Art. 6] ; and the number of arrangements in which

2 is the first hit and x the second hit [Arts. 7—8] ; but beyond

this point the theory has not been carried. It is obvious that,

if there are n — 1 hits, the nth hit will necessarily follow.

The French game of treize is very similar. It is played

with a full pack of fifty-two cards (knave, queen, and king

counting as 11, 12, and 13 respectively). The dealer calls out

1, 2, 3, ..., 13, as he deals the 1st, 2nd, 3rd, ..., 13th cards

respectively. At the beginning of a deal the dealer offers to

lay or take certain odds that he will make a hit in the thirteen

cards next dealt.

* Quarterly Journal of Mathematics , 1878, vol. xv, pp. 8—10.

t Ibid., vol. XV, pp. 230—241.
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* 1^0 man of science should think it a waste of time to learn

something of the history of his own subject ; nor is the investigation

of laborious methods nowfallen into disuse, or oferrors once commonly

accepted, the least valuable of mental disciplines."

" The most wo7'thless book of a bygone day is a record worthy of

preservation. Like a telescopic star, its obscurity m,ay render it

unavailable for most purposes ; but it serves, in hands which know

how to use it, to determine the 2^^<^c^s of more important bodies."

(De Morgan.)
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CHAPTER XL

THE MATHEMATICAL TRIPOS.

The Mathematical Tripos has played so prominent a part

in the history of education at Cambridge and of mathematics

in England, that a sketch of its development* may be inter-

esting to general readers.

So far as mathematics is concerned the history of the

University before Newton may be summed up very briefly.

The University was founded towards the end of the twelfth

century. Throughout the middle ages the studies were or-

ganized on lines similar to those at Paris and Oxford. To

qualify for a degree it was necessary to perform various

exercises, and especially to keep a number of acts or to oppose

acts kept by other students. An act consisted in effect of a

debate in Latin, thrown, at any rate in later times, into

syllogistic form. It was commenced by one student, the

respondent, stating some proposition, often propounded in the

form of a thesis, which was attacked by one or more oppone^its,

the discussion being controlled by a graduate. The teaching

was largely in the hands of young graduates—every master of

arts being compelled to reside and teach for at least one year

—

* The following pages are mostly summarized from my Histoi-y of the Study

of Mathematics at Cambridge, Cambridge, 1889. The subject is also treated in

Whewell's Liberal Education, Cambridge, three parts, 1845, 1850, 1853;

Wordsworth's Scholae Academicae, Cambridge, 1877 ; my own Origin and

History of the Mathematical Tripos, Cambridge, 1880 ; and Dr Glaisher's

Presidential Address to the London Mathematical Society, Transactions, vol.

xvm, 1836, pp. 4—38.



CH. Xl] THE MATHEMATICAL Till PCS 249

though no doubt Colleges and private hostels supplemented

this instruction in the case of their own students.

The Reformation in England was mainly the work of

Cambridge divines, and in the University the Renaissance was

warmly welcomed. In spite of the disorder and confusion of

the Tudor period, new studies and a system of professional

instruction were introduced. Probably the science (as distinct

from the art) of mathematics, save so far as involved in the

quadrivium, was still an exotic study, but it was not wholly

neglected. Tonstall, subsequently the most eminent English

arithmetician of his time, migrated, perhaps about 1495, from

Balliol College, Oxford, to King's Hall, Cambridge, and in

1530 the University appointed a mathematical lecturer in the

person of Paynell of Pembroke Hall. Most of the subsequent

English mathematicians of the Tudor period seem to have been

educated at Cambridge ; of these I may mention Record, who
migrated, probably about 1535, from Oxford, Dee, Digges,

Blundeville, Buckley, Billingsley, Hill, Bedwell, Hood, Richard

and John Harvey, Edward Wright, Briggs, and Oughtred.

The Elizabethan statutes restricted liberty of thought and

action in many ways, but, in spite of the civil and religious

disturbances of the early half of the 17th century, the mathe-

matical school continued to grow. Horrox, Seth Ward, Foster,

Rooke, Gilbert Clerke, Pell, Wallis, Barrow, Dacres, and Morland

may be cited as prominent Cambridge mathematicians of the

time.

Newton's mathematical career dates from 1665 ; his repu-

tation, abilities, and influence attracted general attention to

the subject. He created a school of mathematics and mathe-

matical physics, among the earliest members of which I note

the names of Laughton, Samuel Clarke, Craig, Flamsteed,

Whiston, Saunderson, Jurin, Taylor, Cotes, and Robert Smith.

Since then Cambridge has been regarded as, in a special sense,

the home of English mathematicians, and from 1706 onwards

we have fairly complete accounts of the course of reading and

work of mathematical students there.

Until less than a century ago the form of the method of
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qualifying for a degree remained substantially unaltered, but

the subject-matter of the discussions varied from time to time

with the prevalent studies of the place.

After the Renaissance some of the statutable exercises were

" huddled," that is, were reduced to a mere form. To huddle

an act, the proctor generally asked some question such as Quid

est noinen? to which the answer usually expected was Nescio.

In these exercises considerable license was allowed, particularly

if there were any play on the words involved. For example,

J. Brasse, of Trinity, was accosted with the question. Quid est

aes ? to which he answered, Nescio nisi finis examinationis. It

should be added that retorts such as these were only allowed

in the pretence exercises, and a candidate who in the actual

examination was asked to give a definition of happiness and

replied an exemption from Payne—that being the name of the

moderator then presiding—was plucked for want of discrimina-

tion in time and place. In earlier years even the farce of

huddling seems to have been unnecessary, for it was said in

1675 that it was not uncommon for the proctors to take

" cautions for the performance of the statutable exercises, and

accept the forfeit of the money so deposited in lieu of their

performance.**

In medieval times acts had been usually kept on some

scholastic question or on a proposition taken from the Sentences.

About the end of the fifteenth century religious questions, such

as the interpretation of Biblical texts, began to be introduced.

Some fifty or sixty years later the favourite subjects were

drawn either from dogmatic theology or from philosophy.

In the seventeenth century the questions were usually philo-

sophical, but in the eighteenth century, under the influence of

the Newtonian school, a large proportion of them were

mathematical.

Further details about these exercises and specimens of acts

kept in the eighteenth century are given in my History of

Mathematics at Cambridge. Here I will only say that they

provided an admirable training in the art of presenting an

argument, and in dialectical skill in attack and defence. The
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mental strain in a contested act was severe. De Morgan,

describing his act kept in 1826, wrote*:

I was badgered for two hours with arguments given and answered in Latin

—or what we call Latin—against Newton's first section, Lagrange's derived

functions, and Locke on innate principles. And though I took off everything,

and was pronounced by the moderator to have disputed magno honore, I never

had such a strain of thought in my life. For the inferior opponents were made
as sharp as their betters by their tutors, who kept lists of queer objections drawn

from all quarters.

Had the language of the discussions been changed to English,

as was repeatedly urged from 1774 onwards, these exercises

might have been retained with advantage, but the barbarous

Latin and the syllogistic form in which they were carried on

prejudiced their retention.

About 1830 a custom grew up for the respondent and

opponents to meet previously and arrange their arguments

together. The discussions then became an elaborate farce,

and were a mere public performance of what had been already

rehearsed. Accordingly the moderators of 1839 took the re-

sponsibility of abandoning them. This action was singularly

high-handed, since a report of May 30, 1838, had recommended

that they should be continued, and there was no reason why
they should not have been reformed and retained as a useful

feature in the scheme of study.

On the result of the acts a list of those qualified to receive

degrees was drawn up. This list was not arranged strictly in

order of merit, because the proctors could insert names any-

where in it, but by the beginning of the eighteenth century

this power had become restricted to the right reserved to the

vice-chancellor, the senior regent, and each proctor to place

in the list one candidate anywhere he liked—a right which

cjntinued to exist till 1828, though it was not exercised after

1792. Subject to the granting of these honorary degrees, this

final list was arranged in order ot merit into wranglers and

senior optimes, junior optimes, and poll-men. The bachelors

on receiving their degrees took seniority according to their

* Biuhjct of Paradoxes, by A. De Morgan, London, 1872, p. 305.
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order on this list. The title wrangler is derived from these

contentious discussions; the title optime from the customary-

compliment given by the moderator to a successful disputant,

Domine..., optime disputasti, or even optime quidem disputasti,

and the title of poll-man from the description of this class as ol

The final exercises for the B.A. degree were never huddled,

and until 1839 were carried out strictly. University officials

were responsible for approving the subject-matter of these acts.

Stupid men offered some irrefutable truism, but the ambitious

student courted reputation by affirming some paradox. Prob-

ably all honour men kept acts, but poll-men were deemed to

comply with the regulations by keeping opponencies. The

proctors were responsible for presiding at these acts, or seeing

that competent graduates did so. In and after 1649 two

examiners were specially appointed for this purpose. In 1680*

these examiners were appointed by the Senate with the title of

moderator, and with the joint stipend of four shillings for

everyone graduating as B.A. during their year of office. In

1688 the joint stipend of the moderators was fixed at £40

a year. The moderators, like the proctors, were nominated by

the Colleges in rotation.

From the earliest times the proctors had the power of

questioning a candidate at the end of a disputation, and

probably all candidates for a degree attended the public schools

on certain days to give an opportunity to the proctors, or any

master that liked, to examine themf, though the opportunity

was not always used. Different candidates attended on different

days. Probably such examinations were conducted in Latin.

But soon after 1710 1 the moderators or proctors began the

custom of summoning on one day in January all candidates

whom they proposed to question. The examination was held

* See Grace of October 25, 1680.

t Ex. gr. see De la Pryme's account of his graduation in 1694, Surtees

Society, vol. liv, 1870, p. 32.

X W. Eeneu, in bis letters of 1708-1710 describing the course for the B.A.

degree, makes no mention of the Senate-House Examination, and I think it is

a reasonable inference that it had not then been established.
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in public, and from it the Senate-House Examination arose.

The examination at this time did not last more than one day,

and was, there can be no doubt, partly on philosophy and partly

on mathematics. It is believed that it was always conducted

in English, and it is likely that its rapid development was

largely due to this.

This introduction of a regular oral examination seems to

have been largely due to the fact that when, in 1710, George I

gave the Ely library to the University, it was decided to assign

for its reception the old Senate-House—now the Catalogue

Room in the Library—and to build a new room for the

meetings of the Senate. Pending the building of the new
Senate-House the books were stored in the Schools. As the

Schools were thus rendered unavailable for keeping acts,

considerable difficulty was found in arranging for all the candi-

dates to keep the full number of statutable exercises, and thus

obtaining opportunities to compare them one with another:

hence the introduction of a supplementary oral examination.

The advantages of this examination as providing a ready

means of testing the knowledge and abilities of the candidates

were so patent that it was retained when the necessity for

some system of the kind had passed away, and finally it became

systematized into an organized test to which all questionists

were subjected.

In 1731 the University raised the joint stipend of the

moderators to £60 " in consideration of their additional trouble

in the Lent Term." This would seem to indicate that the

Senate-House Examination had then taken formal shape, and

perhaps that a definite scheme for its conduct had become

customary.

As long as the order of the list of those approved for

degrees was settled on the result of impressions derived from

acts kept by the different candidates at different times and on

different subjects, it was impossible to arrange the men in

strict order of merit, nor was much importance attached to the

order. But, with the introduction of an examination of all the

candidates on one day, much closer attention was paid to
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securing a strict order of merit, and more confidence was felt in

the published order. It seems to have been consequent on

this that in and after 1748 (N.S.) the final lists were circulated,

and it was further arranged that the names of the honorary

optimes should be indicated. The lists from this time appear

in the University calendars : the earlier lists from 1499, edited

with biographical notes by C. M. Neale, were published in

1909.

Of the detailed history of the examination until the middle

of the eighteenth century we know nothing. From 1750 on-

wards, however, we have more definite accounts of it. At this

time, it would seem that all the men from each College were

taken together as a class, and questions passed down by the

proctors or moderators till they were answered : but the ex-

amination remained entirely oral, and technically was regarded

as subsidiary to the discussions which had been previously held

in the schools. As each class contained men of very different

abilities a custom grew up by which every candidate was liable

to be taken aside to be questioned by any M.A. who wished

to do so, and this was regarded as an important part of the

examination. The subjects were mathematics and philosophy.

The examination now continued for two days and a half. At

the conclusion of the second day the moderators received the

reports of those masters of arts who had voluntarily taken part

in the examination, and provisionally settled the final list;

while the last half-day was used in revising and re-arranging

the order of merit.

Richard Cumberland has left an account of the tests to

which he was subjected when he took his B.A. degree in 1751.

Clearly the disputations still played an important part, and it is

difficult to say what weight was attached to the subsequent

Senate-House Examination ; his reference to it is only of a

general character. After saying that he kept two acts and two

opponencies he continues*:

The last time I was called upon to keep an act in the schools I sent in three

questions to the Moderator, which he withstood as being all mathematical, and

* Memoirs of Eichard Cumberland, London, 1806, pp. 78—79.
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required me to conform to the usage of proposing one metaphysical question in

the place of that, which I should think fit to withdraw. This was ground I

never liked to take, and I appealed against his requisition: the act was

accordingly put by till the matter of right should be ascertained by the statutes

of the university, and in the result of that enquiry it was given for me, and my
question stood I yielded now to advice, and paid attention to my health, till

we were cited to the senate house to be examined for our Bachelor's degree. It

was hardly ever my lot during that examination to enjoy any respite. I seemed

an object singled out as every man's mark, and was kept perpetually at the

table under the process of question and answer.

It was found possible by means of the new examination to

differentiate the better men more accurately than before ; and

accordingly, in 1753, the first class was subdivided into two,

called respectively wranglers and senior optimes, a division which

is still maintained.

The semi-official examination by M.A.s was regarded as the

more important part of the test, and the most eminent residents

in the University took part in it. Thus John Fenn, of Caius,

5th Avrangier in 1761, writes*

:

On the following Monday, Tuesday, and Wednesday, we sat in the Senate-

house for public exainination ; during this time I was officially examined by

the Proctors and Moderators, and had the honor of being taken out for

examination by Mr Abbot, the celebrated mathematical tutor of St John's

College, by the eminent professor of mathematics Mr Waving, of Magdalene,

and by Mr Jebb of Peterhouse, a man thoroughly versed in the academical

studies.

This irregular examination by any master who chose to take

part in it constantly gave rise to accusations of partiality.

In 1763 the traditional rules for the conduct of the examin-

ation took more definite shape. Henceforth the examiners used

the disputations only as a means of classifying the men roughly.

On the result of their " acts," and probably partly also of their

general reputation, the candidates were divided into eight

classes, each arranged in alphabetical order. The subsequent

position of the men in the class was determined solely by the

Senate-House Examination. The first two classes comprised all

who were expected to be wranglers, the next four classes included

* Quoted by C. Wordsworth, Scholae Academicae, Cambridge, 1877,

pp. 30—31.
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the other candidates for honours, and the last two classes con-

sisted of poll-men only. Practically anyone placed m either

of the first two classes was allowed, if he wished, to take an

aegrotat senior optime, and thus escape all further examination:

this was called gulphing it. All the men from one College were

no longer taken together, but each class was examined separately

and vivd voce ; and hence, since all the students comprised in

each class were of about equal attainments, it was possible

to make the examination more effective. Richard \Vatson, of

Trinity, claimed that this change was made by him when

acting as moderator in 1763. He says*:

There was more room for partiality... then [i.e. in 1759] than there is now;

and I attribute the change, in a great degree, to an alteration which I introduced

the first year I was moderator [i.e. in 1763], and which has been persevered in

ever since. At the time of taking their Bachelor of Arts' degree, the young

men are examined in classes, and the classes are now formed according to the

abilities shown by individuals in the schools. By this arrangement, persons of

nearly equal merits are examined in the presence of each other, and flagrant

acts of partiality cannot take place. Before I made this alteration, they were

examined in classes, but the classes consisted of members of the same College,

and the best and worst were often examined together.

It is probable that before the examination in the Senate-House

began a candidate, if manifestly placed in too low a class, was

allowed the privilege of challenging the class to which he was

assigned. Perhaps this began as a matter of favour, and was

only granted in exceptional cases, but a few years later it

became a right which every candidate could exercise ; and I

think that it is partly to its development that the ultimate

predominance of the tripos over the other exercises for the

degree is due.

In the same year, 1763, it was decided that the relative

position of the senior and second wranglers, namely, Paley, of

Christ's, and Frere, of Caius, was to be decided by the Senate-

House Examination and not by the disputations. Henceforward

distinction in the Senate-House Examination was regarded as

the most important honour open to undergraduates.

* Anecdotes of the Life of Richard Watson by Ilimselff London, 1817,

pp. 18—19.
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In 1768 Dr Smith, of Trinity College, founded prizes for

mathematics and natural philosophy open to two commencing

bachelors. The examination followed immediately after the

Senate-House Examination, and the distinction, being much
coveted, tended to emphasize the mathematical side of the

normal University education of the best men. Since 1883 the

prizes have been awarded on the result of dissertations*.

Additional prizes, awarded at the same time, and associated

with the name of Lord Rayleighf, were founded in 1909.

Until now the Senate-House Examination had been oral,

but about this time, circ. 1770, it began to be the custom to

dictate some or all of the questions and to require answers to

be written. Only one question was dictated at a time, and a

fresh one was not given out until some student had solved that

previously read : a custom which by causing perpetual inter-

ruptions to take down new questions must have proved very

harassing. We are perhaps apt to think that an examination

conducted by written papers is so natural that the custom is of

long continuance, but I know no record of any in Europe earlier

than the eighteenth century. Until 1830 the questions for the

Smith's prizes were dictated.

The following description of the Senate-House Examination

as it existed in 1772 is given by JebbJ.

The moderators, some days before the arrival of the time prescribed by the

vice-chancellor, meet for the purpose of forming the students into divisions of

six, eight, or ten, according to their performance in the schools, with a view

to the ensuing examination.

Upon the first of the appointed days, at eight o'clock in the morning, the

students enter the senate-house, preceded by a master of arts from each college,

who... is called the "father" of the college, ...

After the proctors have called over the names, each of the moderators sends

for a division of the students: they sit with him round a table, with pens, ink,

and paper, before them : he enters upon his task of examination, and does not

dismiss the set till the hour is expired. This examination has now for some
years been held in the english language.

* See Grace of October 25, 1883 ; and the Cambridge University Beporter^

October 23, 1883.

t See Grace of February 11, 1909, and the Cambridge University Reporter,

December 8, 1903.

J The Works of J. Jcbb, London, 1787, vol. ii, pp. 290—297,

B. R. 17
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The examination is varied according to the abilities of the students. The

moderator generally begins with proposing some questions from the six books

of Euclid, plain {sic) trigonometry, and the first rules of algebra. If any person

fails in an answer, the question goes to the next. From the elements of

mathematics, a transition is made to the four branches of philosophy, viz.

mechanics, hydrostatics, apparent astronomy, and optics, as explained in the

works of Maclaurin, Cotes, Helsham, Hamilton, Eutherforth, Keill, Long,

Ferguson, and Smith. If the moderator finds the set of questionists, under

examination, capable of answering him, he proceeds to the eleventh and

twelfth books of Euclid, conic sections, spherical trigonometry, the higher parts

of algebra, and sir Isaac Newton's Principia ; more particularly those sections,

which treat of the motion of bodies in eccentric and revolving orbits; the

mutual action of spheres, composed of particles attracting each other according

to various laws ; the theory of pulses, propagated through elastic mediums

;

and the stupendous fabric of the world. Having closed the philosophical

examination, he sometimes asks a few questions in Locke's Essay on the

human understanding, Butler's Analogy, or Clarke's Attributes. But as the

highest academical distinctions are invariably given to the best proficients in

mathematics and natural philosophy, a very superficial knowledge in morality

and metaphysics will suffice.

When the division under examination is one of the highest classes, problems

are also proposed, with which the student retires to a distant part of the

senate-house, and returns, with his solution upon paper, to the moderator, who,

at his leisure, compares it with the solutions of other students, to whom the

same problems have been proposed.

The extraction of roots, the arithmetic of surds, the invention of divisers,

the resolution of quadratic, cubic, and biquadratic equations ; together with

the doctrine of fluxions, and its application to the solution of questions " de

maximis et minimis," to the finding of areas, to the rectification of curves, the

investigation of the centers of gravity and oscillation, and to the circumstances

of bodies, agitated, according to various laws, by centripetal forces, as unfolded, and

exemplified, in the fiuxional treatises of Lyons, Saunderson, Simpson, Emerson,

Maclaurin, and Newton, generally form the subject matter of these problems.

When the clock strikes nine, the questionists are dismissed to breakfast : they

return at half-past nine, and stay till eleven ; they go in again at half-past one,

and stay tiU three ; and, lastly, they return at half-past three, and stay till five.

The hours of attendance are the same upon the subsequent day.

On the third day they are finally dismissed at eleven.

During the hours of attendance, every division is twice examined in form,

once by each of the moderators, who are engaged for the whole time in this

employment.

As the questionists are examined in divisions of only six or eight at a time,

but a small portion of the whole number is engaged, at any particular hour,

with the moderators ; and, therefore, if there were no further examination,

much time would remain unemployed.

But the moderator's inquiry into the merits of the candidates forms the

least material part of the examination.
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The "fathers" of the respective colleges, zealous for the credit of the

societies, of which they are the guardians, are incessantly employed in ex-

amining those students, who appear most likely to contest the palm of glory

with their sons.

This part of the process is as follows :

The father of a college takes a student of a different college aside, and,

sometimes for an hour and an half together, strictly examines him in every part

of mathematics and philosophy, which he professes to have read.

After he hath, from this examination, formed an accurate idea of the student's

abilities and acquired knowledge, he makes a report of his absolute or comparative

merit to the moderators, and to every other father who shall ask him the question.

Besides the fathers, all masters of arts, and doctors, of whatever faculty

they be, have the liberty of examining whom they please ; and they also report

the event of each trial, to every person who shall make the inquiry.

The moderators and fathers meet at breakfast, and at dinner. From the

variety of reports, taken in connection with their own examination, the former are

enabled, about the close of the second day, so far to settle the comparative merits

of the candidates, as to agree upon the names of four-and-twenty, who to them

appear most deserving of being distinguished by marks of academical approbation.

These four-and-twenty [wranglers and senior optimes] are recommended to

the proctors for their private examination ; and, if approved by them, and no

reason appears against such placing of them from any subsequent inquiry,

their names are set down in two divisions, according to that order, in which

they deserve to stand ; are afterwards printed ; and read over upon a solemn

day, in the pres'^uce of the vice-chancellor, and of the assembled university.

The names of the twelve [junior optimes], who, in the course of the examina-

tion, appear next in desert, are also printed, and are read over, in the presence

of the vice-chancellor, and of the assembled university, upon a day subsequent

to the former. . .

.

The students, who appear to have merited neither praise nor censure, [the

poll-men], pass unnoticed : while those, who have taken no pains to prepare

themselves for the examination, and have appeared with discredit in the schools,

are distinguished by particular tokens of disgrace.

Jebb's statement about the number of wranglers and senior

optimes is only approximate.

It may be added that it was now frankly recognized that

the examination was competitive*. Also that though it was

open to any member of the Senate to take part in it, yet the

determination of the relative merit of the students was entirely

in the hands of the moderators f. Although the examination

did not occupy more than three days it must have been a severe

* "Emulation, which is the principle upon which the plan is constructed."

The Works of J. Jebb, London, 1787, vol. in, p. 261.

t Tlie Works of J. Jebb, London, 1787, vol. in, p. 272.

17—2
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physical trial to anyone who was delicate. It was held in winter

and in the Senate-House. That building was then noted for

its draughts, and was not warmed in any way : and, according

to tradition, on one occasion the candidates on entering in the

morning found the ink in the pots on their desks frozen.

The University was not altogether satisfied* with the

scheme in force, and in 1779 f the scheme of examination was

amended in various respects. In particular the examination

was extended to four days, a third day being given up entirely

to natural religion, moral philosophy, and Locke. It was

further announced J that a candidate would not receive credit

for advanced subjects unless he had satisfied the examiners in

Euclid and elementary Natural Philosophy.

A system of brackets or " classes quam minimae " was now

introduced. Under this system the examiners issued on the

morning of the fourth day a provisional list of men who had

obtained honours, with the names of those of about equal merit

bracketed, and that day was devoted to arranging the names in

each bracket in order of merit: the examiners being given

explicit authority to invite the assistance of others in this work.

Whether at this time a candidate could request to be re-ex-

amined with the view of being moved from one bracket to

another is uncertain, but later this also was allowed.

Under the scheme of 1779 also the number of examiners

was increased to four, the moderators of one year becoming, as

a matter of course, the examiners of the next. Thus of the four

examiners in each year, two had taken part in the examination

of the previous year, and the continuity of the system of ex-

amination was maintained. The names of the moderators

appear on the tripos lists, but the names of the examiners were

not printed on the lists till some years later.

The right of any M.A. to take part in the examination was

not affected, though henceforth it was exercised more sparingly,

and I believe was not insisted on after 1785. But it became

* See Graces of July 5, 1773, and of February 17, 1774.

+ See Graces of March 19, 20, 1779.

t Notice issued by the Vice-Chancellor, dated May 19, 1779.
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a regular custom for the moderators to invite particular M.A.s

to examine and compare specified candidates. Milner, of

Queens', was constantly asked to assist in this way.

It was not long before it became an established custom that

a candidate, who was dissatisfied with the class in which he had

been placed as the result of his disputations, might challenge it

before the examination began. This power seems to have been

used but rarely ; it was, however, a recognition of the fact that

a place in the tripos list was to be determined by the Senate-

House Examination alone, and the examiners soon acquired the

habit of settling the preliminary classes without exclusive

reference to the previous disputations.

The earliest extant paper actually set in the Senate-House,

to which we can with certainty refer, is a problem paper set in

1785 or 1786 by W. Hodson, of Trinity, then a proctor. The

autograph copy from which he gave out the questions was

luckily preserved, and is in the library* of Trinity College.

It must be almost the last problem paper which was dictated,

instead of being printed and given as a whole to the candi-

dates. The paper is as follows

:

1. To determine the velocity with which a Body must be thrown, in a

direction parallel to the Horizon, so as to become a secondary planet to the

Earth ; as also to describe a parabola, and never return.

2. To demonstrate, supposing the force to vary as— , how far a body must

fall both within and without the Circle to acquire the Velocity with which a

body revolves in a Circle.

3. Suppose a body to be turned (sic) upwards with the Velocity with which

it revolves in an Ellipse, how high will it ascend ? The same is asked supposing

it to move in a parabola.

4. Suppose a force varying first as ^-^ , secondly in a greater ratio than .=-^

but less than y-g , and thirdly in a less ratio than =-,
, in each of these Cases to

determine whether at all, and where the body parting from the higher Apsid

will come to the lower.

5. To determine in what situation of the moon's Apsid they go most

forwards, and in what situation of her Nodes the Nodes go most backwards,

and why ?

• The Challis Manuscripts, iii, 61. There are two copies almost identical,

one dated 1785, the other 1786. Probably the paper printed in the text was set

in 178d.
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6. In the cubic equation x^ + qx + r = which wants the second term ; sup-

posing x= a + b and Sab= - q^ to determine the value of x. {sic.)

7. To find the fluxion of o:^ x (y** + 2"^)a

.

•

8. To find the fluent of -^

.

a+x

9. To find the fluxion of the vi^^ power of the Logarithm of x,

10. Of right-angled Triangles containing a given Area to find that whereof

the sum of the two legs AB + BC shall be the least possible. [This and the two

following questions are illustrated by diagrams. The angle at B is the right

angle.]

11. To find the Surface of the Cone ABC. [The cone is a right one on

a circular base.]

12. To rectify the arc DB of the semicircle DBV.

In cases of equality in the Senate-House Examination the

acts were still taken into account in settling the tripos order

:

and in 1786 when the second, third, and fourth wranglers came

out equal in the examination a memorandum was published

that the second place was given to that candidate who dialectis

magis est versatvs, and the third place to that one who in scholis

sophistarum melius disputavit.

There seem to have been considerable intervals in the

examination by the moderators, and the examinations by the

extraneous examiners took place in these intervals. Those

candidates who at any time were not being examined occupied

themselves with amusements, provided they were not too

boisterous and obvious: probably dice and cards played a

large part in them. Gunning in an amusing account of his

examination in 1788 talks of games with a teetotum* in which

he took part on the Wednesday (when Locke and Paley formed

the subjects of examination), but " which was carried on with

great spirit...by considerable numbers during the whole of the

examination."

About this time, 1790, the custom of printing the problem

papers was introduced, but until 1828 the other papers con-

tinued to be dictated. Since then all the papers have been

printed.

* H. Giinning, Reminiscences, second edition, London, 1855, vol. r, p. 82.
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I insert here the following letter* from William Gooch, of

Caius, in which he describes his examination in the Senate-

House in 1791. It must be remembered that it is the letter of

an undergraduate addressed to his father and mother, and was

not intended either for preservation or publication: a fact which

certainly does not detract from its value.

Monday | aft. 12.

We have been examin'd this Morning in pure Mathematics & I've hitherto

kept just about even with Peacock which is much more than I expected. We
are going at 1 o'clock to be examin'd till 3 in Philosophy.

From 1 till 7 I did more than Peacock ; But who did most at Moderator's

Kooms this Evening from 7 till 9, 1 don't know yet ;—but I did above three times

as much as the Sen' Wrangler last year, yet I'm afraid not so much as Peacock.

Between One & three o'Clock I wrote up 9 sheets of Scribbling Paper so you

may suppose I was pretty fully employ'd.

Tuesday Night.

I've been shamefully us'd by Lax to-day ;—Tho' his anxiety for Peacock

mu?t (of course) be very great, I never suspected that his Partially {sic) w"^ get

the better of his Justice. I had entertain'd too high an opinion of him to

suppose it.—he gave Peacock a long private Examination & then came to me
{I hop'd) on the same subject, but 'twas only to Bully me as much as he could,

—whatever I said (tho' right) he tried to convert into Nonsense by seeming to

misunderstand me. However I don't entirely dispair of being first, tho' you see

Lax seems determin'd that I shall not.—I had no Idea (before I went into the

Senate-House) of being able to contend at all with Peacock.

Wednesday evening.

Peacock & I are still in perfect Equilibrio & the Examiners themselves can

give no guess yet who is likely to be first ;—a New Examiner (Wood of St. John's,

who is reckon'd the first Mathematician in the University, for Waring doesn't

reside) was call'd solely to examine Peacock & me only.—but by this new Plan

nothing is yet determin'd.—So Wood is to examine us again to-morrow morning.

Thursday evening.

Peacock is declar'd first & I second,—Smith of this Coll. is either 8'^ or 9'^

& Lucas is either 10'^ or ll*'^.—Poor Quiz Carver is one of the ol ttoWoI;—I'm

perfectly satisfied that the Senior Wranglership is Peacock's due, but certainly

not 80 very indisputably as Lax pleases to represent it—I understand that he

asserts 'twas 5 to 4 in Peacock's favor. Now Peacock & I have explain'd to

each other how we went on, & can prove indisputably that it wasn't 20 to 19 in

his favor ;—I cannot therefore be displeas'd for being plac'd second, tho' I'm

provov'd {sic) with Lax for his false report (so much beneath the Character of

a Gentleman.)

—

N.B. it is my very particular Request that you dont mention Lax's be-

haviour to me to any one.

* C. Wordsworth, Scholae Academicae, Cambridge, 1877, pp. 322—323.
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Such was the form ultimately taken by the Senate-House

Examination, a form which it substantially retained without

alteration for nearly half-a-century. It soon became the sole

test by which candidates were judged. The University was

not obliged to grant a degree to anyone who performed the

statutable exercises, and it was open to the University to refuse

to pass a supplicat for the B.A. degree unless the candidate had

presented himself for the Senate-House Examination. In 1790

James Blackburn, of Trinity, a questionist of exceptional abilities,

was informed that in spite of his good disputations he would

not be allowed a degree unless he also satisfied the examiners

in the tripos. He accordingly solved one " very hard problem,"

though in consequence of a dispute with the authorities he

refused to attempt any more*.

It will be recollected that the examination was now com-

pulsoiy on all candidates pursuing the normal course for the

B.A. degree. In 1791 the University laid down rules f for its

conduct, so ffir as it concerned poll-men, decreeing that those

who passed were to be classified in four divisions or classes, the

names in each class to be arranged alphabetically, but not to be

printed on the official tripos lists. The classes in the final lists

must be distinguished from the eight preliminary classes issued

before the commencement of the examination. The men in the

first six preliminary classes were expected to take honours

;

those in the seventh and eighth preliminary classes were primd

facie poll-men.

In 1799 the moderators announcedJ that for the future they

would require every candidate to show a competent knowledge

of the first book of Euclid, arithmetic, vuglar and decimal

fi-actions, simple and quadratic equations, and Locke and Paley.

Paley's works seem to be held in esteem by modern divines,

and his Evidences, though not his Philosophy, still remains

(1905) one of the subjects of the Previous Examination, but his

contemporaries thought less highly of his writings, or at any

* H. Gunning, Beminiscences, second edition, London, 1855, vol. i, p. 182.

t See Grace of April 8, 1791.

X Communicated by the moderators to fathers of Colleges on January 18,

1799, and agreed to by the latter.
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rate of his Philosophy. Thus Best is quoted by Wordsworth*

as saying of Paley's Philosophy, " The tutors of Cambridge no

doubt neutralize by their judicious remarks, when they read it

to their pupils, all that is pernicious in its principles": so also

Richard Watson, Bishop of Llandaff, in his anecdotal autobio-

graphy -|-, says, in describing the Senate-House Examination in

which Paley was senior wrangler, that Paley was afterwards

known to the world by many excellent productions, " though

there are some principles in his philosophy which I by

no means approve."

In 1800 the moderators extended to all men in the first four

preliminary classes the privilege of being allowed to attempt

the problem papers : hitherto this privilege had been confined

to candidates placed in the first two classes. Until 1828 the

problem papers were set in the evenings, and in the rooms of

the moderator.

The University Calendars date from 1796, and from 1802 to

1882 inclusive contain the printed tripos papers of the previous

January. The papers from 1801 to 1820 and from 1838 to 1849

inclusive were also published in separate volumes, which are to

be found in most public libraries. No problems were ever set

to the men in the seventh and eighth preliminary classes, which

contained the poll-men. None of the bookwork papers of this

time are now extant, but it is believed that they contained but

few riders. Many of the so-called problems were really pieces

of bookwork or easy riders: it must however be remembered that

the text-books then in circulation were inferior and incomplete

as compared with modern ones.

The Calendar of 1802 contains a diffuse account of the ex-

amination. It commences as follows

:

On the Monday morning, a little before eight o'clock, the students, generally

about a hundred, enter the Senate-House, preceded by a master of arts, who on

this occasion is styled the father of the College to which he belongs. On two

pillars at the entrance of the Senate-House are hung the classes and a paper

denoting the hours of examination of those who are thought most competent to

contend for honours. Immediately after the University clock has struck eight,

* C. Wordsworth, Scholae Academicae, Cambridge, 1877, p. 123.

+ Anecdotes of the Life of Richard IVutson by Himself, London, 1817, p. 19.
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the names are called over, and the absentees, being marked, are subject to

certain fines. The classes to be examined are called out, and proceed to their

appointed tables, where they find pens, ink, and paper provided in great

abundance. In this manner, with the utmost order and regularity, two-thirds

of the young men are set to work within less than five minutes after the clock

has struck eight. There are three chief tables, at which six examiners preside.

At the first, the senior moderator of the present year and the junior moderator

of the preceding year. At the second, the junior moderator of the present, and

the senior moderator of the preceding year. At the third, two moderators of

the year previous to the two last, or two examiners appointed by the Senate.

The two first tables are chiefly allotted to the six first classes ; the third, or

largest, to the ol iroWoi.

The young men hear the propositions or questions delivered by the ex-

aminers ; they instantly apply themselves ; demonstrate, prove, work out and

write down, fairly and legibly (otherwise their labour is of little avail) the

answers required. All is silence ; nothing heard save the voice of the examiners

;

or the gentle request of some one, who may wish a repetition of the enunciation.

It requires every person to use the utmost dispatch ; for as soon as ever the

examiners perceive anyone to have finished his paper and subscribed his name

to it another question is immediately given

The examiners are not seated, but keep moving round the tables, both to

judge how matters proceed and to deliver their questions at proper intervals.

The examination, which embraces arithmetic, algebra, fluxions, the doctrine of

infinitesimals and increments, geometry, trigonometry, mechanics, hydrostatics,

optics, and astronomy, in all their various gradations, is varied according to

circumstances : no one can anticipate a question, for in the course of five

minutes he may be dragged from Euclid to Newton, from the humble arithmetic

of Bonnycastle to the abstruse analytics of Waring. While this examination is

proceeding at the three tables between the hours of eight and nine, printed

problems are delivered to each person of the first and second classes ; these he

takes with him to any window he pleases, where there are pens, ink, and paper

prepared for his operations.

The examination began at eight. At nine o'clock the papers

had to be given up, and half-an-hour was allowed for breakfast.

At half-past nine the candidates came back, and were examined

in the way described above till eleven, when the Senate-House

was again cleared. An interval of two hours then took place.

At one o'clock all returned to be again examined. At three the

Senate-House was cleared for half-an-hour, and, on the return

of the candidates, the examination was continued till five. At

seven in the evening the first four classes went to the senior

moderator's rooms to solve problems. They were finally dis-

missed for the day at nine, after eight hours of examination.
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The work of Tuesday was similar to that of Monday: Wednesday
was partly devoted to logic and moral philosophy. At eight

o'clock on Thursday morning a first list was published with all

candidates of about equal merits bracketed. Until nine o'clock

a candidate had the right to challenge anyone above him to an

examination to see which w^as the better. At nine a second

list came out, and a candidate's right of challenge was then

confined to the bracket immediately above his own. If he

proved himself the equal of the man so challenged his name
was transferred to the upper bracket. To challenge and then

to fail to substantiate the claim to removal to a higher bracket

w^as considered rather ridiculous. Revised lists were published

at 11 a.m., 3 p.m., and 5 p.m., according to the results of the

examination during that day. At five the whole examination

ended. The proctors, moderators, and examiners then retired

to a room under the Public Library to prepare the list of

honours, which was sometimes settled without much difficulty

in a few^ hours, but sometimes not before 2 a.m. or 3 a.m. the

next morning. The name of the senior wrangler was generally

announced at midnight, and the rest of the list the next

morning. In 1802 there were eighty-six candidates for honours,

and they were divided into fifteen brackets, the first and second

brackets containing each one name only, and the third bracket

four names.

It is clear from the above account that the competition

fostered by the examination had developed so much as to

threaten to impair its usefulness as guiding the studies of the

men. On the other hand, there can be no doubt that the

carefully devised arrangements for obtaining an accurate order

of merit stimulated the best men to throw all their energies

into the work for the examination. It is easy to point out

the double-edged result of a strict order of merit. The
problem before the University was to retain its advantages

while checking any abuses to which it might lead.

It was the privilege of the moderators to entertain the

proctors and some of the leading resident mathematicians the

night before the issue of the final list, and to communicate that
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list in confidence to their guests. This pleasant custom survived

till 1884. I revived the practice in 1890 when acting as senior

moderator, but it seems to have now ceased.

In 1806 Sir Frederick Pollock was senior wrangler, and in

1869 in answer to an appeal from De Morgan for an account of

the mathematical study of men at the beginning of the century-

he wrote a letter* which is sufficiently interesting to bear

reproduction

:

I shcall write in answer to your inquiry, all about my books, my study, and

my degree, and leave you to settle all about the proprieties which my letter

may give rise to, as to egotism, modesty, &c. The only books I read the first

year were Wood's Algebra (as far as quadratic equations), Bonnycastle's ditto,

and Euclid (Simpson's). In the second year I read Wood (beyond quadratic

equations), and Wood and Vince, for what they called the branches. In the

third'year I read the Jesidfs Newton and Vince's Fluxions ; these were all the

books, but there were certain mss. floating about which I copied—which be-

longed to Dealtry, second wrangler in Kempthorne's year. I have no doubt

that I had read less and seen fewer books than any senior wrangler of about

my time, or any period since ; but what I knew I knew thoroughly, and it was

completely at my fingers' ends, I consider that I was the last geometrical and

fiuxional senior wrangler ; I was not up to the differential calculus, and never

acquired it. I went up to college with a knowledge of Euclid and algebra to

quadratic equations, nothing more ; and I never read any second year's lore

during my first year, nor any third year's lore during my second ; ray forte was,

that what I did know I could produce at any moment with perfect accuracy. I

could repeat the first book of Euclid word by word and letter by letter. During

my first year I was not a ' reading ' man (so called) ; I had no expectation of

honours or a fellowship, and I attended all the lectures on all subjects

—

Harwood's anatomical, Woollaston's chemical, and Parish's mechanical lectures

—but the examination at the end of the first year revealed to me my powers.

I was not only in the first class, but it was generally understood I was first in

the first class ; neither I nor any one for me expected I should get in at all.

Now, as I had taken no pains to prepare (taking, however, marvellous pains

while the examination was going on), I knew better than any one else the value

of my examination qualities (great rapidity and perfect accuracy) ; and I said to

myself, 'If you're not an ass, you'll be senior wrangler' ; and I took to 'reading'

accordingly. A curious circumstance occurred when the Brackets came out in

the Senate-house declaring the result of the examination : I saw at the top the

name of Walter bracketed alone (as he was) ; in the bracket below were Fiott,

Hustler, Jephson. I looked down and could not find my own name till I got to

Bolland, when my pride took fire, and I said, ' I must have beaten that man, so

I will look up again
'
; and on looking up carefully I found the nail had been

passed through my name, and I was at the top bracketed alone, even above

* Memoir of A. de Morgan, London, 1882, pp. 387—392.
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Walter. You may judge what mj feelings were at this discovery; it is the only

instance of two such brackets, and it made my fortune—that is, made me
independent, and gave me an immense coDege reputation. It was said I was

more than half of the examination before any one else. The two moderators

were Hornbuclde, of St John's, and Brown (Saint Brown), of Trinity. The

Johnian congratulated me. I said perhaps I might be challenged; he said,

•Well, if you are you're quite safe—you may sit down and do nothing, and no

one would get up to you in a whole day.'

Latterly the Cambridge examinations seem to turn upon very different

matters from what prevailed in my time. I think a Cambridge education has

for its object to make good members of society—not to extend science and make
profound mathematicians. The tripos questions in the Senate-house ought not

to go beyond certain limits, and geometry ought to be cultivated and encouraged

much more than it is.

To this De Morgan replied :

Your letter suggests much, because it gives possibility of answer. The
branches of algebra of course mainly refer to the second part of Wood, now
called the theory of equations. Waring was his guide. Turner—whom you

must remember as head of Pembroke, senior wrangler of 1767—told a young

man in the hearing of my informant to be sure and attend to quadratic equations.

• It was a quadratic,' said he, ' made me senior wrangler.' It seems to me that

the Cambridge revivers were [Woodhouse,] Waring, Paley, Vince, Milner.

You had Dealtry's mss. He afterwards published a very good book on

fluxions. He merged his mathematical fame in that of a Claphamite Christian.

It is something to know that the tutor's ms. was in vogue in 1800-1806.

Now—how did you get your conic sections? How much of Newton did you

read? From Newton direct, or from tutor's manuscript?

Surely Fiott was our old friend Dr Lee. I missed being a pupil of Hustler

by a few weeks. He retired just before I went up in February 1823. The echo

of Hornbuckle's answer to you about the challenge has lighted on Whewell,

who, it is said, wanted to challenge Jacob, and was answered that he could not

beat [him] if he were to write the whole day and the other wrote nothing. I do

not believe that Whewell would have listened to any such dissuasion.

I doubt your being the last fluxional senior wrangler. So far as I know,

Gipps, Langdale, Alderson, Dicey, Neale, may contest this point with you.

The answer of Sir Frederick Pollock to these questions is

dated August 7, 1869, and is as follows

:

You have put together as revivers five very different men. Woodhonse was

better than Waring, who could not prove Wilson's (Judge of C. P.) guess about

the property of prime numbers; but Woodhouse (I think) did prove it, and
a beautiful proof it is. Vince was a bungler, and I think utterly insensible of

mathematical beauty.

Now for your questions. I did not get my conic sections from Vince. I

copied a ms. of Dealtry. I fell in love with the cone and its sections, and
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everything about it. I have never forsal<en my favourite pursuit ; I delighted

in such problems as two spheres touching each other and also the inside of

a hollow cone, &c. As to Newton, I read a good deal (men now read nothing),

but I read much of the notes. I detected a blunder which nobody seemed to be

aware of. Tavel, tutor of Trinity, was not ; and he argued very favourably of

me in consequence. The application of the Principia I got from mss. The

blunder was this: in calculating the resistance of a globe at the end of a

cylinder oscillating in a resisting medium they had forgotten to notice that

there is a difference between the resistance to a globe and a circle of the same

diameter.

The story of Whewell and Jacob cannot be true. Whewell was a very, very

considerable man, I think not a great man. I have no doubt Jacob beat him

in accui-acy, but the supposed answer cannot be true; it is a mere echo of what

actually passed between me and Hornbuckle on the day the Tripos came out

—

for the truth of which I vouch. I think the examiners are taking too practical

a turn ; it is a waste of time to calculate actually a longitude by the help of

logarithmic tables and lunar observations. It would be a fault not to know

how, but a greater to be handy at it.

A few minor changes in the Senate-House Examination

were made in 1808*. A fifth day was added to the exami-

nation. Of the five days thus given up to it three were devoted

to mathematics, one to logic, philosophy, and religion, and one

to the arrangement of the brackets. Apart from the evening

paper the examination on each of the first three days lasted six

hours. Of these eighteen hours, eleven were assigned to book-

work and seven to problems. The problem papers were set

from 6 to 10 in the evening.

A letter fi'om Whewell dated January 19, 1816, describes

his examination in the Senate-House f.

Jacob. Whewell. Such is the order in which we are fixed after a week's

examination...I had before been given to understand that a great deal depended

upon being able to write the greatest possible quantity in the smallest time,

but of the rapidity which was actually necessary I had formed the most distant

idea. I am upon no occasion a quick writer, and upon subjects where I could

not go on without sometimes thinking a little I soon found myself considerably

behind. I was therefore surprised, and even astonished, to find myself

bracketed off, as it is called, in the second place ; that is, on the day when a

new division of the classes is made for the purpose of having a closer examina-

tion of the respective merits of men who come pretty near to each other, I was

not classed with anybody, but placed alone in the second bracket. The man

* See Graces, December 15, 1808.

t S. Douglas, Life of W. Whewell, London, 1881, p. 20.
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1

who is at the head of the list is of Cains College, and was always expected to be

very high, though I do not know that anybody expected to see him so decidedly

superior as to be bracketed off by himself.

The tendency to cultivate mechanical rapidity was a grave evil,

and lasted long after Whewell's time. According to rumour the

highest honours in 1845 were obtained by assiduous practice in

writing*.

The devotion of the Cambridge school to geometrical and

fluxional methods had led to its isolation from contemporary

continental mathematicians. Early in the nineteenth century

the evil consequence of this began to be recognized ; and it

was felt to be little less than a scandal that the researches

of Lagrange, Laplace, and Legendre were unknown to many
Cambridge mathematicians save by repute. An attempt to

explain the notation and methods of the calculus as used on

the Continent was made by R. Woodhouse, who stands out as

the apostle of the new movement. It is doubtful if he could

have brought analytical methods into vogue by himself; but his

views were enthusiastically adopted by three students, Peacock,

Babbage, and Herschel, who succeeded in carrying out the re-

forms he had suggested. They created an Analytical Society

which Babbage explained Avas formed to advocate "the principles

of pure d-ism as opposed to the dot-Sige of the University." The

character of the instruction in mathematics at the University

has at all times largely depended on the text-books then in use,

and the importance of good books of this class was emphasized

by a traditional rule that questions should not be set on a new

subject in the tripos unless it had been discussed in some treatise

suitable and available for Cambridge students *!. Hence the

importance attached to the publication of the work on analytical

trigonometry by Woodhouse in 1809, and of the works on the

differential calculus issued by members of the Analytical Society

in 1816 and 1820.

In 1817 Peacock, who was moderator, introduced the symbols

for differentiation into the papers set in the Senate- House

* For a contemporary account of this see C. A. Bristed, Five Years in an

English Univenity, New York, 1852, pp. 233—239.

t See ex, gr. the Grace of November 14, 1827, referred to below.
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Examination. But his colleague continued to use the fluxional

notation. Peacock himself wrote on March 17 of 1817 {i.e.

shortly after the examination) on the subject as follows*:

I assure you... that I shall never cease to exert myself to the utmost in the

cause of reform, and that I will never decline any office which may increase my
power to effect it. I am nearly certain of being nominated to the office of

Moderator in the year 1818-19, and as I am an examiner in virtue of my office,

for the next year I shall pursue a course even more decided than hitherto, since

I shall feel that men have been prepared for the change, and will then be

enabled to have acquired a better system by the publication of improved

elementary books. I have considerable influence as a lecturer, and I will not

neglect it. It is by silent perseverance only that we can hope to reduce the

many-headed monster of prejudice, and make the University answer her char-

acter as the loving mother of good learning and science.

In 1818 all candidates for honours, that is, all men in the

first six preliminary classes, were allowed to attempt the

problems : this change was made by the moderators.

In 1819 Peacock, who was again moderator, induced his

colleague to adopt the new notation. It was employed in the

next year by Whewell, and in the following year by Peacock

again. Henceforth the calculus in its modern language and

analytical methods were freely used, new subjects were in-

troduced, and for many years the examination provided a

mathematical training fairly abreast of the times.

By this time the disputations had ceased to have any im-

mediate effect on a man's place in the tripos. Thus Whewell *[*?

writing about his duties as moderator in 1820, said

:

You would get very exaggerated ideas of the importance attached to it [an

Act] if you were to trust Cumberland ; I believe it was formerly more thought

of than it is now. It does not, at least immediately, produce any effect on a

man's place in the tripos, and is therefore considerably less attended to than

used to be the case, and in most years is not very interesting after the five or

six best men : so that I look for a considerable exercise of, or rather demand

for, patience on my part. The other part of my duty in the Senate House

consists in manufacturing wranglers, senior optimes, etc. and is, while it lasts,

very laborious.

Of the examination itself in this year he wrote as follows J

:

* Proceedings of the Royal Society, London, 1859, vol. ix, pp. 538—539.

t WhewelVs Writings and Correspondence, ed. Todhunter, London, 1876,

vol. II, p. 36.

J S. Douglas, Life of Whewell, London, 1881, p. 56.
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The examination in the Senate House begins to-morrow, and is rather close

work while it lasts. We are employed from seven in the morning till five in

the evening in giving out questions and receiving written answers to them;
and when that is over, we have to read over all the papers which we have

received in the course of the day, to determine who have done best, which is

a business that in numerous years has often kept the examiners up the half of

3very night ; but this year is not particularly numerous. In addition to all

this, the examination is conducted in a building which happens to be a very

beautiful one, with a marble floor and a highly ornamented ceiling; and as it

is on the model of a Grecian temple, and as temples had no chimneys, and as

a stove or a fire of any kind might disfigure the building, we are obliged to take

the weather as it happens to be, and when it is cold we have the full benefit of

it—which is likely to be the case this year. However, it is only a few days,

and we have done with it.

A sketch of the examination in the previous year from the

point of view of an examinee was given by J. M. F. Wright*,

but there is nothing of special interest in it.

Sir George B. Airyf gave the following sketch of his recol-

lections of the reading and studies of undergj-aduates of his time

and of the tripos of 1823, in which he had been senior wrangler

:

At length arrived the Monday morning on which the examination for the

B.A. degree was to begin...."We were all marched in a body to the Senate-House

and placed in the hands of the Moderators. How the "candidates for honours"

were separated from the ol iroWoi I do not know, I presume that the Acts and

the Opponencies had something to do with it. The honour candidates were

divided into six groups: and of these Nos. 1 and 2 (united), Nos. 3 and 4

(united), and Nos. 5 and 6 (united), received the questions of one Moderator.

No. 1, Nos. 2 and 3 (united), Nos. 4 and 5 (united), and No. 6, received those of

the other Moderator. The Moderators were reversed on alternate days. There

were no printed question-papers : each examiner had his bound manuscript of

questions, and he read out his first question ; each of the examinees who
thought himself able proceeded to write out his answer, and then orally called

out "Done." The Moderator, as soon as he thought proper, proceeded with

another question. I think there was only one course of questions on each day

(terminating before 3 o'clock, for the Hall dinner). The examination continued

to Friday mid-day. On Saturday morning, about 8 o'clock, the list of honours

(manuscript) was nailed on the door of the Senate-House.

It must be remembered that for students pursuing the

normal course the Senate-House Examination still provided

the only avenue to a degree. That examination involved a

* Alma Mater, London, 1827, vol. ii, pp. 58—98.

t See Nature, vol. xxxv, Feb. 24, 1887, pp. 397—399. See also his Auto-

biography, Cambridge, 1896, chapter ii.

B. R. IS
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loiowledge of the elements of moral philosophy and theology,

an acquaintance with the rules of formal logic, and the power

of reading and writing scholastic Latin, but mathematics was

the predominant subject, and this led to a certain one-sidedness

in education. The evil of this was generally recognized, and

in 1822 various reforms were introduced in the University

curriculum ; in particular the Previous Examination was estab-

lished for students in their second year, the subjects being

prescribed Greek and Latin works, a Gospel, and Paley's

Evidences. Set classical books were introduced in the final

examination of poll-men ; and another honour or tripos examin-

ation was established for classical students. These alterations

came into effect in 1824; and henceforth the Senate-House

Examination, so far as it related to mathematical students, was

known as the Mathematical Tripos.

In 1827 the scheme of examination in the Mathematical

Tripos was revised. By regulations* which came into opera-

tion in January, 1828, another day was added, so that the

examination extended over four days, exclusive of the day of

arranging the brackets ; the number of hours of examination

was twenty-three, of which seven were assigned to problems.

On the first two days all the candidates had the same questions

proposed to them, inclusive of the evening problems, and the

examination on those days excluded the higher and more

difficult parts of mathematics, in order, in the words of the

report, " that the candidates for honours may not be induced to

pursue the more abstruse and profound mathematics, to the

neglect of more elementary knowledge." Accordingly, only

such questions as could be solved without the aid of the

differential calculus were set on the first day, and those set on

the second day involved only its elementary applications. The

classes were reduced to four, determined as before by the

exercises in the schools. The regulations of 1827 definitely

prescribed that all the papers should be printed. They are

also noticeable as being the last which gave the examiners

power to ask viva voce questions, though such questions were

* See Grace, November 14, 1827.
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restricted to " propositions contained in the mathematical works

commonly in use at the University, or examples and explanations

of such propositions." It was further recommended that no

paper should contain more questions than well-prepared students

could be expected to answer within the time allowed for it, but

that if any candidate, before the end of the time, had answered

all the questions in the paper, the examiners might propose

additional questions viva voce. The power of granting honorary

optime degrees now ceased ; it had already fallen into abeyance.

Henceforth the examination was conducted under definite

rules, and I no longer concern myself with the traditions of the

examination.

In the same year as these changes became effective the

examination for the poll degree was separated from the tripos

with different sets of papers and a different schedule of subjects*.

It was, however, still nominally considered as forming part of

the Senate-House Examination, and until 1858 those who

obtained a poll degree were arranged in four classes, described

as fourth, fifth, sixth, and seventh, as if in continuation of the

junior optimes or third class of the tripos. The year 1828

therefore shows us the Senate-House Examination dividing into

two distinct parts ; one known as the Mathematical Tripos, the

other as the poll examination. Historically, the examination

known as "the General" represents the old Senate-House

Examination for the poll-men, but gradually it has been moved
to an earlier period in the normal course taken by the men.

In 1851 admission to the Classical Triposf was allowed to others

than those who passed the Mathematical Tripos, and thus

provided a separate avenue to a degree. In 1852 another set

of examinations, at first called " the Professor's Examinations,"

and now somewhat modified and known as " the Specials," was

instituted for all poll-men to take before they could qualify for

a degree. In 1858 the fiction that the poll examinations were

part of the Senate-House Examination was abandoned, and

subsequently they have been treated as providing an independent

• See Grace, May 21, 1828, confirming a Eeport of Maixb 27, 1828.

t See Grace of October 31, 1849.

18—2
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method of obtaining the degree : thus now the Mathematical

Tripos is the sole representative of the old Senate-House

Examination. Since 1858 numerous other ways of obtaining

the degree have been established, and it is now possible to get

it by showing proficiency in very special, or even technical

subjects.

Further changes in the Mathematical Tripos were introduced

in 1833*. The duration of the examination, before the issue

of the brackets, was extended to five days, and the number of

hours of examination on each day was fixed at five and a half.

Seven and a half hours were assigned to problems. The ex-

amination on the first day was confined to subjects that did

not require the differential calculus, and only the simplest

applications of the calculus were permitted on the second and

third days. During the first four days of the examination the

same papers were set to all the candidates alike, but on the

fifth day the examination was conducted according to classes.

No reference was made to viva voce questions, and the preliminary

classification of the brackets only survived in a permission to

re-examine candidates if it were found necessary. This per-

missive rule remained in force till 1848, but I believe that in

fact it was never used. In December, 1834, a few unimportant

details were amended.

Mr Earnshaw, the senior moderator in 1836, informed me
that he believed that the tripos of that year was the earliest

one in which all the papers were marked, and that in previous

years the examiners had partly relied on their impression of

the answers given.

New regulations came into force f in 1839. The examina-

tion now lasted for six days, and continued as before for five

hours and a half each day. Eight and a half hours were assigned

to problems. Throughout the whole examination the same

papers were set to all candidates, and no reference was made to

any preliminary classes. It was no doubt in accordance with

the spirit of these changes that the acts in the schools should

* See Grace of April 6, 1832.

+ See Grace of May 30, 1838.
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be abolished, but they were discontinned by the moderators of

1839 without the authority of the Senate. The examination

was for the future confined* to mathematics.

In the same year in which the new scheme came into force

a proposal to again reopen the subject was rejected (March 6).

The difficulty of bringing professorial lectures into relation

with the needs of students has more than once been before the

University. The desirability of it was emphasized by a Syndicate

in February, 1843, which recommended conferences at stated

intervals between the mathematical professors and examiners.

This report foreshadowed the creation of a Mathematical Board,

but it was rejected by the Senate on March 31.

A few years later the scheme of the examination was again

reconstructed by regulationsf which came into effect in 1848.

The duration of the examination was extended to eight days.

The examination lasted in all forty-four and a half hours,

twelve of which were devoted to problems. The first three

days were assigned to specified elementary subjects; in the

papers set on these days riders were to be set as well as book-

work, but the methods of analytical geometry and the calculus

were excluded. After the first three days there was a short

interval, at the end of which the examiners issued a list of those

who had so acquitted themselves as to deserve mathematical

honours. Only those whose names were contained in this list

were admitted to the last five days of the examination, which

was devoted to the higher parts of mathematics. After the

conclusion of the examination the examiners, taking into account

the whole eight days, brought out the list arranged in order of

merit. No provision was made for any rearrangement of this

list corresponding to the examination of the brackets. The
arrangements of 1848 remained in torce till 1873.

* Under a badly-worded Grace passed on May 11, 1842, on the recommencla-

tion of a syndicate on theological studies, candidates for mathematical honours

were, after 1840, required to attend the poll examination on Paley's Moral
Philosophy, the New Testament and Ecclesiastical History. This had not been

the intention of the Senate, and on March 14, 1855, a Grace was passed making
this clear.

t See Grace of May 13, 1846, confirming a report of March 23, 1846.
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In the same year as these regulations came into force, a

Board of Mathematical Studies (consisting of the mathematical

professors, and the moderators and examiners for the current

year and the two preceding years) was constituted* by the

Senate. From that time forward their minutes supply a per-

manent record of the changes gradually introduced into the

tripos. I do not allude to subsequent changes which only

concern unimportant details of the examination.

In May, 1849, the Board issued a report in which, after

giving a review of the past and existing state of the mathe-

matical studies in the University, they recommended that the

mathematical theories of electricity, magnetism, and heat should

not be admitted as subjects of examination. In the following

year they issued a second report, in which they recommended

the omission of elliptical integrals, Laplace's coefficients, capillary

attraction, and the figure of the earth considered as hetero-

geneous, as well as a definite limitation of the questions in lunar

and planetary theory. In making these recommendations the

Board were only giving expression to what had become the

practice in the examination.

I may, in passing, mention a curious attempt which w^as

made in 1853 and 1854 to assist candidates in judging of the

relative difficulty of the questions asked. This was effected by

giving to the candidates, at the same time as the examination

paper, a slip of paper on which the marks assigned for the

book-work and rider for each question were printed. I mention

the fact merely because these things are rapidly forgotten and

not because it is of any intrinsic value. I possess a complete

set of slips which came to me fi'om Dr Todhunter.

In 1856 there was an amusing difference of opinion between

the Vice-Chancellor and the moderators. The Vice-Chancellor

issued a notice to say that for the convenience of the University

he had directed the tripos lists to be published at 8.0 a.m. as

well as at 9.0 a.m., but when the University arrived at 8.0 the

moderators said that they should not read the list until 9.0.

Considerable changes in the scheme of examination were

* See Grace of October 31, 1818,
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introduced in 1873. On December 5, 1865, the Board had

recommended the addition of Laplace's coefficients and the

figure of the earth considered as heterogeneous as subjects of

the examination; the report does not seem to have been

brought before the Senate, but attention was called to the fact

that certain departments of mathematics and mathematical

physics found no place in the tripos schedules, and were

neglected by most students. Accordingly, a syndicate was

appointed on June 6, 1867, to consider the matter, and a scheme

drawn up by them was approved in 1868* and came into effect

in 1873. The new scheme of examination was framed on the

same lines as that of 1848. The subjects in the first three days

were left unchanged, but an extra day was added, devoted to

the elements of mathematical physics. The essence of the

modification was the greatly extended range of subjects intro-

duced into the schedule of subjects for the last five days, and

their arrangement in divisions, the marks awarded to the five

divisions being approximately those awarded to the three days

in proportion to 2, 1, 1, 1, 2/3 to 1 respectively. Under the

new regulations the number of examiners was increased from

four to five.

The assignment of marks to groups of subjects was made
under the impression that the best candidates would concentrate

their abilities on a selection of subjects from the various divi-

sions. But it was found that, unless the questions were made

extremely difficult, more marks could be obtained by reading

superficially all the subjects in the five divisions than by

attaining real proficiency in a few of the higher ones : while

the wide range of subjects rendered it practically impossible to

thoroughly cover all the ground in the time allowed. The

failure was so pronounced that in 1877 another syndicate was

appointed to consider the mathematical studies and examina-

tions of the University. They presented an elaborate scheme,

but on May 13, 1878, some of the most important parts of it

wtre rejected and their subsequent proposals, accepted on

* See Grace of June 2, 1868. It was carried by a majority of only five in a

house of 75.
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November 21, 1878 (by 62 to 49), represented a compromise

which pleased few members of the Senate*.

Under the new scheme which came into force in 1882 the

tripos was divided into two portions : the first portion wns taken

at the end of the third year of residence, the range of subjects

being practically the same as in the regulations of 1848, and the

result brought out in the customary order of merit. The second

portion was held in the following January, and was open only to

those who had been wranglers in the preceding June. This

portion was confined to higher mathematics and appealed chiefly

to specialists. The result was brought out in three classes, each

arranged in alphabetical order. The moderators and examiners

conducted the whole examination without any extraneous aid.

In the next year or two further amendments were madef,

moving the second part to the June of the fourth year, throwing

it open to all men who had graduated in the tripos of the

previous June, and transferring the conduct of the examination

in Part II to four examiners nominated by the Board : this put

it largely under the control of the professors. The range of

subjects of Part II was also greatly extended, and candidates

were encouraged to select only a few of them. It was further

arranged that Part I might be taken at the end of a man's

second year of residence, though in that case it would not

qualify for a degree. A student who availed himself of this

leave could take Part II at the end either of his third or of his

fourth year as he pleased.

The general effect of these changes was to destroy the

homogeneity of the tripos. Objections to the new scheme

were soon raised. Especially, it was said—whether rightly

or wrongly—that Part I contained too many technical subjects

to serve as a general educational training for any save mathe-

maticians ; that the distinction of a high place in the historic

list produced on its results tended to prevent the best men
* See Graces of May 17, 1877; May 29, 1878; and November 21, 1878: and

the Camhridge University Reporter, April 2, May 14, June 4, October 29,

November 12, and November 26, 1878.

t See Graces of December 13, 188o; June 12, 1884; February 10, 1885;

October 29, 1885 ; and June 1, 1886,
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taking it in their second year, though by this time they had

read sufficiently to be able to do so ; and that Part II was so

constructed as to appeal only to professional mathematicians,

and that thus the higher branches of mathematics were neg-

lected by all save a few specialists.

Whatever value be attached to these opinions, the number
of students studying mathematics fell rapidly under the scheme

of 1886. In 1899 the Board proposed* further changes. These

seemed to some members of the Senate to be likely to still further

decrease the number of men who took up the subject as one of

general education. At any rate the two main proposals were re-

jected, February 15, 1900, by votes of 151 to 130 and 161 to 129.

A few years later f the Board brought forv\^ard another

scheme, proposing changes so sweeping as almost to destroy

the identity of the Tripos. Under this the examination in

Part II was abolished—a change on which all parties were

agreed. There was introduced an examination, called Part I,

confined to elementary mathematics, which could be taken as

early as the second term of residence, and for which in certain

cases of failure a student could present himself again, but this,

although an examination for honours, did not qualify for a

degree. In the new Part II, taken normally at the end of the

third year of residence and qualifying for a degree, candidates

were given some option in the subjects of their examination,

and order of merit was abolished. The first examination under

this scheme was held in 1908.

The curious origin of the term tripos has been repeatedly

told, and an account of it may fitly close this chapter. Formerly

there were three principal occasions on which questionists were

admitted to the title or degree of bachelor. The first of these

was the comitia priora, held on Ash-Wednesday, for the best

men in the year. The next was the comitia posteriora, which

was held a few weeks later, and at which any student who had

distinguished himself in the quadragesimal exercises subsequent

* See Reports dated November 7, 1S09, and January 20, 1900.

t See the Reports of the Special Board, Cavibridye UniverRity Reporter,

May 29 and November 20, 1906, and the Graces of Feb. 2, 1907. The voting

on the first Grace was 770 Placet and 641 Non-Placet.
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to Ash-Wednesday had his seniority reserved to him. Lastly,

there was the comitia minora, for students who had in no special

way distinguished themselves. In the fifteenth century an im-

portant part in the ceremony on each of these occasions was

taken by a certain "ould bachilour," who sat upon a three-legged

stool or tripos before the proctors and tested the abilities of the

would-be graduates by arguing some question with the " eldest

son," who was selected from them as their representative.

To assist the latter in what was often an unequal contest his

" father," that is, the officer of his college who was to present

him for his degree, was allowed to come to his assistance.

Originally the ceremony was a serious one, and had a certain

religious character. It took place in Great St Mary's Church,

and marked the admission of the student to a position with new

responsibilities, while the season of Lent was chosen with a

view to bring this into prominence. The Puritan party objected

to the observance of such ecclesiastical ceremonies, and in the

course of the sixteenth century they introduced much license

and buffoonery into the proceedings. The part played by the

questionist became purely formal. A serious debate still some-

times took place between the father of the senior questionist

and a regent master who represented the University ; but the

discussion was prefaced by a speech by the bachelor, who came

to be called Mr Tripos just as we speak of a judge as the bench,

or of a rower as an oar. Ultimately public opinion permitted

Mr Tripos to say pretty much whafc he pleased, so long as it was

not dull and was scandalous. The speeches he delivered or the

verses he recited were generally preserved by the Registrary,

and were known as the tripos verses: originally they referred to

the subjects of the disputations then propounded. The earliest

copies now extant are those for 1575.

The University officials, to v/hom the personal criticisms in

which the tripos indulged were by no means pleasing, repeatedly

exhorted him to remember " while exercising his privilege of

humour, to be modest withal." In 1740, says Mr Mullinger*,

* J. B. Mullinger, The University of Cambridge^ Cambridge, vol. i, 1873,

pp. 175—170.
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"the authorities after condemning the excessive license of the

tripos announced that the comitia at Lent would in future be

conducted in the Senate-House ; and all members of the Uni-

versity, of whatever order or degree, were forbidden to assail or

mock the disputants with scurrilous jokes or unseemly witticisms.

About the year 1747-8, the moderators initiated the practice

of printing the honour lists on the back of the sheets containing

the tripos verses, and after the year 1755 this became the

invariable practice. By virtue of this purely arbitrary con-

nection these lists themselves became known as the tripos; and

eventually the examination itself, of which they represented the

results, also became known by the same designation."

The tripos ceased to deliver his speech about 1750, but the

issue of tripos verses continued for nearly 150 years longer.

During the latter part of this time they consisted of four sets

of verses, usually in Latin, but occasionally in Greek, in which

current topics in the University were treated lightly or seriously

as the writer thought fit. They were written for the proctors

and moderators by undergraduates or commencing bachelors,

w^ho were supposed each to receive a pair of white kid gloves

in recognition of their labours. Thus gradually the word tripos

changed its meaning " from a thing of w^ood to a man, from a

man to a speech, from a speech to sets of verses, from verses to

a sheet of coarse foolscap paper, from a paper to a list of names,

and from a list of names to a system of examination *."

In 1895 the proctors and moderators, without consulting

the Senate, sent in no verses, and thus, in spite of widespread

regret, an interesting custom of many centuries standing was

destroyed. No doubt it may be argued that the custom had

never been embodied in statute or ordinance, and thus w^as

not obligatory. Also it may be said that its continuance was

not of material benefit to anybody. I do not think that such

arguments are conclusive, and personally I regret the dis-

appearance of historic ties unless it can be shown that they

cause inconvenience, which of course in this case could not be

asserted.

* "Wordsworth, Scholae Academicae, Cambridge, 1877, p. 21.
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CHAPTER XII.

THREE CLASSICAL GEOMETBICAL PROBLEMS.

Among the more interesting geometrical problems of anti-

quity are three questions which attracted the special attention

of the early Greek mathematicians. Our knowledge of geometry

is derived from Greek sources, and thus these questions have

attained a classical position in the history of the subject. The

three questions to which I refer are (i) the duplication of a

cube, that is, the determination of the side of a cube whose

volume is double that of a given cube
;

(ii) the triscction of an

angle ; and (iii) the squaring of a circle, that is, the deter-

mination of a square whose area is equal to that of a given

circle—each problem to be solved by a geometrical construction

involving the use of straight lines and circles only, that is, by

Euclidean geometry.

This limitation to the use of straight lines and circles implies

that the only instruments available in Euclidean geometry are

compasses and rulers. But the compasses must be capable of

opening as wide as is desired, and the ruler must be of un-

limited length. Further the ruler must not be graduated, for

if there were two fixed marks on it we can obtain constructions

equivalent to those obtained by the use of the conic sections.

With the Euclidean restriction all three problems are in-

soluble*. To duplicate a cube the length of whose side is a,
'

* See F. C. Klein, Vortrage iiher ausgeiocihlte Fragen der Elementargeometrie,

Leipzig, 1895. It is said that the earliest rigorous proof that the problems

were insoluble by Euclidean geometry was given by P. L. Wantzell in 1837. J
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we have to find a line of length x, such that a? = 2a^ Again,

to trisect a given angle, we may proceed to find the sine of the

angle, say a, then, if x is the sine of an angle equal to one-third

of the given angle, we have 4^^ =Hx — a. Thus the first and

second problems, when considered analytically, require the solu-

tion of a cubic equation ; and since a construction by means of

circles (whose equations are of the form a^ -h y"^
-\- ax -\- hi/ + c = 0)

and straight lines (whose equations are of the form or^+^y -f 7= 0)

cannot be equivalent to the solution of a cubic equation, it is

inferred that the problems are insoluble if in our constructions

we are restricted to the use of circles and straight lines. If the

use of the conic sections is permitted, both of these questions

can be solved in many ways. The third problem is different in

character, but under the same restrictions it also is insoluble.

I propose to give some of the constructions which have

been proposed for solving the first two of these problems. To

save space I shall not draw the necessary diagrams, and in

most cases I shall not add the proofs : the latter present but

little difficulty. I shall conclude with some historical notes on

approximate solutions of the quadrature of the circle.

TJie Duplication of the Cube*.

The problem of the duplication of the cube was known in

ancient times as the Delian problem, in consequence of a

legend that the Delians had consulted Plato on the subject.

In one form of the story, which is related by Philoponusf, it

is asserted that the Athenians in 430 B.C., when sufferinsf from

the plague of eruptive typhoid fever, consulted the oracle at

Delos as to how they could stop it. Apollo replied that they

must double the size of his altar which was in the form of a

cube. To the unlearned suppliants nothing seemed more easy,

and a new altar was constructed either having each of its edges

* See Hiatorla Prohlematis cle Cubi BupUcatione by N. T. Reimer, Gottingen,

1798; and Historia Prohlematis Cubi DupUcandi by C. H. Biering, Copenhagen,

1844 : also Das Delische Problem, by A. Sturm, Linz, 1895-7. Some notes on

the subject are given in my History of Mathematics.

t Philoponus ad Aristotelis Analytica Posteriora, bk. i, chap. vii.
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double that of the old one (from which it followed that the

volume was increased eight-fold) or by placing a similar cube

altar next to the old one. Whereupon, according to the legend,

the indignant god made the pestilence worse than before, and

informed a fresh deputation that it was useless to trifle with

him, as his new altar must be a cube and have a volume exactly

double that of his old one. Suspecting a mystery the Athenians

applied to Plato, who referred them to the geometricians. The

insertion of Plato's name is an obvious anachronism. Eratos-

thenes* relates a somewhat similar story, but with Minos as

the propounder of the problem.

In an Arab work, the Greek legend was distorted into the

following extraordinarily impossible piece of history, which I

cite as a curiosity of its kind. "Now in the days of Plato,"

says the writer, " a plague broke out among the children of

Israel. Then came a voice from heaven to one of their prophets,

saying, ' Let the size of the cubic altar be doubled, and the

plague will cease '
; so the people made another altar like unto

the former, and laid the same by its side. Nevertheless the

pestilence continued to increase. And again the voice spake

unto the prophet, saying, ' They have made a second altar like

unto the former, and laid it by its side, but that does not pro-

duce the duplication of the cube.' Then applied they to Plato,

the Grecian sage, who spake to them, saying, * Ye have been

neglectful of the science of geometry, and therefore hath God

chastised you, since geometry is the most sublime of all the

sciences.' Now, the duplication of a cube depends on a rare

problem in geometry, namely...." And then follows the solu-

tion of Apollonius, which is given Jater.

If a is the length of the side of the given cube and x that

of the required cube, we have a:^ = 2a^, that is, a; : a= ^2 : 1.

It is probable that the Greeks were aware that the latter ratio

is incommensurable, in other words, that no two integers can

be found whose ratio is the same as that of \/2 : 1, but it did

not therefore follow that they could not find the ratio by

* Archimedis Oj^era cum Eutocii Commentariis, ed. Torelli, Oxford, 17S2,

p. 144; ed. Heiberg, Leipzig, 1880-1, vol. iii, pp. 104—107.
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geometry: in fiict, the side and diagonal of a square are

instances of lines whose numerical measures are incommen-

surable.

I proceed now to give some of the geometrical constructions

which have been proposed for the duplication of the cube*.

With one exception, I confine myself to those which can be

effected by the aid of the conic sections.

Hippocratesf (circ. 420 B.C.) was perhaps the earliest mathe-

matician who made any progress towards solving the problem.

He did not: give a geometrical construction, but he reduced the

question to that of finding two means between one straight

line (a), and another twice as long (2a). If these means are a?

and y, we have a : x — x : y = y : 2a, fi:om which it follows that

cc^ = 2a^. It is in this form that the problem is always presented

now. Formerly any process of solution by finding these means

was called a mesolabum.

One of the first solutions of the problem was that given by

Archytasj in or about the year 400 B.C. His construction is

equivalent to the following. On the diameter OA of the base

of a right circular cylinder describe a semicircle whose plane is

perpendicular to the base of the cylinder. Let the plane con-

taining this semicircle rotate round the generator through 0,

then the surface traced out by the semicircle will cut the

cylinder in a tortuous curve. This curve will itself be cut by

a right cone, whose axis is OA and semi-vertical angle is (say)

60°, in a point P, such that the projection of OP on the base of

the cylinder will be to the radius of the cylinder in the ratio of

the side of the required cube to that of the given cube. Of

course the proof given by Archytas is geometrical ; and it is

interesting to note that in it he shows himself familiar with the

results of the propositions Euc. ill, 18, ill, 35, and xi, 19. To

* On the application to this problem of the traditional Greek methods of

analysis by Hero and Philo (leading to the solution by the use of Apollonius's

circle), by Nicomedcs (leading to the solution by the use of the conchoid), and

by Pappus (leading to the solution by the use of the cissoid), see Geometrical

Analysis by J. Leslie, Edinburgh, second edition, 1811, pp. 247—250, 453.

t Proclus, ed. Friedlein, pp. 212—213.

X Archimcdis Opera, ed. Torelli, p. 14S ; ed. Heiberg, vol. iii, pp. 93—103.
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show analytically that the construction is correct, take OA as

the axis of x, and the generator of the cylinder drawn through

as axis of z, then with the usual notation, in polar co-ordinates,

if a is the radius of the cylinder, we have for the equation

of the surface described by the semicircle r=2a sin ; for that

of the cylinder r sin =2a cos cf) ; and for that of the cone

sin 6 cos (t>=2' These three surfaces cut in a point such that

sin^ = ^, and therefore (r sin Oy = 2a^. Hence the volume of

the cube whose side is r sin 6 is twice that of the cube w^hose

side is a.

The construction attributed to Plato* (circ. 360 B.C.) de-

pends on the theorem that, if CAB and DAB are two right-

angled triangles, having one side, AB, common, their other

sides, AD and BC, parallel, and their hypothenuses, AC and

BD, at right angles, then if these hypothenuses cut in P, we

have PC :PB = FB : PA = PA : PD. Hence, if such a figure

can be constructed having PD = 2P(7, the problem will be

solved. It is easy to make an instrument by which the figure

can be drawn.

The next writer whose name is connected with the problem

is Menaechmusf, who in or about 340 B.C. gave two solutions

of it.

In the first of these he pointed out that two parabolas

having a common vertex, axes at right angles, and such that

the latus rectum of the one is double that of the other, will

intersect in another point whose abscissa (or ordinate) will

give a solution. If we use analysis this is obvious; for, if

the equations of the parabolas are y"^ — 2ax and x^ = ay, they

intersect in a point whose abscissa is given hj c(^ = 2aK It is

probable that this method was suggested by the form in which

Hippocrates had cast the problem : namely, to find x and y so

that a : X = X : y = y : 2a, whence we have x^ = ay and y^ = 2ax.

The second solution given by Menaechmus was as follows.

Describe a parabola of latus rectum I. Next describe a rect-

angular hyperbola, the length of whose real axis is 4^, and

* ArcJdmedis Opera, ed. Torelli, p. 135 ; ed. Heiberg, vol. iii, pp. 66—71.

t IMd., ed. Torelli, pp. 141—143 ; ed. Heiberg, vol. iii, pp. 92—99.
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having for its asymptotes the tangent at the vertex of the

parabola and the axis of the parabola. Then the ordinate and

the abscissa of the point of intersection of these curves are the

mean proportionals between I and 21. This is at once obvious

by analysis. The curves are x^ = ly and xy — 2l\ These cut in

a point determined by x^ = 21^ and y^ = 4^^ Hence

I : X = X : y = y : 21.

The solution of Apollonius*, which was given about 220 B.C.,

was as follows. The problem is to find two mean proportionals

between two given lines. Construct a rectangle OADB, of

which the adjacent sides OA and OB are respectively equal to

the two given lines. Bisect ^jB in G. With G as centre describe

a circle cutting OA produced in a and cutting OB produced in

h, so that aDh shall be a straight line. If this circle can be so

described, it will follow that OA : Bb = Bb : Aa — Aa : OB, that

is, Bb and Aa are the two mean proportionals between OA
and OB. It is impossible to construct the circle by Euclidean

geometry, but Apollonius gave a mechanical way of describing it.

The only other construction of antiquity to which I will

refer is that given by Diodes and Sporusf. It is as follows.

Take two sides of a rectangle OA, OB, equal to the two lines

between which the means are sought. Suppose OA to be the

greater. With centre and radius OA describe a circle. Let

OB produced cut the circumference in G and let A produced

cut it in D. Find a point E on BG so that if BE cuts AB
produced in F and cuts the circumference in G, then FE = EG.

If E can be found, then OE is the first of the means between

OA and OB. Diodes invented the cissoid in order to determine

E, but it can be found equally conveniently by the aid of

conies.

In more modern times several other solutions have been

suggested. I may allude in passing to three given by HuygensJ,

* Archimedis Opera, ed. Torelli, p. 137 ; ed. Heiberg, vol. iii, pp. 76—79.

The solution is given in my History of Mathematics, London, 1901, p. 84.

t Ibid., ed. Torelli, pp. 138, 139, 141 ; ed. Heiberg, vol. m, pp. 78—84,
90-93.

X Opera Varia, Leyden, 1724, pp. 393—396.

B. R, 19
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but I will enunciate only those proposed respectively by Vieta,

Descartes, Gregory of St Vincent, and Newton.

Vieta's construction is as follows*. Describe a circle, centre

0, whose radius is equal to half the length of the larger of the

two given lines. In it draw a chord AB equal to the smaller

of the two given lines. Produce AB to E so that BE = AB.
Through A draw a line AF parallel to OE. Through draw a

line DOCi^G, cutting the circumference in D and G, cutting AF
in F, and cutting BA produced in G, so that GF= GA. If this

line can be drawn then AB : GG=GG : GA = GA : GB.

Descartes pointed outf that the curves

x^ = ay and x^ + y^= ay + bx

cut in a point {x, y) such that a : x = x : y == y : h. Of course

this is equivalent to the first solution given by Menaechmus,

but Descartes preferred to use a circle rather than a second

conic.

Gregory's construction was given in the form of the following

theorem |. The hyperbola drawn through the point of inter-

section of two sides of a rectangle so as to have the two other

sides for its asymptotes meets the circle circumscribing the

rectangle in a point whose distances from the asymptotes are

the mean proportionals between two adjacent sides of the rect-

angle. This is the geometrical expression of the proposition

that the curves xy = ab and x^ + y^ = ay + bx cut in a point

(x, y) such that a : x = x : y=y : b.

One of the constructions proposed by Newton is as foliows§.

Let GA be the greater of two given lines. Bisect GA in B.

With centre and radius GB describe a circle. Take a point

C on the circumference so that BG is equal to the other of the

two given lines. From draw GDE cutting AG produced in

D, and BG produced in E, so that the intercept DE= GB. Then

Opera Mathematica, ed. Schooten, Leyden, 1646, prop, v, pp. 242—243.

t Geometria, bk. iii, ed. Schooten, Amsterdam, 1659, p. 91.

X Gregory of St Vincent, Opus Geometricum Quadraturae Circuli, Antwerp,

1647, bk. VI, prop. 138, p. 602.

§ Arithmetica Universalis, Ralphson's (second) edition, 1728, p. 242; see

also pp. 2i3, 245.
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BC : OD = OD : CE = GE : OA. Hence OD and CE are two

mean proportionals between any two lines BC and OA.

The Trisection of an Angle*.

The trisection of an angle is the second of these classical

problems, but tradition has not enshrined its origin in romance.

The following two constructions are among the oldest and best

known of those which have been suggested; they are quoted

by Pappus f, but I do not know to whom they were due

originally.

The first of them is as follows. Let A OB be the given

angle. From any point P in OB draw FM perpendicular to

OA. Through P draw Pi2 parallel to 0^. On il/P take a point

Q so that if OQ is produced to cut PR in R then QR = 2 . OP.

If this construction can be made, then AOR = ^AOB. The

solution depends on determining the position of R. This was

effected by a construction which may be expressed analytically

thus. Let the given angle be tan~^ (b/a). Construct the hyper-

bola xy — ab, and the circle (x — of + {y — hf = ^ (a^ -I- 6^). Of

the points where they cut, let x be the abscissa which is greatest,

then PR = x— a, and tan~^ (^/^) = i tan~^ (^/<^)-

The second construction is as follows. Let AOB be the

given angle. Take OB = OA, and with centre and radius OA
describe a circle. Produce AO indefinitely and take a point G
on it external to the circle so that if GB cuts the circumference

in D then GD shall be equal to OA. Draw OE parallel to GDB.
Then, if this construction can be made, AOE = ^A OB. The

ancients determined the position of the point G by the aid of

the conchoid : it could be also found by the use of the conic

sections.

I proceed to give a few other solutions, confining myself to

those effected by the aid of conies.

* On the bibliography of the subject see the supplements to VIntermidiaire

des Mathematiciens, Paris, May and June, 1904.

t Pappus, Mathematicae CoUectiones, bk. iv, props. 32, '6'6 (cd. Commandino,

Bonn, 1670, pp. 97—99). On the application to this problem of the traditional

Greek methods of analysis see Geometrical Analysis, by J. Leslie, Edinburgh,

second edition, 1811, pp. 245—247.

19—2
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Among other constructions given by Pappus* I may quote

the following. Describe a hyperbola whose eccentricity is two.

Let its centre be G and its vertices A and A'. Produce CA'

to >S^ so that A'S=GA\ On AS describe a segment of a

circle to contain the given angle. Let the orthogonal bisector

oi AS cut this segment in 0. With centre and radius OA or

OS describe a circle. Let this circle cut the branch of the

hyperbola through A' in P. Then SOP = ^SOA.

In modern times one of the earliest of the solutions by a

direct use of conies was suggested by Descartes, who effected

it by the intersection of a circle and a parabola. His con-

structionf is equivalent to finding the points of intersection,

other than the origin, of the parabola y^ = ios and the circle

rjQ^^y'i — 13.x + ^ay = 0. The ordinates of these points are given

by the equation 4y = 3y — a. The smaller positive root is the

sine of one-third of the angle' whose sine is a. The demonstra-

tion is ingenious.

One of the solutions proposed by Newton is practically

equivalent to the third one which is quoted above from Pappus.

It is as follows |. Let A be the vertex of one branch of a

hyperbola whose eccentricity is two, and let S be the focus of

the other branch. On AS describe the segment of a circle con-

taining an angle equal to the supplement of the given angle.

Let this circle cut the S branch of the hyperbola in P. Then

PAS will be equal to one-third of the given angle.

The following elegant solution is due to Clairaut§. Let

AOB be the given angle. Take OA — OB, and with centre

and radius OA describe a circle. Join AB, and trisect it in

H, K, so that AH = HK = KB. Bisect the angle A OB by 00
cutting AB in L. Then AH — 2.HL. With focus A, vertex

if, and directrix OC, describe a hyperbola. Let the branch of

* Pappus, Mathematicae Collectiones^ bk. iv, prop. 34, pp. 99— 104.

+ Geometria, bk. in, ed. Schooten, Amsterdam, 1659, p. 91.

X Arithmetica Universalis, problem xlii, Ralphson's (second) edition, London,

1728, p. 148 ; see also pp. 243—245.

§ I believe that this was first given by Clairaut, but I have mislaid my
reference. The construction occurs as an example in the Geometry of GoiiicSf

by G. Taylor, Cambridge, 1881, No. 308, p. 126.



CH. XIl] THREE GEOMETR[CAL PROBLEMS 293

this hyperbola which passes through H cut the circle in P.

Draw PM perpendicular to OC and produce it to cut the circle

in Q. Then by the focus and directrix property we have

AP : PM=AH :HL=2:1,.'.AP = 2.PM = PQ. Hence, by

symmetry, AP=PQ= QR. /. AOP = POQ = QOR
I may conclude by giving the solution which Chasles*

regards as the most fundamental. It is equivalent to the

following proposition. If OA and OB are the bounding radii

of a circular arc AB, then a rectangular hyperbola having OA
for a diameter and passing through the point of intersection of

OB with the tangent to the circle at A will pass through one

of the two points of trisection of the arc.

Several instruments have been constructed by which

mechanical solutions of the problem can be obtained.

The Quadrature of the Circle f.

The object of the third of the classical problems was the

determination of a side of a square whose area should be equal

to that of a given circle.

The investigation, previous to the last two hundred years,

of this question was fruitful in discoveries of allied theorems,

but in more recent times it has been abandoned by those who

are able to realize what is required. The history of this subject

has been treated by competent writers in such detail that I shall

content myself with a very brief allusion to it.

Archimedes showed J (what possibly was known before) that

the problem is equivalent to finding the area of a nght-angled

* Traite des sections coniques, Paris, 1865, art. 37, p. 36.

+ See Montucla's Histoire des Recherches sur la Quadrature du Cercle,

edited by P. L. Lacroix, Paris, 1831 ; also various articles by A. De Morgan,

and especially his Budget of Paradoxes, London, 1872. A popular sketch of

the subject has been compiled by H. Schubert, Die Quadratur des Zirkels,

Hamburg, 1889 ; and since the publication of the earlier editions of these

Recreations Prof. F. Rudio of Zurich has given an analysis of the arguments of

Ajchimedes, Huygens, Lambert, and Legendre on the subject, with an intro-

duction on the history of the problem, Leipzig, 1892.

X Archimedit Opera, KvkKov fiirpricis, prop, i, ed. Torelli, pp. 203—205 ; ed.

Heiberg, vol. i, pp. 258—201, vol. iii, pp. 2G9— 277.
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triangle whose sides are equal respectively to the perimeter of

the circle and the radius of the circle. Half the ratio of these

lines is a number, usually denoted by tt.

That this number is incommensurable had been long sus-

pected, and has been now demonstrated. The earliest analytical

proof of it was given by Lambert* in 1761 ; in 1803 Legendref

extended the proof to show that tt^ was also incommensurable

;

and recently Lindemann| has shown that tt cannot be the root

of a rational algebraical equation.

An earlier attempt by James Gregory to give a geometrical

demonstration of this is worthy of notice. Gregory proved §

that the ratio of the area of any arbitrary sector to that of

the inscribed or circumscribed polygons is not expressible by

a finite number of algebraical terms. Hence he inferred that

the quadrature was impossible. This was accepted by Montucla,

but it is not conclusive, for it is conceivable that some particular

sector might be squared, and this particular sector might be the

whole circle.

In connection with Gregory's proposition above cited, I may

add that Newton
||
proved that in any closed oval an arbitrary

sector bounded by the curve and two radii cannot be expressed

in terms of the co-ordinates of the extremities of the arc by a

finite number of algebraical terms. The argument is condensed

and difficult to follow: the same reasoning would show that

a closed oval curve cannot be represented by an algebraical

equation in polar co-ordinates. From this proposition no

* Memoires de VAcademie de Berlin for 1761, Berlin, 17G8, pp. 265—

322.

t Legendre's Geometry, Brewster's translation, Edinburgh, 1824, pp. 239—

245.

X Ueber die Zahl tt, Mathematische Annalen, Leipzig, 1882, vol. xx, pp. 213

—

225. The proof leads to the conclusion' that, if re is a root of a rational

integral algebraical equation, then e' cannot be rational : hence, if iri was the

root of such an equation, e^* could not be rational ; but e"^ is equal to - 1, and

therefore is rational ; hence iri cannot be the root of such an algebraical

equation, and therefore neither can tt.

§ Vera Circuli et Hyperbolae Quadratura, Padua, 1668 : this is reprinted in

Huygens's Opera Varia, Leyden, 1724, pp. 405—4G2.

II
Principia, bk. i, section vi, lemma xxviii.
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conclusion as to the quadrature of the circle is to be drawn,

nor did Newton draw any. In the earlier editions of this work

I expressed an opinion that the result presupposed a particular

definition of the word oval, but on more careful reflection I think

that the conclusion is valid without restriction.

With the aid of the quadratrix, or the conchoid, or the

cissoid, the quadrature of the circle is easy, but the construction

of those curves assumes a knowledge of the value of tt, and thus

the question is begged.

I need hardly add that, if tt represented merely the ratio

of the circumference of a circle to its diameter, the deter-

mination of its numerical value would have but slight interest.

It is however a mere accident that tt is defined usually in

that way, and it really represents a certain number which

would enter into analysis from whatever side the subject was

approached.

I recollect a distinguished professor explaining how different

would be the ordinary life of a race of beings born, as easily

they might be, so that the fundamental processes of arithmetic,

algebra and geometry were different to those which seem to us

so evident, but, he added, it is impossible to conceive of a

universe in which e and tt should not exist.

I have quoted elsewhere an anecdote, w^hich perhaps will

bear repetition, that illustrates how little the usual definition

of TT suggests its properties. De Morgan was explaining to an

actuary what was the chance that a certain proportion of some

group of people would at the end of a given time be alive ; and

quoted the actuarial formula, involving tt, which, in answer to

a question, he explained stood for the ratio of the circumference

of a circle to its diameter. His acquaintance, who had so far

listened to the explanation with interest, interrupted him and

exclaimed, " My dear friend, that must be a delusion, what can

a circle have to do with the number of people alive at the end

of a given time ? " In reality the fact that the ratio of the

length of the circumference of a circle to its diameter is the

number denoted by ir does not afford the best analytical defini-

tion of TT, and is only one of its properties.
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The use of a single symbol to denote this number 3'14159...

seems to have been introduced about the beginning of the

eighteenth century. William Jones* in 1706 represented it by tt;

a few years laterf John Bernoulli denoted it by c; Euler in

1734 used p, and in 1736 used c; Christian Goldback in 1742

used tt; and after the publication of Euler's Analysis the

symbol tt was generally employed.

The numerical value of tt can be determined by either of

two methods with as close an approximation to the truth as

is desired.

The first of these methods is geometrical. It consists in

calculating the perimeters of polygons inscribed in and circum-

scribed about a circle, and assuming that the circumference of

the circle is intermediate between these perimeters^. The ap-

proximation would be closer if the areas and not the perimeters

were employed. The second and modern method rests on the

determination of converging infinite series for tt.

We may say that the 7r-calculators who used the first

method regarded ir as equivalent to a geometrical ratio, but

those who adopted the modern method treated it as the symbol

for a certain number which enters into numerous branches of

mathematical analysis.

It may be interesting if I add here a list of some of the

approximations to the value of tt given by various writers §.

This will indicate incidentally those who have studied the sub-

ject to the best advantage.

* Synopsis Palmariorum Matheseos, London, 1706, pp. 243, 263 et seq.

t See notes by G. Enestrom in the Bibliotheca Mathematica, Stockholm,

1889, vol. m, p. 28; Ibid., 1890, vol. iv, p. 22.

:;: The history of this method has been written by K. E. I. Selander, Uistorik

ajver Ludolphska Talet, Upsala, 1868.

§ For the methods used in classical times and the results obtained, see the

notices of their authors in M. Canter's Geschichte der Mathematik, Leipzig,

vol. I, 1880. For medieval and modern approximations, see the article by

A. De Morgan on the Quadrature of the Circle in vol. xix of the Penny

Cyclopaedia, London, 1841; with the additions given by B. de Haan in the

Verhandelingen of Amsterdam, 1858, vol. iv, p. 22 : the conclusions were

tabulated, corrected, and extended by Dr J. W. L. Glaisher in the Messenger of

Mathematics, Cambridge, 1873, vol. ii, pp. 119—128; and Ihid., 1874, vol. in,

pp. 27—46.
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The ancient Egyptians* took 256/81 as the value of tt, this

is equal to 3'1605... ; but the rougher approximation of 3 was

used by the Babylonians f and by the Jews
J:.

It is not unlikely

that these numbers were obtained empirically.

We come next to a long roll of Greek mathematicians who

attacked the problem. Whether the researches of the members

of the Ionian School, the Pythagoreans, Anaxagoras, Ilippias,

Antipho, and Bryso led to numerical approximations for the

value of TT is doubtful, and their investigations need not

detain us. The quadrature of certain lunes by Hippocrates of

Chios is ingenious and correct, but a value of tt cannot be

thence deduced ; and it seems likely that the later members

of the Athenian School concentrated their efforts on other

questions.

It is probable that Euclid §, the illustrious founder of the

Alexandrian School, was aware that tt was greater than 3 and

less than 4, but he did not state the result explicitly.

The mathematical treatment of the subject began with

Archimedes, who proved that tt is less than 3f and greater

than 3ff, that is, it lies between 3-1428... and 3*1408... . He
established

II
this by inscribing in a circle and circumscribing

about it regular polygons of 96 sides, then determining by

geometry the perimeters of these polygons, and finally

assuming that the circumference of the circle was inter-

mediate between these perimeters : this leads to a result from

which he deduced the limits given above. This method

is equivalent to using the proposition sin ^ < ^ < tan 6, where

d — 'TT/QQ: the values of sin^ and tan ^ were deduced by

Archimedes fi'om those of sin ^tt and tan ^tt by repeated

bisections of the angle. With a polygon of n sides this

* Ein mathematisches Handbiich der alten Aegypter {i.e. the Ebiiid papyrus),

by A. Eisenlohr, Leipzig, 1877, arts. 100—109, 117, 124.

t Oppert, Journal Asiatique, August, 1872, and October, 1874.

X 1 Kings, ch. 7, ver. 23 ; 2 Chronicles, ch. 4, vcr. 2.

§ These results can be deduced from Euc. iv, 15, and iv, 8: see also book xii,

prop. 16.

II
Archimedis Opera, KiJkXou iJ.hpr)(xis, prop, iii, ed. Torelli, Oxford, 1792,

pp. 205—216; ed. Heiberg, Leipzig, 18S0, vol. i, pp. 263

—

271.
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process gives a value of tt correct to at least the integral part

of (2 logri — 1*19) places of decimals. The result given by

Archimedes is correct to two places of decimals. His analysis

leads to the conclusion that the perimeters of these polygons

for a circle whose diameter is 4970 feet would lie between

15610 feet and 15620 feet—actually it is about 15613 feet

9 inches.

Apollonius discussed these results, but his criticisms have

been lost.

Hero of Alexandria gave* the value 3, but he quotedf the

result 22/7 : possibly the former number was intended only for

rough approximations.

The only other Greek approximation that I need mention

is that given by Ptolemy J,
who asserted that tt = 3° 8' 80''.

This is equivalent to taking tt = 3 +^ + -g^gg = Sj^^ = 3*1416.

The Roman surveyors seem to have used 3, or sometimes 4,

for rough calculations. For closer approximations they often

employed 3^ instead of 3f, since the fractions then introduced

are more convenient in duodecimal arithmetic. On the other

hand Gerbert§ recommended the use of 22/7.

Before coming to the medieval and modern European mathe-

maticians it may be convenient to note the results arrived at in

India and the East.

Baudhayana|| took 49/16 as the value of tt.

Arya-BhataH, circ. 530, gave 62832/20000, which is equal

to 31416. He showed that, if a is the side of a regular

polygon of n sides inscribed in a circle of unit diameter, and if

h is the side of a regular inscribed polygon of 2n sides, then

6^ = J — J (1 — a'^y\ From the side of an inscribed hexagon, he

found successively the sides of polygons of 12, 24, 48, 96, 192,

* Blensurae, ed. Hultscli, Berlin, 1864, p. 188.

t Geometria, ed. Hultsch, Berlin, 1864, pp. 115, 136.

X Almagest, bk. vi, chap. 7 ; ed. Halma, vol. i, p. 421.

§ (Euvres de Gerbert, ed. Olleris, Clermont, 1867, p. 453.

II
The Sulvasutras by G. Thibaut, Asiatic Society of Bengal, 1875, arta.

26—28.

IF Legons de calcul d'Aryabhata, by L. Rodet in the Journal Asiatique, 1879,

series 7, vol. xiii, pp. 10, 21.
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and 884 sides. The perimeter of the last is given as equal

to V9*8694, from which his result was obtained by approxi-

mation..

Brahmagupta*, circ. 650, gave VlO, which is equal to

81622.... He is said to have obtained this value by inscribing

in a circle of unit diameter regular polygons of 12, 24, 48, and

96 sides, and calculating successively their perimeters, which

he found to be V9^, Vim, V9^, V9^ respectively; and to

have assumed that as the number of sides is increased indefinitely

the perimeter would approximate to VlO.

Bhaskara, circ. 1150, gave two approximations. Onef—pos-

sibly copied from Arya- Bhata, but said to have been calculated

afresh by Archimedes's method from the perimeters of regular

polygons of 384 sides—is 3927/1250, which is equal to 31416:

the otherj is 754/240, which is equal to 31416, but it is in-

certain wliether this was not given only as an approximate

value.

Among the Arabs the values 22/7, VIO, and 62832/20000

were given by Alkarismi§, circ. 830; and no doubt were derived

from Indian sources. He described the first as an approximate

value, the second as used by geometricians, and th3 third as

used by astronomers.

In Chinese works the values 3, 22/7, 157/50 are said to

occur: probably the last two results were copied from the

Arabs. The Japanesejj approximations were closer.

Returning to European mathematicians, we have the following

successive approximations to the value of tt: many of those prior

to the eighteenth century having been calculated originally

with the view of demonstrating the incorrectness of some

alleged quadrature.

* Algebra...from Brahmegupta and Bhascara, trans, by H. T. Colebrooke,

London, 1817, chap, xii, art. 40, p, 308.

t Ibid., p. 87.

X Ibid., p. 95.

§ The Algebra of Mohammed ben Musa, ed. by F. Eosen, London, 1831,

pp. 71—72.

II
On Japanese approximations and the methods used, see P. Harzer,

Transactions of the British Association for 1905, p. 325.
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Leonardo of Pisa*, in the thirteenth century, gave for tt the

value 1440/458^, which is equal to 3'1418.... In the fifteenth

century, Purbachf gave or quoted the value 62832/20000,

which is equal to 3'1416 ; Cusa believed that the accurate

value was } (V3 + \/6), which is equal to 31423...; and, in

1464, RegiomontanusJ: is said to have given a value equal to

314243.

Vieta§, in 1579, showed that ir was greater than

31415926535/10^", and less than 31415926537/10^°. This was

deduced from the perimeters of the inscribed and circumscribed

polygons of 6 X 2^^ sides, obtained by repeated use of the formula

2 sin^ 1^ = 1 — cos ^. He also gave|| a result equivalent to the

formula

2 _ V2 V(2 + V2) V{2 + V(2 + V2)}

7r~ 2 2 2

The father of Adrian MetiusH, in 1585, gave 355/113,

which is equal to 3"14159292..., and is correct to six places

of decimals. This was a curious and lucky guess, for all that

he proved was that tt was intermediate between 377/120 and

333/106, whereon he jumped to the conclusion that he would

obtain the true fractional value by taking the mean of fche

numerators and the mean of the denominators of these fractions.

In 1593 Adrian Romanus** calculated the perimeter of the

inscribed regular polygon of 1073,741824 {i.e. 2^'^) sides, from

which he determined the value of ir correct to 15 places of

decimals.

* Boncompagni's Scritti di Leonardo, voL ii {Practica Geometriae), Eome,

1862, p. 90.

t Appendix to the De Triangulis of Regiomontanus, Basle, 1541, p. 131.

J In his correspondence with Cardinal Nicholas de Cusa, De Quadratura

Girculi, Nuremberg, 1533, wherein he proved that the cardinal's result was

wrong. I cannot quote the exact reference, but the figures are given by com-

petent writers and I have no doubt are correct.

§ Canon Mathematicus seu ad Triangula, Paris, 1579, pp. 56, 66 : probably

this work was printed for private circulation only, it is very rare.

II
Vietae Opera, ed. Schooten, Leyden, 16i6, p. 400.

^ Arithmeticae libri duo et Geometriae, by A. Metius, Leyden, 1626, pp. 88—

89. [Probably issued originally in 1611.]

** Ideae Mathematicae, Antwerp, 1593 : a rare work, which I have never been

able to consult.
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L. van Cenlen devoted no inconsidorable part of his life to

the subject. In 1596* he gave the result to 20 places of deci-

mals : this was calculated by finding the perimeters of the

inscribed and circumscribed regular polygons of 60 x 2^^ sides,

obtained by the repeated use of a theorem of his discovery

equivalent to the formula 1 — cos^ = 2 sin^ Jil. I possess a

finely executed engraving of him of this date, with the result

printed round a circle which is below his portrait. He died in

1610, and by his directions the result to 35 places of decimals

(which was as far as he had calculated it) was engraved on his

tombstone i* in St Peter's Church, Le3^den. His posthumous

arithmetic
J:
contains the result to 32 places ; this was obtained

by calculating the perimeter of a polygon, the number of whose

sides is 2'\ i.e. 4,611686,018427,387904. Van Ceulen also com-

piled a table of the perimeters of various regular polygons.

Willebrord Snell§, in 1621, obtained from a polygon of 2^*'

sides an approximation to 34 places of decimals. This is less

than the numbers given by van Ceulen, but Snell's method

was so superior that he obtained his 34 places by the use of a

polygon from which van Ceulen had obtained only 14 (or

perhaps 16) places. Similarly, Snell obtained from a hexagon

an approximation as correct as that for which Archimedes had

required a polygon of 96 sides, while from a polygon of 96 sides

he determined the value of tt correct to seven decimal places

instead of the two places obtained by Archimedes. The reason

is that Archimedes, having calculated the lengths of the sides

of inscribed and circumscribed regular polygons of n sides,

assumed that the length of l/nth of the perimeter of the circle

was intermediate between them; whereas Snell constructed

• Vanden Circkel, Delf, 1596, fol. 14, p. 1 ; or De Circulo, Leyden, 1619, p. 3.

t The inscription is quoted by Prof, de Haan in the Messenger of Mathematics,

1874, vol. Ill, p. 25.

X De Arithmetische en Geometrische Foudavienten, Leyden, 1615, p. 163; or

p. 144 of the Latin translation by W. Snell, published at Leyden in 1615 under

the title Fundamenta Arithmetica et Gcometrica. This was reissued, togetlier

with a Latin translation of the Vanden Circkel, in 1619, under the title De
Circulo; in which see pp. 3, 29—32, 92.

§ Cyclometricus, Leaden, 1621, p. 55.
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from the sides of these polj^gons two other lines which gave

closer limits for the corresponding arc. His method depends

on the theorem 3 sin ^/(2 + cos ^) < ^ < (2 sin
-J
^ + tan J B), by

the aid of which a polygon of n sides gives a value of tt correct

to at least the integral part of (4 log n — •2305) places of decimals,

which is more than twice the number given by the older rule.

Snell's proof of his theorem is incorrect, though the result is true.

Snell also added a table* of the perimeters of all regular

inscribed and circumscribed polygons, the number of whose

sides is 10 X 2" where ii is not greater than 19 and not less than

3. Most of these were quoted from van Ceulen, but some were

recalculated. This list has proved useful in refuting circle-

squares. A similar list was given by James Gregory f.

In 1630 Grienberger J, by the aid of Snell's theorem, carried

the approximation to 39 places of decimals. He was the last

mathematician who adopted the classical method of finding the

perimeters of inscribed and circumscribed polygons. Closer

approximations serve no useful purpose. Proofs of the theorems

used by Snell and other calculators in applying this method

were given by Huygens in a work§ which may be taken as

closing the history of this method.

In 1656 Wallisll proved that

TT 2.2.4.4.6.6 ...

Ji X.O.O.O.0.4.1 ...

and quoted a proposition given a few years earlier by Viscount

Brouncker to the effect that

7r_ P 32 5^

4~ ^2+ 2 + 2 + ...,

* It is quoted by Montucla, ed. 1831, p. 70.

t Vera Circuli et Hyperbolae Quadratura, prop. 29, quoted by Huj'gens,

Opera Varia, Leyden, 1724, p. 447.

X Elementa Trigonometrica, Home, 1630, end of preface.

§ De Gircula Magnitudine Inventa, 1654 ; Opera Varia, pp. 851—387. The

proofs are given in G. Pirie's Geometrical Methods of Approximating to the Value

of IT, London, 1877, pp. 21—23.

II
Arithmetica Infiiiitorum, Oxford, 1656, prop. 191. An analysis of the

investigation by Wallis was given by Cayley, Quarterly Journal of Mathematics^

1839, vol. xxiii, pp. 165—169.
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but neither of these theorems was used to any large extent for

calculation.

Subsequent calculators have relied on converging infinite

series, a method that was hardly practicable prior to the in-

vention of the calculus, though Descartes* had indicated a

geometrical process which was equivalent to the use of such

a series. The employment of infinite series was proposed by

James Gregory f, who established the theorem that

^ = tan ^ - 1 tan^ e-\-^ tan' (9 - ...,

the result being true only if 6 lies between — {tt and J tt.

The first mathematician to make use of Gregory's series

for obtaining an approximation to the value of tt was Abraham
Sharp

J:,
who, in 1699, on the suggestion of Halley, determined

it to 72 places of decimals (71 correct). He obtained this

value by putting 0=^7r in Gregory's series.

Machin§, earlier than 1706, gave the result to 100 places

(all correct). He calculated it by the formula

J TT = 4 tan~^ ^ — tan~^ ^.
De Lagnyll, in 1719, gave the result to 127 places of

decimals (112 correct), calculating it by putting 6 = ^ir in

Gregor3^"'s series.

HuttonlF, in 1776, and Euler**, in 1779, suggested the use of

• See Euler's paper in the Novi Commentarii Academiae Scientiarum,

St Petersburg, 1763, vol. viii, pp. 157—168.

t See the letter to Collins, dated Feb. 15, 1671, printed in the Coinmercium

EpistoUcum, London, 1712, p. 25, and in the Macclesfield Collection, Corre-

fpondence of Scientific Men of the Seventeenth Century^ Oxford, 1841, vol. ii.

p. 216.

X See Life of A. Sharp by W. Cudworth, London, 1889, p. 170. Sharp's

work is given in one of the preliminary discourses (p. 53 et seq.) prefixed to

H. Sherwin's Mathematical Tables. The tables were issued at London in 1705:

probably the discourses were issued at the same time, though the earliest copies

I have seen were printed in 1717.

§ W.Jones's Synopsis Pahnarionim, London, 1706, p. 243; and Maseres,

Scriptores Logarithmici, London, 1796, vol. iii, pp. vii—ix, 155—164.

il
Histoire de VAcad€mie for 1719, Paris, 1721, p. 144.

H Philosophical Transactions ^ 1776, vol. lxvi, pp. 476—492.

•* Nova Acta Academiae Scientiarum Petropolitanae for 1793, St Petersburg,

1798, vol. XI, pp. 133—149: the memoir was read in 1779.
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the formula Jtt = tan~^ J + tan~^ i or Jtt = 5 tan"^ f + 2 tan~^ ^,
but neither carried the approximation as far as had been done

previously.

Vega, in 1789*, gave the value of tt to 143 places of

decimals (126 correct); and, in l794f, to 140 places (136

correct).

Towards the end of the eighteenth century Baron Zach saw

in the Radcliffe Library, Oxford, a manuscript by an unknown

author which gives the value of tt to 154 places of decimals

(152 coiTect).

In 1837, the result of a calculation of vr to 154 places of

decimals (152 correct) was published^.

In 1841 Rutherford§ calculated it to 208 places of decimals

(152 correct), using the formula J7r=4 tan~^ -J— tan~^ Y^^j^+tan"^ ^.

In 1844 Dase
||
calculated it to 205 places of decimals (200

correct), using the formula ^ir = tan~^ J + tan~^
-J
+ tan~^

J.

In 1847 Clausen IF carried the approximation to 250 places

of decimals (248 correct), calculating it independently by the

formulae ^tt = 2 tan~^ J + tan'^ f and ^tt = 4 tan"^ i - tan"^ gfg-

In 1853 Rutherford** carried his former approximation to

440 places of decimals (all correct), and William Shanks pro-

longed the approximation to 530 places. In the same year

Shanks published an approximation to 607 placesff : and in

1873 he carried the approximation to 707 places of decimals
JJ.

These were calculated from Machin's formula.

In 1853 Richter, presumably in ignorance of what had been

* Nova Acta Academiae Scientiarum Petropolitanae for 1790, St Petersburg,

1795, vol. IX, p. 41.

t Thesaurus Logarithmorum {logarithmisch-trigonometrischer Tafeln), Jjei^^zig,

1794, p. 633.

X J. F. Callet's Tables, etc., Precis Elenieataire, Paris, tirage, 1837. I have

not verified this reference.

§ Philosophical Transactions, 1841, p. 283.

II
Crelle's Journal, 1844, vol. xxvii, p. 198.

H Schumacher, Astronomische Nachrichten, vol. xxv, col. 207.

** Proceedings of the Royal Society, Jan. 20, 1853, vol. vi, pp. 273—275.

+t Contributions to Mathematics, W. Shanks, London, 1853, pp. 86—87.

XX Proceedings of the Royal Society, 1872-3, vol. xxi, p. 318; 1873-4, vol.

XXII, p. 45.
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done in England, found the value of tt to 333 places* of

decimals (330 correct) ; in 1854 he carried the approximation

to 400 places -f ; and in 1855 carried it to 500 placesj.

Of the series and formulae by which these approximations

have been calculated, those used by Machin and Dase are perhaps

the easiest to employ. Other series which converge rapidly

are the following:

TT^l 1 J_ K3 1

6~2"'"2"3.2=='^2.4'5.2^

an(

i
= 22 tan- ^ + 2 tan- ^^ - 5 tan- j^^ - 10 tan- ^-j^ ;

the latter of these is due to Mr Escott§.

As to those writers who believe that they have squared the

circle their number is legion and, in most cases, their ignorance

profound, but their attempts are not worth discussing here.

" Only prove to me that it is impossible," said one of them,

" and I will set about it immediately " ; and doubtless the

statement that the problem is insoluble has attracted much

attention to ic.

Among the geometrical ways of approximating to the truth

the following is one of the simplest. Inscribe in the given

circle a square, and to three times the diameter of the circle

add a fifth of a side of the square, the result will differ from

the circumference of the circle by less than one-seventeen-

thousandth part of it.

An approximate value of it has been obtained experimentally

by the theory of probability. On a plane a number of equi-

distant parallel straight lines, distance apart a, are ruled ; and

a stick of length I, which is less than a, is dropped on the

plane. The probability that it will fall so as to lie across one of

the lines is 2Z/7ra. If the experiment is repeated many hundreds

* GriinerVs Archiv, vol. xxi, p. 119.

t Ibid., vol. xxm, p. 476: the approximation given in vol. xxii, p. 473, is

correct only to 330 places.

X Ibid., vol. XXV, p. 472; and Elbinger Anzeigen, No. 85.

§ VIntermediaire des Mathtmaticiens, Paris, Dec. 1896, vol. in, p. 276.

B. R. 20
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of times, the ratio of the number of favourable cases to the

whole number of experiments will be very nearly equal to

this fraction: hence the value of tt can be found. In 1855

Mr A. Smith* of Aberdeen made 3204 trials, and deduced

7r = 3*1553. A pupil of Prof. De Morgan*, from 600 trials,

deduced TT = 3-137. In 1864 Captain Foxf made 1120 trials

with some additional precautions, and obtained as the mean

value TT = 3-1419.

Other similar methods of approximating to the value of tt

have been indicated. For instance, it is known that if two

numbers are written down at random, the probability that

they will be prime to each other is 6/7r^ Thus, in one case:^

where each of 50 students wrote down 5 pairs of numbers at

random, 154 of the pairs were found to consist of numbers prime

to each other. This gives QJir^ = 154/250, from which we get

7r = 312.

* A. De Morgan, Budget of Paradoxes, London, 1872, pp. 171, 172 [quoted

from an article by De Morgan published in 1861].

t Messenger of Mathematics, Cambridge, 1873, vol. ii, pp. 113, 114.

X Note on w by R. Chartres, Philosophical Magazine, London, series 6,

vol. XXXIX, March, 1904, p. 315.
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CHAPTER XIII.

THE PARALLEL POSTULATE.

In the last chapter I considered three classical problems.

Another geometrical question, perhaps of greater interest, is

concerned with whether the sum of the angles of a plane

triangle is exactly equal to two right angles. This is a propo-

sition which in ordinary textbooks on elementary geometry is

enunciated—and properly so—as if it were undoubtedly true.

In one sense this theorem, like the problems discussed in

the last chapter, or like the algebraic solution of the general

equation of the fifth degree, is insoluble; but the efforts to

prove it aftbrd materials for an interesting chapter in the

history of mathematics, since many of the demonstrations

formerly proposed are fallacious. The fact however that in

the reasoning there are pitfalls, logical as well as mathe-

matical, adds to the interest of the discussion, and the

treacherous nature of the path makes its safe passage the

more interesting*.

* The subject has been discussed by numerous writers. A good account of

it to the end of the 18th century is given in the notes to J. Playfair's Elements

of Geometry, Edinburgh, Ist edition, 1813, and in the Appendix to Geometry

without Axioms by T. P. Thompson, London, 4th edition, 1833. For other and

more recent researches, see H. Schotten, Flanim^trischen Unterrichts, vol. ii,

Leipzig, 1893 ; F. Engel and P. Stackel, Die Theorie der Parallellinien, Leipzig,

1895, 1899; J. Richard, La Philosophie des Mathematiques, Paris, 1903;

J. W. Withers, Euclid's Parallel Postulate, Chicago, 1905; M. Simon, Veher

die Entwicklang der Elementar-geometrie, Leipzig, 1906. Some of the solutions

offered have no interest, and are evidently fallacious. Hence I make no
attempt to treat the subject exhaustively, but I mention the more plausible

eli'orts.

20—2
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Earliest Proof. Thales. We know from Geminus that this

proposition was one of the first general results discovered by

the Greeks*. From the extant notices the following has been

suggested, with considerable probability, as indicating the

manner in which it was proved ; at any rate this demonstration

involves nothing with which Thales, the traditional founder of

the science of abstract geometry, was not acquainted, and it

has been conjectured that it is in fact due to him. According

to this view, it was, in the first place, stated (or more likely

assumed) that in a rectangle the angles were right angles and

the opposite sides equal. Hence the sum of the four angles is

equal to four right angles. Next, by drawing a diagonal of

a rectangle, it will be seen that any right-angled triangle can

be placed in juxtaposition with an equal and similar triangle

in such a way as to make up a rectangle: this step in the

argument may have been suggested by the tiles used in paving

floors. Hence the sum of the angles of a right-angled triangle

is equal to two right angles. Lastly, any triangle ABC can

be divided into two right-angled triangles by drawing a per-

pendicular AD from the biggest angle A to the opposite side

BG. The sum of the angles of the triangle ABB is equal to

two right angles. Hence the sum of the angles B and BAD is

equal to one right angle. Similarly the sum of the angles C
and CAD is equal to one right angle. Hence the sum of the

angles B, G, BAD, and CAD, that is, the sum of the angles of

the original triangle ABC, is equal to two right angles.

The only criticism I would make on this proof is that it

rests frankly on the assumption that we can construct a rect-

angle, and that the opposite sides of the rectangle are equal.

This, unless we refer to direct observation or measurement,

involves an assumption about parallel lines, which is equivalent

to that made in Euclid's postulate.

Pascal's Proof. Another proof, also resting immediately

on experiment, to which I may here refer, was discovered

by Pascal in the seventeenth century. It is interesting

* G. J. Allman, Greek Geometry Jrom Thales to Euclid, Dublin, 1889,

chap. i.
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from its history. Pascal was a delicate and precocious boy,

and in order to ensure his not being over-worked his father

directed that his education should at first be only linguistic

and literary, and should not include any mathematics. Natur-

ally this excited the boy's curiosity, and one day, being about

twelve years old, he asked in what geometry consisted. His

tutor replied that it was the science of constructing exact

figures and determining the relations between their parts.

Pascal, stimulated no doubt by the injunction against reading

it, gave up his playtime to the new amusement, and in a few

weeks had discovered for himself several properties of recti-

linear figures, and in particular the proposition in question.

His proof is said* to have consisted in taking a triangular

piece of paper and turning over the angular points to meet at

the foot of the perpendicular drawn from the biggest angle to

the opposite side. The conclusion is obvious from a figure, for

if the paper be creased so that A is turned over to D, as also

B and C, we get B = FDB, A=FDE, and C = EDC\ hence

A + B^-C = EDF -h FDB + EDG = it. But we can only prove

these relations on the assumption that when the paper is folded

over BF and ^F will lie along DF, and thus that BF= FA = FB,

and similarly that CE = EA = ED ; this assumption involves

properties of parallel lines. A similar proof can be obtained

by turning over the angular points to meet at the centre of

the inscribed circle, and according to some accounts this was

the method used by Pascal. I may add in passing that his

father, struck by this evidence of Pascal's geometrical ability,

* I believe that this rests merely on tradition.
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gave him a copy of Euclid's Elements, and allowed him to take

up the subject for which evidently he had a natural aptitude.

Pythagorean and Euclidean Proof. Leaving the above

demonstrations which rest on observation and experiment, I

proceed to the classical proof given by Euclid*. This was

taken from the Pythagoreans t, and is generally attributed to

Pythagoras himself The proof rests on properties of parallel

lines, and the Pythagoreans must have prefaced it by some

statement of those properties, but there is now no record as

to how they treated parallels.

Euclid's treatment of parallels is well known. There is no

doubt that he put, at the beginning of his Geometry, certain

definitions, axioms, and postulates ; but in the earliest manu-

scripts, according to Pe3Tard, the assumption about parallels

was not stated there, but was placed in the demonstration of his

proposition 29 as a fact conformable to experience, which had

to be assumed for the validity of the argument. If this be so,

this exceptional treatment seems to indicate that, in Euclid's

opinion, the assumption was of a different character to the

other postulates, and the difficulty was faced frankly without

any attempt to conceal it under a vague phraseology. Unluckily

the postulate is often printed in modern school books as an

axiom or a self-evident statement. This misplacement may

have been due in the first instance to Theon of Alexandria

who, about 370 a.d., lectured on Euclid's Geometry. Our

modern texts of Euclid are mainly based on Theon 's lectures,

and it is only comparatively recently that the commentaries on

Euclid's teaching have been subjected to critical discussion.

At any rate Euclid, either at the commencement of his

work or more likely in the course of his demonstration, boldly

assumed that if a straight line meets two other straight lines

so as to make the sum of the two interior angles on one side

of it less than two right angles, then these straight lines if

continually produced will meet upon that side on which these

* Euclid's Elements, book i, prop. 32.

t Eudemus is our authority for this ; see Proclus, ed. G. Friedlein, Leipzig,

1873, p. 379.
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angles are situated. Accepting this or some similar assumption,

the demonstration is rigorous, and was given by him as follows.

Take any triangle ABC. Produce the side BA to any distance

AH, and through A draw a line AK parallel to BC. On the

assumption that his postulate is true, Euclid showed (Euc. I. 29)

that the angle ABC must be equal to the angle HAK, and the

angle ACB to the angle KAC. Hence the sum of the three

angles of the triangle ABC must be equal to the sum of the

angles HAK, KAC, and CAB, that is, to two right angles.

Euclid's postulate and this theorem mutually involve the

one the other: if we can prove his postulate this theorem

is true, if otherwise we can prove this theorem, then his

postulate is true*. Hence the question with which I com-

menced the chapter (namely whether the sum of the angles

of a triangle is, and can be shown to be, equal to two right

angles) comes in effect to asking whether Euclid's postulate is

true and can be proved to be true.

Features of the Problem. The postulate, as enunciated

by Euclid, has the semblance of a proposition. For many
centuries mathematicians believed that it could be directly

deduced from the fundamental principles of geometry, and they

devoted much labour to trying to prove it. The more notable

of these attempts I propose to describe, but I may anticipate

matters by saying that about a hundred years ago it was shown

* The demonstration is given by J. Richard, La Philosophie des Mathema-
tiques, Paris, 1903, pp. 81—84.
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that this postulate, or any of its equivalent forms, cannot be

proved. Thus in every one of the proposed demonstrations

there is either a fallacy, or some assumption similar to that

made by Euclid.

In order to be able to appreciate the criticisms on some of

these attempts it will be convenient to preface the discussion

by saying that the postulate and its conclusions do in fact

involve considerations of the nature of the space considered.

For example, we say that we can draw a line parallel to a

given line, and that however far the lines are produced they

will not meet. This is not at variance with what we observe,

but we have never got to infinity to see what does happen

there. Hence, though it is conformable to our experience we

cannot say that it is actually true. In fact, it is not certain

that the statement is absolutely true of the space we know.

An example will show this. If small intelligent beings lived

on a strictly circumscribed portion of the surface of a sphere,

and evolved a geometry of figures drawn on that surface,

they might form a body of propositions similar to those given

by Euclid, and resting on the same axioms and assumptions.

All their assumptions, except this postulate and the axiom

about the impossibility of two straight lines enclosing a space,

would be correct. But if the sphere were large enough, and

they were confined to a comparatively small part of its surface,

they would not be able to find out that this postulate about

parallels was incorrect. Accordingly it would be not unreason-

able that they should believe it to be true, though in fact

it would be false.

What is here said of the surface of a sphere is by way of

illustration, but it indicates the possibility of the existence

of surfaces such that consistent systems of geometries, closely

resembling the Euclidean geometry, might be constructed

dealing with figures drawn thereon. This question is men-

tioned again later. The above remarks suffice, however, to

show that the postulate involves properties of the space in

which the figures are constructed. It follows that the best

way of stating the postulate will be that which is directly
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characteristic of what we may call plane space, as opposed to

other kinds of space. Euclid's statement answers this purpose,

and it is remarkable that he should have thus gone to the root

of the matter. By implication he admitted that the statement

could not be demonstrated, and he frankly met the difficulty

by telling his hearers that though he could not prove it, they

must grant him the postulate as a foundation for his reasoning.

Attempted Deinonstrations of the Postulate. I proceed now
to describe a few of these attempts to prove the postulate or the

proposition.

Ptolemy s Proof of the Postulate. One of the earliest of

these efforts to prove the postulate was due to Ptolemy, the

astronomer, in the second century after Christ. It is as follows*.

Let the straight line EFGH meet the two straight lines AB and

CD so as to make the sum of the angles BFG and FGD equal to

two right angles. It is required to prove that AB and CD are

parallel. If possible let them not be parallel, then they will

meet when produced say at M (or N). But the angle AFG
is the supplement of BFG and is therefore equal to FGD.
Similarly the angle FGG is equal to BFG. Hence the sum
of the angles AFG and FGG is equal to two right angles, and

therefore the lines BA and DC, if produced, will meet at M
(or N). But two straight lines cannot enclose a space, therefore

AB and GD cannot meet when produced, that is they are

parallel.

E

Conversely, if AB and CD be parallel, then ^^and CG are

not less parallel than FB and GD ; and therefore whatever be

the sum of the angles AFG and FGC, such also must be the

* Procius, ed. G. Friedleiu, Leipzig, 1873, pp. C62—368.
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sum of the angles FGD and BFG. But the sum of the four

angles is equal to four right angles, and therefore the sum of

the angles BFG and FGD must be equal to two right angles.

This proof is not valid. Apart fix)m all considerations about

the nature of space, no reason is given why the sums of the

angles on either side of the secant should be assumed to be

equal. The whole question turns on whether the straight lines

would not meet, even thouo:h the sum of the ansfles on one side

is a little more than two right angles, and on the other a little

less. It is conceivable that parallels might open out as they are

prolonged, and thus that a straight line inclined at a small

angle to one of them should never overtake the other, but chase

it unsuccessfully through infinite space, just as a curve pursues

its asymptote and never catohes it.

Procluss Proof of the Postulate. Proclus, after criticising

Ptolemy's demonstration, gave a proof of his own, but in the

course of it he assumed that if two intersecting straight lines

be produced far enough the distance between a point on one of

them and the other line can be made greater than any assigned

finite length, and that if two parallel straight lines be produced

indefinitely the perpendicular from a point on one of them to

the other remains finite. On these assumptions the postulate

can be proved. But just as we cannot assume that two con-

verging lines {ex. gr. a curve and its asymptote) will ultimately

meet, so we must not assume that the distance between two

diverging lines will be ultimately infinite.

Wallis's Proof of the Postulate. I will give next a demonstra-

tion oftered hy J. Wallis, Sa\*ilian Professor of Geometry, in a

lecture deiiveicd at Oxlord on July 11, 1663. The substance of
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his argijment may be put thus*. It is desired to prove that if

two lines AB, CD meet a transversal HACK, so that the sum

of the angles BAC, ACD is less than two right angles, then AB
and CD must (if produced) meet. One of the angles BAC, ACD
must be acute; suppose it is BAC. He first showed that, in

this case, fi*om any point B in AB vi^e can draw a line BE
which will cut J.C in ^, so that the sum of the angles BEC,

ECD is equal to two right angles; hence the angle BEA is

equal to the angle DCA. Then if we take the triangle BAE
(drawn on J.^" as base and \v4th B as vertex) and construct

a similar triangle on J.C as base, he proved that its vertex

must be at a finite distance from AC, must lie on AB produced,

and must lie on CD (produced if necessary). Hence AB and

CD when produced must meet.

The proof is ingenious, but it rests on the assumption that

it is possible to construct a triangle on any specified scale

similar to a given triangle. This cannot be considered axiomatic

and in fact is not true of spherical triangles. The assumption,

however, is made explicitly, and it can be used instead of

Euclid's pc'stulate if it be thought desirable.

Bertrand's Proof of the Postulate. The following is another

interesting demonstration. It was originally given by Bertrand

HA B K

of Geneva "*•. Supp'>5e AX and BY are two lines which meet

a third line HABK so that XAB + YBA < tt. It is required

to show that AX and BY must cut. For simplicity, I draw

the figure so that XAB ^ir '2 and therefore YBA <'ir.2,

* J. Wallis, Opera, Oxford, 1693, vol. n, pp. 674—678.

t I do not know where ox when it was firs: published. It was given by

9. F. Lacroix in his ElemenU de Gionntrie, Paris, 1802, p. 23.
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but this does not affect the argument. Produce AB indefi-

nitely in both directions to H and K. Draw BZ perpen-

dicular to AB, and denote the angle YBZ by a. Then
the area between BY and BZ is the fraction w/tt of the

space round B above UK, that is, oc/tt of the area of the

plane above HK. Also the area between AX and BZ is the

fraction ABjHK of the plane above HK. Now, however small

a may be, w/tt is a definite finite fraction, but AB/HK is

indefinitely small. Hence the area between BY and BZ is

greater than the area between AX and BZ. But as long

as 5F does not cut AX the area between BY and BZ is less

than that between AX and BZ. Hence BY must cut AX.
The objection to this demonstration is that it depends upon

a comparison of infinite areas. But we have no test by which

we can compare such areas, and to consider the order of

infinities involves questions outside the region of elementary

geometry. There is also a more fundamental difficulty : the

argument assumes that space is infinite, but it is possible that

it may be boundless and finite, as, for instance, is the surface of

a sphere.

Play/airs Earlier Proof of the Postulate. I will mention

next an attempt to prove this postulate by assuming that two

lines which cut cannot be both parallel to another line, that is,

that through a point one and only one straight line can be

drawn parallel to a given straight line. It has been said that

this assumption is not axiomatic, for a reason similar to that

given above in my criticism of Ptolem3^'s Proof, but to most

readers it seems simpler than Euclid's postulate, and as its

meaning is easily grasped, some mathematicians prefer it to

Euclid's postulate. Like the latter it is characteristic of the

space considered. If this assumption is made, it is easy

to show* that a transversal meeting two parallel straight

lines makes the alternate angles equal, from which the other

conclusions of Euclid follow.

* Elements of Geometry, by J. Playfair, Edinburgh, 1st edition, 1813, book i.

prop 29. The book is in the same form as Euclid's Elements except for the

substitution of this postulate for that given by Euclid.
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Personally I agree with those who consider Playfliir's

assertion as axiomatic, that is, as being a part of our conception

of plane space as derived from experience. This is not in-

consistent with admitting that mathematicians can conceive

a more general view of space {i.e. non-Euclidean space) and

that to them the space of our experience is only, to the highest

degree of approximation, Euclidean space*. But many writers

do not accept Playfair's assertion as axiomatic. On such an

issue no argument is possible.

Attempted Direct Demonstrations of the Proposition. The
difficulties connected with the subject of parallelism led to

various attempts to prove the proposition directly and thence

to deduce some property of parallelism equivalent to Euclid's

postulate. Substantially this was the method used by Thales

and Pascal. I will mention one or two of these attempts.

Playfair s Rotational Proof of the Proposition. First I will

describe an attempt, given by Playfair f in 1813. His argument

is as follows. An angle is measured by the amount of turning

H

of a vector. Let ABC be any triangle. Suppose we have

a rod A L placed along AB with one end dX A. If we rotate

it clockwise round ^ as a pivot through the angle BAO it

will move from AL to AK. It will make no difference if we

now slide the rod along AK ^o that the end moves from A
* See A. Cayley, British Association Report, London, 1883, p. 9.

t See the notes appended to J. Playfair's Elements of Geometry, p. 432 in

the fifth edition. Playfair finds the sum of the exterior angles and thence

deduces the sum of the interior angles, but the method is the same as that

given above.
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to G. If we now turn the rod, in the same direction as before,

round (7 as a pivot through the angle ACB it will move from

CK to GH. It will make no difference if we now slide it back

along GB so that the end moves from G to B. If we now turn

the rod, again in the same direction, round ^ as a pivot through

the angle GBA it will move from BH to BA. We can then

again slide the rod along BA so that the end B moves to A,

when the rod will lie along AU, Thus the rotation, always in

the same direction, successively through the three angles of the

triangle produces exactly the same effect as a rotation through

two right angles.

The demonstration is incorrect. In fact it is assumed that

if the angle ABG in the figure above on page 311 is equal to

HAK, then BG and AK will be parallel. The fallacy can be

seen at once by applying the argument to the case of a spherical

triangle or to one whose sides are circular arcs all convex—or

all concave—to its median point.

Legendres First Proof of the Proposition. Legendre devoted

special attention to the problem and offered various demonstra-

tions of it. I give three of them. In one, which appears in the

earlier editions of his Geometry, he tried to show that the sum

of the angles of a triangle could not be greater than two right

angles and could not be less than two right angles, and that

therefore it must be equal to two right angles. His demonstra-

tion assumes that if any number of equal triangles are placed

in juxtaposition along a line it is possible to draw a triangle

enclosing them all: the same assumption was made by T. P.

Thompson. But unless we assume that space is infinite this

is not justified : the insufficiency of the argument is clearly

brought out by applying it to spherical triangles.

Legendres Analytical Proof of the Proposition. I think

however that the following is the most ingenious of the proofs

given by Legendre*. A triangle ABG is completely deter-

mined by one side and two angles, say, a, B, G. Given these,

the triangle can be constructed, and therefore the angle A de-

termined. Now if the unit of length be changed the measure

• Elements de Geometrie, Paris, 12th edition, p. 281.
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of a will be changed but the triangle, and therefore A, will

not be altered. Hence A cannot depend on the value of a;

accordingly it must depend only on B and (7,

Now take a right-angled triangle DEF, of which D is the

right angle. Draw DG perpendicular to EF. The angle EDG
in the triangle EBG is calculated from the other two angles of

that triangle, namely E and a right angle, in the same way

as the angle F in the triangle DEF is calculated from the

other two angles of that triangle, namely E and a right angle.

Hence F is equal to EDG. Similarly E is equal to GDF.
Therefore the sum of the angles F and E is equal to the sum of

EDG and GDF, and therefore is a right angle. Hence the sum

of the angles F, E, and D of the triangle DEF is equal to two

right angles. Thus the result is proved for a right-angled

triangle, and it will follow for any other triangle in the same

way as in Thales's proof.

J. Leslie criticised this proof on the ground that in the

corresponding theorem of Spherical Trigonometry, we know
that the expression for the value of the angle A involves ajR,

where R is the radius of the sphere, and it is conceivable that

in plane geometry there might be a length R' (the reciprocal of

the space constant) which entered in a similar way in the

problem : hence A might involve a and yet not change with the

unit of measurement. To this it was replied that the point of

Legendre's argument was that the discussion related only to

plane geometry : this might, no doubt, be considered as the

special case of spherical geometry in which R was inJ&nite ; if

so, any term in the expression for A which involved ajR
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disappeared, and thus his reasoning was valid ; and to introduce

an unknown quantity R' was contrary to all canons of reasoning.

Legendre's Latest Proof of the Proposition. At the end of

his life, 1833, Legendre showed* that if we could construct one

triangle the sum of whose angles was equal to two right angles,

then the sum of the angles of every triangle would be equal to

two right angles. All attempts to obtain direct proofs that such

a triangle existed failed. He showed, however, that if the sum
of the angles of a triangle is not equal to two right angles then

linear magnitudes can be determined by angular measurements.

Assuming that this latter result is impossible, the proposition is

proved. The second part of the argument is in effect a translation

into geometry of the analytical proof given above.

Lagranges Memoir. Legendre's great contemporary, La-

grange, believed at one time that he had found a solution

of the problem. It rested on establishing plane geometry by

a generalization from geometry on a spherical surface. He
commenced to read to the Institute a paper on the subject,

but had hardly begun when he stopped abruptly, put his

memoir in his pocket and saying " Gentlemen, I must think

further about this," left the room. We do not know what his

argument was, but doubtless some flaw in it flashed on him as

he commenced his paper f.

Other Parallel Postulates. Euclid's postulate is in accord-

ance with experience, and like the axioms and other postulates

it rests ultimately on the results of observation, but his

statement of the property in question is not easy, and it

requires some thought before the point is grasped. For this

reason many attempts have been made to put it in other forms

which are more likely to be readily granted by an ordinary

reader. I enumerate two or three of these.

It will be noticed that the demonstration offered by Wallis

and the earlier one given by Playfair rest on alternative

postulates about parallels. That assumed by Wallis is sufficient,

* Memoires de Vlnstitut de France, Paris, 1833, vol. xii, pp. 367—410. The

paper also contains an account of Legendre's earlier investigations.

t A. de Morgan, Budget of Paradoxes^ London, 1872, p. 173.
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but is not axiomatic, as may be seen by its incorrectness when
applied to spherical triangles. It was adopted by Carnot,

Laplace, and J. Delboeuf. Playfair's axiom answers the purpose

as well as Euclid's : this form was also used by Ludlam. Thales's

assumption that a rectangle exists also suffices. This was

assumed bv Clairaut.

It has been suggested that Euclid's postulate might be re-

placed by assuming that, if at a point ^ in a given line AB
a line AX he drawn perpendicular to it, and at another point

jB in AB s. line BY be drawn, making with it an acute angle,

then AX and BY will cut. But essentially this is only Euclid's

form expressed diagrammatically.

Another alternative form which has been suggested is to

the effect that through every point within an angle a line can

be drawn intersecting both sides (substantially the view of

Lorentz and Legendre). This also is sufficient, but the appli-

cation is less easy than that of Euclid's postulate.

It has also been proposed that we may reasonably assume

that the distance between two parallel lines is always the same

(Durer, T. Simpson, R. Simpson), or that a line which is every-

where equidistant from a given straight line in the same plane

is itself straight (Clavius). Neither of these forms is satisfactory.

The conception of distance involves measurement, and this in

turn involves a theory of incommensurable magnitudes. Thus

before we can rest the theory on such a postulate, other as-

sumptions have to be made, and the resulting discussion is

neither simple nor clear.

Legendre suggested that it was sufficient to assume that

the lesser of two homogeneous magnitudes if multiplied by a

sufficiently large number would exceed the greater of them.

But to make use of this he had to introduce the assumptions

and principles of the infinitesimal calculus, and this can hardly

be regarded as permissible in elementary geometry.

A different kind of postulate was suggested by Dodgson,

who proposed* to replace Euclid's postulate by assuming that

2^ times the area of an equilateral four-sided figure inscribed

• C. L. Dodgsou, Curiosa Mathematica, London, 1890, p. 35.

B. R. 21
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in a circle is greater than the area of any one of the segments

of the circle which lies outside it, where n is any positive

integer. Granting that we can inscribe such a figure in a

circle, this assumption seems obviously true. But a comparison

by the eye of the area of a rectilineal figure with an incom-

mensurable area bounded by a curve and a straight line is

contrary to all the traditions of classical geometry and to what

is usually regarded as permissible in elementary geometry.

Definitions of Parallels, Other writers have tried to turn

the difficulty by altering the definitions of parallel lines*. One

of the best known suggestions made with this object defines

parallel lines as lines which have the same direction, by which

is meant lines which make the same angle with a line cutting

them (Varignon, Bezout, Lacroix). The phrasings of the proposed

definition vary slightly. There is no objection to this if the

cutting line is fixed, but then it does not avoid the necessity

of our having to assume some postulate. If, however, as is

usual, the definition is taken to mean that parallel lines make

equal angles with every secant, it involves an unwarrantable

assumption. In fact it would seem that the term direction

cannot be defined without predicating a theory or properties

of parallels f.

Another suggested definition which has met with some

favour is to the effect that parallel lines are lines which neither

recede from nor approach each other, that is, lines whose

distance apart is always the same (Wolf, Boscovich, Bonnycastle).

This definition is really equivalent to the postulates laid down

by Diirer and Clavius, and to give a definition which involves

a disputed assumption is worse than fi^ankly postulating the

assumption. The definition, however, agrees with the popular

view, but if we take a straight line, and erect at every point

a perpendicular of given length, we have no right to assume

that the locus of the extremities of these transverses will be

a straight line, and even less right to assume that it is a

* See J. Playfair, Elements of Geometry, Edinburgh, 1813; notes to book i,

prop. 29.

f W. Killing, Grundlagen der Geome'rie^ Paderborn, 1898.
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straight line perpendicular to them ; and, unless we assume

that the distance between the parallel lines is measured by a

transverse pei'pendicular to both of them, we cannot use the

definition to much purpose. D'Alembert avoided these diffi-

culties by saying that one line is parallel to another if it

contains two points on the same side of and equidistant from the

other ; but this by itself is of no use, unless we assume Euclid's

postulate or some smiilar property of parallels.

These definitions, if they are to be useful, involve assump-

tions. They slur over the real difficulty, and are less

satisfactory than a frank statement of what is assumed.

Non-Euclidean Systems*, It had long been well known that

the postulate and proposition were not true in the corresponding

geometry on a spherical surface—in fact the sum of the angles of

a spherical triangle always exceeds two right angles—and since

there were such difficulties in establishing the Euclidean postu-

late in plane space, mathematicians began, rather more than a

century ago, to consider whether that postulate was true either

necessarily or in fact. It required courage, even genius, to make

such a conjecture, for though on the one hand the postulate

could not be proved, there was on the other no reason to doubt

its correctness, and no conclusion inconsistent with observation

had been deduced from it, while at first sight nothing seemed

to justify the assumption that it was not true.

Saccheri and Lambert raised this question in the eight-

eenth century, but their investigations, though intelligent,

were incomplete and attracted little attention. Gauss went

further, as appears from his correspondence in 1829 and 1831,

but even before then he had shown that the proposition and

postulate could be proved to be true if it were admitted that a

triangle could be drawn with an area greater than a given area;

this, however, he rightly regarded as non-axiomatic. Later he

discussed some of the properties of hyperbolic geometry. He
did not publish his results, and they did not affect the treat-

ment of the problem by other writers.

* See R. Bonola, La Geometria Non-Eiiclidea, Bologna, 190G ; and D. M. Y.

Somerville, Bibliography of Non-Euclidean Geometry, St Andrews, 1911.

21—2
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The credit of first showing that the postulate is not neces-

sarily true is due to Lobatschewsky and the Bolyais. They

boldly assumed that the postulate was not true and that

through a point a number of straight lines can be drawn

parallel to a given straight line. On this assumption, they

deduced a consistent body of propositions, which is termed

hyperbolic geometry.

These investigations attracted but slight notice. The writers

were almost unknown. N. I. Lobatschewsky, 1793—1856, was

professor at Kasan, and his works were written in Russian.

Wolfgang Bolyai, 1776—1856, was an eccentric, simple, rough-

clad teacher in Transylvania. He now lies buried at his request

under an apple tree, commemorating the three apples which,

he said, had so profoundly affected the history of the human

race—those of Eve and Paris, which had made earth a hell, and

that of Newton which had raised earth again into the company

of the heavenly bodies. His son John, 1802—1860, had

excellent mathematical abilities, and worked out the principles

of the new geometry, but he spent his life soldiering, and to

him mathematics was only a recreation. Probably he valued

his reputation as a musician far above his mathematical abili-

ties. He was noted for his fiery temper ; in one of his quarrels

he accepted the challenge of thirteen officers of a regiment on

condition that after each duel he might play to each of them

a piece on his violin. He is said to have vanquished them all,

and been, in consequence, retired from the army.

The subject, however, was "in the air," and attracted the

attention of G. F. B. Riemann. Riemann was one of the most

brilliant German mathematicians of the nineteenth century and,

though short-lived, his writings have profoundly affected the

development of the subject. His paper on the hypotheses on

which geometry is founded was read in 1854. He showed that

a consistent system of geometry of two dimensions can be con-

structed in which all straight lines are of a finite length. This

science, now known as elliptic geometry, is characterised by the

fact that through a point no straight line can be drawn which

if produced far enough will not meet every other line. The
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resulting geometry may be compared with the geometry of

figures drawn on the surface of a sphere ; in it, space, though

boundless, is finite. The discussion of Riemann's paper led to

the discovery of the earlier researches of Lobatschewsky and the

Bolyais. The subject has since been studied by several mathe-

maticians of repute, notably by E. Beltrami and F. C. Klein.

Here then we have three geometries—Elliptic, Euclidean

(or Parabolic or Homaloidal) and Hyperbolic—each consistent

on its own hypotheses, distinguished from one another according

9-s no straight line, or only one straight line, or a pencil of

straight lines can be drawn through a point parallel to a given

straight line.

In the parabolic and hyperbolic systems straight lines are

infinitely long : in the elliptic they are finite. In the hyperbolic

system there are no similar figures of unequal size ; the area

of a triangle can be deduced from the sum of its angles, which

is always less than two right angles ; there is a finite maximum
to the area of a triangle; and its angles can be made as small as

we like by making its sides sufficiently long. In the elliptic

system all straight lines, if produced, are of the same finite length;

any two lines intersect ; and the sum of the angles of a triangle

is always greater than two right angles. In the elliptic system

it is possible to get from one point to a point on the other side

of a plane without passing through the plane ; thus a watch-

dial moving face upwards continuously forward in a plane in

a straight line in the direction from the mark vi to the mark

XII will finally appear to a stationary observer with its face

downwards ; and if originally the mark III was to the right of

the observer it will finally be on his left-hand.

In spite of these and other peculiarities of hyperbolic and

elliptic geometries, it is impossible to prove by observation that

one of them is not true of the space in which we live. For in

measurements in each of these geometries we must have a unit

of distance ; and if we live in a space whose properties are

those of either of these geometries, and such that the greatest

distances with which we are acquainted {e.g. the distances of

the fixed stars) are immensely smaller than any unit natural
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to the system, then it may be impossible for our observations

to detect the discrepancies between these three geometries. It

might indeed be possible for us by observations of the paral-

laxes of stars to prove that the parabolic system and either the

hyperbolic or the elliptic system were false, but never can it be

proved by measurements that the Euclidean geometry is true.

Similar difficulties might arise in connection with excessively

minute quantities. In short, though the results of Euclidean

geometry are more exact than present experiments can verify

for finite things, such as those with which we have to deal, yet

for much larger things or much smaller things, or for parts of

space at present inaccessible to us, they may not be true. Even,

however, if our space is only approximately Euclidean, the

propositions of ordinary geometry are none the less true of

Euclidean space, though that may not be the space of our

experience.

I mention later, in Chapter xix, some other problems

connected with different kinds of space.
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CHAPTER XIV.

INSOLUBILITY OF THE ALGEBRAIC QUINTIC.

Another of the famous problems in the history of mathe-

matics, which long proved an ignis fatuus to mathematicians, is

the solution of the general algebraic equation of the fifth degree.

By a solution of an algebraic equation we mean the expression,

by a finite number of radicals and rational functions, of a root

of it in terms of its coefficients. The solution of an algebraic

quadratic equation presents but little difficulty. In the sixteenth

century, solutions of the general cubic and quartic equations

were obtained. It did not seem unnatural to suppose that by
similar analytic methods the solution of quintic equations, as also

those of a higher order, might be effected. This is now known
to be impossible, and I propose to give a brief sketch of the

reason why it is so. The proof rests on the fact that the

equations x^ = \ and oc^—l have no common complex root.

Quadratic, cubic and quartic equations can be solved by
various methods ; but, in effect, all of them reduce the solution

of the particular equation to the solution of one, called a

resolvant, of a lower order. These methods fail when applied

^o equations of an order higher than four. Lagrange was the

earliest writer to ask whether this was necessarily the case.

In 1770 and 1771 he published a critical examination of the

known solutions of quadratic, cubic and quartic equations, and

showed that such solutions were possible only because a function

of the roots of such equations could be formed which had a

smaller number of possible values than the order of the equation,

and this function was such that its value could be determined.
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For instance, take the quadratic equation x"^ -{ acc-\-h = 0.

It has two roots Xi and x.2. We can reduce the solution to

that of a simple equation because we can form a function of

^1 and X2 which has only one value, and this value can be deter-

mined. Such a value is y = (x^ - x^y, since (xi — x.^'^ = (x^ — Xif.

Moreover we have y = (xi — x^Y = (x^ + os^Y — 4}X^X2 — a^— 46.

Thus y is known. Hence the roots of the quadratic are given by

Xl "T X^ ^ Q/y

Xi X2 ^^ V2/*

Similarly, in the cubic equation x^ + ax^ ^hx + c==0, if

y = (^1 + ft>^2 + <w^^3)^ where co is one of the complex cube

roots of unity, then y is a function of the roots which has

only two values, namely (^1 + (0X2 + co^x^y, which may be also

written in the form (X2 + cox^ + (o'^x^y or (x^ + cox^ + co^x^y, and

(x2 + coxi + (o^Xsf, which may be also written in the form

(^3 + (0X2 + oy^x^y or (xi + (oXs + (o^Xzy. Let y and z denote these

two values, that is, y = (xi + (0X2 + (o^XsY, and z = (x2 •{• (oxi + co'^x.^y.

Then y-^z=-2ci'-^9ab-27c=A, say, and y2={a^-Sby=B, say.

Thus y and z are the roots of t^ — At + B — 0, an equation which

can be solved. And the roots of the cubic are determined by

X^ "T" X2 ~T~ X^ -— ~" Ctf

Xl + (0X2 + w^a^s = \/y,

WXi +X2+ CO'X^ = i^/z.

Again, in the quartic equation x* + ax^ + bx'^-\-cx-\-d~0, if

y = (xi — X2 + X3 — x^y, then 3/ is a function of the roots which has

only three values, namely, (xi— X2+ x^— x^y or (a?2 — ^1+^4 — ^3?,

(xi — X3 + x^ — X2y or {xs — Xx-\- X2 — ^4)^ and {x^ — x^-\r X2 — x.^^

or (^4 — Xi-\- Xs — x^f. If these values be denoted by y, z, and w,

we have y-^z-\-\i — Sa^ — 86 = ^, say, yz-\- zu-{-uy= 3a* - 16a-6

+ 166" + 166c - 64(^ = -B, say, and yzu = (a^ - 4a6 + 86)- = G, say.

Hence y, ^r, u are the roots of the equation P — At^ \- Bt -^ C= 0.

And the roots of the quartic are determined by

Xy-^- X2-\- x^-\- x^ = — a,

a^i - ^2 + ^3 - ^4 = "^y*

Xi-X2 — x-i-\-x^ = V^,

Xi-]-X2 — X-^ — Xi= VUc
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Lagrange showed that for an equation of the ??th degree, an

analogous function y of the roots could be formed which had

only n — 1 values, and which led to a resolvant of the degree

n — 1, but that the coefficients of this latter equation could not

be obtained without the previous solution of an equation of

the degree {n — 2) !. Hence the form assumed for y did not

provide a solution of a quintic or of an equation of a higher

degree. But though he suspected that the general quintic

and higher equations could not be solved algebraically, he foiled

to prove it. The subject was next taken up by P. Ruffini,

1798—1806, but his analysis lacked precision.

The earliest rigorous demonstration that quintic and higher

equations cannot be solved in general terms was given by

N. H. Abel in 1824, and published in Crelles Journal in 1826.

The result was interesting, not only in itself, but as definitely

limiting a field of investigation which had attracted many

workers. Abel's proof was simplified by E. Galois* in 1831,

and is now accessible in various text-books. Essentially the

argument is as follows.

Let rci, Xr,, x^, ... Xn be the roots of the equation

f{x) = x^-\-ax"-^+...+k = 0.

Any one of these roots, ajj, is a function (which will generally

involve radicals) of the coefficients a, b, .... These coefficients

are symmetrical functions of the roots, namely, a = Xx^,

h = 'ZxiX2, .... If these values of a, h, ... be substituted in

the expression for x^ we get, on simplification, an identity.

If we interchange Xi and x.^, or any pair of roots, this will

remain an identity. Similarly it will remain an identity, if

we permute cyclically an odd number of roots, since such a

permutation is equivalent to an interchange of a number of

pairs of roots. For instance, if Xi and x.2 are the roots of the

quadratic equation a^-{-ax-{-b = 0, we have

o^i=h[-a + V{a2 - 46}]

= i [(x^ + x^) + V{(^i + ^2)' - ^J^i^^a}]

= i [(^1 + ^2) + (^1 - ^2)].

* See Liouville's Journal, Paris, 1846, vol. xi, pp. 417—433.
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This is an identity, and if we interchange x^ and x.^ it will

remain an identity.

Now suppose that we have a solution of the equation, that

is, an expression for oc^ in terms of the coefficients, involving

only a finite number of radicals and rational functions. This

expression may be a sum of a number of quantities. To fix

our ideas let us suppose that in one of these quantities we

come first, in the order of operations, to a radical, say, the 2?th

root of H, where we may without loss of generality take p as

prime. Of course H is rational: it involves a, 6, c, ..., and

therefore is a symmetrical function of x^, X2, .... Thepth root

ofH also will be rational, but it will not be symmetrical : let us

denote it by (f){xi, x^, ... Xn). For instance, in the quadratic

equation H=a' — 4:h = {xi + x.,)"^ — 4^1^72, which is a rational and

symmetrical function of x^ and x^. But i\/H = <j) = Xi — x.2, which

is not symmetrical, though it is rational.

In the general case (j> is rational but not S}Tnmetrical. It

involves the two roots, Xi and X2, and therefore it must change

in value if they are interchanged. Further, since the values

of (j) are determined by ^^ = H, and H does not vary when the

roots are interchanged, one of the values of
(f>
must be deducible

from the other by multiplying it by co, where w is a pih root

(other than unity) of unity, that is.

For instance, in the quadratic equation x- + ax-hh = 0, we

observe that, if in </)(^i, Xo), that is, in iCi — a-o, we interchange

a?i and a^g, we necessarily get ^{x.2, x^ — — <\i{x^, x^ since the

two values of <^ are roots of (j>^ = H, where H is invariable.

Hence if one is + »JH, the other must be + ^/H

The relation thus reached,

(p \X2, Xif X2, . ..^ = 0)Cp \Xif X2, X^y . . .Jf

is an identity; hence if we interchange Xi and Xr,, we have

(j>(Xi, X2, Xs, ...) = 0X^(572, a^i, Xs, ...).

Hence &)*=!. And as co^l, we have a) = — 1. Since &)- = !,

we have p = 2: this shows that in the expression for a root of
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an equation the first radical which occurs in the order of opera-

tions must be of the second degree.

In the case of a quadratic equation this concludes the dis-

cussion, for there are only two roots which can be interchanged.

We may note that if it were possible to take the value &> = 1, it

would at once give x._, = x^, which, in the general case, is clearly

impossible.

We proceed to the case of a cubic or higher equation. We
will first suppose that in the expression for x^ we substitute the

above value of (/>, and combine it and similar square roots with

the various rational functions of the coefficients, a, 6, .... As

long as we only introduce such square roots we obtain a function

of the roots, say K, susceptible of taking only two values, and

therefore invariable when three (or any odd number) of the roots

are permuted cyclically. This cannot lead to the determination

of three or more roots. Hence we must, in this process of

reduction and simplification, arrive, in the expression for a^i,

at a radical, say the 5th root of /i, of a higher order than

a square root. In this expression K will be invariable

when three (or any odd number) of the roots are permuted

cyclically.

We can express the 9th root of -ST as a rational function of

the roots "^{xi.x^, ... a?„), and, from the nature of the case, "^

takes different values when three roots are permuted cyclically.

The values of y^ are roots of -v/r? = K. Accordingly, following

the same argument as that given above, we have

Y \X2, X^y Xij ... Xji) = CO
'Y' {^Xif X^f X-^, ... Xn)y

where o) is a 5th root (other than unity) of unity. If we

permute x^, x.2, x^ cyclically, we have

T \'^3 J '^1 > ^) ^ii . .
.
) = O)Y' yXo , X^, Xiy X^, • '•)}

and -^ (xi, x^, x^, Xt, ...) = a)-v/r(a'3, x^, x^, x^, ...).

Hence co^ = 1. We have previously shown that the first radical

involved in the general expression for a root must be a square

root, and now we see that the next radical must be a cube root.

We observe that the solution usually given of a cubic confirms
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our analysis. The solution of the cubic a^ -\-bx + c = is

generally written as

x={- c/2 + sju]^ + {- c/2 - y/u\^,

where u = cV^ 4- h^/27. In each term of the expression for x

the first surd which occurs in the order of operations is a square

root and the next surd a cube root.

In the case of a cubic equation there are only three roots,

and we cannot continue the process further. So also we cannot

proceed further in the case of a quartic equation, for as we want

to permute an odd number of roots cyclically we cannot permute

more than three.

We proceed to the case of an equation of the fifth or higher

degree. We have already shown that in this case if, when we

substitute in the expression for x^ the value of (/> and similar

square roots, we arrive at a radical ^^K for which the equivalent

rational function yjr takes different values when an odd number

of the roots are permuted cyclically, it follows that if we per-

mute three roots cyclically we get co^ =1, where o) is a root

(other than unity) of w^ = 1. Hence q = S. Also if we permute

five roots cyclically, we obtain by a similar argument o)" = 1.

Thus q = 5. These equations for co and values of q are incon-

sistent. In fact the argument shows that the first surd which

has to be calculated in the general expression for Xi is a square

root, and the next surd is at the same time a complex cube

root of unity and a complex fifth root of unity. This is

impossible. Hence an equation of the fifth or higher degree

cannot be solved by a finite number of radicals and rational

functions of the coefficients.

It may be added that just as we can express the root of a

cubic equation in terms of trigonometrical functions, so we can

express the root of a quintic or sextic equation in terms of

elliptic or hyperelliptic functions. But such functions lie

outside the field of algebra.



333

CHAPTER XV.

mersenne's numbers.

One of the unsolved riddles of higher arithmetic, to which

I alluded in the second chapter, is the discovery of the method

by which Mersenne or his contemporaries determined values

of p which make a number of the form 2^ — 1 a prime. It is

convenient to describe such primes as Mersennes Numbers,

a name which I believe I introduced. In this chapter, for

shortness, I use N to denote a number of the form 2^ — 1. In

a memoir in the Messenger of Mathematics in 1891 I gave

a brief sketch of the history of the problem. I here repeat the

facts in somewhat more detail, and add some notes on methods

used in attacking the problem.

Mersenne's enunciation of the results associated with his

name is in the preface to his Cogitata*, The passage is as

follows

:

Vbi fuerit operae pretium aduertere xxvm numeros a Petro Bungo pro

perfectis exhibitos, capite xxviii, libri de Numeris, non esse omnes Perfectos,

quippe 20 sunt imperfect!, adeovt [adeunt?] solos octo perfectos habeat qui

sunt 6 regione tabulae Bungi, 1, 2, 3, 4, 8, 10, 12, et 29 : quique soli perfecti

sunt, vt qui Buugum habuerint, errori medicinam faciant.

Porr6 numeri perfecti adeo rari sunt, vt vndecim dumtaxat potueriut hac-

tenus inueniri: hoc est, alii tres a Bongianis differentes: neque enim vllus est

alius perfectus ab illis octo, nisi superes exponentem numerum 62, progressionis

duplae ab 1 incipientis. Nonus enim perfectus est potestas exponentis 68

minus 1. Decimus, potestas exponentis 128, minus 1. Vndecimua denique,

potestas 25^, minus 1, hoc est potestas 257, vnitate decurtata, multiplicata per

potestatem 256.

• Cogitata Physico-MatJiemaiica, Paris, 1644, Praefatio Generalis, article 19.
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Qui vndecim alios repererit, nouerit se analysim omnem, quae fuerit hacte-

nus, superasse: memineritque interea nullum esse perfectum a 17000 potestate

ad 32000; & nullum potestatum interuallum tantum assignari posse, quin detur

illud absque perfectis. Verbi gratia, si fuerit exponens 1050000, nullus erit

Humerus progressionis duplae vsque ad 2000000, qui perfectis numeris seruiat,

hoc est qui minor vnitate, primus existat.

Vnde clarum est quam rari sint perfecti numeri, <fc quam merito viris per-

fectis comparentur ; esseque vnam ex maximis totius Matheseos difficultatibus,

praescriptam numerorum perfectorum multitudiuum exhibere
; quemadmodum

<fc agnoscere num dati numeri 15, aut 20 caracteribus constantes, sint primi

necne, cum nequidem saeculum integrum huic examini, quocumque modo
hactenus cognito, sufi&ciat.

It is evident that, if p is not a prime, then N is composite,

and two or more of its factors can be written down by

inspection. Hence we may confine ourselves to prime values

of p. Mersenne, in effect, asserted that the only values of p,

not greater than 257, which make N a prime, are 1, 2, 3, 5, 7,

13, 17, 19, 31, 67, 127, 257: to these numbers 89 must be added.

I gave reasons, some years ago, for thinking that 67 here is

a misprint for 61, and I assume this is so. With these cor-

rections we have no reason to doubt the truth of the statement,

but it has not been definitely established.

There are 56 primes not greater than 257. The deter-

mination of the prime or composite character of N for the

9 cases when p is less than 20 presents no difficulty: in only

one of them is N composite. For 2 of the remaining 47 cases

(namely, when jo=23 and 37) the decomposition of N had

been given by Fermat. For 9 of them (namely, when p — 29,

43, 73, 83, 131, 179, 191, 239, 251) the factors of N were

given by Euler. He also proved that N was prime when

p = 31. Reuschle gave the factors ofN when p = 47, and Plana

the factors when p — 41. Landry and Le Lasseur discovered the

factors in 9 cases, namely, when p — 53, 59, 79, 97, 113, 151, 211,

223, and 233. Seelhoff showed that N was prime when p = 61,

Cunningham gave the factors when p = 71, 163, 173, and 197,

Cole the factors when p = 67, Woodall the factors when p = 181,

and Powers proved that iV was prime when p = 89. It has

been asserted that the prime character of N when p = 127 has

been established, but the proof has not been published or verified.
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Thus there are 16 values of p for which Mersenne's state-

ment still awaits verification. These are 101, 103, 107, 109,

127, 137, 139, 149, 157, 167, 193, 199, 227, 229, 241, 257.

For these values N is (according to Mersenne) prime when

j[) = 127 and 257, and is composite for the other values. If we

admit that the character of N is known when p=12l, the

number of cases yet to be verified is reduced to 15.

To put the matter in another way. According to Mersenne's

statement (corrected by the substitution of 61 for 67 and with the

addition of 89 to his list) 43 of the 56 primes less than 258 make

N composite and the remaining 13 primes make N prime. In 29

out of the 43 cases in which N is said to be composite we know

its factors, and in 14 cases the statement is still unverified. In

11 out of the 13 cases in wdiich it is said that N is prime the

statement has been verified, and in 2 cases it is still unverified.

From the w^ording of the last clause in the above quotation

it has been conjectured that the result had been communicated

to Mersenne, and that he published it without being aware of

how it was proved. In itself this seems probable. Pie was

a good mathematician, but not an exceptional genius. It would

be strange if he established a proposition which has baffled

Euler, Lagrange, Legendre, Gauss, Jacobi, and other mathe-

maticians of the first rank ; but if the proposition is due to

Fermat, wdth whom Mersenne was in constant corresjoondence,

the case is altered, and not only is the absence of a demon-

stration explained, but we cannot be sure that we have attacked

the problem on the best lines.

The known results as to the prime or composite character

of N, and in the latter case its smallest factor, are given in

the table on the next page. The cases that remain as yet

unverified are marked with an asterisk.

Before describing the methods used for attacking the

problem it will be convenient to state in more detail when
and by whom these results were established.

The factors (if any) of such values of N as are less than

a million can be verified easily: they have been known for

a lonoj time, and I need not allude to them in detail.
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TABLE OF MERSENNE'S NUMBERS.

1

2
3

5
7

11

13

17

19

23

29

31

37
41

43

47
53

59

61

87

71

73

79

83
89

97
101
103

107
109
113
127
131
137
139
149
151
157
163

167

173
179
181
191

193
197
199
211
223
227
229
233
239
241
251

357

Value of N=2r'-1
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The factors ofN when p = ll, 23, and 37 had been indicated

by Fermat*, some four years prior to the publication of

Mersenne's work, in a letter dated October 18, 1640. The

passage is as follows:

En la progression double, si d'un nombre quarr6, g^n^ralement parlant, vous

6tez 2 ou 8 ou 32 Ac, les nombres premiers moindres de I'uuite qu'un multiple

du quaternaire, qui mesureront le reste, feront I'effet requis. Comme de 25,

qui est un quarr6, otez 2; le reste 23 mesurera la 11* puissance ~1; otez 2 de

49, le reste 47 mesurera la 23« puissance - 1. Otez 2 de 225, le reste 223 mesu-

rera la 37° puissance - 1, &c.

Factors ofN when p = 29, 43, and 73 were given by Eulerf

in 1732 or 1733. The fact that N is composite for the values

p = 83, 131, 179, 191, 239, and 251 follows from a proposition

enunciated, at the same time, by Euler to the effect that,

if 4/1 + 3 and 8n + 7 are primes, then 2'^''+^ -1 = (mod. Sn + 7).

This was proved by Lagrange | in his classical memoir of 1775.

The proposition also covers the cases of ^ = 11 and p = 23.

This is the only general theorem on the subject which has been

yet established.

The fact that iV is prime when ^ = 31 w^as proved by Euler§

in 1771. Fermat had asserted, in the letter mentioned above,

that the only possible prime factors of 2^ + 1, when p was

prime, were of the form 7ip + 1, where n is an integer. This

was proved by Euler
||
in 1748, who added that, since 2^ ± 1 is

odd, every factor of it must be odd, and therefore if p is odd

n must be even. But if ^ is a given number we can define n

much more closely, and Euler showed that, if p = 31, the prime

factors (if any) ofN w^ere necessarily primes of the form 248?i +

1

or 248n + 63 ; also they must be less than ^JSf, that is, than

• Oeuvres de Fermat, Paris, vol. ii, 1894, p. 210; or Opera Blathematica,

Toulouse, 1679, p. 164; or Brassiune's Precis, Paris, 1853, p. 144.

f Commentarii Academiae Scientiarum Petropolitanae, 1738, vol. vi, p. 105;

or Commentationes Arithmeticae Collectae, vol. i, p. 2.

X Nouveaux Memoires de VAcademie des Sciences de Berlin, 1775, pp. 323

—

35G.

§ Histoire de VAcademie des Sciences for 1772, Berlin, 1774, p. 36. See also

Legendre, Thiorie des Nombres, third edition, Paris, 1830, vol. i, pp. 222—229.

II
Novi Commentarii Academiae Scientiarum Petropolltanae, vol. i, p. 20; or

Commentationes Arithmeticae Collectae, St Petersburg, 1849, vol. i, pp. 55, 56.

B. s. 22
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46339. Hence it is necessary to try only forty divisors to see

ifN is prime or composite.

The factors when p = 4>'7; the factor 1433 when p = l79,

and the factor 1913 when p = 239, were given by Reuschle

in 1856*.

The factors of iV when ^= 41 were given by Plana f in 1859.

He showed that the prime factors (if any) are primes of the

form 328n + l or 328w + 247, and lie between 1231 and ^/N,

that is, 1048573. Hence it is necessary to try only 513

divisors to see if N is composite: the seventeenth of these

divisors gives the required factors. This is the same method

of attacking the problem which w^as used by Euler in 1771,

but it would be laborious to employ it for values of p greater

than 41. Plana J added the forms of the prime divisors of iV, if

p is not greater than 101.

That N is prime when ^5 = 127 seems to have been verified

by Lucas § in 1876 and 1877. The demonstration has not been

published.

The discovery of factors of N for the values ^ = 53 and 59

is due apparently to F. Landry, who established theorems on

the factors (if any) of numbers of certain forms. He seems to

have communicated his results to Lucas, who quoted them in

the memoir cited below
||.

Factors of N when p = 79 and 113 were given first by

Le Lasseur, and were quoted by Lucas in the same

memoir||.

A factor of N when p — 233 was discovered later by Le

Lasseur, and was quoted by Lucas in 1882 IF.

* C. G. Eeuschle, Neue Zahlentheoretische Tdbellen, Stuttgart, 1856, pp. 21,

22, 42—53.

+ G. A. A. Plana, Memorie della Eeale Accademia delle Scienze di Torino,

Series 2, vol. xx, 1863, p. 130.

X Ibid., p. 137.

§ Su/' la Theorie des Nomhres Premiers, Turin, 1876, p. 11; and Becherches

sur les Ouvrages de Leonard de Pise, Rome, 1877, p. 26, quoted by A. J. C.

Cunningham, Proceedings of the London mathematical Society, Nov. 14, 1895,

vol. XXVII, p. 54.

II
American Journal of Mathematics, 1878, vol. i, pp. 234—238.

H Recreations, 1882-8, vol. i, p. 241.
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Factors of N when p = 97, 151, 211, and 223 were deter-

mined subsequently by Le Lasseur, and were quoted by Lucas*

in 1883.

That N is prime when ^ = G1 had been conjectured by

Landry and in 1886 a demonstration was offered by Seelhofff.

His demonstration is open to criticism, but the fact has been

verified by others J,
and may be accepted as proved.

Cunningham showed in 1895 § that 7487 is a factor

of N when p = 197: in 1908 1|
that 150287 is a fector of N

when p = 163; in 190911 that 228479 is a factor of N when

_p=7l; and in 1912** that 730753 is a factor of i\^ when J3=173.
The factors of iV when p=:7l were discussed independently by

Ramesam in 1912 ff.

That iV'is not prime when ^=67 seems to have been verified

by Lucas II in 1876 and 1877. The composite nature of N,

when p = 67, was confirmed by E. Fauquembergue§§, and was

also implied by Lucas in 1891. The fiactors were given by

Cole|l|linl903.

A factor of N when 2^= 181 was discovered by Woodall in

1911M.

Recreations, 1882-3, vol. n, p. 230.

t P. H. H. Seelhoff, ZeiUcUrift fur Mathematik und Physik, 1886, vol. xxxi,

p. 178.

X See Weber-Wellstein, Encyclopaedic der Elementar-Mathematik, p. 48;

and F. N. Cole, Bulletin of the American Mathematical Society, December,

1903, p. 136.

§ A. J. C, CunningTiam, Proceedings of the London Mathematical Society^

March 14, 1895, vol. xxvi, p. 261.

II
Ibid., April 30, 1908, vol. vi (2ad series), p. xxii.

% L'Intennediaire des Matheniaticiens, Paris, 1909, vol. xvi, p. 252.

** Proceedings of the London Mathematical Society, April 11, 1912, vol. xi,

p. xxiv.

tt Nature, London, March 28, 1912, vol. lxxxix, p. 87.

XX Sur la Theorie des Nombres Premiers, Turin, 1876, p. 11, quoted bj A. J. C.

Cunningham, Proceedings of the London Mathematical Society, Nov. 14, 1895,

vol. xxvii, p. 54, and Recherches sur les Ouvrages de Leonard de Pise, Rome,

1877, p. 26.

§§ L'Intermediaire des Matheniaticiens, Paris, Sept. 1894, vol. i, p. 148.

nil F. N. Cole, "On the Factoring of Large Numbers," Bulletin of the

American Mathematical Society, December, 1903, pp. 134—137.

nil H. J. Woodall, Nature, London, July 20, 1911, vol. lxxxvii, p. 73.

22—2
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That N is prime when ^ = 89 was proved by Powers in

1911*

Bickmore in the memoir i* cited below showed that 5737

is another factor of iV if p = 239. Cunningham has also shown

that 55871 is another factor of iV if ^ = 151, and that 54217 is

another factor of iV^ if^ = 251.

I turn next to consider the methods by which these results

can be obtained. It is impossible to believe that the statement

made by Mersenne rested on an empirical conjecture, but the

puzzle as to how it was discovered is still, after more than

250 years, unsolved.

I cannot offer any solution of the riddle. But it may be

interesting to indicate some ways which have been used in

attacking the problem. The object is to find a prime divisor

q (other than iV and 1) of a number N when N is of the form

2P — 1 and p is a prime.

I may observe that Lucas J showed that if we find the residue

(mod N) of each term of the series 4, 14, 194, ... -m^, constructed

according to the law Un+i = tin — 2, then N is prime if the first

residue which is zero lies between the (p— l)/2th and the ^th

residues. If an earlier residue is zero the theorem does not

help us, but if none of the p residues is zero, N is composite.

The application of the theorem to high numbers is so laborious

that for the cases still unverified we are driven to seek other

methods.

It can be easily shown that the prime divisor q must be of

the form 2pt + 1. Also q must be of one of the forms 8i ± 1

:

for N is of the form 2A^ — B\ where A is even and B odd,

hence § any factor of it must be of the form 2a^ — h\ that is, of

the form 8i ± 1, and 2 must be a quadratic residue of q.

The theory of residues is, however, of but little use in finding

* K. E. Powers, American Mathematical Monthly, November, 1911, vol. xvni,

pp. 195—197.

t C. E. Bickmore, Messenger of Mathematics, Cambridge, 1895, vol. xxv, p. 19.

:J:
American Journal of Mathematics, 1878, vol. i, p. 316.

§ Legendre, Theorie des Nomhres, third edition, Paris, 1830, vol. i, § 143.

In the case of Mersenne's numbers, B= h=l.
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factors of the cases that still await solution, though the possi-
bility some day of finding a complete series of solutions by
properties of residues must not be neglected*. Our present
knowledge of the means of factorizing iV has been summed up
in the statement f that a prime factor of the form 2pt-^l can
be found directly by rules due to Legendre, Gauss, and Jacobi,
when ^= 1, 3, 4, 8, or 12 ; and that a factor of the form 2ptt'-\-l

can be found indirectly by a method due to Bickmore when
^ = 1, 3, 4, 8, or 12, and t' is an odd integer greater than 3.

But this only indicates how little has yet been done towards
finding a general solution of the problem.

First. There is the simple but crude method of trying all

possible prime divisors q which are of the form 2pt-{-l as well
as of one of the forms 8i ±1.

The chief known results for the smaller factors may be
summarized by saying that a prime of this form, when t is odd,
will divide N when ^=1, if p=ll, 23, 83, 131, 179, 191, 239^
or 251

;
when t = 3, if^ = 37, 73, or 233 ; when t = 5,if p = 43

[

when t = 15, if ;? = 113; when ^ = 17, if p = 79; when ^=19'
ifp = 29, or 197; when t=25, if p = 47; when ^ = 41, if

p^22S; when t = 59,ifp = 97; when ^ = 163, if jt^ = 41 ; when
t = 461, if p = 163 ; when t = 1525, if p = 59 ; when t = 1609, if

i? = 71. Similarly for even values of t, a prime of this form will
divide N when « = 4, if ^ = 11, 29, 179, or 239; when i = 8,
if ^ = 11; when ^=12, if ;) = 239; when ^ = 36, if j9 = 29,'

or 211; when ^ = 60, if p = 53, or 151; when t=120, if

^ = 181; when j5 = 2112, if |)=173; and when i= 1445580 if

jo = 67.

Of the 29 cases in which we know that the statement of
the composite character of i\r is correct all save 7 can be easily
verified by trial in this way. For, neglecting all values of t not

* For methods of finding the residue indices of 2 see Bickmore, Messenger of
Mathematics, Cambridge, 1895, vol. xxv, pp. 15-21; see also A. J. C. Cunning-
ham on 2 as a 16-ic residue. Proceedings of the London Mathematical Society
1895-6, vol. xxvn, pp. 85-122; and on Haupt-exponents of 2, Quarterly Journal
0/ Pure and Applied Mathematics, Cambridge, 1906, vol. xxxvii, pp. 122—145.

t Transactions of the British Association for the Advaticemcnt of Science
(Ipswich Meeting), 1895, p. 614.
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exceeding, say, 60 which make q either composite or not of one

of the forms 8^ ± 1, we have in each case to try only a com-

paratively small number of divisors. Of the 7 other cases m
which Mersenne's statement of the composite character of N
has been verified, one verification (p = 41) is due to Plana, who

frankly confessed that the result was reached " par un heureux

hasard"; and a second is due to Landry (^5 = 59), who did not

explain how he obtained the factors. The third is due to Cole

(p = 67) who established it by the use of quadratic residues of

N, three others {p = 71, 163, and 173) are due to Cunningham

and one is due to Woodall. The last five verifications involved

laborious numerical work, and it is possible that the results

would have been obtained as easily by trial of prime divisors of

the form 2^^ + 1.

Of the 11 cases in which we know that the statement ol the

prime character of N is correct all save two (namely, when ^5=61

and p = 89) may be verified by trial in this way, for the number

of possible factors is not large.

Thus practically we may say that simple empirical trials

would at once lead us to all the conclusions known except m
the cases of 2^ = 41 due to Plana, of ^9 = 59 due to Landry, of

p = 61 due to Seelhoff, of p=67 due to Cole, of ;) = 71, 163,

and 173 due to Cunningham, of p = 181 due to Woodall, and of

;> = 89 due to Powers. In fact, save for these nine results the

conclusions of all mathematicians to date could be obtained by

anyone by a few hours' arithmetical work.

As p increases the number of factors to be tried increases

so fast that, if p is large, it would be practically impossible

to apply the test to obtain large factors. This is an important

point, for Colonel Cunningham has stated that in the cases

still awaiting verification there are no factors less than 1,000,000.

Hence, we may take it as reasonably certain that this cannot

have been the method by which the result was originally

obtained; nor, as here enunciated, is it likely to give many

factors not yet known. Of course it is possible there may be

ways by which the number of possible values of t might be

further limited, and if we could find them we might thus
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diminish the number of possible factors to be tried, but it will

be observed that the values of iV which still await verification

are very large, for instance, when ^ = 257, N contains no less

than 78 digits.

It is hardly necessary to add that if q is known and is not

very large we can determine whether or not it is a factor of N
without the labour of performing the division.

For instance, if we want to verify that q = 13367 is a

factor of N v/hen p = 41, we proceed thus. Take the power

of 2 nearest to q or to its square-root. We have, to the

modulus g,

2'^ =16384 = 3017 = 7x431,

,-. 2^^ =49 (-1377) = -638,

.-. 2=' =-319,

.-. 2"+^ = (3017) (-319) = !,

.-. 2" =1.

Second. We can proceed by reducing the problem to the

sdution of an indeterminate equation.

It is clear that we can obtain a factor ofN if we can express

it is the difference of the squares, or more generally of the Tith

povers, of two integers ii and v. Further, if we can express

a nultiple of N, say mN, in this form, we can find a factor of

mJS and (with certain obvious limitations as to the value of ?/i)

ihit will lead to a factor of N. It may be also added that if m
canbe found so that N/m is expressible as a continued fraction

of a3ertain form, a certain continuant* defined by the form of

the continued fraction is a factor of N.

Snce N can always be expressed as the difference of two

squajes, this method seems a natural one by which to attack

the poblem. If we put

iV = n^ + a = (71 + by - (6^ + 2hn - a),

we cai make use of the known forms of u and v, and thus

* Set J. G. Birch in the Messenger of Mathematics ^ Cambridge, 1902, vol.

XXII, pp.52—55.
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obtain an indeterminate equation between two variables x and

y of the form

where H and K are numbers which can be easily calculated.

Integral values of x and y where y < K will determine values

of u and v, and thus give factors of N.

We can also attack the problem by indeterminate equations

in another way. For the factors must be of the form 2pt + 1

and 8j9s + 1, hence

= 2P-1

= 2(2P-i-l) + l,

.'. As^-t + Spst = {2P-^-l)lp

= (say) a + 8/;/3.

Hence 45 + i = a4-8p^, and st-^ — x,

where x'if- ^ and t is odd. These results again lead to an

indeterminate equation.

But, in both cases, unless p is small, the resulting equatiois

are intractable.

Third. A not uncommon method of attacking problens

such as this, dealing with the factorization of large numbers,

is through the theory of quadratic forms*. At best this is

a difficult method to use, and we have no reason to think tiat

it would have been employed by a mathematician of the

seventeenth century I here content myself with alludng

to it.

Fourth, There is yet another way in which the prollem

might be attacked. The problem will be solved if we can find

an odd prime q so that to it as modulus ^P^y = Zy and ^ = z,

Avhere y and z may have any values we like to choost. If

such values of q, y, and z can be found, we have 2^ (2^ — T) = 0.

Therefore 2^ = 1, that is, 5' is a divisor of N, \

* For a sketch of this see G. B. Mathev/s, Theory of Numbers, part '., Cam-

bridge, 1891, pp. 261—271. See also F. N. Cole's paper, " On the Fact»ring of

Large Numbers," Bulletin of the American Mathematical Society, Decembr, 1903,

pp. 134

—

137; and Quadratic Partitions by A. J. C. Cunningham, Londai, 1904.
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For example, to the modulus 23, we have

2« =3,

Also 2' =32.

Therefore 2^*^ - 2^ = 0,

.-. 21^-1 =0.

Without going further into the matter we may say that the

d priori determination of the values of q, y, and z introduces

us to an almost untrodden field. It is just possible (though

I should suppose unlikely) that the key to the riddle is to be

found on methods of finding q, y, z, to satisfy the above con-

ditions. For instance, if we could say what was the remainder

when 2* was divided by a prime q of the form 2pt + 1, and

if the remainders were the same when x = u and (v = v, then to

the modulus q we should have 2^ = 2", and therefore 2"~" = 1.

It should however be noted that Jacobi's Canon Arithmeticus

and the similar canon drawn up by Cunningham would, if

carried far enough, enable us to solve the problem by this

method. Cunningham's Canon gives the solution of the con-

gruence 2^ = R for all prime moduli less than 1000, but it is

of no use in determining factors of N larger than 1000. It

is however possible that if i? or ^ have certain forms an

extended canon of this kind might be constructed, and thus

lead to a solution of the problem

Fifth. It is noteworthy that the odd values of p specified

by Mersenne are primes of one of the four forms 2? + 1 or 2^ + 3,

but it is not the case that all primes of these forms make

N a prime, for instance, N is composite if ^ = 2^ + 3 = 11 or

if p = 2^-3 = 29.

This fact has suggested to more than one mathematician

the possibility that some test as to the prime or composite

character of N when p is of one of these forms may be dis-

coverable. Of course this is merely a conjecture. There is

however this to say for it, that we know that Fermat* had paid

attention to numbers of this form.

* For instance, see above, pp. 39, 40.
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Sixth. The number N when expressed in the binary scale

consists of 1 repeated p times. This has suggested whether

the work connected with the determination of factors of N
might not with advantage be expressed in the binary scale.

A method based on the use of properties of this scale has been

indicated by G. de Longchamps*, but as there given it would

be unlikely to lead to the discovery of large divisors. I am,

however, inclined to think that greater advantages would be

gained by working in a scale whose radix was ^p or may-be

8^—the resulting numbers being then expressed by a reasonably

small number of digits. In fact when expressed in the latter

scale in only one out of the cases in which the factors of N are

known does the smallest factor contain more than two digits.

Seventh. I have reserved to the last the description of the

method which seems to me to be the most hopeful.

We know by Fermat's Theorem that if x-\-\ is a prime

then 2^ — 1 is divisible by ^ + 1. Hence if 2pt + 1 is a prime

we have, to the modulus 2pt -I- 1,

^~"
2*^« -1=0,

/. (2P - 1) (1 + 2^ + 2^^^ + . . . + 2(2«-i)p) = 0.

Hence, a divisor of 2^ — 1 will be kno^wn, if we can find a

value of t such that ^pt + 1 is prime and the second factor

is prime to it.

This method may be used to establish Euler's Theorem of

1732. For if we put ^ = 1, and if 2^ + 1 is a prime, we have,

to the modulus 2p + 1,

(22>-l)(2^-|-l) = 0.

Hence 2^ = 1 if 2^ + 1 is prime to 2p + 1. This is the case

if ^ = 4w + 3. Hence 2p + 1 is a factor of iV if ^ = 11, 23,

83, 131, 179, 191, 239, and 251, for in these cases 2p-\-l

is prime.

The problem of Mersenne's Numbers is a particular case

of the determination of the factors of a^—1. This has been

* Comptcs Rendns de VAcademie des Scierices, Paris, 1877, vol. lxxxv,

pp. 950—952.
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the subject of investigations by many mathematicians : an

outline of their conclusions has been given by Bickmore*.

I ought also to add a reference to the general method

suggested by Lawrence f for the factorization of any high

number: it is possible that Fermat used some method

analogous to this.

Finally, I should add that machines t have been devised for

investigating whether a number is prime, but I do not know
that any have been constructed suitable for numbers as large

as those involved in the numbers in question.

* Messenger of Mathematics, Cambridge, 1895-6, vol. xxv, pp. 1—44; also

1896-7, vol. XXVI, pp. 1—38 ; see also a note by Mr E. B. Escott in the Messenger

,

1903-4, vol. XXXIII, p. 49.

+ F. W. Lawrence, Messenger of Mathematics , Cambridge, 1894-5, vol. xxiv,

pp. 100—109 ;
Quarterly Journal of Mathematics , Cambridge, 1896, vol. xxviii,

pp. 285—311; and Transactions of the London Mathematical Society, May 13,

1897, vol. XXVIII, pp. 465—475.

X F. W. Lawrence, Quarterly Journal of Mathematics, Cambridge, 1896,

already quoted, pp. 310—311 ; see also C. A. Laisant, Comptes Rendus, Association

Franqais pour I'Avanccmerit des Sciences, 1891 (Marseilles), vol. xx, pp. 165 — 168.
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CHAPTER XVI.

STRING FIGURES.

An amusement of considerable antiquity consists in tlie

production of figures, known as Cat's-Cradles, by twisting or

weaving on the hands an endless loop of string, say, from six

to seven feet long. The formation of these figures is a

fascinating recreation with an interesting history. It cannot,

with accuracy, be described as mathematical, but as I de-

liberately gave this book a title which might allow me a free

hand to write on what I liked, I propose to devote a chapter

to an essay on certain string figures*. The subject is ex-

tensive. I propose however merely to describe the production

of a few of the more common forms, and do not concern myself

with their ethnographical aspects. Should, as I hope, some of

my readers find the results interesting, they may serve as an

introduction to innumerable other forms which, with a little

ingenuity, can be constructed on similar lines.

First we must note that there are two main types of the

string figures known as Cat's-Cradles. In one, termed the

European or Asiatic Variety, common in England and parts

of Europe and Asia, there are two players one of whom, at

each move, takes the string from the other. In this, the more

* For my knowledge of the subject I am mainly indebted to Dr A. C.

Haddon, of Cambridge ; to String Figures by C. F. Jayne, New York, 1906

;

and to articles by W. I. Pocock and others in Folk-Lore, and the Journal of the

Anthropological Society. Since writing this chapter I have come across another

book on the subject by K. Haddon, London, 1911 : it contains descriptions of

fifty Figures and a dozen String Tricks.
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usual forms produced are supposed to suggest the creations of

civilized man, such as cradles, trays, dishes, candles, &c. In

the other, termed the Oceanic Variety, common among the

aborigines of Oceania, Africa, Australasia and America, there

is generally (but not always) only one player. In this, the

more usual forms are supposed to represent, or be connected

with, natural objects, such as the sun and moon, lightning,

clouds, animals, &c., and on the whole these are more varied

and interesting than those of the European type. There are

a large number of known forms of each species, and it is easy

to produce additional forms as yet undescribed. We can pass

from a figure of the European type to one of the Oceanic type

and vice versa, but it is believed that this transformation is an

invention of recent date and has no place in the history of the

game.

To describe the construction of these figures we need an

accurate terminology. The following terms, introduced by

Rivers and Haddon*, are now commonly used. The part of

a string which lies across the palm of the hand is described

as palmar, the part lying across the back of the hand as

dorsal. The part of a string passed over a thumb, finger or

fingers is a loop. A loop is described or distinguished by the

projection—such as the thumb, index, middle-finger, ring-finger,

or little-finger of either the right or the left hand—over which

it passes. The part of the loop on the thumb side of a

loop is termed radial, the part on the little-finger side is

called idnar; thus each loop is composed of a radial string

and an ulnar string. If, as is not uncommon, the figure is

held by some one, with his hands held apart, palm facing

palm and the fingers pointing upwards, then the radial string

of any loop is that nearest him, and the ulnar string is that

farthest from him ; in this case we may use the terms far and

near instead of ulnar and radial. If there are two or more

loops on one finger (or other object), the one nearest the root

of the finger is termed proximal, the one nearest the tip or

* Torres Straits Siring Figures, by \V. H. E. Rivers and A. C. Haddon, Man,
London, 1902, pp. 147, 143.
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free end of the finger is termed distal. If the position of the

hands is unambiguous, it is often as clear to speak of taking up
a string from above or below it as to say that we take it from

the distal or proximal side.

The following descriptions are I believe sufficient to enable

anyone to construct the figures, and I do not attempt to make
them more precise. They are long, but this is only because of

the difficulty of explaining the movements in print, and the

figures are produced much more easily than might be inferred

from the elaborate descriptions. Unless the contrary is stated

all of them are made with a piece of string, some seven feet

long, whose ends are tied together. In the descriptions I

assume that after every movement the hands are separated so

as to draw the strings tight. In the diagrams the string is

represented by two parallel lines : this enables us to indicate

whether one string appears in front of or behind another.

Unless otherwise stated the diagrams show the figures as seen

by the operator.

I recommend any one desirous of making the Figures and

not already acquainted with the subject to commence with the

Oceanic Varieties described on pp. 357 to 371, where only one

operator is required.

Cafs-Cradles, European Varieties. I begin by discussing the

form of Cat's-Cradle known in so many English nurseries. It is

typical of the European Variety. It is played by two persons,

F and Q, each of whom in turn takes the string off the fingers

of the other. In the following descriptions, the terms near and

far, or radial and ulnar, refer to the player from whom the string

is being taken. In most of the forms two or more parallel

horizontal strings are stretched between the hands of the player

who is holding the string, and the other strings cross one another

forminof an even number of crosses. When there are more than

two such crosses, two will usually be at the ends of the figure

near the hands, and two at the sides nearer the middle of the

figure. Parallel strings, if taken up, are usually taken up by

hooking each little-finger in one of them. A cross, if taken up.
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is usually taken by inserting the thumb and index-finger of one

hand in opposite angles of the cross, holding the cross with the

thumb and finger, and then turning the plane containing the

thumb and finger through one or two right angles. When one

player takes the strings from the other, it is assumed that he

draws his hands apart so as to keep the string stretched.

The initial figure is termed the Cradle \ from this we can

produce Snuffer-Trays. From Snuffer-Trays we can obtain

forms known as a Pound- of- Candles, Cat's-Eye, and Trellis-

Bridge. From each of these forms again we can proceed in

various ways. I will describe first the figures produced when

the string is taken off so as to lead successively from the

Cradle to Snuffer-Trays, Cat's-Eye, and Fish-in-a-Dish. This

is the normal sequence.

The Cradle—see figure i—is formed by six loops, three on

each hand : there are two horizontal strings, one near and the

other far, and two pairs of strings which cross one another,

each cross being over one of the horizontal strings.

Figure i. The Cradle.

The Cradle is produced thus. First. One of the operators, P, loops the

string over the four fingers of each hand, which are held upright, pahn towards

pahn, the near or radial string lying between the thumbs and index-fingers, and

the far or ulnar string beyond the little fingers. Second. P puts a second loop

on the right hand by bending it over outside the radial string and up into the

loop. There are now two dorsal strings and one palmar string on the right

hand. Third. P puts a similar loop on the left hand by bending it over

outside the radial string and up into the space between the hands. Lastly.

P with the back of the right middle- finger takes up from the proximal side {i.e.

from below) the left palmar string. And then similarly with the back of the

left middle- finger takes up from the proximal side that part of the right palmar
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string which lies across the base of the right middle-finger. The hands are

now drawn apart so as to make the strings taut.

The figure known as Snuffer-Trays—see figure ii—is formed

by six loops, three on each hand. Four of the strings cross

diamond-wise in the middle so as to form two side crosses and
two end crosses, the other two strings are straight, one beinor

near and the other far. All the strings lie in a horizontal

plane. This figure is also known as Soldier's Bed, the Church

Window, and the Fish-Pond.

Figure ii. Sauffer-Trays.

Snuffer-Trays can be got from the Cradle thus. I suppose that the Cradle

is held by one operator, P, and that the other operator, Q, faces P. First.

Q inserts the thumb and index-finger of his left hand from his far side in those

angles of the cross of the Cradle farthest from him which lie towards P's hands.

Similarly Q inserts the thumb and index-finger of his right hand from his near

side in those angles of the cross nearest to him which lie towards P's hands,

both thumbs being towards P's right hand, and his index-fingers towards P's

left hand. Second. Q takes hold of each cross by the tips of the thumb and

finger, then pulls each cross outwards {i.e. away from the centre of the figure)

over and beyond the corresponding horizontal string, then down, and then

round the corresponding horizontal strings. Third. Q turns the thumbs and

fingers upwards through a right angle, thus passing the cross up between the

two horizontal strings. By this motion the thumb and index-finger of each

hand (still holding the crossed strings) are brought against the horizontal

strings. Lastly. Q, having pushed his fingers up, releases the crosses by

separating his index-fingers from his thumbs, and drawing his hands apart

removes the string from P's hands. The diagram represents the figure as

seen by P.

Gafs-Eye—see figure iii—also is formed by six loops, three

on each hand. There are two near (or radial) thumb strings,

two far (or ulnar) index strings, while the radial thumb and

ulnar index strings form a diamond-shaped lozenge in the

middle of the figure, giving rise to two side crosses and two

end crosses. All the strings lie in a horizontal plane.
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Figure iii. Cafs-Eye.

Cafs-Eye can be got from Scuffer-Trays thus. I suppose tbat Snuffer-

Trays is held by Q. First. P inserts the thumb and index-finger of each

hand from below into those angles of the two side crosses of Snuffer-Trays

which lie towards Q's hands, both thumbs being towards Q's left hand.

Second. P takes hold of each cross with the thumbs and fingers and pulls it

downwards, then he separates his hands thus bringing each cross below its

corresponding horizontal string, and continuing the motion he passes the cross

outside, round, and then above the horizontal string. Third. P turns each

thumb and finger inwards {i.e. towards the centre of the figure) between the two

horizontal strings through two right angles taking the horizontal strings with

them. Lastly. P pushes his fingers down, separates the index-fingers from the

thumbs, and then, drawing his hands apart, removes the figure from Q'a hands.

The figure now is in a horizontal plane ; but for clearness I have drawn it

as seen by Q, when P lifts his hands up.

Fish-in-a-Dish—see figure iv—is composed of a central

lozenge (the dish) on which rest lengthwise two strings (the

fish). There are two loops on each hand.

Figure iv. Fish-in-a-Bish.

B. B. 23



354 STRING FIGURES [CH. XVI

Fish-in-a-Dish is produced from Cat's-Eye thus. I suppose that Cat's-Eye

is held by P in the norraal position, his fingers pointing down, and the figure

lying in a horizontal plane. First. Q puts the thumb and index-finger of each

hand from above into those angles of the two side crosses which lie towards

P's hands, both thumbs being towards P's right hand. Second. Q turns each

hand inwards (i.e. towards the centre of the figure) through two right angles,

and as he does so, catches the sides of the central diamond on the thumb and

index-fingers. At the end of the motion the thumbs and fingers will be

pointing upwards. Lastly. Q draws his hands apart and thus takes the

figure off P's hands. The diagram represents the figure as seen by Q.

The same result is produced if Q inserts his thumbs and index-fingers from

below into the two side crosses, and turns his hands inwards through two right

angles.

There are a few other standard forms which may be

mentioned. In the first place instead of proceeding directly

from Snuffer-Trays to Cat's-Eye, we can obtain the latter

figure through three intermediate forms known as a Pound-

of-Gandles, the Hammock, and Lattice-Work. The figure last

named is the same as Snuffer-Trays, though it is held some-

what differently, and from it we can obtain Cat's-Eye by similar

movements to those described above when forming it from

Snuffer-Trays, though it will be held somewhat differently.

A Pound-of-Candles is formed by six parallel strings held

in a horizontal plane. It is, in fact, only an extension sideways

of the figure obtained in the course of the formation of the

Cradle before the palmar strings are taken up ; and, if desired,

it can be obtained in that way.

A Pound-of- Candles is produced from Snuffer-Trays (assumed to be held by

Q) thus. First. P inserts the thumb and index-finger of each hand from

above into those angles of the two side crosses which lie towards Q's hands.

Second. P takes hold of each cross, Hfts it, and takes it above, and then

round the corresponding horizontal string. Third. P turns each hand up-

wards between the horizontal string through two right angles ; this brings each

horizontal string on to the thumbs and index-finger of the hand corresponding

to it. Lastly, P separates his thumbs and index-fingers, and drawing his

hands apart he takes the figure off Q's hands. This corresponds exactly with

the process above described by which Cat's-Eye is obtained from Snuffer-Trays,

except that the side crosses are taken from above instead of from below.

The Hammock is an inverted Cradle and can be obtained

directly from it without any intermediate forms. The Hammock

is also known as Bahys-Cot and the Manger.

The Hammock can be obtained from a Pound-of-Candles (assumed to be held

by P) thus. First. Q, holding his right-hand palm upwards, hooks with his
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right little-finger the ulnar thumb string from above, and then pulls it up and
over the three index strings. Second. Q passes his left hand, held palm up-

wards, from above through the loop on the right little-finger, and with the little-

finger of the left hand he hooks the radial index string, and pulls it up and over

the pair of thumb strings. Third. Q places the thumb and index-finger of the

right hand from the far side of P below the pair of far index strings, and similarly

he places the thumb and index of the left hand from the near side of P below the

pair of near thumb strings. Fourth. Q turns his hands inwards and upwards

through two right angles ; by this motion the thumbs and indices will take up

these two pairs of strings. Lastly. Q separates his index-fingers from his

thumbs, and drawing his hands apart removes the figure from P's hands.

Lattice- Work. The form known as Lattice-Work is the

same as Snuffer-Trays, except that it is held with the fingers

pointing downwards.

Lattice-Work can be produced from the Hammock (assumed to be held

^y Q) ^7 the same process as that described above for the production of

Snuffer-Trays from the Cradle, namely by P inserting the thumb and index-

finger of each hand from the outside in the crosses ; then pulling each cross

outwards, then up and over the corresponding horizontal string ; and finally

turning each hand downwards through a right angle. Also, since it is the

same as Snuffer-Trays, though held differently, it can be produced from

Snuffer-Trays by P putting his thumbs and fingers pointing downwards in

the place of those of Q which are pointing upwards.

Other standard forms are Trellis-Bridge, Double-Crowns,

Suspension-Bridge, Tridents, and See-Saw. For the formation

of these I give only a brief outline of the necessary steps.

Trellis-Bridge can be produced from Snuffer-Trays by the second player

booking his little-fingers from above in the two parallel strings, one in one

string and one in the other, pulling the loops so formed over and down to

opposite sides, and taking up the side crosses from above and turning the hands

inwards through two right angles.

Double-Crowns can be got from Cat's-Eye by the second player putting the

thumb and index-finger of each hand through the far and near angles of the

end crosses, either from above or below, and making the usual turning movement
inwards through two right angles.

Suspension-Bridge can be got from Fish-in-a-Dish by the second player

hooking his httle-fingers in the two parallel strings that form the dish, one

in one string and one in the other, pulling the loops so formed up, then taking

up the side crosses from above, and turning the hands inwards towards the

centre of the figure throagh two right angles. Suspension-Bridge can be also

obtained from Double-Crowns.

Tridents is produced from Suspension-Briuge by the second player releasing

the left-hand thumb and index-tiuger, and then drawing his hands ai art.

23—2
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See-Saw is an arrangement of the string which each pla5'er in turn draws

out. It is said that in such figures children draw the string backwards and

forwards to the chant of a doggerel line See Saio Johnnie Maw, See San Johnnie

Man (Jayne, p. xiii). One form of it can be obtained from the Cradle, which

I will suppose is held by P, thus. Q takes one of the straight strings with the

index-finger of one hand and the other straight string with the index-finger of

the other hand ; P then slips his hands out of the loops romid them but retains

the middle -fingers in the loops on them. If now P separates his hands the

loops held by Q diminish, and vice versa. Another variety is obtained by

P taking the ulnar base string from below in his mouth and then withdrawing

his hands from the loops while retaining his middle-fingers in their respective

loops : in this way we obtain a sawing figure of three loops.

The forms above described may be arranged in sequence

in tabular form, as shown below. It will be noticed that

parallel strings when taken up may be pulled up or down,

and they may be crossed or not. So too in the horizontal

figures there are often a pair of side crosses and a pair of

end crosses, and either pair may be taken from above or

from below, and in many cases may be crossed or not as is

desired. Frequently also one player Q can insert two fingers

in a pair of crosses and if P leaves go Q may, by drawing

his hands apart, produce a new figure. By combining these

motions we can obtain various forms, and can secure sequences

SnuSer-Trays

Cat's-Cradle

1

See-Saw

Cat's-Eye

Fish-in-a-

Dish

(Numerous
Forms)

1
Donble-
Crowns

Pound-of-
Candles

Manger

Cat's-Eye

1
Trellis-Bridge

of them. The movements and forms described above will how-

ever illustrate the process sufiSciently.
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Cat*s-Cradles, Oceanic Varieties. I will next enumerate a

few forms of the Oceanic Variety. One or two specimens of this

type are known in England, but they may be recent importa-

tions, perhaps by sailors, and not indigenous. There are so many
examples of this kind, that it is difficult to select specimens, but

those I have chosen will serve to illustrate the methods. In

many cases the figures can be formed in more ways than one.

I again emphasize the fact that the figures are produced

much more easily than might be inferred from the lengthy

descriptions given. This is so partly because I have tried to

mention every detail of the process, and partly because I con-

stantly describe similar movements with the two hands as if

they were made consecutively, whereas in practice to produce

the figures effectively the movements should be simultaneous.

I may add further that frequently two or more of the move-

ments mentioned can be combined in one, and when practicable

this is desirable. Also usually the more rapidly the movements
are made the better is the presentation. By rotating the

wrists, considerable play is given to the figure, and the move-

ments are facilitated. Where two loops are on one finger, it is

generally advisable to place one on the tip and the other on the

base of the finger so as to keep them distinct.

Once a figure has been constructed or the rule given for

making it understood, the brief description of the method
(which in many cases I insert after the exposition of the rule)

will suffice for the reproduction of the figure.

Openings A and B. The greater number of Oceanic figures

begin with the same initial steps known as Opening A or

Opening B. These steps I proceed to describe.

Opening A. In Opening A, the operator commences by placing the string

on the left hand as follows. The hands are held with the fingers pointing up-
wards, and palm facing palm. The tips of the left thumb and little-finger are

put together, and a loop of the string put over them. On opening the hand it

will be found that the string from the far (or ulnar) side passes round the back of
the little-finger, then between the ring and little-finger, then across the palm,
then between the index and thumb, and then round the back of the thumb to the
near (or radial) side of the hand. The string is then taken up similarly by the
right hand. The hands are now drawn apart. This is called the " first position."
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Next with the back of tho index of the right hand take up from the proximal

side {i.e. from below) the left palmar string, and return : in these descriptions

the word return is used to mean a return to the position occupied at the

beginning of the movement by the finger or fingers concerned. Then,

similarly, with the back of the index of the left hand take up from the proximal

side that part of the right palmar string which lies across the base of the right

index, and return. The figure now consists of six loops on the thumb, index,

and little-finger of each hand. The resulting figure, in a horizontal plane, is

shown in the diagram, looking down at it from above.

Opening A.

Opening B. Opening B is obtained as above, save that, in the second part

of the Opening, the right palmar string is taken up by the left index before

the left palmar string is taken up by the right index. In most of the figures

described below it is immaterial whether we begin with Opening A or Opening B.

Movement T. There is also another movement which is

made in the construction of many of the figures and which

may be described once for all.

This movement is when we have on a finger two loops, one proximal and

the other distal, and the proximal loop is puUed up over the distal loop, then

over the tip of the finger, and then dropped on the palmar side. I term this the

Movement T.

A Door. The first example I will give is a Door—see

figure V—which comes from the Apache Red Indians. It

affords a good introduction to the Oceanic Varieties, for it is

one of the easiest figures to construct, as the movements are

simple and involve no skill in manipulation. The rubbing the

hands together in the final movement has nothing to do with

the formation of the figure, though it adds to its effective

presentation. The diagram represents the final figure held in

a horizontal plane.
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Figure v. A Door.

The Door is produced thus (Jayne, pp. 12—15). First. Take up the string

in the form of Opening A. Second. With the right thumb and index lift the

left index loop off that finger, put it over the left hand, and drop it on the left

wrist. Make a similar movement with the other hand. Third. "With the dorsal

tip of the right thumb take up the near right little-finger string, and return.

Make a similar movement with the other hand. Fourth. With the dorsal tip

of the right little-finger take up the far right thumb string, and return. Make a

similar movement with the other hand. Fifth. Keeping all the loops in position

on both hands, with the left hand grasp tightly all the strings where they cross

in the centre of the figure, and pass this bunch of strings from left to right between

the right thumb and index {i.e. from the palmar side to the back of the hand), and

let them lie on the back of the hand between the thumb and finger. Next with

the left thumb and index take hold of the two loops already on the right thumb,

and draw them over the tip of the right thumb. Then, continuing to hold

these two loops, let the bunch of strings still lying between the right index and

thumb slip over the right thumb to the palmar side, and after this replace

these loops on the right thumb. Make a similar set of movements with the

other hand. Sixth. With the right thumb and index lift the left wrist loop

from the back of the left wrist up over the tips of the left thumb and fingers,

and let it fall on the palmar side. Make a similar movement with the other

hand. Finally. Eub the palms of the hands together, separate the hands, and

the Door will appear.

More briefly thus. Opening A. Index strings over wrists. Each thumb

over one and takes up one. Each little-finger takes up one. Thumb loops

over groups of strings. Wrist loops over hands. Extend.

Climbing a Tree. I select this as another easy example

starting from Opening A. The tree—see figure vi—consists of

two straight strings, which slope slightly towards one another:

if the figure here delineated is turned through a right angle,
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the straight lines representing the tree will be upright, and

this is the way in which the figure is normally produced. Up
this tree, some loops, which represent a boy, are made to ascend.

The production is very simple, but it is interesting because the

design, and nothing more, was obtained from the Blacks of

Queensland, and this is a conjectural restoration, by Pocock, of

the way it was produced.

Figure vi. Boy Climbing a Tree.

The Boy Climbing a Tree may be produced thus. First. Take up tihe string

in the form of Opening A. Second. Pass the little-fingers over four strings

(namely, all the strings except the near or radial thumh string), then with the

backs of the little-fingers take up the near thumb string, and return. Third.

Make movement T on the little-finger loops. Fourth. Bend the right index over

that part of the right palmar string which lies along the base of the finger, and

press the tip of the finger on the palm. Make a similar movement with the

left index. Fifth. Holding the strings loosely, release the thumbs and pull

the index loops over the knuckles so that they hang on the cross strings.

Finally. Put the far (or ulnar) little-finger string under one foot or on any

fixed object. Then release the little-fingers, and pull steadily with the index-

fingers on the strings they hold. This will cause the loop round the two straight

strings to rise. The two strings starting from the foot represent the tree, and

the loops, which ascend on them, as the fingers pull, represent the boy climbing

up the tree. If in the fourth movement we put the middle-fingers instead of

the index-fingers through the index loops, we shall slightly modify the result.

More briefly thus. Opening A. Each little-finger over 4, and take up

one. T to little-finger loops. Each index on palm. Release thumbs. Index

loops over knuckles. Far little-finger string under foot. Release little-fingers,

and pull.

Throwing the Spear is a New Guinea figure. It is peculiar

in that the design can be transferred or thrown from one hand

to the other as often as is desired. The construction is very

simple.

Throioing the Spear was obtained by Haddon. It is made thus (Jayne,

pp. 131—132). First. Take up the string in the form of Opening A. Second.
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Take the loop off the left index, put it on the right index, and pass it down the

finger over the right index loop to the base of the finger. Third. Take off

from the right index the original right index loop, release it, and extend the

hands. This is the spear, the handle being held by the left hand.

More briefly thus. Opening A. Left index loop off finger, and then over

right index loop to base of right index. Release original right index loop, and

pull.

To throw the spear from one hand to the other, proceed thus. Put the

left index between the left ulnar thumb string and the left radial little- finger

string, then push it up from below into the right index loop. Then opening the

right hand, drawing it sharply to the right, and at the same time taking the

right index out of its loop, the spear is transferred to the other hand. The

process can be indefinitely repeated with one hand or the other.

Diamonds. Numerous lattice-work forms have been col-

lected in which diamonds or lozenge-shaped figures are strung

in a row, or in two or more rows, between two parallel strings.

I describe a few of these.

Triple Diamonds. This is an interesting figure— see

fig^ure vii—and lends itself to a catch described hereafter.

It comes from the Natik natives in the Caroline Islands, but

possibly is of negro origin. It is not symmetrical.

Figure vii. Triple Diamonds.

The formation of Triple Diamonds is described by Mrs Jayne (pp. 142—146),

and may be effected as follows. First. Take up the string in the form of

Opening A. Second. Take the right hand out of all the loops, and let the

string hang straight down from the left hand, which is held upright with the

fingers pointing upwards. Third. Put the tips of the right thumb and little-

finger together, and insert them from the right side into the left index loop.
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Next, separate the ri.elit thumb and little-finger, take the loop off the left index,

and draw the hands apart. Fourth. Put the right index-finger under the left

palmar string, and draw the loop out on the back of the finger. Fifth. Bend

the right thumb over one string (viz. the near or radial right index string), take

up from below on the back of the thumb the far or ulnar right index string, and

return. Sixth. Bend the left thumb away from you over one string (viz. the

far or ulnar thumb string) and take up from below on its back the near or radial

little-finger string, and return. Seventh. With the back of the tip of the right

index-finger pick up from below the near right index string, and return. Eighth.

With the back of the tip of the left index pick up from below the far left

thumb string (not the string passing across the palm), and return. These

strings on the index-fingers should be kept well up at the tips by pressing

the middle-fingers against them, and the radial left thumb string should now
cross between the left thumb and index ; if it be not in this position it should be

shifted there. Ninth. Make movement T on the thumb loops of each hand.

Lastly. Release the loops from the little-fingers, and extend the figure between

the thumbs and the tips of the index-fingers : it is usual but not necessary, at

the same time, to rotate the hands to face outwards.

More briefly thus. Opening A. Right hand out. Right little-finger and

thumb through index loop. Right index takes up palmar string. Each thumb

over one and takes up one. Right index picks up near right index string and

left index picks up far left thumb string. T to thumb loops. Release little-

fingers and extend.

Quadruple Diamonds. This design—see figure viii—was

given me by a friend who was taught it when a boy in

Lancashire. It is the same as one described by Mrs Jayne

(pp. 24—27), which was derived by her from the Osage Red

Indians.

Figure viii. Quadruple Diamonds,

Quadruple Diamonds can be produced thus. First. Take up the string

in the form of Opening A. Second. Release the thumbs. Third. Pass the

right thumb away from you under all the strings, and take up from below with

the back of the thumb the far right litfcle-finger string, and return. Make a

similar movement with the other hand. Fourth. Pass each thumb away from



CH. XVl] STRING FIGURES 863

you over the near index string, and take up from below with the back of the

thumb the corresponding far index string, and return. Fifth. Release the

little-fingers. Sixth. Pass each little-finger towards you over one string (viz.

the near index string) and take up from below on the back of the little-finger

the corresponding far thumb string, and return. Seventh. Release the thumbs.

Eighth. Pass each thiimb away from you over the two index strings and take up

from below, with the back of the thumb, the corresponding far little-finger string,

and return. Ninth. With the right thumb and index pick up the left near index

string, close to the left index and above the left palmar string, and put it over the

tip of the left thumb. Next make movement T on the left thumb loops. Make a

similar movement with the other hand. Finally. Insert each index into the snia,ll

triangle near it whose sides are formed by the corresponding palmar string and

its immediate continuation. Then, rotate the right hand counter-clockwise

and the left hand clockwise. In making this movement the little-finger loops

and the proximal index loops will fall off, and for the production of the figure

it is essential they should do so. At the end of the movement the palms of the

hands should be facing outwards and away from you, the thumbs lowest and

pointing away from you, and the index-fingers pointing upwards. On separating

the hands the Diarnonds will appear. It is a matter of indifference whether the

top string is taken on the middle-fingers or on the index-fingers. If the fourth

step be taken before the third we get a form of Double Diamonds.

More briefly thus. Opening A. Let go thumbs. Each thumb under 3 and

takes up one. Each thumb over one and picks up one. Release little-fingers.

Each Httle-finger over one and picks up one. Release thumbs. Each thumb
over 2 and picks up one. Near index strings on tips of thumbs. T to loops on

thumbs. Index-fingers in triangle. Release little-fingers, and extend.

Multiple Diamonds. In the figures above described the

diamonds are in a row. I give an instance—see figure ix—de-

rived from the Natik natives, where the diamonds are in three

rows. The reader will be easily able to introduce modifications

in the process of the formation of Multiple Diamonds which will

lead to other figures which he can thus invent for himself.

Figure ix. Mxtltiple Diamovda.

Multiple Diamonds may be formed thus (Jayne, pp. 1.50—156). First. Take
up the string in the form of Opening A. Srcond. With the teeth draw the far

little-finger string towards you over all the strings. Then, bending the left
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index over the left string of the loop held by the teeth, pick up from below

on the back of the index the right string of the loop, and return. Next betid

the right index over to the left, and pick up from below on its back the left

string of the loop, and return. Release the loop held by the teeth. Third.

Release the thumbs. Fourth. Put each thumb away from you, under both

index loops, and pick up on its back the near little-finger string, and return.

Fifth. Pass each thumb up over the lower near index string, and put its

tip from below into the upper index loop. Sixth. Make movement T on the

thumb loops. Seventh. Withdraw each index from the loop which passes

around both thumb and index. Eighth. Transfer the thumb loops to the

index-fingers by putting each index from below into the thumb loop, and

withdrawing the thumb. Ninth. Repeat the fourth movement, namely, put

each thumb away from you under both index loops, and pick up on its back

the near little-finger string, and return. Tenth. Repeat the fifth movement,

namely, pass each thumb up over the lower near index string, and put its tip

from below into the upper index loop. Eleventh. Make movement T on the

thumb loops. Twelfth. Bend each middle-finger over the upper far index

string, and take up from below on the back of the finger the lower near

index string {i.e. the one passing from index to index), and return. Lastly.

Keeping the middle and index-fingers close together, release the loops from the

little-fingers, and extend the figure keeping the palms turned away from you.

Many Stars. A somewhat similar figure—see figure x

—

is made by the Navaho Mexican Indians, and by the Oregon

Indians. The Oregon method is much the more artistic, since

the movements are carried on by both hands simultaneously

Figure x. Many Stars.

and symmetrically, and the one hand is not used to arrange the

strings on the other hand. But I give the Navaho method partly

because it is easier to perform and partly because, by slightly

varying the movements, it gives other interesting figures.
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Many Stars. The formation of this figure has been described by Haildon
{American Anthropologist, vol. v, 1903, p. 222) and Mrs Jayne (pp. 48—53). It

is produced thus. First. Take up the string in the form of Openiiig A.

Second. Pass each thumb away from you over three strings (viz. the far thumb
and both index strings) and pick up from below on its back the near little-

finger string, and return. Ttiird. Bend each middle-finger down towards you
over two strings (viz. both the index strings) and take up from below on its back
the far thumb string, and return. Fourth. Release the thumbs. Fifth. Pass
each thumb away from you over one string (viz. the near index string), under
the remaining five strings, and pick up on its back the far little-finger string,

and return. Sixth. Release the little-fingers. Seventh. Take the far string of

the right middle-finger loop, pass it under the near string of that loop, and
then, taking it over the other strings, put it over the tips of the right thumb
and index, so as to be the distal loop on them. Release the right middle-

finger. Make a similar movement with the other hand. Eighth. Make
movement T on the loops on the thumbs and index-fingers. There is now
on each hand a string passing from the thumb to the index, and on each

of these strings are two loops, one nearer you than the other. Ninth. Bend
each thumb away from you over the upper string of these nearer loops.

Lastly. Rotate the hands so that the palms face away from you, the fingers

point up, and the thumbs are stretched as far from the hands as possible.

More briefly thus. Opening A. Each thumb over 3 and picks up one. Each
middle-finger over 2 and picks up one. Release thumbs. Each thumb over

one, under 5, and picks up one. Release little-fingers. Take up near string of

each middle-finger loop, turn it over, and transfer it to tips of corresponding

thumb and index-finger. T to loops on thumbs and index-fingers. Place

thumbs on upper strings of near loops. Rotate, and extend.

Owls. Certain figures, called Owls, can be produced like

Many Stars save for the interpolation or the alteration of one

movement. Their resemblance to Owls is slight, but they

Figure xi. An Owl,
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ma}^ be talsen without much straining to represent Bats. One

instance—see figure xi—will suffice.

The example of an Owl which I select is produced thus (Jayne, pp. 54— 55).

Immediately after taking up the string in the form of Opening A, give a twist

to the index loops by bending each index down between the far index string and

the near little-finger string and, keeping the loop on it, bringing it towards you

np between the near index string and the far thumb string. Continue with the

second and subsequent movements described in Many Stars.

In another example (Jayne, pp. 55—56) all the movements are the same as

in Many Stars save that in the fifth movement the far little-finger string is

drawn from above, instead of from below, through the thumb loops.

Single Stars. Other figures, which we may call Single

Stars or Diamonds, can be produced like Many Stars save for

the alteration or omission of one movement. One instance

—

see figure xii—will suffice.

Figure xii. North Star.

The example of the Single Stars which I select is termed the North Star^

and is produced thus (Jayne, p. 65). Replace the second, third, and fourth

movements in Many Stars by the following. Bend each middle-finger towards

you over the index loop, and take up from below on the back of the finger the

far thumb string. Release the thumbs, and return the middle-fingers. The

effect of this is to transfer the thumb loops to the middle-fingers. This is

followed by the fifth and subsequent movements described in Many Stars.

This figure may at our option be regarded as a single or double diamond.

W. W. Another elegant design, forming two interlaced W's,

can be produced somewhat similarly.

This figure is made in the same way as North Star, except that after

transferring the thumb loops to the middle-fingers, a twist is given to each

middle-finger loop by bending each middle-finger down on the far side of the far

middle-finger string and (keeping the loop on it) bringing it towards you up

between the near middle-finger string and the far index string.
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The reader who has followed me in my descriptions of the

movements for producing Many Stars will find it easy to make
other modifications which lead to other figures.

The Setting Sun is derived from the Torres Straits natives.

This figure, if well done, is effective, but the process is some-
what long. The method and result illustrate another type of

string figure.

The Setting Sun is produced thus (Rivers and Hadlon, p. 150; Jayne,

pp. 21—24). First. Take up the string in the form of Opening A. Second.
Pass the little-fingers over four strings (viz. the radial or near little-fiuger string,

the index loops, and the ulnar or far thumb string), insert them into the thumb-
loops from above, take up with the backs of the little-fingers the near thumb
string, and return. TJdrd. Release the thumbs. Fourth. Pass the thumbs
under the index loops, take up from below the two near strings of the little-

finger loops and return, passing under the index loops. Fifth. Release the

little-fingers. Sixth. Pass the little-fingers over the index loops, and take up

from below the two far strings of the thumb loops and return. This arrange-

ment is known as the Lem Opening.

I continue, from the Lem Opening, the movements for the production of the

Setting Sun. Seventh. Transfer the loop on the left index to the right index

;

and then transfer the loop originally on the right index to the left index,

by taking it over the original left index loop. Eighth. Pass the right

middle-finger from the distal side {i.e. from above) through the right index loop

and take up from the proximal side {i.e. from below) the two far thumb
strings. Return the middle-finger through the index loops. Make similar

movements with the other hand. Ninth. Release the thumbs and index-

fingers. Tenth. Pass the thumbs from below into the middle-finger loops,

and then transfer the middle-finger loops to the thumbs. Extend the figure

with the thumbs towards the body. There will now be in the middle of the

figure a triangle whose apex is towards your body, whose base is formed by the

two far little-finger strings, and whose sides are formed by the mid-parts of the

two near thumb strings. On either side of this triangle is a small four-sided

figure. Eleventh. Insert the index-fingers from above into these quadrilaterals,

and with the backs of the index-fingers take up the strings forming the sides

of the triangle, and return. Twelfth. Put eacli middle-finger from above

through the index loop, and take up from below the two far thumb strings,

and return through the index loop. Thirteenth. Release the thumbs and

index-fingers, put the index-fingers into the middle-fingor loops to make thum

wider ; and with the thumbs manipulate the figure so as to make an approxi-

mate semicircle (the sun on the horizon) with four diverging loops (the rays).

Finally. Release the loops on the index and middle-fingers, separate the

hands, and the semicircle will slowly disappear representing the setting of

the sun.
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The Head Hunters is another and more difficult example,

in which the Lem Opening is used. It too is derived from

the Torres Straits, and is interesting because it is a graphical

illustration of a story.

The Head Hunters are produced thus (Rivers and Haddon, p. 150; Jayne,

pp^ 16—20). First. Make the Lem Opening, which involves six movements.

Continue thus. Seventh. Insert the index-fingers from below into the central

triangle and take up on their backs the near thumb strings. Eighth. Loop

the lowest or proximal index string of each hand over the two upper or distal

strings and over the tip of the index on to its palmar aspect. Ninth. Release

the thumbs. Tenth. Take the index loops oft the right hand, twist them tightly

three or four times, and let the twist drop. Similarly form a twist out of the

loops on the left index.

This is the figure. If now the little- finger loops are drawn slowly apart,

the two index loops will approach each other and become entangled. One

represents a Murray man, and the other a Dauar man. They " fight, fight,

fight," and, if worked skilfully, one loop, the victor, eventually remains, while a

kink in the string represents all that is left of the other loop. The victorious

loop can now be drawn to one hand along the two strings, sweeping the kink in

front of it: it represents the victor carrying off the head of his opponent.

Sometimes, if the two index loops are twisted exactly alike, they both break up,

representing a duel fatal to both parties. In the hands of the Murray man
who showed the figure to Dr Haddon, the result of the fight always led to the

defeat of the Dauar warrior.

It is not easy to make the figure so as to secure a good fight. For the benefit

of any who wish to predict the result I may add that if, in the first position,

there be a knot in the right palmar string the left loop will be usually victorious

over the right loop, and vice versa.

The Parrot Gage. As another instance I give the Parrot

Cage. This is a string figure made by Negroes on the Gold

Coast in West Africa. The construction and design are not

interesting in themselves, but the method used is somewhat

different to those employed in the foregoing examples, and for

this reason I insert it.

The Parrot Cage is made thus (Yoruba Figures by J. Parkinson, Journal of

the Anthropological Institute, London, 1906, vol. xxxvi, p. 136). First. Take
up the string in the form of Opening A. Second. Transfer the little-finger

loops of each hand to the ring-fingers of that hand, the index loops to the middle-

fingers, and the thumb loops to the index-fingers. By an obvious modification of

Opening A, the string can be taken up initially in this form. Third. Lace the

dorsal loops thus. Turn the back of the right hand upwards, pull the dorsal

string of the ring-finger loop a little way out, and through it pass the dorsal

string of the middle-finger loop. Similarly pass the dorsal string of the index loop
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through the middle-finger loop, and then put the index loop on the thumb. Pull

all the strinps taut. Kepeat the same movements with the other hand. Fourth.

Lace the palmar loops thus. Holding the right hand with the fingers pointing

upwards, take up with the dorsal tip of the right thumb the nearest string

wliich passes from hand to hand, pass the string already on the thumb over the

string so taken up and then over the tip of the thumb on to the far and palmar

side of the thumb. Eepeat the same process successively with the far index

string, with the near middle-finger string, with the far proximal middle- finger

string, with the remaining far middle-finger string, and with the far ring-finger

string. Repeat all these movements with the left hand. Finally. Transfer

the thumb loops to the little-fingers, and extend the figure. This is the cage.

See-Saiv. I described above a couple of See-Saw figures

made from the European Opening. Such figures can be also

produced from Opening A.

A See-Saw arrangement can be made by two players, P and Q, thus

(Haddon quoted by Jayne, p. xiii). First. The string is taken up by P,

with his hands pointing upwards and palm facing palm, in the form of

Opening A. Second. Q hooks his right index from above in the straight

thumb string and pulls it away from P. Third. Q, passing his hand from P
over the other strings, hooks his left index in the stniight little-finger string,

and pulls it towards P. Finally. F releases all but the index loops. The

sawing movement can then be made.

Ligldning. I proceed next to give two examples of figures

which do not start from Opening A : both are easy to produce.

The first instance I select, known as Lightning—see figure xiii

—

is derived from the North American Red Indians. The final

movement should be performed sharply, so that the zig-zag

lightning may flash out suddenly.

Figure xiii. Zig-zag Lightning.

Lightning is produced thus (Jayne, pp. 216—219). Fir»t. Hold the string

in one place between the tips of the thumb and index-finger of the right hand

and in another place between the tips of the thumb and index-finger of the left

hand, so that a piece passes between the hands and the rest hangs down in a

loop. With the piece between the hands make a ring, hanging down, by putting

the right-hand string away from you over the left-hand string. Next, insert

B. R. 24
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tlie index-fingers towards you in the ring and put the thumbs away from you

into the long hanging loop. Separate the hands, and turn the index-fingers

upward and outward with the palms of the hands facing away from you.

Then, turn the hands so that the palms are almost facing you, and the thumbs

and the palms come toward you and point upward. You now have a long

crossed loop on each thumb and a single cross in the centre of the figure.

This is the Navaho Opening.

I continue from the Navaho Opening the movements for the production

of Lightning. Second. Pass each thumb away from you over the radial or near

index string and take up from below with the back of the thumb the far index

string, and return the thumb to its former position. Third. Pass each middle-

finger toward you over the near index string, and take up from below on

the back of the finger the far thumb string and return the middle-finger

to its original position. Fourth. Bend each ring-finger toward you over the

far middle-finger string, take up from below with the back of the finger

the near index string, and return the ring-finger to its position. Fifth, Pass

each little-finger over the far ring-finger string, take up from below on

the back of the finger the far middle-finger string, and return the little-

finger to its position. You now have two twisted strings passing between

the two little-fingers, two strings laced round the other fingers, and two loose

strings (which may represent thunder clouds) passing over the thumbs. Sixth.

Holding the hands with the fingers pointing upwards, put the tips of the

thumbs from below (or if it is easier, from above) into the small spaces between

the little-fingers and the twisted strings on them. Finally. With the thumbs

raise (or depress, as the case may be) the near ring-finger string, and separate

the hands so as to make the little-finger strings taut, turn the hands outwards

so that the palms are away from you, and at the same time throw or jerk the

thumb loops off the thumbs so that they hang away from you over the tightly

drawn strings between the little-fingers. These movements will cause the

strings between the little-fingers to untwist, making the lightning spring into

view. The diagram represents the figure when the thumb in the sixth movement

is inserted from below in the loop.

More briefly thus. Form Navaho Ring. Each thumb over 2 and takes up

one. Each middle-finger over one and takes up one. Each ring-finger over

one and takes up one. Each little-finger over one and takes up one. Each

thumb released, placed under (or over) the near little-finger string, and pressed

up (or down) while hands are rotated.

A Butterfly. As yet another of figures of this kind I will

give the formation of that known as a Butterfly—see figure xiv.

It is also derived from the North American Red Indians.

The Butterfly is produced as follows (Jayne, pp. 219—221). Begin with the

Navaho Opening, that is, make the first movements as when forming Lightning.

Second. Twist each index loop by rotating each index down toward you and up

again. In all make (say) three or four such twists on each index loop. Third.

Put the right thumb from below into the right index loop, and, without removing
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the index, eephrate the thumb from the index. Make movement T on the thumb

loops. Repeat tlie movement with the other hand. Fourth. Bring the hands

close together with the index and thumb of the one hand pointing toward the

index and thumb of the other hand; then hang the right index loop /3 on the tip

of the left index, and the right thumb loop 5 on the tip of the left thumb. Thus

Figure xiv. A Butterfly.

on the left index there are two loops, a and /3 ; on the left thumb there are two

loops, 7 and 5 ; and the right hand is free. Fifth. Put the tips of the right

index and thumb against the left thumb knuckle. Take up with the right index

from the proximal side the loop 5 and take up with the right thumb from the

distal side the loop y. With the right thumb and index grasp the loops a and

/S where they lie on the top of the left index. Remove the left hand. Then,

holding the right hand up, from the left, put the left index into the loop /3,

and the left thumb into the loop a. Finally. Placing the hands with

the thumbs up and the fingers pointing away from you, draw the hands slowly

apart, and when the strings have partially rolled up in the middle of the figure

pull down with the middle, the ring, and the little-fingers of each hand the far

index string and the near thumb string. The butterfly will now appear ; its

wings being held up by the strings extended between the widely separated

thumbs and index-fingers, and its proboscis appearing on the strings held

down by the other fingers.

More briefly thus. Form Navaho Ring. Twist index loops. Thumbs into

index loops and T to thumb loops. Take up figure afresh with thumbs and

index-fingers, and pull.

There are numerous other figures which can be formed from

an endless loop of string. For examples I refer the reader to

Mrs Jayne's fascinating volume.

String Tricks. Of string tricks there are two classes. One
comprises tricks in which the hand of one player is unexpectedly

caught by the other player pulling one string or certain strmgs

in the figure, whereas it is left free if other strings are pulled.

2i—

2
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The other comprises tricks where the string is released from or

is made to take some position which prima facie is impossible.

Aborigines are usually very proud of their ability to perform

such feats, and Mrs Jayne acutely remarks that it is " delightful

to witness their pleasure when they are successful, and their

gratification at the observer s astonishment, which it will amply

pay him to make very evident."

The Lizard Twist. I give a couple of examples of Catch-

Tricks. The first I select is one brought by Rivers and

Haddon from the Torres Straits. If a loop of string hangs

from (say) the left hand and if the right hand is twisted once

round one of the strings of the loop, the right hand or wrist

will be caught when the string is pulled by the left hand. If

the right hand is twisted first round one string of the loop and

then round the other string, it will in general be caught more

firmly. The Lizard movement is a way of taking the twist on

the second string so as to undo the effect of the first twist.

There is no difficulty in taking up the string so that the hand is caught.

To take up the string so that the hand is not caught, proceed thus (Rivers and

Haddon, Man, 1902, p. 152 ; Jayne, pp. 337—339). First. Hold the string by the

left hand, held rather high, the string hanging down on the right and left sides

in a loop. Second. Put the right hand away from you through the loop. Turn

the right hand round the right pendant string clockwise ; this will be done by

pointing the fingers to the right, then towards you, and then upwards. Third.

Keeping the fingers pointing upwards, move the right hand to the left between

your body and the pendant strings, then clockwise beyond the left pendant

string, then away from you, then to the right, and finally towards you through

the loop. Lastly. Draw the hand down and to the right, and it will come

free from the noose round the wrist.

The Caroline Catch. The other example of a Catch-Trick

which I propose to describe is derived from natives in the

Caroline Isles. First, form the figure described above (p. 361)

as Triple Diamonds. Next a second person puts his hand

through the middle-lozenge shaped space in this figure. Then

his wrist will be caught in a loop if the strings be dropped

from the right hand and the left-hand strings pulled to the

left. On the other hand his wrist will not be caught if the

strings be dropped from the left hand, and the right-hand

strings pulled to the right.
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Of the second class of string tricks there are numerous

examples familiar to English schoolboys—presumably well-

known over large parts of the world, and I conjecture of

considerable antiquity. In many old journals and books written

for boys these are described, but such descriptions are often

vague. Recently W. I. Pocock and Mrs Jayne have described

some of them in accurate language. I give as typical examples :

Threading the Needle ; the Yam Thief, otherwise known as the

Mouse Trick ; the Halter ; the Fly on the Nose ; the Hand-
Cuff ; and the Elusive Loop. Of these the first, second, and

fifth, are well-known. I owe my knowledge of the others to

Mrs Javne's book*.

Threading the Needle. This is a familiar trick. The effect

is that a small loop (representing the eye of the needle) held

by the left thumb and index is threaded by a string held by

the right hand throughout the motion. The trick is best

worked with a single piece of string, but a doubled string will

answer the purpose.

Threading the Needle is performed thus (Jayne, pp. 354—355). First.

Take hold of a piece of string, ABC, some three or four feet long, at a point B
about 8 inches from one end A. Hold this piece AB in the left palm and

hold the left hand so that the thumb points to the right. Second. Holding

the other end, C, of the string with the right hand, wind the rest of the string

BC, beginning with the B end, round the left thumb, above the thuml) when
moving towards the body and under the thumb when moving away from the

body. Leave about 6 inches at the end C unwound. Third. Out of this

6 inches, make a small loop by carrying the end of C held by the right hand

to the far side of the rest of the loop. With the tips of the left thumb and
index-finger hold this loop where the strings cross so that it stands erect.

Fourth. Pick up with the right thumb and index-finger the end A of the piece

of string AB whicli is in the left palm and open the left palm. Make this piece

of string AB taut, and carry the end of it A to the right close under iiud between

the left thumb and index. If this is properly done the piece AB will pass near

B between the far and near portions of the cross of the loops, and then will be

caught by the left thumb and index : thus between the thumb and index there

are now three pieces of string. Fifth. Make passes with the end A as if you

* The second is described by Rivers and Haddon in ^^lm, London,

October, 1902, pp. 141, 153. All, except the Hand-Cnfif, are described in

C. F. Jayne's Strinp Figures, New York, 1906, chapter viii. See, also,

W. I. Pocock, Folk-Lore, London, 1906, pp. 349—373.
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were trying to thread it through the erect loop held by the left hand. Lastly.

Pass the right hand sharply to the left over and beyond the left hand. This

will carry the piece AB beyond the two strings of the loop. Hence the loop

which is still held up by the left thumb and index appears to have been threaded

by the right-hand string, but in reality the part of the string which hangs from

the right hand is drawn between the left thumb and index up into the loop.

The Yam Thief or Mouse Trick. This is also a familiar

trick, and is interesting as having stories connected with its

performance.

The Yam Thief or Mouse Trick is effected thus (Jayne, pp. 340—343).

First. Hold the left hand with the palm facing you, the thumb upright,

and the fingers pointing to the right. With the right hand, loop the string

over the left thumb, cross the strings, and let one string hang down over

the palm and the other over the back of the left hand. Second. Pass the

right index from below under {i.e. on the proximal side of) the pendant

palmar string and then between the left thumb and index, and with the

palmar tip of the right index loop up a piece of the string hanging on the

back of the left hand. Pull this loop back between the left thumb and index

and on the upper (or distal) side of the left palmar string. Then with the right

index give the loop one twist clockwise, and put it over the left index. Pull the

two pendant strings in order to hold tight the loops on the thumb and index.

Third. In the same way pass the right index from below under the pendant

palmar string and then between the left index and middle-fingers, and with the

palmar tip of the right index loop up a piece of the pendant dorsal string.

Pull it back between the left index and the middle-fingers and on the upper side

of the left palmar string. With the right index give the loop one twist clock-

wise, and put it over the left middle-finger. Fourth. In the same way pick up

a loop of the pendant dorsal string, and put it on the left ring-finger. Fifth.

In the same way pick up a loop of the pendant dorsal string, and put it on the

left little-finger. Sixth. Take oft the left thumb loop, or slip it to the tip

of the thumb and hold it between the left thumb and index. The pendant

dorsal string on the left hand can be pulled to show that the loops are still on

the fingers. Finally. Pull the left pendant palmar string and all the string

will come away.

In one version of the story the thumb loop represents the owner of a yam

or cabbage patch. He is supposed to be asleep. The loops successively taken

up from the dorsal string represent the yams or cabbages dug up by a thief

from the patch, and secured by him in bundles on the fingers. The loop

coming off the thumb represents the owner waking, and going out to see what is

the matter. He walks down the dorsal side, sees the yams, pulls at the dorsal

string, is satisfied that his yams are still on the ground, and returns to catch

the thief. Meanwhile the thief walks down the palmar side of the hand, and as

the owner returns from the dorsal side, the left palmar string is pulled and the

thief disappears with the stolen yams.

Cheating the Halter. This is a trick of the Philippinoes.
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A halter is put round the neck, but by a movement, which in

effect reverses the turn on the neck, the string, when pulled,

comes off.

The Halter Trick is performed thus (Jayne, pp. 339—340). First. Put

your head through a loop of string, and let the rest of the loop hang down

in front of you. Second. Pass the right string round the neck from the left

side, draw the loop tight, and let it hang down in front of you. Third. Put

the hanging loop on the hands, and form Opening A. Fourth. Pass the index

loops over the head, and remove the hands and fingers from the other loops

;

a loop now hangs down in front of you. Lastly. If this loop, or either string

of it, be pulled all the strings will come off the neck.

We can vary the presentation by twisting the left string round the neck

from the right side. In this case we must use Opening B.

The Fly on the Xose. In this trick the string seems to

come away although looped on to the nose.

The Fly on the Nose is performed thus (Jayne, pp. 348—349). First.

Hold the string at some point with the thumb and index-finger of one

hand ; and take hold of the string at a place, some 9 or 10 inches off,

with the thumb and index of the other hand. Second. Make a small ring

hanging down by passing the right hand to the left and on the near side of

the string held by the left hand. There is now a long loop and a small

ring, both hanging down, the right string of the ring being the left string

of the loop. Third. Hold the place where the strings cross between the

teeth, the string originally held by the right hand being on the lower side.

Hold the strings or one string of the long loop with the left hand. Fourth.

Place the right index from the far side through the ring, taking the ring string

up to the root of the fingers. Close the right fist, and carry the fist (holding

the ring) round in a circle, first back to the far side, then to the right, and

80 on round the right string of the loop, to its original position. Fifth. Open

the index, keeping the rest of the fist shut, and put the tip of the index on the

tip of the nose. Finalbj. Let go with the mouth and pull the left string of the

loop. The whole string will then come away.

Of course the same result can be obtained if the ring is made by passing the

right hand to the left on the far side of the string held by the left hand, so that

when the cross is held in the mouth the string originally held by the right hand

is uppermost. But in this case the ring should be taken by the left index, which

is carried round the left string of the loop.

The Hand-Cuff Trick. This is a very ancient string trick.

Two players, P and Q, are connected thus. One end of a piece

of string is tied round P's right wrist, the other is tied round

his left wrist. Another piece of string is passed through the

space bounded by the string tied to P's wrist, his body, and his
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arms. The ends of this piece are then tied one on Q's right

wrist, and the other on Q's left wrist. The players desire to

free themselves from the entanglement.

The Hand-Cuff Trick. Either player can free himself thus. First. P takes

up a small loop L near the middle of the string tied to his wrists, and pulling

the loop to one of Q's wrists on the palmar side of it, pa-.^ses it, from the elbow

to the finger side, between Q's wrist and the loop on that wrist. Next, P draws

this loop L sufficiently far through until he is able to pass it, first over Q's

hand, and then under the wrist loop on the outer side of Q's wrist, passing this

time from the finger to the elbow side of Q. When in this position P can pull

his own string clear of Q on the outer side of Q's arm.

The Elusive Loop. This is a trick in which a loop is offered

to some one, and then unexpectedly disappears. Almost any

of the forms in which the string is so arranged that if pulled it

runs off the fingers—and there are many examples of this kind,

ex. gr. the Yam Thief—lends itself to this presentation. I give

an instance derived from the Torres Straits where the loop is

supposed to represent a Yam.

The offer of the Elusive Yam is performed thus (Jayne, pp. 352—354). First.

Take up the string in the first position. Second. Pass each index away from

you over the little-finger string and to the far side of it, draw the string towards

you in the bend of the index, and then turn the index up towards you in

its usual position, thus twisting the string round the tip of the finger. Third.

Pass each thumb away from you under the far index string, pick up from below

on the back of the thumb the near index string which crosses the palm

obliquely, and return the thumb under the near thumb string to its original

position. Fourth. Pass each little-finger towards you over the far index

string, and pick up from below on the back of the little -finger the near string

which passes directly from hand to hand, and return the little-finger. Fifth.

Pass each thumb away from you, and pick up from below the near string

of the figure, and return the thumb. Lastly. Release the loop from the

left index, and hold it erect between the left index and thumb. This loop

represents a Yam.

One boy, who is supposed to be hungry, says Have you any food for me ?

Thereupon another boy, who has made the figure, offers the loop or Yam to

the first boy saying, Take it if you can. On this the first boy grabs at the

Yam, while the second boy pulls the right-hand strings. If the former is quick

enough he gets the Yam, but if not, it disappears, and all the strings with it.

The same trick can be repeated with the right hand.

More briefly thus. First position. Index-fingers, take up twist on far

string. Thumbs, under one, pick up palmar near index string, and return

imder two. Little fingers, pick up near string. Thumbs, pick up near string.

Release loop from left index.
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There also are some string tricks which must be fjimiliar

to most of my readers. I give as well-known examples the

Button-Hole Trick and the Loop Trick. These require no skill

and present no difficulty. It is with some hesitation that I

describe them, but age gives them a certain claim. I have no

idea when or by whom they were invented. The devices used

are so obvious that the tricks will hardly bear repetition.

The Button-Hole Trick. In this a loop of string is passed

through a button-hole or ring, and on each side of the hole a

finger or thumb is put into the loop on that side. The object

is to free the loop from that hole. It may be done in several

ways which however do not differ in principle. I give two

methods.

The Button-Hole Trick may be done thus. First. Pass a loop of string

through a button-hole or key-ring. Second. Hold the thumbs npripht, and

insert them from below in the two loops one on each side of the button-hole.

Move the hands a little out from the body and towards each other. Third. Hook
the right little-finger into the right-hand string of the left thumb loop, and pull

it across to the right hand. Fourth. Pass the left hand above the right little-

finger loop, hook the left little-finger into the left hand string of the right thumb
loop and pull it across to the left hand. Fifth. Drop the right thumb loop and

put the right thumb into the right little-finger loop. Finally. Withdraw both

little-fingers, and separate the hands ; the string will then come off the button-

hole. In fact the effect of the movements described is to get both thumbs in

one loop.

This trick may be also performed by two people, P and Q, by the following

movements, the description of which I take from Pocoek's paper in Folk-

Lore, 1906, p. 355. First. Pass a loop of the string through a ring. Second.

P, holding his thumbs upright, inserts them from below in the two loops,

one ou each side of the x*ing. The string nearest him will be the radial, that

farthest from him the ulnar string Third. Q, who is facing P, puts his

left index from below into the loop on P's right thumb. Q then takes up on

the back of his left index-finger the ulnar string at some point, say H, of it

between the ring and P's right thumb. At the same time Q, with the inside of

his left little-finger, hojks the same string at some point between // and P'a

right thumb and draws it towards himself. Thus there is now one loop on

the back of Q's left index-finger and another on the inside of his left little-

finger. Fourth. Q places the tip of his left index-finger on the tip of P's right

thumb and transfers the loop on that finger to P's thumb. At the same time

Q draws the little-finger loop well away towards P's left side. Fifth. Q pusbes

his left index from above into the loop near P's left thumb but on the other side

of the ring, and with the back of the finger he picks up the radial string.

Sixth. Q transfers this index loop to P's right thumb, by touching the tips ns
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before. Seventh. Q grasps the ring with his right hand, and at the same time

drops the little-finger loop. Finally. P separates his hands and the ring

comes away from the string.

The Loop Trick is merely an illustration of how easily an

unobservant person can be deceived. It requires two persons,

P and Q, and is performed thus.

The Loop Trick. A string is looped on the index-fingers held upright of

a player P : thus there are two parallel strings, a near and a far one. The loop

is taken up by another player, Q, thus. First. Q presses his left index on both

strings about half-way between P's hands and holds them firmly down.

Second. P moves his right index over the strings until the tip meets the tip of

his left index, and if he likes shifts the right index loop from the right finger to

the base of the left finger. Lastly. Q slips his left index off the distal string,

and at the same time pulls the left index, which now rests on only one string,

and of course the loop comes away.

This is the common presentation of the trick, but W. I. Pocock remarks

that it is somewhat less easy to detect the method used if the strings be

struck sharply down with the right hand at the instant when the left index

is pulled.

The Waistcoat Puzzle. There is one other trick of this type

which was, I believe, published for the first time in this book

in 1888. It is applicable to a man wearing a coat and waist-

coat of the usual pattern. The problem is to take off the

waistcoat, which may be unbuttoned, without pulling it over

the head and without taking off the coat.

Those of my readers who are conversant with the history of

white magic will recollect that Pinetti, the celebrated conjurer

of the eighteenth century, in his performance at Versailles

before the French court in 1782, relieved some of the courtiers

of their shirts without disturbing the rest of their attire. It

was his most striking trick, and not a very seemly one. In

fact he threw a shawl over the person operated on, and then

pulled the back of the shirt over his head ; an obvious method

which I have barred in the waistcoat trick. The victim and

the spectators were uncritical, and Pinetti's technical skill was

sufficient to conceal the modus operandi from them.

The Waistcoat Puzzle can be done thus. First. Take the left corner (or

lappel) of the coat and push it through the left armhole of the waistcoat,

from outside to inside. Second. Put the left hand and arm through the same
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armhole. The effect of this is to leave the left arm hole of the waistcoat at the
back of the neck. TJiird. Take the right lappel of the coat and put it through
the left armhole of the waistcoat. Fourth. Put the right hand and arm
through the same armhole. Finally. Pass the waistcoat down the right sleeve

of the coat.

I should have liked to add another section to this chapter

on knots and lashings. Some references to the mathematics of

the subject will be found in papers by Listing, Tait, Boddicker *,

but its presentation in a popular form is far from easy, and this

chapter has already run to dimensions which forbid any ex-

tension of it.

* J. B. Listing, Vorstudien zur Topologie, Die Studien, Gottingen, 1847,

Part X ; 0. Boddicker, Erweiteruvg dcr Gauss'schen Theorie der Venchlinqungen,

Stuttgart, 1876 ; and P. G. Tait, Collected Scientific Papers, Cambridge, vol. i,

1898, pp. 273—347. The more common forms of knots and lashings and their

special uses are described in most, naval, engineering, and scouting manuals.
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CHAPTER XVII.

ASTROLOGY.

Astrologers professed to be able to foretell the future, and

within certain limits to control it. I propose to give in this

chapter a concise account of the rules they used for this purpose*.

I have not attempted to discuss the astrology of periods

earlier than the middle ages, for the technical laws of the

ancient astrology are not known with accuracy. At the same

time there is no doubt that, as far back as we have any definite

historical information, the art was practised in the East ; that

thence it was transplanted to Egypt, Greece, and Rome ; and

that the medieval astrology was founded on it. It is probable

that the rules did not differ materially from those described in

this chapterf , and it may be added that the more intelligent

thinkers of the old world recognized that the art had no valid

pretences to accuracy. I may note also that the history of the

development of the art ceases with the general acceptance of

the Copernican theory, after which the practice of astrology

rapidly became a mere cloak for imposture.

* I have relied mainly on the Manual of Astrology by Eaphael—whose real

name was R. C. Smith—London, 1828, to which the references to Eaph6,el

hereafter given apply ; and on Cardan's writings, especially his commentary on

Ptolemy's work and his Geniturarum Exempla. I am indebted also for various

references and gossip to Whewell's History of the Inductive Sciences ; to

various works by Raphael, published in London between 1825 and 1832 ; and

to a pamphlet by M. Uhlemann, entitled Grundziige der Astronomie und Astro-

logie, Leipzig, 1857.

t On the influences attributed to the planets, see The Dialogue of Bardesan

on Fate, translated by W. Cureton in the Spicilegium Syriacum, London, 1855.
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All the rules of the medieval astrology—to which I confine

myself—are based on the Ptolemaic astronomy, and originate

in the Tetr-abiblos* which is said, it may be falsely, to have

been written by Ptolemy himself. The art was developed by

numerous subsequent writers, especially by Albohazenf, and

Firmicus. The last of these collected the works of most of

his predecessors in a volume
J, which remained a standard

authority until the close of the sixteenth century.

I may begin by reminding the reader that though there

was a fairly general agreement as to the methods of procedure

and interpretation—which alone I attempt to describe—yet

there was no such thing as a fixed code of rules or a standard

text-book. It is therefore difficult to reduce the rules to any

precise and definite form, and almost impossible, within the

limits of a chapter, to give detailed references. At the same

time the practice of the elements of the art was tolerably well

established and uniform, and I feel no doubt that my account,

so far as it goes, is substantially correct.

There were two distinct problems with which astrologers

concerned themselves. One was the determination in general

outline of the life and fortunes of an enquirer : this was known

as natal astrology, and was effected by the erection of a scheme

of nativity. The other was the means of answering any specific

question about the individual : this was known as horary

astrology. Both depended on the casting or erecting of a

horoscope. The person for whom it was erected was known as

the native.

A horoscope was cast according to the following rules §. The

space between two concentric and similarly situated squares

was divided into twelve spaces, as shown in the annexed dia-

gram. These twelve spaces were known technically as houses
;

they were numbered consecutively 1, 2, ..., 12 (see figure); and

* There is an English translation by J. Wilson, London [n.d.] ; and a French

translation is given in Raima's edition of Ptolemy's works,

t De Judiciis Astrorum, ed. Liechtenstein, Basle, 1571.

X Astronomicorum, eight books, Venice, 1499.

§ Raphael, pp. 91—1U9.
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were described as the first house, the second house, and so on.

The dividing lines were termed cusps: the line between the

houses 12 and 1 was called the cusp of the first house, the line

between the houses 1 and 2 was called the cusp of the second

house, and so on, finally the line between the houses 11 and 12

was called the cusp of the twelfth house. Each house had also

a name of its own—thus the first house was called the ascendant

house, the eighth house was called the house of death, and so

on—but as these names are immaterial for my purpose I shall

not define them.
" Next, the positions which the various astrological signs

and planets had occupied at some definite time and place (for

instance, the time and place of birth of the native, if hi?

nativity was being cast) were marked on the celestial sphere.

This sphere was divided into twelve equal spaces by great

circles drawn through the zenith, the angle between any two

consecutive circles being 30°. The first circle was drawn

through the East point, and the space between it and the next

circle towards the North corresponded to the first house, and

sometimes was called the first house. The next space, proceed-

ing from East to North, corresponded to the second house, and
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SO on. Thus each of the twelve spaces between these circles

corresponded to one of the twelve houses, and each of the circles

to one of the cusps. -

In delineating* a horoscope, it was usual to begin by in-

serting the zodiacal signs. A zodiacal sign extends over 30°,

and was marked on the cusp which passed through it : by its

side was written a number indicating the distance to which its

influence extended in the earlier of the two houses divided by

the cusp. Next the positions of the planets in these signs were

calculated, and each planet was marked in its proper house and

near the cusp belonging to the zodiacal sign in which the planet

was then situated : it was followed by a number indicating its

right ascension measured from the beginning of the sign. The

name of the native and the date for which the horoscope was

cast were inserted usually in the central square. The diagram

near the end of this chapter is a facsimile of the horoscope of

Edward VI as cast by Cardan and will serve as an illustration

of the above remarks.

We are now in a position to explain how a horoscope was

read or interpreted. Each house was associated with certain

definite questions and subjects, and the presence or absence in

that house of the various signs and planets gave the answer to

these questions or information on these subjects.

These questions cover nearly every point on which informa-

tion would be likely to be sought. They may be classified

roughly as follows. For the answer, so far as it concerns the

native, to alLquestions connected with his life and health, look

in house 1 ; for questions connected with his wealth, refer to

house 2 ; for his kindred and communications to him, refer to

3 ; for his parents and inheritances, refer to 4 ; for his children

and amusements, refer to 5 ; for his servants and illnesses, refer

to 6 ; for his marriage and amours, refer to 7 ; for his death,

refer to 8 ; for his learning, religion, and travels, refer to 9 ; for

his trade and reputation, refer to 10; for his friends, refer to

11 ; and finally for questions connected with his enemies, refer

to house 12. —

"

• Eaphiiel, pp. 118—131.
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I proceef\ to describe briefly the influences of the planets,

and shall then mention those of the zodiacal signs ; I should

note however that in practice the signs were in many respects

considered to be more influential than the planets.

The astrological " planets " were seven in number, and in-

cluded the Sun and the Moon. They were Saturn or the Great

Infortune, Jupiter or the Great Fortune, Mars or the Lesser

Infortune, the Sun, Venus or the Lesser Fortune, Mercury, and

the Moon : the above order being that of their apparent times

of rotation round the earth.

Each of them had a double signification. In the first place

it impressed certain characteristics, such as good fortune, feeble-

ness, &c., on the dealings of the native with the subjects con-

nected with the house in which it was located; and in the

second place it imported certain objects into the house which

would affect the dealings of the native with the subjects of that

house.

"- To describe the exact influence of each planet in each house

would involve a long explanation, but the general effect of

their presence may be indicated roughly as follows*. The

presence of Saturn is malignant : that of Jupiter is propitious

:

that of Mars is on the whole injurious: that of the Sun indicates

respectability and moderate success: that of Venus is rather

favourable : that of Mercury implies rapid practical action : and

lastly the presence of the Moon merely faintly reflects the

influence of the planet nearest her, and suggests rapid changes

and fickleness. Besides the planets, the Moon's nodes and

some of the more prominent fixed starsf also had certain

influences. —
These vague terms may be illustrated by taking a few

simple cases.

For example, in casting a nativity, the life, health, and

general career of the native were determined by the first or

ascendant house, whence comes the expression that a man's

fortune is in the ascendant. Now the most favourable planet

* Eaphael, pp. 70—90, pp. 204—209.

t Eapliael, pp. 129—131.
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was Jupiter. Therefore, if at the instant of birth Jupiter was

in the first house, the native might expect a long, happy,

healthy life; and being born under Jupiter he would have a

"jovial" disposition. On the other hand, Saturn was the most

unlucky of all the planets, and was as potent as malignant. If

at the instant of birth he was in the first house, his potency

might give the native a long life, but it would be associated

with an angry and unhappy temper, a spirit covetous, revengeful,

stern, and unloveable, though constant in friendship no less than

in hate, which was what astrologers meant by a "saturnine"

character. Similarly a native born under Mercury, that is, ^\^th

Mercury in the first house, would be of a mercurial nature,

while anyone born under Mars would have a martial bent.

Moreover it was the prevalent opinion that a jovial person

would have his horoscope affected by Jupiter, even if that

planet had not been in the ascendant at the time of birth.

Thus the horoscope of an adult depended to some extent on his

character and previous life. It is hardly necessary to point

out how easily this doctrine enabled an astrologer to make the

prediction of the heavens agree with facts that were known

or probable.

In the same way the other houses are affected. For in-

stance, no astrologer, who believed in the art, would have

wished to start on a long journey when Saturn was in the

ninth house or house of travels ; and if, at the instant of birth,

Saturn was in that house, the native would always incur con-

siderable risk on his journeys.

Moreover every planet was affected to some extent by its

aspect (conjunction, opposition, or quadrature) to every other

planet according to elaborate rules* which depended on their

positions and directions of motion : in particular the angular

distance between the Sun and the Moon—sometimes known

as the " part of fortune "—was regarded as specially important,

and this distance affected the whole horoscope. In general,

conjunction was favourable, quadrature unfavourable, and oppo-

sition ambiguous.

Eaphael, pp. 132—170.

B. R. 25
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Each planet not only influenced the subjects in the house

in which it was situated, but also imported certain objects into

the house. Thus Saturn was associated with grandparents,

paupers, beggars, labourers, sextons, and gravediggers. If, for

example, he was present in the fourth house, the native might

look for a legacy from some such person; if he was present

in the twelfth house, the native must be careful of the con-

sequences of the enmity of any such person; and so on.

Similarly Jupiter was associated generally with lawyers,

priests, scholars, and clothiers ; but, if he was conjoined with a

malignant planet, he represented knaves, cheats, and drunkards.

Mars indicated soldiers (or, if in a watery sign, sailors on ships

of war), masons, doctors, smiths, carpenters, cooks, and tailors

;

but, if afflicted with Mercury or the Moon, he denoted the

presence of thieves. The Sun implied the action of kings,

goldsmiths, and coiners ; but, if afflicted by a malignant planet,

he denoted false pretenders. Venus imported musicians, em-

broiderers, and purveyors of all luxuries; but, if afflicted,

prostitutes and bullies. Mercury imported astrologers, philo-

sophers, mathematicians, statesmen, merchants, travellers, men
of intellect, and cultured workmen ; but, if afflicted, he signified

the presence of pettifoggers, attorneys, thieves, messengers,

footmen, and servants. Lastly, the presence of the Moon

introduced sailors and those engaged in inferior offices.

I come now to the influence and position of the zodiacal

signs. So far as the first house was concerned, the sign of the

zodiac which was there present was even more important than

the planet or planets, for it was one of the most important

indications of the duration of life.

Each sign was connected with certain parts of the body

—

ex. gr. Aries influenced the head, neck and shoulders—and that

part of the body was affected according to the house in which

the sign was. Further each sign was associated with certain

countries and connected the subjects of the house in which the

sign was situated with those countries: ex. gr. Aries was

associated especially with events in England, France, Syria,

Verona, Naples, &c.
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The sign in the first house determined also the character

and appearance of the native*. Thus the character of a native

born under Aries (m) was passionate; under Taurus (/) was

dull and cruel ; under Gemini (m) was active and ingenious

;

under Cancer (/) was weak and yielding ; under Leo (7/^) was

generous, resolute, and ambitious ; under Virgo (/) was sordid

and mean ; under Libra {m) was amorous and pleasant ; under

Scorpio (/) was cold and reserved ; under Sagittarius (m) was

generous, active, and jolly; under Capricorn (/) was weak and

narrow ; under Aquarius {in) was honest and steady ; and under

Pisces (/) was phlegmatic and effeminate.

Moreover the signs were regarded as alternately masculine

and feminine, as indicated above by the letters m or / placed

after each sign. A masculine sign is fortunate, and all planets

situated in the same house have their good influence rendered

thereby more potent and their unfavourable influence mitigated.

But all feminine signs are unfortunate, their direct effect is evil,

and they tend to nullify all the good influence of any planet

which they afflict {i.e. with which they are connected), and to

increase all its evil influences, while they also import an element

of fickleness into the house and often turn good influences into

malignant ones. The precise effect of each sign was different

on every planet.

I think the above account is sufficient to enable the reader

to form a general idea of the manner in which a horoscope was

cast and interpreted, and I do not propose to enter into further

details. This is the less necessary as the rules—especially as

to the relative importance to be assigned to various planets

when their influence was conflicting—were so vague that astro-

logers had little difficulty in finding in the horoscope of a client

any fact about his life of which they had information or any

trait of character which they expected him to possess.

That this vagueness was utilized by quacks is notorious,

but no doubt many an astrologer in all honesty availed himself

of it, whether consciously or unconsciously. It must be re-

membered also that the rules were laid down at a time when
* Raphael, pp. 01—09.

25—2
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men were unacquainted with exact sciences, with the possible

exception of mathematics, and further that, if astrology had

been reduced to a series of inelastic rules applicable to all horo-

scopes, the number of failures to predict the future correctly

would have rapidly led to a recognition of the folly of the art.

As it was, the failures were frequent and conspicuous enough

to shake the faith of most thoughtful men. Moreover it was a

matter of common remark that astrologers showed no greater

foresight in meeting the difficulties of life than their neigh-

bours, while they were neither richer, wiser, nor happier for

their supposed knowledge. But though such observations were

justified by reason they were often forgotten in times of diffi-

culty and danger. A prediction of the future and the promise

of definite advice as to the best course of action, revealed by the

heavenly bodies themselves, appealed to the strongest desires of

all men, and it was with reluctance that the futility of the

advice w^as gradually recognized.

The objections to the scheme had been stated clearly by'

several classical writers. Cicero* pointed out that not one of

the futures foretold for Pompey, Crassus, and Caesar had been

verified by their subsequent lives, and added that the planets,

being almost infinitely distant, cannot be supposed to affect

us. He also alluded to the fact, which was especially pressed by

Pliny f, that the horoscopes of twins are practically identical

though their careers are often very different, or as Pliny put it,

every hour in every part of the world are born lords and slaves,

kings and beggars.

In answer to the latter obvious criticism astrologers replied

by quoting the anecdote of Publius Nigidius Figulus, a cele-

brated Roman astrologer of the time of Julius Caesar. It is

said that when an opponent of the art urged as an objection

the different fates of persons born in two successive instants,

Nigidius bade him make two contiguous marks on a potter's

wheel, which was revolving rapidly near them. On stopping

the wheel, the two marks were found to be far removed from

* Cicero, De Divinatione, ii, 42.

f Pliny, Historia NaturaliSy vii, 49 ; xxix, 1.
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each other. Nigidius received the name of Figulus, the

potter, in remembrance of this story, but his argument, says

St Augustine*, who gives us the narrative, was as fragile as

the ware which the wheel manufactured.

On the other hand Seneca and Tacitus may be cited as

being on the whole favourable to the claims of astrology,

though both recognized that it was mixed up with knavery and

fraud. An instance of successful prediction which is given

by the latter of these writersf may be used more correctly as

an illustration of how the ordinary professors of the art varied

their predictions to suit their clients and themselves. The

story deals with the first introduction of the astrologer Thra-

syllus to the emperor Tiberius. Those who were brought to

Tiberius on any important matter were admitted to an inter-

view in an apartment situated on a lofty cliff in the island

of Capreae. They reached this place by a narrow path over-

hanging the sea, accompanied by a single freedman of great

bodily strength ; and on their return, if the emperor had con-

ceived any doubts of their trustworthiness, a single blow buried

the secret and its victim in the ocean. After Thrasyllus had,

in this retreat, stated the results of his art as they concerned

the emperor, the latter asked the astrologer whether he had

calculated how long he himself had to live. The astrologer

examined the aspect of the stars, and while he did this showed,

as the narrative states, hesitation, alarm, increasing terror, and

at last declared that the present hour was for him critical,

perhaps fatal. Tiberius embraced him, and told him he was

right in supposing he had been in danger but that he should

escape it ; and made him thenceforth a confidential counsellor.

But Thrasyllus would have been but a sorry astrologer had he

not foreseen such a question and prepared an answer which he

thought fitted to the character of his patron.

A somewhat similar story is told;]: of Louis XI of France.

St Augustine, De Civitate Dei, bk. v, chap, iii; Opera Omnia, ed. Migne,

vol. vii, p. 143.

t Annales, vi, 22 : quoted by Whewell, History of the Inductive Sciences,

vol. I, p. yi3.

+ Personal Characteristics from French History, by Baron F. RotLscliilJ,
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He sent for a famous astrologer whose death he was meditating

and asked him to show his skill by foretelling his own future.

The astrologer replied that his fate was uncertain, but it was

so inseparably interwoven with that of his questioner that the

latter would survive him but by a few hours, whereon the

superstitious monarch not only dismissed him uninjured, but

took steps to secure his subsequent safety. The same anecdote

is also related of a Scotch student who, being captured by

Algerian pirates, predicted to the Sultan that their fates were

so involved that he should predecease the Sultan by only a few

weeks. This may have been good enough for a barbarian, but

with most civilized monarchs probably it would be less effectual,

as certainly it is less artistic, than the answer of Thrasyllus.

I may conclude by mentioning a few notable cases of

horoscopy.

Among the most successful instances of horoscopy enumerated

by Raphael * is one by W. Lilly, given in his Monarchy or No
Monarchy, published in 1651, in which he predicted a plague

in London so terrible that the number of deaths should exceed

the number of coffins and graves, to be followed by " an exorbi-

tant fire." The prediction w^as amply verified in 1665 and

1666. In fact Lilly's success was embarrassing, for the

Committee of the House of Commons, which sat to investigate

the causes of the fire and ultimately attributed it to the papists,

thought that he must have known more about it than he chose

to declare, and on October 25, 1666, summoned him before them:

Lilly proved himself a match for his questioners.

An even more curious instance of a lucky hit is told of

Flamsteedf, the first astronomer royal. It is said that an old

lady who had lost some property wearied Flamsteed by her

perpetual requests that he would use his observatory to discover

London, 1896, p. 10. The story was introduced by Sir Walter Scott in Quentin

Durward, chap. xv.

* Manual of Astrology, p. 37.

t The story, though in a slightly different setting, is given in The London

Chrovicle, Dec. 3, 1771, and it is there stated that Flamsteed attributed the

result to the direct action of the devil.
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her property for her. At hist, tired out with her importunities,

he determined to show her the folly of her demand by making

a prediction, and, after she had found it false, to explain

again to her that nothing else could be expected. Accordingly

he drew circles and squares round a point that represented her

house and filled them with all sorts of mystical symbols.

Suddenly striking his stick into the ground he said, " Dig there

and you will find it." The old lady dug in the spot thus

indicated, and found her property ; and it may be conjectured

that she believed in astrology for the rest of her life.

Perhaps the belief that the royal observatory was built for

such purposes may still be held, for De Morgan, writing in

1850, says that "persons still send to Greenwich to have their

fortunes told, and in one case a young gentleman wrote to know

who his w4fe was to be, and what fee he was to remit."

It is easier to give instances of success in horoscopy than of

failure. Not only are all ambiguous predictions esteemed to

be successful, but it is notorious that prophecies which have

been verified by the subsequent course of events are remembered

and quoted, while the far more numerous instances in which the

prophecies have been falsified are forgotten or passed over in

silence.

As exceptionally well-authenticated instances of failures

I may mention the twelve cases collected by Cardan in his

Geniturarum Exempla. These are good examples because

Cardan was not only the most eminent astrologer of his time,

but was a man of science, and perhaps it is not too much to

say was accustomed to accurate habits of thought; moreover,

I believe he was honest in his belief in astrology. To English

readers the most interesting of these is the horoscope ot

Edward VI of England, the more so as Cardan has left a full

account of the affair, and has entered into the reasons of his

failure to predict Edward's death.

To show how Cardan came to be mixed up in the transaction

I should explain that in 1552 Cardan went to Scotland to

prescribe for John Hamilton, the archbishop of St Andrews, who
was ill with asthma and dropsy and about whose treatment the
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ph}-icians had disagreed*. On his return through London,

Carcxn stopped with Sir John Cheke, the Professor of Greek at

CamHdge, who was tutor to the young king. Six months

previously, Edward had been attacked by measles and small-pox

whch had made his health even weaker than before. The

King's guardians were especially anxious to know how long he

would live, and they asked Cardan to cast Edward's nativity

with particular reference to that point.

The Italian was granted an audience in October, of which

he wrote a full account in his diary, quoted in the Geniturarum

Exempla. The king, says hef, was "of a stature somewhat

below the middle height, pale faced, with grey eyes, a grave

aspect, decorous, and handsome. He was rather of a bad habit

of body than a sufferer from fixed diseases, and had a somewhat

projecting shoulder-blade." But, he continues, he was a boy of

most extraordinary wit and promise. He was then but fifteen

years old and he was already skilled in music and dialectics, a

master of Latin, English, French, and fairly proficient in Greek,

Italian, and Spanish. He " filled with the highest expectation

every good and learned man, on account of his ingenuity and

suavity of manners....When a royal gravity was called for, you

would think that it was an old man you saw, but he was bland

and companionable as became his years. He played upon the

lyre, took concern for public affairs, was liberal of mind, and in

these respects emulated his father, who, while he studied to be

[too] good, managed to seem bad." And in another place
J:
he

* Luckily they left voluminous reports on the case and the proper treatment

for it. The only point on which there was a general agreement was that the

phlegm, instead of being expectorated, collected in his Grace's brains, and that

thereby the operations of the intellect were impeded. Cardan was celebrated

for his success in lung diseases, and his remedies were fairly successful in

curing the asthma. His fee was 500 crowns for travelling expenses from Pavia,

10 crowns a day, and the right to see other patients; the archbishop actually

gave him 2300 crowns in money and numerous presents in kind ; his fees from

other persons during the same time must have amounted to about an equal sum

(see Cardan's De Libris Propriis, ed. 1557, pp. 159—175 ; Gonsilia Medica,

Opera, vol. ix, pp. 124—148 ; De Vita Propria, ed. 1557, pp. 138, 193 et seq.).

t I quote from Morley's translation, vol. n, p. 135 et se^'

X De Reruvi Varietate, p. 285.
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describes him as "that boy of wondrous hopes." At the close

of the interview Cardan begged leave to dedicate to Edward a

work on which he was then engaged. Asked the subject of the

woi-k, Cardan replied that he began by showing the cause of

comets. The subsequent conversation, if it is reported correctly,

shows good sense on the part of the young king.

IJ57 nicimdecimoSlcb.nor,

lymmUS'd VieridielondinJ,

R*^ Hv^tU Uiodrdi SexH,

./ 9j -V -iv "^

I have reproduced above a facsimile of Cardan's original

drawing of Edward's horoscope. The horoscope was cast and

read with unusual care. I need not quote the minute details

given about Edward's character and subsequent career, but

obviously the predictions were founded on the impressions

derived from the above-mentioned interview. The conclusion

about his length of life was that he would certainly live past

middle age, though after the age of 55 years 3 months and

17 days various diseases would fall to his lot*.

In the following July the king died, and Cardan felt it

necessary for his reputation to explain the cause of his error.

The title of his dissertation is Quae i^ost consideravi de eodemf.

In effect his explanation is that a weak nativity can never be

* Geniturarum Exempla, p. 19.

t Ibid., p. 23.
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predicted from a single horoscope, and that to have ensured

success he must have cast the nativity of every one with whom
Edward had come intimately into contact; and, failing the

necessary information to do so, the horoscope could be regarded

only as a probable prediction.

This was the argument usually offered to account for non-

success. A better defence would have been the one urged by

Raphael* and by Southey f that there might be other planets

unknown to the astrologer which had influenced the horoscope,

but I do not think that medieval astrologers assigned this

reason for failure.

I have not alluded to the various adjuncts of the art, but

astrologers so frequentl}^ claimed the power to be able to raise

spirits that perhaps I may be pardoned for remarking that I

believe some of the more important and elaborate of these

deceptions were effected not infrequently by means of mirrors

and lenses or perhaps by the use of a magic lantern, the pictures

beinof sometimes thrown on to a fixed surface or a mirror and

at other times on to a cloud of smoke which caused the images

to move and finally disappear in a fantastic way capable of

many explanations!.

I would conclude by repeating again that though the

practice of astrology was so often connected with impudent

quackery, yet one ought not to forget that most physicians

and men of science in medieval Europe were astrologers or

believers in the art. These observers did not consider that its

rules were definitely established, and they laboriously collected

much of the astronomical evidence that was to crush it. Thus,

though there never was a time when astrology was not practised

by knaves, there was a period of intellectual development when

it was honestly accepted as a difficult but a real science.

* The Familiar Astrologer, London, 1832, p. 248.

t The Doctor, chap. xcii.

X See ex. gr. the life of Cellini, chap, siii, Eoscoe's translation, pp. 144

—

146. See also Sir David Brewster's Letters on Natural Magic,
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CHAPTER XVIII.

CRYPTOGRAPHS AND CIPHERS.

The art of constructing cryptographs or ciphers—intelligible

to those who know the key and unintelligible to others—has

been studied for centuries. Their usefulness on certain occasions,

especially in time of war, is obvious, while their right interpre-

tation may be a matter of great importance to those from whom
the key is concealed. But the romance connected with the

subject, the not uncommon desire to discover a secret, and the

implied challenge to the ingenuity of all from whom it is hidden,

have attracted to the subject the attention of many to whom
its utility is a matter of indifference.

Among the best known of the older authorities on the

subject are J. Tritheim of Spanheim, G. Porta of Naples,

G. Cardan, J. F. Niceron, J. Wilkins, and E. A. Poe. More

modern writers are J. E. Bailey in the Encyclopaedia Britan-

nica, E. B. von Wostrowitz of Vienna, 1881, F. Delastelle of

Paris, 1902, and J. L. Kluber of Tubingen, 1909. My know-

ledge, however, is largely the result of casual reading, and I

prefer to discuss the subject as it has presented itself to me,

with no attempt to make it historically complete.

Most writers use the words cryptograph and cipher as

synonymous. I employ them, however, with different mean-

ings, which I proceed to define.

A cryptograph may be defined as a manner of writing in

which the letters or symbols employed are used in their normal

sense, but are so arranged that the communication is intelligible
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only to those possessing the key: the word is also sometimes

used to denote the communication made. A simple example

is a communication in which every word is spelt backwards.

Thus:

ymene deveileb ot eh gniriter troper noitisop no ssorc daor.

A cipher may be defined as a manner of writing by characters

arbitrarily invented or by an arbitrary use of letters, words, or

characters in other than their ordinary sense, intelligible only

to those possessing the key: the word is also sometimes used

to denote the communication made. A simple example is when
each letter is replaced by the one that immediately follows it in

the natural order of the alphabet, a being replaced by 6, b by c,

and so on, and finally 2 by a. In this cipher the above message

would read:

fofnz cfm^fwfe up cf sfujsjoh sfqpsu qptjujpo po dsptt spbe.

In both cryptographs and ciphers the essential feature is

that the communication may be freely given to all the world

though it is unintelligible save to those who possess the key.

The key must not be accessible to anyone, and if possible it

should be known only to those using the cryptograph or

cipher. The art of constructing a cryptograph lies in the

concealment of the proper order of the essential letters or

words : the art of constructing a cipher lies in concealing what

letters or words are represented by the symbols used.

In an actual communication cipher symbols may be arranged

cryptographically, and thus further hinder a reading of the

message. Thus the message given above might be put in a

cryptographic cipher as

ZTifof efiufjmfc pufc hojsjufs uspqfs opjujtptq op ttpsd ebps.

If the message were written in a foreign language it would

further diminish the chance of it being read by a stranger

through whose hands it passed. But I may confine myself to

messages in English, and for the present to simple cryptographs

and ciphers.

A communication in cryptograph or cipher must be in
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writing or in some permanent form. Thus to make small

muscular movements—such, ex. gr., as talking on the fingers,

or breathing long and short in the Morse dot and dash system,

or making use of pre-arranged signs by a fan or stick, or

flashing signals by light— do not here concern us.

The mere fixct that the message is concealed or secretly

conveyed does not make it a cryptograph or cipher. The
majority of stories dealing with secret communications are

concerned with the artfulness with which the messasfe is con-

cealed or conveyed and have nothing to do with cryptographs

or ciphers. IMany of the ancient instances of secret communi-

cation are of this type. Illustrations are to be found in

messages conveyed by pigeons, or wrapped round arrows shot

over the head of a foe, or written on the paper wrapping of a

cigarette, or by the use of ink which becomes visible only when
the recipient treats the paper on which it is written by some

chemical or physical process.

Again, a communication in a foreign language or in any

recognized notation like shorthand is not an instance of a

cipher. A letter in Chinese or Polish or Russian might be

often used for conveying a secret message from one part of

England to another, but it fails to fulfil our test that if

published to all the world it would be concealed, unless sub-

mitted to some special investigation. On the other hand, in

practice, foreign languages or systems of shorthand which are

but little known may serve to conceal a communication better

than an easy cipher, for in the last case the key may be

found with but little trouble, while in the other cases, though

the key may be accessible, it is probable that there are only a

few who know where to look for it.

Cryptographs. I proceed to enumerate some of the better

known types of cryptographs. There are at least three distinct

types. The types are not exclusive, and any particular crypto-

graph may comprise the distinctive feature of two or all the

types.

First Type of Cryptographs {Transposition Type). A crypto-

graph of the first type is one in which the successive letters
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or words of the message are re-arranged in some pre-determined

manner.

One of the most obvious cryptographs of this type is to

write each word or the message itself backwards. Here is an

instance in which the whole message is written backwards:

tsop yh tnes tnemeergafo seniltuo smret ruo tpecca yeht.

It is unnecessary to indicate the division into words by

leaving spaces between them, and we might introduce capitals

or make a pretence of other words, as thus

:

Ts opyhtne sine meer gafos eniltu smret ruot peccaye ht.

A recipient who was thus mis-led would be very careless.

Preferably, according to modern practice, we should write

the message in groups of five letters each : the advantage of

such a division being that the number of such groups can be

also communicated, and the casual omission of letters thus

detected.

Systems of this kind which depend on altering the places of

letters or lines in some pre-arranged manner have always been

common. One example is where the letters which make up

the communication are written vertically up or down. Thus

the message : The pestilence continues to increase, might be

written thus:

eio tnlit

sntioeth

acsncnse

ereuecep.

The cryptograph might be further obscured by writing the

32 letters according to the Route Method described below.

Another method is to write successively the 1st, 18th, 35th

letters of the original message, and then the 2nd, 19th, 36th

letters, and so on. If, however, we know the clue number, say c,

it is easy enough to read the communication. For if it divides

into the number of letters n times with a remainder r it suffices

to re-write the message in lines putting ?i -I- 1 letters in each

of the first r lines, and n letters in each of the last c — r lines,
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and then the communication can be read by reading the columns

downwards. For instance, if the following communication,

containing 270 letters, were received: Ahtze ipqhg esoae ouazs

eseiua eqtonu sfdth enzce sjteo ttqiz yczht zjioa rhqet tjrfe sftnz

mroom ohyea rziaq neorn hreot lennk aerwi zesju asjod eziojz

zszjb rritt jnfjl weuzr oqyfo htqay eizsl eopji dihal oalhp epkrh

eanaz srvli irnosi adygt pekij scerq vvjqj qctjqn yjint kaehs hhsnh

goaot qefqe miesa yquni tpebq stzam ztqrj, and the clue number

were 17 we should put 16 letters in each of the first 15 lines

and 15 letters in each of the last ^ lines. The communication

could then be discovered by reading the columns downwards

:

the letters J, q and z marking the ends of w^ords.

A better cryptograph of this kind may be made by arranging

the letters cyclically, and agreeing that the communication is to

be made by selected letters, as, for instance, every seventh, second,

seventh, second, and so on. Thus if the communication were

Ammunition too low to allow of a sortie, which consists of 32

letters, the successive significant letters would come in the

order 7, 9, 16, 18, 25, 27, 2, 4, 13, 15, 24, 28, 5, 8, 20, 22, 1, 6,

21, 26, 11, 14, 32, 10, 31, 12, 17, 23, 3, 29, 30, 19—the numbers

being selected as in the decimation problem given above at

the end of chapter I, and being struck out from the 32 cycle as

soon as they are determined. The above communication would

then read Ttrio oalmo laoon msueo aivotn lioti fw. This is a

good method, but it is troublesome to use, and for that reason

is not to be recommended.

In another cryptograph of this type, known as the Route

Method, the words are left unaltered, but are re-arranged in a

11
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in the diagram, certain spaces being filled with dummy words

xvz,..., and the message being sent in the order U, 8 13 2,

15 4 w X 1 .. This method was used successfully by the

Fe'de^als iA the American Civil War, 1861-1865, equivalents

for proper names being used. It is easy to work, but the

key would soon be discovered by modem experts.

A double cryptograph is said to have been used by the

Nihilists in Russia from 1890-1900. Such double transpo-

sitions are always awkward, and mistakes, which woxdd make

the message unintelligible, may be easily introduced but if

time is of little importance, and the message is unlikely to fall

into the hands of any but ordinary officials, the concealment is

fairly effective, though a trained specialist who had several

messages in it could work out the key.

Second Type of Cryptographs. A cryptograph of the second

tvne is one in which the message is expressed m ordinary

writing, but in it are introduced a number of dummies or non

significant letters or digits thus concealmg which of the letters

are relevant.
,

One way of picking out those letters which are relevant

is by the use of a perforated card of the shape of (say) a

sheet of note-paper, which when put over such a sheet perniits

only such letters as are on certain portions of it to be v.sibla

Such a card is known as a grille. An example of a grille with

four openings is figured below. A communication made in this

\

way may be easily concealed from anyone who does not possess

a card of the same pattern. If the recipient possesses such
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a card he has only to apply it in order to read the message.

This method was used by Richelieu.

The use of the grille may be rendered less easy to detect

if it be used successively in different positions, for instance,

with the edges AB and CD successively put along the top of

the paper containing the message. Below, for instance, is a

message which, with the aid of the grille figured above, is at

once intelligible. On applying the grille to it with the line

AB along the top HK we get the first half of the communica-

tion, namely, 1000 i^ifles se. On applying the grille with the

H K

981

NTT
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be a great disadvantage if time in sending the message was of

importance.

Another method, essentially the same as the grille method,

is to arrange that every nth. word shall give the message, the

other words being non-significant, though of course inserted as

far as possible so as to make the complete communication run

as a whole. But the difficulty of composing a document of this

kind and its great length render it unsuitable for any purpose

except an occasional communication comj)osed at leisure and

sent in writing. This method is said to have been used by

the Earl of Argyle when plotting against James II.

Third Type of Cryptographs. A kind of secret writing

which may perhaps be considered to constitute a third type of

cryptograph is a communication on paper which is legible only

when the paper is folded in a particular way. An example is

a message written across the edges of a strip of paper wrapped

spiral-wise round a stick called a scytale. When the paper

is unwound and taken off the stick the letters appear broken,

and may seem to consist of arbitrary signs, but by wrapping

the paper round a similar stick the message can be again

read. This system is said to have been used by the Lace-

demonians. The concealment can never have been effectual

against an intelligent reader who got possession of the paper.

As another illustration take the appended communication which

^^^ 4;^m^^^wm -̂\^^^-h'\^m:^̂ ^

B B

c^^SH

is said to have been given to the Young Pretender during his

wanderings after Culloden. If it be creased along the lines

BB and (70 (CO being along the second line of the second score),

and then folded over, with B inside, so that the crease lies
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over the line A (which is the second line of the first score) thus

leaving only the top and bottom of the piece of paper visible,

it will be found to read Conceal yourself, your foes look for you.

I have seen what purports to be the original, but of the truth

of the anecdote I know nothing, and the desirability of con-

cealing himself must have been so patent that it was hardly

necessary to communicate it by a cryptograph.

Cipliers. I proceed next to some of the more common types

of ciphers. It is immaterial whether we employ special char-

acters to denote the various letters ; or whether we use the

letters in a non-natural sense, such as the letter z for a, the

letter y for h, and so on. In the former case it is desirable to

use symbols, for instance, musical notes, which are not likely to

attract special notice. Geometrical figures have also been used

for the same purpose. It is not even necessary to employ

written signs. Natural objects have often been used, as in a

necklace of beads, or a bouquet of flowers, where the different

shaped or coloured beads or different flowers stand for different

letters or words. An even more subtle form of disguising the

cipher is to make the different distances between consecutive

knots or beads indicate the different letters. Of all such

systems we may say that a careful scrutiny shows that different

symbols are being used, and as soon as the various symbols are

distinguished one from the other no additional complication

is introduced, while for practical purposes they give more

trouble to the sender and the recipient than those written

in symbols in current use. Accordingly I confine myself

to ciphers written by the use of the current letters and

numerals. There are four types of ciphers.

First Type of Ciphers. Simple Substitution Alphabets. A
cipher of the first type is one in which the same letter or word

is always represented by the same symbol, and this symbol

always represents the same letter or word.

Perhaps the simplest illustration of a cipher of this type

is to employ one language, written as far as practical in the

alphabet of another language. It is said that during the

Indian Mutiny messages in English, but written in Greek

26—2
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characters, were used freely, and successfully baffled the in-

genuity of the enemy, into whose hands they fell.

A common cipher of this type is made by using the actual

letters of the alphabet, but in a non-natural sense as indicating

other letters. Thus we may use each letter to represent the one

immediately following it in the natural order of the alphabet

—

the letters being supposed to be cyclically arranged

—

a standing

for h wherever it occurs, h standing for c, and so on, and finally

z standing for a: this scheme is said to have been used by the

Carthaginians and Romans.

More generally we may write the letters of the alphabet in

a line, and under them re-write the letters in any order we like.

For instance

ahcdefghijhlmnopqrstuviuxyz
olkmazsqxeufy rthcwbvnidgjp

In such a scheme, we must in our communication replace a

by 0, h by I, etc. The recipient will prepare a key by re-

arranging the letters in the second line in their natural order

and placing under them the corresponding letter in the first

line. Then whenever a comes in the message he receives

he will replace it by an e; similarly he will replace b by s,

and so on.

A cipher of this kind is not uncommonly used in military

signalling, the order of the letters being given by the use of

a key word. Ciphers of this class were employed by the British

forces in the Sudan and South African campaigns. If, for

instance, Pretoria is chosen as the key word, we wTite the letters

in this order, striking out any which occur more than once,

and continue with the unused letters of the alphabet in their

natural order, writing the whole in two lines thus

:

pretoiahc dfg

h

z y X lu V u s qn 111 I k j

Then in using the cipher p is replaced by z and vice versa,

r by y, and so on. A long message in such a cipher would be

easily discoverable, but it is rapidly composed by the sender

and read by the receiver, and for some purposes may be useful.
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especially if the discovery of the purport of the message is,

after a few hours, immaterial.

The key to ciphers of this type may usually be found by
using tables of the normal frequency with which letters may be

expected to occur. Such tables, and other characteristic features

of the English, French, German, Italian, Dutch, Latin, and Greek

languages, were given by D. A. Conrad in 1742*. His results

have since been revised, and extended to Russian, Spanish, and

other tongues. In English the percentage scale of frequency of

the letters is approximately as follows:—e, 12*0; t, 9"4; a, 7*8

0, 7-5; ^, 7'4; n, 7-3; s, 6-8; r, 59; h, 57; d, 3-9; l, 3-6; u, 3*0

c, 2-8; m, 2-7; / 2-5; p, 1-9; g, 1-8; y, 1-8; 6, 1-7; w, VI] v, 11
k, 0*6; j, 0'3; q, 03; x, 0*3; z, 0"2. The order of frequency for

combinations of two letters is th, he, in, an, on, re, ti, er, it, nt,

es, to, st; of three letters is the, ion, &c., &c.; of four letters is

tion, that, &c., &:c., and of double letters is tt, ss, &c., &c. Other

peculiarities, such as that h, I, m, n, v, and y, when at the begin-

ning of a word, must be followed by a vowel, that q must be

followed by u and another vowel, have been classified and are

important. I need not go here into further details. Unless,

however, the message runs to 400 words or more, we cannot

reasonably expect to find the scale of frequency the same as

in Conrad's Table.

In ciphers of this class it is especially important to avoid

showing the division into words, for a long word may easily

betray the secret. For instance, if the decipherer has reason

to suspect that the message related to something connected

with Birmingham, and he found that a particular word of ten

letters had its second and fifth letters alike, as also its fourth

and tenth letters, he would naturally see how the key would

work if the word represented Birmingham, and on this hypo-

thesis would at once know the letters represented by eight

symbols. With reasonable luck this should suffice to enable

him to tell if the hypothesis was tenable. To avoid this risk it

* Gentleman's Magazine, 1742, vol. xn, pp. 133--135, ISf^—186, 241—242,

473—475. See also the (Jolleclcd Works oj E. A. Foe in 4 volumes, vol. i, p. 30

et seq^.
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is usual to send the cipher in groups of five letters, and, before

putting it into cipher, to separate the words in the message by-

letters like j, q, x, z.

Ciphers of this type suggest themselves naturally to those

approaching the subject for the first time, and are commonly

made by merely shifting the letters a certain number of places

forward. If this is done we may decrease the risk of detection

by altering the amount of shifting at short (and preferably

irregular) intervals. Thus it may be agreed that if initially we

shift every letter one place forward then whenever we come to

the letter (say) n we shall shift every letter one more place

forward. In this way the cipher changes continually, and is

essentially changed to one of the third class ; but even with

this improvement it is probable that an expert would decode a

fairly long message without much difficulty.

We can have ciphers for numerals as well as for letters:

such ciphers are common in many shops. Any word or sentence

containing ten different letters will answer the purpose. Thus,

an old tradesman of my acquaintance used the excellent precept

Be just Man—the first letter representing 1, the second 2,

and so on. In this cipher the price 10/6 would be marked bnjt.

This is an instance of a cipher of the first type.

Second Type of Ciphers. A cipher of the second type is one

in which the same letter or word is, in some or all cases, repre-

sented by more than one symbol, and this symbol always repre-

sents the same letter or word. Such ciphers were uncommon

before the Renaissance, but the fact that to those who held the

key they were not more difficult to write or read than ciphers of

the first type, while the key was not so easily discovered, led to

their common adoption in the seventeenth century.

A simple instance of such a cipher is given by the use of

numerals to denote the letters of the alphabet. Thus a may

be represented by 11 or by 37 or by 63, 6 by 12 or by 38 or

by 64, and so on, and finally z by 36 or by 62 or by 88, while

we can use 89 or 90 to signify the end of a word and the

numbers 91 to 99 to denote words or sentences which con-

stantly occur. Of course in practice no one would employ the
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numbers in an order like this, which suggests their meaning,

but it will serve to illustrate the principle.

The cipher can be improved by introducing after every (say)

eleventh digit a non-significant digit. If this is done the

recipient of the message must erase every twelfth digit before

he begins to read the message. With this addition the difficulty

of discovering the key is considerably increased.

The same principle is sometimes applied with letters instead

of numbers. For instance, if we take a word (say) of n letters,

preferably all different, and construct a table as shown below

of n^ cells, each cell is defined by two letters of the key word.

Thus, if we choose the word smoking-cap we shall have 100
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by introducing after every 7?2th letter any single letter which it

is agreed shall be non-significant. To decipher a communication

so written it is necessary to know the clue word and the clue

number.

Here for instance is a communication written in the above

cipher with the clue word smoking-cap, and with 7 as the clue

number: ngmks igrio icpss amcks cakqi gnass nxmig poasu

iamno cmpam inscn ogcpn cisyi ksTcam sssgn nncae kknoo mklisc

pcmsc hgpng siaws sgigg ndiic a. In this sentence the letters

denoting the 79th, 80th, 81st, and 82nd cells have been used to

denote the end of a word, and no use has been made of the last

18 cells.

Another cipher of this type is made as follows. The sender

and recipient of the message furnish themselves with identical

copies of some book. In the cipher only numerals are used,

and these numerals indicate the locality of the letters in

the book. For example, the first letter in the communication

might be indicated by 79-8-5, meaning that it is the 5th letter

in the 8th line of the 79th page. But though secrecy might

be secured, it would be very tedious to prepare or decode a

message, and the method is not as safe as some of those de-

scribed below.

Another cipher of this type is obtained by the sender

and receiver agreeing on some common book of reference and

further on a number which, if desired, may be communicated

as part of the message. To employ this method the page of

the book indicated by the given number must be used. The

first letter in it is taken to signify a, the next h, and so on

—

any letter which occurs a second time or more frequently

being neglected. It may be also arranged that after n letters

of the message have been ciphered, the next n letters shall be

written in a similar cipher taken from the ^th following page

of the book, and so on. Thus the possession of the code-book

would be of little use to anyone who did not also know the

numbers employed. It is so easy to conceal the clue number

that with ordinary prudence it would be almost impossible for

an unauthorized person to discover a message sent in this cipher.
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The clue number may be communicated indirectly in many
ways. For instance, it may be arranged that the number to

be used shall be the number sent, plus (say) q, or that the

nmnbcr to be used shall be an agreed multiple of the number
actually sent.

Third Type of Ciphers. Complex Shifting Alphabets. A
cipher of the third type is one in which the same symbol

represents sometimes one letter or word and sometimes

another.

A simple example, known as Gronfeld's Method, is the employ-

ment of pre-arranged numbers in shifting forward the letters

that make the communication. For instance, if we agree on

the key number 6814, then the first letter in the communica-

tion is replaced by the sixth letter which follows it in the

natural order of the alphabet: for instance, if it were an

a it would be replaced by g. The next letter is replaced by

the eighth letter which follows it in the natural order of the

alphabet: for instance, if it were an a it would be replaced by i.

The next letter is replaced by the first after it ; the next by

the fourth after it ; the next by the sixth ; and so on to the

end of the message. Of course to read the message the reci-

pient would reverse the process. If the letters of the alphabet

are written at uniform intervals along a ruler, and another ruler

similarly marked with the digits is made to slide along it, the

letter corresponding to the shifting of any given number of places

can be read at once. Here is such a message :

—

Cisvg vuniya

vijnp vgzsi yhpjp tuoiy. Such ciphers are easy to make and

read by those who have the key. But in recent years their

construction has been subjected to critical analysis, and experts

now can generally obtain the key number if the message contains

80 or 100 words; an example of the way by which this is done is

given below. It would be undesirable to allow the division into

words to appear in the message, and either the words must be run

on continuously, or preferably the less common letters j, q, z

may be used to mark the division of words and the message

then written in five letter groups.

It is most important to conceal the number of digits in the
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key number. The difficulty of discovering the key number is

increased if after every (say) 77ith letter (or word) a non-significant

letter is inserted. I suggest this as an improvement in the cipher.

Here for instance is a communication written in this cipher

with the clue numbers 4276 and 7: atpzn hvaocu xhiep xafwg

hzniy prpsi khdkz yygkq prgez uytlk ohldi fehzm xlpog quyit

cmgxk ckuex vsqka ziagg sigay tnvvs styvu aslyw gjuzm csfct

qhpwj vaepf xhibw pxiul txlav vtqzo xivkvt uvvfh cqhxn pvism

phzmq tuwxj ykeev Itif. The recipient would begin by striking

out every eighth letter. He would then shift back every letter

4, 2, 7, 6, 4, 2, &c., places respectively, and in reading it, would

leave out the letters j, q, and z as only marking the ends of words.

With these modifications, this is an excellent cipher, and it has

the additional merit of not materially lengthening the message.

It can be rendered still more difficult by arranging that either

or both the clue numbers shall be changed according to some

definite scheme, and it may be further agreed that they shall

change automatically every day or week.

A similar system, now known as the St Cyr Method, was

proposed by Wilkins *. He took a key word, such as prudentia,

and constructed as many alphabets as there were letters in

it, each alphabet being arranged cyclically and beginning

respectively with the letters p, r, u, d, e, n, t, i, and a. He thus

got a table like the following, giving nine possible letters

which might stand for any letter of the alphabet. Using this

we may vary the cipher in successive words or letters of the

communication. Thus the message The prisoners have mutinied

and seized the railway station would, according as the cipher

changes in successive words or letters, read as Hiut fhziedvhi

bujjy pxwmqmhg erh er^vmrq max zirteig station or as Hyy
svvkunthm lehx uuhzgmiq tvd gvcciq mqe frcoanr atpkcrr.

The name by which the method is known is derived from

the fact that it was taught at St Cyr under Napoleon. This

system is said to have been widely employed by both armies in

the Franco-German war in 1870—1871. The construction of

military ciphers must be so simple that messages can be rapidly

* Mercury, by J. Wilkins, London, 1641, pp. 59, 60.
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enciphered and decoded by non-experts: the St Cyr code fulfils

this requirement.

a
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letter which occurs more than once) and the remaining letters

of the alphabet, thus :

—

m
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Thus if the key phrase is The fox jumped over the garden

gate, we write under it the letters of the alphabet in their

usual sequence as shown below:

T h e f X j um 2^ e d over the garden gate,

ah c d ef g h i j k I mnop qrs t u vw x y z ah c.

Then we write the message replacing a hy t or a, b hy h

or t, c hy e, d by/, and so on. Here is such a message.

Mfoemho nea ge eoo jmdJiohg avfteg ev ume afrmeo. But it will

be observed that in the cipher a may represent a or u, d may

represent I or w, e may represent c or k or o or 5 or x, g may
represent t or z, h may represent b or r, o may represent e or

m, r may represent p or v, and t may represent a or 6 or q.

And the recipient, in deciphering it, must judge as best he can

what is the right meaning to be assigned to these letters when

they appear.

An instance of a cipher of the fourth type is afforded by

a note sent by the Duchesse de Berri to her adherents in

Paris, in which she employed the key phrase

I e g u V e r n e me n t provisoire.
ah cdefghijklmn o p qr st uv xy.

Hence in putting her message into cipher she replaced a by l^

h hy e, c by g, and so on. She forgot however to supply the

key to the recipients of the message, but her friend Berryer

had little difficulty in reading it by the aid of the rules I

have indicated, and thence deduced the key phrase she had

employed.

Desiderata in Cryptographs and Ciphers. Having men-

tioned various classes of cryptographs and ciphers, I may add

that the shorter a message in cryptograph, the more easily it is

read. On the other hand, the longer a message in cipher, the

easier it is to get the key. In choosing a cipher for practical

purposes, which will usually imply that it can be telegraphed

or telephoned, we should seek for one in which only current

letters, symbols, or words are employed ; such that its use does

not unduly lengthen the message; such that the key to it can

be reproduced at will and need not be kept in a form which
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might betray the secret to an unauthorized person; such that

the key to it changes or can be changed at short intervals;

and such that it is not ambiguous. Many ciphers of the

second and third types fulfil these conditions; in particular

the Gronfeld or St Cyr Method, or the Playfair Cipher, may be

noted. A cipher written cryptographically, or a cryptograph

written in cipher, or a cipher again enciphered by another

process, is almost insoluble even by experts, unless accidents

reveal something in the construction, but it is troublesome to

make, and such elaborate processes are suited only for the study,

where the time spent in making them up and deciphering them

is not of much consequence.

Cipher Machines. The use of instruments giving a cipher,

which is or can be varied constantly and automatically, has

been often recommended*. The possession of the key of the

instrument as well as a knowledge of the clue word is necessary

to enable anyone to read a message, but the risk of some instru-

ment, when set, falling into unauthorized hands must be taken

into account. Since equally good ciphers can be constructed

without the use of mechanical devices I do not think their

employment can be recommended.

On the Solution of Cryptographs and Ciphers. Much in-

genuity has been shown in devising means for reading messages

written in cryptograph or cipher. It is a fascinating pursuit,

but I can find space for only a few remarks about it.

In such problems we must begin by deciding whether

the message is a cryptograph or a cipher. If it is a combi-

nation of both, the problem is one of extreme difficulty, and is

likely to baffle anyone but a specialist, but such combinations

are unusual, and most secret messages belong to one class or

the other.

If the scale of frequency of the letters agrees generally with

Conrad's Table, presumably the message is in cryptograph,

* See, for instance, the descriptions of those devised by Sir Charles Wheat-

stone, given in his Scientific Papers, London, 1879, pp. 342—347; and by

Capt. Bazeries in Comptes Eendus, Association Frangais four I'Avancement des

Sciences, vol. xx (Marseilles), 1891, p. ICO et tteq.
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though we must allow for the possibility that dummy letters,

like^', k, X, and z, have been introduced either to separate words

or deliberately to confuse those not in the secret. A short

sentence of this kind may be read by an amateur, but only an

expert is likely to discover the key to a long and well con-

structed cryptographic message.

If the message is long enough, say about 80 words, and

the scale of frequency of particular letters differs markedly

from Conrad's scale, there is a presumption that the message is

in cipher. If the numbers of the two scales agree generally,

probably a simple substitution alphabet has been used, i.e. it is

a cipher of the first type, and generally the discovery of the key

is easy. If it is not a cipher of this type, we must next try to

find whether it is of any of the other recognised types. The
majority of other ciphers are included in Gronfeld's number
(or the St Cyr word) system, and here I will confine myself to

a discussion of how such ciphers may be read.

The discovery of a key to a cipher of this kind is best

illustrated by a particular case. I will apply the method to

the message cisvg vumya vijnp vgzsi yhpjp woiy. This is an

example of a Gronfeld's cipher with no additional complications

introduced, but the message is short, and it so hajopens that the

letters used are not in the normal scale of frequency
;
yet it can

be read with ease and certainty.

The first thing is to try to find the number of digits in the

key number. Now we notice that the pair of letters vg occurs

twice, with an interval of 12. If in each case these represent

the same pair of letters in the original message, the number of

digits in the key number must be 12 or a divisor of 12. Again

the pair of letters ij occurs twice, with an interval of 8, and

this suggests that the number of digits in the key number is 8

or a divisor of 8. Accordingly we conjecture that the key

number is one of either 2 or 4 digits: this conclusion is

strengthened by noting the intervals between the recurrences

of the same letters throughout the message. We may put 2

on one side till after we have tried 4, for anyone using Gron-

feld's method would be unlikely to employ a key number less
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than 100. Accordingly we first try 4, and if that fails try 2.

Had no clue of this kind been obtained from the recurrence of

a pair of letters, we should have had to try successively making
the key numbers comprise 2, 3, 4, 5, . . . digits, but here (and in

most messages) a cursory examination suggests the number of

digits in the key number. We commence then by assuming
provisionally that the key number has 4 digits. Accordingly

we must now re-write our message in columns, each of 4 letters,

giving altogether 4 lines, thus

:

Q 9 y 3 9 y v y
i V a n z h w
s u V p s p
V m i V i j i

If the Gronfeld method was used, the letters in each of these

lines were obtained from the corresponding letters in the original

message by a simple substitution alphabet. Had the message

been long we could probably obtain this alphabet at once by

Conrad's Table. Here, however, the message is so short that the

Table is not likely to help us decisively, and we must expect

to be obliged to try several shifts of the alphabet in each line.

In the first line y occurs three times, and g twice. Accord-

ing to Conrad's Table, the most common letters in English are

e, t, a, 0, i, n, s, r, h. Probably y stands for one of these and g

for another. If y is made to stand successively for each of

these, it is equivalent to putting every letter 6 places back-

ward, where 6 is successively 20, 5, 24, 10, 16, 11, 6, 7, 17.

Similarly, making g stand successively for e, t, a, o, i, n, s, r, h,

we have 6 equal to 2, 13, 6, 18, 24, 19, 14, 15, 25. Altogether

this gives us 16 systems for the representation of the first line.

We might write these out on 16 slips, and provisionally reject any

slip in which many unusual letters appear, but obviously, the

most probable hypothesis is that where y stands for s, and g
for a, both of which changes give ^ = 6, or that where y stands

for a, and g for ^, both of which changes give ^ = 24: these

give for the first line either w, a, s, d, a, s, j, s, or e, i, a, I,

i, a, ?', a.
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In the second line no letter occurs more than once, so we

get no chie from Conrad's Table. This could not happen if the

message were of any considerable length.

In the third line p occurs twice, and s twice. Hence, as

before, we must make p and s successively stand for the letters

e, t, a, 0, i, n, s, r, h. These give respectively 6= 11, 22, 15, 1,

7, 2, 23, 24, 8, and ^ = 14, 25, 18, 4, 10, 5, 0, 1, 11. Altogether

this gives us 16 systems for the representation of this line.

Obviously the most probable hypothesis is that where ^=11,

p z= e, s = h, OT that where 6= 1, p = o, and s = r: these give for

the third line either h,j, k, e, h, e, d, or r, t, u, o, r, o, n.

In the fourth line i occurs three times. As before, make i

stand successivel}^ for e, t, a, o, i, n, s, r, h. Of these the first,

where ^ = 4, is the most probable. The slip corresponding to

this is r, i, e, r, e, f, e.

Now try combinations of these slips each in its proper line

until, when we read the message in columns, we get the begin-

ning of a word; if words appear in more than one column it is

almost certain that we are right. We begin by taking the

five slips which are indicated as being specially probable. The

slip in the first line derived from ^ = 6, the slip in the third

line derived from ^=1, and the slip derived from ^ = 4 in the

fourth line give w . rra . tis . ued . ora . res . ofj . 7ies, and of course

the solution is obvious. The key number was 6814, and the

message is deciphered by using 6814 backwards. The corre-

sponding St Cyr key word is gibe> The message was Warrant

issued for arrest of Jones.

If the combination of the slips is troublesome we can some-

times get assistance by choosing those combinations which make

the recurring pairs of letters (here vg and ij) represent pairs

which occur in Conrad's Table. Also the occurrence of double

letters in the cipher will often settle what combinations of slips

are possible.

It may be said that this is a tedious operation. Of course

it is. Deciphering is bound to be troublesome, but a great

deal of the work can be done by unskilled clerks working under

the direction of experts. The longer the message, the fewer the

D. K. 27



418 CRYPTOGRAPHS AND CIPHERS [CH. XVIII

slips we have to try, and had the above message been three

times as long, we could have solved the problem with half the

trouble. The above example was not complicated by employing

dummy letters or artificial alphabets: their use increases the

difficulty of the decipherer, but if the message is a long one,

the difficulties are not insuperable. Specialists, especially if

working in combination, are said to select the right methods

with almost uncanny quickness.

This chapter has already run to such a length that I cannot

find space to describe more than one or two ciphers that appear

in history.

It is said that Julius Caesar in making secret memoranda

was accustomed to move every letter four places forward, writing

d for a, e for h, &c. This would be a very easy instance of a

cipher of the first type, but it may have been effective at that

time. His nephew Augustus sometimes used a similar cipher,

in which each letter was moved forward one place*.

Bacon proposed a cipher in which each letter was denoted

by a group of five letters consisting of A and B only. Since

there are 32 such groups, he had 6 symbols to spare, which

he could use to separate words or to which he could assign

special meanings. A message in this cipher would be five

times as long as the original message. This may be compared

with the far superior system of the five (or four) digit code-

book system in use at the present time.

In the Morse code employed in telegraphy, as in the

Baconian system, only two signs are used, commonly a dot

or a short mark or a motion to the left, and a dash or a

long mark or a motion to the right. The Morse Alphabet is

as follows: a ( ), b ( • •
), c (— ), d ( ), ^ (•)>

/( \9{ Xh(-'''\i{''),j( ),k( ),

l( ), ^( X^( )>o( \p( \q( ),

^( )> s('--),t{—), u{ ), v{ ), w ( ),x{ ),

* Of some of Caesar's correspondence, Suetonius says (cap. 56) si quis

investigare et persequi velit, quartam elementorwn literani, id est, d pro a, et

perinde reliquas commutet. And of Augustus he says (cap. 88) quoties autemper

notas scribit, b pro a, c pro b, ac deinceps eadem ratione, sequentes literas ponit;

pro X autem duplex a.
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y ( ), z ( ). Since there are 30 possible per-

mutations of two signs taken not more than four together,

this leaves four signals unemployed, ( ), ( ),

(• ), ( ), which might have been utilized for special

signals. In telegraphy there are also recognized signs or

combinations for numerals, for the ends of words and messages,

and for various calls between the sender and the recipient of

a message.

Charles I used ciphers freely in important correspondence

—the majority being of the second type. He was foolish

enough to take a cabinet, containing many confidential notes

in cipher, with him to the field of Naseby, where they fell into

the hands of Fairfax*. In these papers each letter was repre-

sented by a number. Clues were provided by the King who

had written over the number the letter which it represented.

Thus in two letters written in 1643, a is represented by 17 or

18, h by 13, c by 11 or 12, c^ by 5, g by 7 or 8 or 9 or 10,

/ by 15 or 16, g by 21, h by 31 or 32, i by 27 or 28, k by 25,

I by 23 or 24, m by 42 or 44, n by 39 or 40 or 41, o by 35 or

36 or 37 or 38, p by 33 or 34, r by 50 or 51 or 52, 5 by 47 or 48,

t by 45 or 46, u by 62 or 63, w by 58, and y by 74 or 77.

Numbers of three digits were used to represent particular

people or places. Thus 148 stood for France, 189 for the King,

260 for the Queen, 354 foi: Prince Rupert, and so on. Further,

there were a few special symbols, thus ^1 stood for of, n\ for

to, and /I for is. The numbers 2 to 4 and 65 to 72 were non-

significant, and were to be struck out or neglected by the

recipient of the message. Each symbol is separated from that

which follows it by a full-stop.

A similar, though less elaborate, system was used by the

French in the Peninsular War. An excellent illustration of

the inherent defects of this method is to be found in the

writings of the late Sir Charles Wheatstone. A paper in

cipher, every page of which was initialed by Charles I,

and countersigned by Lord Digby, was purchased some years

* First Report of the Royal Commisiion on Historical Mayiimcrijits, 1870,

pp. 2, 4.

27—2
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ago by the British Museum. It was believed to be a state

paper of importance. It consists of a series of numbers with-

out any clue to their meaning, or any indication of a division

between words. The task of reading it was rendered the more

difiScult by the supposition, which proved incorrect, that the

document was in English ; but notwithstanding this, Sir Charles

Wheatstone discovered the key*. In this cipher a was repre-

sented by any of the numbers 12, 13, 14, 15, 16, or 17, 6 by 18,

19, and so on, while some 65 special words were represented

by particular numbers: in all about 150 different symbols were

used.

The famous diary of Samuel Pepys is commonly said to

have been written in cipher, but in reality it is written in

shorthand according to a system invented by T. Sheltonf.

It is however somewhat difficult to read, for the vowels are

usually omitted, and Pepys used some arbitrary signs for

terminations, particles, and certain words—so far turning it

into a cipher. Further, in certain places, where the matter is

such that it can hardly be expressed with decency, he changed

from English to a foreign language, or inserted non-significant

letters. Shelton's system had been forgotten when attention

was first attracted to the diary. Accordingly we may say that,

to those who first tried to read it, it was written in cipher, but

Pepy's contemporaries would have properly described it as being

written in shorthand, though with a few modifications of his

own invention.

A system of shorthand specially invented for the purpose

is a true cipher. Such a system in which the letters were

represented by four strokes varying in length and position was

employed by Charles I. Another such system in which each

letter is represented either by a dot or by a line of constant

length was used by the Earl of Glamorgan, better known by his

subsequent title of Marquis of Worcester, in 1645; each of these

* The document, its translation, and the key used, are given iu Wheatstone 's

Scientific Papers, London, 1879, pp. 321—341.

t Tachy-graphy, by T. Shelton. The earliest edition I have seen is dated

1641. A somewhat similar system by W. Cartwright was issued by J. Eich

under the title Semographie, London, 1644.
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was a cipher of the first type arirl iiad the defects inherent in

almost every cipher of this kind: in fact Glamorgan's letter

was deciphered, and the system was discovered by H. Dircks*.

Obsolete systems of shorthand f may be thus used as ciphers.

It is always difficult to read a very short message in cipher,

since necessarily the clues are few in number. When the

Chevalier de Rohan was sent to the Bastille, on suspicion of

treason, there was no evidence against him except what might

be extracted from Monsieur Latruaumont. The latter died

without making any admission. De Rohan's friends had ar-

ranged with him to communicate the result of Latruaumont's

examination, and accordingly in sending him some fresh body

linen they wrote on one of the shirts Mg dulhxcclgu ghj yontj,

Im ct idgc alj. For twenty-four hours de Rohan pored over

the message, but, failing to read it, he admitted his guilt, and

was executed November 27, 1674 The cipher is a simple one

of the first type, but the communication is so short that unless

the key were known it would not be easy to read it. Had
de Rohan suspected that the second word was pvisonnier, it

would have given him 7 out of the 12 letters used, and as the

first and third words suggest the symbols used for I and t, he

could hardly have failed to read the message.

Marie Antoinette used what was in effect a St Cyr cipher,

consisting of 11 substitution alphabets employed in succession.

The first alphabet was n, o, p, z, a, h, I, m\ the next,

0, p, q, m, n; the next /j, q, r, n, o; and so on. An
expert would easily read a message in this cipher.

One of the systems in use to-day is the five digit code-

book cipher, to which I have already alluded. In this, a code

dictionary is prepared in which every word likely to be used

is printed, and the words are numbered consecutively 00000,

00001, ... up, if necessary, to 99999. Thus each word is

• Life of the Marquis of Worcester by H. Dircks, London, 1865. Worcester's

system of shorthand was described by him in his Century of Inventions , London,

1683, sections 3, 4, 5.

+ Various systems, includinej those used in classical and medieval times, are

described in the History of Shortiiand by T. Anderson, London, 1862.
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represented by a number of five digits, and there are 10*^ such

numbers available. The message is first written down in words.

Below that it is written in numbers, each word being replaced

by the number corresponding to it. To each of these numbers

is added some definite pre-arranged clue number—the words in

the dictionary being assumed to be arranged cyclically, so that

if the resulting number exceeds 10^ it is denoted onl}^ by the

excess above 10\ The resulting numbers are sent as a message.

On receipt of the message it is divided into consecutive groups

of five numbers, each group representing a word. From each

number is subtracted the pre-arranged clue number, and then

the message can be read off by the code dictionary. If and

when such a message is published, the construction of the

sentences is usually altered before publication, so that the key

may not be discoverable by anyone in possession of the code-

book or who has seen the cipher message. This is a rule

applicable to all cryptographs and ciphers.

This is a cipher with 10^ symbols, and as each symbol

consists of five digits, a message of n words is denoted by 5n

digits, and probably is not longer than the message when
written in the ordinary way. Since however the number of

words required is less than 10^ the spare numbers may be

used to represent collocations of words which constantly occur,

and if so the cipher message may be slightly shortened.

If the clue number is the same all through the message it

would be possible by not more than 10^ trials to discover the

message. This is not a serious risk, but, slight though it is, it

can be avoided if the clue number is varied; the clue number
might, for instance, be 781 for the next three words, 791 for the

next five words, 801 for the next seven words, and so on.

Further it may be arranged that the clue numbers shall be

changed every day; thus on the seventh day of the month they

might be 781, 791, &c., and on the eighth day 881, 891, &c.,

and so on.

This cipher can however be further improved by inserting

at some step, say after each mth digit, an unmeaning digit.

For example, if, in the original message written in numbers, we
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insert a 9 after every seven digits we shall get a collection of

words (each represented by five digits), most of which would

have no connection with the original message, and probably

the number of digits used in the message itself would no longer

be a multiple of 5. Of course the receiver has only to reverse

the process in order to read the message.

It is however unnecessary to use five symbols for each word.

For if w^e make a similar code with the twenty-six letters of

the alphabet instead of the ten digits, four letters for each word
or phrase would give us 26^ that is, 456976 possible variations.

Thus the message would be shorter and the power of the code

increased. Further, if we like to use the ten digits and the

twenty-six letters of the alphabet—all of which are easily

telegraphed—we could, by only using three symbols, obtain 36^

that is, 4G656 possible words, which would be sufficient for all

practical purposes.

This code, at any rate with these modifications, is unde-

cipherable by strangers, but it has the disadvantages that those

who use it must always have the code dictionary available, and

that it takes a considerable time to code or decode a com-

munication. For practical purposes its use would be confined

to communications which could be deciphered at leisure in an

office.
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CHAPTER XIX.

HYPER-SPACE*.

I propose to devote the remaining pages to the considera-

tion, from the point of view of a mathematician, of certain

properties of space, time, and matter, and to a sketch of some

hypotheses as to their nature. Philosophers tell us that space,

time, and matter are the "categories under which phj^sical

phenomena are concerned." They cannot be defined, and such

* On the possibility of the existence of space of more than three dimensions

see C. H. Hinton, Scientific Romances, London, 1886, a most interesting work,

from which I have derived much assistance in compiling the earlier part of this

chapter; his later work, The Fourth Dimension, London, 1904, may be also

consulted. See also G. F. Kodwell, Nature, May 1, 1873, vol. viii, pp. 8, 9

;

and E. A. Abbott, Flatland, London, 1884.

On Non-Euclidean geometry, see chapter xiii above. The theory is due

primarily to N. I. Lobatschewsky, Geomctrische Untersuchtingen zur Theorie der

Parallellinien, Berhn, 1840 (originally given in a lecture in 1826) ; to C. F. Gauss

{ex. gr. letters to Schumacher, May 17, 1831, July 12, 1831, and Nov. 28, 1846,

printed in Gauss's collected works); and to J. Bolyai, Appendix to the first

volume of his father's Tcntamen, Maros-Vasarkely, 1832 ; though the subject

had been discussed by J. Saccheri as long ago as 1733 : its development was

mainly the work of G. F. B. Kiemann, Ueher die Hypothesen welche der Geo-

metric zu Grunde liegen, written in 1854, Gottinger Abhandlungen, 1866-7, vol.

xin, pp. 131—152 (translated in Nature, May 1 and 8, 1873, vol. viii, pp. 14—17,

36—37) ; H. L. F. von Helmholtz, Gottinger Nachrichten, June 3, 1868, pp. 193

—221 ; and E.Beltrami, Saggio di Interpretazione della Geometria non-Euclidean

Naples, 1868, and the Annali di Matematica, series 2, vol. ii, pp. 232—255 : see

an article by von Helmholtz in the Academy, Feb. 12, 1870, vol. i, pp. 128

—

131. In recent years the theory has been treated by several mathematicians.

On hyper-space, see V. Schlegel, Enseignement Mathematique, Paris, vol. ii,

1900; and D. M. Y. Somerville, Bibliography of Non-Euclidean Geometry

y

St Andrews, 1911.
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explanations of them as have been offered involve difficulties of

the highest order and are far from simplifying our conceptions

of them. I shall not discuss the metaphysical theories that

profess to account for the origin of our conceptions of them,

for these theories rest on assertions which are incapable of

definite proof—a foundation which does not commend itself

to a scientific student. The means of measuring space, time,

and mass, and the investigation of their properties fall within

the domain of mathematics.

I devote this chapter to considerations connected with space,

leaving the subjects of time and mass to the following two

chapters.

I confine my remarks to two speculations which recently

have attracted considerable attention. These are (i) the possi-

bility of the existence of space of more than three dimensions,

and (ii) the possibility of kinds of geometry, especially of tw^o

dimensions, other than those which are treated in the usual

text-books : some aspects of the latter question have been

already considered in chapter xiil. These problems are related.

The term hyper-space was used originally of space of more

than three dimensions, but now it is often employed to denote

also any non-Euclidean space. I attach the wider meaning to

it, and it is in that sense that this chapter is on the subject of

hyper-space.

In regard to the first of these questions, the conception of

a world of more than three dimensions is facilitated by the fact

that there is no difficulty in imagining a world confined to only

two dimensions—which we may take for simplicity to be a

plane, though equally well it might be a spherical or other

surface. We may picture the inhabitants of flatland as moving

either on the surflice of a plane or between two parallel and

adjacent planes. They could move in any direction along the

plane, but they could not move perpendicularly to it, and would

have no consciousness that such a motion was possible. We
may suppose them to have no thickness, in which case they

would be mere geometrical abstractions; or, preferably, we may
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think of them as having a small but uniform thickness, in which

case they would be realities.

Several writers have amused themselves by expounding and

illustrating the conditions of life in such a world. To take

a very simple instance* a knot is impossible in flatland, a simple

alteration which alone would make some difference in the

experience of the inhabitants as compared with our own.

If an inhabitant of flatland was able to move in three

dimensions, he would be credited with supernatural powers by

those who were unable so to move; for he could appear or

disappear at will, could (so far as they could tell) create matter

or destroy it, and would be free from so many constraints to

which the other inhabitants were subject that his actions would

be inexplicable to them.

We may go one step lower, and conceive of a world of one

dimension—like a long tube—in which the inhabitants could

move only forwards and backwards. In such a universe there

would be lines of varying lengths, but there could be no

geometrical figures. To those who are familiar with space of

higher dimensions, life in line-land would seem somewhat dull.

It is commonly said that an inhabitant could know only two

other individuals; namely, his neighbours, one on each side.

If the tube in which he lived was itself of only one dimension,

this is true ; but we can conceive an arrangement of tubes in

two or three dimensions, where an occupant would be conscious

of motion in only one dimension, and yet which would permit

of more variety in the number of his acquaintances and con-

ditions of existence.

Our conscious life is in three dimensions, and naturally the

idea occurs whether there may not be a fourth dimension. No
inhabitant of flatland could realize what life in three dimensions

* It is obvious that a knot cannot be tied in space of two dimensions. As

long ago as 1876, F. C. Klein showed that knots cannot exist in space of four

dimensions ; see Mothematische Annalen, Leipzig, 1876, vol. ix, p. 478. It is

not easy to give a definition of a knot in hyper-space, but, taking it in its

ordinary sense, it would seem that it is only in space of three dimensions that

knots can be tied in strings : see D. M. Y. Somerville, Messenger of Mathe-

matics, N.S., vol. XXXVI, 1907, pp. 139—144.
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would mean, though, if he evolved an analytical geometry

applicable to the world in which he lived, he might be able to

extend it so as to obtain results true of that world in three

dimensions which would be to him unknown and inconceivable.

Similarly we cannot realize what life in four dimensions is like,

though we can use analytical geometry to obtain results true of

that world, or even of worlds of higher dimensions. Moreover

the analogy of our position to the inhabitants of Hatland enables

us to form some idea of how inhabitants of space of four

dimensions would regard us.

Just as the inhabitants of flatland might be conceived as

being either mere geometrical abstractions, or real and of a

uniform thickness in the third dimension, so, if there is a fourth

dimension, we may be regarded either as having no thickness

in that dim.ension, in which event we are mere (geometrical)

abstractions—as indeed idealist philosophers have asserted to

be the case—or as having a uniform thickness in that dimension,

in which event we are living in four dimensions although we
are not conscious of it. In the latter case it is reasonable to

suppose that the thickness in the fourth dimension of bodies in

our world is small and possibly constant; it has been conjectured

also that it is comparable with the other dimensions of the

molecules of matter, and if so it is possible that the constitution

of matter and its fundamental properties may supply experi-

mental data which will give a physical basis for proving or

disproving the existence of this fourth dimension.

If we could look down on the inhabitants of flatland we
could see their anatomy and what was happening inside them.

Similarly an inhabitant of four-dimensional space could see

inside us.

An inhabitant of flatland could get out of a room, such as

a rectangle, only through some opening, but, if for a moment
he could step into three dimensions, he could reappear on the

other side of any boundaries placed to retain him. Similarly,

if we came across persons who could move out of a closed

prison-cell without going through any of the openings in it,

there might be some reason for thinking that they did it by
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passing first in the direction of the fourth dimension and then

back again into our space. This however is unknown.

Again, if a finite solid was passed slowly through flatland,

the inhabitants would be conscious only of that part of it which

was in their plane. Thus they would see the shape of the

object gradually change and ultimately vanish. In the same

way, if a body of four dimensions was passed through our space,

we should be conscious of it only as a solid body, namely, the

section of the body by our space, whose form and appearance

gradually changed and perhaps ultimately vanished. It has

been suggested that the birth, growth, life, and death of animals

may be explained thus as the passage of finite four-dimensional

bodies through our three-dimensional space. I believe that this

idea is due to Hinton.

The same argument is applicable to all material bodies.

The impenetrability and inertia of matter are necessary conse-

quences ; the conservation of energy follows, provided that the

velocity with which the bodies move in the fourth dimension is

properly chosen: but the indestructibility of matter rests on

the assumption that the body does not pass completely through

our space. I omit the details connected with change of density

as the size of the section by our space varies.

We cannot prove the existence of space of four dimensions,

but it is interesting to enquire whether it is probable that such

space actually exists. To discuss this, first let us consider how
an inhabitant of flatland might find arguments to support the

view that space of three dimensions existed, and then let us see

whether analogous arguments apply to our world. I commence

with considerations based on geometry and then proceed to

those founded on physics.

Inhabitants of flatland would find that they could have two

triangles of which the elements were equal, element to element,

and yet which could not be superposed. We know that the

explanation of this fact is that, in order to superpose them, one

of the triangles would have to be turned over so that its under-

surface came on to the upper side, but of course such a movement

would be to them inconceivable. Possibly however they might
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have suspected it by noticing that inhabitants of one-dimensional

space might experience a similar difficulty in comparing the

equality of two lines, ABC and CB'A\ each defined by a set of

three points. We may suppose that the lines are equal and

such that corresponding points in them could be superposed by

rotation round C—a movement inconceivable to the inhabitants

—but an inhabitant of such a world in moving along from A to

A' would not arrive at the corresponding points in the two

lines in the same relative order, and thus might hesitate to

believe that they were equal. Hence inhabitants of flatland

might infer by analogy that by turning one of the triangles over

through three-dimensional space they could make them coincide.

We have a somewhat similar difficulty in our geometry.

We can construct triangles in three dimensions—such as two

spherical triangles—whose elements are equal respectively one

to the other, but which cannot be superposed. Similarly we

may have two helices whose elements are equal respectively,

one having a right-handed twist and the other a left-handed

twist, but it is impossible to make one fill exactly the same

parts of space as the other does. Again, we may conceive of

two solids, such as a right hand and a left hand, which are

exactly similar and equal but of which one cannot be made to

occupy exactly the same position in space as the other does.

These are difficulties similar to those which would be experi-

enced by the inhabitants of flatland in comparing triangles;

and it may be conjectured that in the same way as such

difficulties in the geometry of an inhabitant in space of one

dimension are explicable by temporarily moving the figure into

space of two dimensions by means of a rotation round a point,

and as such difficulties in the geometry of flatland are explicable

by temporarily moving the figure into space of three dimensions

by means of a rotation round a line, so such difficulties in our

geometry would disappear if we could temporarily move our

figures into space of four dimensions by means of a rotation

round a plane—a movement which ofcourse is inconceivable to us.

Next we may enquire whether the hypothesis of our exist-

ence in a space of four dimensions affords an explanation of
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any difficulties or apparent inconsistencies in our physical

science*. The current conception of the luminiferous ether,

the explanation of gi'avity, and the fact that there are only a

finite number of kinds of matter, all the atoms of each kind

being similar, present such difficulties and inconsistencies. To
see whether the hypothesis of a four-dimensional space gives

any aid to their elucidation, we shall do best to consider first

the analogous problems in two dimensions.

We live on a solid body, which is nearly spherical, and

which moves round the sun under an attraction directed to it.

To realize a corresponding life in flatland we must suppose that

the inhabitants live on the rim of a (planetary) disc which
rotates round another (solar) disc under an attraction directed

towards it. We may suppose that the planetary world thus

formed rests on a smooth plane, or other surface of constant

curvature ; but the pressure on this plane and even its existence

would be unknown to the inhabitants, though they would be
conscious of their attraction to the centre of the disc on which
they lived. Of course they would be also aware of the bodies,

solid, liquid, or gaseous, which were on its rim, or on such points

of its interior as they could reach.

Every particle of matter in such a world would rest on this

plane medium. Hence, if any particle was set vibrating, it

would give up a part of its motion to the supporting plane.

The vibrations thus caused in the plane would spread out in

all directions, and the plane would communicate vibrations to

any other particles resting on it. Thus any form of energy

caused by vibrations, such as light, radiant heat, electricity,

and possibly attraction, could be transmitted from one point to

another without the presence of any intervening medium which

the inhabitants could detect.

If the particles were supported on a uniform elastic plane

film, the intensity of the disturbance at any other point would
vary inversely as the distance of the point from the source of

* See a note by myself in the Messenger of Mathematics, Cambridge, 1891,

vol. XXI, pp. 20—24, from which the above argument is extracted. The question

has been treated by Hinton on similar lines.
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disturbance ; if on a uniform elastic solid medium, it would

vary inversely as the square of that distance. But, if the

supporting medium was vibrating, then, wherever a particle

rested on it, some of the energy in the plane would be given

up to that particle, and thus the vibrations of the intervening

medium would be hindered when it was associated with

matter.

If the inhabitants of this two-dimensional world were

sufficiently intelligent to reason about the manner in which

energy was transmitted they would be landed in a difficulty.

Possibly they might be unable to explain gravitation between

two particles—and therefore between the solar disc and their

disc—except by supposing vibrations in a rigid medium between

the two particles or discs. Again, they might be able to detect

that radiant light and heat, such as the solar light and heat,

were transmitted by vibrations transverse to the direction from

which they came, though they could realize only such vibrations

as were in their plane, and they might determine experimentally

that in order to transmit such vibrations a medium of great

rigidity (which we may call ether) was necessary. Yet in both

the above cases they would have also distinct evidence that

there was no medium capable of resisting motion in the space

around them, or between their disc and the solar disc. The

explanation of these conflicting results lies in the fact that their

universe was supported by a plane, of which they were necessarily

unconscious, and that this rigid elastic plane was the ether

which transmitted the vibrations.

Now suppose that the bodies in our universe have a uniform

thickness in the fourth dimension, and that in that direction

our universe rests on a homogeneous elastic body whose thick-

ness in that direction is small and constant. The transmission

of force and radiant energy, without the intervention of an

intervening medium, may be explained by the vibrations of

the supporting space, even though the vibrations are not them-

selves in the fourth dimension. Also we should find, as in

fact we do, that the vibrations of the luminiferous ether are

hindered when it is associated with matter. I have assumed
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that the thickness of the supporting space is small and uniform,

because then the intensity of the energy transmitted from a

source to any point would vary inversely as the square of the

distance, as is the case ; whereas if the supporting space was a

body of four dimensions, the law would be that of the inverse

cube of the distance.

The application of this hypothesis to the third difficulty

mentioned above—namely, to show why there are in our universe

only a finite number of kinds of atoms, all the atoms of each

kind having in common a number of sharply defined properties

—

will be given later*.

Thus the assumption of the existence of a four-dimensional

homogeneous elastic body on which our three-dimensional

universe rests, affords an explanation of some difficulties in

our physical science.

It may be thought that it is hopeless to try to realize a

figure in four dimensions. Nevertheless attempts have been

made to see what the sections of such a figure would look

like.

If the boundary of a solid is (p {x, y, z) — 0, we can obtain

some idea of its form by taking a series of plane sections by

planes parallel to 2: = 0, and mentally superposing them. In four

dimensions the boundary of a body would be <^ (a?, y, z, w) — 0,

and attempts have been made to realize the form of such a

body by making models of a series of solids in three dimensions

formed by sections parallel to t(; = 0. Again, we can represent

a solid in perspective by taking sections by three co-ordinate

planes. In the case of a four-dimensional body the section

by each of the four co-ordinate solids will be a solid, and

attempts have been made by drawing these to get an idea of

the form of the body. Of course a four-dimensional body will

be .bounded by solids.

The possible forms of regular bodies in four dimensions,

analogous to polyhedrons in space of three dimensions, have

been discussed by Stringhamf.

* See below, p. 475.

t American Journal oj Mathematics, 1880, vol. in, pp. 1—14.
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I now turn to the second of the two problems mentioned

at the beginning of the chapter: namely, the possibility of

there being kinds of geometry other than those which are

treated in the usual elementary text-books. This subject is so

technical that in a book of this nature I can do little more than

give a sketch of the argument on which the idea is based.

The Euclidean system of geometry, with which alone most

people are acquainted, rests on a number of independent axioms

and postulates. Those which are necessary for Euclid's geometry

have, within recent years, been investigated and scheduled.

They include not only those explicitly given by him, but some

others which he unconsciously used. If these are varied, or

other axioms are assumed, we get a different series of propo-

sitions, and any consistent body of such propositions constitutes

a system of geometry. Hence there is no limit to the number

of possible non-Euclidean geometries that can be constructed.

Among Euclid's axioms and postulates is one on parallel

lines, which is usually stated in the form that if a straight

line meets two straight lines, so as to make the sum of the two

interior angles on the same side of it less than two right angles,

then these straight lines being continually produced will at

length meet upon that side on which are the angles whose sum

is less than two right angles. Expressed in this form the axiom

is far from obvious, and from early times numerous attempts

have been made to prove it. All such attempts failed, and it is

now known that the axiom cannot be deduced from the other

axioms assumed by Euclid. I have already discussed this

question in chapter xiii, and I do not propose to add here

anything more. The conclusion was that three consistent

systems of geometry could be constructed, termed respectively

hyperbolic, parabolic or Euclidean, and elliptic. These are dis-

tinguished from one another according as no straight line (that

is, a geodetic line), or only one straight line, or a pencil of

straight lines can be drawn through a point parallel to a given

straight line.

To work out a body of propositions relating to figures on a

surface (that is, a two-dimensional space) analogous to that given

B. R. 28
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by Euclid relating to figures drawn on a plane, it is necessary

that it should be possible at any point on the surface to con-

struct a figure congruent to a given figure ; this is equivalent to

saying that if we take up a triangle drawn anywhere on the

surface and move it to another part of the surface, it will lie

flat on the surface there. This is so only if the measure of

curvature at every point of the surface is constant. Such

surfaces of constant curvature are spherical surfaces, where the

product is positive; plane surfaces, where it is zero; pseudo-

spherical surfaces, where it is negative. A tractroid, that is, a

figure produced by the revolution of a tractrix about its asymp-

tote, is an example of a pseudo-spherical surface ; it is saddle-

shaped at every point. Hence on spheres, planes, and tractroids

we can construct these systems of geometry. And these

systems are respectively examples of hyperbolic, Euclidean, and

elliptic geometries.

Moreover if any surface is bent without dilation or contrac-

tion, the measure of curvature remains unaltered. Thus from

these three surfaces we can form others on which congruent

figures, and therefore consistent systems of geometry, can be

constructed. For instance, a plane can be rolled into a cone or

cylinder, and the system of geometry on a conical or cylindrical

surface will be similar to that on a plane. Similarly a hemi-

sphere can be rolled up into a sort of spindle, and the system of

geometry on such a spindle will be similar to that on a sphere.

In fact there are three kinds of surfaces of constant positive

curvature, which are respectively spherical, spindle-shaped, and

bolster-shaped, and on each of these a system of hyperbolic

geometry can be constructed. So too there are three kinds of

surfaces of constant negative curvature.

Throughout this discussion I have tacitly assumed that the

measure of distance employed remains the same wherever it is

employed. If this is not so, we may evolve in plane space

non-Euclidean geometries which are not inconsistent with ex-

perience. Suppose, to take one example, that a foot-rule shrunk

as it w^as moved away from some point of the plane—as it

might do by a fall of temperature. Then a distance, which we
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should describe as finite, micrht when measured by this rule

appear to be infinite, since repeated applications of the ever-

shortening rule would not cover it. Thus the boundary of what

we should describe as a finite area round the point would to

those who were confined to the area of this foot-rule appear to

be infinitely distant from the point. If the law of shrinking be

properly chosen, the geometry of figures in this area would be

hyperbolic. The length of the foot-rule might also alter in

such a way as to lead to an elliptic geometiy*.

Thus the conception of hyperbolic, Euclidean, and elliptic

geometries can be reached from the theory of the measure of

distances as well as from the theory of parallels and of con-

gruent figures. This view has led to further discussion of

the essential characteristics of space by F. C. Klein, S. Lie,

D. Hilbert, M. L. Gerard, A. N. Whitehead, and others.

The above remarks refer only to space of two dimensions.

Naturally there arises the question whether there are different

kinds of non-Euclidean space of three or more dimensions.

Kiemann showed that there are three kinds of non-Euclidean

space of three dimensions having properties analogous to the

three kinds of non-Euclidean space of two dimensions already

discussed. These are differentiated by the test whether at

every point no geodetical surface, or one geodetical surface, or

a fasciculus of geodetical surfaces can be drawn parallel to a

given surface : a geodetical surface being defined as such that

every geodetic line joining two points on it lies wholly on the

surface. It may be added that each of the three systems of

geometry of two dimensions described above may be deduced

as properties of a surface in each of these three kinds of

non-Euclidean space of three dimensions.

It is evident that the properties of non-Euclidean space of

three dimensions are deducible only by the aid of mathematics,

and cannot be illustrated materially, for in order to realize or

construct surfaces in non-Euclidean space of two dimensions we
think of or use models in space of three dimensions ; similarly

* See A. Cayley, Collected Mailieinatical Fa^era, Cambridge, 1396, vol. xi,

p. -iiio et seq.

28—2
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the only way in which we could construct models illustrating

non-Euclidean space of three dimensions would be by utilizing

space of four dimensions.

We may proceed yet further and conceive of non-Euclidean

geometries of more than three dimensions, but this remains, as

yet, an unworked field.

Returning to the former question of non-Euclidean geome-

tries of two dimensions, I wish again to emphasize the fact that,

if the axioms enunciated in the usual books on elementary

geometry are replaced by others, it is possible to construct other

consistent systems of geometry. For instance, just as one kind of

non-Euclidean geometry has been constructed by assuming that

Euclid's parallel postulate is not true, so D. Hilbert and M. Dehn

of Gottingen have elaborated another kind, known as non-

Archimedian geometry. Archimedes had assumed as axiomatic

that if A and B are magnitudes of the same kind and order,

it is possible to find a multiple of A which is gTeater than B,

which implied that the geometrical magnitudes considered are

continuous. If this be denied, Hilbert and Dehn showed* that

it is still possible to construct consistent systems of geometry

closely analogous to that given by Euclid. Assuming that in

these a pencil of straight lines can be drawn through a point

parallel to a given straight line, then in one form, known as the

non-Legendrian system, the angle-sum of a triangle is greater

than two right angles, while in another form, termed the semi-

Euclidean system, the sum-angle is equal to two right angles.

I do not however concern myself here further with these systems,

for the methods and results appeal only to the professional

mathematician. On the other hand the elliptic, parabolic, and

hyperbolic systems described in chapter X have a special

interest, from the somewhat sensational fact that they lead to

no results necessarily inconsistent with the properties, as far as

we can observe them, of the space in which we live ; we are not

at present acquainted with any other systems which are con-

sistent with our experience. We may, however, fairly say that

of these systems the Euclidean is the simplest.

• M. Dehn, Matheinatischen Annalen, Leipzig, 1900, vol. Lvn, pp. 404—439.
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If we go a step further and ask what is meant by saying

that a geometry is true or false we land ourselves in an inter-

minable academic dispute. Some philosophers hold that certain

axioms are necessarily true independent of all experience, or at

any rate are necessarily true as far as our experience extends.

Others agree with Poincare, that the selection of a geometry is

really a matter of convenience, and that that geometry is the

best which enables us to state the known physical laws in the

simplest form ; or, more generally, that it is desirable to choose

axioms and to define quantities so as to permit the expression

in as simple a way as possible of all observed laws and facts in

nature. But for practical purposes the conclusion is immaterial,

and at any rate the discussion belongs to metaphysics rather

than mathematics.
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CHAPTER XX.

TIME AND ITS MEASUREMENT.

The problems connected with time are totally different in

character from those concerning space which I discussed in the

last chapter. I there stated that the life of people living in

space of one dimension would be uninteresting, and that probably

they would find it impossible to realize life in space of higher

dimensions. In questions connected with time we find ourselves

in a somewhat similar position. Mentally, we can realize a past

and a future—thus going backwards and forwards—actually we

go only forwards. Hence time is analogous to space of one

dimension. Were our time of two dimensions, the conditions

of our life would be infinitely varied, but we can form no con-

ception of what such a phrase means, and I do not think that

any attempts have been made to work it out.

The idea of time, when we examine it carefully, involves

many difficulties. For instance, we speak of an instant of time

as if it were absolutely definite. If so we could represent it by

a point on a line, and the idea of simultaneity would be simple,

for two events could be regarded as simultaneous when their

representative points were coincident. But in reality sensations

have an appreciable duration, even though it be very small.

This duration may be represented by an interval on a line, and

it would seem reasonable to say that two events are simultaneous

when their representative intervals have a common part ; hence

two events which are simultaneous with the same event are

not necessarily simultaneous with one another. Here, however,

I exclude these quasi-metaphysical questions, and concern myself
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mainly with questions concerninc^ the measurement of time, and

I shall treat these rather from a historical than from a physical

point of view.

In order to measure anything we must have an unalterable

unit of the same kind, and we must be able to determine how
often that unit is contained in the quantity to be measured.

Hence only those things can be measured which are capable of

addition to things of the same kind.

Thus to measure a length we may take a foot-rule, and by

applying it to the given length as often as is necessary, we shall

find how many feet the length contains. But in comparing

lengths we assume as the result of experience that the length

of the foot-rule is constant, or rather that any alteration in it

can be determined ; and, if this assumption was denied, we
could not prove it, though, if numerous repetitions of the

experiment under varying conditions always gave the same

result, probably we should feel no doubt as to the correctness

of our method.

It is evident that the measurement of time is a more

difficult matter. We cannot keep a unit by us in the same way

as we can keep a foot-rule ; nor can we repeat the measurement

over and over again, for time once passed is gone for ever.

Hence we cannot appeal directly to our sensations to justify our

measurement. Thus, if we say that a certain duration is four

hours, it is only by a process of reasoning that we can show that

each of the hours is of the same duration.

The establishment of a scientific unit for measuring dura-

tions has been a long and slow affair. The process seems to

have been as follows. Originally man observed that certain

natural phenomena recurred after the interval of a day, say

from sunrise to sunrise. Experience—for example, the amount

of work that could be done in it—showed that the length of

every day was about the same, and, assuming that this was

accurately so, man had a unit by which he could measure

durations. The present subdivision of a day into hours, minutes,

and seconds is ai'titicial, and apparently is derived £iom the

Babyionians,
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Similarly a month and a year are natural units of time

though it is not easy to determine precisely their beginnings

and endings.

So long as men were concerned merely with durations which

were exact multiples of these units or which needed only a

rough estimate, this did very well ; but as soon as they tried to

compare the different units or to estimate durations measured

by part of a unit they found difficulties. In particular it cannot

have been long before it was noticed that the duration of the

same day differed in different places, and that even at the same

place different days differed in duration at different times of the

year, and thus that the duration of a day was not an invariable

unit.

The question then arises as to whether we can jfind a fixed

unit by which a duration can be measured, and whether we

have any assurance that the seconds and minutes used to-day

for that purpose are all of equal duration. To answer this we

must see how a mathematician would define a unit of time.

Probably he would say that experience leads us to believe that,

if a rigid body is set moving in a straight line without any

external force acting on it, it will go on moving in that line

;

and those times are taken to be equal in which it passes over

equal spaces : similarly, if it is set rotating about a principal axis

passing through its centre of mass, those times are taken to be

equal in which it turns through equal angles. Our experiences are

consistent with this statement, and that is as high an authority

as a mathematician hopes to get.

The spaces and the angles can be measured, and thus dura-

tions can be compared. Now the earth may be taken roughly

as a rigid body rotating about a principal axis passing through

its centre of mass, and subject to no external forces affecting

its rotation : hence the time it takes to turn through four right

angles, i.e. through 360°, is always the same; this is called

a sidereal day: the time to turn through one twenty-fourth

part of 360°, i.e. through 15°, is an hour: the time to turn

through one-sixtieth part of 15°, i.e. through 15', is a minute

:

and so oJi.
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If, by the progress of astronomical research, we find that

there are external forces affecting the rotation of the earth,

mathematics would have to be invoked to find what the time

of rotation would be if those forces ceased to act, and this

would give us a correction to be applied to the unit chosen.

In the same way we may say that although an increase of

temperature affects the length of a foot-rule, yet its change of

length can be determined, and thus applied as a correction to

the foot-rule when it is used as the unit of length. As a matter

of fact there is reason to think that the earth takes about one

sixty-sixth of a second longer to turn through four right angles

now than it did 2500 years ago, and thus the duration of a

second is just a trifle longer to-day than was the case when the

Romans were laying the foundations of the power of their city.

The sidereal day can be determined only by refined astro-

nomical observations and is not a unit suitable for ordinary

purposes. The relations of civil life depend mainly on the

sun, and he is our natural time-keeper. The true solar day

is the time occupied by the earth in making one revolution on

its axis relative to the sun ; it is true noon when the sun is on

the meridian. Owing to the motion of the sun relative to the

earth, the true solar day is about four minutes longer than

a sidereal day.

The true solar day is not however always of the same

duration. This is inconvenient if we measure time by clocks

(as now for nearly two centuries has been usual in Western

Europe) and not by sun-dials, and therefore we take the average

duration of the true solar day as the measure of a day : this is

called the mean solar day. Moreover to define the noon of

a mean solar day we suppose a point to move uniformly round

the ecliptic coinciding with the sun at each apse, and further

we suppose a fictitious sun, called the mean sun, to move in the

celestial equator so that its distance from the first point of Aries

ii) the same as that of this point : it is mean noon when this

mean sun . is on the meridian. The mean solar day is divided

into hours, minutes, and seconds ; and these are the usual units

of time in civil life.
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The time indicated by our clocks and watches is mean solar

time; that marked on ordinary sun-dials is true solar time.

The difference between them is the equation of time : this may
amount at some periods of the year to a little more than a

quarter of an hour. In England we take the Greenwich

meridian as our origin for longitudes, and instead of local mean
solar time we take Greenwich mean solar time as the civil

standard.

Of course mean time is a comparatively recent invention.

The French were the last civilized nation to abandon the use

of true time : this was in 1816.

Formerly there was no common agreement as to when the

day began. In parts of ancient Greece and in Japan the

interval from sunrise to sunset was divided into twelve hours, and

that from sunset to sunrise into twelve hours. The Jews, Chinese,

Athenians, and, for a long time, the Italians, divided their day into

twenty-four hours,beginning at the hour of sunset,which of course

varies every day : this method is said to have been used as late as

the latter half of the nineteenth century in certain villages near

Naples, except that the day began half-an-hour after sunset

—

the clocks being re-set once a week. Similarly the Babylonians,

Assyrians, Persians, and until recently the modern Greeks and

the inhabitants of the Balearic Islands counted the twenty-four

hours of the day from sunrise. Until 1750, the inhabitants of

Basle reckoned the twenty-four hours from our 11.0 p.m. The

ancient Egyptians and Ptolemy counted the twenty-four hours

from noon: this is the practice of modern astronomers. In

Western Europe the day is taken to begin at midnight—as

was first suggested by Hipparchus—and is divided into two

equal periods of twelve hours each.

The week of seven days is an artificial unit of time. It had

its origin in the East, and was introduced into the West probably

during the second century by the Poman emperors, and, except

during the French Pevolution, has been subsequently in general

use among civilized races. The names of the days are derived

from the seven astrological planets, arranged, as was customary,

in the order of their apparent times of rotation round tlie earth,
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namely, Saturn, Jupiter, Mars, the Sun, Venus, Mercury, and

the Moon. The twenty-four hours of the day were dedicated

successively to these planets : and the day was consecrated to

the planet of the first hour.

Thus if the first hour was dedicated to Saturn, the second

would be dedicated to Jupiter, and so on ; but the day would be

Saturn's day. The twenty-fourth hour of Saturn's day would

be dedicated to Mars, thus the first hour of the next day would

belong to the Sun ; and the day would be Sun's day. Similarly

the next day would be Moon's day ; the next, Mars's day ; the

next, Mercury's day; the next, Jupiter's day; and the next,

Venus's day.

The astronomical month is a natural unit of time depending

on the motion of the moon, and containing about 29J- days.

The months of the calendar have been evolved gradually as

convenient divisions of time, and their history is given in

numerous astronomies. In the original Julian arrangement

the months in a leap year contained alternately 31 and 30 days,

while in other years February had 29 days. This was altered

by Augustus in order that his month should not be inferior to

one named after his uncle.

The solar tropical year is another natural unit of time.

According to a recent determination, it contains 365*242216

days, that is, 365^- 5^- 48°^ 47'--4624. Civilized races usually

number the passing years consecutively from some fixed date.

The Romans reckoned from the traditional date of the foundation

of their city. In the sixth century of our era it was suggested

that the birth of Christ was a more fitting epoch from which to

reckon dates, but it was not until the ninth century that this

suggestion was generally adopted.

The Egj^ptians knew that the year contained between 365

and 366 days, but the Romans did not profit by this information,

for Numa is said to have reckoned 355 days as constituting

a year—extra months being occasionally intercalated, so that

the seasons might recur at about the same period of the year.

In 46 B.C. Julius Caesar decreed that thenceforth the year

should contain 365 days, except that in every fourth or leap
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year one additional day should be introduced. He ordered this

rule to come into force on January 1, 45 B.C. The change was

made on the advice of Sosigenes of Alexandria.

It must be remembered that the year 1 A.D. follows imme-

diately 1 B.C., that is, there is no year 0, and thus 45 B.C. would

be a leap year. All historical dates are given now as if the

Julian calendar was reckoned backwards as well as forwards

from that year*. As a matter of fact, owing to a mistake in

the original decree, the Romans, during the first 36 years after

45 B.C., intercalated the extra day every third year, thus pro-

ducing an error of 3 days. This was remedied by Augustus,

who directed that no intercalation of an extra day should be

made in any of the twelve years A.u.c. 746 to 757 inclusive,

but that the intercalation should be again made in the year

A.U.C. 761 (that is, 8 A.D.) and every succeeding fourth year.

The Julian calendar made the year, on an average, con-

tain 365*25 days. The actual value is, very approximately,

365"242216 days. Hence the Julian year is too long by about

11J minutes: this produces an error of nearly one day in 128

years. If the extra day in every thirty-second leap year had

been omitted—as was suggested by some unknown Persian

astronomer—the error would have been less than one day in

100,000 years. It may be added that Sosigenes was aware that

his rule made the year slightly too long.

The error in the Julian calendar of rather more than eleven

minutes a year gradually accumulated, until in the sixteenth

century the seasons arrived some ten days earlier than they

should have done. In 1582 Gregory XIII corrected this by

omitting ten days from that year, which therefore contained

only 355 days. At the same time he decreed that thenceforth

every year which was a multiple of a century should be or not

be a leap j^ear according as the multiple was or was not divisible

by four.

The fundamental idea of the reform was due to Lilius, who

died before it was carried into effect. The work of framing

the new calendar was entrusted to Clavius, who explained the

* Herscbel, Astronomy, London, lltli ed. 1871, arts. 916—919.
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principles and necessary rules in a prolix but accurate work* of

over 700 folio pages. The plan adopted was due to a suggestion

of Pitatus made in 1552 or perhaps 1537 : the alternative and

more accurate proposal of Stoffler, made in 1518, to omit one

day in eveiy 134 years, being rejected by Lilius and Clavius for

reasons which are not known.

Clavius believed the year to contain 365*2425432 days, but

he framed his calendar so that a year, on the average, contained

365*2425 days, which he thought to be wrong by one day in

3323 years : in reality it is a trifle more accurate than this, the

error amounting to one day in about 3600 years.

The change was unpopular, but Ricciolif tells us that, as

those miracles which take place on fixed dates

—

ex. gr. the

liquefaction of the blood of S. Januarius—occurred according

to the new calendar, the papal decree was presumed to have a

di\dne sanction—Deo ipso huic correctioni Gregorianae sub-

scribente—and was accepted as a necessary evil.

In England a bill to carry out the same reform was intro-

duced in 1584, but was withdrawn after being read a second

time; and the change was not finally eifected till 1752, when

eleven days were omitted from that year. In Roman Catholic

countries the new style was adopted in 1582. In the German

Lutheran States it was made in 1700. In England, as I have

said above, it was introduced in 1752; and in Ireland it was

made in 1782. It is well known that the Greek Church still

adheres to the Julian calendar.

The Mohammedan year contains 12 lunar months, or 354J
days, and thus has no connection with the seasons.

The Gregorian change in the calendar was introduced in

order to keep Easter at the right time of year. The date of

Easter depends on that of the vernal equinox, and as the Julian

calendar made the year of an average length of 365*25 days

instead of 365*242216 days, the vernal equinox came earlier and

earlier in the year, and in 1582 had regreded to within about

ten days of February.

* Romani Galendarii a Greg. XIII Eestituti Explication Kome, 1603.

t Chronologia ReJ'ormata, Bonn, 1669, vol. n, p. 206.
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The rale for determining Easter is as follows*. In 325 the

Nicene Council decreed that the Roman practice should be

followed ; and after 463 (or perhaps, 530) the Roman practice

required that Easter-day should be the first Sunday after the

full moon which occurs on or next following the vernal equinox

—

full moon being assumed to occur on the fourteenth day from

the day of the preceding new moon (though as a matter of fact

it occurs on an average after an interval of rather more than

14J days), and the vernal equinox being assumed to fall on

March 21 (though as a matter of fact it sometimes falls on

March 22).

This rule and these assumptions were retained by Gregory

on the ground that it was inexpedient to alter a rule with

which so many traditions were associated ; but, in order to save

disputes as to the exact instant of the occurrence of the new

moon, a mean sun and a mean moon defined by Clavius were

used in applying the rule. One consequence of using this

mean sun and mean moon and giving an artificial definition

of full moon is that it may happen, as it did in 1818 and 1845,

that the actual full moon occurs on Easter Sunday. In the

British Act, 24 Geo. II. cap. 23, the explanatory clause which

defines full moon is omitted, but practically full moon has

been interpreted to mean the Roman ecclesiastical full moon;

hence the Anglican and Roman rules are the same. Until

1774 the German Lutheran States employed the actual sun

and moon. Had full moon been taken to mean the fifteenth

day of the moon, as is the case in the civil calendar, then the

rule might be given in the form that Easter-day is the Sunday

on or next after the calendar full moon which occurs next after

March 21.

Assuming that the Gregorian calendar and tradition are

used, there still remains one point in this definition of Easter

which might lead to different nations keeping the feast at

different times. This arises from the fact that local time is

introduced. For instance the difference of local time between

* De Morgan, Com;panion to the Almanac, London, 1815, pp. 1—36 ; ibid.,

1846, pp. 1—10.
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Rome and London is about 50 minutes. Thus the instant of

the first full moon next after the vernal equinox might occur in

Rome on a Sunday morning, say at 12.30 a.m., while in England

it would still be Saturday evening, 11.40 p.m., in which case

our Easter would be one week earlier than at Rome. Clavius

foresaw the difficulty, and the Roman Communion all over the

world keep Easter on that day of the month which is determined

by the use of the rule at Rome. But presumably the British

Parliament intended time to be determined by the Greenwich

meridian, and if so the Anglican and Roman dates for Easter

might differ by a week ; whether such a case has ever arisen or

been discussed I do not know, and I leave to ecclesiastics to say

how it should be settled.

The usual method of calculating the date on which Easter-

day falls in any particular year is involved, and possibly the

following simple rule* may be unknown to some of my readers.

Let m and n be numbers as defined below, (i) Divide the

number of the year by 4, 7, 19; and let the remainders be

a, 6, c respectively, (ii) Divide 19c + m by 30, and let d be the

remainder, (iii) Divide 2ci + 46 + 6c^ + n by 7, and let e be

the remainder, (iv) Then the Easter full moon occurs d days

after March 21; and Easter-day is the (22 + c? + e)th of March

or the (cZ + e — 9)th day of April, except that if the calculation

gives (i = 29 and e= 6 (as happens in 1981) then Easter-day is

on April 19 and not on April 26, and if the calculation gives

d = 28, e = 6, and also c > 10 (as happens in 1954) then Easter-

day is on April 18 and not on April 25, that is, in these two

cases Easter falls one week earlier than the date given by the

rule. These two exceptional cases cannot occur in the Julian

calendar, and in the Gregorian calendar they occur only very

rarely. It remains to state the values of m and n for the par-

ticular period. In the Julian calendar we have m = 15, n = 6.

In the Gregorian calendar we have, from 1582 to 1699 in-

clusive, m = 22, 71 = 2; from 1700 to 1799, m=23, n = 3;

from 1800 to 1899, m = 23, n==4>; from 1900 to 2099, m = 24,

* It is due to Gauss ; his proof is given in Zacb's Monatliche Coirespondeiiz,

August, 1800, vol. u, pp. 221—230.
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w = 5; from 2100 to 2199, m = 24, n = 6; from 2200 to 2299,

m = 25, n = 0; from 2300 to 2399, m=26, 7^ = 1; and from

2400 to 2499, m=25, n=l. Thus for the year 1908 we

have m = 24, n = 5 ; hence a = 0, 6 = 4, c=8; d = 26; and

e = 2: therefore Easter Sunday was on April 19. After the

year 4200 the form of the rule will have to be slightly

modified.

The dominical letter and the golden number of the ecclesi-

astical calendar can be at once determined from the values of

h and c. The epact, that is, the moon's age at the beginning

of the year, can be also easily calculated from the above

data in any particular case ; the general formula was given

by Delambre, but its value is required so rarely by any but

professional astronomers and almanac-makers that it is un-

necessary to quote it here.

We can evade the necessity of having to recollect the

values of m and n by noticing that, if iV is the given year,

and if {N/oo} denotes the integral part of the quotient when

N is divided by x, then m is the remainder when 15 + ^ is

divided by 30, and n is the remainder when 6 + 77 is divided

by 7 : where, in the Julian calendar, f= 0, and 77 = ; and, in

the Gregorian calendar, ^= {i\^/100} - {i\^/400} - {i\^/300}, and

97={iV/100}-{iV/400}-2.

If we use these values of m and n, and if we put for

a, b, c their values, namely, a = iV^-4 (i\^/4}, h = N-'7 {N/7},

c = iV^— 19 {i\^/19}, the rule given on the last page takes the

following form. Divide 19iY- {N/19} + 15 + f by 30, and let

the remainder be d. Next divide 6(N+d + l)- {N/4i} +7)

by 7, and let the remainder be e. Then Easter full moon

is on the dth day after March 21, and Easter-day is on the

(22 -\- d + e)th. of March or the {d + e-9)th of April as the

case may be ; except that if the calculation gives d = 29, and

e = 6, or if it gives d = 2S, e = 6, and c> 10, then Easter-day

is on the (d + e — 16)th of April.

Thus, if A^= 1920, we divide

19 (1920) - 101 -1- 15 -t- (19 - 4 - 6) by 30,
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which gives d=13, and then we proceed to divide

6(1920 + 13 + l)-480 + (19-4-2) by 7,

which gives e = : therefore Easter-day will be on April 4.

The above rules cover all the cases worked out with so much
labour by Clavius and others*.

I may add here a rule, quoted by Zcller, for determining the

day of the week corresponding to any given date. Suppose that

the pih day of the ^th month of the year N anno domini is the

7'th day of the week, reckoned from the preceding Saturday.

Then r is the remainder when

;? + 2^+ {3 (5 + \)ib]-\-N[Nm-'n

is divided by 7 ;
provided January and February are reckoned

respectively as the 13th and 14th months of the preceding year.

For instance, Columbus first landed in the New World on

October 12, 1492. Here p = 12, ^ = 10, iV=1492, 17 = 0. If

we divide 12 + 20 + 6 + 1492 + 373 by 7 we get r = 6 ; hence it

was on a Friday. Again, Charles I was executed on January 30,

1G49 N.S. Here ^ = 30, g=13, xV=1648, 77 = 0, and we find

r = 3 ; hence it was on a Tuesday. As another example, the

battle of Waterloo was fought on June 18, 1815. Here ^ = 18,

q = Q, N = 1815, 7} = 12, and we find r = 1 ; hence it took place

on a Sunday.

Various rules have been given for obtaining these results

with less arithmetical calculation, but they depend on the

construction of tables which must be consulted in all cases.

One rule of this kind is given in Whitakers Almanac.

Lightning calculators use such rules and commit the tables

to memory. The same results can be also got by mechanical

contrivances. The best instrument of this kind with which

* Most of the above-mentioned facts about the calendar are taken from

Delambre's Astrononiie, Paris, 1814, vol. iii, chap, xxxviii ; and his Histoire de

Vustronornie modcrnc, Paris, 1821, vol. i, chap, i: see also A. De Moi^'an, The

Book of Almanacs, London, 1851 ; S. Butcher, The Ecclesiastical Calendar,

Dublin, 1877; and C. Zeller, Acta Mathematica, Stockholm, 1887, vol. ix,

jip. 131—136: on the chronological details see J. L. Ideler, Lehrbuch der

Chronologie, Berlin, 1831.

B. R. 29
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I am acquainted is one called the World's Calendar, invented

by J. P. Wiles, and issued in London in 1906.

I proceed now to give a short account of some of the means

of measuring time which were formerly in use.

Of devices for measuring time, the earliest of which we have

any positive knowledge are the styles or gnomons erected in

Egypt and Asia Minor. These were sticks placed vertically in

a horizontal piece of ground, and surrounded by three concentric

circles, such that every two hours the end of the shadow of the

stick passed from one circle to another. Some of these have

been found at Pompeii and Tusculum.

The sun-dial is not very different in principle. It consists

of a rod or style fixed on a plate or dial; usually, but not

necessarily, the style is placed so as to be parallel to the axis

of the earth. The shadow of the style cast on the plate by the

sun falls on lines engraved there which are marked with the

corresponding hours.

The earliest sun-dial, of which 1 have read, is that made

by Berosus in 540 B.C. One was erected by Meton at Athens

in 433 B.C. The first sun-dial at Rome was constructed by

Papirius Cursor in 306 B.C. Portable sun-dials, with a compass

fixed in the face, have been long common in the East as well

as in Europe. Other portable instruments of a similar kind

were in use in medieval Europe, notably the sun-rings, hereafter

described, and the sun-cylinders *.

I believe it is not generally known that a sun-dial can

be so constructed that the shadow will, for a short time

near sunrise and sunset, move backwards on the dialf. This

was discovered by Nonez. The explanation is as follows.

Every day the sun appears to describe a circle round the

pole, and the line joining the point of the style to the sun

describes a right cone whose axis points to the pole. The

section of this cone by the dial is the curve described by the

'' Thus Chaucer in iheShipman's Tale, "by my chilindre it is prime of day,"

and Lydgate in the Siege of Thebes, "by my chilyndre I gan anon to see. ..that

it drew to nine."

• t Ozanam, 1803 edition, vol. ni, p. 321 ; 1840 edition, p. 529.
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extremity of the shadow, and is a conic. In our latitude the

sun is above the horizon for only part of the twenty-four

hours, and therefore the extremity of the shadow of the style

describes only a part of this conic. Let QQ' be the arc

described by the extremity of the shadow of the style from

sunrise at Q to sunset at Q', and let S be the point of the style

and F the foot of the style, i.e. the point where the style meets

the plane of the dial. Suppose that the dial is placed so that

the tangents drawn from F to the conic QQ' are real, and that

P and P', the points of contact of these tangents, lie on the

arc QQ\ If these two conditions are fulfilled, then the shadow

will regrede through the angle QFF as its extremity moves

from Q to P, it will advance through the angle FFF' as its

extremity moves from P to P\ and it mil regrede through the

angle P'FQ' as its extremity moves from P' to Q'.

If the sun's apparent diurnal path crosses the horizon

—

as always happens in temperate and tropical latitudes—and

if the plane of the dial is horizontal, the arc QQ' will consist

of the whole of one branch of a hyperbola, and the above con-

ditions will be satisfied if F is within the space bounded by this

branch of the hyperbola and its as3niiptotes. As a particular

case, in a place of latitude 12° N. on a day when the sun is in

the northern tropic (of Cancer) the shadow on a dial whose

face is horizontal and style vertical will move backwards for

about two hours between sunrise and noon.

If, in the case of a given sun-dial placed in a certain

position, the conditions are not satisfied, it will be possible to

satisfy them by tilting the sun-dial through an angle properly

chosen. This was the rationalistic explanation, offered by the

French encyclopaedists, of the miracle recorded in connection

with Isaiah and Hezekiah*. Suppose, for instance, that the

style is perpendicular to the face of the dial. Draw the celestial

sphere. Suppose that the sun rises at M and culminates at i\',

and let Z be a point between M and N on the sun's diurnal

path. Draw a great circle to touch the sun's diurnal path

MLN at Z, let this great circle cut the celestial meridian in A
* 2 Kii)gs, chap, xx, vv. 9—11.

29-2
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and A\ and of the arcs AL, A'L suppose that AL i's> the less

and therefore is less than a quadrant. If the style is pointed to

Ay then, while the sun is approaching L, the shadow will

regrede, and after the sun passes L the shadow will advance.

Thus if the dial is placed so that a style which is normal to it

cuts the meridian midway between the equator and the tropic,

then between sunrise and noon on the longest day the shadow

will move backwards through an angle

sin~^ (cos (o sec \(o) — cot~^ {sin © cos (Z — Jo) (cos^ I — sin^ to)
~
^),

where I is the latitude of the place and w is the obliquity of the

ecliptic.

The above remarks refer to the sun-dials in ordinary use.

In 1892 General Oliver brought out in London a dial with a

solid style, the section of the style being a certain curve whose

form was determined empirically by the value of the equation

of time as compared with the sun's declination*. The shadow

of the style on the dial gives the local mean time, though of

course in order to set the dial correctly at any place the latitude

of the place must be known : the dial may be also set so as to

give the mean time at any other locality whose longitude relative

to the place of observation is known.

The sun-ring ov ring-dial is another instrument for measuring

solar time-|*. One of the simplest type is figured in the diagram

below. The sun-ring consists of a thin brass band, about a

quarter of an inch wide, bent into the shape of a circle, which

slides between two fixed circular rims—the radii of the circles

being about one inch. At one point of the band there is a

hole; and when the ring is suspended from a fixed point

attached to the rims so that it hangs in a vertical plane con-

taining the sun, the light from the sun shines through this

hole and makes a bright speck on the opposite inner or

concave surface of the ring. On this surface the hours are

marked, and, if the ring is properly adjusted, the spot of

light will fall on the hour which indicates the solar time. The
'* An account of this sun-dial with a diagram was given in Knowledge^ London,

July 1, 1892, pp. 133, 134.

t See Ozanam, 1803 edition, vol. iii, p. 317 ; 1810 edition, p. 526.
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adjustment for the time of year is made as follows. The rims

between which the band can slide are marked on their outer

or convex side with the names of the months, and the band

containing the hole must be moved between the rims until

the hole is opposite to that month for which the ring is being

used.

For determining times near noon the instrument is reliable,

but for other hours in the day it is accurate only if the time

of year is properly chosen, usually near one of the equinoxes.

This defect may be corrected by marking the hours on a

curved brass band affixed to the concave surface of the rims.

I possess two specimens of rings of this kind. These rings

were distributed widely. Of my two specimens, one was bought

in the Austrian Tyrol and the other in London. Astrolabes

and sea-rings can be used as sun-rings.

Clepsydras or water-clocks, and hour-glasses or sand-clocks,

afford other means of measuring time. The time occupied by

a given amount of some liquid or sand in running through

a given orifice under the same conditions is always the same,

and by noting the level of the liquid which has run through

the orifice, or which remains to run through it, a measure of

time can be obtained.
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The burning of graduated candles gives another way of

measuring time, and we have accounts of those used by Alfred

the Great for the purpose. Incense sticks were used by the

Chinese in a similar way.

Modern clocks and watches* comprise a train of wheels

turned by a weight, spring, or other motive power, and regu-

lated by a pendulum, balance, fly-wheel, or other moving body

whose motion is periodic and time of vibration constant. The
direction of rotation of the hands of a clock was selected

originally so as to make the hands move in the same direction

as the shadow on a sun-dial whose face is horizontal—the dial

being situated in our hemisphere.

The invention of clocks with wheels is attributed by tradition

to Pacificus of Verona, circ. 850, and also to Gerbert, who is said

to have made one at Magdeburg in 996 : but there is reason to

believe that these were sun-clocks. The earliest wheel-clock of

which we have historical evidence was one sent by the Sultan

of Egypt in 1232 to the Emperor Frederick II, though there

seems to be no doubt that they had been made in Italy at least

fifty years earlier.

The oldest clock in England of which we know anything

was one erected in 1288 in or near Westminster Hall out of

a fine imposed on a corrupt Lord Chief Justice. The bells, and

possibly the clock, were staked by Henry VIII on a throw of

dice and lost, but the site was marked by a sun-dial, destroyed

early in the nineteenth century, and bearing the inscription

Discite justiciam moniti. In 1292 a clock was erected in Canter-

bury Cathedral at a cost of £30. One erected at Glastonbury

Abbey in 1325 is at present in the Kensington Museum and is

in excellent condition. Another made in 1326 for St Albans

Abbey showed the astronomical phenomena, and seems to have

been one of the earliest clocks that did so. One put up at

Dover in 1348 is still in good working order. The clocks at

Peterborough and Exeter were of about the same date, and

portions of them remain in situ. Most of these early clocks

* See Clock and Watch Maldng by Lord Griinthorpe, 7th edition, London,

1883.
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were regulated by horizontal balances: pendulums being then

unknown. Of the elaborate clocks of a later date, that at

Strasburg made by Dasypodius in 1571, and that at Lyons

constructed by Lippcus in 1598, are especially famous: the

former was restored in 1842, though in a manner which de-

stroyed most of the ancient works.

In 1370 Vick constructed a clock for Charles V with a

weight as motive power and a vibrating escapement—a great

improvement on the rough time-keepers of an earlier date.

The earliest clock regulated by a pendulum seems to have

been made in 1621 by a clockmaker named Harris, of Covent

Garden, London, but the theory of such clocks is due to

Huygens*. Galileo had discovered previously the isochronism

of a pendulum, but did not apply it to the regulation of the

motion of clocks. Hooke made such clocks, and possibly dis-

covered independently this use of the pendulum : he invented

or re-invented the anchor pallet.

A watch may be defined as a clock which will go in any

position. Watches, though of a somewhat clumsy design, were

made at Nuremberg by P. Hole early in the sixteenth century

—the motive power being a ribbon of steel, wound round a

spindle, and comiected at one end with a train of wheels which

it turned as it unwound. Possibly a few similar timepieces

had been made in the previous century; by the end of the

sixteenth century they were not uncommon. At first they

were usually made in the form of fanciful ornaments such as

skulls, or as large pendants, but about 1620 the flattened oval

form was introduced, rendering them more convenient to carry

in a pocket or about the person. In the seventeenth century

their construction was greatly improved, notably by the

introduction of the spring balance by Huygens in 1674, and

independently by Hooke in 1675—both mathematicians having

discovered that small vibrations of a coiled spring, of which one

end is fixed, are practically isochronous. The fusee had been

used by R. Zech of Prague in 1525, but was re-invented by

Hooke.

* Jlorologiuiu Oscillatoiium, Paris, 1G73.
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Clocks and watches are usually moved and regulated in the

manner indicated above. Other motive powers and other

devices for regulating the motion may be met with occasionally.

Of these I may mention a clock in the form of a cylinder, usually

attached to another weight as in Atwood's machine, which rolls

down an inclined plane so slowly that it takes twelve hours to

roll down, and the highest point of the face always marks the

proper hour*.

A water-clock made on a somewhat similar plan is described

by Ozanamf as one of the sights of Paris at the beginning of

the last century. It was formed of a hollow cylinder divided

into various compartments each containing some mercury, so

arranged that the cylinder descended with uniform velocity

between two vertical pillars on which the hours were marked

at equidistant intervals.

Other ingenious ways of concealing the motive power have

been described in the columns of La KatureX- Of such

mysterious timepieces the following are not uncommon examples,

and probably are known to most readers of this book. One
kind of clock consists of a glass dial suspended by two thin

wires; the hands however are of metal, and the works are

concealed in them or in the pivot. Another kind is made of

two sheets of glass in a frame containing a spring which gives

to the hinder sheet a very slight oscillatory motion—imper-

ceptible except on the closest scrutiny—and each oscillation

moves the hands through the requisite angles. Some so-called

perpetual motion timepieces were described above on page 96.

Lastly, I have seen in France a clock the hands of which were

concealed at the back of the dial, and carried small magnets;

pieces of steel in the shape of insects were placed on

the dial, and, following the magnets, served to indicate the

time.

The position of the sun relative to the points of the compass

* Ozanam, 1803 edition, vol. n, p. 39 ; 1840 edition, p. 212 ; or La Nature^

Jan. 23, 1892, pp. 123, 124.

t Ozanam, 1803 edition, vol. ii, p. 68 ; 1840 edition, p. 225.

X See especially the volumes issued in 1874, 1877, and 1878.
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determines the solar time. Conversely, if we take the time

given by a watch as being the solar time—and it will differ

from it by only a few minutes at the most—and we observe

the position of the sun, we can find the points of the compass*.

To do this it is sufficient to point the hour-hand to the sun,

and then the direction which bisects the angle between the

hour and the figure xii will point due south. For instance,

if it is four o'clock in the afternoon, it is sufficient to point

the hour-hand (which is then at the figure iiii) to the sun, and

the figure ii on the watch will indicate the direction of south.

Again, if it is eight o'clock in the morning, we must point the

hour-hand (which is then at the figure viii) to the sun, and

the figure X on the watch gives the south point of the

compass.

Between the hours of six in the morning and six in the

evening the angle between the hour and xil which must be

bisected is less than 180°, but at other times the angle to be

bisected is greater than 180°; or perhaps it is simpler to say

that at other times the rule gives the north point and not the

south point.

The reason is as follows. At noon the sun is due south,

and it makes one complete circuit round the points of the

compass in 24 hours. The hour-hand of a watch also makes

one complete circuit in 12 hours. Hence, if the watch is held

in the plane of the ecliptic with its face upwards, and the

figure xii on the dial is pointed to the south, both the hour-

hand and the sun will be in that direction at noon. Both

move round in the same direction, but the angular velocity

of the hour-hand is twice as great as that of the sun. Hence

the rule. The greatest error due to the neglect of the equation

of time is less than 2°. Of course in practice most people,

instead of holding the face of the watch in the ecliptic, would

hold it horizontal, and in our latitude no serious error would be

thus introduced.

* The rule is given by W. H. Richards, Military Topography , London,

1883, p. 31, though it is not stated quite correctly. I do not know who first

enunciated it.
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In the southern hemisphere where at noon the sun is due

north the rule requires modification. In such places the hour-

hand of a watch (held face upwards in the plane of the ecliptic)

and the sun move in opposite directions. Hence, if the watch

is held so that the figure xii points to the sun, then the direction

which bisects the angle between the hour of the day and the

figure XII will point due north.



4,5y

CHAPTER XXI.

MATTER AND ETHER THEORIES.

Matter, like space and time, cannot be defined, but either

the statement that matter is whatever occupies space or the

statement that it is anything which can be seen, touched, or

weighed, suggests its more important characteristics to anyone

already familiar with it.

The means of measuring matter and some of its properties

are treated in most text-books on mechanics, and I do not

propose to discuss them. I confine the chapter to an account

of some of the hypotheses formerly held by physicists as to the

ultimate constitution of matter, but I exclude metaphysical

conjectures which, from their nature, are incapable of proof

and are not subject to mathematical analysis. The question

is intimately associated with the explanation of the phenomena

of attraction, light, chemistry, electricity, and other branches of

physics.

I commence with a list of some of the more plausible of the

hypotheses formerly proposed which accounted for the obvious

properties of matter, and shall then discuss how far they explain

or are consistent with other facts*. The interest of the list is

* For the earlier investigations I have based my account mainly on Itecent

Advances in Physical Science, by P. G. Tait, Edinburgh, 1876 (chaps, xii, xiii);

and on the article Atom by J. Clerk Maxwell in the Encyclopaedia Britannica or

his Collected Works, vol. ii, pp. 445—484. For the more recent speculations

see J. J. Thomson, Electricity and Matter, Westminster, 1904 ; J. Larmor,

Aether and Matter, Cambridge, 1900 ; and E, T. Whittaker, IlistM'y of the

'Theories of Aether and Electricity, Dublin, 1910.
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largely historical, for within the last few years new views as to

the constitution of matter have been propounded, which cannot

be discussed satisfactorily in a book like this.

I. Hypothesis of Continuous Matter. It may be

supposed that matter is homogeneous and continuous, in which

case there is no limit to the infinite divisibility of bodies. This

view was held by Descartes*.

This conjecture is consistent with the facts deducible by

untrained observation, but there are many other phenomena for

which it does not account ; moreover there seems to be no way

of reconciling such a structure of matter either with the facts

of chemical changes or with the results of spectrum analysis.

At any rate the theory must be regarded as extremely im-

probable.

II. Atomic Theories. If matter is not continuous we

must suppose that every body is composed of aggregates of

molecules. If so, it seems probable that each such molecule is

built up by the association of two or more atoms, that the

number of kinds of atoms is finite, and that the atoms of any

particular kind are alike. As to the nature of the atoms the

following hypotheses have been made.

(i) Popular Atomic Hypothesis. The popular view is that

every atom of any particular kind is a minute indivisible article

possessing definite qualities, everlasting in its form and properties,

and infinitely hard.

This statement is plausible, but the difficulties to which it

leads appear to be insuperable. In fact we have reason to think

that the atoms which form a molecule are composite systems in

incessant vibration at a rate characteristic of the molecule, and

it is most probable that they are elastic.

Newton seems to have hazarded a conjecture of this kind

when he suggestedf that the difficulties, connected with the

fact that the velocity of sound was one-ninth greater than that

required by theory, might be overcome if the particles of air

* Descartes, Principia, vol. ii, pp. 18, 23.

t Newton, Principia, bk. n, prop. 50.
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were little rigid spheres whose distance from one another under

normal conditions was nine times the diameter of any one of

them. This was ingenious, but obviously the view is untenable,

because, if such a structure of air existed, the air could not be

compressed beyond a certain limit, namely, about 1/1 021st part

of its original volume, which has been often exceeded. The

true explanation of the difficulty noticed by Newton was given

by Laplace.

(ii) Boscovich's Hypothesis. In 1759 Boscovich suggested*

that the facts might be explained by supposing that an atom

was an infinitely small indivisible mass which was a centre of

force—the law of force being attractive for sensible distances,

alternately attractive and repulsive for minute distances, and

repulsive for infinitely small distances. In this theory all action

between bodies is action at a distance.

He explained the apparent extension of bodies by sapng

that two parts are consecutive (or similarly that two bodies are

in contact) when the nearest pair of atoms in them are so close

to one another that the repulsion at any point between them

is sufficiently great to prevent any other atom coming between

them. It is essential to the theory that the atom shall have

a mass but shall not have dimensions.

This hypothesis is not inconsistent with any known facts,

but it has been described, perhaps not unjustly, as a mere

mathematical fiction, and certainly it is opposed to the apparent

indications of our senses. At any rate it is artificial, though

it may be a prejudice to regard that as an argument against

its adoption. To some extent this view was accepted by

Faraday.

Sir William Thomson, afterwards Lord Kelvin, showed f that,

if we assume the existence of gravitation, then each of the

above hypotheses will account for cohesion.

* Philosophiae NaUtralis Theoria Redacta ad Unicam Legem Firnim, Vienna,

1759.

t Proceedings of the Eoyal Society of Edinburgh, April 21, 1SG2, vol. iv,

pp. 60i—606.
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(iii) Hypothesis of an Elastic Solid Ether. Some physicists

tried to explain the known phenomena by properties of the

medium through which our impressions are derived. By postu-

lating that all space is filled with a medium possessed of many
of the characteristics of an elastic solid, it was shown by Fresnel,

Green, Cauchy, Neumann, MacCullagh, and others that a large

number of the properties of light and electricity may be

explained. In spite of the difficulties to which this hypothesis

necessarily leads, and of its inherent improbability, it has been

discussed by Stokes, Lam^, Boussinesq, Sarrau, Lorentz, Lord

Rayleigh, and Kirchhoff.

This hypothesis was modified and rendered somewhat more

plausible by von Helmholtz, Lommel, Ketteler*, and Voigt,

who based their researches on the assumption of a mutual

reaction between the ether and the material molecules located

in it : on this view the problems connected with refraction and

dispersion have been simplified. Finally, Sir William Thomson
in his Baltimore Lectures, 1885, suggested a mechanical ana-

logue to represent the relations between matter and this ether,

by which a possible constitution of the ether can be realized.

He also suggested later a form of labile ether, from whose

properties most of the more familiar physical phenomena can

be deduced, provided the arrangement can be considered stable

;

a labile ether is an elastic solid, and its properties in two

dimensions may be compared with those of a soap-bubble film,

in three dimensions.

It is, however, difficult to criticize any of these hypotheses

as a theory of the constitution of matter until the arrangement

of the atoms or their nature is more definitely expressed.

III. Dynamical Theories. In more recent years the

suggestion was made that the so-called atoms may be forms of

motion (ex. gr. permanent eddies) in one elementary material

known as the ether ; on this view all the atoms are constituted

of the same matter, but the physical conditions are different for

the different kinds of atoms. It has been said that there is an

* Theoretische Ojptik, Braunschweig, 1885.
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initial difficulty in any such hypothesis, since the all-pervading

elementary fluid must possess inertia, so that to explain matter

we assume the existence of a fluid possessing one of the chief

characteristics of matter. This is true as far as it goes, but it

is not more unreasonable than to attribute all the fundamental

properties of matter to the atoms themselves, as is done by

many writers. The next paragi-aph contains a statement of

one of the earliest attempts to formulate a dynamical atomic

hypothesis.

(i) The Vortex Ring Hypothesis. This hypothesis assumes

that each atom is a vortex ring in an incompressible frictionless

homogeneous fluid.

Vortex rings—though, since friction is brought into play,

of an imperfect character—can be produced in air by many
smokers. Better specimens can be formed by taking a card-

board box in one side of which a circular hole is cut, filling it

with smoke, and hitting the opposite side sharply. The

tendency of the particles forming a ring to maintain their

annular connection may be illustrated by placing such a box on

one side of a room in a direct line with the flame of a lighted

candle on the other side. If properly aimed, the ring will

travel across the room and put out the flame. If the box is

filled only with air, so that the ring is not visible, the experiment

is more effective.

In 1858 von Helmholtz* showed that a closed vortex

filament in a perfect fluid is indestructible and retains certain

characteristics always unaltered. In 1867 Sir William Thomson

propoundedf the idea that matter consists of vortex rings in a

fluid which fills space. If the fluid is perfect we could neither

create new vortex rings nor destroy those already created, and

thus the permanence of the atoms is explained. Moreover the

atoms would be flexible, compressible, and in incessant vibration

* Crelle\^ Journal, 1858, vol. lv, pp. 25—55 ; translated by Tait in the

Philosophical Magazine, .June, 1867, supplement, series 4, vol. xxxiii, pp. 485

—

512.

t Proceedings of the Royal Society of Edinburgh, Feb. 18, 1867, vol. vi,

pp. 94—105.
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at a definite fundamental rate. This rate is very rapid, and

Sir William Thomson gave the number of vibrations per second

of a sodium ring as probably being greater than 10".

By a development of this hypothesis Sir J. J. Thomson*

showed, some years ago, that chemical combination may be

explained. He supposed that a molecule of a compound is

formed by the linking together of vortex filaments representing

atoms of different elements : this arrangement may be compared

with that of helices on an anchor ring. For stability not more

than six filaments may be combined together, and their

strengths must be equal. Another way of explaining chemical

combination on the vortex atom hypothesis has been suggested

by W. M. Hicks. It is knownf that a spherical mass of fluid,

whose interior possesses vortex motion, can move through liquid

like a rigid sphere, and he has shown that one of these

spherical vortices can swallow up another, thus forming a

compound element.

(ii) The Vortex Sponge Hypothesis. Any vortex atom

hj^pothesis labours under the difficulty of requiring that the

density of the fluid ether shall be comparable with that of

ordinary matter. In order to obviate this and at the same time to

enable it to transmit transversal radiations Sir William Thomson

suggested what has been termed, not perhaps very happily, the

vortex sponge hypothesis |: this rests on the assumption that

laminar motion can be propagated through a turbulently

moving inviscid liquid. The mathematical difficulties con-

nected with such motion have prevented an adequate dis-

cussion of this hypothesis, and I confine myself to merely

mentioning it.

These hypotheses, of vortex motion in a fluid, account for

the indestructibility of matter and for many of its properties.

But in order to explain statical electrical attraction it would

* A Treatise on the Motion of Vortex Rings, Cambridge, 1883.

+ See a memoir by M. J. M. Hill in the Pliilosophical Transactions of the

Royal Society, London, 1894, part i, pp. 213—246.

J Philosophical Magazine, London, October, 1887, series 5, vol. xxiv, pp. 342

—353.
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seem necessary to suppose that the ether is elastic; in other

words, that an electric field must be a field of strain. If so,

complete fluidity in the ether would be impossible, and hence

the above theories are now regarded as untenable.

(iii) The Ether-Squirts Hypothesis. Karl Pearson* sug-

gested another dynamical theory in which an atom is conceived

as a point at which ether is pouring into our space from space

of four dimensions.

If an observer lived in two-dimensional space filled with

ether and confined by two parallel and adjacent surfaces, and

if through a hole in one of these surfaces fresh ether were

squirted into this space, the variations of pressure thereby

produced might give the impression of a hard impenetrable

body. Similarly an ether-squirt from space of four dimensions

into our space might give us the impression of matter.

It seems necessary on this hypothesis to suppose that there

are also ether-sinks, or atoms of negative mass ; but as ether-

squirts would repel ether-sinks we may suppose that the latter

have moved out of the universe known to our senses.

By defining the mass of an atom as the mean rate at which

ether is squirting into our space at that point, we can deduce

the Newtonian law of gravitation, and by assuming certain

periodic variations in the rate of squirting we can deduce some

of the phenomena of cohesion, of chemical action, and of electro-

magnetism and light. But of course the hypothesis rests on

the assumption of the existence of a world beyond our senses.

(iv) Tlie Electron Hypothesis. MacCullagh, in 1837 and

1839, proposed to account for optical phenomena on the as-

sumption of an elastic ether possessing elasticity of the type

required to enable it to resist rotation. This suggestion has

been recently modified and extended by Sir Joseph Larmorf,

and, as now enunciated, it accounts for many of the electrical

and magnetic (as well as the optical) properties of matter.

* American Journal of Mathematics, 1891, vol. xiii, pp. 309—362.

t Philosophical Transactions of the Royal Society, Loudon, 1894, pp. 719

822 ; 1895, pp. 695—743.

B. li. 30



466 MATTER AND ETHER THEORIES [CH. XXI

The hypothesis is however very artificial. The assumed

ether is a rotationally elastic incompressible fluid. In this fluid

Larmor introduces monad electric elements or electrons, which

are nuclei of radial rotational strain. He supposes that these

electrons constitute the basis of matter. He further supposes

that an electrical current consists of a procession of these

electrons, and that a magnetic particle is one in which these

entities are revolving in minute orbits. Djmamical considera-

tions applied to such a system lead to an explanation of nearly

all the more obvious phenomena. By further postulating that

the orbital motion of electrons in the atom constitute it a fluid

vortex it is possible to apply the hydrodynamical pulsatory theory

of Bjerknes or Hicks and obtain an explanation of gravitation.

Thus on this view mass is explained as an electrical mani-

festation. Electricity in its turn is explained by the existence

of electrons, that is, of nuclei of strain in the ether, which are

supposed to be in incessant and rapid motion. Whilst, to

render this possible, properties are attributed to the ether which

are apparently inconsistent with our experience of the space it

fills. Put thus, the hypothesis seems very artificial. Perhaps

the utmost we can say for it is that, from some points of

view, it may, so far as analysis goes, be an approximation

to the true theory; in any case much work will have to be

done before it can be considered established even as a working

hypothesis.

(v) Recent Developments. Most of the above was written in

1891. Since then investigations on radio-activity have opened up

new avenues of conjecture which tend to strengthen the electron

theory as a working hypothesis. More than thirty years ago

Clerk Maxwell had shown that light and electricity were closely

connected phenomena. It was then believed that both were

due to waves in the hypothetical ether, but it was supposed

that the phenomena of matter on the one side and of light

and electricity on the other were sharply distinguished one

from the other. The difterences, however, between matter and

light tend to disappear as investigations proceed. In 1895
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Rontgen established the existence of rays which could produce

light, which had the same velocity as light, which were not

affected by a magnet, and which could traverse wood and certain

other opaque substances like glass. A year later Becquerel

showed that uranium was constantly emitting rays which,

though not affecting the eye as light, were capable of producing

an image on a photographic plate. Like Rontgen rays they

can go through thin sheets of metal ; like heat rays they burn

the skin; like electricity they generate ozone from oxygen.

Passed into the air they enable it to conduct the electric

current. Their speed has been measured and found to be

rather more than half that of light and electricity. It was soon

found that thorium possessed a similar property, but in 1903

Curie showed that radium possessed radio-activity to an extent

previously unsuspected in any body, and in fact the rays were

so powerful as to make the substance directly visible. Further

experiments show^ed that numerous bodies are radio-active, but

the effects are so much more marked in radium that it is

convenient to use that substance for most experimental pur-

poses.

Radium gives off no less than three kinds of rays besides

a radio-active emanation. In these discharges there appears to

be a gradual change from what had been supposed to be an

elementary form of matter to another. This leads to the belief

that of the known forms of matter some, perhaps even all, are

not absolutely stable. On the other hand, it may be that only

radio-active bodies are unstable, and that in their disintegration

we are watching the final stage in the evolution of stable and

constant forms of matter. It may, however, in any case turn

out that some, or perhaps all, of the so-called elements may be

capable of resolution into different combinations of electrons or

electricity.

At an earlier date J. J. Thomson had concluded that the

glow, seen when an electric current passes through a high

vacuum tube, is due to a rush of minute particles across the

tube. He calculated their weight, their velocity, and the charge

of electricity transported by or represented by them, and found

SO—

2
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these to be constant. They were deflected like Becquerel rays.

All space seems to contain them, and electricity, if not identical

with them, is at least carried by them. This suggested that

these minute particles might be electrons. If so, they might

thus give the ultimate explanation of electricity as well as

matter, and the atom of the chemist would be not an irreducible

unit of matter, but a system comprising numerous such minute

particles. These conclusions are consistent with those subse-

quently deduced from experiments with radium. In 1904

the hypothesis was carried one stage further. In that year

J. J. Thomson investigated the conditions of stability of certain

systems of revolving particles; and on the h3^pothesis that an

atom of matter consists of a number of particles carrying

negative charges of electricity revolving in orbits within a

sphere of positive electrification he deduced many of the pro-

perties of the different chemical atoms corresponding to different

possible stable systems of this kind. His scheme led to results

agreeing closely with the results of Mendelejev's periodic hypo-

thesis according to which some or all of the properties of an

element are a periodic function of its atomic weight. An
interesting consequence of this view is that Franklin's description

of electricity as subtle particles pervading all bodies may turn

out to be substantially correct. It is also remarkable that

corpuscles somewhat analogous to those whose existence was

suggested in Newton's corpuscular theory of light should be

now supposed to exist in cathode and Becquerel rays.

(vi) These facts have been utilized by G. Le Bon who

suggested that electricity and matter may be regarded as

intermediate stages in the flux of the ether, the former being

one stage in the incessant dissociation of matter which arises

from ether and ultimately is resolved again into ether. The

theory is ingenious but appears untenable.

(vii) Ether as matter. Recently another hypothesis as to

the nature of the ether was put forward by J). I. Mendelejev, the

distinguished chemist. In the grouping of the elements ac-

cording to his periodic law, there were originally twelve series
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and eight groups. All the elements since discovered have

fallen into place in the sequence, and possess properties in

general accordance with his grouping, but helium, argon, and

other similar inactive elements, constitute a ninth or zero

group.

In this scheme hydrogen, with an atomic weight 1*008, is in

the first series and first group. It has the lowest atomic weight

of any element yet known, but there may be lighter elements,

ex. gr. one in the first series and zero group. Mendelejcv has

however suggested that just as a zero group has been now
discovered so there may be a zero series ; and that the element

(if there is one) in the zero group and zero series might be

expected to possess properties closely resembling those of the

hypothetical ether. It would be the lightest and simplest form

of matter, of great elasticity, and with an atomic weight of

perhaps about 1/10^ as compared with hydrogen. The velocity

of its atoms would be so great as to make it all pervading,

and it would appear to be capable of doing all that is required

fi:om the mysterious ether. The hypothesis is attractive and

intelligible.

(viii) The Bubble Hypothesis''^, The difficulty of conceiving

the motion of matter through a solid elastic medium has been

met in another way, namely, by suggesting that what we call

matter is a deficiency of the ether, and that this region of

deficiency can move through the ether in a manner somewhat

analogous to that in which a bubble can move in a liquid. To

express this in technical language we may suppose the ether to

consist of an arrangement of minute uniform spherical gi-ains

piled together so closely that they cannot change their neigh-

bours, although they can move relatively one to another.

Places where the number of grains is less or greater than the

number necessary to render the piling normal, move through

the medium, as a wave moves through water, though the grains

do not move with them. Places where the ether is in excess of

the normal amount would repel one another and move away

* 0. Reynolds, Submechanics of the Universe, Cambridge, 1903.
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out of our ken, but places where it is below the normal amount

would attract each other according to the law of gravity, and

constitute particles of matter which would be indestructible.

It is alleged that the theory accounts for the known phenomena

of gravity, electricity, and light, provided the size of its grains

is properly chosen. Reynolds has calculated that for this

purpose their diameter should be rather more than 5 x 10~^^

centimetres, and that the pressure in the medium would be

about 10^ tons per square centimetre. This theory is in itself

more plausible than the electron hypothesis, but its consequences

have not 3^et been fully worked out.

Returning from these novel hypotheses to the classical

theories of matter, we may now proceed a step further. Before

a hypothesis on the structure of matter can be ranked as a

scientific theory we may reasonably expect it to afford some

explanation of three facts. These are (a) the Newtonian law of

attraction
;
(b) the fact that there are only a finite number of

ultimate kinds of matter—such as oxygen, iron, etc.—which can

be arranged in a series such that the properties of the successive

members are connected by a regular law; and (c) the main

results of spectrum analysis.

In regard to the first point (a), we can say only that none

of the above theories are inconsistent with the known laws of

attraction ; and as far as the ether-squirts, the electron, and the

bubble h5rpotheses are concerned, they have been elaborated into

a form from which the gravitational law of attraction can be

deduced. But we may still say that as to the cause of gravity

—or indeed of force—we know nothing.

Newton, in his correspondence with Bentley, while declaring

his ignorance of the cause of gravity, refused to admit the possi-

bility of force acting at a finite distance through a vacuum. "You
sometimes speak of gravity," said he*, "as essential and inherent

to matter : pray do not ascribe that notion to me, for the cause

of gravity is what I do not pretend to know." And in another

* Letter dated Jan. 17, 1693. 1 quote from the original, which is in the

Library of Trinity College, Cambridge; it is printed in the Letters to Bentley,

London, 1756, p. 20.
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place he v/rote*, "'Tis inconceivable, that inanimate brute

matter should (without the mediation of something else which

is not material) operate upon and affect other matter without

mutual contact ; as it must if gravitation in the sense of

Epicurus, be essential and inherent in it...That gravity should

be innate, inherent, and essential to matter, so that one body

may act upon another at a distance thro' a vacuum, without the

mediation of anything else, by and through which their action

and force may be conveyed from one to another, is to me so

great an absurdity, that I believe no man who has in philo-

sophical matters a competent faculty of thinking can ever fall

into it. Gravity must be caused by an agent acting constantly

according to certain laws, but whether this agent be material or

immaterial, I have left to the consideration of my readers."

I have already alluded to conjectural explanations of gravity

dependent on the ether-squirts, the electron, and the bubble

hypotheses. Of other conjectures as to the cause of gravity,

three, which do not involve the idea of force acting at a distance,

may be here mentioned

:

(1) The first of these conjectures was propounded by

Newton in the Queries at the end of his Opticks, where he

suggested as a possible explanation the existence of a stress

in the ether surrounding a particle of matterf.

This was elaborated on a statical basis by Clerk Maxwell,

who showedj that the stress would have to be at least 3000

times as great as that which the strongest steel would support.

Sir William Thomson suggested § a dynamical way of producing

the stress by supposing that space is filled with an incom-

pressible fluid, constantly being amiihilated by each atom of

matter at a rate proportional to its mass, a constant supply

Letter dated Feb. 25, 1693 ; Letters to Bentley, London, 1756, pp. 25, 26.

+ Quoted by S. P. Rigaud in his Essay on the Principia, Oxford, 1838,

appendix, pp. 68—70. On other guesses by Newton see Rigaud, text, pp. 61

—

62, and references there given.

Ij: Article Attraction, in Encyclopaedia Britannica, or Collected Works, vol. ii,

p. 489.

§ Proceedings of the Royal Society of Edinburgh, Feb. 7, 1870, vol. vii,

pp. 60—63,
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being kept up at an infinite distance. It is true that this

avoids Clerk Maxwell's difficulty, but we have no right to

introduce such sinks and sources of fluid unless we have other

grounds for believing in their existence. The conclusion is

that Newton's conjecture is very improbable unless we adopt

the ether-squirts theory: on that hypothesis it is a plausible

explanation.

I should add that Maclaurin implies* that though the above

explanation was Newton's early opinion, yet his final view was

that he could not devise any tenable hypothesis about the cause

of gravitation.

(2) In 1782 Le Sage of Geneva suggestedf that gravity

was caused by the bombardment of streams of ultramundane

corpuscles. These corpuscles are supposed to come in all

directions from space and to be so small that inter-collisions

are rare.

A body by itself in space would receive on an average as

many blows on one side as on another, and therefore would

have no tendency to move. But, if there are two bodies, each

will screen the other from some of the bombarding corpuscles.

Thus each body will receive more blows on the side remote from

the other body than on the side turned towards it. Hence the

two bodies will be impelled each towards the other.

In order to make this force between two particles vary

directly as the product of their masses and inversely as the

square of the distance between them, Le Sage showed that

it was sufficient to suppose that the mass of a body was pro-

portional to the area of a section at right angles to the direction

in which it was attracted. This requires that the constitution

of a body shall be molecular, and that the distances between

consecutive molecules shall be very large compared with the

sizes of the molecules. On the vortex hypothesis we may

suppose that the ultramundane corpuscles are vortex rings.

* An Account of Sir Isaac Neiotonh Philosophical Discoveries, London, 1748,

p. 111.

t Memoires de VAcademie des Sciences for 1782, Berlin, 1784, pp. 404—432 :

see also the first two books of his Traite de Physique, Geneva, 1818.
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This is ingenious, and it is possible that if the corpuscles

were perfectly elastic the theory might be tenable*. But the

results of Clerk Maxwell's numerical calculation show, first, that

the particles must be imperfectly elastic; second, that merely

to produce the effect of the attraction of the earth on a mass

of one pound would require that Le Sage's corpuscles should

expend energy at the rate of at least billions f of foot-pounds

per second; and third, that it is probable that the effect of

such a bombardment would be to raise the temperature of all

bodies beyond a point consistent with our experience. Finally,

it seems probable that the distance between consecutive mole-

cules would have to be considerably greater than is compatible

with the results given below.

Tait summed up the objections to these two hypotheses

by sayingj:, "One common defect of these attempts is...that

they all demand gome prime mover, working beyond the

limits of the visible universe or inside each atom: creating

or annihilating matter, giving additional speed to spent cor-

puscles, or in some other way supplying the exhaustion suffered

in the production of gravitation. Another defect is that they

all make gravitation a mere difference-effect, as it were ; thereby

implying the presence of stores of energy absolutely gigantic in

comparison with anything hitherto observed, or even suspected to

exist, in the universe ; and therefore demanding the most delicate

adjustments, not merely to maintain the conservation of energy

which we observe, but to prevent the whole solar and stellar sys-

tems from being instantaneously scattered in fragments through

space. In fact, the cause of gravitation remains undiscovered."

(3) There is another conjecture on the cause of gravity

which I may mention §. It is possible that the attraction of

one particle on another might be explained if both of them

* See a paper by Sir William Thomson in the Proceedings of the Royal

Society of Edinburgh, Dec. 18, 1871, vol. vii, pp. 577—589.

t I use billion with the English (and not the French) meaning, that is, a

billion = 10^2.

:J:
Properties of Matter, London, 1885, art. 164.

§ See an article by myself in the Messenger of Mathematics, Cambridge, 1891,

vol. XXI, pp. 20—24.
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rested on a homogeneous elastic body capable of transmitting

energy. This is the case if our three-dimensional universe rests

in the direction of a fourth dimension on a four-dimensional

homogeneous elastic body (which we may call the ether) whose

thickness in the fourth dimension is small and constant.

The results of spectrum analysis lead us to suppose that

every molecule of matter in our universe is in constant vibra-

tion. On the above hypothesis these vibrations would cause a

disturbance in the supporting space, i.e. in the ether. This

disturbance would spread out uniformly in all directions; the

intensity diminishing as the square of the distance from the

centre of vibration, but the rate of vibration remaining un-

altered. The transmission of light and radiant heat may be

explained by such vibrations transversal to the direction of

propagation. It is possible that gravity may be caused by

vibrations in the supporting space which are wholly longitudinal

or are compounded of vibrations which are partly longitudinal

and partly transversal in any of the three directions at right

angles to the direction of propagation. If we define the mass

of a molecule as proportional to the intensity of these vibrations

caused by it, then at any other point in space the intensity of

the vibration there would vary as the mass of the molecule

and inversely as the square of the distance from the molecule

;

hence, if we may assume that such vibrations of the medium
spreading out from any centre would draw to that centre a

particle of unit mass at any other point with a force proportional

to the intensity of the vibration there, then the Newtonian law

of attraction would follow. This conjecture is consistent either

with Boscovich's h3rpothesis or with the vortex theory. It would

be interesting if the results of a branch of pure mathematics so

abstract as the theory of hyper-space should be found to be

closely connected with one of the most fundamental problems of

material science.

I should sum up the effect of this discussion on gravity on

the relative probabilities of the hypotheses as to the constitution

of matter enumerated above, by saying that it does not enable

us to discriminate between them.
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The fact that the number of kinds of matter (chemical

elements) is finite and the consequences of spectrum analysis

are closely related. The results of spectrum analysis show that

every molecule of any species of matter, such as hydrogen,

vibrates with (so far as we can tell) exactly equal sets of

periods of vibration. This then is one of the characteristics

of the particular kind of matter, and it is probable that any

explanation of why the molecules of each kind have a definite

set of periods of vibration will account also for the fact that

the number of kinds of matter is finite.

Various attempts to explain why the molecules of matter

are capable only of certain definite periods of vibration have

been made, and it may be interesting if I give them briefly.

(1) To begin with, I may note the conjecture that it

depends on properties of time. This, however, is impossible,

for the continuity of certain spectra proves that in these cases

there is nothing which prevents the period of vibration from

taking any one of millions of different values : thus no explana-

tion dependent on the nature of time is permissible.

(2) It has been suggested that there may have been a

sorting agency, and only selected specimens of the infinite

number of species formed originally have got into our universe.

The objection to this is that no explanation is offered as to what

has become of the excluded molecules.

(3) The finite number of species might be explained by

supposing a physical connection to exist between all the mole-

cules in the universe, just as two clocks whose rates are nearly

the same tend to go at the same rate if their cases are connected.

Clerk Maxwell's objection to this is that we have no other

reason for supposing that such a connection exists, but if we

are living in a space of four dimensions as suggested above in

chapter xix, this connection does exist, for all the molecules

rest on one and the same body. This body is capable of trans-

mitting vibrations, hence, no matter how the molecules were

set vibrating originally, they would fall into certain groups,

and all the members of each group would vibrate at the same

rate. It was the possibility of obtaining thus a physical
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connection between the various particles in our universe that

first suggested to me the idea of a supporting medium in a

fourth dimension.

(4) If we accept Boscovich's hypothesis or that of an

elastic solid ether, and if we may lay it down as axiomatic

that the mass of every sub-atom is the same, we may conceive

that the number of ways of combining the sub-atoms into a

permanent system is limited, and that the period of vibration

depends on the form in which the sub-atoms are combined

into an atom. This view is not inconsistent with any known

facts. I may add that it is probable that the chemical atom is

the essential vibrating system, for the sodium spectrum, to take

one instance, is the same as that of all its compounds.

(5) In the same way we may suppose that the vortex rings

are formed so that they can have only a definite number of

stable forms produced by interlinking or kinking.

(6) Similarly we may modify the popular hypothesis by

treating the atoms as indivisible aggregates of sub-atoms which

are in all respects equal and similar, and can be combined in

only a limited number of forms which are permanent. But

most of the old difficulties connected with the atoms arise again

in connection with the sub-atoms.

(7) I am not aware that Clerk Maxwell discussed any other

hypotheses in connection with this point, but it has been sug-

gested recently that, if the various forms of matter were evolved

originally out of some one primitive material, then there may
have been periodic disturbances in this matter when the atoms

were being formed, such that they were produced only at some

definite phase in the period*.

Thus, if the disturbance is represented by the swinging of

a pendulum in a resisting medium, it might be supposed that

the atoms were formed at the points of maximum amplitude,

and we should expect that the atoms successively thrown off

would form a series having the properties of its successive

members connected by a regular periodic law. This conjecture,

* See Nature, Sept. 2, 1886, vol. xxxiv, pp. 423—432.
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when worked out in some detail, led to the conclusion that some

elements which ought to have appeared in the series were

missing, but it was possible to predict their properties and to

suggest the substances with which they were most likely to be

found in combination. Guided by these theoretical conclusions

a careful chemical analysis revealed the fact that such elements

did exist.

That this hypothesis has led to new discoveries is some-

thing in its favour, but I do not wish to be understood to say

that it is a theory which leads to results that have been verified

subsequently. I should say rather that we have obtained an

analogy which is sufficiently like the truth to suggest new
discoveries. Such analogies are often the precursors of laws,

so that it is not unreasonable to hope that ere long our

knowledge of this border-land of chemistry and physics may be

more definite, and thus that molecular physics may be brought

withiQ the domain of mathematics. It is however very re-

markable that J. J. Thomson's conclusions on the stability of

the orbital systems he devised should agree so closely with

Mendelejev's periodic law.

On the whole Clerk Maxwell thought that the phenomena

poiat to a common origin of all molecules of the same kind, that

this was an event not belonging to that order of nature under

which we live, but must have originated when or before the

existing order was established, and that so long as the present

order exists it is immutable.

This is equivalent to saying that we have arrived at a point

beyond which our limited experience does not enable us to carry

the explanation.

That we should be able to form an approximate idea of

the size of the molecules of matter is a testimony to the

extraordinary development of mathematical physics in the

course of the nineteenth century.

Sir William Thomson suggested* four distinct methods of

* See iVat«?-e, March 31, 1870, vol. i, pp. 551—5;">3; and Tnil's Recent Advances,

pp. 303—318. The fourth method hud been proposed by Loschmidt in 18G3.
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attacking the problem. They lead to results which are not

very different.

The first of these rests on an assertion of Cauchy that the

phenomena of prismatic colours show that the distance between

consecutive molecules of matter is comparable with the wave-

lengths of light. Taking the most unfavourable case this

would seem to indicate that in a transparent homogeneous

solid or liquid medium there are not more than 64 x 10^

molecules in a cubic inch, that is, that the distance between

consecutive molecules is greater than 1/(4 x lO^jth of an

inch.

The second method is founded on the amount of work

required to draw out a film of liquid, such as a soap-bubble,

to a given thickness. This can be calculated from experiments

in a capillary tube, and it is found that, if a soap-bubble could

be drawn out to a thickness of 1/lO^th of an inch there would

be but a few molecules in its thickness. This method is not

quantitative.

Thirdly, Thomson proved that the contact phenomena of

electricity require that in an alloy of brass the distance be-

tween two molecules, one of zinc and one of copper, shall

be greater than 1/(7 x 10^)th of an inch ; hence the number of

molecules in a cubic inch of zinc or copper is not greater than

35 x 1025.

Lastly, the kinetic theory of gases leads to the conclusion

that certain phenomena of temperature and viscosity depend,

inter alia, on inter-molecular collisions, and so on the sizes

and velocities of the molecules, while the average velocity

with which the molecules move increases with the tem-

perature. This leads to the conclusion that the distance

between two consecutive molecules of a gas at normal pressure

and temperature is greater than 1/(6 x 10^)th of an inch,

and is less than l/10''th of an inch ; while the actual size of

the molecule is a trifle gTeater than 1/(3 x 102'*)th of a cubic

inch ; and the number of molecules in a cubic inch is about

3 X 10-".

Thus it would seem that a cubic inch of gas at ordinary
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pressure and temperature contains about 3 x 10^° molecules,

all similar and equal, and each molecule has a volume of about

1/(3 X 10-^)th of a cubic inch ; while a cubic inch of the simplest

solid or liquid contains rather less than 10-'' molecules, and

perhaps each molecule has a volume of about 1/(3 x 10^)th of

a cubic inch. For instance, if a pea or a drop of water whose

radius is 1/1 6th inch was magnified to the size of the earth,

then there would be about thirty molecules in every cubic foot

of it, and probably the size of a molecule w^ould be about the

same as that of a fives-ball. The average size of the minute

drops of w^ater in a very light cloud can be calculated from

the coloured rings produced when the sun or moon shines

through it. The radius of a drop is about l/30000th of an inch.

Such a drop therefore would contain about 2 x 10^^ separate

molecules. In gases and vapours, the number of atoms required

to make up one of these molecules can be estimated, but in

liquids the number is not as yet known.

Loschmidt asserted that a cube whose side is l/4000th of

a millimetre is the smallest object which can be made visible

at the present time. Such a cube of oxygen or nitrogen

would contain from 60 to 100 millions of molecules of the

gas. Also on an average about 50 elementary molecules of

the so-called elements are required to constitute one molecule

of organic matter. At least half of every living organism

consists of water, and we may for the moment suppose that

the remainder consists of organic matter. Hence the smallest

living being which is visible under the microscope contains

from 30 to 50 millions of elementary molecules which are

combined in the form of water, and from 30 to 50 millions

of elementary molecules which are combined so as to make

not more than one million organic molecules.

Hence a very simple organism might be built up out of as

few as a million similar organic molecules. Clerk Maxwell did

not consider that this was sufficient to justify the current con-

clusions of physiologists, and said that they must not suppose

that structural details of infinitely small dimensions can furnish

by themselves an explanation of the variety known to exist
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in the properties and functions of the most minute organisms

;

hut physiologists have replied that whether their conjectures

be right or wrong Clerk Maxwell's argument is vitiated by his

non-consideration of differences due to the physical (as opposed

to the chemical) structure of the organism and the consequent

motions of the component parts.

Throughout this chapter I have written as if the mass

of a body were independent of whether it is or is not in

motion relative to the hypothetical ether. This is assumed in

the usual, or Newtonian, system of dynamics, but it has

been recently called in question, notably by H. A. Lorentz,

A. Einstein, and H. Minkowski.

The ultimate reason for this scepticism is the absence of

any recognizable phenomena arising from the earth's motion

relative to the ether : a question which was the subject of a

series of experiments made in 1882 by A. A. Michelson and

E. W. Morley. To account for this, Einstein propounded a

theory of Relativity* in which he assumed certain relations

between the measures of space and time employed by two

observers who have a mutual relative velocity v. If the origin

of coordinates be the same for both observers at the instant at

which they both commence to reckon time, and if the axis of

X be taken in the direction of v, he assumes that the relations

between the coordinates of a point and the times T, t which

have apparently elapsed at any subsequent instant are

X = ^{x-vt\ Y=y, Z = z, T = 13 {t - va;/c%

where X, Y, Z, T refer to the observations of the first observer,

and X, y, z, t to those of the other ; c is the velocity of light

;

and /S = (1 — yY^O
~

• If ^ be negligible compared with c, these

relations are the same as in the Newtonian system.

The theory leads to the result that moving bodies contract

in the direction of their advance, and the greater the velocity

the greater the contraction ; thus, since the earth rotates from

* For an account of the theory, see N. R. Campbell, Philosophical Magazine^

London, April, 1911, pp. 502—517.
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west to east, the bulk of a man walking eastwards will be
somewhat smaller than his bulk when he walks westwards.

Again, on this theory the mass of an electron may be taken

to increase with its velocity, and it would become indefinitely

great if its velocity were equal to that of light. At present

the theory is beyond the range of direct verification, but it is

not inconsistent with known facts, and possibly it may explain

some phenomena connected with the motion of atoms and ions.

B. R. 31
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Ciccolini, T., on Chess, 129.

Cicero on Astrology, 388.

Ciphers, chap, xviii.

— Definition of, 396.
— Four types of, 403-413.

Circle, Quadrature of, 293-306.

Cissoid, the, 287, 289, 295.

Clairaut on Trisection of Angle, 292.

Clairaut, A. C, 321.

Clarke, S., 249.

Classical Tripos, 275.

Claus, 228.

Clausen on v, 304.

Clavius on Calendar, 444, 445, 446, 449.

Clavius, C, 321, 322.

Clepsydras, 453.

Clerk Maxwell, J., 59, 108, 459, 466,

471, 473, 475, 476, 479.

Clerke, G., 249.

Clifford, 87.

Climbing a Tree, String Figure, 359.

Clocks, 96, 453-456.

Cnossus, Coins of, 184, 185.

Coat and Waistcoat Trick, 378.

Coccoz, 46, 163.

Code-Book Ciphers, 421.

Code, Morse, 416.

Cole, F. N., 334, 336, 339, 342, 344.

Colebrooke, H. T. , Indian Algebra, 299.

Collini on Chess, 128.

Collins, Letter from J. Gregory, 303.

Colour-cube Problem, 67-69.

Colouring Maps, 54-59.

Columbus, 449.

Columbus's Egg Puzzle, 93.

Comberton, Labyrinth at, 186.

Compasses, Watches as, 457-458.
Competition, in Tripos, 267, 270, 271.

Composite Magic Squares, 152.

Conchoid, the, 287, 291, 295.
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Cones moving uphill, 93.

Congruent Figures, 484.

Conrad's Tables, 405.

Continuity of Matter, 4G0.

Contour-lines, 59-60.

Cotes, R., 249.

Counters, Games with, 62-64, 74-80.

Cox, James, on Clocks, 96.

Cradle, String Figure, 351.

Craig, J., 249.

Crassus, 388,

Cretan Labyrinth, 182, 184-185.

Cricket-ball, Spin on, 105.

Cross-Fours, 67.

Cryptographs, chap, xviii.

— Definition of, 396.
— Three types of, 397-403.

Cryptograpuy, chap, xviii.

Cube, Duplication of, 285-291.

Cubes, Coloured, 67-69.
— Skeleton, 32.

Cubic Equation, Solution of, 328.

Cudworth, W., on Sharp, 303.

Cumberland, R., 254-255.

Cumulative Vote, 33.

Cunningham, A. J. C, 40, 334, 336,

339, 340, 341, 342, 344, 345.

Cureton, W., on Astrology, 380.

Curie on Eadio-Activity, 467.

Curiosa Physica, 107-108.

Curl on a Cricket-ball, 105.

Cursor, Papirius, 450.

Cusa on w, 300.

Cusps, Astrological, 382.

Cut on a Tennis-ball, 103-105.

Cutting Cards, Problems on, 17.

Cylinders, Sun-, 450.

D acres. A., 249.

D'Alembert, 28, 30.

D'Alembert, J., 323.

Dase on tt, 304, 305.

Dasypodius, 455.

Davis, E. P., on Kirkman'sProb., 218.

Day, Def. of, 440.
— Commencement of, 442.
— Sidereal and Solar, 441,

Days of Week, Names of, 442, 443.

Days of Week from Date, 449.

Dealtry, W,, 268, 269,

De Berri, Duchesse, 414.

Decimation, 24-27.

Dee, J., 249.

De Fonteney on Ferry Problem, 72.

De Fouqui^res, 63.

De Haan, B., on tt, 296, 301.
Dehn, M,, 436.

De Lagny on tt, 303.

De la Hire on Magic Squares, 138,

139, 142-144, 149-152, 155, 156.

De la Loubere on Magic Squares, 140-
142, 157,

Delambre on Calendar, 448, 449.

Delannoy, 72,

De la Pryme, 252.

Delastelle, F., 395.

Delbceuf, J., on Parallels, 321.

Delian Problem, 285-291.
De Longchamps, G., 345.

De Moivre, A., 122, 123.

De Montmort, 1, 123.

De Morgan, A., 55, 84, 247, 251, 268,

269, 293, 295, 296, 306, 320, 391, 446.

Denary Scale of Notation, 10-11.

De Parville on Tower of Hanoi, 229.

De Polignac on Knight's Move, 133.

De Rohan, 421.

Derrington, on Queens' Problem, 118.

De St Laurent, 235.

Descartes, 290, 292, 303.

Des Ourmes, 138, 139.

Diabolic Magic Squares, 156-162.

Dials, Sun-, 450-452.

Diamonds, String Figure, 361-363.
Dickson, L. E,, 42, 244.

Diego Palomino, 23.

Digby, Lord, 419.

Digges, T., 249.

Diodes on Delian Problem, 289.

Diodorus on Lake Moeris, 184.

Dircks, H., 421.

Dircks, H., on Pei-petual Motion, 94.

Dirichlet, Lejeune, 42.

Dissection, Proofs by, 52-54.

Dodecahedron Game, 189-192.

Dodgson, C. L., on Parallels, 45, 321.

Dominical Letter, 448,

Dominoes, 22-23, 168-169.

Dominoes, Arrangements of, 178-181.

D'Ons-en-bray, 138, 139.

Door, Apache, String Figure, 358.

Double-Crowns, String Figure, 355.

Doubly Magic Squares, 163.

Douglas, S., 270, 272.

Drayton, 184.

Dudeney, H. E., 26, 33, 47, 119, 168,

194, 203.

Duplication of Cube, 285-291.

Durations, see Time.
Diirer, A., 138, 321, 322.

Dynamical Games, 69-80.

Earnshaw, S., 108, 276.

Easter, Date of, 445-449.
Eckenstein, 0.,onKirkman's Problem,

193, 199, 203, 209, 217, 220.

Edward VI, 383, 391-394.
— Horoscope of, 393,

Eight Queens Problem, 113-118.

Einstein, A., 480.

3i—
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Eisenlohr, A., on Ahmes, 297.

Eisenstein, 40.

Electrons, 465-467.

Elliptic Geometries, 324-326.

Elliptic Geometry, 433-436.

Elusive Loop, String Trick, 376.

Enestrdm, G., on tt, 296.

Engel, F., on Parallels, 307.

Epicm'us on Gravitation, 471.

Equilibrium, Puzzles on, 90-93.

Eratosthenes, 287.

Escott, E. B., 305, 346.

Ether-Squirts, 465.

Ether Theories, 462-466.

Etten, van, 11.

Euclid, 38, 44-45, 297, 310, 321.

Euclid on Parallels, chap, xni, 433.

Euclid's Axioms, &c., 433.

Euc. I. 32, 52.

Euc. I. 47, 52.

Euclidean Geometry, 325, 433-435.

Euclidean Space, 326, 433-436.

Eudemus, 310.

Euler, 38-41, 61, 122-127, 139, 156,

166, 303, 335, 336, 337.

Euler's Unicursal Prob., 170-182.

Examination, Printed, 262, 274.

Exploration IProblems, 23.

Fairfax, 419.

Fallacies, Arithimetical, 28-31.

— Geometrical, 44-52.

_ Mechanical, 84-87, 93-GS.

Faraday on Matter, 461.

Fauquembergue, E., 339.

Fenn, J., 255.

Fermat, P., 36-43, 138, 139, 334, 335,

336, 337, 346.

Fermat on Binary Powers, 39-40.

Fermat's Last Theorem, 40-43.

Ferry-boat Problems, 71-73.

Fifteen Girls Problem, chap. ix.

Fifteen Puzzle, 224-228.

Figulus on Astrology, 388.

Firmicus on Astrology, 381.

Firth, W., 145.

Fish-in-a-Dish, String Figure, 353.

Fish-Pond, String Figure, 352.

Fitzpatrick, J., 75.

Flamsteed, J., 249.'

Flamsteed on Astrology, 390.

Flat-land, 426-431.

Fluid Motion, 101-107.

Fluxions, 268, 271, 272.

Fly-on-the-Nose, String Trick, 375.

Fonteney on Ferry Problem, 72.

Force, Definition of, 87.

Foster, S., 249.

Fouqui^res, Becq de, on Games, 63.

Four-Colour Map Theorem, 54-59.

Four "3's" Problem, 14.

Four "4's" Problem, 14.

Four "9's" Problem, 14.

Four Digits Problem, 13.

Fours, 1?roblem of, 14.

Fox, Captain, on tt, 306.

Frankenstein, G., 163.

Franklin, B., 468.

Frederick II of Germany, 454.

Frenicle, 138, 139, 152.

Frere, J., 256.

Fresnel on Ether, 462.

Friedlein, G., 310, 313.

Frost, A. H., 156, 194.

Galileo on Pendulum, 455.

Galois, E., on Quiutic Equation, 329.

Galton, 28.

Games, Dynamical, 69-80.

— Statical, 62-69.
— with Counters, 74-80.

Gases, Theory of, 478-479.

Gauss, K. F., 43, 323, 341.

Geminus, 308.

Geodesic Problems, 73-74.

Geography, Physical, 59-61.

Geojietrical Fallacies, 44-52.

Geoseetrical Problems, Three Clas-

sical, chap. XII.

Geometrical Eecreations, chaps.

III-IV.

Geometry, Non-Euclidean, 323-328,

chap. XIX.

George I of England, 253.

Gerard, M. L., 435.

Gerbert, 298.

Gergonne's Problem, 240-244.

Germain, S., 42.

Gill, T. H., on Kirkman's Prob,, 194.

Glaisher, J. W. L., 114, 248, 296.

Glamorgan, Earl of, 420.

Gnomons, 450.

Goldbach's Theorem, 39.

Golden Number, 448.

Golf-balls, Flight of, 105.

Gooch, W., 263.

Gravity, Hypotheses on, 470-474.

Great Northern Puzzle, 69, 82.

Green on Ether, 462.

Greenwich, Labyrinth at, 186.

Gregorian Calendar, 444, 445.

Gregory XIII, 444-446.

Gregory, Jas.. 294, 302.

Gregory of St Vincent, 290.

Gregory's Series, 303.

Grienberger on tt, 302.

Grille, The, 401.

Grimthoi^pe, Lord, on Clocks, 454.

Gronfeld's Method in Ciphers, 409.

Gros, L., on Chinese Eings, 232, 234.
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GuAKiNi's Problem, 135-136.

Gun, Report of, 108.

Gunning, H., 262, 264.

Giinther, S., 113, 139.

Guthrie on Colouring Maps, 54.

Haan, B. de, on tt, 296, 301.

Haddon, A. C, on String Figures,

348, 349, 360, 365, 367, 368, 369,

372, 373.

Haddon, K., on Cat's Cradles, 348.

Halley on tt, 303.

Halter, String Trick, 374.

Hamilton, Archbishop, 391.

Hamilton, Sir Wm., 189-192.
Hamiltokian Game, 189-192,

Hammock, String Figure, 354,

Hampton Court, Maze at, 182, 186.

Handcuffs, String Trick, 375.

Hanoi, Tower of, 228-229.

Harris on Pendulum Clock, 455.

Harvey, J., 249.

Harvey, E., 249.

Harzer, P., on tt, 299.

Hauksbee's Law, 101-106.
Hayward, Sir J., 405.

Head-Hunters, String Figure, 3GS.
Heawood, P. J., on Maps, 56.

Hegesippus on Decimation, 24.

Hele, P., 455.

Helmholtz, H. L. F. von, 97, 424,

462, 463.

Henry VHI of England, 454.

Henry, Ch., on Euler's Problem, 170.

Hei-mann, A., 65.

Hermary, 192.

Herodotus on Lake Moeris, 184.

Hero of Alexandria on v, 287, 298.
Herschel, Sir John, 271, 444.
Hezekiah, 451.

Hicks, W. M., on Matter, 464, 466.
Hiero of Syracuse, 90.

Higher Arithmetic, 36-43.
Hilbert, D., 435, 436.
Hill, M. J. M., 464.

Hill, T., 249.

Hills and Dales, 59-60.
Hinton, C. H., 424, 428, 430.
Hipparchus on Hours of Day, 442.
Hippias, 297.

Hippocrates of Chios, 287, 297.
Hodson, W., 261.

Homaloidal Geometries, 325-320.
Honorary Optimes, 251, 254, 275.
Hood, T., 249.

Hooke on Timepieces, 455,
Horary Astrology, 381.

Hornbuckle, T. W., 269, 270.
Horoscopes, chap. xvu.
— Example of, 393.

Horoscopes, Rules to cast, 381-333.
— Rules to read, 383-387.
Horrox, J., 249.

Hour-glasses, 453.

Hours, Def. of, 440, 442.

Houses, Astrological, 381, 382.

Huddling, 250.

Hudson, C. T., 244.

Hudson, W. H. H., 236.

Hustler, J. D., 268, 269.

Hutton, C, 3, 303.

Huygens, 289, 293, 302, 455.

Hyperbolic Geometries, 323-326.
Hyperbolic Geometry, 433-435.
Hyper-magic Squares, 156-163.

Hyper-Space, chap. xix.

IcosiAN Game, 189-192.

Ideler, J. L., on the Calendar, 449.

Inertia, 88, 89.

Inwards on the Cretan Maze, 184.

Isaiah, 451.

Jacob, E., 269, 270.

Jacobi, 341, 345.

Jaenisch, C. F. de, 120, 122, 128, 132.

James II of England, 402.

Japanese Magic Mirrors, 108.

Jayne, C. F., on String Figures, 348,

359, 361, 362, 363, 365, 367, 368,

369, 370, 371, 372, 373, 374, 375,

376.

Jebb, J., 255, 257-2-59.

Johnson, W., on Fifteen Puzzle, 224,

Jones, W., on ir, 296, 303.

Josephus Problem, 23-27,

Julian Calendar, 444.

Julian's Bowers, 186.

Julius Caesar, 388, 415, 443.

Junior Optimes, 251-252, 255.

Jurin, J., 249.

Kelvin, Lord, 461, 462, 464, 471, 473,

477, 478.

Kempe, A. B., on Colouring Maps, 56.

Ketteler on Ether, 462.

Killing, W., on Parallels, 322.

Kinetic Theory of Gases, 478-479.

King's Re-entrant Path, 133.

Kirchhoff on Ether, 462.

Kirkman, T. P., 193, 222.

Kirkman's Problem, chap. ix.

Klein, F. C, 284, 325, 426, 435.

Kliiber, J. L., 395.

Knight, Re-entrant Path, 122-132.

Knights of the Round Table, 33.

Knots, 379, 426.

Knyghton, 184.

Konigsberg Problem, 170-183.

Kummer on Format's Theorem, 42.
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Labile Ether, 462.

Labosne on Magic Squares, 149.

Labyrinths, 182-187.

Lacroix, P. L., 293.

Lacroix, S. F., 315, 322.

Lagny on tt, 303.

Lagrange, J. L., 271, 320, 327, 337.

Lagrange's Theorem, 39.

La Hire, 138, 139, 142-144, 149-152.

Laisant, C. A., 12, 347.

La Loub^re, 140-142.

Lambert on tt, 293, 294.

Lambert, J. H., 322.

Lam6, 42, 462.

Landry, F., 334, 336, 338, 339, 342.

Langley on Bird Flight, 106.

Laplace on Velocity of Sound, 461.

Laplace, P. S., 271, 321.

Laqui^re on Knight's Path, 131.

Larmor, J., on Electrons, 459, 465.

Latruaumont, 421.

Lattice Work, String Figure, 355.

Laughton, R., 249.

Lawrence, F. W., 37, 347.

Lax, W., 263.

Lea, W., on Kirkman's Problem, 223.

Leake, 11, 14, 18, 22.

Leap-year, 443-445.

Lebesgue on Fermat's Theorem, 42.

Le Bon, G., on Matter, 468.

Legendre, A. M., 42, 124, 132, 271,

293, 294, 318, 319, 320, 321, 335,

337, 340, 341.

Legros, L. A., 194, 195.

Leibnitz on Games, 1.

Lejeune Dirichlet on Fermat, 42.

Le Lasseur, 334, 336, 338, 339.

Leonardo of Pisa on tt, 300.

Le Sage on Gravity, 472, 473.

Leslie, J., 287, 291, 319.

Leurechon, J., 2, 11.

Lie, S., 435.

Lightning, String Figure, 369.

Lilius on the Calendar, 444, 445.

Lilly, W., on Astrology, 390.

Linde, A. van der, 122.

Lindemann on tt, 294.

Line-land, 426.

Lines of Slope, 60.

Lippeus, 455.

Listing, J. B., 81, 172, 379.

Liveing on the Spectrum Top, 108.

Lizard Twist, String Trick, 372.

Lobatschewsky, N. I., 324, 325, 424.

Locke, J., 260, 262.

Lommel on Ether, 462.

London and Wise, 186.

Longchamps, G. de, 346.

Loop Trick, String Trick, 378.

Lorentz, F., 321.

Lorentz, H. A., 462, 480.

Loschmidt on Molecules, 477, 479.

Loubere, de la, 140-142.

Louis XI of France, 389-390.

Louis XIV of France, 140.

Loyd, S., 19.

Lucas, E., 34, 67, 72, 77, 78, 80, 170,

178, 183, 218, 228, 232, 338-340.

Lucas di Burgo, 2.

Lucca, Labyrinth at, 186.

Ludlam, W., 321.

Lydgate on the Sun-cylinder, 450.

McClintock, E., 156.

MacCullagh on Ether, 462, 465.

Machin's Series for tt, 303, 304, 305.

Maclaurin on Newton, 472.

MacMahon, 35-36, 67.

Magic Bottles, 90, 91.

Magic Mirrors, 108.

Magic Pencils, 163-165.

Magic Squares, chap. vn.
Magic Square Puzzles, 166-169.
Magic Stars, 154-155.

Magnus on Hauksbee's Law, 103.

Manger, String Figure, 354.

Map Colour Theorem, 54-59.

Marie Antoinette, 421.

Marsden, E., on Kirkman's Prob., 194.

Mathematics, Cambridge, chap. xi.

Mathews, G. B., 344.

Matter, Constitution of, chap. xxi.
— Hypotheses on, 460-470.
— Kinds of, limited, 475-477.
— Size of Molecules, 477-480.
Maxim on Bird Flight, 106.

Maxwell, J. Clerk, 59, 108, 459, 466,

471, 473, 475, 476, 479.

Maxwell's Demon, 108.

Mazes, 182-187.

Mean Time, 441, 442.

Mechanical Recreations, chap. v.

Medieval Problems, 18-25.

Menaechmus, 290.

Menage Problem, 34.

Mendelejev, D. L, 468, 469, 477.
Mersenne on Primes, 37.

Mersenne's Numbers, chap, xv, 37—
38, 333, 334, 335.

Mesolabum, 287.

Metius, A., on tt, 300.

Meton, 450.

Meziriac, see Bachet.
Michelson-Morley Experiments, 480.

Milner, L, 261, 269.

Minding on Knight's Path, 132.

Minos, 182, 286.

Minotaur, 184.

Minskowski, H., 480.

Minutes, Def. of, 440, 441.



INDEX 489

Mirrors, Magic, 108.

Miscellaneous Problems, 224.
Models, 97-98.
Moderators, chap. xi.

Mohammed's Sign-Manual, 176.

Moivre, A. de, 122, 123.

Molecules, Size of, 477-480.
Money, Question on, 9-10,

Monge on Shuffling Cards, 235-237.
Months, 443.

Montmort, de, 1, 123.

Montucla, 3, 90, 91, 123, 139, 149,

151, 293, 294, 302.

Moon, E., 132.

Moore, E. H., 221.

Morcom, R. K., 21.

Morehead, J. C, 40.

Morgan, A. de, $ee De Morgan.
Morland, S., 249.

Morley on Cardan, 392.

Morse Code, 418-9.

Mosaic Pavements, 64, 185.

Moschopulus, 138, 142.

Motion in Fluids, 101-107.
Motion, Laws of, 83, 87-93.
— Paradoxes on, 84-87.
— Perpetual, 93-96.

Mousetrap, Game of, 245-24G.
Mouse Trick, 374.

Movements A, B, and T, in String

Figures, 357, 358.

Miiller (Eegiomontanus), 300.

Mullinger, J. B., 282.

Mydorge, 2.

Nasik Maoic Squares, 156-162.
Natal Astrology, 381.

Nauclc, F., 113.

Neale, C. M., 254.

Needle Threading, String Trick, 373.

Neumann on Ether, 462.

Newton, Isaac, 94, 103, 249, 268, 269,

270, 290, 292, 294, 295, 461, 468,

470, 471, 472.

Newtonian Laws of Motion, 83-93.

Nicene Council on Easter, 446.

Niceron, J. F., 395.
Nicomedes, 287.

Nigidius on Astrology, 388.

Non-Archimedian Geometry, 436.

Non-Euclidean Geometries, 433-435.

NON-EUCLIDEAN GEOMETRY, 312, 322-
326.

Nonez on Sun-dials, 450,

Non-Legendrian Geometry, 436.

Notation, Denary Scale of, 10-11.

Noughts and Crosses, 62.

Numa on the Year, 443.

Numbers, Perfect, 334.

— Puzzles with, 4-27.

Numbers, Theory of, 36-43.

Oliver, General, on Sun-dials, 452.
Ons-en-bray, 138, 139.

Oppert on tt, 297.

Optimes, ch. xi, 251-252, 255, 275.
Oram on Eight Queens, 117.
Oughtred, W., 249.

Oughtred's Recreations, 11, 14, 18,

22, 91, 92.

Ourmes on Magic Squares, 138, 139.
Ovid, 184.

Owls, String Figure, 365.

Ozanam, A. F., on Labyrinths, 185.
Ozanam's Recreations, 2, 3, 11, 18,

25, 54, 71, 90, 91, 92, 93, 96, 98,

123, 138, 139, 149, 166, 229, 450,
452, 456.

TT, 293-306; see Table of Contents.
Pacificus on Clocks, 454.
Pacioli di Burgo, 2.

Pairs-of-Cards Trick, 238-240.
Paley, W., 256, 262, 264, 265, 269, 274.
Palomino, 23.

Pandiagonal Magic Squares, 156-162.
Pappus, 287, 291, 292.

Parabolic Geometries, 325.

Parabolic Geometry, 433, 436.
Paradromic Rings, 80-81.
Parallel Postulate, chap. xm.
Parallels, Definitions of, 322, 323.
— Theory of, 433.

Parkinson, J., on String Figures, 368.

Parmentier, on Knight's Path, 122.

Parrot Cage, String Figure, 368.
Parry on Sound, 108.

Parville, de, 229.

Pascal on Angle-Sum Theorem, 308.

Pawns, Games with, 74-80.
Paynell, N., 249.

Pearson, K., on Ether-Squirts, 465.

Pein on Ten Queens, 118.

Peirce, B., on Kirkman's Problem, 194.

Peirce's Problem of n^ Girls, 219.

Pencils, Magic, 163-165.

Pepys, S., 420.

Perfect Magic Squares, 156-102.
Perfect Numbers, 38, 334.

Permutation Problems, 32.

Perpetual Motion, 93-96.

Perrin, 12.

Perry, J., on Magic Mirrors, 108.

Peterson on Maps, 57.

Peyrard, F., 310.

Philo, 287.

Philoponus on Dclian Problem, 285.

I'hysical Geography, 59-61.

Pile Problems, 240-245.

Piuetti, 378.



490 INDEX

Pirie, G., on tt, 302.

Pitatus on the Calendar, 445.

Pittenger, 89.

Plana, G. A. A., 334, 336, 338, 342.

Planck C. 145.

Planets (Astrological), 138, 384, 442.
— Signification of, 384-386.

Plato on Delian Problem, 285, 286.

Playfair Cipher, 411.

Playfair, J., 307, 316, 317, 320, 322.

Pliny, 184, 388.

Pocock, W. I., 348, 373, 377.

Poe, E. A., 395, 405.

Poignard, 138, 139.

Poincare, J. H., 437.

Poitiers, Labyrinth at, 186.

Polignac on Knight's Path, 133.

Poll Examinations, 275.

Poll-men, 252.

Pollock, Sir F., 268-270.

Pompey, 388.

Porta, G., 395.

Portier, B., on Magic Squares, 163.

Pound-of-Candles, String Figure, 354.

Powers, K. E., 334, 336, 340.

Pratt on Knight's Path, 128.

Pretender, The Young, 402.

Primes, 37.

Probabilities and tt, 305.

Probabilities, Fallacies in, 30-32, 52.

Problem Papers, 261, 262, 265.

Proclus, 310, 313, 314.

Ptolemy, 298, 380, 381, 442.

Ptolemy on Parallel Postulate, 313.

Purbach on tt, 300.

Puzzles, Arithmetical, 4-36.

— Geometrical, 62-81.
— Mechanical, 84-93.

Pythagorean Symbol, 176.

Pythagoreans on Angle-Sum Theorem,
310.

Quadratic Equation, Solution of, 328.

Quadrature of Circle, 293-306.

Quartic Equation, Solution of, 328.

Queen, Paths on Chess-board, 133,

134, 135.

Queens Problem, Eight, 113-118.

Queens, Problems with, 113-118.

QuiNTic Equations, Algebraic, ch. xiv.

Racquet-ball, Cut on, 103-105.

Railway Puzzles (Shunting), 69-71.

Ramesam, 339.

Ramification, 188.

Raphael on Astrology, chap. xvii.

Ravenna, Labyrinth at, 186.

Rayleigh, Lord, 103, 105, 106, 257,
462.

Record, R., 249. ,

Re-entrant Paths on Chess-board,
122-134.

Regiomontanus on tt, 300.

Reimer, N. T., 285.

Reiss, 80.

Reiss on Dominoes, 181.

Relative Motion, 87.

Relativity, Theory of, 480.

Reneu, W., 252.

Renton, W., 52.

Resolvants, 327.

Reuschle, C. G., 334, 336, 333.

Reversible Magic Squares, 167.

Reynolds, O., 469, 470.

Rhind Papyrus, 297.

Riccioli on the Calendar, 445.

Rich, J., 419.

Richard, J., 87, 307, 311.

Richards, W. H., 457.

Richelieu, 401.

Richter on tt, 304.

Riemann, G. F. B., 324, 325, 424.

Rigaud, S. P., 471.

Rilly, A., 163.

Ring-Dial, 452, 453.

Rivers, W. H. R., on String Figures,

349, 367, 368, 372, 373.

Rockliff Marshes, Lalsyrinth at, 186.

Rodet, L., on Arya-Bhata, 298.

Rodwell, G. F., on Hyper-Space, 424.

Roget, P. M., 122, 127-132.

Romanus on tt, 300.

Rome, Labyrinth at, 186.

Rontgen Rays, 467.

Rook, Re-entrant Path, 133-134.

Rooke, L., 249.

Rosamund's Bower, 184.

Rosen, F., on Arab values of tt, 299.

Rothschild, F., 389.

Round Table, Knights of, 33.

Route Method in Ciphers, 399.

Routes on Chess-board, 122-135.

Row, Counters in a, 62-64, 74-78.

Rudio, F., on tt, 293.

Ruffini, P., on Algebraic Quintic, 329.

Russell, B. A. W., 85.

Rutherford on tt, 304.

Saccheri, J,, 424.

Saccheri, J., on Parallels, 323.

Saffron Walden, Labyrinth at, 186.

Sailing, Theory of, 98-101.

Sand-clocks, 453.

Sarrau on Ether, 462.

Saunderson, N., 249.

Sauveur, J., 138, 139, 156.

Scale of Notation, Denary, 10-11.
— Puzzles dependent on, 11-14.

Schlegel, V., 424.

School-girls, Fifteen, 193-223.
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Schooling, J. 11., 10.

Schotten, H., on Parallels, 307.

Schubert, H., on tt, 293.

Schumacher, 424.

Scott, Sir Walter, 390.

Scytale, The, 403.

Seconds, Def. of, 440, 441.

Secuet Commuxications, chap, xviii.

Seelhoff, P. H. H., 334, 336, 339.

See-saw, String Figure, 356, 369.

Selander, K. E. I., on tt, 296.

Senate-House Exajiination, chap. xi.

Seneca on Astrology, 389.

Senior Optimes, 251-252, 255.

Setting-Sun, String Figure, 367.

Seventy-seven Puzzle, 54.

Shanks, W., on tt, 304.

Sharp, A., on tt, 303.

Shelton, T., 419.

Sherwin's Tables, 303.

Shuffling Cards, 235-237.
Shunting Problems, 69-71, 82.

Sidereal Time, 440, 441.

Simon, M., on Parallels, 307.

Simpson, R., on Parallels, 321.

Simpson, T, , on Parallels, 321.

Simpson's Euclid, 268.

Simultaneity, 438.

Sixteen Counter Problem, 64, 82.

Sixty-five Puzzle, 52-53.
Skeleton Cubes, 32.

Smith, A., on tt, 306.
— Hen., on Numbers, 42.

— R., 249, 257.
— R. C, see Raphael.
Snell on tt, 301, 302.

Snuffer-Trays, String Figure, 852.

Solar Time, 441-442.
Soldier's Bed, String Figure, 352.
Solitaire, 80.

Somerv'ille, D. M. Y., 323, 424, 426.

Sosigenes on Calendar, 444.
Sound, Problem in, 107-108.— Velocity of, 400.

Southey on Astrology, 394.

Southwark, Labyrinth at, 186.

Sovereign, Change for, 32.

Space, IProperties of, chap. xix.

Spear, Throwing, String Figure, 360.
Spectrum Analysis, 474, 475.
Spectrum Top, 108.

Spin on a Cricket-ball, 105.
Spirits, Raising, 394.

Sporus on Delian Problem, 289.
Sprague on Eleven Queens, 118.
Squaring the Circle, 293-306.
Stability of Equilibrium, 90-93.
Stachel, P., on Parallels, 307.
Stars, String Figures, 304, 366.
Statical Games, 62-69.

St Cyr Method in Ciphers, 410.

Steen on the Mousetrap, 246.

Steiner'sCoinbinatorischeAufgabe,223.

St Laurent on Cards, 235.

StolBer on the Calendar, 445.

Stokes on Ether, 462.

St Omer, Labyrinth at, 186.

Storey on the Fifteen Puzzle, 224.

Strabo on Lake Moeris, 184.

String Figures, chap. xvi.

String Tricks, 371-378.

Stringham on Hypcr-Space, 432.

Sturm, A., 285.

St Vincent, Gregory of, 290.

Styles, 450.

Suetonius, 418.

Sun-cylinders, 450.

Sun-dials, 450-452.

Sun-rings, 452-453.

Sun-setting, String Figure, 367.

Sun, the Mean, 441.

Suspension Bridge, String Figure, 355.

Svastika, 185.

Swift, 84.

Sylvester, J. J., 63, 65, 222.

Tacitus on Astrology, 389.

Tait, P. G., 25, 56, 57, 58, 75, 172,
176, 379, 459, 463, 473.

Tangrams, 69.

Tanner, L., on Shuffling Cards, 235.

Tarry, G., 72, 163, 166, 177, 178.

Tartaglia, 2, 18, 24, 34, 71.

Tate, 417.

Tavel, G. F., 270.

Taylor, B., 123, 249.

Taylor, Ch., on Trisection Prob., 292.

Taylor, H. M., 110.

Tennis-ball, Cut on, 103-105.
Tesselation, 64-67.

Thales on Angle-Sum Theorem, 308,
321.

Theon of Alexandria, 310.

Theory of Numbers, 36-43, chap. xv.

Thibaut, G., on Baudhavana, 298.

Thompson, T. P., on Parallels, 307.

Thomson, J. J., 105, 459, 464, 467,

477.

Thomson, Sir Wm., see Kelvin.

Thrasyllus on Astrology, 389, 390.

Threading Needle, String Trick, 373.

Three-in-a-row, 62-64.

Three-pile Problem, 240-245.

Three-Things Problem, 19-23.

Throwing Spear, String Figure, 300.

Tiberius on Astrology, 389.

Time, chap. xx.
— Equation of, 442.

— Measurement of, 438-441.
— Units of, 438-443.
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Todhunter, J., 278.

Tonstall, C, 249.

Tower or Hanoi, 228-229.

Trastevere, Labyrinth at, 186.

Tbebly Magic Squakes, 163.

Tree, Climbing, String Figure, 359.

Trees, Geometrical, 188.

Treize, Game of, 245-246.

Trellis-Bridge, String Figure, 355.

Tremaux on Mazes, 183.

Triangle, Sum of Angles of, ch. siu.

Tricks, String, 371-378.

Tricks with Numbers, 3-34.

Tridents, String Figure, 355.

Tripos, Mathematical, chap. xi.

Tripos, Origin of Term, 281-283.

Trisection of Angle, 291-293.

Tritheim, J., 395.

Trollope, E., on Mazes, 184.

Troy-towns, 186.

Turton, W. H., 49, 54, 121.

Uhlemann on Astrology, 380.

Unicursal Problems, chap. viii.

Van Ceulen on tt, 301, 302.

Vandermonde, 80, 122, 127.

Van Etten, 11.

Varignon, P., on Parallels, 322.

Vase Problem, 18.

Vega on ir, 304.

Vick on Clocks, 455.

Vieta, 290, 300.

Vince, S., 268, 269.

Violle, B., Magic Squares, 139.

Virgil, 184.

Voigt on Ether, 462.

VolpiceUi, P., on Knight's Path, 122.

Von Bilguer on Chess Pieces, 112.

Von Helmholtz, H. F. L., 97, 424,

462, 463.

Vortex Eings, 463, 464.

— Spheres, 464.

— Sponges, 464, 465.

Voting, Question on, 33.

Waistcoat Puzzle, 378.

Walecki on Kirkman'sProb., 218, 219.

Walker, G. T., 28.

Wallis, J., 229, 232, 249, 302.

Wallis, J., on Parallels, 314, 320.

Wantzell, P. L., 284.

Ward, S., 249.

Waring, E., 255, 263, 269.

Warnsdorff, Knight's Path, 128.

Watch Problem, 14-15.

Watches, 96, 455.
— as Compasses, 456-458.
Water-clocks, 453, 456.

Waterloo, Battle of, 449.

Watersheds and Watercourses, 60-;j51.

Watson, G. N., vi.

Watson, R., 256, 265.

Waves, Superposition of, 108.

Weber-Wellstein, 339.

Week, Days of, from date, 449.

Week, Names of Days, 442-443.

Weights Problem, The, 34-36.

Western, A. E., on Binary Powers, 40.

Wheatstone, C, on Ciphers, 414, 419,

420.

Whewell, W., 248, 269, 270, 272, 273,

380, 389.

Whist, Number of Hands at, 33.

Whiston, W., 249.

Whitehead, A. N., 435.

Whittaker, E. T., 459.

Wiedemann, A., on Lake Moeris, 184.

Wiles, J. P., 450.

Wilkins, J., on Ciphers, 395, 403, 410,

412.

William HI of England, 186.

Willis on Hauksbee's Law, 101.

Wilson, J,, on Ptolemy, 381.

Wilson's Theorem, 269.

Wing, Labyrinth at, 186.

Withers, J. W., on Parallels, 307.

Wolfe on Parallels, 322.

Wood, J., 263, 268.

Woodall, H. J., 334, 336, 339, 342.

Woodhouse, R., 269, 271.

Worcester, Marquis of, 420.

Wordsworth, C, 248, 255, 263, 265,

283.

Work, 89-93.

Wostrowitz, E. B. von, 395.

Wranglers, 251-252, chap. xi.

Wright, E., 249.

Wright, J. M. F., 273.

Yam Thief, String Trick, 374.

Year, Civil, 443-445.

Year, Mohammedan, 445.

Zach, Baron, on tt, 304.

Zech, R., 455.

Zeller, C, 449.

Zeno on Motion, 84-85.

Zodiac Signs in Astrology, 383, 386-
387.
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A SHORT ACCOUNT OF THE

HISTORY OF MATHEMATICS
By W. W. rouse BALL.

[Fifth Edition, 1911. Pp. xxiv + 522. Price 10s. net]

MACMILLAN AND CO. Ltd., LONDON AND NEW YORK.

This book gives an account of the lives and discoveries of those

mathematicians to whom the development of the subject is mainly

due. The use of technicalities has been avoided and the work is

intelligible to any one acquainted with the elements of mathe-

matics.

It commences with an account of the origin and progress of

Greek mathematics, from which the Alexandrian, the Indian, and

the Arab schools may be said to have arisen. Next the mathematics

of medieval Europe and the renaissance are described. The latter

part of the book is devoted to the history of modern mathematics,

beginning with the invention of analytical geometry and the in-

finitesimal calculus. The history is brought down to the present

time.

This excellent snmmary of the history of mathematics supplies a want
wbicli has long been felt in this country. The extremely difficult question,
how far such a work should be technical, has been solved with great tact. . .

The work contams many valuable hints, and is thoroughly readable. The
biographies, which include those of most of the men who jdayed important
parts in the development of culture, are full and general enough to interest

the ordinary reader as well as the specialist. Its value to the latter is much
increased by the numerous references to authorities, a good table of contents,

and a full and accurate index.

—

The Saturday Review.

Mr. Ball's book should meet with a hearty welcome, for though we possess
other histories of special branches of mathematics, this is the first serious

attempt that has been made in the English language to give a systematic
account of the origin and development of the science as a whole. It is

\\Titten too i)i an attractive style. Technicalities are not too numerous or
obtnisive, and the work is inter.spersed with biographical sketches and
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anecdotes likely to interest the general rearler. Thus the tyro and the
advanced mathematician alike may read it with pleasure and profit.

—

The
Athenceum.

A wealth of authorities, often far from accordant with each other, renders
a work such as this extremely formidable ; and students of mathematics have
reason to be grateful for the vast amount of information which has been
condensed into this short account. ... In a survey of so wide extent it is of
course impossible to give anything but a bare sketch of the various lines of
research, and this circumstance tends to render a narrative scrappy. It says
much for Mr. Ball's descriptive skill that his history reads more like a con-
tinuous story than a series of merely consecutive summaries.

—

The Academy.

We can heartily recommend to our mathematical readers, and to others
also, Mr. Ball's History of Mathematics. The history of what might be
supposed a dry subject is told in the pleasantest and most readable style, and
at the same time there is evidence of the most careful research.

—

The
Observatory.

All the salient points of mathematical history are given, and many of the
results of recent antiquarian research ; but it must not be imagined that the
book is at all dry. On the contrary the biographical sketches frequently
contain amusing anecdotes, and many of the theorems mentioned are very
clearly explained so as to bring them within the grasp of those who are only
acquainted with elementary mathematics.

—

Nature.

Le style de M. Ball est clair et dlegant, de nombreux aper9us rendent
facile de suivre le fil de son exposition et de frequentes citations permettent
£l celui qui le desire d'approfondir les recherches que I'auteur n'a pu qu'-

effleurer. . . . Get ouvrage pourra devenir tr^s utile comme manuel d'histuire

des mathdmatiques pour les etudiants, et il ne sera pas ddplace dans lea

biblioth^ques des savants.

—

Bibliotheca Mathematica,

The author modestly describes his work as a compilation, but it is

thoroughly well digested, a due proportion is observed between the various

parts, and when occasion demands he does not hesitate to give an independ-
ent judgment on a disputed ])oint. His verdicts in such instances appear to

us to be generally sound and reasonable. ... To many readers who have
not the courage or the opportunity to tackle the ponderous volumes of

Montucla or the (mostly) ponderous treatises of German writers on special

periods, it may be somewhat of a surprise to find what a wealth of human
interest attaches to the history of so "dry" a subject as mathematics. We
are brought into contact with many remarkable men, some of whom have
played a great part in other fields, as the names of Gerbert, Wren, Leibnitz,

Descartes, Pascal, D'Alembert, Carnot, among others may testify, and with

at least one thorough blackguard (Cardan) ; and Mr. Ball's pages abound
with quaint and amusing touches characteristic of the authors under con-

sideration, or of the times in which they \\ve6..—Manchester Guardian.

There can be no doubt that the author has done his work in a very excel-

lent way. . . . There is no one interested in almost any part of mathematical
science who will not welcome such an exposition as the present, at once popu-
larly written and exact, embracing the entire subject. . . . Mr. Ball's work is

destined to become a standard one on the subject.

—

The Glasgow Herald.

A most interesting book, not only for those who are mathematicians, but
for the much larger circle of those who care to trace the course of general

scientific progress. It is written in such a way that those who have only an
elementary acquaintance with the subject can find on almost every page
something of general interest.

—

The Oxford Magazine.

La lecture en est singulierement attachante et instructive.

—

Bulletin des

sciences mathematiquea.
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A PRIMER OF THE

HISTORY OF MATHEMATICS
By W. W. rouse BALL.

[Fourth Edition, 19 U. Fp. iv + 149. l^nce 2s. net.]

MACMILLAN AND CO. Ltd., LONDON AND NEW YORK.

This book contains a sketch in popular language of the history

of mathematics ; it includes notices of the lives and surround-

ings of those to whom the development of the subject is mainly

due as well as of their discoveries.

This Primer is written in the agreeable style with which the author has
made us acquainted in his previous essays ; and we are sure that all readers
of it will be ready to say that Mr. Ball has succeeded in the hope he has
formed, that "it may not be uninteresting" even to those who are unac-
quainted with the leading facts. It is just the book to give an intelligent

young student, and should allure him on to the perusal of Mr. Ball's "Short
Account." The present work is not a mere rdchauffd of that, though
naturally most of what is here given will be found in equivalent form in the
larger work. . . . The choice of material appears to us to be such as should
lend interest to the study of mathematics and increase its educational value,
which has been the author's aim. The book goes well into the pocket, and la

excellently printed.

—

The Academy.

"We have here a new instance of Mr. Rouse Ball's skill in giving in a small
space an intelligible account of a large subject. In 137 pages we have a
sketch of the progress of mathematics from the earliest records up to the
middle of this century, and yet it is interesting to read and by no means a
mere catalogue.

—

2'fie Manchester Guardian.

It is not often that a reviewer of mathematical works can confess that he
has read one of them through from cover to cover without abatement of

interest or fatigue. But that is true of Mr. Rouse Ball's wonderfully enter-

taining little "History of Mathematics," which we heartily recommend to

even the quite rudimentary mathematician. The cai)able mathematical
master will not fail to find a dozen interesting facts therein to season his

teaching.

—

The Saturday Review.

A fascinating little volume, which should be in the hands of all who do
not possesis the more elaborate History of Matheiiiatics by the same author.—The Mathematical Gazette.

This excellent sketch should be in the hands of every student, whether he
is studying mathematics or no. In moat cases there is an unfortunate lack

32-2
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of knowledge upon this subject, and we welcome anything that will help to
supply the deficiency. The primer is written in a concise, lucid and easy
manner, and gives the reader a general idea of the progress of mathematics
that is both interesting and instructive.

—

The Cambridge Review.

Mr. Ball has not been deterred by the existence and success of his larger
"History of Mathematics" from publishing a simple compendium in about a
quarter of the space. ... Of course, what he now gives is a bare outline of
the subject, but it is ample for all except the most advanced proficients.

There is no question that, as the author says, a knowledge of the, history of a
science lends interest to its study, and often increases its educational value.

We can imagine no better cathartic for any mathematical student who has
made some way with the calculus than a careful perusal of this little book.

—

The Educational Times,

The author has done good service to mathematicians by engaging in work
in this special field. . . , The Primer gives, in a brief compass, the history of
the advance of this branch of science when under Greek influence, during the
Middle Ages, and at the Renaissance, and then goes on to deal with the
introduction of modern analysis and its recent developments. It refers to the
life and work of the leaders of mathematical thought, adds a new and
enlarged value to well-known problems by treating of their inception and
history, and lights up with a warm and personal interest a science which
Bome of its detractors have dared to call dull and cold.

—

The Educational
Review.

It is not too much to say that this little work should be in the possession

of every mathematical teacher. . . . The Primer gives in a small compass the
leading events in the development of mathematics. ... At the same time,

it is no dry chronicle of facts and theorems. The biographical sketches of the
great workers, if short, are pithy, and often amusing. Well-known propo-

sitions will attain a new interest for the pui^il as he traces their history long
before the time of Euclid.

—

The Journal of Education.

This is a work which all who apprehend the value of "mathematics"
should read and study . . . , and those who wish to learn how to think will

find advantage in reading it.

—

The English Mechanic.

The subject, so far as our own language is concerned, is almost Mr. Ball's

own, and those who have no leisure to read his former work will find in this

Primer a highly readable and instructive chapter in the history of education.

The condensation has been skilfully done, the reader's interest being sus-

tained by the introduction of a good deal of far from tedious detail.

—

Tlie

Glasgow Herald.

Mr. W. W. Rouse Ball is well known as the author of a very clever history

of mathematics, besides useful works on kindred subjects. His latest pro-

duction is A Primer of the History of Mathematics, a book of one hundred
and forty pages, giving in non-technical language a full, concise, and readable

narrative of the development of the science from the days of the Ionian

Greeks until the jiresent time. Anyone with a leaning towards algebraic or

geometrical studies will be intensely interested in this account of progress

from primitive usages, step by step, to our present elaborate systems. The
lives of the men who by their research and discovery helped along the good
work are described briefly, but graphically. . . . The Primer should become
a standard text-book.

—

The Literary World.

This is a capital little sketch of a subject on which Mr. Ball is an acknow-
ledged authority, and of which too little is generally known. Mr. Ball,

moreover, writes easily and well, and has the art of saying wliat he has to

say in an interesting style.

—

Tlie School Guardian.
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MATHEMATICAL

RECREATIONS AND ESSAYS
By W. W. rouse BALL.

[Siwth Edition, 1914. Pp. xvi + 492. Price 8s. Gd. net]

MACMILLAN AND CO. Ltd., LONDON AND NEW YORK.

This work is divided into two parts ; the first is on mathematical

recreations and puzzles, the second includes some miscellaneous

essays and an account of various problems of historical interest.

In both parts questions which involve advanced mathematics are

excluded.

The mathematical recreations include numerous elementary

questions and paradoxes, as well as problems such as the proposi-

tion that to colour a map not more than four colours are necessary,

the explanation of the effect of a cut on a tennis ball, the fifteen

puzzle, the eight queens problem, the fifteen school-girls, the con-

struction of magic squares, the theory and history of mazes, and

the knight's path on a chess-board.

The second part commences with sketches of the history of the

Mathematical Tripos at Cambridge, and of some half-dozen cele-

brated problems in mathematics. These are followed by essays on
String Figures, Astrology, and Ciphers. The last three chapters

are devoted to an account of certain hypotheses as to the nature of

Space and Mass, and the means of measuring Time.

Mr. Ball has attained a position in the front rank of writers on suhjects
connected with the history of mathematics, and tliis brochure will add
another to his successes in this field. Li it he has collected a mass of
information bearing upon matters of more general interest, written in a style
which is eminently readable, and at the same time exact. He has done his
work so thoroughly that he has left few ears for other gleaners. The nature
of the work is comjiletely indicated to the mathematical student by its title.
Does lie want to revive his acquaintance with the Probltmes Flatsaris et
Dclectahles of Bachet, or the lUcriations Mathcmatiqtiea et Physi'iues of
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Ozanam? Let him take Mr. Ball for his companion, and he will have the
cream of these works put before him with a wealth of illustration quite

delightful. Or, coming to more recent times, he will have full and accurate
discussion of 'the fifteen puzzle,' 'Chinese rings,' 'the fifteen school-girls

problem ' et id genus orane. Sufficient space is devoted to accounts of magic
squares and uuicursal problems (such as mazes, the knight's path, and geo-

metrical trees). These, and many other problems of equal interest, come
under the head of 'Recreations.' The problems and speculations include an
account of the Three Classical Problems ; there is also a brief sketch of

Astrology ; and interesting outlines of the present state of our knowledge of

hyper-space and of the constitution of matter. This enumeration badly
indicates the matter handled, but it sufficiently states what the reader may
expect to find. Moreover for the use of readers who may wish to pursue the
several heads further, Mr. Ball gives detailed references to the sources from
whence he has derived his information. These Mathematical Recreatiovs we
can commend as suited for mathematicians and equally for others who wish
to while away an occasional hour.

—

The Academy,

The idea of writing some such account as that before us must have been
present to Mr. Ball's mind when he was collecting the material which he has
so skilfully worked up into his History of Mathematics, We think this

because . . - many bits of ore which would not suit the earlier work find a
fitting niche in this. Howsoever the case may be, we are sure that non-
mathematical, as well as mathematical, readers will derive amusement, and,
we venture to think, profit withal, from a perusal of it. The author has gone
very exhaustively over the ground, and has left us little opportunity of add-
ing to or correcting what he has thus reproduced from his note-books. The
work before us is divided into two parts : mathematical recreations and
mathematical problems and speculations. All these matters are treated

lucidly, and with sufficient detail for the ordinary reader, and for others there
is ample store of references. . , . Our analysis shows how great an extent of

ground is covered, and the account is fully pervaded by the attractive charm
i>Ir. Ball knows so well how to infuse into what many persons would look
upon as a dry subject.

—

Nature.

A fit sequel to its author's valuable and interesting works on the history of

mathematics. There is a fascination about this volume which results from a
happy combination of puzzle and paradox. There is both milk for babes and
strong meat for grown men. ... A great deal of the information is hardly
accessible in any English books ; and Mr. Ball would deserve the gratitude of

mathematicians for having merely collected the facts. But he has presented
them with such lucidity and vivacity of style that there is not a dull page in

the book ; and he has added minute and full bibliographical references which
greatly enhance the value of his work.

—

The Cambridge Review.

Mathematicians with a turn for the paradoxes and puzzles connected with
number, space, and time, in which their science abounds, will delight in

Mathematical Recreations and Problems of Past and Present Times.—The
Times.

Mathematicians have their recreations ; and Mr. Ball sets forth the
humours of mathematics in a book of deepest interest to the clerical

reader, and of no little attractiveness to the layman. The notes attest an
enormous amount of research.

—

The National Observer.

Mr. Ball, to whom we are already indebted for two excellent Histories of
Mathematics, has just produced a book which will be thoroughly appreciated
by those who enjoy the settiijg of the wits to work. . . . He has collected a
vast amount of information about mathematical quips, tricks, cranks, and
puzzles—old and new ; and it will be .strange if even the most learned do not
find something fresh in the assortment.

—

I'he Observatory.
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Mr. Rouse Ball has the true gift of story-telling, and he writes so pleasantly
that though we enjoy the fulness of his knowledge we aro tempted to forget
the considerable amount of labour involved in the preparation of his book.
He gives us the history and the matliematics of many problems . . . and where
the limits of his work prevent him from dealing fully with the points raised,
like a true worker he gives us ample references to original memoirs. . . . The
book is warmly to be recommended, and should find a place on the shelves of
every one interested in mathematics and on those of every public library.

—

The Manckesler Guardian.

A work which will interest all who delight in mathematics and mental
exercises generally. The student will often take it up. as it contains many
problems which puzzle even clever people.

—

The English Mechanic and
World of Science.

This is a book which the general reader should find as interesting as the
mathematician. At all events, an intelligent enjoyment of its contents pre-
supposes no more knowledge of mathematics than is now-a-days possessed by
almost everybody.

—

The Athenceum.

An exceedingly interesting work which, while appealing more directly to
those who are somewhat mathematically inclined, it is at the same time cal-

culated to interest the general reader. . . . Mr. Ball writes in a highly
interesting manner on a fascinating subject, the result being a work which is

in every respect excellent.

—

The Mechanical World.

E um livro muito interessante, consagrado a recreios mathematicos, alguns
dos quaes sao muito bellos, e a problemas interessantes da mesma scieucia,

que nao exige para ser lido grandes conheciraentos mathematicos e que tem
em grao elevado a qualidade de instruir, deleitando ao mesmo tempo.

—

Jour-
nal de sciencias mathematicas, Coimhra.

The work is a very judicious and suggestive compilation, not meant mainly
for mathematicians, yet made doubly valuable to them by copious references.

The style in the main is so compact and clear that what is central in a long
argument or process is admirably presented in a few words. One great merit
of this, or any other really good book on such a subject, is its suggestiveness

;

and in running through its pages, one is pretty sure to think of additional
problems on the same general lines.

—

Bulletin of the New York Matheinatical
Society.

A book which deserves to be widely known by those who are fond of solving
puzzles . . . and will be found to contain an admirable classified collection of
ingenious questions capable of mathematical analysis. As the author is him-
self a skilful mathematician, and is careful to add an analysis of most of the
propositions, it may easily be believed that there is food for study as well as
amusement in his pages. ... Is in every way worthy of praise.

—

The School
Guardian.

Once more the author of a Short History of Mathematics and a History oj
the Study of Mathevuitics at Cambridge gives evidence of the width of his

reading and of his skill in compilation. From the elementary arithmetical
puzzles which were known in the sixteenth and seventeenth centuries to those
modern ones the mathematical discussion of which has taxed the energies of
the ablest investigator, very few questions have been left unrepresented.
The sources of the author's information are indicated with great fulness. . . ,

The book is a welcome addition to English mathematical literature.

—

Tiie

Oxford Magazine.
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A HISTORY OF THE STUDY OF

MATHEMATICS AT CAMBEIDGE

By W. W. house BALL.

[Pp. xvi.+ 264. Plaice Qs.]

THE UNIVERSITY PRESS, CAMBRIDGE.

This work contains an account of the development of the study

of mathematics in the university of Cambridge from the twelfth

century to the middle of the nineteenth century, and a description of

the means by which proficiency in that study was tested at various

times.

The first part of the book is devoted to a brief account of the

more eminent of the Cambridge mathematicians, the subject matter

of their works, and their methods of exposition. The second part

treats of the manner in which mathematics was taught, and of the

exercises and examinations required of students in past times. A
sketch is given of the origin and history of the Mathematical

Tripos; this includes the substance of the earlier parts of the

author's work on that subject, Cambridge, 1880. To explain the

relation of mathematics to other departments of study an outline

of the general history of the university and the organization of

education therein is added.

The present volume is very pleasant reading, and though much of it neces-

sarily appeals only to mathematicians, there are parts

—

e.g. the chapters on
Newton, on the growth of the tripos, and on the history of the university

—

which are full of interest for a general reader. . . . The book is well written,

the style is crisp and clear, and there is a humorous appreciation of some of

the curious old regulations which have been superseded by time and change
of custom. Though it seems light, it must represent an extensive study and
investigation on the part of the author, the essential results of Avhich are

skilfully given. We can most thoroughly commend Mr. Ball's volume to all

readers who are interested in mathematics or in the growth and the position

of the Cambridge school of mathematicians.

—

The Manchester Guardian.
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Voici un livre dont la lecture inspire tout d'ahord le regret que dcs travaux
analogues n'aient pas et^ faits pour toutes les Ecoles cdl^bres, et avec autant
de soin et de clarte. . . . Toutes les parties du livre nous ont viveniont
interesse.

—

Bulletin dcs sciences matMmatiqxies.

A book of pleasant and useful reading for both historians and mathemati-
cians. Mr. Ball's previous researches into this kind of history have already
established his reputation, and the book is worthy of the reputation of its

author. It is more than a detailed account of the rise and progress of mathe-
matics, for it involves a very exact history of the University of Cambridge
from its foundation.

—

The Educational Times.

Mr. Ball is far from confining his narrative to the particular science of

which he is himself an acknowledged master, and his account of the study of

mathematics becomes a series of biographical portraits of eminent professors

and a record not only of the intellectual life of the elite but of the manners,
habits, and discussions of the great body of Cambridge men from the six-

teenth century to our own. . . . He has shown how the University has
justified its liberal reputation, and how amply prepared it was for the larger

freedom which it now enjoys.

—

The Daily News.

Mr. Ball has not only given us a detailed account of the rise and progress of

the science with which the name of Cambridge is generally associated hut has
also written a brief but reliable and interesting history of the university itself

from its foundation down to recent times. . . . The book is pleasant reading
alike for the mathematician and the student of history.

—

St. James's Gazette.

A very handy and valuable book containing, as it does, a vast deal of

interesting information which could not without inconceivable trouble bo
found elsewhere. ... It is very far from forming merely a mathematical bio-

graphical dictionary, the growth of mathematical science being skilfully

traced in connection with the successive names. There are probably very few
people who will be able thoroufrhly to appreciate the author's laboriouo

researches in all sorts of memoirs and transactions of learned societies in order
to unearth the material which he has so agreeably condensed. . . . Along with
this there is much new matter which, while of great interest to mathemati-
cians, and more especially to men brought up at Cambridge, will be found to

throw a good deal of new and important light on the history of education in

general.

—

The Glasr/ow Herald.

Exceedingly interesting to all who care for mathematics. . . . After giving

an account of the chief Cambridge Mathematicians and their works in chrono-

logical order, Mr. Rouse Ball goes on to deal with the history of tuition and
examinations in the University . . . and recounts the steps by which the word
"tripos" changed its meaning "from a thing of wood to a man, from a man
to a speech, from a speech to two sets of verse.'^, from ver.ses to a sheet of coarse

foolscap paper, from a paper to a list of names, and from a list of names to

a system of examination. —Never did word undergo so many alterations.

—

The Literary World.

In giving an account of the development of the study of mathematics in the
University of Cambridge, and the means by which mathematical proficiency

was tested in successive generations, Mr. Ball has taken the novel plan of de-

voting the first half of his book to . . . the more eminent Cambridge mathe-
maticians, and of reserving to the second part an account of how at various

times the subject wa.s taught, and how the result of its study was tested. . . .

Very interesting information is given about the work of the students during
the different periods, with specimens of problem-papers as far back as l>s()2.

The book is very enjoyable, and gives a capital and accurate digest of many
excellent authorities which are not within the reach of the ordinary reader.

—

TJie Hoots Observer,
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AN ESSAY ON

THE GENESIS, CONTENTS, AND HISTORY OF

KEWTON'S "PRINCIPIA"

By W. W. EOUSE BALL.

[Pp. X. + 175. Price 6s. net]

MACMILLAN AND CO. Ltd., LONDON AND NEW YORK.

This work contains an account of the successive discoveries

of Newton on gravitation, the methods he used, and the history of

his researches.

It commences with a review of the extant authorities dealing

with the subject. In the next two chapters the investigations

made in 1666 and 1679 are discussed, some of the documents deal-

ing therewith being here printed for the first time. The fourth

chapter is devoted to the investigations made in 1684 : these are

illustrated by Newton's professorial lectures (of which the original

manuscript is extant) of that autumn, and are summed up in the

almost unknown memoir of February, 1685, which is here repro-

duced from Newton's holograph copy. In the two following chap-

ters the details of the preparation from 1685 to 1687 of the

Prindpia are described, and an analysis of the work is given. The

seventh chapter comprises an account of the researches of Newton

on gravitation subsequent to the publication of the first edition of

the Prindpia^ and a sketch of the history of that work.

In the last chapter, the extant letters of 1678-1679 between

Hooke and Newton, and of those of 1686-1687 between Halley

and Newton, are reprinted, and there are also notes on the extant

correspondence concerning the production of the second and third

editions of the Prindpia.
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For the essay which we have before us, Mr. Ball should receive the thanks
of all those to whom the name of Newton recalls the memory of a great man.
The Frincipia, besides being a lusting monument of Newton's life, is also
to-day the classic of our mathematical writings, and will be so for some time
to come. . . . The value of the present work is also enhanced by the fact that,

besides containing a few as yet unpublished letters, there are collected in its

p:\ge3 quotations from all documents, thus forming a complete summary of every-
thing that is known on the subject. . . . The author is so well known a writer
on anything connected with the history of mathematics, that we need make
no mention of the thoroughness of the essay, while it would be superfluous
for us to add that from beginning to end it is pleasantly written and delightful
to read. Those well acquainted with the Principia, will find much that will

interest them, while those not so fully enlightened will learn much by reading
through the account of the origin and history of Newton's greatest work.

—

Nature.

An Easay on Neivton's Principia will suggest to many something solely

mathematical, and therefore wholly uninteresting. No inference could be
more erroneous. The book certainly deals largely in scientific technicalities

which will interest experts only ; but it also contains much historical infor-

mation which might attract many who, from laziness or inability, would be
very willing to take all its mathematics for granted. Mr. Ball carefully
examines the evidence bearing on the development of Newton's great dis-

covery, and supplies the reader with abundant quotations from contemporary
authorities. Not the least interesting portion of the book is the appendix, or
rather appendices, containing copies of the original documents (mostly letters)

to which Mr. Ball refers in his historical criticisms. Several of these bear
upon the irritating and unfounded claims of Hooke.

—

The Athenceum.

La savante monographie de M. Ball est r^digee avec beaucoup de soin, et ^
plusieurs egards elle pent servir de modele pour des ecrits de la meme nature.—Bibliotheca Mathematica.

Newton's Principia has world-wide fame as a classic of mathematical
science. But those who know thoroughly the contents and the history of the
book are a select company. It was at one time the purpose of Mr. Ball to

prepare a new critical edition of the work, accompanied by a prefatory
histoiy and notes, and by an analytical commentary. Mathematicians will

regret to hear that there is no prospect in the immediate future of seeing this

important book carried to completion by so competent a hand. They will at
the same time welcome Mr. Ball's Essay on the Principia for the elucida-

tions which it gives of the process by which Newton's great work originated
and took form, and also as an earnest of the completed plan.

—

The Scotsman.

In this essay IMr. Ball presents us with an account highly interesting to
mathematicians and natural philosophers of the origin and history of that
remarkable product of a great genius Pltilosophiae Natnralis Principia
Mathematica, 'The Mathematical Principles of Natural Philosophy,' better
known by the short term Principia. . . . Mr. Ball's essay is one of extreme
interest to students of physical science, and it is sure to be widely read and
greatly appreciated.

—

T/ie Glasgow Herald.

To his well-known and scholarly treatises on the History of Mathematics
Mr. W. W. Rouse BhII has added An Essay on Ncicton\t Principia.
Newton's Principia, as Mr. Ball justly observes, is the classic of English
mathematical writings ; and this sound, luminous, and laborious essay ought

1
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to be the classical account of the Principia. The essay is the outcome of a
critical edition of Newton's great work, which IMr. Ball tells us that he once
contemplated. It is much to be hoped that he will carry out his intention,

for no English mathematician is likely to do the work better or in a more
reverent spirit. ... It is unnecessary to say that Mr. Ball has a complete
knowleds;e of his subject. He writes with an ease and clearness that are

rare.

—

The Scottish Leader.

Le volume de M. Rouse Ball renferme tout ce que I'on pent desirer savoir

Bur riiistoire des Principes ; c'est d'ailleurs I'ceuvre d'un esprit clair, judi-

cieux, et methodique.

—

Bulletin des Sciences Math6matique&.

Mr. Ball has put into small space a very great deal of interesting matter,

and his book ought to meet with a wide circulation among lovers of Newton
and the Principia.—The Academy,

Admirers of Mr. W. W. Rouse Ball's Short Account of the History of
Mathematics will be glad to receive a detailed study of the history of the
Principia from the same hand. This book, like its predecessors, gives a very
lucid account of its subject. We find in it an account of Newton's investiga-

tions in his earlier years, which are to some extent collected in the tract de
Motu (the germ of the Principia) the text of which Mr. Rouse Ball gives U3
in full. In a later chapter there is a full analysis of the Principia itself, and
after that an account of the preparation of the second and third editions.

Probably the part of the book which will be found most interesting by the
general reader is the account of the correspondence of Newton with Hooke,
and with Halley, about the contents or the publication of the Principia.

This correspondence is given in full, so far as it is recoverable. Hooke does

not appear to advantage in it. He accuses Newton of stealing his ideas.

His vain and envious disposition made his own merits appear great in hia

eyes, and be-dwarfed the work of others, so that he seems to have believed

that Newton's great performance was a mere expanding and editing of the

ideas of Mr. Hooke—ideas which were meritorious, but after all mere guesses

at truth. This, at all events, is the most charitable view we can take of his

conduct. Halley, on the contrary, appears as a man to whom we ought to

feel most grateful. It almost seems as though Newton's physical insight and
extraordinary mathematical powers might have been largely wasted, as was
Pascal's rare genius, if it had not been for Halley's single-hearted and self-

forgetful efforts to get from his friend's genius all he could for the enlighten-

ment of men. It was probably at his suggestion that the writing of the

Principia was undertaken. When the work was presented to the Royal
Society, they undertook its publication, but, being without the necessary

funds, the expense fell upon Halley. When Newton, stung by Hooke's
accusations, wished to withdraw a part of the work, Halley's tact was
required to avert the catastrophe. All the drudgery, worry, and expense fell

to his share, and was accepted with the most generous good nature. It will

be seen that both the technical student and the general reader may find

much to interest him in Mr. Rouse Ball's book,

—

The Manchester Guardian.

Une histoire tres bien faite de la gen^se du livre immortel de Newton. . , .

Le livre de M. Ball est une monographie precieuse sur un point important de
I'bistoire des mathematiques. II contribuera a accroitre, si c'est possible, la

gluire de Newton, en revelant a beaucoup de lecteurs, avec quelle merveilleuse

rapidite I'illustre geom^tre anglais a eleve a, la science ce monument immortel,

les Principia.—Mathcsis.
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THE HISTORY OF

TEINITY COLLEGE, CA]\I BRIDGE
By W. W. rouse BALL.

[Pp. xiv + 183. Price 2s. 6d. net]

MACMILLAN AND CO. Ltd., LONDON AND NEW YORK.

This booklet gives a popular account of the History of Trinity

College, Cambridge. It was written mainly for the use of the

author's pupils, and contains such information and gossip about

the College and life there in past times as he believed would be

intere:iting to most undergraduates and members of the House.

This . . . little volume seems to us to do more for its subject than many
of the more formal volumes . . . treating of the separate colleges of the

English universities. ... In nine short, extremely readable, and truly

informing chapters it gives the reader a very vivid account at once of the

origin and development of the University of Cambridge, of the rise and
gradual supremacy of the colleges, . . . and the subsequent fortunes of the

premier coUege of Cambridge. The subject is treated . . . under four great

periods—namely, that during the Middle Ages, that during the Ecnaissaiice,

that under the Ehzabethan statutes, and that during the last half-century.

No one who begins Mr. Ball's book will lay it down till he has read it from
beginning to end.

—

The Glasgoio Herald.

It is a sign of the times, and a very satisfactory one, when ... a tutor . . .

takes the trouble to make the history of his college known to his pupils.

Considering the lack of good books about the Universities, we may thank
Mv. Ball that he has been good enough to print for a larger circle. Though
he modestly calls his book only "Notes," yet it is eminently readable, and
there is plenty of information, as well as abundance of good stories, m its

poges.

—

The Oxford Magazine.

Mr. Ball has put not only the pupils for whom he compiled these notes, but

the large world of Trinity men, under a great obligation by tliis compendious
but lucid and interesting history of the society to whose service lie is devoted.

The value of his contribution to our knowledge is increased by the extreme
simplicity with which he tells his story, and the very suggestive details which,

without much comment, he has selected, with admirable discernment, out of

the wealth of materials at his disposal. His hiitial account of the develop-

ment of the University is brief but extremely clear, presenting us with facts

rather than theories, but establishing, with much distinctness, the essential

difference between the hostels, out of which the more modern colleges grew,

and that monastic life which poorer students were often tempted to join.

—

The Guardian.

An interestuig and valuable book. ... It is described by its author as

"little more than an orderly transcript" of what, as a Fellow and Tutor of

the College, he has been accustomed to tell his pupils. But while it does not
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pretend either to the form or to the exhaustiveness of a set history, it i*-

scholarly enough to rnnk as an authority, and far more interesting and read-

able than most academic histories are. It gives an instructive sketch of the

development of the University and of the particular history of Trmity,

noting its rise and policy in the earlier centuiies of its existence, until, under
the misrule of Bentley, it came into a state of disorder which nearly resulted

in its dissolution. The subsequent rise of the College and its position iu what
Mr. Ball calls the Victorian renaissance, are drawn in lines no less suggestive

;

and the hook, as a whole, cannot fail to be welcome to every one who is

closely interested in the progress of the College.

—

T'he Scotsman.

Mr. Ball has succeeded very well in giAring in this little volume just what
an intelligent undergraduate ought and probably often does desu-e to know
about the buildings and the history of his College. . . . The debt of the

"royal and religious foundation" to Henry VIII. is explained with fulness,

and there is much interesting matter as to the manner of Ufe and the expenses

of students in the sixteenth century.

—

The Manchester Guardian.

TRINITY COLLEGE, CAMBRIDGE
By W. W. rouse BALL.

[Pp. xiv + 107. Price 2s. net.]

J. M. DENT AND CO., LONDON.

This booklet contains a somewhat more popular sketch of the

history, external and internal, of the College, with notes on some of

its famous past members. It is intended to supply such information

as all those in any way interested in the matter would desire to have.

It is illustrated by Mr. Edmund H. New.

Mr. Rouse Ball is a sound antiquary and an accomplished writer. He is also

in close touch with the actual life of the great home of learnmg through which

he guides us in his skilful pages. His topographical descriptions are clear

and concise, his historical sketches, both of the external and the internal life

of the College are interesting and Uvely, while the occasional light which he

throws upon the habits and ways of collegians, ancient as well as modern, is

extremely valuable.— T/fe Guardian.

The skill with which the . . . subjects have been treated will be recognised

and appreciated by all readers. Not less adequate are the author's description

of the College buildings, his account of Trinity life, customs and traditions,

and his references to the many eminent men who have added lustre to the

great College in successive generations.

—

The World.

A charming book . . . which tells just what every Trinity man should wish

to know about his College, its buildings and its famous sous.—The Oxford

Magazine.

In his account of the College, Mr. Eouse Ball is equally at home in dealing

with the history, the architecture, the collegiate life, and the personal associa-

tions which gather so closely around the College. His anecdotes and tales

are chosen with judgment, and told with a vivacity and humour which add

materially to the dehghtfulness of the book.—T^e Bookseller.

This book is pleasant, it is anecdntical, it is practical, fui-nishing just the

details that one wants, with the relief of the agreeable and entertammg.—

The Spectator,
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