I

 A R 0 R, ROYAL ALMANACK; For the Year of our LO R D, 1779: Reing the Third after Birfextile, or Leap Yeans $A N B$ The Nilyeteenth Ycar of the Rcign of his Prefent Majefly George the Third. By IE EUEN BUPROW, Late Affitant Aftronomer at the Royal Obfervatory, and Teacher of the Mathematics.

Printed for T. CARNAN, in St. Paul's Church Yard, who difformedy the Stationera Company of the exclutive Privilege of Printitik Almanacks, which they ha. unjuitiy monopolized 170 Years.
(2)

(2)

$$
x_{1}^{3} x_{1} \quad 0=\frac{1-1}{2}
$$

$$
\begin{aligned}
& 11=\mathrm{Na}
\end{aligned}
$$

ECLIPSES in 1779.

This year there will be Five Eclipfes, Three of the Sun, and Two of the Moon, which will happen in the following Order: The Firft Eclipfe is of the Sun, which happens on the I6th of May, at Six Minutes paft One in tle Morning, invifible. The Second is of the Moon, partly vifible, and happens the 3oth of May, beginning Two Minutes paft Three in the Morning; Middle Fifty- Five Minutes paft Four, and ending at Forty-Eight Minutes after Six; Digits eclipfed $15^{\circ} 47^{\prime}$. The Third is of the Sun, vifible, and happens the I4th of June; Beginning Scren Hours Eightecn Minutes in the Morning; Middle at Seven Hours Fifty-Nine Minutes, and ends at Eight Hours Forty-Three Minutes; Digits eclipfed $30 \frac{1}{4}$ on the North limb. The Fourth is of the Moon, vifible; and happens the 23 d of N (vember; Reginning at 6 Hours $7 \frac{1}{2}$ Minutes in the Afternoon; Middle 7 Hours $57 \frac{1}{\pi}$ Minutes; and ends at 9 Hours $47 \frac{1}{2}$ Minutes; Digits eclipfed 20° $42^{\%}$. The Fith is of the Sun, and happens the 7 th of December, at in Hours ar Minutes, hat invifible.

Common Notes, 1779.

The Four Quarters of the Year.
The Spring Cinarter begins this Year the 20th of March, at 5 Hours 53 Minutes after Noon; at which time the Sun enters the Equirtoctial Sign Aries, making equal Day and Night all the World over.
The Sumsicr Quarter commences the 2 Ift Day of June, at 4 Hours 3 Mimutes, Afternoon, the Sun then entering into the Sign Cancer, making the longeft Day to all the Northern, and the fhorteft to all the Southern Parts of the World.

The Autumnal Quarter begins the 23d Day of September, at 5 Hours 35 Minutes in the Morning, at which Time the Sun enters $L_{i b r a}$, making again equal Day and Night to all the World.

The Winter Quarter lin in the 2 ift day of December, at 9 Hours 57 Minutes, Afterino: Sun then entering into the Tropical Sign Gafricort, making the i...teft Day to the Northern, and longeft to the Southern Inhabitants of the World.

\section*{WEIGHT and VALUE of the Gold and Silver Coins of England. Weight.
 > Value.

 Value.

 Value. GOID. dwt. grs.
 A Guinea
 Hali Guinea
 Quater Cuinea SIIVER.
 A cısкп
 Ealf Crown Shilling
 | 5 | 9,438 | 1 | 1 | 0 |
| ---: | ---: | ---: | ---: | ---: |
| 2 | 15,719 | 0 | 10 | 6 |
| 1 | 8,359 | 0 | 5 | 3 |
| | 8, | 8,519 | 0 | 5 |
| 19 | 0 | | | |
| 9 | 16,259 | 0 | 2 | 6 |
| 3 | 20,903 | 0 | 1 | 0 |
| 1 | $22,45!$ | 0 | 0 | 6 |}

Curent Cold Coin muft weigh as follows.

	dwt.
	grs.
Cuineas	8
Half Cuircas	2
Qurier Cuineas	18

Sun enters Aquarius 20d. 2 h .32 m . murn. Apparent time. Firft Quarter 25 day I 1 h .27 m . morning

$1 \mathrm{~F}$	Circumcifion			85	$13 \quad 55123$				13
	Aldebaran, So. 9h. 33 m .			85		55		gifes	16
3 C	2 S.aft.	- Chriot.		84	3 56: 22			A 54	17
4 M				83	$35^{3} 57{ }^{12}$	43		13	18
5 ¢u	fupiter ri	rifes Ioh	. $29 \mathrm{~m} \cdot \mathrm{~N}$	- 8	$35^{3} 582$	37		41	9
6 W	E_{S} iphan	y. Twe	vifib Day	, $\left\lvert\, \begin{array}{ll}8 & 1\end{array}\right.$	$3{ }^{3} 59{ }^{2} 2$	30			20
7 TH				8 0	4022	22			21
8 F	Lucian			759	$4 \quad 12$			- 39	22
9 S				758	4.222	6		Torn.	23
10 C				757	$4 \quad 3 / 2 \mathrm{I}$			49	24
1 I M	Plorv	ond.		756	4421	47		58	25
12 FU	Jid N. 2	r. day:		755	$4 \quad 521$	3^{8}			26
13 W	Camb. T	T. b.	-	754	46	23			27
$\mathrm{I}_{4} \mathrm{IH}_{H}$	Oxford	Iermbe	egins	753	472			23	S
15 F	Exchequ	uer open		751	$4 \quad 92$			25	29
16 S				750	41020	55		I 3	30
In C	$2 \mathrm{~S}, \mathrm{aft}$ 。	Epip. 0	Old True	749	4 II 20	43		fets	1
N	O. La. b	Epip.	- Prifc	748	4 1220	3 I		A. +5	2
19 CU				746	4 I 420	18		53	3
20 W	Fahian.	8		74	$+1520$	5			4
I TH	dsues			74	4161	52			5
22 F	V incent			742	4 181	38			6
2.5	Hilary	!mbes		741	4 19 ${ }^{\text {I }} 9$				
	3 S.aft.	Epip.		740	42019	10		- 59	8
	Ciosverjiun	n of St		738	- 22 I 8	55		Iom.	9
6 it				736	+ $2+18$				10
$27 \cdots$	1-A.Er	b, I	R	. 735	+25 18				11
${ }_{28} \mathrm{TH}^{2}$			[2 Ret.	.733	+ 2718				12
9 T	Sirius. S	S. 9..		$7{ }^{7} 1$	$+2017$	53			3
30 S	8. Cha	. T. Mar	rtyr.	730	$+3017$	37		31	14
	Goptraa	chuma Sn	unday	728	+ 32117	3	7		
Days	2. of D. 1	Daysinc.	10	Sun E	Hw.ends				
I	751	$\bigcirc 7$	59	441	6		8		
6	758	- 14	556	443				8	
11	88	- 24	553	446	6 7		29	8	
16	8 I 9	035	548	449	6 1 2		19		
21	832	- 48	543	453	617			7	
26	847	3	537	457	623	13		6	58

1779.

March hath XXXI Days。
ull Moon 2 day 2 h .12 m . atre:ncon TS. enters Aries Laft Quarter roday $2 \mathrm{~h} .4^{2} \mathrm{~m}$. morning Tow Moon 18 day 2 h .52 m . moming, 20才. 5h. 53 m . atternoon. Firft Quarter 25 day + h. 31 m . morning

Apparint ume.

?

April hath XXX Davis									
2 F Good Friday									
3 S R. Eithop Chichefter $\quad 1 \begin{array}{lllllllllll}5 & 29 & 61 & 5 & 22 & 9 & 35 & 18\end{array}$									
4 C Eatter Day. St. Ambrofe 5277633054510049									
7 W									
8'THRegulus So. 8h. $47 \mathrm{~m} \|$5 19 41 7									
12 M									
13 T									
14 W Oxf. and Camb. T. beg.5 18									
5 1									
I6 Procyon So. 5 h. 53 m (5 465610 10 fets									
2010									
I W Term besins									
IH									
F St. Gearge									
24 S Jupiter rifes 3.49 N. 4 ¢ $50 / 71010$									
F									
Duys									
			33^{2}						
6	$\begin{array}{ll}13 & 13\end{array}$			6					
	$\begin{array}{ll}13 & 33\end{array}$			$6 \quad 27$	8				
	352	S	252						
	10			639	9				
26	28	644		644					

1779. May hath XXXI Days.

Latt Luarier 8 day 5 h .10 m . atternoon

New Moon 16 day i h. 6 m . morning. Sun enters Gemini. Finft Quarter 22 day 4 h .36 m . afternoon 21 d .7 h . 19 m . morn Full Moon 30 day 4 h .52 m . morning |Apparent time.

(2)

(2)
$10 \quad$ Auguft hath XXXI Days. 1779.

Lait Qiarter 5 day $7 \mathrm{~h} .29 \mathrm{~m} . \operatorname{morning}$
New Moon. I i day ioh. 51 m . afternoon Sunenters Virgo. Eirft Quarter 18 day 10 h . 0 m . afternoon $23 \mathrm{~d} . \mathrm{gh} .13 \mathrm{~m} . \mathrm{mo}$. Eull Moon 27 day 2 h .5 m . morning Apparent time.

1779. September hath XXX Days.

Laft Quarter 3 day 3 n .49 m . aiternoon New Moon 10 day 6 h .56 m . morning Firft Quarter 17 day $2 \mathrm{~h}, 30 \mathrm{~m}$. morning $23 \mathrm{~d} .5 \mathrm{~h} .35 \mathrm{~m} . \mathrm{mo}$. Full Moon 25 day 4 h . 51 m . afternoon Apparent time.

1 W	Gites				$131^{6} 471$	817	8 A 59	22
${ }_{2} \mathrm{~T}_{3}$	r_{6} London	n burnt 1	1666 O S		150645	755		23
3 F	F Aquilæ	So. 8h.	50m		16044	733		24
4 S					$1 ¢ 542$	710	1035	25
5 C	C2S.a	aft. Trin			2 c 040	648	$1 \begin{array}{ll}11 & 36\end{array}$	26
6 M					22.538	626	Morn.	27
7 Tv	U Eunurc	chus.			$24.5{ }^{5} 6$	63	53	28
8 W	\checkmark Nativity	ty V. Mar			26 ¢́ 34	541		29
9) $\Gamma_{\text {P }}$					28632	518		1
I0 F					305030	455	D fets	2
	5 Fomalh	haut Sou	uth		32686	43^{2}	7 A 20	3
12 C	I 5 S. af	aft. Trinit		53	34626	410		4
$\mathrm{r}_{3} \mathrm{M}$					36614		53	5
14 Tv	Holy C	Crofs			386	323		6
15 W	VEmber	Week			$40^{6} \quad 20$			7
16 H					42018	237		8
17 F	Lambert				446516	214	$94^{9} 42$	9
185				,	46614	151	10	10
19 C	16S. af	ft. Trinit		54	$4 \varepsilon 60$	127	11	11
20.4	1 Saturn	fets 7. 5	51. night	$t 5$	5 c 610	4	Morn:	12
21 fu	USt. Mat	thew			5268	- 41		13
22 W	Wh. Geo.	.LII. Co	or. 1768.		546			14
$23 \mathrm{TH}^{2}$	H Equal D	Day \& N	Night	55	566	- 60		15
$24 . \mathrm{F}$					586	30		16
25 S	Foma	t			- 60	53	Drifes	17
$26 . \mathrm{C}$	I 7 S	in.	S		2558		$6 \mathrm{~A}_{40}$	18
27 M					4556	140		19
28 Tv					${ }_{6}^{6} 554$	23	$7{ }^{7} 13$	20
29 W	St. Mich	,	Char. A. b.		$8 / 55^{2}$	227	$7 \quad 35$	21
30 TH	H St. Fero				10550			22
Days	L. of D.	Days dee						
1	133^{2}							
6	1312	322	322	621	1888			3
11	1253	34^{1}	334		5826		2	
16	1233	4	346	6	9 5 14		6	
21	1214	420	359	6	28		13	42
26	1154	440	3 $+\quad 9$	55^{6}	6751	4	7 + 3	24

12 October hath XXXI Days.

1579
Latt Quarter 2 day 10 h . 5yli.atternoon New Moon 9 day 5 h. I $3^{\text {nu.afternoon }}$ Sun enters Scorpio. irft Quarter if day 9 h. 52 m . morning $\quad 23 \mathrm{~d}$. ih. 26 m . aft. Full Moon 25 day 6 h .52 m . morning Apparent time.

${ }_{1}{ }^{\text {F }}$	Remigiuis				54	3145	$8 \mathrm{~A}_{4}$		23
	5 Mars	Cets 8 h	$57 \mathrm{~m} . \mathrm{N}$.	613	542	337			24
	C I 8 S.	aft. Trin	nity	615	545	$7 \quad 0$	1041		25
M	4			6 I 4	543	423	Morn.		26
5 Ir	If Fomal	haut Sou	uth 959	$\begin{array}{ll}6 & 19\end{array}$	54	44%	$0{ }^{-}$		7
6 IV	1 Faith			$6 \quad 21$	53 !	5 IC			8
7 Im				2	531	533	5		29
8 F				2	5,35	55^{6}			30
$9{ }^{5}$	S St. D			$2 ;$	533	6 19	() fut		1
10, C	C 19 S	aft.Tr.	O. Mich. d	$1,2 c$, 31	64^{2}	6		2
$11 . \mathrm{M}$	Oxf.\&	Cam. Te	rms begir	15	520				3
It	t			63	527	727			4
13	Tr.	Ed. Conf		, 35	525	749			5
14					$5^{2}=$	812			6
${ }^{1} 5$	Fomal	haut So.	9 h 23 m	63	5	834			7
165	S Jupier	rifes 5.	28. miorn	r) 6	5 I,	850			8
${ }_{7} 7$.	C 20 S	aft. Trius	Etbolre	543	517	919			9
$18 \mathrm{M} /$				64.	1	940			
$10 . \mathrm{Tu}$				4.	51	10	Morn.		
20 W				46	5 L 1	1024	- 36		2
$2: \mathrm{TH}^{2}$				57		1045			
22 E	Fatur	ets 6.	Night	t 65	5	1 If 7	3 4		4
23.5				$65:$	5	II 28			
	C 215.	aft Tria		657		1149			
25 M	13. Geo	.III Acc	eff.Crisiz	659		210	D Hic		
3610	U1.	: 7	cl ij6=	$17 \quad 1$	$+5$	1230	5 A 44	18	
${ }_{2} 7 \mathrm{~W}$				7 3	$+5 i$	1251		19	
28 m	ISt. S	on and	de		$+5$	13 II		20	
29 E					54	1331		2	
:0, 5				$7 \begin{array}{ll}7 & 8\end{array}$	52	135^{1}		2	
3: C	C122S.	aft. Trin		17 I				23	
Days		Lys dc	1	-			Star		
1	11 3^{6}	4	20	50	7	4010	223 M		
6	II 15	$5 \quad 19$	$+30$	43	73	3011	5^{2}	4^{8}	
11	1055	$5 \quad 39$	$4 \quad 40$	37	$7 \quad$	2013	12.2	29	
16	10 36	$5 \quad 58$	$4 \quad 50$	31	7 I	$1{ }^{1} 14$	20		
21	1017	$6{ }^{6}$ I7	59	25	7	$1{ }^{1} 5$	15		
26	958	$\begin{array}{ll}6 & 36\end{array}$	$5 \quad 75$	5191	6	5315	52	33	

1779. November hath XXX Days.

Lait Quar.es I day 5 h. 47 m . mornifis New Moon 8 day 6 h .24 m . morning Firit Quarter 16 day 6 h .35 m . morning Eull Moon 23 day $7 \mathrm{~h} . ~ \$ 7 \mathrm{~m}$. afternoon Laft Quarter 30 day 1 h. 16 m atemonn
S.ent.Sagittarine 22d.gh. 35 mm. mo. Apparent time.

1 MAll Caints	
2	TuF. Ed. bo. 156 All Soul:
3	W Mor. of all Souls i Ret

s, MPrs Aug Sophia born 9 Tt d. Mayor's day IO IV
I I IHS゙ I . Martin
I2 Fi Mior. of St. Mart. 2 Ret I 3 Britius. [Can. T. di. I $+C \in \neq S$ aft. Trin.
15 M rifachutus
I 610
I7W Hugh B. Lirco'n
18 InIn 8 day of t. Mar. 3 Ret.
1y, Fomalnaut So 7 h .5 m
20 S Edm. IT. and Atiart.
2 IC 25 S. aft. Trin.
22 Mácilir. Old Mart. day
$=3 \mathrm{IE}$ it. Cienwe t
D. of Glo. bo. I 743 . Cach 2 कि) [in I 5d of S.Mart. 4 Ret

| 27 | |
| :---: | :---: | :---: |
| $2 \times i$ | Advent Sunday |
| 2 | 1 Michaelm. Term end |
| 3 | OSt. Andrew |

7 II	4. 45	$1+30$
713	44°	If 49
715	+ 4!	I 58
717	$+43$	$15 \quad 26$
7 r 5	± 43	15.45
1720	$+4 C$	163
722	$+38$	1621
77	+ 3i	I6 38
$7 \begin{array}{ll}7 & 25\end{array}$	$+35$	1650
727	+ 33	I7 73
729	$+31$	$17 \quad 29$
730	43 C	1746
731	+ 20	18
733	+ 2%	18 18
1735	+25	1833
730	+ 24	1848
737	$+23$	19
739	$+21$	19 I 8
174	410	1932
3	4 I	1945
4 +	: It	1959
45	+ 15	2012
74	- $1 \hat{2}$	$20 \quad 24$
7	+12	:0 37
7	- IC	? 79
$7 ; 1$	$1+$	21
	¢ E	21 II
		2 I 22
7 ¢	$($	二1 32
, ¢	1	214

[1 A I \%	$2+$
inorn.	25
- 44	26
2 \%	27
$3 \quad 25$	28
44.	29
6 7	I
D fets	2
5 A IC	3
$5 \quad 41$	4
$6 \quad 2 \mathrm{C}$	5
78	6
86	7
913	8
1019	9
II 30	10
morn.	11
- 42	12
I 5.3	13
3)	14
+ 23	15
$5 \quad 44$	16
"rifes	I 7
$+\mathrm{A}_{3}$	18
$5 \quad 23$	19
022	20
$7 \quad 37$	2 I
0 I	22
1025	23
$1: 47$	24

		D	129			4					
1	9		0	58	5		,	12	6	t	- 2
6	,	18	7	10	5	2.	5		0	6	3
11	9	,	7	33	5	32	5	2	Ć	6	2
It	8	45	7	49	,		4.	57	0		22
21	8	31	8	3	5		4	5 ?			
2 2	8	3	8	16.		4.0	4	50		6	

$12 F$
6
16
15
14
13
12

Stirs So.

14	I MIO
4	U
49	

4	0	31
55	0	10

45 Ir A 45
S. ent. Capricorn 2Id. $9^{\mathrm{h}} .57 \mathrm{~m}$. aft Apparent time.

A Table of TERMS and RETURNS,

Hilary Term begins Juin. 23-ends Feb. 12.
Rerums or inivgn Days. itac. Kel. Ap. W. D.

| In 8 Days of St. Hiialy - Jan. 20 | 21 | 22 | 23 | Faturd |
| :--- | :--- | :--- | :--- | :--- | | In Fifteen Days of St. Hilary - | 27 | 28 | 29 | 30 | Eaturd |
| :--- | :--- | :--- | :--- | :--- | :--- | The Morrow of the Purification Feb. 3 In Eight Days of the Purification

Faster Term begins April 21 -encs May 17.

-	19	20	21	W coin
From Eafter-day in 1 hree Weeks 25	26	27	28	Wedn
From Eafter-day in 1 Month, May 2	3	4	5	Wedn
From Eafter-day in Five Weeks 9	10	11	12	Wedn
On the Morrow of the Afcerfion Id	15	16	7	Von

Trinity lerm hegins tune 4 -ends !ure 23.

In 8 Days of the Holy Trin. June 67
In 15 Days of the Holy Tinity 13
In 3 Weeks of the Holy Trinity 20

14	15	16	Wedn
21	22	23	Wedn

M chaelmas Term begins Nov. 6 -enas Nov. 29. Un the Morrow of all Souls, Nov. On the Morrow of St. Martin - 12 In Eight Days of St. Martin - 18 (in Fifteen Days of St. Martin $\quad 25$

4	5	6	Saturd
13	14	15	Mond
19	20	22	Mond
26	27	29	Mond

Note, That the Firft and Latt Days of every 'Term are the Days of A ppearance. - No Sittings in Weftminfter-Hall on the 2d of February, Afcerfion and Ividfummer Days.

Oxford Terms.
Lent T'erm - begins Jan. 14, ends March 27. lafter Term begins April I4, ends May 20. Trinity Term begins June 2, ends July 17. Nischaeimas Term begins OEt. 11, ends Dec. 17.

The Act will be July 12.

Cambridge Terms.

Lent Term - begins Jan. 13, ends March 26.
Fafter Term begins April 14, ends July 9.
Michaelmas Term begis OAt. 11, ends Dec. 16. The Commencement will be July 6.

HOLIDAYS kept at. the EXChequer, Bant, Stamp Office, excise office, Custom Huge, East India and South Sea Houses in 1779; viz.
January 1, 6 not at S. Sea \mid September z not Cuff. H. I 4 House, 18, 25,30
February 2, 16, 17, 24
March i not at Bank, Cuff.
House, Stamp Office, $2 ;$

- april 2, 5,6,7 not C. Hour. 23

Nay $1,13,24,25,26,29$
June 4, 10 not Bank, Cult. H. Excheq. 11, 24, 29
Jug 15 not at Stamp-Office, Bank, Cult. or S. Sea II.
fugult in not Cult. H. Bank or S. Sea H. 12, 24.
not at Bank, Cut. H. S. Sea H. or Stamp O. 21, 22, 29

October 18,2 5 not at Cuff. H. 26 not Cuff. H. Stapip. O. or Excife O. 28 not C. H. Novemb. 1, 2 not at Cuff. H Bank, Stamp O: or S. S. H. 4. 5, snot at Ex. 17 not Cl. H. Bank, or S Sea H. 25 not at Cuttom H. Bank. Excheq. or Excife-O. 30 December 21, 25, 27, 28.

TRANSFER DAYS

 At the BANL.DIVIDENDS. due. Stock, Tuefday, Thurfday, and Friday 3 fer cent. reduce. Tue!. Vic. Th, and Fri. 4 per cent. conf. Ana. Mon. Wed. and Fri. 4 per cent. new, Tueflay and Thursday Short annuities 1777, Wed. and Saturday
3 - half per cert 1758 , Mon Wed. and Fri. 3 per cent. conf. Thu. W'ed. 'Th, and Fri. 3 per cent. I" 5, Tuefdy and Thuriday Short Annuities 1778 , Tuefo a td Thant. Long Anna bes, Wedreday and Sati day

At the SOUTH SEA HOUSE.

 sock, Monday, Wednerdy, and Friday. ; percent. Nev Ara Tel. Thur and Sat. 3 percent ifs , lu da ny amathaday. 3 per cent. Old Ane. ilion Vied. and fri. Ap. 5. Oct. 10.
EAST INDIA HOUSE.

rock, Tuesday, Thurfay and Saturday, Jan. 5, July 5. percent. cont. Anm...lon Wed. and Fr Apr. Io, OÉr. 10. - vicunas paid at the Banian tical 9 to 1 , ad ed foehn 1 to 3 Transfers
nuviends ar the South Sea ard India Hones from 9 to 12. Transfers
Intercity on India Bonds sue, March 31, September 30.

$$
\begin{array}{lllll}
\mathrm{F} & \mathrm{I} & \mathrm{~N} & \mathrm{I} & \mathrm{~S}
\end{array}
$$

A COMPANIONTO

The LADIES and GENTLEMENS

D I A R Y,

FOR THE YEAR 1779:

CONTAINING
厌NIGMAS, REBUSSES, MATHEMATICAL ESSAYS, QUESTIONS AND SOLUTIONS, \&c,
By REUBEN BURROW,

Late Affiftant Aftronomer at the Royal Obfervatory; and Mathematical Mafter of the Drawing.Room in the Tower.
L O N D O N,

Printed for T. CARNAN, in St. Paul's Church-Yard.

18 The Ladies and Gentlemens Diary.

Answers to the Queries, Rebusses, dec. in Laft Year' Diary.

Query I. Anfwered by Mr. Dalhy.

THE colf of the leg feems to have had its name from two cimbric words, cal, ftout (or large, with refpect to the other parts of the leg) and lef, always bent, or of a bended form [vid. Goropius Becanus] and from thence the Dutch name kalf, from this the Englifh is cvidently borrowed.

Query II. Anfrucred by Mifs Greville.

When a piece of iron is heated red hot and cooled in the open air its bulk becomes greater, or, it occupies more fpace, and therefore the particles compofing it are at a greater diftance from each other than before, and confequently the whole is lefs compact and fofter; but the contrary happens if cooled in water; for, in heating, a great part of the air it contained is excluded by that-operation on account of its expanfion and rarefaction; then fuddenly plunging it in water, the air is thereby prevented from infinuating itfelf into the metal while it cools, and fo the particles, having more room, fall nearer together, which evidently muft render it of a firmer texture.

> Query III. Anfwered by Dr. Slop.

As Cotton only meant hy the words in queftion to give a burlefque reprefentation of the violence of the form ; his intention was evidently to compare its effects on the world with thofe of wine on the head of a d:unkard; and as the Samous Barnaby Harrington was not long before Cotton's time, fo remarkable for his drunkennefs and his poetry, he is dubsiefs the perfon alluded to; and threfore to dunce Barnaby, is only another exprefion for reeling.

Query IV. Anfzered by Mifs Polly Lee.

Problems in plane geometry can be drawn more exact with great diftances than with fmall, becaufe all points and lines in practice are of fome breadth, and fuch breadths will hold a lefs proportion with great than with fmall difances, and confequently the errors in drawing will be lefs in uling long lines thain fhort ones: To explain this, fuppofe the circumference of a circle whofe ciameter is one-tenth of an inch, is to be divideti into 1536 equal parts by lines drawn from the centre, this we will fuppofe to be done by a continual bifeation of the chords, now when we come to the lait divifions, we fhall find that the lines whic's are to divide the chords, will be as broad as the chords are long, though perhaps the inftrument may be as fime as pofilble ; but this would not be the cafe if the diameter was two or three yards.

2uery V. Anfwered by Caput Mortuum.

V. he ice the falt of the fea proceeds is a curinus but difficult problem. According to fome Naturalifts it is owing to the mines of Sal Gem in the bowels of the earth wafhed dows: by the rains ;-- admitting this, the Sea muft grow continually fater, becaufe the water raifed by eva.

Anfwers to Queries, Rebuffes, \&c.

portion is frefl. On this fuppofition Dr. Halley proposed a theory to determine how long the world has fubfifted; but as observations have not been made of the degree of its faltnefs at diftant periods of time, it muff be left to the determination of the curious in future ages.

Answer to the Paradox, by Mr. John Wales.

Behold, honest David, your leeks I have planted
In twenty-eight rows, and exact as you wanted;
In the margin pray view them, nor take them on cruft,
You ma count all the rows, for the number is jut.

In this manner it was Anfwered by $M r$. Silcock, and many others.
Rebus II. Anfwered by Mr. John Clarke of Lincoln. Daily, we know thou cant with cafe write well, But joke no more about that place call'd Hell.

Aiffuer to the Acrostic Rebus, by James Twitcher.
Perfidious France and haughty Spain
Are at their dirty tricks again;---
Had but King George advis'd with Cbatbam, The British Lion had been at 'em.
All the Rebuses anfwered by Mr. John Wales.
I find 'tic fám'd Newton Miff Lee Arrives to hide, And Hell is the place where the wicked refide, II. Mifs Greville to nobody fem to be join'd, III. But Beatrice the fair is in marriage combin'd, IV. Great Milton and Chatham then bring up the rear; V. VI. So I hope all the Rebufies I've made appear.

Answers to the Enigmas in laft Year's Diary.

I. A maidenhead
II. Nothing
III. A moufitrap
IV. Tobacco
V. Charity
VI. Yourself
VII. A key
VIII. A bum or deceit
IX. Patience
X. Nonsense

Prize. A kiss:
B_{2}
$T b z$

20 The Ladies and Gentlemens Diary.

Tbe Prize Enigma anfueved by Mr. Jufeph James. Let poets talk of that or this, L. Walker well defcribes a $k i / \mathrm{s}$.

The fame anfouered by Cymon.
As Chloe was fleeping, Hodge view'd the dear maid
With a rapt'rous eye, and exultingly faid;
I'll fnatch a fweet $k i f s$, ere fhe opens her eyes,
And claim both the gloves and the Diary Prize!
Tbe fame anjquered by Milito of Tbingdon.
Friend Walker, a $k i / s$ is fure higheft blifs
To each true and lovely fweet pair,
But oft the fair maid by kiffing's betray'd, And artfully drawn in a fnare.

> Tbe fame anfwered by Silvia.

Indeed, my friend Walker, you're perfectly right
In faying that kifing affords great delight,
A moft pleafing fenfation fills every vein
In receiving falutes from a favorite fwain.
All the Rebufies and Enigmas anfovered by Mifs Eliz. Cockbill, of Mansfield Woodboufe, in Nottingbamßire.
My maidenbeaa's my bope, my pride, I. IX.

I've beauty's moufetrap on my fide;
The flatterer's $k c y$-like $k i f_{s}$ I'll fhun, And from the fmoaking fot I'll run;
Of prating fops I'll take no heed,
Their nonfenfe notbing can excced;
Nor fhall deceit my actions ftain;
Ner felf conceit over me reign;
But l'll be jovial, gay and free,
And live with all in cbarity : But, if my lucky ftars defign
That I in marriage knot fhall join,
Then may my confort be as rare
As Milton or great Neruton were.
With him thẹn I'll to Cbatbam fail,
I. IX
III.
VII, Frize.
IV.

And there fteer thro' life's chequer'd vale,
I'll fear Nobody's envious fpell,
X. II.
VIII.
VI.

Nor all the ferene wishts of Hell;
III. Reb.

But to my love I will prove true
'Till Death commands to bid adieu.
General Anfwer to the Enigmas, by Mr. Leonard Walker.
Accept, my dear Lucy, advice from a friend, And adhere to the rules which I now recommend :
Tho' Strephon adores you, be careful of this,
To repulfe his bold freedoms nor grant him a kifs, Prize. Such freedoms admitted will read him to more, Till he gains the laft favor and makes you a w--e! I.

Anfwers to Queries, Rebuffes, \&c. 21

Let notbing perfuade you, not love, praife, or pelf, II.
To forget for a moment what's due to yourfelf. VI.
Let meeknefs and cbarity guide you thro' life, V. IX.
They're the keys of true knowledige for maid or for wife ; VII.
And will lead you the nonfenfe of fops to defpife, X. And to laugh at the pert and affectedly wife; No deceit ever ufe to entrap the unwary,
'Twill and but in fums and furely mifcarry. IV.

This advice, my dear Lucy, is homely and plain;
Yer I think it can do you no harm in the main.
General Anfzever to all the Enigmas, by Mr. John Clarke of Lincoln.
As lately I my annual journey went,
At Maidenbead a pleafant evening fpent: I.
Notbing was wanting to increafe our mirth, II.
And drinking deep gave noife and nonfenfe birth; X.
Snug as are mice within their wiry-boufes, III.

We drank remembrance to our abfent foures;
Smok'd Trinidado whilft we drank our nappy, IV. Suntry glees and catches and were raftly happy.
No narrow minded wretch difgrac'd our board,
Nor fuch who cannot charity afford ;
But all were focial, jovial, merry fouls,
And brifkly puff'd about the flowing bowls ;
My faculties grew weak, the liquor ftronger,
I foon was tipfy and could fay no longer,
Then lily left them as my fancy led,
And took my felf, with decency to bed.
VI.

I lock'd my door that none flould therein come, VII.
And laugh'd that I had play'd them fuch a bum. VIIt.
With fweet content I flept away the night, IX.

And did not wake until the morning light.
The woodlark's fong proclaim'd th' approaching morn, And Phobus rays falute the waving corn.
Ingenious Anfwers to the Queries, Rebuffes, Enigmas, \&c. have been received from Mifs Lee, Mifs Brown, Silvia, Beatrice, and Meff. Rogers, James, Pepys, \&c. which for want of room we are obliged to omit. The Prize of tea Diaries feil to the lot of Mifs Eliz. Cockbill; who is defired to fend to Mr. Carnan's, No. 65 , St. Paul's Church-Yard, for them.

New Queries, Rebusses, Egc. to be anfivered in next Year's Diary.

I. Query, by Mr. Dalby.

How are we to underftand this expreffion of Job, Chap. xxvi. ver. 5 . Dead things are formed from under the waters, and the inhabitants thereof?

II. Query, by Mr. John Clarke.

Upon what natural principles are we to account for a feemingly cotal alteration of air, climatr, and feafons, in many difierent parts of

22
 The Ladies and Gentlemens Diary.

the world? Why are fummers in England become of late years fo wet and winterly, and in general, the weather fo uncertain and variable? And why is Montpelier not the falutary fpot it ufed to be?
III. Query, by Mr. John Wales.

Diarian artifts, make appear
How long fince bats firft came in wear.
IV. Query, by Mr. Thomas Hoy.

In the fecond chapter of Samuel, it is mentioned that Eli's fons ufed a fiefh hook to pull meat out of the pot. Query, was this book barbed or not?
V. Query, by Mr. J. Burrow.

If a perfon breathes upon the blade of a new kuife, razor, \&c. the moifture immediately flies off. What is the reafon of this ?
VI. Query, hy Mifs Polly Lee.

As candles, \&cc: burn much fafter in Dr. Prieftley's, than in common air, might not fome ufeful method of introducing and confining a fimilar kind of air in the fubftance of gunpowder, be contrived, in order to render it more forcible and inftantaneous in its explofion?

- I. Rebus, by Mifs Dale.

A quarter of what at the tavern you fpend, And what's without either beginning or end, With three fifths of a broad grin,--connected together Is a teazing companion in hot or cold weather.

$$
\text { II. Rebus, by } M_{r} \text {. Dalby. }
$$

The reverfe of a hue that young Phillis can boaft, And three fifths of a knife when the handle is loft, If join'd,---to the knowledge of fomething you're led That always grows thinner the more it is fed.
III. Rebus, by Aylefbury Jack.

Two thirds of a fib and two thirds of bard-zuater, Are the foes which French foldiers purfue with great flaughter:*
IV. Rebùs, by Caput Mortuum.

Half a noun with as much of what's commonly hollow, Is a runner, and one you're obliged to follow.
V. Paradoxical Rebus, by Mr. G. Pepys.

When to juft half a thoufand one evil you ftick,
You've a damnable fellow as fierce as Old Nick.

VI. Rebus, by Mr. L. Walker.

A Roman chief, who Sylla's pow'r defy'd ;
A Grecian hero, who by Paris dy'd;
A famous hunter, who a city built;
A man, who's charg'd in orient climes, with guilt ;
An era, which the Turkitl people prize;
A bird, which views the fun with fready eyes;

New Enigmas.

A fuge of Athens, who their laws revis'd ; A Roman prince, by all mankind defpis'd; A man, whofe chief companion was his lamp; Mbat Bould be always near a foldier's camp. Ih' intials join'd, a town will bring to view, For trade and riches parallel'd by few.

A Paradoxical Problem, by Mr. L. Silcock.

Diarian artifts, if you pleafe
To plant me thirty cherry trees,
Thircy-four rows, nor lefs nor more, And in each row exaclly four.

I. Enigma, by Mifs Kitty C--.

I from the earlieft ages date my birth, Yet-am not feen in water, air, or earth, Fond of retreat, I fuek the fhady grove, A foe to friendidip, but a friend to love ; The powers of mufic have no charms for me, Yet ftrange to tell, I'm fond of harmony, And tho' with wifdom I am known to dwell, And calm content admits me to her cell; Yet blufhing, ladies, I my weaknefs own, To virtue I am utterly unknown.

II. Enigma, by Mifs Dale.

Tell me, ye learned fair ones, what is this Which all admire, yet very few poffefs; A virtue 'tis, to ancient maids unknown, And prudes who fpy all fauls, except their own : Lov'd and defended by the brave and wife, Tho' knaves abufe it, and like fools defpife. Secure of me you can no envy move, For none can envy thofe whom all muft love. In faf, my power adids a brighter grace, And.fweetens every charm in Sylvia's face.

III. 牛nigma, by the late Thomas Sadler.

Swift as the wind I cleave the liquid air,
When to my deftin'd goal I would repair :
Oft doth the flying deer my fury own, And braveft warriors hail me with a groan. Sometimes in fportive mood by Perfeus' arm I have been fent to frike a dire alarm, Amidft the feather'd race; who foaring high, By me arrefted quit their native $f \mathrm{ky}$, Rapid they fall in circling eddies round, And frike the ir talons in the fenfelefs ground.

24 The Ladies and Gentlemens Diary.

Bold Robin Hood in me was greatly fkill'd, And often took me with him in the field! Defpair and horror mark'd my fearful way, And fouteft heroes fhudder'd with difmay. Sometimes refs fuar'd, tho' felt with great furprize, I take my fation in fair Chloe's eyes:
Then do the beaux my dreaded power try, And pining lovers in a moment die. Whene'er fly Cupid would invadie a heart, He then invokes my never failing art ; Secure in me he ftrikes the fatal blow, With love's hot fire the virgins bofoms glow. Sweet fleep forfakes their eyes, and from their breaft, Are banifh'd pleafing thoughts, and balmy reft. Tell me, ye fair, my name, - -from whence I come, And may your cheeks preferve unfading bloom.
IV. Enigma, by Mr. John Clarke of Lincolno

Altho" I'm us'd by ev'ry one, Of high or low condition,
Yet feldom am confin'd alone To láwyer or phyfician.
I'm thought mifchievous as a cat, On various pretences ;
Strange tricks and whimfies I've been at When playing with the wenches.
No town within our king's dominions, But to my talents claim a fhare,
Yet people form abfurd opinions, And curfe me oft for being there.
I'm cenfur'd by the keeneft tongue, Severely loaded with abufe,
And clrag a wretrhed life along Alas! becaure I'm not of ufe.
Innocent I am by nature, Free and light as noontide air ;
No harfh lineament or feature Ever in my face appear.
The lies of tradefmen, politicians, And lottery-tisket fellers,
Philofophers, theologicians, Cock-Lane ghoft, or Punchinellos,
The canting zeal of puritans, And Tabernacle preachers,
The honeft ways of courtezans, And vile death-hunting-fearchers ;
Al! thefe the world will not beliere, As faith is nut their due,
But pin their credit on my fleeve, Bucaufe I think them arae.
V. Enigma, by Mr. B. Cleypole, of Wcft-Ham, Effex.

Ye fage enigmatifts, make room, And let your well known fav'rite come, Carefs'd by all the Englifh nation, And holds diftinguifh'd reputation : But ftop---perhaps you now will fwear, Like boafting Falfaff I appear ; Becaufe when view'd by fome they tell ye Like him I'm little elfe but belly; Yet I'll confefs altho' efteem'd By others I'm a monfter deem'd. No Sphinx or Hydra to furprize, Or Argus with his hundred eyes; Of fuch contexture is my frame, A mouth and body's all I claim ; And tho' I'm neither flefl nor blood, Like human beings crave my food;
Th' Epicure whofe conftant care Is coftly dainties to prepare, Has feldom fuch profufe fupply Of rich and fumptuous fare as I; But fate and knaves at once confpire That tortur'd I muft be with fire ; And circling flames my entrails burn, Which unto fmoke and afles turn, Whilft I, oh horrible to tell, Am emblematical of hell; But of thofe torments I make light, Becaufe they bring an appetite; For glutton-like know I receive All food that my attendants give. Amazement doubtlefs 'twill create, When I this well known tale relate ;What I difgorge none will deny Proud mortals eat, or elfe muft die ; Enough is faid ; declare my name, And to the world my worth proclaim.

VI. Enigma, by Mr. Clarke, of Farniam, n Surry.

Ladies, a female fave behold,
That's fore oppreft by young and old, And begs you'll thew fome pity on her, For friends all turn their backs upon her.
Nor think that I your fuppliant crave Your aid unmerited to have, Or wifh like faints of Aaron's trade
To labour lefs the more I'in paid; For tho' I mighs exemption claim, Qerauf yous dem and mine's the fame;

Or plead that by r y flape's confeft, I ne'er was meant for work, but reft; Yet fuch like Irifh pleas fome dozen, 1 leave to Paddy's coutin's coufin, Who'd rather than not live at cafe, Iie down with degs and rife with fleas: Tho' fmall my limbs, yet in a year I tons of hely garbage bear ; Tho' flender I am often put
To carry loads of learned gut ;
O)ft laden with this ponderous freight, I groan beneath the finful weight;
Yet not from weaknefs or from fear,
For know that I rude fhocks can bear,
Not biafts of rat:ling winds can move me,
Nor thunders when they roll above me:
The higheft nobles cringe to me,
The greateft monarchs bend the knee, For my affiftance many fue In public and in private too; Ev'n ladies take me oft in hand, And when I fall they make me ftand; Nor can without my aid divine, The lawyer, judge, or bifhop dine, For I alone uphold them all, And but for me the Pope would fall. In my embrace has Sdiwney R-— Oft feen the lovely Polly Stow, With Ragged Robin at her fide,
 Tho' I without the help of man, More children bear then women can; Yet think not I'm devoid of charms, For men oft fleer within my arms; Nay more, my mifrefs of hath feen Me take my mafter in between. Scyllz, as fing poctic rogues, Was often lin'd with her own dogs,
When danger threaten'd, --coward rout !
In fuch lite cafes mine jump out.
When right divine was much in vogue,
I was your non-rafifing rogue;
When high church tories were in power,
I play'd th' obedient paffive whore ;
When drimken fooundrels rul'd the ftate;
I kept bad hours and fat up late,
Iv'n in thefe vivensus fober times,
I oiten join in wieled crimes;
When bloods to bavdy houfes come,
I bounce and fly about che room;

New Enigmas.

But when they to old Fie!ding trudge, I fand as fober as a judge.

In former ages I was furr'd, I next went bare as any board, But if you're now dif pos'd to find My hairy bottom, look behind.

VII. Enigma, by $M r$. Leonard Walker.

Ye wife and prudent, lend a patient ear
To one, whofe friendhip you flou'd all revere;
No needy fharper claims your face regard;
To ferve you well, fhall be my fole reward.
I owe my being to the fruitful earth;
An artift form'd and gave that being worth:
All civil ftates my virtues highly prize ;
Tho' nature's fons my nobleft deeds defpife.
In this bleft ifle, where juftice freely flows,
My perfon's facred; by the wifeft laws;
The haplefs wretch, who fieedom takes with me,
Oft forfeits fame, and dearer liberty !
Whilf impious men relision difbelieve,
At church 1 ftill attend both morn and eve ;
Nor Pope, nor council, tho' their zeal runs high,
Are truer guardians to the church than I.
I'm ftill the trav'ller's true and fteady friend;
And in his jounies I on him attend;
In foreign climes, tho he fhould long fojourn,
With zeal I feive him, 'cill his wifh'd return.
The hoary mifer oft in me confides,
To guard that wealth, which he with caution hides;
He fafely may; I ne'er betray my truft ;
'Thrice happy Briton, were thy fons as juft!
The fage I fometimes tread, with great fuccefs, All ranks applaud me, and my worth confefs;
'Tho' Rofcius was the fav'rite of the town,
He never gain'd more fair and juft renown !
No mafter, yet, cou'd ever truly fay,
That I demanded either thanks or pay,
'Tho' watch and ward I keep, both night and day.
'To heap up wealth, the world's great end and aim,
I leave to thofe, who figh for pomp and fame.
Ye lovely fair! may 1 permiffion crave,
To prove, that I'm the dearebt friend you have;
Your warmeft friends muit yield the palm to me,
For I'm the guardian of your chaftity!
Tho' England's fair ones may my pow'r difclaim, Iberia owns it, and reveres my name.
But I muft now attend my maiter's call ;
Adieu!-- and may fuccefs attend you all!

The Ladies and Gentlemens Diary.

ViII. Enigma, by Mifs Eliz. Cockbill.

Ye gentlemen in verfe fublime,
Pxcufe a female bard's weak rhyme ;
Nor think like you I couplets chure,
Nor in fuch ftrains invoke the mufe;
Nor flall I fing of lawns nor rills?
Nor flow'ry vales nor lofty hills,
Nor of old Nereus nor his fream,
Nor take the Sylvans for my theme.
But fuch a topic let me chufe,
As fportive fouls can ne'er refufe.
And, Sirs, if you my theme wou'd trace,
You muit confult old Nimrod's race;
And follow clofe whate'er betide,
For to Actron I'm ally'd.
Tho' I'm no man, no bird, nor whale,
I've neither fhoulders, hair, nor tail.
Two wings I have, tho never fly,
Nor direct objects can efpy.
My enemies I ne'er offend,
Tho' many often feek my end.
My habitation or retreat,
Is a fweet pleafant country feat;
Secret's my cot, and feldom found
Either above or under ground:
Where thro' a life of fears I run, And range alternate with the fun.
Whore is my name, and long has been,
Tho' with my gallants feldom feen.
And if by chance mankind I pars,
They term me of the female race.
Yet often in this mafk of mine
Is wrapt a fubitance mafculine!
'Tis ftrange! Each fex in me unite,
Yet ftill I'm no hermaphrodite!
But, Sirs, if you my fhape wou'd know,
Pray look for me when at Soho!
Prize Enigma (of io Diaries) ly Mr. Dalby.
Ye beaux, and featber'd belles attend;---
At my approach obrequious bend,
Nor fhun me, or you may expect
In tems to mourn the dire negleet
While I, a handmaid of the graces,
Shall caufe you many damn'd wry facer.
Is there who've feen, in Eaftcrn pride,
The Grcat Mogul triumphant ride? --
Upon the felf fame beait that bore him
'Tis two to one I've rid before him ;---
For know, I am, fuch is your will,
The highen office born to fill.--4

New Enigmas.

No minifter with all his arts
Can boaft fuch penetrating parts.
In vain the tyrant ftrives to hide
From me, who am the fcourge of pride:
For, fhould a wight, tho high in place,
Yet, born of mean ignoble race,
Ambitioufly -ufurp a crown,
I pull the vile pretender down ;--
While on the verge of fate he reels, Mankind perhaps my vengeance fecls:
Yet, let me not increafe your fear,
A meagre form at beft I wear ; And, tho' you often me will find
Like two with backs together join'd,
A fool who flouldn't chance to know me
With half an eye may fee quite thro me.
When with majettic pace, you oft
In querpo fee me ride aloft,
Tho' I am not accus'd of fear,
Yet, coward like, I chufe the rear ;
There firmly fix'd, and fafe from harms,
Am half eclips'd by Cbise's charms.---
When croffes vex I make a ftand,
Nor do my bufinefs out of hand;
Yet, Garrick like,---for I'm but fmall,
The part I play is capital ;
But oft employ'd like ftatermens tools
In dirty jobs for knaves and fools,
Then like fome grov'ling dunce, you feo
That blockheads are my company;
This, as a reafon fome expound
With morfieur why I'm always found:
'Tho' with him feldom I'm at peace, And like him often out of cafe. Taffy, Got blefs bur, it is faid
With me ne'er troubles much his head,
Yet, from his eyes at David's flrine
I once a year extract the brine,
Which falling from his ruffet cheeks
Is falt to toafted cheefe and leeks:--
Nor let that image turn you fick,--
I'm the Arcanun Cipbait ;
No Pulvis Nofrum equals me,
From dirty Scoteb up to Rappee. After what's faid, I need not name
That I a bold intruder am;
Nay, impudent, for 'tis averr'd
I once catch'd Mofes by the beard.--But hold,-- for now I make no doubr E'en $N_{u m f}$ cull's felf can find me outo

Affeers to the Mathematical Queftions propofed in lafi Year's Diary.

I. Question, anfzucred by $M r$. Jofeph Bird, jun. of Ipfwich.

PY dividing the fecond equation by the firf, $x^{2}-x y+y^{2}=\frac{b}{a}$, wh: taken from the firf, gives $2 x y=a-\frac{b}{a}$, or $x y=\frac{a^{2}-b}{2 a}=d$ by ad ing this to the firft equation, and fubtracting it from the above, we ha $x^{2}+2 x y+y^{2}=a+d$, and $x^{2}-2 x y+y^{2}=\frac{b}{a}-d$, and extracting tl fquare root, $x+y=\sqrt{a+d}$, and $x-y=\sqrt{\frac{b}{a}-d}$, whenc $x=\frac{1}{2} \sqrt{a+d}+\frac{I}{2} \sqrt{\frac{b}{a}-d}$, and $y=\frac{1}{2} \sqrt{a+d}-\frac{1}{2} \sqrt{\frac{b}{a}-d}$.

In the fame manner it was anjwered by Mr. Hugh Weetman of Ben nington; $V_{i r}$. W. Wation of Alnwick; Me /frs. James, Merritt Parker, John Clarke of Lincoln, and Hatton the propofer.
II. Quistion, anfevered by Mr. Jofeph James of Stoke-Bifhop, near Brinol.

Let x and y be the reoured numbers; then $x^{2}+y^{2}-1$ and $x^{2}-y^{2}-1$ are fquares, and their difference is $2 y^{2}$, which being refolved into the factors $2 y$ and y, and half the difference fquared and made equal to x^{2} -$y^{2}-1$, gives $x^{2}=\frac{5}{4} y^{2}+1$, which affume equal to the fquare of $1+v y$ and y will be found equal $\frac{8 v}{5-4 v^{2}}$ and confequently x equal $\frac{5+4}{5-4} \frac{v^{2}}{z^{2}}$, in which if v be taken $I, y=8$ and $x=9$.

Nearly in the fame manner tris quefion was anfwered by Meffrs. Ainfworth, Barker, Clarke, Fininley, Hedley, Moody, Merrit, Smith, Swift, Watfon, Weetman, and the profofer.
III. Question, anfwered by Mr. Ainfworth.

Upon $A B, A C$ including the given $<B A C$, refpectively defcribe fecments of circles, containing $\frac{I}{2}$ right \langle 's. And bifect EF, the line joining their centers in G, draw (GA, and upon it deforibe the femicircie GIM A, in which infcribe the chord A M, equal to $\frac{I}{3}$ the diffeerece between $A B$ and $A C$. Then upon $A M$ produced, let fail the \perp 's $\mathrm{BD}, \mathrm{C} \mathrm{C}_{子}$ and the thing will be done.

Anfwers to Mathematical Queftions.

Demonf. For pro-

 uce $\mathrm{AD}, \mathrm{A} Q$ to eet the circles in , L. and draw B \therefore C L. Alfo let all the +'s E H, I. Then becaufe $\mathrm{G}=\mathrm{GF}, \mathrm{HM}$ =M I. confequent-(AI-A $\mathrm{H}=2$ $\mathrm{M}=\frac{\mathrm{I}}{3}$ the given ifference. And A - $\mathrm{A} K=2 \mathrm{~A}$ IA $\mathrm{H}=$ the given ifference $=\mathrm{AC}$ 1 B , or $\mathrm{A} L-\mathrm{AC}$ =AK-A B. But ecaufe the $<$'s C

- Q and B K D are by conftruction $\frac{x}{2}$ right \langle 's, QL $=$ Q C and $D K$ $=K B$. Therefore $A L=A Q+{ }^{2} Q C$, and $A K=A D+D B$, ind confequently $A Q+Q C-A C=A D+D B-A D$, or which s the fame thing, the diameters of the circles infcribed in the Δ 's $A Q C$ and $B D A$ are equal.-Q. E. D.
Ailzcoraical folutions zuere alfo received from $M r$. Hardy, the propofer, and jeveral others.
IV. Question, anfrwered by Mr. William Watfon of Alnwick.

From the given equation is had $\dot{y}=\frac{a \dot{x}+x \dot{x}}{\sqrt{a^{2}-x^{2}}}$, or by taking the fluents $y=$ arch whofe fine is x to rad. $a .-\sqrt{a^{2}-x^{2}}$. Alfo $x \dot{y}=$ a $x \dot{x}+x^{2} \dot{x}$
$\frac{\sqrt{a^{2}-x^{2}}}{}$, whofe fluent is $\frac{x}{2} a \times$ arch, whofe fine is x to rad. a $\overline{a+\frac{1}{2} x} \times \sqrt{a^{2}-x^{2}}$. Or by fuppofing that $x=0$, when $y=0$, the correct fluents of \dot{y} and $x \dot{y}$ will be $\left.a-\sqrt{a^{2}-r^{2}}\right)+$ arch, whofe fine is x to rad. a. And $a^{2}+\frac{x}{2} a \times$ arch, whofe fine is x to rad. a $\overline{-a+\frac{1}{2}} x \times \sqrt{a^{2}-x^{2}}$, which lat taken from $x y=a x-x \sqrt{a^{2}-x^{2}}$ $+x \times$ arch, whofe fine is x to rad. a - will give the fluent of $y \dot{x}$. In the fame monnor it weas nlfo anfreered ly Mr. Ainfworth; and the anfovers given by Meffis. Bonnycaftie, Barker, Caput Mortuum, Hampfhire, J mes, Merritt, Pepys, Weeman, and the propofer, were ncarly fimilar.

V. Cuestion, anfuered ly Mr. Ainfworth, and the propofer.

Put $\frac{1}{1.05}=r$. and for convenience fuppofe $a=1$. Then the prefent value of the whole eflate will be $r+2 r^{2}+3 r^{3}+4 r^{4}+$ sec.

32 The Ladies and Gentlemens Diary.

$=\frac{r}{1-r^{2}}{ }^{2}$. And the value of the reverion, or the terms of th feries, after the firft x are $\overline{x+1 . r} r^{x+1}+\overline{x+2} \cdot r^{x+2}+\overline{x+}$ $r^{x+3}+8 \mathrm{cc} .=x r^{x} \times r \overline{+r^{2}+r^{3}+r^{4}+8 \mathrm{cc}}+r^{x}$, $\overline{r+2 r^{2}+3 r^{3}} \overline{+4 r^{4}+\& c_{0}}=x r^{x} \times \frac{r}{1+r}+r^{x} \times \bar{r} \overline{1-r}^{2}$ which muft per queftion be $=\frac{1}{2} \times \frac{r}{\frac{r}{1-r \mid}} 2$, that is $x r^{x}+r^{x} \times \frac{1}{1-r}=$; $\times \frac{1}{1-r_{i}}$ In numbers $x r^{x}+2{ }_{1}{ }_{r}^{x}=10 \frac{1}{2}$, or $r^{x} \times x \overline{+21}=10 \frac{1}{2}$, from

$$
\left\lvert\, \begin{aligned}
& \text { ang } \\
& \text { nath }
\end{aligned}\right.
$$ which x may eafily be found $=33,9$, or nearly 34 years, the time required.

The anfwers given by Meffrs. Bonnycafte, Dalby, Hamplhire, James, Sanderfon, and Pepys, were nearly the fame as above.
N. B. The fixth and feventh queftions were inferted by miftake, the one having already been anfwered in Mr. Lawfon's Tangencies, and the folution of the other taking up more room than is confiftent with the limits of the prefent diary.

Vili. Question, anfwered by Mr. Ainfworth.

Let s be the required fum, and $2 n+3=m$, or $m=2$, then by the nature of the feries $\overline{m-2} \times m-1)^{2} \times m^{3}=s$, or $m^{4}-4 m^{3}$ $+4 m^{2}-2 m=5$ The correct integral of which is found by page 45, Emerfon's Increments, to be $s=\frac{m^{7}}{14}-\frac{5}{6} m^{6}+\frac{7}{2} m^{5}-6 \frac{1}{12} m^{4}$ $+3 m^{3}+\frac{5}{3} m^{2}-\frac{4}{7} m-\frac{3}{4}$.

This queftion zuas alfo anfwered by Mr. Ur. Bowerburne, from Sterling's Difcrential Method, and by Mr. Gearge Sanderfon, and Mr. John Bonnycafle according to the method of Increments.

IX. Question, anfwered by Mr. John Hamphire.

Let B A be produced to P fo that B P may be to P A in the given ratio of BL to $A R$ and $B M$ to $A S$ and draw AC and GH parallel to B M, and join PL, P M meeting AC and GK in the points $\mathrm{C}, \mathrm{D}, \mathrm{H}, \mathrm{K}$ and join the points C, R and D S, H T and $\mathrm{K} V$.
Then by conftruction, BP :
PA: BL: AR but BP:
PA:: B L:A C therefore

$\mathrm{AC}=\mathrm{AR}$ and by the fame reafon $\mathrm{AD}=\mathrm{AS}$ and DS parallel to CR; again, becaure AD and GK are parallel, B G:GA:: L H:HC::MK:KD, but BG:GA::LT:TR::MV:

Anfwers to Mathematical Queftions. 33

V S by hypothefis ; wherefore C R, D S, H T and K V are parallel ; now H T:CR::BG:BA and CR:DS::AC:A D, and D $\mathrm{S}: \mathrm{K} V::(\mathrm{MD}: \mathrm{M} \mathrm{K}):: \mathrm{BA}: \mathrm{B} G$, therefore $\mathrm{H} T: K \mathrm{~V}:$: $A C: A D$ but $A C: A D:: G: G K$ therefore $G H: G K:: H$ $T: K V$ and confequently the pnints G, T, V which divide the line. $B A, L R, M S$ in the given ratio of $B G$ to $G A$ are in a xight lines

Scholium. Tbis queftion is in effect the fame as Newton's 23 lemma, wobich avas not oblerved by the propofer at the time of feriding it; bowever it zuill doubtlefs be agreeable to the readers to bave different folutions to fo ufeful a problem.

In the fame manner it was anfwered by Mr. Ur. Bowerburne; very elegant geomzerical demonftrations veve aljo received from Meffrs. Ainfworth, Sanderfon, and Mofs tbe propofer.

X. Question, anfzered by Mr. William Fininley.

Confruc. Bifect the bafe A C in M, on A C defcribe a fegment containing the given vertical angle, and take any line M N and N P perpendicular to it, fo that M N may be to NP as the radius of the circle to the given bafe; join MP meeting the circumference in D, then A DC is the triangle required.

For draw D B parallel to N P then M B : $B D:: R$ (radius) : A C therefore $D B \times$ $R=A C \times M B$ confequently D B \times diaméter $=A C \times 2 \mathrm{MB}=\mathrm{AD}^{2}-\mathrm{DC}^{2}$; but $\mathrm{DH} \times 2 \mathrm{R}=\mathrm{AD} \times \mathrm{DC}$ by 6. Eucl. therefore $A D \times D C=A D^{2}-D^{2}$.

Geometrical conftruktions were received froin Meffrs. Ainfworth, Barker, Moody, and John Clarke of Lincoln; and very elegant algebraical folutions from Meffrs. Wation, James, Weet-
 man, Merritt, Mepys and Caput Mortuum.
XI. Question, anfzeered by Mr. George Sanderfon.

Analyfis. Let C D be the given difference, then becaufe A D and $A B$ are equal, $A D B=A B D$, and $F A H$ being half $F A B$ is equal to $A D B$, therefore $A H$ and $D B$ are parallel, confequently AHB $=\mathrm{HBN}$ but A H B is half the fupplement of ACB (by Prop. 3, Diary 1777) therefore H B N is half the fupplement of C: Hence this

Comfiruc. On H D defcribe a circular fegment containing an angle equal to half the angle C together with a right angle, cutting C E in B, then $A \subset B$ is the triangle required.
Limitation. When the circular regment defcribed on DH neither cuts nor touches C B the queftion is impoffible; it is alfo evident that whether the point D be in $A C$ or $A C$ produced the method will ftill be the fame.

In the fame manner it was anfrwered by Mr. John Burrow; alfo very elegant geometrical folutions zeere received frain Meffr: Ainfworth,

34 The Ladies and Gentlemens Diary.

Bonnycaftle, Barker, Dalby, and Dixon; and algebraic anfwers from Mefrs. James and Wation.
The fame anfwered by the Rev. Mr. Crakelt, of Northfleet, in Kent.
Confricic. Make B $D=$ the given perimeter, the $\measuredangle \mathrm{DBS}=$ the given vertical one, and $B E$ and $D F$ each equal the given difference betwixt the bafe and the fide, and join points E and F : take E G at pleafure, and parallel to B D draw G HI equal to 2 GE; alfo to E F apply H $\mathrm{I}=\mathrm{GE} \mathrm{E}$, and complete the parallelogram GHIK: then thro' the points E, K , draw the line E K C, and afterwards C A parallel to K G, and $A B C$ will be the triangle required.

Demon. By fimilar triangles E G : G K = H I (Euc. i. 34.) : : E $\mathrm{A}: \Lambda \mathrm{C}$. But $\mathrm{HI}=\mathrm{E} G$, by confir. $\because \mathrm{EA}=\mathrm{AC}$, and conrequently the difference betwixt AC and AB is.E B.-----Moreover, by fim. triangles, EA:E G::EC:EK::CF:KI or GH; but $\mathrm{GH}=2 \mathrm{GE}$, by confir. $\because \mathrm{CF}=2 \mathrm{EA}=\mathrm{EA}+\mathrm{AC}$; and of courfe, fince BE and DF are equal, $[\mathrm{CF}+\mathrm{FD}$ or $\mathrm{C} D=\mathrm{AE}$ $+E B+A C$ or $A B+A C$, and adding $B \vec{C}$ to each] $A B+B$ $\bar{C}+C A=B D$ the given perimeter. Q.E.D.

Xil. Question, anfwered by Mr. George Sandérfon.

Confruc. Let M be half the given bafe, and N half the difference of the fides, make CE equal to given bifecting line on which produced, take CK to EK in the duplicate ratio of N to M ; again by prop. 5 . cor. 3. D. 1777. produce K E to H, fo that CK:KH: : $\mathrm{N}^{2}: \mathrm{HE} \times \mathrm{HC}$ and having etected on KH the perpendicular C G to meet a femicircle deferibed on KH , join GH on which defcribe the circle H A G B and thro' E draw $\mathrm{A}, \mathrm{E}, \mathrm{B}$, to cut G H at right angles in O , and meet the circle in A and B join AC, BC and ACB is the triangle required.
Dencrffo. Join A H, A G, GK
 and to CH and AC draw the perpendiculars $\mathrm{C} F$ and HD . through D iraw FImeeting A B in I.

The rigit angled triangles G CH and A D H are fimilar, and the triangic KCG is fimilar to $\mathrm{HCG} \because \mathrm{CK}^{2}: \mathrm{K} \mathrm{C}^{2}(\mathrm{CK} \times \mathrm{KH}):$: $A^{2}: H^{2} \mathrm{H}^{2}(=\mathrm{HE} \times \mathrm{HC}):: \mathrm{CK}: \mathrm{KH}: \mathrm{N}^{2}: \mathrm{HE} \times \mathrm{HC}(\mathrm{by}$

Anfwers to Mathematical Queftions. 35

conftruc.) wherefore $\mathrm{AD}=\mathrm{N}$ equal (by prop. 9. page 40. Diary, 1777.) to half the difference of A C and B C. moreover as the right angles CFH and CD H are fubtended by the fame bafe C H, a ircle will pafs through the four points $\mathrm{C}, \mathrm{F}, \mathrm{D}, \mathrm{H}$, whence the angle DFH $=$ DCH $=A G H$, (Euc. 2I. 3.) wherefore FI is parallel o A G. and by fim. triangles $A D^{2}: G^{2}:: A H^{2}: G H^{2}:: \mathrm{AO}^{2}$: $4 \mathrm{G}^{2}$ whence alternately $\mathrm{A} \mathrm{D}^{2}: \mathrm{AO}^{2}:: \mathrm{GC}^{2}(=\mathrm{GF} \times \mathrm{GH}):$ $4 \mathrm{G}^{2}(=\mathrm{GO} \times \mathrm{GH}):: \mathrm{GF}: \mathrm{GO}:: \mathrm{CK}:: \mathrm{KE}:: \mathrm{N}^{2}: \mathrm{M}^{2}$ (by onftruc.) again by alternation $A \mathrm{D}^{2}: \mathrm{N}^{2}:: \mathrm{AO}^{2}: \mathrm{M}^{2}$ but $\mathrm{AD}=$ V therefore $\mathrm{AO}=\mathrm{M}$ but AO equal to half AB (Euc, 3. 3.) thereore M equal to half A B. Q.E.D.
Algebraical folutions were alfo received from Mefrs. Barker, Bowerurne, Fininley, James, Hamphire, Merritt, Pepys, Watfon and Veetman, \&c. and geometrical ones from Meffrs. J. Burrow, and I. Dalby.
XIII. Question, anfwered by Mr. Ifaac Dalby, the propofer.

This queftion requires that when the three planes are formed into a olid angle, the two firt planes may make a given angle; which is a afe that fometime happens among carpenters and ftone-cutters, \&c. nd its reverfe being equally neceffary, I fhall here give folutions to oth; as they may fometime happen to be ufeful to the practical orkman.
Firf, Let R A S, SAQ, QAE e three given plane angles fuppofed to a fpread out on a plane; it is required , find the angle that would be made y the planes R A S, E A Q fuppofing iem revolved about S A and A Q till A coincide with AE.
Take A m equal A M, of any given ngth, and draw M P and $m \mathrm{~N}$ perpenicular to AE and AR meeting A Q

nd AS in P and N, and on PN defcribe a triangle fo that $\mathbf{P} D=$ M , and $\mathrm{N} \mathrm{D}=\mathrm{N} m$, then NDP is the angle required.
The demonit. will be evident by conceiving the triangle N D P reolved about NP when AR and A E coincide, for then the points , D and M coincide alfo.
Secondly, Let the angular planes R A S, Q A E be given to find S R fo that when R A coincides with A E the angle made by thore lanes may be given.
Take A $m=\mathrm{A} M$ and draw $m \mathrm{~N}$ and MP as before, then make an gle N D P equal the given one and take $\mathbf{D} N=\mathbf{N} m$ and $\mathrm{D} P=\mathrm{P} M$, ien on N P make a triangle whofe fides are the given lines N A, A P hich determines the required triangle.
Solutions were alfo given by Meffrs. Ainfworth, Bonnycaftle, Hamplire, Sanderfon and Pepys.

XIV: Question, anfruered by the Propofer.
In the given curve B D C let there be taken as many points D, M, I, \&c. as are fufficient to determine a curve of the fame kind (for exnple, 3 for a circle, 5 for a conic fection, \& \& c_{0}) and parallel to the line

36 The Ladies and Gentlemens Diary.

given in pofition draw $M n, N n, \& c$. equal to the given line ; then through the points m, n, \&ec. draw a curve of the fame kind as the given one, meeting A R G the other given curve in E; then DEP will be the line réquired: For if from a point, lines be drawn, and lines be taken in each having a conftant ratio, then if the extremes of one fall in a curve of any kind, the
 extremes of the others will fall in curves of the fame kind; and when the point is at an infinite diftance, as in the prefent cafe all the lines DE, M n, will be equal, and B E $m n$ equal to B D M N.

This Problcm will be found of great ufe in refolving and determining the limits of many geometrical queftions; I fhall only futjoin two of the eafieft examples.
r. Let there be given, two circles in magnitude and pofition and alfo the direction of a line, it is required to intercept between the peripheries of the two circles, a line parallel to this line which may be the leait or greateft polible.

Suppofe a line drawn through the centre of one of the circles parallel to that whofe pofition is given; then if this cirele be fuppofed to move along this line till it touch the other, it is evident that when it touches it will be at its limit, and in that cafe the diftance of their centres will be the fum or difference of their radii : If the part intercepted is to be of a given length it is only requifite to fet off that length from thie centre in the line aforefaid, and interfect the other with the radius.
2. ASF and BSQ are two concentric circles and P a given point; required to draw a line through P, fo that the intercepted part $Q \mathbf{S}$ may be of a given length.
Join PC and draw DE W paralicl in P C fo that DE may be the given length, let $C W$ be perpendicular to $D W$ and with the difwance $C W$ defribe a circle and draw a line from I ' to touch it, meeting the other circles in C and S then
 SQ is the given line. For $\mathrm{DK}=$ $S M$ therefore $D W=S R$ but $E W=Q R$ confequently $D E=S Q$; and the limits are determined by the laft.

The conftruction is the fame whether the point be within or withou the circle, and ferves for all that Dr. Horfey has fplit into a dozes wies, anid filled eight pages of his Book of lnclinations with; an Lere it may not be amifs to obferve that the limits of the problems con thined in that book, may be deterrained in a much fimpler manner that that ufed by the Dector, from this principle; that if the rectangle o two quantities be piven, thai: fum will be leaf when their diffeternc. is loat, and their fum greatef when their dificrence is greatef.
This quefion reas alfo amyevered by Meffrs. Ainfworth, Bonnyeafle

XY, Qu:s

Problems and Solutions.

XV. Question, anfzered by Mr. J. H.

As the lection of the fulid in any part whatever, parallel to the horizon remains the fame, it is evident the content of the fold will be the fane as that of a prifm of the fame height; and as the velocity of any point affumed in the triangle may be conceived to be divided into an equable horizontal morion, and a vertical one uniformly accellerated, the leng:hs of the final curves defcribed by the angular points will be the fame as thole of parabolic arches. The manner of determining the surfaces of figures generated in a similar manner quill be Seton in a future number.

In the fame manner it Teas anfzered by Mr. Ainfworth, and fame other s.

Prize Question, anfzuered by Mr. Jeremiah Ainfworth.

Upon any line $a b$ taken at pleafure defcribe a fegment of a circle to ontain an angle equal to the common difference of the arches; which lifect by the diameter $g p$, and make the angles $p g d, p g c$ equal to he refpestive diftances of the middles of the equal arches from the beginning of the quadrant: Then if c be the middle of the femicirc. e ep, the angles $d \xi e$ and $c g \geqslant$ will evidently be their diftances from he middle. On $a b$ produced * let fall the perpendiculars $d n, c m$ Ind join $d a, d b, c a, c b$; then fine by Eu. 29. 1. the $\langle g d n=d$ o and $g c m=c g p$, alto $g d b=g c b$ = by construction, $\frac{x}{2}$ the common diference of the arches. It therefore folowes that the 4 arches themfelves will be the meafures of the <'s $n d b, n d a ; m$ b and $m c a$ refpectively; confequently he ratio of their refpective tangents will be that of $b n$ to $a n$, and $b m$ to a v. Of the two arches ec, ed let e cc be he greater, and confequently $b n$ greater han $b m$. take $b n: b a:: b m: b$ s. hen fince $b n$ is greater than $b m, b a$ is
 ,eater than $b s$, and confequently $a m$ than $s m$. but by compofition , $n: a n:: b m: s m$. and becaufe $s m$ is left than $a m, b m$ has to $s m$ I greater ratio than it has to $a m$; confequently $b n$ has to $a n$ a greater atio than $b m$ has to $a m$. Q. E. D.
And when ed $=0$ o the propofition is evident - therefore all the ales are demonftrated - * that the $\perp c m$ mut fall upon $a b$ produced spears from hence; that if the diameter $a r$ be drawn and $r b$ joined, t will be \perp to $a b$ (by Eu. 31. 3.) therefore by the nature of the THeft. and conftryction the $\langle p g c$ can never be equal to or left than half the common difference of the arches $=g r b=p g r$.

The fame answered by Mr. George Sanderfon.

Let A I be the given quadrant, t the middle point, O the center, and $1 a, \mathrm{~A} b, \mathrm{~A} c, \mathrm{~A} d$, the four arches taken foch that $a b$, the diff. of the wo first may equal to $c d$ the diff. of the two lat; alpo let $A B, A C, A$ D and $A E$ be tangents to the raid arches; and having joined $O B, O C$,

38 The Ladies and Gentlemens Diary.

$O D, O E$, on $O E$ as a diameter, defrribe the femicircle OAE, to which draw O G making the angle $E O G=A O C$. join E, G, cutting $O D$ produced in F, and $A \mathrm{H}$ drawn $\|$ to $O D$ in H . Then becaure AE is $\|$ to $O I$ and $A \mathrm{H}$ to OD the angle E A $\mathrm{H}=\mathrm{FOI}(=\mathrm{CO} 1)$ and the angle EAG $=$ EOG(Eu. 21 . 3.) $=$ (by conft.) A OC or AO b. But as the arch $a b,=c d$, and H. $\mathrm{A} t,=t \mathrm{I}$, when $b t$, is greater than $t c$, the angle $\mathrm{AO} b,(\mathrm{AO}$ C) is manifeftly lefs than FOI ($c \mathrm{OI}$) and when equal, equal; and when lefs, the angle A Ob (AOC) is greater than FOI (cOI). Whence the angle EA H is accordingly greater equal to or lefs than the angle E A G, and the line E H, accordingly greater equal to or lefs E G, but the triangles GOE and GOF are refpectively equiangular to the triangles AOC and AOB $\because A C: A B:: G E: G F$ and by fimilar triangles AE:AD:: HE:HF; but when HE is equal to GE (or the point H falls in $G) H F=G F$, then $G E: G F:: A C: A B:$: AE:AD, again when $H E$ is greater than $G E$ the ratio of $G E$ to GF is greater than that of $H E$, to $H F$, and when lefs, lefs, (as is demonftrated Barrow's Geom. Lectures, page 121). Therefore when HE is greater than GE ($b t$ greater than $c t) \mathrm{CA}$ to $A B$ is a greater ratio than E A to A D, and when lefs, lefs. Q. E. D.

The fame anfwered by Reuben Burrow.

Lemma. DA and DB are two lines given in pofition, and A a given point in $D \mathrm{~A}$; it is required to draw two lines AB, BC making ABC a given angle fo that AC may be the leaft poffible.
Take any line Ac and defcribe a fegment thereon containing the given angle, and draw $d b$
 parallel to D B touching the circle in b, then $\mathrm{A} b$ will be the required pofition of A B.

For by fimilar triangles $d \mathrm{~A}: \mathrm{Ac}:: \mathrm{DA}: \mathrm{A} \mathrm{C}$, and if any other line $A R$ be drawn, and $R S$ make the given angle with it, and $N f$ be parallel to $\mathrm{B} D$, then $f \mathrm{~A}: \mathrm{A} c:: \mathrm{D} A: A S$ but the ratio of d A to $A c$ is greater than that of $f A$ to $A c$ and confequently the ratio of D A to A C is greater than that of DA to AS wherefore AS is greater than A C.

Corollary 1. Let the given angle A B C be right and d Q perpen dicular to $A b$, then if it was required to find two ares differing by a

Anfwers to Mathematical Queftions.

given quantity fo that the tangent of the greater fhould have to the tangent of the leffer the leart ratio poffible, the greater arc would exceed 45° by half the given difficrence, and the leffer would be lefs than 45° by half the difference : for if A t be half the femicircle, Acbis $=45^{\circ}$ $+b c t=45^{\circ}+\frac{1}{2} \mathrm{~A} d b$ and $b d \mathrm{Q}=\mathrm{A} d \mathrm{Q}-\mathrm{A} d b=\mathrm{A} c b-$ A $d b=45^{\circ}-\frac{1}{2} \mathrm{~A} d b=\mathrm{D}$ A B.

Corollary 2. Hence alfo the more the angle D A B varies from 45° - $\frac{1}{2}$ the diff. the ratio of D A to D C becomes the greater.

To apply this to the queftion. Let K H be a quadrant, bifected in t, and let A H and BH,R H and G H be four arcs whofe difierences $A B$ and $R G$ are equal ; then if $A B$ and $R \quad G$ are fo pofited that $t B$ $=t \mathrm{R}$ then (becaufe radius is a mean proportional between the tangent and cotangent) $t \cdot \mathrm{R} \mathrm{H}: r:: r: t \cdot \mathrm{HB}$ and t. G H : $r:: r: t$. A H wherefore t. R $\mathrm{H}: t$. G H: : t. A H: t. HB that is R F: FP: AE:ED but R F:FP: $R Q: Q S$ and $A E: E D:: A Q: Q C$, therefore A C and R S are equal ; but if any arc $\approx z$ equal to $R G$ be taken at a
 greater diftance from t than R G , and v ve y be drawn \perp to $Q H$ meeting $Q \approx$ in w, and $w r$ be parallel to Q N meeting $\mathrm{Q} v$ in r, then $v r$ will be greater than R S by the lemma , and confequently the ratio of $v Q$ to $Q r$ or $v y$ to $y w$, is greater than that of R F to FP, and on the contrary when $v \approx$ is taken nearer to t, the ratio will be lefs.
The Prize of Twelve Diaries was the lot of $M r$. Ainfworth, and that of
Six, of Mr. George Sanderfon.
Anfwer to the Yrize Question, omitted laft Year.
Lemma. Given the bafe, an angle at the bare and the rectangle made by the file adjoining to it, and the fum or difference of the other two ; to find the triangle.

Let AE be the bafe, EAD the given angle, draw EQM perpendicular to $A Q$ and take $\mathrm{QM} \equiv \mathrm{Q} m=\mathrm{QA}$ and with the afymptotes $A M, A R$, and $A m$, AR, defcribe two hyperbola's whofe powers are the reftangles of the fum and difference refpectively; alfo defcribe an equilateral hyperbola whofe axis is E Q meeting the others in P, p, and draw $\mathrm{P} D, p d$ parallel to AR meeting AD in D, d; then ADE , $\mathrm{A} d \mathrm{E}$ are the triangles required.

For $D A=D N$ and $D E=D P$ therefore $A D+D E=N P$, and $(A D+D E) \times A D=P N \times A$ $\mathrm{D}=\mathrm{A} N \mathrm{P} R=$ the given power of the hyperbola : Alfo $d \mathrm{E}=d p$ and Ad $=d s_{i}$, therefore $d \mathrm{E}-d \mathrm{~A}=n p$ and

conrequently

40 The Ladies and Gentlemens Diary.

confequently $(d \mathrm{E}-d \mathrm{~A}) \times d \mathrm{~A}=n_{p} \times d \mathrm{~A}=n_{p} r \mathrm{~A}=$ the given quantity.

Hence if any point E be affumed in A C (fee Fig, 2.) and E F be parallel to $A N$ and $F M=F E$ and if D be found by this lemma, ro that $(A D+D E) \times D E=A M \times E W$ then if a line be drawn thro the point $\mathrm{P} \|$ to D E a fimilar triangle will be determine J .

To apply this to the problem in queftion, Let $P \mathrm{C}$ be parallel to

A N, then it is evident that the triangle will have no limit when drawn on the fide of P C fartheft diftant from A, but when drawn on the contrary fide, there may be found fuch a triangle D E F as will when the queftion is poffible be the limit of the triangies drawn on each fide of it; which limit may be thus inveftigated.

Let $\mathrm{P} f$ be drawn indefinitely near P E, alfo $b c$ parallel to A C and f es to A B, then becaufe the triangle DE F is at its limit, by the fuppofition ; the triangle $b f n$ will be ultimately equal to it and their variations alfo equal, that is $\mathrm{D} c+\mathrm{D} b+\mathrm{E} e=\mathrm{F} \pi$. But D A: $\mathrm{DE}:=\mathrm{D} b: \mathrm{D} c$, and $\mathrm{FA}: \mathrm{FE}:: \mathrm{F} n: \mathrm{E} f$ therefore $\mathrm{D} c+\mathrm{D} \bar{b}$ $+\mathrm{E}_{e}=\frac{\mathrm{DE}}{\mathrm{DA}} \times \mathrm{D} b+\mathrm{D} b+\frac{\mathrm{FE}}{\mathrm{FA}} \times \mathrm{F} n=\mathrm{F} n$, hence $\mathrm{D} b: \mathrm{F}$ s: $:(\mathrm{FA}-\mathrm{FE}) \times \mathrm{AD}:(\mathrm{AD}+\mathrm{DE}) \times \wedge \mathrm{F} ;$ but $\mathrm{D} E: s f::$ PD:PE and $s f: \mathrm{FE}:: \mathrm{DA}: \mathrm{AE}$, and $f \mathrm{E}: \mathrm{F} n:: \mathrm{AE}: \mathrm{AF}$ confequently $\mathrm{D} b: \mathrm{F} n:: \mathrm{P} \mathrm{D} \times \mathrm{DA}: \mathrm{P} \mathrm{E} \times \mathrm{AF} ;$ but $\mathrm{PD} \times \mathrm{D}$ $A: P E \times A F::(A F-F E) \times A D:(A D+D E) \times A F$, wherefore PD:PE::AF-FE:AD+DE: Let EW be parallel to $A D$ mecting $P A$ in W, and $F M=F E$ then becaure PD:PE::DA:FW therefore DA:EW::AF-FE:AD +DE that is $\mathrm{AD}: \mathrm{EW}:: \mathrm{AM}: \mathrm{AD}+\mathrm{DE}$. Hence this.

Conftruction. Draw P D F (by the firegoing lemma) fo that A D \times $(A D+D E)=A M \times W E$ and $E F$ parallel ta $A N$, then D E F is the triangle required.
N. B. The folution of the barter queftion at p.20. being founded on Malcolm's falfe principle, which hath generally been ufed by moft of the modern writers, I drew up, and intended to give a paper on that fubject in laft year's Diary, but being obliged to defer it, fhall here infert two cafes only, from whence the aforefaid folution may be corrected and anfwers given to problems of a fimilar kind.

1. Suppofe A has goods which he fells at a, but barters at b to have $\frac{m}{n}$ parts of the amount in ready money ; B has goods worth c each; what price muft he rate them at, to be equivalent to A 's barter price?

Let x be the price required, then as A receives $\frac{m b}{n}$ in ready money for each piece bartered which is only worth a, the remaining part of

Problems and Solutions.

each piece which is not paid for but exchanged is only worth $a-\frac{m b}{n}$; tut A values it in barter at $b-\frac{m b}{n}$, therefore c muft have the fame ratio to x as $a-\frac{m b}{n}$ to $b-\frac{m b}{n}$: Hence this rule.

Subtrack $\frac{m r}{n}$ parts of A's barter price from his felling price, and alfo from his barter price and fay, as the firft remainder is to the fecond, fo is $\mathrm{B} s$ felling price to his barter pice required.
2. Surpoic A has goods worth a each which he charges in barter at b; and B has goods worth c each, which he would barter with A, to have $\frac{m}{n}$ parts of the whole in ready money; at what price muft B rate his pieces to be equivalent to A 's barter price?

Let x be the price fought, then $\frac{m x}{n}$ is the ready money \mathbf{B} receives each piece he barters, and thercfore the real value of that part of each piece which is not paid for, bui exchanged, is $c-\frac{m x}{n}$; but its barter price is $x-\frac{m x}{n}$, wherefore $c-\frac{m x}{n}$ mut be to $x-\frac{m x}{n}$ as a so δ, and confequently by reduction $a+{ }_{n-m}^{m} \times b: b+\frac{m}{n-m} \times b:: c: \infty$ which gives this rule.

Add $\frac{1: m}{n-m}$ parts of A 's barter price to his felling price, and alfo to his barter price, and fay; as the firft fum to the fecond, fo is B's felling price, to his burter price.

A correct fclution to the $12 t b$ quefion will be inferted next Year.
As to S. Clark's objections in tbe T. and C. Magazinz. thev can impofe ufon none but fucb as aie as great dunces as bimfelf and therefore deferve no notice.

A R T 1 C L E: XVII.

Additional Remarks an the Equation of Pajments. By Reuben Burrew.

"THE ingenious and learned profeffor Hutton, Efq." having in the laft edicion of his Arithmetic, introduced a new and very polite method of confuting the a:guments advanced in the Diary for 1777 , on the fubject of equation of payments ; rriz. by reprefenting the writer as a "malicious defamer and an ignorant fretender;" and notwithitanding the authority of fo confiderabie a perfonage, there being fill many people fo obttinate as to retain their former opinion, that abufc is not
demsingratict?

42 The Ladies and Gentlemens Diary.

demonftration, and that falfe refections on a perfon's moral charaite fhould have 110 place in matters of fcience; 1 have therefore in re fpect to fuch of my readers, taken the liberty, of giving fome far. ther confirmations of what I before advanced, and alfo to fhew, tha the rule which the "ingenious profeffor" affirms to be "the onl "true one," is not only falfe, but even falfe on his own principles that both Kerfey's principle and Malcolm's when rightly applied briny out exactly the fame conclufion as the old method which he has re probated, and that the learned profefor's miftakes arife from no knowing how to find the amount of a fum of money for a given tim at fimple intereft.

As compound intereft
"Is an increafe of money day by day
"And month by month, exactly in proportion
"To the elapre of time" - -
So fimple intereft is univerfally allowed to be that whofe intereft i fuppofed to bear no intereft; or which is the fame, it is a fum o money payable at tbe end of the time of any tranfaction, for the ufe o money during that time, according to agreement : the truth of thi will fully appear from the general practice of the beft writers, an from common acceptation; for when tranfactions are fettled accord ing to fimple interett, the fuppofition that the intereft bears no intere! is the fame thing as fuppofing it to be of no advantage either to th debtor or creditor during the time of the tranfaction; but to hav the ufe of money is certainly an advantage, and therefore the interes cannot be payable till the end of the time; for. if it be payable foonet the creditor has doubtlefs a right to ufe it, and of courfe acquires a: advantage by it, or which is equivalent, gains intereft upon interel according to fome fpecies of compound intereft; which is contrary t the fuppofition ; and confequently either the intereft is not due til the end of the time, or elie it is no advantage to have the ufe c money: But perhaps the profefior, as being a fooolmater, may lik the argument better in this furm:

1. If any thing be payable in the intermediate time, it muft be in tereit ;
2. But the intereft is allowed to be of no ufe to either party in th intermediate time;
3. Thercfore, that which is payable before the end of the time $;$ of no ure to either party. Now how the profeffor will contrive to pa the intereft fo as to be of no ufe to cither party I cannot devife, un defs he do it in the new halfpence that nobody will take;-but falt principles are not to be eftablimed by a quibble.

Coroilary 1. Hence if a fum of money be put out to intereft for given time, the creditor has no right to half the intereft at the ex piration of half the time, but only to fuch a part as would amount t half the intereft at the end of the time; and to for other intervals, \&s
Corollary 2. Hence alio, if 1 i. be put out to intereft at the rate $r f(f$ the time t; its intereft for any time x lefs than t is $\frac{z, x}{1+r t-r *}$ For 1 : $r::+-x: r t-r x$ the intereft of 1 l . from the time x to th. expiration of the remainder of the time t, theiefure $1+r t-x r$ is t t

Problems and Solutions.

amount of II. in that time; but $r x$ is the intereft of 11 . for the time x payable at the end of the time t, wherefore $1+r t-r x: 1:: r$ $x: \frac{r x}{1+r t-r x}$ the yalue of the intereft at the end of the time x : Alfo the amount of 11 . in the time x when put out as above will be $\frac{1+r t}{1+r t-r x}$, which becomes $\mathrm{I}+r t$ when x is equal to t.

This bei:g premifed; let M and N be two fums of money; the firt payable directly, and the other at the end of the time t; to find the equated time according to Kerfey's principle.

Let x be the equated time; then becaufe the amount of 11 . in the time t is $\mathrm{I}+r \underline{\underline{t}}$, the prefent value of N is $\frac{\mathrm{N}}{\mathrm{I}+r_{t}}$ and therefore $\mathrm{M}+$ $\frac{N}{I+r t}$ or $\frac{M+N+M r t}{I+r t}$ is the fum of the prefent values, which according to Kerfey muft be equal to the prefent value of $\mathrm{M}+$ N payavie at x; now by cor. 2. the amount of 1 l. in the time x is $\frac{1+r t}{1+r t-r x}$ therefore $(M+N) \times \frac{1+r t-r x}{1+r t}$ is the prefent value of $M+N$ which being made equal to $\frac{M+N+M r t}{I+r t}$ we have $x=\frac{N t}{M+N}$ which agrees with the old method.

The fame data being fuppofed, let Malcolm's principle, of the equality of interett and difcount at the equated time, be applied : Then the interef of M for the time x being by cor. 2 , equal to $\frac{\mathrm{M} r \boldsymbol{x}}{1+r t-r x^{\prime}}$ and the amount of il. from the equated time x to the time t being $1+r t-r x$, and the intereft $r t-r x$, the difcount of the fum N at the time x will be $\frac{\mathrm{N} r-\mathrm{N} r x}{\mathrm{I}+r \operatorname{t-r} x}$, which being made equal to $\frac{\mathrm{Mrx}}{\mathrm{I}+r t-r x}$ the intereft ; x is found equal to $\frac{\mathrm{N} t}{\mathrm{M}+\mathrm{N}}$ the rame as before, and therefore both Kerfey's and Maicolm's principles rightly applicd agree exactly with the old method.

To prove that the profeffor's conciufion is falfe, on his own principles, nothing more is requifite than to calculate the interef from his equated time to the time of the laf payment, according to his own method, and it will be found that the creditor will gain more this way, than he could by receiving the payments as they become due, which muft certainly be a difadvantage to the debtor, unlefs the profeffor can demonftrate that two people may deal together upon equal terms; that one can have no advantage but what he derives from the other, yet one of them fhall gain and the other fhall not lofe : As to the ufual pretence that the bufinefs is truly fettled at Malcolm's equated time,

44 The Ladies and Gentlemens Diary.

and that the time before or after it, has nothing to do in the matter; if there was any validity in it, the confequence would be, that it is beft to judge of things only by halves, and that truth is variable like the ordinate of a curve, and a lie to-day may be true tomorrow, \&cc. \&c. But it is not worth while to befow any farther confutation on a method fo grofsly and palpably falfe, and therefore as the errors pemain uncorrected in the two laft editions of his book (viz, the third and fifth), I fhall only advife the learned profeffor to correct them in his zext feventh edition.

A R T I C L E XVIII.

Mijfcellaneous Problems and Solutions, E®c. By Reuben Burrow.

Proposition 1. Theorem.

IF R be a weight fupported in equilibrio by 3 cords, $\mathrm{BC}, \mathrm{B} \approx, \mathrm{B} y$, knotted at B; then if a piane be fuppofed to pais thro' R B, B C, meeting the plane puffing thro' $\mathrm{B} z, \mathrm{~B} y$ in B O , the force compounded of the forces in the direction of $\mathrm{B} \approx, \mathrm{B} y$, will fall in B \&. For the forces in $B z, B y$ compound a fingle equivalent force in the piane $\approx \mathrm{B} y$, and if this force is not in the line B Q it may be reduced to a force in B Q and another per- J pendicular to it; now either the forces $B \mathrm{~A}$ and BC in the directions B @ BC in the plane CBQkeep the body in equilibrio with respect to the direction of the plane C B B, or not; if they do, that is, if they have equal horizontal forces, then the former force perpendicular to the plane C $B Q$ acting at B will draw the body out of the plane to a borizontal direction are not in equilibrio, one will exceed the other, and this excefs aning at B in the plane C B Q, together with the former acing at B in a direction + to this plane, will compound a third force which has ro oppofite force to counterbalance it, and therefore the body will not be in equilibrio, contrary to the fuppofition.

Proposition II. Problem.

Given the directions of three forces fupporting a body in equilibrio; reguired the ratio of the forces.

Let $B C, B \approx, B y$, be the directions of the forces and $B R$ the direction of the force fuftained; let a plane paf; thro' $B K, B C$ meeting tire plane paing thro' $\mathrm{B} z, \mathrm{~B} y$, in BQ ; take $\mathrm{BD}=$ the force BR in R B produced and in this plane draw $D A$ parallel to $B C$ meeting the isterfection of the plane $\mathbf{B} Q$ in \mathbf{A}; then draw $A m \|$ to $B y$ and $A n$ If to $B \approx$, then $E x, B m, B C$ exprefs the forces of $B y, B z, B P$,

Problems and Solutions.

from whence the practical conftruction is evident; or the quantities $\mathrm{BD} \times$ s. $\mathrm{CB} r \times \cos . \mathrm{CBr} \times$ s. m Bs may be found bycalculation for $\mathrm{B} n=\frac{r}{r} \times \overline{\mathrm{s} .} \mathrm{B} \times \mathrm{B} \times \mathrm{cof}, n \mathrm{~B}$

BD \times s.CB $-\times \operatorname{cof}, C B R \times$ s. $w \mathrm{P}_{\mathrm{t}}$

Proposition III. Problem.

If three hemifpheres be placed in a triangular fituation, with their fections on a horizontal plane, and a fourth fphere be fulained by the three; required the prefine againft each.

Let $A, 13, D$ be the centers of the three given hemifpheres and E, F, Ci difieient poGitions of the fourth fphere touching the reft in $\mathrm{R}, \mathrm{K}, x, \approx, \mathrm{P}$, Q; then if the fphere E be fuppofed to revolve round the line D A, touching the two fpheres A and D, the points of contact will defcribe two parallel circles whofe projections $\mathrm{R}_{3}, \mathrm{~K} m$ will pafs through the points of contact R
 and K, and be projected into right lines on the horizontal plane; by the fime reafon when the fphere revolves about D B and $B A$ the sircles defcribed by the points of contact will be proje?fed into right lines, and confequently the interfections of thofe right lines give the projections of the points of contact (made by the fphere when fuitained at reft) upon the plane of the horizon; wherefore the point m, n, s thus found are given, and alfo the lines $\mathrm{A} m, \mathrm{D} s, \mathrm{~B}_{n}$; now if n, m, s be fuppofed to reprefent the points of contact made by the third fphere when futained by the reft, all the forces fußaining it pafs through it's center in the directions \mathbf{A} $m, \mathrm{~B} n, \mathrm{D} s$; wherefore, the directions of the forces being given, the forces themfelves may be found, by the laft problem.

Proposition IV. Problem.

Three fpheres being placed on a horizuntal plane fuftainiiig a fourth; required the force fultained by each.
I.et A, B, D, be the given fpheses on the plane of the horizon, then if th: fourth fphere be fuppofed to touch the fpieres 3 and I) and to rdiolve round the line $B D$, the projection on the plane of the horizon of the circle defribed by the point touching the fhare B will te an elligie whofe axes and pontiot are acerminatofom the

46 The Ladies and Gentlemens Diary.

data; in the fame manner the ellipfe defcribed in confequence of the revolution of the given Tphere about A B is determinable, and therefore the point of their interfection n may be found, and by the fame method may the other two projections m and s of the points of contact on the plane of the horizon, be determined: Then if n, m, s be now fuppofed the real points of cortact infead
 of their projections (as in the laft problem) the directions $A m, B n$; Ds will be given, and therefore the preffure againft each Sphere may be found by prop. 7 .
N. B. The 329 queftion of the Ladies Diary which was propofed in 1750, but not anfwered in any of the fucceeding publications of that work, is a particular cafe of this problem.

Proposition V. Problem.

If $A D$ and $D E$ are two planes inclined to each other in an angle ADE; it is required to find the point R in the plane $E D$ produced, fo that a body defcending from R along $R E$ fhall acquire the fame velocity at E as another tody which defcends from A down A D, impinges on D E and defcends thence down DE to E.

Draw A B perpendicular to E D meeting it in E , draw $\mathrm{BC} \perp$ to $\mathrm{A} D$ meeting it in C, and draw CR parallel to the horizontal line E F meeting $E D$ in R; then R is the point required.

For let $a m b$ be the pofition of the defcending body (which is here Suppofed a globe) at the inftant it impinges on the plane D E, ard draw ad parallel to AD and $a b$ perpendicular to DE ; then becaufe any force a d may be refolved into the forces $a b$ and $b d$, it is evident that if $a d$ reprefent the velocity acquired by defcending through $A D$, the inftant before it impinges on $\mathrm{D} E$, then $l d$ will reprefent the velocity with which the body proceeds along the plane DE the inftant after the impingement, and thefe velocities are as $a d$ to $d b$ or AD to D B by Similar triangles ; but $A D$ is to $D E$ as $\sqrt{A D}$ to $\sqrt{C D}$ and this laft ratio is as the velocity acquired by falling through $A D$ to the velocity acquired by falling through CD , or $\mathrm{R} D$, and the efore the velocity acquired by defcending through $R D$ is the fame as the body has, after defcending through $A D$ and impinging cn $D E$; wherefore as their velocities are the fame, at D, they will alio be fo at E, and confequently the velocity accuired by defcending from A to $\mathrm{E} \mathrm{w}_{\mathrm{a}} \mathrm{l}$ be the fame as hy defeending frem R. to E or from R to S .

PrCPOSS $=0$ R

Proposition Vi. Problem.

If $A B, B C, C D, \& c$. be ny number of planes given a pofition, it is required to and the velocity that a body equires by defcending thro' hem all.
Diaw An perpendicular on B produced, and $n a \perp$ to A B , and a m parallel to the iorizon, meeting C B in m; hen draw m s perpendicular : D C produced, and sc \perp to C P , and or parallel to
 D Q, meeting DC in r; then $r \mathrm{Q}$ is the height through which a body defcending will acquire a velocity equal to that acquired by the body in falling through all the planes.

For the velocity acquired in defcending from A to C is equal to that acquired by defcending from m to c by the laft; and l.y the fame reafon, the velocity asquired in falling from m to D is equal to that gained by falling from r to D, or from r to Q, \&c.; wherefore the velocity acquired in falling through $r Q$ is equal to that acquired in falling from A to D.

Scbolium. This propofition hath been generally ufed by writers of mechanics, to prove that a body acquires the fame velocity in defcending. through a curve as by falling through its perpendicular height; that this conclufion istrue, appears by conceiving the above figure to become a curve, for the angles A B $n, \& c$. being then indefinitely fmall, the points A, a $n, m, \& c$. coincide, and $r Q$ becomes the curve's altitude; but thofe writers detuce it from two abfurd fuppofitions. Maclaurins and 'Janies Gregory, are, I believe, the only authors that have noticed the mitake ; the firft in p. 211 of his account of Nezvton's difcoveries, and the latter in a fmall treatife, publifhed at Glafgow in 1672 , under the name of Patrick Matbers, entitled, "Tbe Great and Nerw Art of "Weigbine Vanity."

New Mathematical Questions to be anfowered in nexf Year's Diary.

[4I] I. Question, by Mr. George Sanderfon.
F a given chord bifect the diameter of a given circle in D; to draw a line from one end of the diameter meeting the circle in F and the chord in E fo that the ratio of DE to EF may be given.

> [42] Il. Question, by Mr. T. Barker.

F iwo given circles be fo placed that a given point P divides both their diameters in the fame ratio, and S be alfo another given point; it is required to draw P A B cutting the two circles in A and B fo that the angle $A S B$ may be the greatelt poffible.

43 The Ladies and Gentlemen Diary.

[43] III. Question, by RSi. John Harp pice.
1 P is a given circle and CA, CB, are lines, given in fofition; it is required to find the points in the circumference from whence perpendiculars being let fall on C A, CB fall make the difinnce of their interfections a given quantity or the leaf or greateft polible.

> [44] 1V. Question, by Nr. J. Jackfor.

IF PA B be a given triangle, and BM be drawn meeting P A in the given point M; it is required geometrically to draw I S S meeting $B M$ in S, fo that $S T$ being drawn parallel to $P A$ meeting $B A$ in T, and TH being drawn parallel to P B meeting PS in H the perimeter of the triangle S TH may be either a given quantity or a minimum.
[45] V. Question, by Mr. John Burrow.

IN any polygonal figure of an odd number of fides, if each two fides containing an angle be produced to meet the fide oppofite that angle; or if the number of Ides be even, and each two fides containing an angle, be produced to meet the two fides containing the oppofite angle; then will the fum of all the faliant angles of the figure thus generated be equal to two right angles, if the number of fides be odd, lint equal to four right angles if the number of fides of the polygon be even.

> [46] VI. Question, by Mr. Jofeph Edwards.

SUPPOSE a flick three feet long with one end retting on the palm of the hand, and inclined to the horizon in an ingle of $6 c^{\circ}$; require the time of travelling Ice yards, fo that the flick may preferve the fame inclination to the plane.

> [47] ViI. Question, by M\%. Reuben Fitrow:

HAVING given two points through which a great circle is to pals; it is required to find the pole of that great circle geomes trically, and alpo to cut of a given arch from it; according to the orthographic projection of the fphere.

> [43] VIII. Question, by Mr. Thomas Todd.

REQUIRED the curve into which a hollow cylindrical tube mut be bent, fo that being revolved about an axis at right angles to the horizon with a given velocity, a globe put in any part of the tube may remain there without afcending or defending.
[49]. IX. QUestion, by the Rev. Mr. Crakelt.

FROM a given point it is required to draw a right line cutting two circles given in magnitude and pofition fo that the paris of the line intercepted by thee circles may have a given ratio. N. S. The 28 Prob. 233 of Simplon's Geometry is a particular cali of tins; but the general problem admits of a fimpler confiruction than that there giver.
[50] X. Question, by Mr. Thomas Mars.

TO divide a given angle into two fuch parts that the rectangle contained under the difference of their fines, and the fam of their ir confines anfwering to two given unequal radii, may be of a given magnitude.
[si] XI. Prize Question, Dy Mir. Jeremiah Ainfworth. A Perfon undertakes to throw with a pair of common dice, the chance Seven before any other fall come up twice; required the exact probability of doing it ?"
N. B. A folution to this Problem hath before been attempted bet ${ }^{2}$ ti s apprehended without fuccefs.
Whoever gives the Def folution to this cuefricn bifirctic fife if A^{\prime} ag fall receive a Prize of Twelve Diaries, and the newt bef a ${ }^{\text {tine }}$ if iss Diaries.

