## ECLIPSES in $1777^{\circ}$

This year there will be Five Eclipfes, Three of the Sun, and Two of the Monn, which will happen in the following Order: The Firft Eclipfe of the Sun will happen on the gth of Faneary, at Forty-Nine Minutes after Three in the Afternoon, only Part vifible.---The Second will be an Eclipfe of the Moon, beginning Fanuary 23d, at Forty-Seven Minutes after Two in the Afiernoon, Middle Eleven Minutes after Four, ends Thirty-Six Minutes after Five, Digits eclipfed $7{ }^{\circ}$. 6/. Moon rifes at Twenty-Five Minutes after Four, confequently only Part vifible..--The Third Eclipfe will be of the Sun, Fuly 4th, at Twenty-One Minutes paft Midnight, invifible.-.-The Fourth will be an Eclipre of the Moon, Fuly 20th, at Forty-Two Miuutes paft Noon.--The Fifth is an Eclipfe of the Sun, which happens on the 2gth of December, at Ten at Night, invifible.

| Common Notes, 1777. |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Golden | um |  | - | 10 | Dominical Letter | - | E |
| Cycle o | he |  | - | 22 | Roman Indiction | -. | 19 |
| Epact | - |  |  | 20 | Number of Direction |  | 9 |

## The Four Quarters of the Year.

The Spring Quarter begins this Year the 2oth of March, at 6 Hours 15 Minutes Morning, at which time the Sun enters Equinoctial Sine Aries, making equal Day and Night all the World over.

The Summer Quarter commences the 2ift Day of June, at 4 Hours 33 Minutes, Morning, the Sun then entering into the Sign Cancer, making the longeft Day to all the Northern, and the florteft to all the Southern Parts of the World.

The Autumnal Quarter begins the 22d Day of September, at 6 at Night, at which Time the Sun enters Libra, making again equal Day and Night to all Parts of the World.

The Winter Quarter begins the 2Ift of December, 10 Hours 20 Minutes, Morning, the Sun then entering into the tropical Sign Capricorn, making the fhorteft Day to the Northern, and longeft to the Southern Inhabitants of the World.

\section*{WEIGHT and VALUE of the Gold and Sllver Coins of England. <br> 

Curre $t$ Gold Coin muft weigh as follows :

| Guineas | 5 |
| :--- | :--- |
|  | 8 |
| Half Guineas | 2 |
|  | 6 |
| Quarter Guineas | 5 |



1777. March hath XXXI Days.
alt Quarter 2 day I h. $4^{2} \mathrm{~m}$. afte: noon. New Moon 9 day 3 h .20 m . atternoon. Firft Quarter 16 diay 6 h .11 m . morning. Full Moon $2+$ day $=\mathrm{h} .54 \mathrm{~m}$. morning.
S. enters Aries. 19d. 18h. 15 m . Apparent time.

| $205$ |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| E | E 3 | $y$ in | nt. Chad | d. $6 \quad 3=2$ | 5286 | 57 | I |  |  |
| M | M |  |  | 66 30 | 5306 | 34 | 2 |  |  |
| \% | lic. Jupite: | South 8 | 83 | 6285 | 532 | 11 | 3 |  |  |
| W | $\checkmark$ |  |  | 626,5 | 534 | $4^{8}$ | 4 |  |  |
|  | $\mathrm{T}_{\mathrm{H}}$ |  |  | $62+5$ | 3615 | $2+$ |  |  | 8 |
| F | F Pirectua |  |  | 6225 | 5.385 |  |  |  |  |
| 5 |  |  |  | ${ }_{6}^{6} 205$ | 540 | $3^{8}$ | 6 |  | 0 |
|  | E Mi | Sunday |  | ${ }_{6}^{6} 185$ | 542 | 14 |  |  | 1 |
| Io Mi |  |  |  | $6{ }_{6}^{6} 165$ | 54 | 51 |  | a 56 |  |
| 1 c |  |  |  | $6 \times 4$ | 546 | 27 | 8 |  |  |
| 12 W |  |  |  | I25 | 48 | 3 | 9 | 46 |  |
| ${ }_{5} \mathrm{~T}^{\text {Tin }}$ | Ti. Regulus | us South | 1020 | $6{ }_{6}^{6} 105$ | 5 50, 2 | 40 | 1 |  |  |
| F |  |  |  | $\begin{array}{lll}6 & 8 & 5 \\ 6\end{array}$ | $55^{2} 2$ | 16 |  | orn. | 6 |
|  |  |  |  | $\begin{array}{ll}6 & 6 \\ 6\end{array}$ | 5541 | 52 | - |  |  |
| 16 | E 5 Sun | day in |  | 45 | $55^{1}$ | 29 |  | 38 |  |
| 17 M | M St. Pa | rick |  | 25 | $55_{1} 1$ |  | 2 | 40 |  |
| rs/Tu | Lu Edrua | K. IW. S |  | 6 | 6 0,0 | 4 I | 3 | 32 | 10 |
| 19 W | W Mars ri | ifes 77 |  | $5{ }^{\text {d }}$ |  | 18 | 4 |  | 11 |
| 20 TH | Thequal I | Day and | Night | 5 56, 6 | $64^{\circ}$ | 5 N | N 4 | 48 | 12 |
| $21 . \mathrm{F}$ | $F$ Benedic | ct. Camb | b. T. end | ds $5 \quad 546$ | 66 | 29 | 5 | 19 | 3 |
| 225 | 5 Oxford | Term | ends | 55216 | 8 ${ }^{\circ}$ | 53 |  |  | 14 |
| 23 E | E 6 Sun, | in |  | 5506 | 6 IO | 16 |  |  |  |
| $2+\mathrm{M}$ |  |  |  | 5486 | 6 I 21 | 40 |  |  | 16 |
| 25 Tv | iv Lady |  |  | 466 | $\mathrm{I}_{14}{ }^{2}$ |  |  | 1 |  |
| $26, \mathrm{~W}$ |  |  |  | 6 |  | $27$ | 8 |  | 8 |
|  | Tii Miund. | Tiur ${ }^{\text {d }}$ a |  | 5436 | 617 | 50 |  | 52 | 19 |
| 28 | F Good F | Friday |  | 16 | 1913 | 5 |  |  |  |
| 29 |  |  |  | 396 | 6213 | 37 |  |  | 21 |
| 30 E | $E$ Eafter | Sunday |  | 5376 | 6234 | $\bigcirc$ | $\bigcirc$ |  | 2 |
| $3{ }^{1} \mathrm{M}$ | M Eafter | Monday |  | 153516 | - 254 | 23 | 1 | 7 | 23 |
| Days | $\begin{array}{\|c\|c\|} \hline \text { Leng. of } \\ \text { Days } \end{array}$ | $\begin{aligned} & \text { Days in- } \\ & \text { creafe } \end{aligned}$ | $\begin{gathered} \text { D.y } \\ \text { hreaks. } \end{gathered}$ | $\mid \text { Sun Ear } \mid$ | $\begin{array}{\|l\|l\|l\|l\|} \text { Wingh } \\ \text { ends. } \end{array}$ |  |  |  |  |
|  | 10 53 | 39 | $44^{1}$ | 37 | 719 |  |  |  |  |
| 6 | [153 | 329 | 431 | 543 | 729 |  |  | 4 |  |
| 11 | 11 33 | 349 | 420 | 550 | 740 |  | 9 | 4 |  |
| 16 | II 53 | $4 \quad 9$ | 49 | 56 | $75^{1}$ |  | 43 |  | 47 |
| 21 | 1213 | $4 \quad 29$ | 358 | 6 1 | 8 | 7 | 12 | 3 |  |
| 26 | 12.33 | 440 | 346 | 67 | 914 | 5 | 20 | 3 | 1 I |


1777.

New Moon 7 day 8 h .8 m . morning.
Firt Quarter $1+$ day 7 h .46 m . morning. Sun enters Gemini. Full Moon 22 day it h. 24 m . morning. 20d. 7 h .47 m . Laft Quarter $3^{\circ}$ day I h. 18 m . morning. Apparent time.

|  | St. Phil. and Ja. |  |  |  | $17{ }^{2} 4$ | 5N |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Inv. of the Crofs <br> Rogation Sunday <br> From Eaft. in 5 weeks <br> fubn à $P$. Lat. |  |  | + 34 | 47261 | 1533 |  |  |
|  |  |  |  | + 33 | 37271 | 1551 |  |  |
| 4 E |  |  |  | $\left\lvert\, \begin{array}{ll} 4 & 31 \end{array}\right.$ | 17291 | 16 |  |  |
|  |  |  |  | ( 4.430 | 173015 | 1625 |  | 9 |
|  |  |  |  | Ret. $4+28$ | 87321 | 1642 |  |  |
|  |  |  |  | 4 | 67341 | 1658 | 7 a 4 |  |
|  | Afcenf. day. Holy Thur On mor. of Afcenf. 5 Re |  |  |  | 7351 | 1715. |  |  |
|  |  |  |  |  | , |  |  |  |
| , |  |  |  |  | , | 1746 |  |  |
| 11 E | S. after Afcenfion day |  |  |  | 4018 | 18 | Mor |  |
| 12 M | Term ends. Old May-do |  |  |  |  | 18 |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  | Oxford Termends |  |  |  | 4619 | 19 |  |  |
|  | Arcturus South 1025 |  |  |  | 74819 | 1914 |  |  |
|  |  |  |  |  | 7491 | 1927 |  |  |
|  | Arcturus South 1025 Whit-Sunday |  |  | 4 10 | 75019 | 1941 |  | 3 |
|  | Q. Cha. b. 1744. Dunf |  |  | nf. 48 | $7^{7} 5^{2} 19$ |  |  | 1 |
| $20 . \mathrm{Tv}$ | Whit-Tuefday |  |  |  | 675420 | 20 |  |  |
| W | Ember Week |  |  |  | 5520 | 2018 |  |  |
|  | Prs. Eliz. born |  |  |  | 5720 | 2030 | Drifes |  |
|  |  |  |  |  | 58 | 20429 |  |  |
|  |  |  |  |  | 59 | 2053 |  |  |
|  | No N. but tivil. till fuly 21 |  |  |  | 8021 | 213 |  |  |
|  | Augufin. Mor. |  |  | Tr | 8121 | 214 | 4 |  |
|  | Ven. Bede |  |  | , | 21 | 24 |  |  |
|  | Oxford Term begins |  |  | 357 | 321 | 134 | 24 |  |
|  | K. Ch. II. Reft. C. Chrif |  |  | ifit 3 |  | I 43 |  | 4 |
|  | Trinity Term begins |  |  |  |  |  |  |  |
|  |  |  |  |  |  | , |  |  |
|  |  | $\begin{aligned} & \text { Days in } \\ & \text { creafe. } \end{aligned}$ | breaks. |  |  | ht Clock af |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  | 343 |  |  |
| 115 | I5 | $7 \quad 37$ |  |  | 36 | 358 |  |  |
| 16 | 5 |  |  |  | 1 |  |  |  |
|  | 15 |  |  |  | II 42 | 348 | II M |  |
|  |  |  | NoN | 712 | No Nigh |  |  |  |


1777. July hath XXXI Days.

New Moon 4 day 0 h .21 m . midnignt.
Firtt Quarter 12 day 3 h .34 m . afternoon. Sun enters Leo. Full-Mnon 20 day oh. 52 m . afternoon. 22d. 3 h. 23 m .
Laft Quarter 27 day 10 h .55 m . morning. Apparent time.




 Full Moon 15 day 3 h .3 m . morning|S.ent.Sagittarius Laft Quarter 21 day 11 h .32 m . night 2 id .9 h .59 m . New Moon 30 day 3 h .24 m . morning/Apparent time.



# Anfwers to Queries, Rebuffes, \&c. 15 

## Answers to the Queries, Rebusses, éc. in Laft Year's Diary

## शuery I. Anfrwered by Caput Mortuum.

THIS difference is one of thofe operations of Nature which, doubtlefs, will never be accounted for; though it is probably effected by attraction and repulfion; but in what manner ?--- We obferve that the Sun-Floweer generally keeps turning its blofiom towards the fun; we behold with admiration, the phenomena of the fenfitive plant, and $V$ enus fy-trap, but when we would enquire the caufe our reafon is at a ftand, and we are left to lament the circumfcribed fate of human knowledge.

## Query III. Anfruered by Mr. I. Dalby.

Thefe feem to be the fpecies of worms called by Linneus, Gordius aquaticus pallidus, with black extremities; though I have feen fome thoufands of them entirely black; but as he fays they are bred in clay, it is probable that they change to a pale colour foon after cominig into the water. Merrett, in his Pinax Britannicarum, calls them feta aquaticus, and mentions the fame thing of their being vulgarly taken for animated horfe-hairs : his words are, "Vulgo creditur oriri, ex feta caudæ equinæ aquis immerfâ." He has not taken notice of their colour.

> Query IV. Anfwered by Mr. French Johnfon.

Sound the sin unloofe foftly (as in loofe morals) and the muffery will vanifh ; fo then unloofe morals will be good morals, and unloofe will fignify to be tyed.

## Queries II. and V .

Are obliged to be deferred till next year, as no fatisfactory anfwers have been received.
Anfwer to Mr. Dalby's Paralox, zwith a nezv one propofed, by Mr. J Wales.
The fcheme in the margin the muckle mon fhows,
To plant three and thirty in twentyfour rows ;
Now four in each row, and in rows that are even,
The number of plants, I would plant twenty-feven.


Anfwers to the three Rebufles, by Mr. John Clarke, of Lincoln. I called laft night on Dalby---he was gone With Rachel Rogers up to IJlington; What could the errand be they wene upon?
Anfwers to the Enigmas in laff Year's Diary.

| I. A Candle | V. A piece of Mufie |
| :--- | :--- |
| II. A Woman | VI. Coffee |
| III. A Bed | VII. A Picture |
| IV. A Loufe |  |

## 16 The Ladics and Gentlemens Diary.

An anfiver to all tbe Erigmas, by Mr. William Francis, of Reading.
Man! what is he ? a reptile on the earth
A fene of mifery from his very birth;
His prime once paft, how fubject to decay!
Prone to the grave, and downward lies his way:
What various ills his every ftate attend,
Each coming day but haftens on his end ;
To bed by ficknefs, pain, and grief, confin'd, All out of tune in body and in mind;
$V$ ermin fometimes, concomitants of age,
III. V.

Sadden the picture, and his death prefage; IV.

Teas, foups, and cordials, can't prolong his ftay,
But like a candle fnufi he dies away.
Anfwer to the Prize, by Philomathes.
Your portraiture, ingenious Clarke,
Docs elegant appear ;
Pray write fome more, but not too dark, Againt another year.
Ingenious Anfwers were alfogiven by Meff. Rogers, Clarke, Daihy, G. Little, Johnfon, Moody, Wales, and feveral others; but the prize of ten Diaries fell to the lot of Mr. John Clarke.
New Queries, Rebusses, ofc. to be anfwered next Year:

1. Query, by Mr. Robert Moody.

What is the reafon that dead bodies fooner rot in a dry than a moift church yard?

> II. Query, by Mifs Polly Tayrt.

Are not children naturally ambidextrous?
III. Query, by Mr. Iface Dalby.

Why does an object, when viewed with a magnifying lens, feem farther off than when viewed with the naked eye?

## JV. Query, by Mr. John Burrow.

What is the reafon that a body moving forward upon rollers, moves twice as faft as the rollers themfelves?
I. Rebus, by Regulus.

If the faireft fair you'd know,
Take the initials here below :
The higheft fation and command,
In this great, free, and happy land;
The greateft beauty or difgrace
Upon a pretty female's face ;
The point within the azure fkies, From whence the fun is feen to rife; The city which ten years employ'd The braveft Greeks, before deftroy'd̀.
II. Rebus, by Mr. Ifaac Dalby. One third of the pleafure of each toping blade, When joined to a beaft which the Lord never made,

Will tell you what brought an unfortunate bard, To ample repentance in Lazarus' ward.

## III. Rebus, by Mr. Ifacac Dalby.

A large purfe, and four fevenths of a mifer;
With juft the two-thirds of a fheep;
Twice a letter of capital fize, Sir,
Join'd to the beginning of fleep;
There name you a Sunday retreat,
Near London for cit and for ftranger,
Where Venus and Mercury meet,
And your carcafe and purfe are in danger.

## New Emigmas to be anfwered in the next Year's Diary:

I. Enigma, by Mr. William Francis, of Reading.

IWas born in a fcuffle 'twixt father and mother, And quickly convey'd to be nurs'd by another; Tho' a black nafty jade, yet to tell you the truth,
She her duty perform'd, and befriended my youth : A fly beggar's brat thence fole me away,
And fo altered my drefs that I fhine bright and gay $\mathbf{j}$
I'm lively and brifk when I've food at command;
And chiefly fubfift on the fat of the land;
On animal food tho' I moifly do thrive,
I frequently feaft on the (poils of the hive;
I'in always afpiring, which haftens my fate,
And my ruin compleats--- a tale for the great:
Ye Enigmatifts, who in dark myfteries delight,
In next Ladies Diary bring me to light.
II. EniGMA, by $M r$. T. Fifhbourne.

Ye peaceful bards a-while attend,
And hearken to a faithful friend ;
A friend you'll fay, I make no doubt,
When once my name you have found out.
My downy wings around me fpread,
My healing balm propitious fhed,
Exert my kind relieving art,
Ahd heal the forrow wounded heart ;
I âm a kind confoling gueft,
And calm the tumults of your breat ;
I gently footh your foul to peace,
And make each jarring paffion ceafe ;
From me your chiefent bleflings flow,
A cordial I'm for every woe ;
1 chear your gloom, to joys invite.
And make your cares and burdens light;
From envy, pride, and difcord free, Are every one poffefied of me,

## 18 The Ladies and Gentlemens Diary.

All feek me in a different way, Then what's my name, ye witty fay.

III. Entgma.

Who's he that's no bodys friend,
Whore levees yet great men attend;
Who in retirement loves to fneak,
Yet for domefticks, oft does feek ?
Folly and innocence him dread, He's hated, yet he's follow'd, And is interr'd before he's dead.
His retinue's kept at others coft,
And when he's curft he profpers mof.

## IV. Enigma.

I ftand but on one leg, yet do fuftain Much weight, befide a noted rogue in grain, And 'tweré an ill wind which blew him no gain'.
He gives me clothes when faft he'd have me run,
But frips me naked when his work I've done;
Then I, with arms acrofs, expos'd do ftand,
Forc'd to fubmit to every turn of hand,
And to inconftant unfeen powers command.


I nice encounter'd was by hardy fool,
Who'ad got my namefake lodg'd within his fcull ;
He me attack'd in wild and frantic mood,
And I my ground, tho' in fwift motion, food;
He from my arms receiv'd a funning blow,
Yet what I was the coxcomb did not know;
And you're more wife, If you guefs what I'm now. $J$

## V. Enigma.

Clofe to my owner I adher'd,
${ }^{3}$ Till bloody hands me from him tear'd;
In warmth and quietnefs we liv'd,
And, while together, well we thriv'd;
But naked now men me expore,
And I excite them too to blows.
Dumb was I born, ftill have no voice,
Yet courts and camps I fill with noife.
I liv'd in peace, now ferve in wars 2
Was innocent, but now at bars
Am try'd, where I move endleis jars.
Great rogues trade in me by whole-fale,
In parcels too they me retail;
Bet when their greater ufe I fail,
Small loufy thieves do in me deal,
And ferve their ends of me piece-meal.

## Prize Enigma (of ro Diaries) by Mr. Ifaac Dalbyi

Ye meddlers, who are always rude,
And unpolitely will intrude

## New Enigmas.

Like Marplot, and cannot forbear To thruft your nofes every where, Be circumfpect---I'm one in keeping, That pays impertinence for peeping-..Not care I, tho' perhaps in huff, You take at once difguft and fnuff.
There's ne'er a Slakenbergius-fnout,
Nor Proclus' like, fo large about,
That poets fing, he could not wipe it,
His hand bing niuch too fmall to gripe it;
Nor pimpl'd knob, nor that with fcars,
Curtail'd of half in Venus' wars,
That I refpect,----for great and fmall,
I play St. Dunfan with 'em all.---
And this is done, Sirs, in a trice,
Tho' I'm not flap'd like tongs or vice ;
But rather feem, (except in colour)
Like Mynheer Van Dunk's Kevenhuller:
With mouth extenfive, deep and round,
Defcending to a depth profound ---
Yet like a hag, long paft her prime,
Whofe teeth are drawn by quacks and time,
I am, tho' odd is the relation,
Incapable of maftication;
But each fair belle by kindnefs led,
Prepares my food before I'm fed,
Then after, which you'll think is aukward,
They take great pains to feed me backward---
Laborious tafk! which brings to view
Things feldom feen, or feen by few;
But this alas! difturbs my reft,
And ftorms invade my peaceful breaft---
Loud thunders roll, and winds long pent,
In caverns deep now find a vent;
Rocks burf, and with impetuous fweep,
Are hurl'd into the briny deep.
From yon black cloud which feems to rend
In twain, the rattling ftreams defcend,
Waves upon waves now feem to ride
And inands float along the tide;
While dreadful as a cataract roars,
The furges 'gainft the neighb'ring fhores--
But fraight there rufhes from behind,
Some poet damn'd, to me confign'd,
Who gently on the furface glides,
And then the raging form fubfides.
Now ladies, after this difgrace,
Dare you to look me in the face? .-.
No :---and tho' daily I befriend ye,
${ }^{2} T$ is ten to one but I offend ye.
Not fam'd at all for much difcerning,
I cannot boakt of tafte or learning;

20 The Ladies and Gentlemens Diary,
Yet of what's form'd by nature's hand, The fundamentals underftand; My aid fubfervient to her laws,
Is fought when fhe'd her paths difclofe;
Behold an Effculapian big,
With cane and large important wig,
And pair of fupplemental eyes, (The certain marks of being wife)
Explore my bowels for the ftate,
Of health and fearch for hidden fate--d
In vain,-- no fecrets with me reft,
Tho' daily lodg'd within my breaf. Know I'm compared to a punk, But never was detected drunk;
Yet in North Britain, as 'tis faid, I puke upon each Atranger's head, A moft uncivil falutation, Tho' not peculiar to that nation, For the Athenian Sage of old, The fame experienc'd from a fcold: Now fhould you ever me affail, I'll make your worfhip turn your tail, And tho' you'd itop me you will find, That fearlefs I am clofe behind.

## Anfwers to the Mathematical Queftions proposed in laft Tear's Diary.

## 1. Question, anfwered by Mr. Robert Moody.

$\mathrm{I}^{\mathrm{T}}$ is evident that if B advances his goods $13 \frac{\mathrm{~T}}{2}$ per cent. and allows $7 \frac{I}{2}$ per cent. advance on A's fugar for paying $\frac{I}{4}$ of the amount in ready money, that the whole of A's advance muft be 21 per cent. then $121 \times 6,25 \div 100=$ the price of 1 lb . and 24480 pence, the price of $3^{6}$ pieces of $\mathrm{B}^{\prime}$ s goods, divided by the price of 1 lb . is $3^{23} 37 \mathrm{~T}^{\frac{3}{2}}$ the number of pounds of fugar ; and 2 2l. $16 s .8 \mathrm{~d} . \times 12=34 \mathrm{l}$. thes ready caih which A gives B for his fugar.

## II. Question anfwered by Lieutenant Wheldale.

Analyfis. Let $\Lambda B$ the bare, $A C B$ a fegment of a circle containing the given vertical angle, and ACB the required triangle, draw $F Z+$ to $F K$ and the perpendicular $C Z$ upon it, then by a known property $\mathrm{AK}+\mathrm{K} \mathrm{B}: \mathrm{AC}+\mathrm{CB}:: \sqrt{\mathrm{KF}}: \sqrt{\mathrm{CZ}}$, therefore $A C+C B=2 A K \sqrt{C Z} \div \sqrt{K F}$, wherefore $S$ or $A C+$ $C B+C D=2 A K \sqrt{C Z} \div \sqrt{K F}+C D=S$, let $4 A^{2} \div$ $K F=R$; then $S-C D=\sqrt{R \times C Z}=\sqrt{R \times C D+R \times D} \dot{\bar{Z}}$, confequently $\mathrm{S}^{2}-\mathrm{R} \times \mathrm{FE}=\overline{\mathrm{R}+2 \mathrm{~S}} \times \mathrm{DC}-\mathrm{DC}^{2}$, whence this confruction. Take $\mathrm{E} Q=\mathrm{R}+2 \mathrm{~S}$ and cut it in $n$ fo that $\mathrm{Q} n \times n \mathrm{E}$
$=S^{2}$

## Anfwers to Mathematical Queftions.

$=\mathrm{S}^{2}-\mathrm{R} \times \mathrm{FE}$ and draw $n \mathrm{C} \|$ to AB , cutting the circle in C , the vertex of the required triangle.

Note. This is prob. 5 of Newton's Univerfal Arithmetick.

## Tbe fame anfzecred by Inr. Jeremiah Ainfworth. Construction.

Having drawn the circle, \&c. as before, take $\mathrm{E} Q=$ the fum of the fides and perpendicular, draw alfo AK and to twice AK let a line be added fo that the reciangle of the part added, and the whole be $=\mathrm{FQ} \times \mathrm{FK}$, then apply the chord F C equal to the additional part, and join $A, C$, and $B$, which will be the triangle required.

For from $F$ with the difance $F A$ or FB defcribe a circle, let fall the perpondiculars CD and FH, and join the dines as in the figure, then CF $\times$ $\mathrm{FL}=\mathrm{FE} \times \mathrm{FK}$ and CD $\times \mathrm{KF}=$ C $L \times C F$ by the known properties of the circle, but CL $\times \mathrm{CF}=\mathrm{CF}^{2}$
 $-\mathrm{CFL}=\mathrm{CF}^{2}-\mathrm{KFE}$, alfo from the fimilar triangles CFH and $\mathrm{K} F A, C H \times K F=C F \times K A$, whence it foll ws that $2 \mathrm{CH} \times \mathrm{KF}+\mathrm{CD} \times \mathrm{KF}$, or $2 \mathrm{CFi}+\mathrm{CD}$ $\times \mathrm{KF}=2 \mathrm{KA}$ 久 C F $+\mathrm{CF} \mathrm{F}^{2}-\mathrm{KFE}$; and confeguently $2 \mathrm{CH}+\mathrm{CD}+\mathrm{FE} \times \mathrm{KF}=2 \mathrm{KA}+\mathrm{CF} \times \mathrm{CF}$, which is, by conftruction, equal to $\mathrm{F} \mathrm{Q} \times \mathrm{FK}$, wherefore $2 \mathrm{CH}+\mathrm{CD}+\mathrm{F}$ $\mathrm{E}=\mathrm{FQ}$ and $2 \mathrm{CH}+\mathrm{CD}=\mathrm{E} \mathrm{Q}$; but $2 \mathrm{CH}=\mathrm{CB}+\mathrm{CA}$ by prop. 9. article XII. wherefore $2 \mathrm{CH}+\mathrm{CD}=\mathrm{E} \mathrm{Q}=\mathrm{CB}+\mathrm{CA}$ HCD..- Q.E.D.

Linitation. E $Q$ muft not be greater than $2 A K+K E$.

## III. Question.

A fmall omiffion was made in copying this queftion for the prefs; however, as that which the propofer intended, may be eafily refolved by Prob. III. Art. 9, in laft year's Diary, as well as moft other problems of the fame kind, wherein the limits of the fum or difference of the fides are concerned, thofe queftions feem to require no other notice than 2. reference to the aforefaid article.

## IV. Question, anfwered by $M r$. J. Ainfworth.

By prop. 22, Simpfon's Trig. as cot. of half the obliquity of the ecliptic is to its tangent, fo is the fine of the fum of the fun's longitude and right afcenfion, to the fine of their difference; hence when the difference is a maximum the fine of the fum will be fo too, and confequently equal to radius, and the fum itfelf $=90$ degrees, whence the difference will be $2^{\circ} \cdot 28 \%$ and the longitude $=46^{\circ} \cdot 14^{\prime}$. which anfwers to May 7 th ; and it is evident that the common increafe of longitude and right afcenfion during the interval, muf be 180 degrees, whence the time will appear to be November 8 , and the interval i85

## 22 The Ladies and Gentlemens Diary.

Gays, confequently the principal will be 118l. 7 s. $6 d \frac{3}{4}$. Solutton rvere aljo given by Mef. Afpland, Barker, Boucber, Fininley, Hardy, Zynn, and Moody.
V. Qufstion, anfwered by Mr. Ifaac Dalby, the propofer.

Let P be the given point, and CB the great circle. Through P draw a great circle PD at right angles to $Q B$, then about the points $P, D$, as poles, defcribe two leffer circles, fo that their difances are each equal to the given leg, through P, D draw great circles P G, D E, to touch the leffer circles refpeclively, then having drawn the great circles PE, D G, the triangles DEP, $P G D$, will anfwer the conditions of the problem;
 that is, the fide D E is a min. and its complement to a femicirc. a maxz when the given fide PE is drawn from the given point $P$; but if the given fide DG (PE) falls into the given great circle $\mathrm{Q} B$, then PG is a min. and its complement to a femicirc. a max.---For PD being the fhortef portion of a great circle that can be drawn from $P$ to meet $Q B$, and the hypothenufe common toboth the triangles DEP, PGD, therefore D E, P G are each a min. and their complements to femicircles, forming two other right-angled trizngles, muft be each a max.'
VI. Question, anfwered by Mr. Vidgen, of the Tower, London.

Let $\mathrm{A} \mathrm{B}=b$, length of the ftring $\mathrm{B} \mathrm{A} D=m, \mathrm{~A} \mathrm{D}=n, \mathrm{AC}=x$, then $\mathrm{D} \mathrm{C}=n$ on $x$ and let $\mathrm{C} \mathrm{N}=y, \mathrm{BN} \mathrm{N}^{2}$ $=A B^{2}+A C^{2}+C N^{2}=A B^{2}+A C^{2}+$ $\mathrm{N} \mathrm{D}^{2}-\mathrm{DC}^{2}=m-\left.\mathrm{ND}\right|^{2}=m^{2}-2 m \times$ $\mathrm{ND}+\mathrm{ND}^{2}$, whence $m^{2}-2 m \times \mathrm{ND}=$ $A B^{2}+\mathrm{AC}^{2}-\mathrm{CD} \mathrm{D}^{2}$, that is, $m^{2}-2 m$ $\sqrt{n^{2}-2 n x+x^{2}+y^{2}}=b^{2}-n^{2}+2 n x$. But from this equation to determine the nature of the curve, let $z n=m$ then will $\mathbf{E}$ $b+n=z n$ and $b=\overline{z-1} \times n$, and we
 fhall have $z^{2} n^{2}-\overline{z^{2}+2 z-1} \times n^{2}+n^{2}-2 n x=2 z n X$ $\sqrt{n^{2}-2 n x+x^{2}+y^{2}}, \overline{z n-x^{2}}=z^{2} \overline{x n^{2}-2 n x+x^{2}+y^{2},}$ $\frac{x^{2}}{z^{2}}-\frac{2 n x}{z}=x^{2}-2 n x+y^{2}$ and $\frac{z^{2}-1}{z^{2}} \times x^{2}-\frac{2 z-2}{z} \times n x+$ $y^{2}=0$. Let the tranfverfe diameter. $\mathrm{E} \mathrm{A}=a$ then $\mathrm{B} \mathrm{E}=$ $\sqrt{a^{2}+\sqrt{z-n}^{2}}$, and $\mathrm{BE}+\mathrm{ED}=\sqrt{\left.a^{2}+n z-n\right)^{2}}+a-n=z n$, whence by reduction $n=\frac{\overline{z+1} \times a}{2 z}$, which being fubftituted we have $y^{2}=\frac{z^{2}-1}{z^{2}} \times \overline{a x-x^{2}}$ the equation for an ellipfis.

A very acat and general folution was alfo givan by Mr. Brown, the trotayo.

## Anfwers to Mathematical Oueftions. ${ }^{23}$

The fame anfrvered by Mr. Jeremiah Ainfworth of Manchefter.
It is evident that if a plane be fuppored to pafs through the given points B and D, a conic fection will be defcribed thereon by a point keeping the cord tight, whether the fum of the parts of the cord be given (as in the queftion) or their difference, and it will be an ellipfe in the firft cafe, an hyperbola in the fecond, and a parabola when one of the points is fuppofed to be removed to an infinite diftance; now if this plane, with the figure thereon, be revolved about the line $B \mathrm{D}$, a folid will be generated by the curve, the interfeetion of which by any plane whatever, it is known will be a conic fection; and, therefore, whatever angle the planes in the queftion are fuppofed to make, the curve will be an ellipfe, except when one of them is perpendicular to the line B D, in which cafe it will be a circle. In a manner very littla different the folution was given by Mr. IJaac Dalby and Mr. Yobn Bwrrow.
VII. Question, anfzered by Mr. Ifaac Dalby.

Conftruction. From any point in AH as $b$, draw a line $b i \| b a$ (the line given in pofition) with which as radius defcribe an arc, i $n$, from A draw a tang. thereto, and make the $<$ R AB $=$ 5. B A $n$, from P draw $\mathrm{PH} \perp \mathrm{A}$ R , and $\mathrm{H} I \| b a$, and the thing is done. For drawing $\mathrm{H} n, b_{n}$ $\perp$ A $n$, we have by fim. $\Delta, s, \mathrm{H} n$ $=\mathrm{HR}=\mathrm{HI}$, therefore PH
 $-\mathrm{HI}=\mathrm{PR}$, which is a minimum, becaufe if any other line be drawn from $P$, as $P b$, and the $b r$ let fall upon AR, then the lines HI, $b i$, being always $=$ the perp. HR, $b r$; therefore $\mathrm{P} b-b i=\mathrm{P} b-b r$, which is $\Gamma \mathrm{PR}$ by what the two hypothenufes $b o, \mathrm{P}_{0}$ exceed the two legs $b r, \mathrm{P} R$. Here it is neceffary that the $<A b a\left[<B A 1\right.$, and that the $<P^{-}$ A R, B A I be lefs than right ones.

If inftead of a min. the diff. was required to be a given quantity, produce B A till $b i: b \mathrm{~A}:$ : the given diff.: $\mathrm{A} m$, join $\mathrm{P} m$, and draw AR parallel theret, then from $P$ having taken $P R=$ the given diff. and produced it to meet A B, it gives the point required.

A folution equally elegant was given by NIr. Ainfworth, and very littlo different from the following one.
Tbo jame problem rendered more general, and anfroered, by Mr. Joha Burrow, of Rounday, near Leeds, Vork hire.
Let DR, D S be two lines given in pofition, $\mathcal{P}$ a given point, RQ a line siven in pofition ; it is required to draw $P$ A to cut $D R$ in $A$, fo that drawing A B parallel to $\mathrm{K} Q$ cutting D S in O, the fum or difference of PA and AB may be the leaft poffible.

Or any line DR defcribe a femicircle, in which let RF be infcribed equal to $R Q_{j}$ join $D F$, and draw $P C+$ to $D F$

cutting

## 24 The Ladies and Gentlemen Diary.

cutting DR in $A$, then if AB be drawn parallel to $R Q, P A$ and $A B$ arc the lines required. For draw any other line $\mathrm{P}^{\prime} a$ and $a^{\prime} b \|$ to A $B$, also draw a $c \|$ t) A C; then because
$\left\{\begin{array}{c}\mathrm{P} a+a c \\ \mathrm{P} a-a c\end{array}\right\}$. is $\left\{\begin{array}{c}{[ } \\ \beth\end{array}\right\}$
than $\left\{\begin{array}{l}P A \pm A C \\ P A-A C\end{array}\right\}$ and

$\mathrm{P} a \pm a c=\mathrm{P} a \pm a b$, therefore $\mathrm{P} a \pm a b$ is $\left\{\begin{array}{l}\Gamma \\ J\end{array}\right\}$ than $\mathrm{PA}+$ $A B$, or $P A+A C$; for $A C=A B$ because $R Q=R F$, confer quently $P A+A B$ is the greater or leaf poffible. Q.E.D.

The fame anfzered in Nit $^{\text {. Thomas Mors, the proposer. }}$
Let $P E$ be the line given in position, irs which conceive PD to be a given difference instead of a minimum, and draw DF $\|$ tn $\mathrm{A} P$ meeting $\mathrm{B} A$ in F and daw $F P$, then from $A$ with the diffance PD defcribe a circle cutting FP in the point (or points) $b$, draw A $b$ ant $\mathrm{PH} \|$ thereto meeting AB in H , then H M drawn \| to E $\mathbf{P}$ is the line required.

For produce $P A$ to meet $\mathbb{H}$ HM in I , and draw $\mathrm{A} n \|$ to
 to PE , then $\mathrm{AF}: \mathrm{FH}:$ : A $n: \mathrm{HM}:: \mathrm{A} b: \mathrm{HP}$ an i because $\mathrm{A} n=\mathrm{A} b, \mathrm{HM}=\mathrm{HP}$ and $\because$ If $\mathrm{P}-\mathrm{HI}=\mathrm{I} \mathrm{M}=\mathrm{P} D$.

Scholium. Hence it appears that the problem is impofible when the difference of the fides is fuch that a circle defcribed therewith from the center A will neither cut nor touch PF, and that when it touches PF the difference will be the leaf, for it may be eafily proved that $D$ FM will be the nearest line that can be drawn $\|$ to AP meeting A E; when a circle defcribed from A (as above) does not cut but touch the kine drawn from $P$ to the intersection in AE.

The problem then becomes this---From P to draw a line $\mathrm{P}_{e}$ meeting AE in $c$, fo that $e \mathrm{c}$ being drawn $\|$ to EP and $\mathrm{A} m$ perpend. to $\mathrm{P}_{e}, \mathrm{~A} m$ may be $=e c$, and the construction is as follows:

Upon $A E$ defcribe a circle, in which apply $A G=E P$; draw $E G$, and $\|$ thereto draw $\mathrm{P}_{e}$, and the thing is done.

Demonftration. Because the triangles Ace, APE, A $m e$ and A GE are fimilar, therefore Ac:AE::cc:EP::Am:AG, but EP $\mathrm{P}=\mathrm{A} \mathrm{G}$, consequently $e c=\mathrm{A}$. .
VIII. Question

## Anfwers to Mathematical Quettions. 25 *

Vilt. Question, anfwered by the Rev. Mr. Lawfon, the propofer.
We muft firf take notice that the firft member of this queftion t was wrong printed. Inftead of the ratio of the angle AOL to A K L, it fhould have been the ratio of the arc F C to EC.

1. Now the ratio of the $\operatorname{arc} \mathrm{FC}$ to EC is thus fhewn to be greater than the ratio of the angle F L C to ELC. From the center A draw AF, AE. draw
 the chord F E, which produced may meet the diameter in B. and will $L$ center and radius L E defcribe the arc HG. Sector AFE: $\triangle A E$ EB is greater than $\triangle A F E: \triangle A E B$. But Sect. AFE: ScctorA E C is greater fill $\because$ Sect. A F E:A E D, i. e. arc F E: E C is greater than $\triangle \mathrm{AFE}: \triangle \mathrm{AEB}, \mathrm{i} . \mathrm{e}$. than line FE:EB . and by inverfion $\operatorname{arc} E C: \operatorname{arc} F E$ is lefs than line EB: line FE. Juft in the fame manner we may fhew that Sect. HL E : Sect. EL G, i. e. arc $H E: \operatorname{arc} E G$ is greater than $\triangle B L E: \triangle E L F, i$ e, than line $B E$ : tine EF. $\because$ BE:EF is lefs than arc HE: arc E G. Since then $\operatorname{arc} E C: \operatorname{arc}$ FE is lefs than line EB: line FE, and line E B: line $\dot{F}_{5} E$ is lefs than $\operatorname{arc} H E: \operatorname{arc} E G, \because \operatorname{arc} E C: \operatorname{arc} F F$ is lefs than arc HE: arc E G, i. e. than angle ALE: angle ELF. ${ }^{\circ} \cdot$ by perm. and comp, arc FC: to arc EC is greater than angle FLC: angle ELC. Q.E.D.
2. Let $A O, A K$ be joined. Then by the ift part and permutation, angle FAL: ang. FLA is greater than ang. EAL: ang. E Li A, and by comp. FAL+FLA or AFO or AOF:FLA is gfeater than EAL + EL'A or AEK or AKE:ELA, that is, AOL: OLA is greater than AKL:KLA, or by perm. AOL: AKL is greater than OLA:KLA. Q.E.D.
3. Since by part2d and permutation AOL:OLA is greater than AKL:KL.A, by comp. A OL + OLA or DAO:OLA is greater than $A K L+K L A$ or D AK: KLA, and by perm. D A $\mathrm{O}: \mathrm{DAK}:: \operatorname{arc} \mathrm{OD}: \mathrm{K}$ D is greater than ang. OLA: ang. KLA.

This queftion was aljo anfwered by Mr. Ifaac Dalby and Mr. Fobn Burrorb. N. B. The method of refolving the gth queftion is felf-evident from the 7 th prop. of art. ix. in laft year's Diary.
X. Question, anfzered by $M r$. Todd, the propofer.

If $a=400, n=\mathrm{P} M, \mathrm{P} \mathrm{D}=\dot{x}$, and $\mathrm{DE}=y$, then $\dot{y}: \dot{x}:: y: \frac{y \dot{x}}{\dot{y}}=\mathrm{D} \mathrm{B}$; alfo the tangent $\mathrm{B} \mathrm{E}=\frac{y}{\dot{y}} \sqrt{\dot{x}^{2}+\dot{j}^{2}}$ and $y+$ $\frac{y}{\dot{y}} \sqrt{\dot{x}^{2}+\dot{y}^{2}}=a$ by the queftion, whence $\dot{z}=\frac{\dot{y} \sqrt{a^{2}-2 a y}}{y}$, and thence the equa-

## 26 The Ladies and Gentlemens Diary.

tion of the fluents is $x=2 \sqrt{a^{2}-2 a y}-a \left\lvert\, \frac{a+\sqrt{a^{2}-2 a y}}{a-\sqrt{a^{2}-2 a y}}\right.$ 2. $\sqrt{a^{2}-2 a n+a \left\lvert\, \frac{a+\sqrt{a}-2 a n}{a-\sqrt{a^{2}-2 a n}}\right.}$, where $x=0$ when $y=n$.

Corollary 1. When $y=\mathrm{GI}=\frac{a}{2}, x=\mathrm{PI}=c \left\lvert\, \frac{a+\sqrt{a^{2}-2 a n}}{a-\sqrt{a^{2}-2 a n}}\right.$ $-2 \sqrt{a^{2}-2 a n}=39,44492$.
To fild the curve $M E=z$; becaufe $\dot{z}=\sqrt{\dot{x}^{2}+\dot{y}^{2}}=\frac{a \dot{y}}{y}-j$, we
have $z=a|y-y-a| n+n=a \left\lvert\, \frac{y}{n}-y+n=\right.$ ME.
Corollary 2. When $y=G \mathrm{I}, z=\mathrm{MEG}=a \left\lvert\, \frac{a}{2 n}-\frac{1}{2} a+n=\right.$ 65,0728.

Laftly to find the area of PMED $=A$. Becaufe $\dot{A}=y \dot{x}=\dot{y}$ $\sqrt{a^{2}-2 a j,} A=-\frac{a^{2}-2 a y^{\frac{3}{2}}}{3 a}+\frac{a^{2}-2 a n \frac{3}{2}}{3 a}$ where $A=$.
when $y=n$.
Corollary 3. When $y=G I=\frac{x}{2}$, then $A=\frac{\overline{a^{2}-2 a n \frac{3}{2}}}{3^{a}}=6666^{\frac{2}{5}}$ the area of P M G I.

Scholium. When $y=\tau c, x$ will be infinite, or an afymptote to the curve, and the greateft ordinate GI is equal to the tangent at the point G.

This queftion was alfo anfzuered by Mr. F. Afpland.
XI. Question, anfwered by the Rev. Mr. Crakelt, the propofer.

Conftruction. Upon any affumed line, A B, as diameter, deficribe a circle ; and, having formed the angle BAC equal to half the given difference of the angles above the bafe, joined the points $B, C$, and drawn C D perpendicularly to A B, make 2 B C to BE in the ratio of the given difference of the fides to the line bifecting the bafe; and AB to BE, as BE to BF; then hating determined $A G$ the lefs of two reciprocals to $A C^{2}$, whofe fum may be equal to $B F+2 A D$, perpendicularly to A B draw the chord $H G I$, join the points $\mathrm{H}, \mathrm{C}$ and $\mathrm{C}, \mathrm{I}$, and HC I will be a triakgle fimilar to the required one.


Demonftra-

## Anfwers to Mathematical Queftions,

Demonftration. Draw C G, A H, and A K perpendicularly to HC. Then, fince by con. $A G \times B F+A G \times 2 A D-A G^{2}$ $=A C^{2}=C G^{2}+A G^{2}+A G \times 2 D G\left(E u c\right.$, ii. 12.) $=C G^{2}$ $+A G^{2}+A G \times 2 \overline{A D-2 A G}=C G^{2}+A G \times 2 A D-A G^{2}$, the efore will $\mathbf{C ~ G}^{2}=A \mathbf{A} \times \mathbf{B F}$. But, by imilar triangles $\mathrm{HK}^{2}: \mathrm{BC}^{2}:: \mathrm{AH}^{2}=\mathrm{AB} \times \mathrm{AG}$ (Euc. vi. 8. cor.) : $\mathrm{AB}^{2}:$ :
 by conftruction; confequently, by permutation, $\mathrm{HK}^{2}: \mathrm{C} \mathrm{G}^{2}:: \mathrm{BC}^{2}$ : BE ${ }^{2}$, or $\mathrm{HK}: \mathrm{C} G:=\mathrm{BC}: B \mathrm{E}$. Now it is well known that HK is equal to half the difference betwixt HG and LI , wherefore by doubling the antecedents of the laft proportion, we thall have, 2 HK or $\mathrm{HC}-\mathrm{CI}: \mathrm{CG}:: 2 \mathrm{BC}: \mathrm{BE}$. And that the difference betwixt the angles CIH and CHI is equal to 2 BAC is manifeft; becaufe the difference betwixt the arches HC and IC is equal to twice the arch B C.

Scholium. If with the other daca, the fum inftead of the difference of the fides had been given, make 2 AC to BE in the ratio of the fum of the fides to the bifecting line, and $\mathrm{C}^{2}$ equal to $\mathbf{B G} \times \mathbf{B F}$, that is, $B G$ the lefs of two reciprocals to $B C^{2}$ whofe fum is $B F+$ $2 B D$, and it the demonftration ufe C K, A C, and BH infead of $\mathrm{HK}, \mathrm{BC}$, and AH , and every thing elfe will follow.
Very elegant folutions suere alfo given by Mr. George Sanderfox, and Mr. Ifaac Dalby; Mr. Ainfzuortb alfo gave excellent folutions both to the queftion itfelf, and that mentioned in tbe above fcboliun, wuitb feweral. others, fome of which will be inferted in future.
XII. Question, anfzucred by Archimedes.

Suppofe A, B, C, and D to be the four players, A being the dealer, then by prop. 6. corollary 2, of Simpfon's Chances, the probability that any one of the players $B, C, D$, has of holding not more than four trumps will be expreffed by $\frac{39 \cdot 38}{51 \cdot 50 \cdot \frac{37}{49}}(12) \times\left[\frac{27}{39}+\frac{1}{39} \times 1312+\right.$ $\frac{1}{28.39} \times 12.13 \frac{12}{12} \frac{11}{2}+\frac{1}{29.28 .39} \times 11.12 .13 \frac{12}{1} \frac{11}{2} \frac{10}{3}+$ $\left.\frac{1}{30.29 .28 .39} \times 10.11 .12 .13 \frac{12}{1} \frac{11}{2} \frac{10}{3} \frac{9}{4}\right]$ which reduced is $=$ $\frac{432385952}{466921735}$, which taken from unity there will remain $\frac{64535783}{466921735}$ for the probability that each of the players B, C, D, has of holding 5 or more trumps, and from the fame problem it is evident that the probability of the dealer's not holding more than four trumps will be expreffed by $\frac{39.28 .37}{51.50 .49}(12) \times\left[1+\frac{1}{28} \times 12 \frac{12}{1} \times \frac{1}{29.28} \times 11.12\right.$ $\left.\frac{12}{3} \frac{11}{2}+\frac{1}{30.29 \cdot 28} \times 10.11 .12 \frac{12}{1} \frac{11}{2} \frac{10}{3}\right]$ which reduced will be $=$ $\mathrm{Cl}_{2}$

## 28 The Ladies and Gentlèmens Diaryo

$\frac{331188221}{466921735}$, and therefore $\frac{135733514}{466921735}$ will be the probability that the dealer A holds 5 or more trumps; confequently $3 \times \frac{64535783}{466921735}+$ $\frac{135733514}{466921735}$ or $\frac{329340863}{466921735}$ will at laft exprefs the probability that fome one of the four players holds 5 or more trumps; and therefore the required odds that fome one of the players holds 5 or more trumps are as. 329340863 to 137580172 , being nearly, as 12 to 5 , or ftill nearer as 67 to 28.

Note, the probability of fome two of the players each holding 5 or more trumps, being inconfiderable, is neglected.

Nearly in tbe Jame manner this queftion was alfo anfwered by Mr. Row bert Moody, and Mr. Ainfzorth, E®c.

> Prize Question, anfwered by Mr. Ifaác Dalby.

Lemma. If upon agiven hypothenufe A O a right angled triangle AKO be conftructed, the rectangle of the legs $A K \times O K$ will be a maximum when they are equal.----For letting fall the $\perp$ F K from the cent. F, and let the femicirc. AKO be defcribed, then will $\mathrm{HK}=\mathrm{OK}$, and by fim. $\triangle s$, we have $A K \times O K=A O \times F K$ which is a max. becaufe AO is conftant, and FK the greateft $\pm$ tq A $O$ that can be drawn within the femicirc.

Confruction, Let AB be the diam. O the center, and P the given point. Upon OP, A $O$, let femicircles be defcribed, take 0 K , A K equal to each other and in the femicircle $O P$ and $\perp O P$ make RS a fourth proportiorial to $\mathrm{PO}, \mathrm{OK}$, A K, through R draw OT, in which take $O N=O K(A K)$ and draw $\mathrm{NC} \perp \mathrm{NO}$ meeting the circumf. in $\mathbf{C}$, then draw the chord $C D \| A B$ and
 the thing is done.

Demonftration. Join DP, PC, PR, OC, produce B A till AG $=B P$ and draw C G, aifo let OH be $\perp$ AB, and CZ be drawn H N O meeting HO produced in $Z$, alfo draw $G E \perp C Z$, and produce NO to W .

# Anfwers to Mathematical Queftions. 

Since by conftruction ON (OK, AK) is a mean proportional between OP, RS, and the $<$ ORP a ight one, it is alfo a mean proportional between OR, RP, that is, OR:ON: CCN:RP (becaule $O A=O C$, and $O N=O K=A K, C N$ is ION) whence by compofition and divifion ON +OR:ON-OR::R $\mathrm{P}+\mathrm{CN}: \mathrm{RP}-\mathrm{CN}$; but becaufe $\mathrm{GE}, \mathrm{PR}, \mathrm{CN}$ are \|f to each other and $\perp \mathrm{CZ}, \mathrm{NW}$, we have $O \mathrm{~N}+\mathrm{OR}=\mathrm{CE}$ ( OW leing $=O R) O N-O R=C Q, R P+C N=G E$ and $R P-C N$ $=P Q$, hence the laft proportion becomes $\mathrm{CE}: C Q:: G E: P Q$, therefore the $\triangle s$ GCE,PCQ are fim, and FOCZ bifecis the $<G$ C P, hence if a circle is conceived to pafs through the points $\mathrm{P}, \mathrm{C}, \mathrm{D}$, G , it will alfo pafs thro' Z , and the $\angle \mathrm{C} Z \mathrm{Z}$ will be $=\frac{7}{2}$ the $\angle \mathrm{CPD}$, but the $\angle \mathrm{CZH}=\mathrm{TOH}=\mathrm{RPO}$; now the $\angle \mathrm{RPO}$ is evidently a max. when $R S$ is a max. or when $P \mathrm{O} \times \mathrm{RS}$ is a max, but $\mathrm{PO} \times \mathrm{RS}=\mathrm{NO} \times \mathrm{CN}$ (by conftruction) which (becaufe NO $=$ C N) is a max. by the foregoing lemma.
If it is required that the $<$ CPD fhall be of a given mag. inftead of a maximum, the confruc. will be thus. - Diaw $\mathrm{O} n, \mathrm{O} n$ making the $<s, \mathrm{HO} n, \mathrm{BO} n$, each = half the propofed $<$, draw $\mathrm{P} z=1$. $O n$ and let fall the perp. $w q$, then in the femicircle A O having taken $\mathrm{O} k, \mathrm{~A} k$, fo that their rectang. may be $=\mathrm{OP} \times w q$, make $\mathrm{Or}, \mathrm{O} r$ each $=\mathbf{O k}$, and draw the perpendiculars $r \mathrm{~g}, r \mathrm{~g}$, then if chords be drawn from the points $g, g \| A B$, either will anfwer the conditions of the prob. - The demontration is evident from that already given.

## The fame anfruered by Reuben Burrow, the profofer.

Analysis. Suppofe the thing done, and let C be the required point, $P$ the point in the diameter produced, and $C D$ the chord required; alfo let $E R=E P$, ( $E$ being the center) and join the points $\mathrm{D}, \mathrm{C}, \mathrm{P}$, and R ; then it is evident that CPD is the difference of the angles $C$
 CRP is con-

ftant, it is well known that the vertex C is an hyperbola, paffing thro' $\mathbf{P}$; therefore when this difference is the greateft, it is evident che hyperbola will touch the circle in the point C ; and if $\mathrm{E} S$ be fuppofed one of the affymptotes pafing thro' the center E, and C S, P M perpendicular thereto, $\mathrm{CS} \times \mathrm{SE}$ will be equal to $\mathrm{P} \mathrm{M} \times \mathrm{ME}$; but becaufe every other point of the hyperbola, except $C$, falls without the circle

## 30 The Ladies and Gentlemens Diary.

circle, it is evident that C S $\times$ S E muft be a maximum ; but CE being given, and CSE a right angled triangle, C S $\times$ S E will be greatef when C S $=$ S E, wherefore the triangle CS F or its equal PME is given; whence this Confruction.

On PE defcribe a femicircle, inferibe therein the triangle PME whofe area is half the fquare of the radius of the given circle; take $M$ $\mathbf{F}=M E$ and $E F$ being joined will cut the citcle in $\mathbf{C}$ the point tequired.

A different folution may be deduced from the 59 th problem of Simpfon's Algebra; but the problem will be confidered in a more general manner fome future opportunity.

Corollary. Hence if B A F be a given circle, and the points $R, S$ in $B F$ equidiftant from the center $D$, the point A may be found, where the difference of the angles R AD, DAS is the greateft; for take D C a third proportional to D F and D R, and with that diffance and the center $D$, defribe a circle, then find the point C by the foregoing problem where the difference of R C S and CRS
 is the greateft, and $C D$ produced to cut the other circle gives the point A required. For $A D \times D C=D R^{2}=D R \times D S \because A, R, S$ and C are points in a circle, confequenly SAD $=S R C$ and RAD $=\mathrm{RSC}$, therefore R AD -D AS is the greatef poffible.

Scholium. The problem in the laft corollary has been thought worthy of the attention of feveral learned men, particularly the famous $P$. Frifi, who in the Atta del' Siena has beftowed feveral pages thereon; the conclufion there given is exceeding fimple, but the procefs is in effect fluxional ; Cramer has alfo given a fuxional folution in his "Analyfe des Lignes Courbes," but as this problem is nothing more than a corollary to the laft, and as I have received anfwers by fluxions to it from a great many ingenious correfpondents, I fhall infert one of them, efpecially as no lefs than twelve different people have folved it almoft exactly the fame way, viz. Mefirs. F. Afpland, Edward Boucher, D. Cunningbam, W. Dixon, W. Fininley, W. Francis, W. Hardy, F. Hartley, Fames Pringle, Fobn Ropcr, Tbomas Todd, William Wilkin.

Let $\mathrm{BE}=a, \mathrm{P} \mathrm{E}=\mathrm{B}$, and the perpendiculars CN and $\mathrm{DW}=x$; alfo let $\mathrm{EN}=\mathrm{EW}=y$, then $\frac{x}{b-y}=$ tang. of CPE and $\frac{x}{b+y}=$ tang. of DPE ; hence tang. of $\mathrm{CP} \mathrm{D}=\frac{2 y x}{b^{2}-y^{2}+x^{2}}$ which put into fluxions and reduced, gives $x=\frac{a}{b} \sqrt{\frac{b^{2}-a^{2}}{2}}$ the diftance of the chord required from A B.

A geometrical folution was alfo given by Mr. Ainfworth, who isentitled to the prize of twelve Diaries, the filver medal was adjudged to

Mr. Ifaac Dalby, as his folution was the only geometrical one that came in the limited time.

## A R T I C L E XI.

## A Supplement to a former Article, concerning the Equation of Payments. by Reuben Burrow.

AS there is fearcely any fubject that has caufed more difputing and wrangling among arithmetical writers, than the equation of pay* ments; and as the lateft writers on arithmetic have only given us the miftakes of former authors intermixt with peremptory affertions and invidious remarks of their own, I thought it might be a means of putting a fop to fuch reflections by confidering the fubject in a more general manner than it has hitherto been. In order to this, let us fuppofe that one perfon owes another the fums of money $M, N, P$, and $Q_{\text {, }}$, \&c. payable at different times, and that the creditor is willing to receive the whole fum at one fingle payment, at a time when it will be of equal advantage to him whether he receives it thus, or receives the payments in their proper order; let us, in the firft place, fuppofe the creditor to receive his debts as they become due, then it is evident that at the time of the laft payment he will have received the fum of the fingle payments, together with the intereft arifing from each, from the time of becoming due to the time of the laft payment; and it is alfo evident that if the debtor had paid the creditor the whole fum at once, at a time when being put out to intereft it might have amounted at the end to the fame fum as that arifing from the fingle fucceffive payments and their intereft; the oreditor would then have received exactly the fame advantage by the one method as by the other; and confequently the fubject is reduced, both in fimple and compound intereft, to find in what time the zubole fwm of the firgle payments would produce the fame anount as tbat wubicb arifes from the aggregate of eacb payment, togetber with tbe interefs of each from its time of beconing due to the time of the laft payment.

This principle I fhall now apply both to fimple and compound intereft; in order to which, let $M, N, P, Q, R, \& c$. be the payments in fucceffion; $t, t \prime, t \prime, t / \prime \prime$, \&c. the intervals of time between the finft and laft, fecond and laft, third and haft payments, \&c. and $r=$ the sate of intereft, alfo let $x$ be the interval between the required or equated time, and that of the laft payment : then becaufe $s(t r+1)$ is the general expreffion for the amount of the fum $s$ in the time $t$, the fum of the amounts aforefaid will be $=\mathrm{M}(t r+1)+\mathrm{N}(t) r+1)$ $+P\left(t^{\prime \prime} r+1\right)+Q\left(t^{\prime \prime \prime} r+1\right)+$, \&ce. which by the aforefaid principle muft be $=(\mathrm{M}+\mathrm{N}+\mathrm{P}+$, \&cc. $) \times(x r+\mathrm{r})$ which equation being multiplied and $\mathbf{M}+\mathbf{N}+\mathbf{P}+Q+$, \&c. taken from both fides, there remains $\mathrm{M}_{r_{t}}+\mathrm{N} r_{t}{ }^{\prime}+\mathrm{P}_{r^{\prime}} \prime \prime+\mathrm{Q}_{t^{\prime \prime \prime}}+, \& \mathrm{c}^{\prime}=$ $\left(M+N+P+Q+, \& s_{0}\right) \times r_{2}$ and dividing the whole by $r$ we have

## 32 The Ladies and Gentiemens Diary.

$$
\text { have } x=\frac{\mathrm{M} t+\mathrm{N} t^{\prime}+\mathrm{P} t^{\prime \prime}+Q \mathrm{Q}^{\prime \prime \prime}+, \& c .}{\mathrm{M}+\mathrm{N}+\mathrm{P}+\mathrm{Q}+, \& c .} \text { which gives exactly the }
$$ old rule, viz. "Multiply eack payment by its time of continuance, and divide the fum of the products by the whole debt."

The fame principle may be applied to any number of payments at compound intereft, fors $r^{t}$ expreffes the amount of any fum $s$, in the time $t$, wherefore $r^{t} \mathrm{M}+r^{t \prime} \mathrm{~N}+r^{t^{\prime \prime}} \mathrm{P}+r^{t^{\prime \prime \prime}} \mathrm{Q}+$, \& $\mathrm{cc}+\mathrm{R}=$ $(\mathrm{M}+\mathrm{N}+\mathrm{P}+\mathrm{C}+, \& \mathrm{c} \cdot+\mathrm{R}) r^{x}$, confequently $r^{x}=$ $\frac{r^{t} \mathrm{M}+r^{t \prime} \mathrm{~N}+r^{t \prime \prime} \mathrm{P}+r^{t l^{\prime \prime}} \mathrm{Q}+, \varepsilon c \cdot+\mathrm{R}}{\mathrm{M}+\mathrm{N}+\mathrm{P}+\mathrm{Q}+\ldots \cdot \cdot+\mathrm{R}}=a$; and hence we find $x=\log \cdot a \div \log , r=\log \cdot \frac{a}{r}$, which is nothing more than finding the amount of all the payments from the times they become due to the time of the laft; then tith this amount, and the fum of all the payments as a principal, finding the time of continuance, according to the common rules of intercit; and this method, with refpect to compound intereft, agrees exactly with Kerfey's rule.

But as "Mr. Ero":for IIutton, F. R. S." has thought proper to condemn Kerfey's rule as falfe, and to give the preference to a rule of $\mathrm{Mr}_{\mathrm{o}}$ Malcolm's, which he fays is "the orly true one," it will not be improper here to fhew that Malcolm's and Kerfeys are in cfiect the fame, and that both agree with the foregoing rule, when compound intereft is allowed.
The principle on which Malcolm has founded his cilculation, is the equality between the intereft and difcount at the equated time; but as there is apparently fome difficulty in determining which debts are to bear intereft, and which are to be difcounted, he has been obliged to introduce the tedious and incorrect method of finding the time for two payments, and then making ufe of a third, and fo on ; however, this is a mathod which there is hot the leaft occafion for, fince whatever interval is affumed for the equated time to happen in, the invenigation will be exactly the fame; and that affimption will have no other effect than to render the procefs more methodical; thus if the time be fuppofed to fall in the interval between $P$ and $Q$, and the letters to fignify the fame as before ; then the interef of $M$ for the time $t-x$; of $N$ for the time $t^{\prime}-x$, and of P for the time $t l-x$, will be equal to the. difoount of Q for the time $x-i l l, \mathbb{N}_{\mathrm{c}} \mathrm{c}$. and R for the time $x, \mathrm{R}$ being the laft payment. Now $(r x-1)$ sexpreffes the intereft of any fum s for the time $x$; alfo $s r^{-x}$ is the principal which would amount to $s$ in th time $x$; confequently the difcount is $s+s r^{-x}$ or $\left(\mathrm{r}-\mathrm{r}^{-x}\right) \mathrm{s}:$ but as all the difcounts are to be fabforacted from the fum of the interefts, in order to make the equation vanifh, it is che fame thing as adding them with a contrary fign; but $\left(1-r^{-x}\right)$ s

When its fign is changed, does not differ from the expreffion for the intereft, except in the fign of its index; wherefore, if the intereft be found zuith a contrary index, it will be equivalent to the difcount with its Jign changed.

Now the intereft of M for the time $t-x$ is $=\left(r^{t-x}-1\right) \mathrm{M}$, that of N for the time $t^{\prime}-x$ is $=\left(r^{t \prime}-x-1\right) \mathrm{N}$, and that of P for the time $t / \prime-x$ is $=\left(r^{t / \prime}-x-1\right) P$; alfo the difcount of $Q$ witfi its fign changed in the time $x-t^{\prime \prime \prime}=\left(r^{t \prime \prime}-x-1\right) Q . \& c$. and the difcount of the laft payment is $\left(r^{-x}-1\right) \mathrm{R}$ : thefe terms being added together, and the whole made equal to nothing, alfo the equa. tion multiplied by $r^{x}$ and divided by the fum of the payments, gives
$r^{x}=\frac{r^{t} \mathrm{M}+r^{\prime \prime} \mathrm{N}+r^{t \prime \prime} \mathrm{P}+r^{t / \prime \prime} \mathrm{Q}+\text {. \&cco }+\mathrm{R}}{\mathrm{M}+\mathrm{N}+\mathrm{P}+\mathrm{Q}+\ldots \ldots \mathrm{R}}$; which equation is exactly the fame as the foregoing, and the farme conclufion would have followed had the equated time been fupsofed in any other of the intervals.

I cannot conclude this fubject without oberving, that having mentioned the above to Mr. Dalby, he fhewed me a paper wherein he had not only deduced the very fame conclufions, but alf, confirmed the principlej on which they are founded by many fubftantial arguments. Hence it appears, that the common method of computing the equated time at fimple intereft is true, and that Kerfey's rule is true alfo in compound intereft; As to Profeffor. Hutton's affertions to the contrary, they have juft as much validity as $D_{r}$. Horfley's confinmation of Stervart's theory of the Sun's diftance; and the fame anfwer which Mr. Lardent gave the Doczor is equally applicable to the Profeffor.

## Some Miscelfaneous Problemis, with their Solutions. By Reuben Burrow.

## A R TICLE XII.

1N a pofthimous work of Dr. Simfon's (printed at Lard Stanhope's expence, and by that nobleman prefented to men of fcience) which I have lately feen, there is an appendix inferted by the editor, containing geometrical folutions to feveral problems, fome of which are taken from Newton's Univerfal Arithmetic, and others elfewhere; but as the folutions there given are very long, and I had anfwers to the fame problems by me, I flatter myfelf that to infert them here will not be unacceptable, both on account of their fimplicity and the impoffibility of procuring the book aforefaid; I was farther induced, by fome remarks at the end of a book compiled by the Rev. Dr Horfley, Secr. R. S. entitled, Apollonii Pergai inclinationem, $\sigma^{\circ}{ }^{\circ}$. wherein that gentlem in has been pleafed to beitow his cenfures very liberally on the im-

## 34 The Ladies and Gentlemen Diary.

mane equations, and the odious ambages and modes of solution, which he fays the modern p!cbians have freeat about; and after having conderented himself to give a folution of Newton's 7 th problem as a feecimen, and to refer to two propofitions of Euclid, by which he fays the reft might be effected, modefly concludes that thole geometers aforefaid, know nothing of Euclid's Data.
Whether we ought to include Cafillioneus among those geometers that are ignorant of the data, the doctor has not informed us; however this is certain, that he had actually folved Newton's Problems by thole very propofitions referred to, ten years before the doctor pointed out the fame method; and fince the doctor in his proposals for printing a new edition of Newton's works, has, in a very particular manner, informed us of his intention to give geometrical folutions to all thole problems, I had an additional motive in the clumfinefs of his method, to infers what follows; to which if forme (not immune) folutions be added, which are given in the London Magazine for 1775, by Mr. George Sanderfon, taylor, in Doctors-Commons, particularly a geometrical one to the 7 th problem aforesaid, which chis induftrious compiler did not folve without algebra, there will not remain in the Aritbmetica Univerfalis a fingle question, relating to triangles, of any difficulty; this I point out in order to fave the Rev. Doctor forme trouble in his new edition ; and though it has been his method hitherto, in all his Notes, Remarks, and Compilations, to be very faring of the names of thole authors whore works he has made free with, yet I hope, at the fame time, that he will not forget to do Mr. Sanderfon the juftice to which his merit fo defervedly entitles him.

## Proposition I. Theorem.

If $A B, A C$ be two lines drawn from a given point to touch a circle in $T$ and $t$, and CB be any line touching the circle and intercepted between $A C$ and $A B$, then will $A C+C B+B A$ be constant when CB is on that part of the circle next $A$; and $A c+A b-b c$ will be conftant when $c b$ is drawn on the contrary part For $\mathrm{CP}=\mathrm{C} \mathrm{T}, \mathrm{BP}=\mathrm{B} t, c p=c \mathrm{~T}$. $b p=b t$, and therefore $\mathrm{AT}=\mathrm{AC}+$ CP , and $\mathrm{A} t=\mathrm{AT}=\mathrm{AB}+\mathrm{BP}=$ $A c-c p=A c-c T=A b-b p$, consequently $2 \mathrm{AT}=\mathrm{AC}+\mathrm{CB}+\mathrm{BA}$ $=c A+A b-b c$.


Corollary 1. If $M, N$ be two given points, and $M N$ be on the fame fid: of $C B$ the perimeter of all the trapeziums MCBN will be invariable, or the difference between the three fides and a fourth, \&c.

Corollary 2. Hence the fum of the two oppofite fides of any quadsilateral figure, circumfcribing a circle is equal to the fum of the other two fides. Moreover, if there be any number of circles whatever, touching AC in the point T the perimeters of all triangles, \&c. defgibed in the fame manner on each circle as that above, will all be equal.

Cerollary 3. Hence if the perimeter, two angles and the included fide of a trapezium be given, together with one of the oppofite or adjacent fides or angles, or the area, \&c. the figure may be conftucted. by this and the following propofitions.

Corollary 4. Hence Newton's $\not$ th problem, which is the firit in Dr. Simfon's appendix, may be generally folved by making C A $B=$ the given vertical angle, $\mathrm{A} T=A t=$ half the given perimeter, and drawing the circle to touch AT and $\mathrm{A} t$ in T and $t$; then having defribed a circle from the center $A$, with a difance equal to the given perpendicular, draw a line C B to touch both circles, cutting the linés containing the given angle in $C$ and $B$, then CAB will be the triangle, and the truth of the propofition is felf-evident.

## Proposition II. Problem.

If $\mathrm{T} P$, be a circle given in magnitude and pofition and AT, A tangents drawn to it from a given point; it is required to draw a line CB to touch the circle fo that the part C B intercepted between AT and $A t$ may be of a given length. See fig. I.
Analyfis. Becaure $A C+C B+B A$ is given $=2 A T$ and $C B$ alfo given, $A C+A B$ is confequently given, and the angle A ; hence this conftruction. Defrribe on the given line C B a fegment of a circle containing an angle equal to that made. by the lines A T, At, and another on the fame line containing half that angle, in which let $C D$ be infcribed equal to the given fum of $A C$ and $A B$, cutting $C A B$ in $A$; then if CA, AB be taken in the firft figure equal to the fame lines in that annexed, the
 pofition of the tangent will be determined.

Corollary I. Hence the third and eighth problems of Newton's Univ. Arith. may be generally folved; for the vertical angle perimeter and area being given, TA, At (fee fig. I.) and the angle A, are given, alfo S T At S is given, and lecaufe C A B is given, by fuppofition, T C B $t \mathrm{~S}$ is alfo given ; bat this laft quantity is equal to C B $\times$ S P, and SP being known C B is allo given, and confequently the triangle may be conftructed by this problem.

Coroliary 2. The above problem alfo includes the folution of Newton's tenth.

## Proposition III. Problem.

The fame things being given as in the laft, it is required to draw the tangent $\mathrm{C} B$ fo that its parts $\mathrm{C} P, \mathrm{BP}$ may obtain a given ratio.

Analyfis. Becaufe ATS, A $t$ S (fee fig. I.) are right angles, therefore A and $\mathrm{T} \mathrm{S}_{t}$ taken together are equal to two right angles; alfo. TSC=CSP and PSB=BSt therefore CSt $=$ half TSt $=$ half the fupplement of the angle $A$, whence the following confruction.

Take any given line CB and divide it according to the given ratio in P , and draw $\mathrm{P} . \mathrm{S}$ perpen. to C B , then on C B defcribe a fegment of a circle containing an angle equal to half the fupplement of $A$, interfecting PS in S , and make $\mathrm{SB} t=\$ \mathrm{BC}$ and $\mathrm{SCT}=\mathrm{SCP}$, then

## 36 The Ladies and Gentlemens Diary.

$t \mathrm{~B}, \mathrm{TC}$ when produced to meet in A , determine a triangle ACIf fimilar to that required.

Scholium. By the foregoing problems a great number of queftions relating to the perimeters of triangles and trapeziums may be readily refolved, and it is worth remarking, that whatever queftions are folveable thereby with refpect to perimeters, when the tangent is drawn next the vertical point ; fimilar ones may be found the fame way whep the tangent is drawn on the part fartheft diftant ; and the difference between the fum of the fides and bafe will then be concerned in like manner as the perimeter was in thofe foregoing.

## Proposition IV. Theorem.

If $A B, A D$ be two lines given in pofition meeting at $A$, and BD be drawn + to AB cutting A D in D , then will the ratio of $A D$ to $D B$ be the greateft poffible, and of all lines $\mathrm{A} d$ and $d \mathrm{~B}$ the ratio of thofe which interfet nearef $D$ is greater than that of thofe interfecting farther off.


$$
\text { For draw } d b \text { parallel to } D \text { B }
$$ and join $d, \mathrm{~B}$; then $\mathrm{A} \mathrm{D}: \mathrm{D} \mathrm{B}:: \mathrm{A} d: d b$, but $d \mathrm{~B}$ is greater than $d b$, therefore the ratio of $\mathrm{A} d$ to $d b$ or AD to DB is greater than that of $\mathrm{A} d$ to $d \mathrm{~B}$. Again draw BF farther diftant from D than $d$, join BF and draw $\mathrm{FR} \|$ to $\mathrm{B} d$; then $\mathrm{A} d: d \mathrm{~B}:: \mathrm{AF}: \mathrm{FR}$; but FB is greater than F R, confequently the ratio of $\mathbf{A} d$ to $d \mathrm{~B}$ is greater than that of A F to F B.

## Proposition V. Problem:

A and B are two given points, and D C a line given in pofition; it is required to find a point $G$ in AB, fo that GC being drawn to cut D C in a given angle, the rectangle of $A$ G and GB may be equal to the fquare of $\mathbf{G C}$.

Cafe 1. Bifect A B by the normal $F m$ cutting D C, and join B. $m$, take any point $r$ in $F m$ and draw $r d$ meeting $\mathrm{D} m$, fo that it may
 be $\perp$ to a line to which $\mathrm{G} C$ is required to be parallel; and alfo take $r b=r d$, then draw B R parallel to $b r$ and from the center R with the diftance R B defcribe a circle cutting D C in C; draw C G making DC G $=$ the given angle and $G$ is the point required.

For $r d=r b \because \mathrm{R} \mathrm{C}=\mathrm{R} \mathrm{B}$ and C G is $\perp$ to R C , becaufe it is $\perp$ to $r d$ by conftruction, confequently $C G$ is a tangent, and therefore the rectangle $A G B=G^{2}$.

Cafe 2. Defcribe a circle on AB , and from any point $g$ draw $g c$ making the given angle with $D C$ and $g s \perp$ to $A B$ and $=g c$, contirue

## Problems and Solutions.

Ds to cut the circle in $S$ and the normal $S G$ will divide $A B$ in $G$ the point required. For $g_{c}=g_{s} \because G C=G S$, whence $A G B=$ $\mathrm{G}^{2}=\mathrm{G} \mathrm{C}^{2}$.

Corollary 1. If GC be required to be $\perp$ to DC the center of the circle will fall in $m$.

Corollary 2. If from the center $G$ with the diffance $G C$ a circle be defcribed, cutting A B in $H$, then will all lines drawn from $A$ and B to its circumference have the fame ratio which A H has to HB, as is evident from the Lemma, page 337, Simpfon's Algebra.

Corollary 3. If AD be a given line and $B$ a point given, another point $G$ may be found where A G $\times$ GB may have a given ratio to $G D^{2}$, by taking any line $g \mathrm{D}$, defcribing a femicircle thereon, and in it taking $g c^{2}$ to $g D^{2}$ in the given ratio, then drawing $\mathrm{Fm} \perp$
 to and bifecting A B, and cutting DC in $m$, then taking $m \mathrm{C}=m \mathrm{~B}$ and drawing C G parallel to $c g$, and $G$ will be found; for $G C^{2}: G D^{2}: \because g c^{2}: g D^{2}$ and $m$ being the center CG is a tangent to the circle, and confequently its fquare $=\mathrm{A}$ $G \times G B ;$ wherefore AGB:GD2$:: g c^{2}: g D^{2}$, viz. in the given ratio. Alfo in the fecond figure AGB=GS2=GC2 and GC2 is to $G D^{2}$ in the given ratio, therefore $A G \times G B$ is to $G D^{2}$ in the fame ratio ; and in a fimilar manner may be the reft of Apollonius's problems on Determinate Section be refclved, as will be evident to any perfon that takes the trouble of obferving the method which Mr . Wales took in collecting his book thereon from the folutions that had been given before by Mr. Simpfon and Snellius.

## Proposition Vi. Problem,

$C D$ is a line given in pofition and $A, B$ two given points : it is required to find a point C in the line CD , where the ratio of AC to C B may be the greateft poffible.

Bifect AB by the perpendicular F $m$, meeting $\mathbf{D C}$ in $m$, and take $m \mathrm{C}=m \mathrm{~B}$, then C will be the point required.

For draw C G $\perp$ to DC meeting A B in $G$, and with the center $G$ and diftance GC defcribe a circle,
 which of courfe touches DC in C, alfo join A C, C B and drew any o her lines A $d, d$ B cutting the circle in $c$, and D E in $d$; then becaufe $m$ is the circle's center and C G 1 to $m \mathrm{C}, \mathrm{CG}$ is a tangent, and $\mathrm{AG} \times \mathrm{GB}=\mathrm{GC}^{2}=\mathrm{GH}^{2}$, therefore AG:GH::GH:GB, and confequently HB:BR::H A: AR; wherefore A H: HB::AC:CB::Ac:cB; but the zatio of $A c$ to $c B$ is greater than that of $A d$ to $d B$ by prop. 4 , and therefore

## $3^{8}$ The Ladies and Gentlemens Diary.

therefore the ratio of AC to CB is alfo greater than that of $\mathrm{A} d$ to $d \mathrm{~B}$, confequently is the greateft poffible.

Corollary 1. The other interfection of the circle gives another point, but the method is the fame for all cafes.

Corollary 2. Hence, if there be an indefinite number of right lines parallel to $C D$, the locus of all the points $C$ will be an hyperbola; for $\mathbf{F} m$ is given in pofition, and the diftances $m \mathrm{C}$ are fet off in a direction making a conifiant angle with $\mathbf{F} m$ and equal to $m$ B.

Scholium. The above problem is Dr. Simfon's 5 th, the folution there given takes up feven quarto pages : as to the 4 th it has been already done the fame way by Mr. Simpion; the 2 d . and 3 d , are the rame as that propofed in laft year's Diary by Mr. Sanderfon, different folutions of which may be feen in the anfwers for this year; and the firft is folved in the 4 th cotollary of the ffrt propofition.

## Proposition VII. Lemma.

$A$ and $B$ are two given points, and S C a given circle : it is required to find the point G in AB, fo that G S being drawn to the center and meeting the circumference in C , the fquare of CG may be equal to the rectangle A G and BG.

Draw $Q m \perp$ to and bifecting A B join $S Q$ which bifect in $P$, and take $\mathbf{P}_{n}$ io that ${ }_{2} \mathrm{P} n \times \mathrm{SC}=\mathrm{CB} \mathrm{B}^{2}+$ $\mathrm{SC}^{2}$, then $n m$ drawn + to $C_{S}$ gives $m$ the center of a circle, which being
 defcribed with the diftance $m \mathrm{~B}$ cuts the circle $S C$ in $C$, then $C S$ being drawn, cuts $A B$ in $G$ the point required.

For $2 \mathrm{P} n \times S Q=S n^{2}-n Q^{2}=S m^{2}-m Q^{2}=Q B^{2}+S^{2}$, tierefore $\mathrm{S}_{m^{2}}-\mathrm{S}^{2}=\mathrm{Q}^{2}+\mathrm{Q}^{2}=m \mathrm{~B}^{2}$; but $m \mathrm{~B}$ is by conitruction $=m \mathbf{C}$, therefore $\mathrm{S} m^{2}-\mathrm{S} \mathrm{C}^{2}=m \mathrm{C}^{2}$, confequently $m \mathrm{CS}$ is a right angle, and C G a tangent to the circle A B C, whence it follows that $A G \times G B=G C^{2}$.

## Proposition Vili. Problem.

$A$ and $B$ are two given points, and SDC a circle given in magnitude and pofition: it is required to find a point C in the circumference of the circle where the ratio of the lines A C and C B may be the greateft poffible.

Through the center S draw the line SC G by the laft propofition fo that $A G \times G B=G C^{2}$, then $C A$ will be the point required. For with the center $\mathbf{G}$ and diftance $\mathbf{G C}$ defor be a circle, and draw any other lines $A D, D B$, the firft cstting the circle $G C \operatorname{cin} c$; then becaufe $A G B$

## Problems and Solutions.

$=G C^{2}=G^{2}$, $A C: C B:: A c: c B$; but the ratio of $A c$ to $c B$ is greater than that of $A D$ to $D B$, confequently the ratio of $A C$ to $C B$ is greater than that of $A D$ to $D B$, and therefore the ratio of $A C$ to C B is the greateft poffible.

## Proposition VIll. Problem.

$B v$ and $B C$ are two lines given in pofition and $A$ a given point: it is required to find the point P in the line $\mathrm{B} v$ fo that A $P$ being joined, and $\mathrm{P} C$ drawn parallel to a line given in pofition, the ratio, fum, or difference of AP and PC may be given.

1. Draw $\mathrm{R} v$ parallel to the line given in pofition, and at fuch a diftance that $v \mathrm{R}$ may be equal to the given fum or difference, join $A v$ and $A B$, and take any point $a$ from which draw as parallel to $\mathrm{R} v$, and take s $b=$ sa cutting $A v$ in $b$, and draw $\mathbf{C} \quad \mathbf{R}$ A P parallel to $b s$, meeting $\mathbf{B} v$ in $\mathbf{P}$, then will the fum or difference of AP and PC be equal to $v$ R. For $v s: v \mathrm{P}:: a s: \mathrm{PD}:: s v: \mathrm{A}$ $P$, therefore $\mathrm{AP}=\mathrm{PD}$ and $\mathrm{C} P+\mathrm{PA}=\mathrm{CD}=\mathrm{R} \boldsymbol{\mathrm { V }}$.
2. For the ratio; take $v n$ to $v \mathbf{R}$ in the given ratio which AP is required to have to PC, and parallel to on draw AP, and the thing is done; for $\mathrm{B} v: \mathrm{BP}:: v n: \mathrm{PA}:: v \mathrm{R}$ : PC , therefore $v n: v \mathrm{R}:: \mathrm{PA}$ : PC.

Corollary 1. Hence the 48 th problem of Newton's Algebra may be folved geometrically; by con-
 tinuing $A B$ (fee Newton's figure) and finding the point $E$ in $B C$ fo that $\mathrm{F}^{\mathrm{F}} \mathrm{E}$ being drawn perpen. to the horizon meeting A B produced in $P$, the ratio of $A E$ to $E P$ may be as the weight $D$ to the weight $E$ : for if P E reprefent the weight E, B. E will reprefent its force down the plane, $B C$, and as $A$ E reprefents the force of $D, E B$ reprefents its force in the direction E B, and confequently the weights are in equilibrio.

Corollary 2. If the ratio of C P to PA be required to be the greateft poffible, let AP be perpen. to A B: the reafon is evident from the 4 th propofition.

Scholium. The application of this problem is very extenfive, particularly in mechanics, wherein lines are often required to be drawn parallel to the direction of gravity, \&cc. the problems of gunnery (abftracting the air's refiftance) may alfo be conftructed by it, in a much fimpler manner than any publifhed hitherto, as I fhall fhew hereafter.

## Proposition IX. Theorem.

If ACDR be a circle, AD a chord, $\mathrm{R} r$ a diameter $\perp$ to AD , and $A C D, A C D$ triangles in the fegment $A C D$; then if from

## 40 The Ladies and Gentlemens Diary.

the centers $r$ and $\mathbf{R}$ with the diftances $r \mathrm{~A}$ and R A circles As $d f$ G and ABD be drawn; alfo on the diảmeters A $r$ and AR circles $r n A$ and $A$ $b \mathrm{R}$ be defcribed; then if the fide A C of any triangle infcribed in ACB be produced to cut the circle A D d G in $d$, the circle Anr in $n$, the circle A B D in $B$ and the circle $\mathrm{A} b \mathrm{R}$ in $b$; alfoif $\mathrm{R} b, \mathrm{DB}, r$ $\mathrm{B}, r n$ and RB be drawn, then will the parts of the triangles $A$
 C $D$ be as follows, viz:

1. Ad $=$ fum of the fides $=\mathrm{AC}+\mathrm{CD}$
2. $\mathbf{A} \mathbf{B}=$ difference of the fides
3. A $n=$ half fum of the fides $=\mathrm{C} b$
4. A $b=$ half difference of the fides $=n \mathrm{C}$
5. $\mathrm{C}_{s^{2}}=$ rectangle of the fides.
6. $b \mathrm{RA}=$ half difference of the angles at the bafe $=r \mathrm{AC}$
7. For the angle $\mathrm{A} r \mathrm{D}=2 \mathrm{AGD}$ becaufe $r$ is the center, thered fore $\mathrm{ACD}=2 \mathrm{~A} d \mathrm{D}=\mathrm{A} d \mathrm{D}+\mathrm{CD} d$, confequently $\mathrm{C} d=\mathrm{CD}$ and $\mathrm{AC}+\mathrm{CD}=\mathrm{Ad}$.
8. In order to avoid the multiplicity of lines, fuppofe APr drawri through the point bifecting the arch ABD, and D R joined, then the proof that $C D=C B$, and confequently that $A B=A C-C B$ will be thus: $A B=B D$ and $R B=R D$, therefore $A R B=B R$ D and $\mathrm{RBD}=\mathrm{RDB}$; but $\mathrm{CBD}+\mathrm{ABD}=2$ right angles $=\mathrm{C}$ $B D+2 R D B$, therefore CBD $+2 R D B=C D B+2 R D B$, and confequently $C B=C D$ in this cafe; but the angles $A B D$ and A C B are conftant, and confequently $\mathrm{C} m$ is = C D in every cafe.
9. Becaufe $\mathrm{A} n r$ is a right angle and $r$ the center of $\mathrm{AD} d \mathrm{G} \because \mathrm{A} n$ $=n d=$ half $\mathrm{AC}+\mathrm{CB}$, alfo $\mathrm{A} b=b \mathrm{~B}$ and $\mathrm{BC}=\mathrm{C} d \cdot b \mathrm{~A}=$ half $\mathrm{A} d=\mathrm{A} n=n d$.
10. A $b=$ half $A B=$ half $A C-C D$.
11. $\mathrm{AC} \times \mathrm{C} d=s \mathrm{C} \times \mathrm{C} f=\mathrm{C} s^{2}$, becaure s $\mathrm{C}=\mathrm{C} f$ by Euctid. prop. 3.
12. AR
13. $\mathrm{AR} b=\mathrm{ADB}=\mathrm{CDA}-\mathrm{CDB}=\mathrm{CDB}+\mathrm{BDA}(\mathrm{CBD})$ $B D A-C A D=C D B-C A D \because 2 A D=C D A-C A$ $D$, confequently $A R b$ equal half the difierence of the angles at the bafe equal $r$ A C, \&c.

In the fame manner if A D F be any triangle, and from the center D a circle be defcribed with the diftance DF; the lines being joined as in the figure, and D M parallel to CF ; then it is evicient that $A B$ is the difference of the fegments of the bafe, and AR that of the fides, and becaufe A CF = half A D F, D M bifects A D F, and therefore MD T = half the difference of the an. gles at the bafe; but if $\mathrm{B} r$ A be parpen. to $\mathrm{AD}, \mathrm{ABr}=$
 $A D T$ and $A B R=A C F=A D M$, therefore $R B r=M D T$, confequently $A R B=R B r+\mathrm{R} r \mathrm{~B}=90^{\circ}+$ half the diff. of the angles at the bafe, and therefore when the difference of the fegments of the bafe is given, and the difference of the angles; the locus of allthe points $R$ will be a circular fegment defcribed on $A B$, containing an angle equal to $g \circ$ degrees + half the difference of the angles at the bafe; hence if $\mathrm{S}-s, \mathrm{~A}-a$, and $m-n$ be given, the triangle may be conftructed, by taking $A B=m-n$, and on it defcribing the fegment containing the angle $90+\frac{1}{2}(A-a)$ then taking $A R=S-s$ and making RBD $=B R D$ and $D$ will be the vertex : hence alfo the locus of the vertices of all triangles which have the fame difference of the angles at the bafe, and difierence of the fegments of the bafe, will be a circle; for as ARB is conftant, and BR $r$ alfo, and RBC a right angle, $B C R$ is alfo conftant as well as its double $B D R$, and RED; wherefore BR is in a conftant ratio to BD and BC, and confequently the points $D$ and $C$ are in circles; and hence a great number of cafes of triang es may be conftructed; forinftance, if $m-n$, $\mathrm{A}-a$, an l either $\mathrm{S}, \mathrm{P}$, or $\mathrm{S}: s$ or $\mathrm{S} \times s$ be given, and many others; and fimilar methods may be ufed when $A R$ is conftant and $A B$ and the other parts variable. Hence alfo if $M G=M F, A G: A R::$ $A R: A B$ for $A F: A D+D F:: A R: A B:: A M: A D:: F$ $M: F D$, therefore $A R: A B::(A M-F M) A G:(A D-T D)$ AR. The following problem will alfo be ufeful in feveral conftructions, viz. if A BC, A Dこ be two given circles interfecting in A and $C$, and it be required to draw $A B D$ fo that the rectangle of AB and BD may be given : becaufe the angles $B$ and $D$ are conitant; the ratio of $B C$ to $B D$ is given, and confequently the ratio of $A B \times B C$ to $A B \times B D$, but $A B \times$ $\mathrm{BC}=\mathrm{BE} \times$ by the diameter of the circle,
 and this being given, BE is alfo given; in the fame manner may $A B$ be drawn to have a given ratio to $B D$.
Some parts of this problem are not new, but were here brought together into one view for the fike of making raferences in order to therten the folutions of problems.

## E

Sche.

## 42 The Ladies and Gentlemens Diary.

Scholium. In the foregoing propofitions I have feldom given folutions to more than one cafe; there are fome that admit of more cafes, but the method laid down will be applicable to the reft with fo little alteration, that I did not think it neceflary to be more particular. 1 do not doubt but fuch a proceedure will be looked upon as deviating from geometrical ftrictnefs by fuch as have formed their ideas of the method of the ancients from the fpecimen given by the Reforer (as he is called) of Apollonius de Inclinationibus; however I cannot fee the ufe of maltiplying cafes without neceffity, nor what end it can anfwer to repeat the fame thing, for each trifing alteration, when a fingle example would ferve: In a propofition there are certain things given, and thofe things are fufceptible of various fituations; now either the method of folution varies according as thofe fituations vary, or not; if it doth then it is neceffaryto increafe the number of cafes till there be a folution for each fituation; if the method do not vary, what end can it anfwer to repeat the fame thing over and over for no other purpofe but to exhibit the various difpofitions of the data; when the fame end may be fuily accomplifhed by only increafing the number of diagrams? Nay $I$ do not even fee any neceflity for this laft; Euclid does not ufe it, and if by " the inclination of two ftreight lines which meet together," we underfand either of the angles made at the point of interfection, (a fenfe in which there is great reafon to believe that Euclid intended to be underfood) there will not then be the leaft occafion for reveral additions which $D_{r}$. Simfon and others have made to the elements; for inftance, propofition A, in book 6, will be included in prop. 3 preceeding it; and the additional theorem inferted in the data by Lord Stanbope, will fcarcely amount even to a fecond cafe of prop. 97. \&c.

I know this method is contrary to the practice of feveral that arrogate to themfelves all knowledge in ancient geometry; but if it be agreeable to common fenfe, and give the fame degree of evidence and inftruction in a lefs compafs, it certainly cannot be without its ufe, and may, for that reafon, at leaft be tolerated.

## A R TICLE XIII.

Of finding the Areas of Curves whofe Abfiffas are the fame as thofe in a Circle, and their Ordinates any powers of the corresponding Arc or Multiples of the fine, cofine, U éc. By Mr. William Wilkin.
3. ET AE B be a femicircle whofe diameteri is A $B$ and center $C$, and from $B, C$, and any peint $M$ erect the perpendiculars $B D, C F$, and MN ; and let MN be equal to any power of the arc $\mathrm{A}_{e}$; to find the quadrature of the fpace A N M or the fluent of $z^{m} \dot{x}$, (putting A. B=2a $\mathrm{Me}_{e}=v, \mathrm{~A}_{\mathrm{M}},=x, \mathrm{MN}=y, \mathrm{Ae}_{e}=z$, and the index of the power $=m$.)


Affume the fluent $=z^{n 2} x+q$, then will $z^{n} \dot{x}+m z^{m-1} \dot{z} x \times q$ $=z^{m} \dot{x}$, and therefore $\dot{q}=-m z^{m}-\mathrm{I} \dot{\sim} \cdot x=-\frac{a m z^{m-1} x \dot{x}}{\sqrt{2 a x-x^{2}}}$, $=-a m x^{m-1} \times(\dot{z}-\dot{v})$ and by taking the fluents $q=-a z^{m}$ + fluent $a m z^{m}-1 \dot{v}$. Again affume the fluent of am $z^{m-1} \dot{v}=$ a $m z^{m}-1 v+r$, then will amz-1 $\dot{v}+a m \cdot m-1 \cdot z^{m-z}$ $\dot{*} v+\dot{r}=a m z^{m-1} v$, therefore $r=-a m \cdot \overline{m-1} \cdot z^{m-2} \dot{\approx} v$ $=-a^{2} m \cdot(m-1) \cdot z^{m-2} \dot{x}$, then again affume the fluent $r=-$ $a^{2} m \cdot \overline{m-1} \cdot x^{m-2} \cdot x+s$, and by proceeding as before $\dot{s}$ will be $=$ $a^{2} m \cdot(m-1) \cdot(m-2) \cdot z^{m}-3 \dot{z} \cdot x=\frac{a^{3} m \cdot(m-1) \cdot(m-2) \cdot z^{m-3 x \dot{x}}}{\sqrt{2 a x-x^{2}}}$ $=a^{3} m \cdot(m-1) \cdot(m-2) \times \approx^{m}-3 \times(\dot{z}-v)$ and therefore $s=a^{3}$ $m \cdot(m-1) \cdot z^{m-2}$ - fluent $a^{3} m \cdot(m-1) \cdot(m-2) \cdot z^{m-3} \dot{v}_{y}$ Whence again affume $-a^{3} m \cdot(m-1) \cdot(m-2) \cdot z^{m-3} v+t$ for the fluent fo will $t=a^{3} m \cdot(m-1) \cdot(m-2) \cdot m-3 \cdot z^{m-4}$ $\dot{z} \cdot v=a^{4} m \cdot(m-1) \cdot(m-2) \cdot(m-3) \cdot z^{m}-4$ $x$ and $t=a^{4} m \cdot(m-1) \cdot(m-2) \cdot(m-3) \cdot z^{m-4 x+v: ~ c o n-~}$ fequently (the law of continuation being manifeft) the fluent of the given expreffion will be $=z^{m} x-a z^{m}+a m z^{m-1} v-a^{2} m$. $(m-1) \cdot z^{m-2} \cdot x+a^{3} m \cdot(m-1) \cdot z^{m-2}-a^{3} m \cdot(m-1)$. $(m-2) \cdot z^{m-3 v}+a^{4} m \cdot(m-1) \ldots(m-3) \cdot z^{m-4 x}-$ $a^{5} m \ldots \cdot(m-3) \cdot z^{m}-4+, \& c$.

Corollary 1. If $w$ be put equal $a-x$ (the cofine of the arc $z$ ) in the above expreffion, it will become $=-\tau v z^{m}+a m z^{m-1} v+a^{2} m^{\circ}$. $(m-1) \cdot z^{m-2} w-a^{3} m \cdot(m-1),(m-2) \cdot z^{m-3 v-a^{4} m}$. $(m-1) \ldots(m-3) \cdot z^{m-4} w+, \& c$, the fame as found at page 390 of Mr. Simfon's Flux. 2d edit.
Corollary 2. If $m=\mathrm{I}$. then fhill the fluent of $z \dot{x}$ or the area of the curve fpace ANM (whofe ordinate $M \mathrm{~N}$ is $=$ circular arc $\Lambda e$, $=z x-a z+a v=z x-a z+a \sqrt{2 a x-x^{2} ;}$ whence $x=a$, or the ordinate paffes through the center C , the area $\mathrm{AFC}=\mathrm{AC}^{2}$, and when $x=2 a$, the area of the whole curve ADBA $=\mathrm{ACX}$ circumference AER= the circle whofe diameter is AB.

Corollary 3. If $m=2$, the area $A N M=z^{2} x-a z^{2}+2 a z v$ $-2 a^{2} x=$ (when $\left.x=2 a\right) a z^{2}-4 a^{3}=\mathrm{AC} \times\left(\mathrm{AEB} \quad-\mathrm{AB}^{2}\right.$ $=$ the excefs of the circle whofe diameter is $A B$ above twice the fquare of the rad, A C, for the whole fpace A D B.

Corollary 4. If $m=3$ the area $=z^{3} x-a z^{3}+3 a z^{2} v-6 a^{2}$ $z x+6 a^{3} z-6 a^{3} v=($ when $x=2 a) a z^{3}-6 a^{3} z$.

Corollary 5. If $m=4$ the area $=z^{4} x-a z^{4}+4 a z^{3} v-12 a^{2}$ $z^{2} x+12 a^{3} z^{2}-24 a^{3} z v+24 a^{4} x=$ (when $x=2 a$ ) $a z^{4}$ $12 a^{3} z^{2}+48 a^{5}$, \&\&. \&\&C.

## 44 The Ladies and Gentlemens Diary.

2. Suppofe the ordinate of the curve $\mathrm{M} N$ to be always equal to a rectangle of any power of the arc and the verfed fine $=z^{n 2} x^{n}$ to find the curve of the fpace $A M N$ or the fiuent of $z^{m} x^{n} \dot{x}$. Affume the fluent $=\frac{z^{m} x^{n+1}}{n+1}+r$, then in fluxions $r=-\frac{m x^{n+1} z^{m-1} \dot{z}}{n+1}$ $=-\frac{m x^{n+1} z^{m-1}}{n+1} \times \frac{a \dot{x}}{\sqrt{2 a x-x^{2}}}=-\frac{a m z^{m-1}}{n+1} \times \frac{x^{n+1} \dot{x}}{\sqrt{2 a x-x^{2}}}$.
$=-\frac{a m z^{m-1}}{n+1} \times \frac{x^{n+\frac{1}{2}} \dot{x}}{\sqrt{2 a-x}}$. Again affume the fluent $r=-$
$\frac{a m z^{m-1} \mathrm{~A}}{a n+1}+s$ (putting $\mathrm{A}=$ fluent $\frac{x^{n+\frac{1}{2}} \dot{x}}{\sqrt{2 a-x}}$,) then will $\mathrm{s}=$
$\frac{a m \cdot m=\frac{1}{n+1} z^{m / 2}-2 \dot{A}}{n+\frac{1}{2}}$. Now by finding the value of A or the Au. of $\frac{x^{n+\frac{1}{2}}}{\sqrt{2 a-x}}$ (which may be eafily liad frōm Emer. Table, Form 11. when $n$ is any atfirmative whole number, and thence $s$, or the fluent of $\frac{a m \cdot m-1 \cdot z^{m-2} \div \mathrm{A}}{n+1}$ and affuming other variable determinate values as before the required fluent of $z^{m} x^{n} \dot{x}$ will therefore be evidently $\frac{1}{n+1} \times: z^{m} x^{n}+1-a m z^{m-1} \mathrm{~A}+a m \cdot(m-1)$. $\dot{z}^{m-2} \mathrm{~B}-a m, m-1 . m-2 \cdot z^{m}-3 \mathrm{C}, \& \mathrm{sc}$. A being as above, $\mathrm{B}=\mathrm{flu}-$ ent of $\mathrm{A} \dot{z}, \mathrm{C}=$ fluent of $\mathrm{B} \dot{z}$. \&c.

But as this cannot be purfued in a general manner by this method it will be neceffary to fhew how to proceed in particular cafes, when $m$ and $n$ are given in numbers.
Thus. z. If $m$ and $n$ each equal 1 , then will $A=\frac{x \frac{3}{2} \dot{x}}{\sqrt{2 a-x}}$, and by taking the fluents $\mathrm{A}=\frac{3}{2} a \approx-\frac{3 a+a x}{2} \times \sqrt{2 a x-x^{2}}$ therefore the area will be $=\frac{\approx x^{2}}{2}-\frac{3 a z}{4}+\frac{3 a^{2}+a x}{4} \sqrt{a x-x^{2}}$ which when $x$ is $=2 a$ becomes $=\frac{5 a^{2} z}{4}$ the whole area of the curve. Or the fluent of the expreffion $\not \approx x \dot{x}$.
2. If $m=I$ and $n=2$ then will $A=\frac{x^{\frac{5}{2}} x}{\sqrt{2 a-x}}$ and confequently
$A=\frac{5}{2} a^{2} z-\frac{\frac{\pi}{3} x^{2}+\frac{5}{6} a x+\frac{5}{2} a^{2}}{x} \sqrt{2 a x-x^{2}}$ and the area $\left.=\frac{z^{m} x^{n+1}}{n+1}-\frac{a m z^{m-1} A}{n+1}\right) \frac{z x^{3}}{3}-\frac{5 a^{3} z}{6}+\frac{\overline{a x^{2}}}{9}+\frac{\overline{5 a^{2} x}}{18}$.
$+\overline{\frac{5 a^{3}}{6}} \sqrt{2 a x-x^{2}}$ - when $\left.x=2 a\right) \frac{x^{x}}{6} a^{3} z$ for the whole fpace $\mathbf{A}$ D B or the fluent of $z x^{2} \dot{x}$.
3. If $m=2$ and $n=1$, then $\dot{A}=\frac{x^{\frac{3}{2} \dot{x}}}{\sqrt{2 a-x^{2}}}$ and $\dot{s}=\frac{3 a^{2} z \dot{x}}{2}-$ $\frac{3 a^{2}+a x}{2} \sqrt{2 a x-x^{2}} \times(\dot{x}) \frac{a \dot{x}}{\sqrt{2 a x-x^{2}}}$, hence by taking the fluents $s=\frac{3 a^{2} z^{2}}{4}-\frac{3 a^{3} x}{2}-\frac{a^{2} x^{2}}{4}$, therefore the area $\frac{z^{m} x^{n}+1}{n+1}$ $\left.-\frac{a m z^{m}-1 \mathrm{~A}}{n+1}+s\right)=\frac{z^{2} x^{2}}{2}-\frac{3}{4} a^{2} z^{2}+\frac{3 a^{2} z+a x z}{2}$ $\sqrt{2 a x-x^{2}}-\frac{3 a^{3} x}{2}-\frac{a^{2} x^{2}}{4}=($ when $x=2 a) \frac{5}{4} a^{2} z^{2}-2 a^{4}$. 4. If $m$ and $n$ each equal 2, then $\dot{\mathrm{A}}=\frac{x \frac{5}{2} \dot{x}}{\sqrt{2 a-x}}$ and ; $=\left(\frac{a m \bar{m}^{m-1} \cdot z^{m-2} \mathrm{~A}}{n+1} \times \dot{z}\right)=\frac{5}{3} a 3 z \dot{\tilde{z}}-\frac{2}{9} a^{2} x^{2} \dot{x}-\frac{5}{9} a^{3} \times \dot{x}$ $-\frac{5}{3} a^{4} \dot{x}$, whence $s=\frac{5}{6} a^{3} z^{2}-\frac{2}{27} a^{2} x^{3}-\frac{5}{18} a^{3} x^{2}-\frac{5}{3} a^{4} ;$ and the area $=\frac{z^{2} x^{3}}{3}-\frac{5}{6} a^{3} z^{2}+\frac{2}{9} a z x^{2}+\frac{5}{9} a^{2} z x+\frac{5}{3} a^{3}$ $\dot{z} \sqrt{2 a x-x^{2}}-\frac{2}{27} a^{2} x^{3}-\frac{5}{18} a^{3} x^{2}-\frac{5}{3} a^{4} x=$ (when $x=$ 2a) $\frac{x x}{6} a^{3} z^{2}-\frac{x_{3}}{2 \pi} a^{5}$.
5. If $m=3$ and $n=2, \dot{A}=\frac{x^{\frac{3}{2}} \dot{x}}{\sqrt{2 a-x}}$ as before, $\left(\dot{s}=5 a^{3} x^{2} \dot{z}\right.$
 $\dot{x}-\frac{5}{6} a^{4} \dot{x}^{2} \dot{x}-5 a^{5} x \dot{x}$, or $\mathrm{B}=\frac{5}{4} a^{2} z^{2}-\frac{1}{9} a x^{-3}-\frac{5}{12} a^{2} x^{2}$ $-\frac{5}{2} a^{3} x$ and $\mathrm{C}=\frac{5}{x^{2}} a^{2} z^{3}-\frac{1}{35} a^{2} x^{4}-\frac{5}{36} a^{3} x^{3}-\frac{5}{4} a^{4} x^{2}$, whence by fubflituting thefe values in the above general expreffion, the area becomes $=\frac{z^{3} x^{3}}{3}-a z^{2} \cdot \mathrm{~A}+2 a z \mathrm{~B}-3 a \mathrm{C}=\frac{z^{3} x^{3}}{3}$ $\frac{5}{6} a^{2} x^{3}+\frac{1}{3} a x+\frac{5}{6} a^{2} x+\frac{5}{2} a^{3} \times z^{2} y\left(-\frac{2}{8} a x^{3}-\frac{5}{6} a^{3} x^{2}-5\right.$ $\left.a^{4} x\right) \times z+\frac{x}{18} a^{3} x^{4}+\frac{5}{5^{5}} a^{4} x^{3}+\frac{5}{2} a^{5} x^{2}$.
6. If $m$ and $n$ each equal 3 ; then $\dot{\mathrm{i}}=\frac{x \frac{7}{2} \dot{x}}{\sqrt{2 a-x}}$ or $\mathrm{A}=$ $\frac{35}{8} a^{4} z-\frac{1}{4} x^{3} y-\frac{7}{8^{2}} a x^{2} y-\frac{35}{24} a^{2} x y-\frac{35}{8} a 3 y, \mathrm{~B}=\frac{25}{16} a 4 x^{2}$

## 46 The Ladies and Gentlemens Diary.

$$
\begin{aligned}
& \text { - } \frac{1}{15} a x^{4}-\frac{4}{36} a^{2} x^{3}-\frac{25}{4} \frac{5}{8} a^{3} x^{2}-\frac{35}{8} a^{4} x, \mathrm{C}=\frac{3}{4} \frac{5}{8} a^{4}=^{3} \\
& -\frac{1}{80} a^{2} x^{5}-\frac{7}{15} a^{3} x^{4}-\frac{35}{174} a^{4} x^{3}-\frac{3}{1} \frac{5}{6} a^{5} x^{2} \text {, and } \mathrm{D}=\frac{35}{172} \\
& a^{4} x^{4}-\frac{1}{4} \frac{1}{3} a^{3} x^{6}-\frac{7}{2} 0 a^{4} x^{5}-\frac{35}{45} a^{5} x^{4}-\frac{35}{4} \frac{5}{8} a^{6} x^{3} \text { fubati- }
\end{aligned}
$$ tute thefe values in the theorem and it will give $\frac{z^{3} x^{4}}{4}-\frac{3}{3} \frac{5}{2} a^{5} z^{3}+$ $\frac{3}{10} a x^{3}+\frac{4_{0}^{0}}{0_{0}^{2}} a^{2}+\frac{3}{3} \frac{5}{2} a^{3} x+\frac{105}{3} \frac{5}{2} a^{4} \times z^{2} y-\frac{3}{3^{2}} a^{2} x^{4}-$ $\frac{7}{24} a^{3} x^{3}\left(-\frac{5}{3} \frac{5}{2} a^{4} x^{2}-\frac{105}{10} a^{5} x\right) \times z+\frac{3}{160} a^{3} x^{5}+\frac{7}{90} a^{4} x^{4}$ $+\frac{35}{9} a^{5} x^{3}+\frac{105}{32} n^{6} z^{2}$ for the area, $\& c \cdot \& c$.

Suppofe the ordinate of the curve MN to be alwaysequal to the rectangle of any power of the arc, verfed fine and fine $=z^{m} x^{n} v^{r}$ to find the area of the fpace $\mathrm{A} M \mathrm{~N}$ or the fluent of $z^{m} x^{n}$ vo $\dot{x}$.
Afrume $\frac{z^{m} v_{x}^{n+1}}{n+1}+s$ for the fluent, then $s=\frac{1}{n+1} \times: m$
$x^{n+1}{ }_{v}^{r} z^{m-1} \dot{z}+r x^{n+1} m_{v}^{m} r-1 \quad \dot{v}=-\frac{1}{12+1} \times: m$ $z^{m-1}{ }^{m} x^{n+1}{ }_{v}^{r} \times \frac{a \dot{x}}{v}+r z^{m} x^{n+1} v_{v}^{r-1} \cdot \frac{1}{v}=-\frac{n+1}{n} \times r z^{m}$ $x^{n+1} v^{r-1} v+a m z^{m-1} \cdot x^{n+1} \cdot v^{r-1}{ }_{\dot{x}}$. Again affumes $=$ $-\frac{1}{n+1} \times$ am $\infty^{m}-1+\mathrm{A}+r 氵^{m} B+t$ (putting $\mathrm{A}=$ the fluent of $x^{n}+\mathrm{I}_{v} r-\mathrm{I}_{v}$ and $B=$ fluent of $\left.\frac{\dot{x}}{\dot{v}} A\right)$ then will $\dot{t}=\frac{1}{n+1} \times$ :am.m-I $z^{m-2} \mathrm{~A} \dot{z}+r m z^{m-1} B \dot{z}$. Affume now this fluent $=\frac{1}{n+1} \times: a m \cdot \overline{m-1} z^{m}{ }^{2} \mathrm{C}+r m z^{m-1} \mathrm{D}+u$ (putting C fuming another value for that of $\dot{z} \mathrm{~B}$ ) by proceeding as before, and affuming another value for $u$, the law of continuation will be evident, putting again in this value $\mathrm{E}=$ flu $\dot{z} \mathrm{C}$ and $\mathrm{E}=$ that of $\dot{\sim} \mathrm{D}$; The Alent will therefore be generally expreffed thus $\frac{z^{m} v^{r}[x n+1}{n+1}-\frac{\mathbf{I}}{1+n}$ ( $r z^{m} \mathrm{~A}+a m z^{m-1} \mathrm{~B}+r m x^{m-1} \mathrm{C}+a m \cdot \overline{m-1} \cdot z^{m-2}$ D) $-\left(r m \cdot \overline{m-1} \cdot z^{m}{ }^{2} \mathrm{E}+a m \cdot \overline{m-1} \cdot \overline{m-2} \cdot z^{m-3 F+\& c}\right.$. $)$

To exemplify this theorem, take the I Exam. given by Mr. Simpfon to his folution of the fame problem at page 393 of his fluxions. Then will $m=1, n=d$, and $r=1$; whence $z v x-z A+$ fluent $\dot{z} A$ $=z v x-\frac{1}{2} x(x v-a z+a v)-\frac{1}{2} a x^{2}+$ luent of $\frac{1}{2}:(v z-$ $a x+a v) \times \frac{a v}{x}=z v x-\frac{1}{2} \times\left(z v x+a z^{2}-a v z-a x^{2}\right)$

## New Mathematical Queftions.

$+\frac{\pi}{4} \times\left(a x^{2}-a z^{2}\right)+\frac{\pi}{2} a^{2} x=\frac{1}{2} z v x+\frac{T}{4} a z^{2}-\frac{1}{2} a v x-\frac{\pi}{4}$ $a x^{2}+\frac{1}{2} a^{2} x=\frac{1}{4} a z^{2}-\frac{1}{2} a v z+\frac{1}{2} z v z+\frac{1}{4} a v^{2}$.
N. B. In the above quoted folution $x$ is the cofine, and in this $x$ is the verfed fine, if therefore in the conclufion $a-x$ be fubftituted for the verfed fine it will appear to corref pond with the above.
Scholium. From thefe may be had the folstions of feveral queftions that have been propofed in the annual publications relating to circular areas and cycloidal fpaces. The method may be purfued much farther, and extended to different enquiries of a fimilar nature, where arcs of any kind, hyp. logs. See. are involved with the fluxions of their contemporaneous parts, though perhaps not in fo concife a manner as by the method of affuming a feries with unknown coefficients, \&c. yet to beginners it will appear much more plain and intelligible, for whofe ufe and improvement the application of the theorems is intended.

New Mathematical Questions to be anfwered in next
Year's Diary.
[r] XIV. Question, by Mr. Edward Boucher.
$\left.\mathrm{G}^{\text {IVEN }} \begin{array}{r}x^{3} y+y^{3} x=a \\ x^{6} y^{2}+y^{6} x^{2}=b\end{array}\right\}$ to find $x$ and $y$.
[z] XV. Question, by Mr. Fininley.

GIVEN the difference of the fegments of the bafe, the difference of the angles at the bafe, and the rectangle made by one of the fides, and a line to which the other fide hath a given ratio: to find the triangle.
[3] XVI. Question, by Mr. John Lynn, of Sunderland

LET the given line AB be perpendicular to the the indefinite lise A $Q$ and drawing any right line BE from the fixt point B , to cut $\mathrm{A} Q$ in E , and taking EC thereon in a given ratio to EA ; it is ${ }_{\mathrm{r}} \mathrm{eq}$ quired to find the nature of the curve, $\& \mathrm{cc}$.
[4] XVII. Question, by Mr. George Sanderfon.

IN a triangle ACB, the bafe AB is given, and the difference of the fides AC and C B: it is required to confruct the triangle geometrically when the difference of $\mathrm{A} D$ and DC is the leaft poffible; CD being drawn from the vertex of the triangle $\ddagger 0$ meet the bafe in a given angle.
[s] XViII. Question, by Mr. Ifac Dalby.

IF AB and AC be tangents to a given circle meeting in the given point $A$, and from this point with a given diftance a circle be defcribed; it is required to draw a tangent to the firft circle, cutting the laft in $Q$, and the tangents in $N$ and $R$, fo that $N Q$ may be equal to QR.
[6] XIX. Question, by Mr. William Wilkin.

IF a caik is formed by the revolution of the quadratrix of Dinoftratus, about the diameter of the generating femicircle; it is required to determine the number of ale gallons it will contain when the bung and head diameter are 40 and 30 inches refpectively.

> [7] XX. Questron, by Mr. D. Cunningham.

R EQUIRED the fum of any number of terms of the intinite feries $\frac{2 \cdot 4 \cdot 6}{3}+\frac{4 \cdot 6 \cdot 8}{.3 \cdot 3}+\frac{6 \cdot 8 \cdot 10}{3 \cdot 3 \cdot 3}+, 8 c \mathrm{c}$.

## 48 Ladies and Gentlemens Diary.

[8] XXI. Question, by Mr. Thimas Mofs.

IF from the extremities $S$ and $V$ of the bafe of a triangle $S T V$ two lines be drawn through a given point N meeting TV and S T in C and A ; and the line TN be joined meeting AC in B ; alfo if from $A$ and $C$ parallel lines be drawn meeting the bafe in $M$ and $P$; then will $A B$ be to $B C$ as $A M$ to CP: required the demonftration ?
[9] XXII. Question, by Mr. Thomas Todd.

AHas ioool. due from $B$ one year hence, befides $D$ pounds feven years hence; to determine $D$ pounds, with the equated time, as given by Malcolm's method, fo that A may gain 201. more by this equatement than if he had received his money as it came due, 5 per cent. per annum fimple intereft being allowed to both A and B .

> [io] XXIII, Question, by Mr. Jeremiah Ainfworth.

HAVING a circle given in magnitude and pofition, the center of which is fituated in a line bifecting an angle made by two lines. given in pofition : it is required to draw a tangent to the circle, fo that the fegment intercepted between thefe two lines may be of a given length.
[ii] XXIV. Question, by the Rev. Mr. Crakelt.

GIVEN the triangle ABC, and the pofition of the point $P$ in the fide BC ; it is required to draw the line DE through the faid point, meeting $A C$ in $D$, and $A B$ produced in $E$, in fuch fort, that the fum of tho areas of the two triangles PCD and PBE may be equal to the area of the trapezium ADPB .
N. B. This is Queftion 337 of the Gent. Diary.

> [12] XXV. PRIzE-QUESTION, by Reuben Burrow.

IF AB, AC and AN be lines given in pofition, meeting in the point $A$, and $P$ a given poist; it is required to draw the line $P E$, meeting AB in D and AC in E , in fuch a manner, that EF bcing drawn parallel to NA to meet AB in F, the perimeter of the triangle, DEF may be the greatef poffible; without algebra.

Whoever gives the beft Solution to tbis $2 u$ uffion, before Candlemas-day, fall receive Six Diaries and a Silver Medal; and the Per fon who gives the next beft Solution Ball be intitled to the Prize of Twelve Diaries.
*** The Author of the Ladies and Gentlemens Diary does not prefume to reftrict any of his Correfpoxdents from contributing in any manner they may think proper to "otber publications of a fimilar kind," as he will always fudy to "give the preference" to merit only.

## 7uft publifhed, Price 2s. 6d.

Dedicated, by Permiffion, to the Hon. Commifioners of Excife.

$\Gamma$HE Defcription and Ufe of a new invented Inftrument for taking the true internal Diameter between the Bung and Head of any lying Cafk; together with a new and extenfive Table, fhewing the internal length; by Means of which and the faid middle Diameter, the Content of any Cafk of whatever Curvature may be truly and readily obtained.

By Mr. THOMAS MOSS.
Correfpordents are defired to fend their Letters directed to be left at MTr. Carnan's, No. 65, St. Puul's Church-Tard; or to MTr. Burrow, Mathematical Mafer of the Drawing Roont at the Tozver

# GENUINE MEDICINES, Sold by J. DREWRY, 

At bis Shop in the Irongate, and at bis PrintingOffice, in the Market-llace, Derby.

$A$DAMS's Solvent for the Stone, 5 s. perBottle Anderfon's Scot's Pills, is. ditto Beaume de Vie, 3s. 6d. ditto Bott's Corn Salve, is. per Box - Powders for taking out Greafe Spots, \&c. in Bottles of 6d. and is.
Betton's Britifh Oil, is. ditto Blacking Cakes for Shoes, \&c. 6d. each Bathing Spirits, 6d. per Bottle Bateman's Drops, Is. ditto Cordial Cephalic Snuff, 6d. ditto Dr. James's Powders, 2s. 6d. per Packet - Analeptic Pills, 4s. ditto

Daffy's Elixir, 1s. $3^{\text {d. per ditto }}$ Englifh Coffee, 2s. 6d. per Cannifter Flugger's Drops, 5s. per Bottle Fifher's Operating Oils, is. ditto
Greenough's Tincture for preferving and cleaning the Teeth, is. ditto
Grant's Chymical Drops, Is. ditto Godfrey's Cordial, 6d. ditto
Golden Spirits of Scurvy Grafs, 1 s . ditto
Glafs's Magnefia, in 6s. and 3s. Boxes
Girdini's Powders for taking out Ink-fpots, Is.
Hadfield's Tincture, is. per Bottle
Hooper's Female Pills, is. per Box
Henry's Calcin'd Magnefia, in Bottles of various Prices

Henry's

## $\left[\begin{array}{ll}2\end{array}\right]$

Henry's Chymical Nervous Medicine, 7s. the Pint Bottle, with a Box of Pills, and a Paper of Cephalic Snuff.
Hamilton's Tincture for the Tooth-Ach, 2s.6d. per Bottle.
Hypo-Drops, for Lownefs of Spirits, $3^{\text {s. }}$ 6d.ditto.
Hill's Medicines, viz. Balfam of Honey-Effence of Water-Dock-Royal Bitters-'Tincture of Sage-Tincture of Centaury-Elixir of Bar-dana-Tincture of Spleen W ort-Effence of Feverfew, \&c. \&cc.
Japan Ink, 6d. per Bottle
Ink Powders, 6d. a Packet
Jackfon'sBritifhPowder for the Teeth, is.perBox

- Tincture, is. per Bottle

Corn Salve, is. 6d. per Box
Iffue Plaifters to ftick without filleting, is. ditto Jefuit's Drops, 2s. 6d. per Bottle
Kennedy's celebrated Corn Plaiiter, is. per Box
Lowther's Nervous Powders, in Packets of 3 s. and 6 s . each
Drops, 3s. and 6s. per Bottle
Leake's Pills, 2s. 6d. per Box
Molineux's Smelling Medicine for the Itch, 1s. 6d. ditto
Norton's Maredant's Drops, 6s. per Bottle Ormfkirk Medicine, for Cure of the Bite of a Mad Dog, 5s. $3^{\text {d. each }}$
Peter's Pills, is. per Box
——Tincture, is. 3d. per Bottle
Plain Spirits of Scurvy Grafs, is. ditto
Pectoral Lozenges of Tolu, for Colds, \&c. is. per Box
Pullin's Antifcorbutic Pills, 2s. 6d. ditto

## $\left[\begin{array}{ll}{[ } & 3\end{array}\right]$

Pullin's Antifcorbutic Purging Pills, is. ditto
—— Female Pills, Is. ditto
Pike's Ointment for the Itch, 1s. 6d. ditto
Ratcliffe's Elixir, is. per Bottle
Stoughton's Elixir, is. ditto
Salt of Lemons, is. per Box
Scurvy Water, is. per Bottle
Swinfen'sElectuary for the Stone, 2s. 6d. per Pot Smith's Reftorative Medicine, ros. 6d. perBottle - Specific Drops for Venereal Complaints, 5s. and 2s. 6d. ditto
$\longrightarrow$ Treatife on the Venereal Difeafe, is. 6d. Turlington's Balfam of Life, $3^{\text {s. 6d. and } 1 \text { s. } 9 \mathrm{~d} \text {. }}$ per Bottle
Velno's Vegetable Syrup, for Venereal and Scorbutic Complaints, Ios. 6d. ditto Vandour's Nervous Pills, 2s. 6d. per Box Ward's White Drops, Is. per Bottle.

## Of whom may be had,

 [Just Publish'd]The following $\mathrm{B} O \quad \mathrm{O} \mathrm{K} \mathrm{S}$, viz.

1. The FARMER's DIRECTOR ; Or, A

Compendium of English Husbandry: Concifely deffribing the Management of Land, and cultivating the feveral Kinds of Corn and Pulfe. -Of Graffes and Plants for the Food of Cattle, and their feveral Feeding Qualities.-Of Meadows and Paftures, and a new Syfem of applying the Grafs Lands of a Farm. Price $2 s$.
2. EVERY FARMER his Own CAT'TLE DOCTOR; Containing a full and clear Account of the Symptoms and Caufes of the Difeafes of Cattle, with the moft approved Prefcriptions for their Cure.-The whole Adapted

## [ 4 l $]$

to the Capacities and fuitable to the Circumftances of every Farmer and Countryman. On a Plan more enlarged than any Thing hitherto attempted. Price $2 s$.
3. A SYSTEM of the LAWS relative to BANKRUPTCY. Shewing the whole Theory and Practice of that Branch of the Law, from the iffuing the Commiffion to the final Dividend and Writ of Superfedeas for diffolving the fame. With other ufeful Inftructions. Compiled for the Ufe of the Debtor, Creditor, Affignee, Bankrupt, and all others that may be interefted therein. Price 2s. 6d. fewed.
4. EVERY LANDLORD and TENANT his Own LAWYER: Or, The whole Law refpecting Landlords, Tenants, and Lodgers; laid down in a fimple, eafy and comprehenfive Manner, free from the technical Terms of the Law. Price 2s. 6d. fewed.
5. A DIGEST of the LAWS relating to the GAME of this Kingdom. Containing all the Statutes refpecting the different Species of Game; including thofe which have been made for the Prefervation of Sea and River Fifh.
6. The PARISH OFFICER's Complete GUIDE: Containing the Duty of the Churchwarden, Overfeer, Conftable, and Surveyor of the Highways, as fettled by the Act of Parliament paffed laft Seifions. Price 2 s .
7. The DEBTOR's POCKET GUIDE, in Caies of ARREST : Containing Cautions and Inftructions againft the Impofitions and Extortions of the Serjeants at Mace, Bailiff, Gaoler, \&c. Thewing how a Perfon is to conduct himfelf upon an Arreft; the Sheriff'sPower in taking and refufing Bail, \&c. \&ic. Price 2s.

