DIARIA BRITANNICA:
 OR, THE BRITISH DIARY: A L M A N A C K, FORTHE Yeair of OUR LORD ${ }^{1794 .}$

BEING THE SECOND AETER BISSEXTILE, or LEAP-YEAR,

$$
\operatorname{CONTAINI\dot {N}G,~}
$$

A Variety of ufeful and entertaining Matter in ARTS and SCIENCES:
Calculated for the Improvement of the C URIOUS.
EPHEMERIS,

Whercin are contained the Heliocentric and Geocentric Places of the Planets, accurately calculated.

By J. COTES and G. TAYLOR.

The enenth Gimanack publifhed of this Kind.

That d'vine mift'ry, and a hift'ry, written in ASIA,
Was finilhed (now to be read) in great BRITANNICA,
Sweet bleffed Inc, where truth doth fmile, tho' bound w fit eafon's chains?
Yet BRITISH Y OUTH, perfift in truth, wherçr fuobldom reigns;
For Sinai's Mount, that baneful fount, the fourgeg filper, woe.
Does rule the earth, and ev'ry breath, and will whitefime does flow.
This mighty mount, reafon's great fount, of fclence, art, and kill ,
All that delight in fcience bright, come here and frink geur fill;
The mount is dry, don't fatisfy, tho' rea? on drinks fo fore,
At SION's mount, that flowing fount, drink ohe entiz thit it mo more.
The firft brought death upon thcearth, great wars, wrath, jur, and ftife, But SION's MOUNT, that LOVING FOUNT, gives us eternalifife. Attain but this, you cannot mifs, truly yourfelves to know
Your origin, how horn in fin-what fruits in EDEN grow.

> B I R M I N G H A M,
> Printed and fold by THOMAS PEARSON.

AT THE WHOLESALEALMANACK WAREHOUSE, ANDBYCHAMPANTE AND WHITROW, JEWRY-STREET, J.ONDON. (Price One Sbilling.)

 No menima laraso

M	W
Dentimal	
D	D

1 Whrcumcif. | 2 | T | 万 fet 243 m |
| :--- | :--- | :--- |
| 3 | F | के i. 0.41 m |

${ }_{5}{ }_{5}$ E 2S.alt.Chr. 6 M Epiphany 7 T/hfet 2.21 m 8 W Lucian 9 T $\begin{gathered}\text { ri.0. } 30 \mathrm{~m}\end{gathered}$
 II S 4 ri. 5.45 m howers 2 I 27 12 E. S.alt.Eph of rain 2227
 14 T Ox. T. beg. 15 W Cl.fat $10^{\prime} 4^{\prime \prime}$ griles of 25027 16 T 万 fet 1.43 m 17 F OldTwel.d.

 with 1428 \begin{tabular}{|l|l|l|l|}
\hline O.C.d \& 15 \& 28

rain or \& 1 \& 2 \& 28

\hline

 now. Some I8 S Q.birth d. Δ

1 \& h

of \& 28

27 \& 27

\hline

19 \& E.

20.aft. Ephd

2

 20 M Fabian rret. 21 T Agnes 22 W Vincent ${ }_{23} \mathrm{~T}$ Hil. T. beg.

24 \& F \& het I.g m.

25 \& S \& Co.St. Paul
\end{tabular} 25

26 26 E 3 Soaft. Epho with

Geocentric Latitude. FEBRUARY hath XXVIII Days.

Heliocentric Lorgitude. | 13 | 0 | 47 | 2 | 1 | 4 | 0 | 25 | 2 | 7 | 1 | 8 | 2 | 6 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 3 | 0 | 47 | 2 | 11 | 0 | 25 | 2 | 9 | 1 | 21 | 1 | 3 | 6 | Firft Quart. 7 day, 3 morn. Full Moon I 4 day, 10 night Laft Quart. 23 day, 2 morn.

VENUS is a morning far till March 19 , then an evening fiar to the year's end. JUPITER is a morning far till June 19 , at which time he becomes an evening itier to the end of the year.

D			sump			fid.		Declination.											
	$\frac{\text { heg. }}{330}$	[11e	630			3.					n! ${ }^{\text {a }}$			\%	f. 19	¢			
7.	315	510	641	8	51	322	532		44	14	01411	123	32	213	19	457			5
13	25^{8}	57	653	9		346	55^{6}		141	14	$2{ }_{4}^{1424}$	723	3	2_{12}^{13}	$\stackrel{2}{4}^{1}$	754 1045 1			
19		455		920		410	620		${ }_{1}^{1} 214$		${ }_{5}{ }^{1} 14351$				39	1045			
25.		444	7 r ¢	93	$\bigcirc 14$	4.32	64^{2}		3211		61.5	${ }_{4}{ }^{123}$	${ }_{3}{ }_{2}$	114	4015	15 ¢7			

Geocentric lattude.
 M AY hath XXXI Days.

Heliocentric Longitude.
 tirli Quart. 6 day, 10 night Full Moon 15 day, 1 morn. Laft Quart. 22 day, 7 mor. New Moon 29 day, 1 mor.

$\begin{array}{\|l\|l\|} \hline \mathrm{V} \\ \mathrm{D} & \mathrm{D} \\ \hline \end{array}$	Feftival D Days.	$\left\|\begin{array}{l} \text { Appects } \\ \text { s Wea. } \end{array}\right\|$			$\left\|\begin{array}{l} \theta \\ m \\ m \end{array}\right\| \begin{aligned} & i \\ & \vdots \end{aligned}$			$\begin{aligned} & D \\ & \text { II } \end{aligned}$	$\begin{aligned} & \text { Dfat } \\ & \text { fou. } \end{aligned}$	$D \mathrm{dec}$ north	$\begin{gathered} D \\ \text { fets. } \end{gathered}$
I \bar{T}	T St.Ph.\&las		11 18 18	3						$\overline{1631}$	9a27
2 F	F Cl.flo.3'1 ${ }^{\prime \prime \prime}$	口 ㅐㅏㅇ ?	122418		12.3				429	1837	- 33
3 S	S In. of the C.		132418	3	024			3-037	350	1935	
3.	E2S.aft.Eaft	ginning	142418	3		17			259	1927	
1	M ${ }^{\text {r ret }}$		152418	-3	c 27	7		9 If	22	1819	- 21
6 T	T St. John		2418	$3=$	$\Omega 2$	19		$1 \Omega 38$	- 59	16.22	${ }^{1}$
7 W	W EafterT.be.	d	1724	32	29	20			n_{4}	${ }^{1} 3,43$.	5
	T 4 ri.is.in	Rain	1824		29			5 项34		1031	25
9 F	F o fo. 10.40 n	\%	241 I	32	28					655	231
10.5	S ${ }_{\text {¢ }}$ rif. 3.48 m	O	10.241 IC	32	28			9 It		-	254
1 E E	E 3S.aft.Eaft.		24			,			347	55	
12 M	M 2 return	wind,	24	227	27	5			422	55	335
13 T	T Cl. fo. 3-59		22.4		27			5 mi 7	447	847	35^{8}
$14 . \mathrm{W}$	W 24 ri. 10.44 t	$\bigcirc{ }^{\circ} 0^{\circ}$	23.3419		27			$7{ }^{1}$	459	1220	425
1.5 T	T ò fo.10.19n	\square ($\begin{array}{r}\text { H }\end{array}$	24.4.4	$2{ }^{2}$	27	\%		-17	457	15	
16 F	F ర్ర rif. 3.38 m		2419	22	27				440	174	
	S $¢$ fet $9.17 n$		24	22	2611				48	19 I ϵ	
18 E	4S.aft.F.aft.		4		13				22	19.46	111
M	M 3 ret. Qu.	Ch. b.	2420		-					1910	
20 T	T [Dunftar		2420		25			6 mm 1	1 I 1	178	-
W	W Cl. flo. 3 -47		112420		25						
22 T	T Prs. Eliz. B .		1242		25				117		116
	F 24 rif. 10.6 n		24		25				217	64^{8}	1.46
	$\mathrm{S} 8 \mathrm{o}^{\text {fo. }} 9.27 \mathrm{n}$	gales	$3 \leq 420$		25				320		215
	E 5 S		42421		25				410	2n4	244
	$\mathrm{M} \text { ret. Au.I. }$	AB.C.	$\left.24\right\|^{2}$		25	23				73^{2}	$3 \quad 12$
	T Ven. Bede		$2 i$							1150	
W	W Cl. now 3.8		24	12	2.	5		OIII	457	152	fets
	Af.d.H.T		24		24	E 2	5	14	43 3t	175	8 ar 5
F	F 24 rif. 0.36		2421	12	24			28	4350	19	917
	S 8 fo. 8.55 n									0	\% 10.12

D	D.L.	Sun	Sun	D.L.	leng.	Day	Declination.								
D	beg.		$\frac{\mathrm{fct}}{726}$	$\frac{\text { ends }}{}$	of D.						h n 21	1. 1 I	9 $\quad 1$		
1	21	434	726	950	1452						1517 $\frac{1}{23}$	3119	1812	12	
7	141	424	736	1019	1512	722		657	14		$1530{ }^{2} 3$	31040	3011	11	17
13	$1 \begin{aligned} & 12 \\ & 0\end{aligned}$	$4{ }^{1} 4$	74^{6}	1048	1532	$7{ }^{4}$		830	14		$1_{1543}{ }^{2} 23$		2150		
19	- 3^{8}	45	755	1122	1550	180			14			5100			
25	all	125		Da	1.64	814					1168123	7953			

 Firlt Quart. 5 day, 3 after. Full Móon 13 day, 1 after. Laft Quart. 20 day, at noon New Moon 27 day, 10 mor.

Heliocentric Longitude.

$\begin{aligned} & \text { Wi W } \\ & D \\ & D \end{aligned}$	$\begin{aligned} & \text { Feftival } \\ & \text { Days. } \end{aligned}$	$\begin{aligned} & \text { ARpetas } \\ & \text { \& Wea } \end{aligned}$	$\begin{aligned} & 0 \\ & \text { II } \\ & \Omega \end{aligned}$	$\begin{array}{l\|l} \boldsymbol{x}_{6} \\ \Omega & \underline{\gamma} \end{array}$			- ${ }^{\text {¢ }}$		50	fou.	north		
	S.a.Af.Ni	847	II 22	2422				- 1					
2 M	EafterT.en.	Mildat	12	24						7	1724		
3 T	Cl.月0.2'16"	the he-	132	2422		\bigcirc		25			1455		
4 W	K.G.III.b.	ginning	$13)$	2422		\bigcirc	4	47	41	In^{2}	115		
5 T		Bon。	14.	24							820		
6 F	4 rif.9.5n	Wind,		24						57	431		
7	¢ 1.9 .58 n		2	24.22				7	~ 1		${ }^{-} 3^{2}$		
	Whit Sun.		17.2						19 14	22	$3 ¢ 29$		
9 M	Whit Mon.	¢ ©	182			024	10	\bigcirc	ITI20	449	726		
10.1	Wh. Tu. Prs	Am.b.	2			-24	11	1			11		
${ }_{11}$ W	Ember W.	* Hु ${ }^{\text {or }}$	2					2			14		
12	4 ri .8 .37 n		2	25		925	13	3125		447	17		
13 F	$\chi^{\text {\% }}$ in. 8.4 n		22.	552		9 25	14	427	2214		1859		i1.
14.5	ofet10.2	84		25.23				120		${ }^{3}$	195		9
${ }^{1} 5$	Trin. Su							$7{ }^{-1}$	19 12	232	1934		55
16 M				25									
	St. Alban			2523				195			1537		
18 W	${ }^{\text {a }}$ fo. 7.46 n			2524					O) 54		12 IO		
	¢ ${ }_{\text {fet }} 10.2 \mathrm{n}$	$8 \bigcirc 4$						229	150				Morr
	Trin						23	2311	$129 \quad 9$		324		\bigcirc It
21 S	Lorgeft da	Show-	$x_{c}=2$	25				24	$313 r^{20}$		in2		
	${ }_{3} \mathrm{~S}$. aft. Tr												
23 M	,			2524				17	11 ४ 41		1030		
		वठ ${ }^{\text {d }}$		2524					2545		1416		
	it. F.C.1.E.						-9	,	9 ㅍ4 ${ }^{\circ}$		1710		
	4 ri .7 .3 sm								$23 \quad 2$				
	$\hat{\sigma}^{\text {ctet } 2.24 m}$							124	6549		195^{2}		
28 S													
		C^{+}						4	$2 \Omega 47$				
$\overline{\mathrm{M}}$	$\begin{array}{r} \text { 3ret. B.h.b } \\ \text { 1Dng . } \\ \hline \end{array}$												

Gcocentric Latitude.

71	0	43	2	6	0	11	1	40	1
13	11	3	59						
13	43	2	8	0	0	1	47	0	40
4	36								

 tirit Quart. 4 day, 1 mor. Pull Moon 11 day, 7 mor. Laft Quart. ${ }^{17}$ day, 10 nig. New Moon 25 dav, at non.

AUGUST hath XXXI days.

Heliocentric Longitude.

$\left.\left|\begin{array}{l|}A \rho p . \& \mid \\ \text { freath } \\ \text { Wind }\end{array}\right| \frac{\Omega}{9} \right\rvert\,$ - 6 萍 10 of मi and rain
with n
$\left|\begin{array}{l|l}\text { H } \\ \Omega \\ \Omega \\ 27 \\ 27 \\ 27 \\ 27 \\ 27 \\ 27\end{array}\right|$

13	27
14	2
15	2
15	2

7 Then name F of Jefus

9 S Cl. faft $5^{\prime} \cdot 5$
9 io E 8 S.af.T.St. Lawr. 11 MPrs. Brun.b ${ }_{12}$ T Pr. Walesb.
${ }_{13}$ W 万ri.10.3Ind 0 \% 14 T l let $8 \cdot 30 . \mathrm{n}$ pleafant 15 F Af.B.V.M. It S Du.York b. $\triangle \odot 4$ ${ }^{17}$ E QSu. att.T. δ D h 18 M hri.10.13r fome 19 T 4 fo. $7 \cdot 3^{8.5}$ days, 20 W B.G.th.beg. then 21 TDu.Clar.boló ©
22 F $\frac{8}{0}$ fe: $3.33 . \mathrm{n}$ towards 23 S Cl.faft $2^{\prime} \cdot 15{ }^{\text {the }}$ ${ }^{2} 4 \mathrm{E}$ soSu.aft.T ${ }^{2} D$ म 25 V [St, Bartho. end 26 T O fets 8.5 . n thunder 27 W ఫ rif. 3.2 gun rain \& 22 T St. Auftin ob f 20 F St. John beh hail. 30 S Cl.falto 17 . ه $\begin{array}{r} \\ \text { h }\end{array}$

D lat | D dec| D nor. louth fets. 416 a 37102 \begin{tabular}{c|cc|cc|}
49 \& 4 \& 35 \& 10 \& 25

10 \& 8 \& 25 \& 10 \& 48

\hline 8 \& 8 \& 5 \& 10 \&

\hline

17 \& 11 \& 57 \& 1 \& 1 \& 1

5

10 \& 1 \& 5 \& 3 \& 1 \& $4 t$

\hline
\end{tabular} 45173^{2} Morn

Geocentric Latitude.

SEPTEMBER hath XXX Days.

Heliocentric Longitude.

 Enit Quart. 2 day, 4 aftern.

Geocentric Latitude.

NOVEMBER hath XXX Days.
Heliocentric Longitude.
Heliocentric Longitude.

Full Moon 7 day, 10 mor. Laft Quart. I 4 day, if mor. New Moon 22 day, 4 after.
 M|W| Feftival \mid Afp.\& ©
 F Cl.flo. $16^{\prime} 5^{\prime \prime \prime}$ o D h S Prs.Au.S.b $\delta 4$ 4 E. 2 Su, af.T. \triangle \# 4
 fome

 18 T 3 return $\Delta h \sigma^{\circ}$ Ig W Ơ fet. 5.5 n. n . T Edm. K.M in gene-
 the S Cecilia month.

 $1{ }^{10}$

$$
\left[\begin{array}{l}
11 \\
12 \\
12 \\
13 \\
14 \\
15 \\
16 \\
17 \\
17 \\
18
\end{array}\right.
$$

D	U. L. S					Declination.							
						(0) 1.1 年				1 P f	f.		
	$5{ }^{5} 247721$		636	9 I 1	7 If	1437 1112	1721		2433	32720			
13	5 3r 731	42 C	620	858	736	16271118 18711 1 15	$\begin{array}{llll}17 & 15 \\ 17 & 8 \\ 18\end{array}$	$\begin{array}{lll}23 & 28 \\ 23 & 27\end{array}$	24	${ }^{\circ} 2725$			
	537140		$1 \begin{array}{ll}6 & 23\end{array}$	$34 t$	7.54	1936111		2325	22: 25	${ }^{26} 411$			
	57	411	-	${ }^{3}$		205311	1.655	123	2126	6.2554	54		

Geocentric Latitude．

 Full Moon 6 day， 9 nignt． Laft Quart． 14 day， 7 mor． New，Moon 22 day， 9 mor． Firft Quart．29 dav，i after．

$\begin{array}{\|c\|c\|} \hline \mathrm{M} & \mathrm{~W} \\ \mathrm{D} & \mathrm{D} \end{array}$	｜Feltival												
$\overline{\mathrm{I}}$	f0．10．57i1						5 － 17						
T	If f． 5.53.		10				5			1		onis	30
3 W	$\delta^{\text {o }}$［．8．21． n		11				618				45	516	
4 T	Barbary	ठ 4 ठ	12				718			108125			
5	Cl．A2． $8^{\prime} \cdot 5^{1}$	\square 팡	13				8 ¢ 8		3				
	Nicholas	O D h	14				919		2			1734	if．
	Su．in Adv		，			0	19					14^{2}	
8 M	Con．BVM．		16	${ }^{1}$	8	810	－19			－ 20			
	5 fo． 1		17	324		911	119				13		
0 W	ส f．8．16．n		18	324		－12	219			21	－ 23	1835	
17	아 fet 6.		19			913	319	D		1813	，		915
12 F	¢	\bigcirc D H	20			13	3			－收1	15	12	102
13 S			21	324			419				25	919	25
14 E	3 S		22	$3{ }^{2} 4$			519			57	34	52	Morn
15 M	Clock flow	口 H $^{\text {\％}}$	23			116	619				420	1	28
16 T	O．S．C．		24				619			－	449	${ }_{2} 5_{5}$	
17 W	OxT．e．		25	323			71			om		655	234
18 T	ζ	$60^{\circ} 9$	26	323	311	118	8					1043	337
19	${ }^{3} \mathrm{fe}$ ．		27	$3-3$		19	9						440
20 S		－D	28	323	3	120					43		
			29				0			1937		19	
22 M		4	\bigcirc	333			117			$2 \mathrm{VP}^{2} 4$		0	D fets
23 T		S D． 9	1	323	${ }^{1} 12$	222	2			$15 \quad 25$		032	5ais
$24 . \mathrm{W}$	${ }^{\text {or }}$ fe． 8.17 n	\triangle © H	3	323			3	1				19	617
	Chriftm．da	口h ${ }^{\text {a }}$		323	12	23	3			12 mm		172	
	St．Stephen					32	415			36	13^{1}	1426	837
	St．John			323	113	35	5.15			$9{ }^{+21}$		032	950
				323			6			23.163			
							7					1	Morn
				323			713			2131		$3 n+6$	
$11 \mathrm{~V}$	Silvefter		10									833	139

 －

 O゙M

 \checkmark ons

出出W以

 GMit a
 with

o. Conjunction, when Planets are in the fame fign, degree, and minutes.

* Sextile, when 2 figns diftant $\Delta \triangle$ Trine, when 4 figns diftant
\square Quartile, when 3 figns diftant 18 Oppofition, when 6 figns diftanf.

Ot the Four Q arters of the Year.

 Summer Qu. beg. June 21, 7h. 6m. Winter Qu.be. Dec. 21, Ih. 2 2n. af.
ECLIYSES.

In the courfe of this year there will happen, to the earth's inhabitants, fix Eclipfes. four of the San, and two of the Moon, whereof one of each luminary will be vifible in our ine of Great Britain, according to the following computations.

1. A viflble Eclipfe of the Sun on Friday the 3 ift of January, in the morning, according to the following calculation:

II. A vifible Eclipfe of the Moon on Valentine day, being Friday the 14 th: day of February, total, and nearly cencral.

III. March I, the Sun is eclipfed invifible, the conjunction 9 h . s4m. at night, in longitude \Rightarrow it deg. 36 ma . latitude $\mathrm{I} \mathrm{deg} .21 \mathrm{~mm}, 151$. 1 Suth.
[V. July 26, the Sun is again eclipfel invifible, the conjunction at foh. gm at night, in longitude $\Omega 3$ de. 57 mm . latitude ide. 15 m .16 f . fouth.
V. Auguft 11, at 7 h . 24 mm . in the morning, the Monn is eclipfed total, anc nearly central, but invifibie, themoon being under the earth.
VI. Auguit 25, at 23 minutes pait noon, the Sun is eclipfed invifible, the con junction is in longitude m 2 de, 25 m . moon's lat. I de. 21 mm , north.
An Example for December $1 f$, to find the places of the \odot and Pluncts.
Look into the calendar, and table of minutes for Dec. I, and you whll fi:s the \odot in 7 de. 35 m . H in 坝 3 de .19 m . h in y as 4 ce .4 m . 4 in v . 7 de .22 m . \&c.

Anfwers to the Enigmas, Rebujes, Clarades, $\mathrm{E}^{2} c$.

	Rebules.	Charades.
I. Door	Vigmas. Firft of May	I. Germany
II. Bockhead		
Mealth Vi.Reafon	II. Cuckold	II. Horfehair
II. Chain VII. Bull	III. Rebus	II. Lapwing
IV. Song	VIII. or Prize Bar	IV. Sheridan

ANSWERS to the PRIZE ENIGMA.

1. By Mr. John Cairns, Monkton.

THE facred tree that grew on Eden's plain, Contain'd the bar of death's eternal pain; The tree of life the flaming fword did bar, When divine juftice uther'd forth a war. The woman's feed the bar came to remove,
To fheiv the fruit of God's elective love:
Has pav'd the way to the celeftial place:
No bar can ftop the progrefs of his grace.

2. By Mr. Yohn Fitdes, Schoolmafer, in Liverpool.

Alas! vain man, how frail thy Wou'dft thou enjoy true peace, whilf fate!

What vice and folly thee await;
How fhote thy life's career!
How fhott thy life's career!
Why art thou prone to earthly things, And fervently him ferve;
Which naught but frife and forruw brings
Each day thou meets fome bar:
here,
Keep God's commands, \& him revere; hence.
Thy deeds will gain juft recompence, In blifs, where naught can fwerve.

> 3. By Mr. Thomas Fox, Norton.

Ingen'ous youths who with for fame, No bair prevents your bold defign, In Eritim Diary fhew your name; In arts and friences to fhine.
4. By Mifs Polly S——, of Norton, Northamptonhhire.

With thought profound, I fought the $\begin{aligned} & \text { By Fildes, witty bard of fame; } \\ & \text { prize, }\end{aligned}$ When fraight into my mind it
So well conceal'd in dark difguife,
came:
Arid if the prize ffould be my lot, The favor ne'er will be forgot.

5. By Mr. Jöhn Rinmer, Liverpool.

The myftic prize I willingly would folve, And to pofterity tranfmit my name; But fill fome bar obfructs my late refolve, And blocks up ev'ry avenue of fame.
Other Separate and ingeenious anfwers weere given by Meffrs. Autodidcsius, John Brmem, Yat. Hall, Yohn RichardJon, John Savage, Fohn Taylor, Foratian-Wood, FoJ. Woollin, and X:Y:Z.
The ingenions anfwers by Mefrs. Olinthus Gregory and James Stevenfon, twere too loigs for our narrow limits.

GENERAL ANSWERS to the ENIGMAS.

1. Alfred and Ella. By Mr. Fohn Fildes, Schoolmajfer, in

On May-day eve as Ella Tat, Beneath an elm-tree's fhade, One like a pilgrim clad drew near, And thus addrefs'd the maids
Why, fair one, doft thou fit and weep, And droop thy lovely head?
Does fome relation, or kind friend,
Lie number'd with the dead?
Or has thy lover, haplefs maid. Prov'd faithlefs and unkind?
To whom the nymph with reafonfound, But trembling tongue rejoined:
${ }^{\prime}$ Tis love alone that is the caufe, Of this my prefent grief;
And friendly franger, nothing now, Can give my foul relief.
Young Alfred was a gallant youth, A foldier of high fame;
And for each other he and I Soon felt a mutual flame.

This goiden cbain to me he gare, When we were doom'd to part;
And from the door 1 after himLook'd out with heavy heart. For Give long years I have not heard His pleafng font nor voice;
Nor feen his manly form that oft Has made my heart rejoice.
But, oh! this day a neighbour came, The difmal news to tell,
That by a bullet wing'd with death, The youth laft fummer fell!
Debarr'd of ev'ry earthly joy, I now frall figh and weep,
Till I within the peacefal tomb Of my forefathers fleep.
The hews is falfe, he cry'd, which fo Thy tender breaft alames; For 1 thy faithful. Alfred an!! Then clafp'd her in his arms.
2. On the Death of a young Lady. By Mr. Daniel Sheridan, Bitfon.
Beneath yon fable yew-tree's baleful fhade, That o'er the graves diffufe an awful gloom; A maid. untimely number'd with the dead, Now lies at reft in death's cold earthy room. 1. . That lovely form was once the pride of May, The warblers ftrove to imicate her fons; 4. Her mannerssentle, affable and gay, And truth's divine came mended from her tongue.

Her mind was lovely, as her face was fair, Each fpoke the language of feraphic love. Her weelth oft dry'd the mournful widow's tear, 2.

And fmooth'd her paffage to the realms above.
The chains of poverty the oft remov'd,
That bow'd the worthy lower than the grave;
She was by all the great and wife belov'd,
Rever'd, and honour'd by the good and brave.
Her morn of life was gentle, calm, and clear,
In genial funfhine rofe her early noon ;
But death's cold icy hand barr'd her career,
Pr.
And nipt this fragrant bloffom in her bloom.
The faireft flower fooneft fades away,
Too foon, alas! you claim'd your kindred home,
And left me to corroding grief a prey;
O'er your cold grave to weep my woes alone.
But when relentlefs death directs the blow Againft this poor afflicted heart of mine, And in earth's cold embraces lays me low, Your heavenly fweet feraphic choir I'll join :
There midft furrounding glorious Angels Thare,
The god-like blifs that fouls immortal prove;
Where we fhall freely tafte devoid of care,
Returning years of never fading love.
Note, 6th Reafon, and 7th a Bull.
8. Addrefs to a Friend. By Mr. William Shipfides, Normanton on the Wolds.
Since it pleas'd dame Forture to give you a wife, May reajon and virtue conduct you through life; May no brutal paffion your breaft ever move, Alluding to 7 th. As true as the fwan to its mate may you prove.
May th' chain of contentment e'er twine round your cot ; 3 .
Fell difcord and frife may they ne'er be your lot ;
Fair rofy fac'd health may you ever enjoy,
May pallid hu'd ficknefs your peace ne'er deftroy,
Mav meager pale poverty e'er flee your door,
And wander, like echo, on fome barren fhore.
May your purfe a fufficiency ne'er once lack,
To buy requifites fit for belly and back;
To flore in your cellar a cafk of ftrong beer,

As life on her journey doth rapidly fly, May you learn to live, as you wifh for to dic, And ufe the portion of time, to you given, With praifes to God and the Lamb, who's in heav'n:
And when of this world life a tinis fhall prove,
To the regions of blifs may your foul calmly rove;
Join with angels and faints (where mortal ne'er trod)
In fweet hallelujahs to Saviour and God.
May I too remember that God gave me breath, That mortal I am, and but duft of the earth;
That God an account of man's deeds will require, And the wicked reward with unquenchable fire;
That death is moft certain, the time not known when :
Give me grace to prepare, O Lord God. Amen.
4. Addrefs to Britifh Youth. By Autodidafus, Ramptonienfis.

Fair fons of Britain's ifle attend, And liften to my fong;
Come hear the dictates of a friend, Which may your life prolong. Bull-baitings, and all gaming fiun, Nor fpend your youth in vain; Unto cock-fightings never run, Nor wear fin's ीavißh cbain.

Fix not your tbougbts on golden ore, For ricbes fly away;
E'er long you'll part to meet no more. Unlefs in earth or clay. Strive in your poft ufeful to be, Let nought block or bar th' road. Which leads to true felicity, To heaven and to God.

5. By Mr. Thomas Fox, Norton.

The fpring returns, all things are gay, Bull-baitings, puppet-fhows, and ball,

To welcome in the firt of May; And fol with his refulgent train, All nature brings to lite again. Now lads and laties may be feen, In antic gambols on the green; In cbains and links extended far, At longduck, crookhorn, prifon-bar.

Engage the minds of great and fmall. Fatigu'd with toil, each takes his lafs, And gently pulls her on the grafs; In pleafing notes and faltering tongue, Regales his, fair one with a fong. The fports and paftimes being o'er, Each one goes home and fhuts the $d x c r$.

> 6. On Spring. By Mr. Fohn Rimmer, Liverpool.

Now in the circling round fweet May refumes
Her flowery gatb and fragrant perfumes,
Difpels black'ning clouds which ftain the fky,
And wakes the filent groves to harmony.
How chearfully the feather'd fongters fing,
And hail, in their own tongue, returning fpring.
The farmer now with firits quite elate, This fcene with ardent joy does contemplate;
When firft Aurora in the morning peeps, Soon frum the floth creating bed he leaps, Uribars his cottage door, and haftes away, Pr. 3. Ere fol can ulher in approaching day ; Eager after wealth. he his work purfues, For now the time is fuited to his views.

In yon neighbouring fields the cattle fee,
Wherein the raging bull, from chains fet free,
In foaming paffion, with majeftic frides,
Stalks o'er the land, and nothing reafon guides.
His mates more gentle feem to graze at peace,
And he at length his horrid noife doth ceafe.
7. To the Editors of the Britifh Diary. By Mr. Philip Norris, Liverpool.
May the door of your Di'ry be ever unbarr'd, To merit, deferving fuch treafure immenfe; 5. 1. Pr. With reafon and judgment good language reward, And bulls down to chains, as a juft recompence.
Room will not admit of the ingenious anfwers by Meffrs. Samuel Brafar, John Brown, John Cairns, John Savaje, John Taylor, and X. Y:Z.

ANSWERS to the REBUSES and CHARADES.

I. Fy Mr. F. Fildes, Schoolmafier, Liverpool.

Ah, why did Sheridar, the tuneful bard, Lait year his wonted friendly aid deny; Whole polifh'd verfes jufly claim'd regard,
For few in peetry could him outvie.
In Germany, but low the laproing flies, When Landraves, or when cuckolds are in fight:
But his bold mufe could eagle-like arife, Whene'er his fancy took poetic flight.
The nyftic relus and enigma too,
He could with eafe and elegance compore; And thofe of others he could at one view, With matchlels penetration foon difclofe.
In mathematics too, it is well known. He was no blockhead; for with plaftic art, To folve each problem he has clearly fhown, He to a horfehair could a fcheme impart.
If yet alive, I hope that foon again, He to the Britifh Diary will ferid, Some choice production of his active pen ; And thew he fill is Cotes and Taylor's friend,

But if the hand of death hath laid him low, And caus'd his learn'd careeer fo foon to ceafe ; For him, alas, the friendly tear fhall flow, And may his foul enjoy eternal peace!

2. By Mr. Philip Norris, Liverpool,

Dear Di your fecrets l'll difclofe, And quick your rebus all expofe,
Nor fear your fatal frown; As fure as lapwings fkim the plain, And bockbead is an empty name, Abroad they fhall be known.

Again, I fay, if Landgrave be
A title known in Germany, And cuctold be a noun; And sberidan a bard fublime. And borfebair ferve to play true time, The whole 1 now have fhewn.
3. The Invitation. By Mr. John Savage, Smithalong-Grove:

Come my fair one, let us rove, Round the plain, or thru' the grove, Ey the gentle murm'ring rill, Orafcend the tow'ring hill, Or to ỳ эider gay alcove, To renew our vows of love; Where the gentle fof'ring breeze, Soffly whifpers thro the trees, Where around our gay retreat, Twine the boney-fuckle fweet; And the flow'rets deck the ground, Shedding fiweetell odours round; While the rich luxur'ant vales, Wave as zephyrs fan the gales. But, alas, if thou art gone, Soon à gloomy cloud comes on; Come then, let us join our hands, And our hearts, in Hymen's bands, Then how happy fhall 1 be,

> When for life I'm blefs'd with thee. Mav it be our happy lot, In fome peazeful rural cot, There in blefs'd retirement, To abide in foft content. To amule the winter's night, When the groves no more delight, Britifh Di, each eve fhould cheer, Find a Gernian Landgrave there Blockbead, cuckold, lap ruing too, Curiouny conceal'd from yiew; Ev'ry rebus we'd affay, To unfold without delay; Daniel Sberidan's fweet mure, We with rapture would perore; Thus in love our days we'd fpend, Till our time on earth Mould end; Then we'd truft thro' Jefus's love; To be blefs'd in heav'n above.

4. By Autodidactus, Ramptonienfis.

Shou'd fublime Mr. Sheridan e'er wed, Heav'n grant him a virtuous wife,
Who never will cornute his manly head : And may they live a happy life.
For German Tilles then they will not long, To which the blockhead oft lays claim;
A folemn tune, a rebius, or a fong, Horfehair. Will more than honey-fall intlame Paradox.
Their youthful minds with love true and fincere, Which fhall increafe with each revolving year.
> 5. By Mr. Fames Stevenfon, Heath, near Cheflerfeld. Germany, and cuckold, will define, The rebujes, if Sheridan you join. Blockhead, horfehair, lapreing, and Landgrave, Will completely anfwer each charade.

Other general anfwers by Melf. Blackburn, Braffar, Brown, Cairns, Fox, Rimmer, Mifs Polly S-, Sheridan, I aylor, Wood, Wioollin. and X.Y.Z. are reiuclantly omitted for weant of room.

ANSWERS to the QUERIES.

Query i, anfwered by Mr. Fohn Fildes, Schoolmaller, Liverpool.
In the firft chapter of Numbers, and the 5 ift verfe, God declared to Mofes, that if any perfon, except a Levite, touched the ark, that perfon fhould fuffer death; which I take to be the reafon why the Almighty fmote Uzzah. See alfo chap. 3, v. 18 and 3 ; chap. 4, v. 15 , and chap. 18 , v. 22.
Anfwers were alfo given by Mefirs. Autodidactus, Brafjar, Cairns, and Carvithen.

Query 2, anfwered by Mr. Fohn Cairns, Monkton.
There may be fome truth in the affertion of the Free Mafon's Society, being the moft noble inftitution in the world; becaufe they clain an alliance to the Temple of Jerufalem, and in a manner derived the myftery of their art from that magnificent fabric, that never had its equal in the world for grandeur and beauty. But what relation mafonry has to affrology, I cannot learn; unlefs it be by way of figure and analogy. Then in this refpect, it is truly the mof honourable calling under heaven; for they have in a manner taken a draught of their architecture from the Founder and Maker of the Univerfe. For every houfe, fays the Apofte, is builded by fome man; but he that built all things is God.
Query 3, anfwered by Mr. William Eaton, jun. Sulton-0'th'-Hill, Derbyhire.
By calculation for the given lat. $\left(53^{\circ} .8^{\prime}\right.$) and the given time (Jon. 14 th, at 8 h .12 m. P. M. 1755) the degrees on the horof cope are $8^{\circ} .56^{\prime} . \mathrm{m}^{2}$. And the a ot δ° falls in $1^{\circ} .25^{\circ}$. of \bumpeq, whofe Ob . As. is $=182^{\circ} \quad 2^{\prime}$ From which take the Ob . As. of the horofcope $140 \quad 22$ and there remains the arch of direction -- 3^{2} 40 which according to Naibod's meafure of time is $33 y .53 \mathrm{~d}$. And the (\exists falls in $6^{\prime \prime} 21^{\prime}$ of \bumpeq, whofe Ob. As. is $188^{\circ} 36^{\prime}$, From which take the Ob . As. of the horofcope $1^{149^{\circ}} 22^{\prime}$

And there remains the arch of direction - $3914=39295$
Theretore the horoffope comes to the \square of δ in $33 y .53 \mathrm{~d}$.
And the body of the \oplus in $39 y .295 \mathrm{~d}$. W. W. K.
The Paradox anfwered by Mr. F. Sievenfon, Heath, near Chefierfield.
The paradox I foon found out;
The anfiver's honey without doubt.
Thus was the anfaer given by Meff. Blachburn, Saviage, and Wood.
Otheraife,

Dtherevife, by Mr. Yohn Cairns, Minkion.

Five letters in a drone you'll clearly fee, When one's remov'd, two left behind there be; And D and R does to their names agree. And thus was the anfwer given by Meff. Braflar, Brown, and Taylor.

NEW ENIGMAS.

I. Enigma (61) by Mr. John Cairns, Monkton.

I all things dormant as a door do turn,
Who feels my pow'r does not for riches burn.
I puny mortals wonderfully chain,
Tho' with no fong do I difturb their brain ;
But I with dreams uncommon do them vex,
And I their judgment may fometimes perplex.
I game-cocks too, engage in filent war ;
All things that live I fummons to my bar.

> II. Enigma (62) by X. Y. Z. Sheffield.

From mother earth my various parts arife, Part hidden deep, part tow'rirg t'wards the fkies,
Ingen'us Vulcan forms my inward part,
Yet ftrange reverfe, my outfide oft is heart.
My fervices, kind Gents, fhould I relate,
Of fuch importance am I to the State,
That writings, calh, or bills, whate'er they be,
Are undiftinguifh'd, guarded all by me.
Not to the State alone confin'd my lot,
I conftantly attend the meaneft cot ;
The rich man's friend, a guard unto the poor,
Yet cruel fate-I'm plac'd behind the door.
III. Enigma (63) by Mr. Yonathan Wood, Schoolmafifr, Rufiton, ^orthampton/hire.
Diarians, pray give a ftranger room,
For my appearance oft difperfes gloom;
Yet I am made of fuch peculiar parts,
That I ftrike terror into guily hearts;
'Tis I that give the pris'ner leave to dwell,
Within the darkfome, folitary cell;
But here alone, my worth is not confin'd, For I'm of gen'ral uie to all naankind.

When pitchy darkneifs o° er the world has fpread Her fable mantie, and repos deach head; Then by my aid mankind fecurely lies, Enjoying loft repofe, till morn arife; Till the great chearer of the opening day, Awakes all nature with his golden ray; Then with my leave fome to the fields repair, And fome (as fate's ordain'd) figh with defpair; In fhort, to mention my extenfive fway, Wou'd need a traverfe 0° er both land and fea;
For I am ufeful or the raging main; Alike I ferve Love's empire to maintain. But one hint more, and then my theme I'll end, At night you'll tind in me a trulty friend.
IV. Enigma (64) by Mr. Philip Norris, Liverpool. Kind and indulgent friends, may I prefume, In mean and humble garb, your aid to crave; Whilit I difplay to you my ufe and doom, And fhew the world where I my fation have. Sometimes perchance in fields I'm plac'd aloft, Lafh'd to fome pole, expos'd to rain and wind; As bad as fcarecrow I am call'd full oft, 'Tis true, to 'fright the birds I am confign'd :
Oft in more fate my winggs are feen to fpread, And cut the wind as by great force compelfd;
'Tis then I'm chewing what is call'd my bread:
Sometimes of hunger my career's withheld.
Oft in a kitchen_am I feen confin'd,
Safe in a box, or to a poff fecur'd;
To rivers often is my fate confign'd,
To prey on water not to be endur'd.
Sometimes I feaft on malt, by turns on wheat,
Pepper, or coffee, chocolare, or wood;
Sometimes on paint, or fnuff, or fugar fiveet,
E'en paper, filk, and iron, are my food.
My appetite is faid fo keen to be,
'Tis ietdom pall'd, my meat I freely pafs;
'Tis faid, that even man can be by me,
From age reftor'd to youth in fhorteft ipace.
As to my form, I'm filent on that head,
It fo much varies, my frame oft's the fame;
No doubt the hints which are already made,
Will thew the world my wond'rous make and frame.

V.. Enigma (65) by Mr. Fohn Rimmer, Liverpool.

Ye enigmatic bards I prayattend,
To the hiftory of a humble friend;
When learned fenators, in clofe debate,
With profound arguments inveftigate
Some abftrufe theory, and regulate
The internal wheel's which affect the ftate,
I oft among f the orators abound,
Though fometimes begrim'd with dirt am found.
If e'er without a brother you fee me,
I furely denote fome infirmity;
And then, alas! a heavy load I bear,
Without a friend my tortur'd frame to cheer.
If Romeo within a fhady grove,
Should fray with Juliee to declare his love,
I always do attend the faithful pair,
And do fupport them even in defpair.
The valiant hero will my ufe allow,
However dignified with wreath his brow;
Yet th' ambitious tyrant, with haughty rage,
Whofe horrid acts difgrace th' hiftoric page,
Me under foot he treads with fierce diddain,
Yet, patient as a lamb, I ne'er complain.
But I am not to man alone confin'd,
For with fome quadrupedes you may me find ;
But they oft moft cruelly abufe me,
In ftorms, and rain, froft, and fnow, they ufe me.
But, friend, as your patience is tir'd, I fear,
Je fuis votre tres humble ferviteur.
VI. Enigma (66) by Mr. Wm. Shipfides, Normanton on the Wolds,

When winter ftern has wing'd her way
To diftant climes, and nature gay
Difplays around a lovely hue,
And animates the fields anew,
I reft within the leafy grove,
The feat of blifs and tranquil love;
Or feek the meads and verdant lawns,
Where dew-drops fall and Phoebus fawns.
But foon, alas, a hardy tribe,
Whofe rage no one could ever bribe,
Seek my abode, make me a prey,
And, in triumph, bear me away
To fome proud fpot, the boaft of art,
Well fortified in every part.

Where, culprit like, fad grief to tell, I'm clofe confin'd in dreary cell, Not night more dark, more grim not hell; And there remain till fate's decree, Nor pine at th' fortune of the free.
VII. Enigma (ϵ_{7}) ty Mr. Daniel Sheridan, Bilfon.

Miltonic mufe! my rural notes infpire,
Elate my foul with all your heav'nly fire;
With fweet harmonious lays, inform my tongue,
And pour your fofteft numbers through my fong.
When heav'n's high King, from night's terrific womb,
Bade thofe ftupenduous glit'ring orbes to come,
And that thrice glorious orb that rules the day,
And this fair verdaut globe that round him ftray.
"With gay variety of hill and dale,"
And flow'rs that fweetly fcent the paffing gale.
1 was created-fuch my adverfe doom,
I never know the fweets of youthful bloom;
But thro' my long, and weary pilgrimage,
My hoary looks proclaim my feeble age;
Yet frongef forts, and cafles I o'ercome;
So frail are all things 'neath the crefcent moon.
'Tis I that give fring's foft refrefhing fhowers,
And Flora decks in all her pomp of flow'rs,
That lays the fage among the peaceful dcad,
And Phoebus brings to Thetis pearly bed;
I fend fair Delia's lover o'er the main,
And bring him to her longing arms again.
From mamma's iap the iitping babe I raife,
And deck his brows with manhood and with bays.
Man always I attend, yet frange to tell,
'Tho's friend and flave he ne'er does ufe me well. From me experience, fenfe, and wifdom flow, And all mylterious knowledge here below ; But, as all mortal beings pafs away,
1 'mongft the reft muft feel the fwitt decay;
But O! that dreadful day when from on high,
My doom eternal fhrinks the vaulted fky ;
Like the ftrong bafis of a mighty tow'r,
When 'tis remov'd by winds convulfive pow'r,
l's airy turrets with explotion vaft,
Surrourding ftreets and ienements lay wafte;
So I this firm-fet earth, that lucid fun,
Thefe fparkling fars, and yon revolving moon, Upon one wide-fpread flaming pile make fhare,
The laft dire pangs of elemental war.

VIII. Enigma (68) by Autodidaclus, Ramptonienfis.

Before man's fall I into being came,
And with the Deity did dwell;
His haughty foes purfu'd with raging flame,
And drove the godlefs crew to hell.
The golden age my beauty much adinir'd,
They drefs'd me in a flowing robe,
And ev'ry one my company requir'd,
From Eaft to Weft, throughout the globe.
But in this iron age few friends I find,
Alas! few that well to me mean;
And fewer ftill, who my dictates mind,
Though in heav'n's arch my emblem's feen.
A fevere enemy to fome I prove;
Am made to inflict woe and pain ;
Nor can their bitter cries my pity move,
Who, my precepts to keep, difdain.
To others l'm a fincere friend indeed,
Refcue them from the cruel foe;
They are made happy-blefs me for the deed,
And grateful at my altar bow.
Sometimes I'm gaily drefs'd in cloth of gold,
Rich velvets they for me prepare ;
Like a king paramount, my feat I hold,
And look as grave as a Lord Mayor:
One while I'm all for right-naught bad can pafs ;
Somerimes I countenance what's wrons ;
Of late I've gain'd the title of an afs,
Which muft be whipp'd and flogg'd along.
But at the end of time-O it is then
That I Thall fhine with fplendour bright ;
My clouded honours all, I fhall regain,
And dwell with everlafing light.
IX. or Prize Enigma (69) by Mr. Fohn Fildes, Schootmafter, in Liverpool.
Ere your firf parents into life were brought,
Whofe dreadful downfall fatan quickly wro'ight,
By leading them afide from virtue's road;
I on the mountain made my bleak abode;
Where I have reign'd fupreme through ages paft,
And fhall do fo as long as mountains laft.
In towns behold me in the crowded fireet,
Attending each fine lady that you nieet:
And any fately edifice you fee,
Is thought but weakly guarded without me.

When at the ball the well-bred beaux advance, And lead the fprightly fair ones to the dance; You then would think me to be doubly blef, For there by ev'ry' couple I'm carefs'd ;
And you will own when you bave found my name,
That o'er all men pre-eminence I claim.
If in a nation civil wars appear.
Or lawlefs mobs fpread terror far and near,
I in them both ani always at the head,
For neither laws nor punifhments I dread;
And though from pride and curft ambition free,
I in exalted ftations love to be ;
Nay, in fome kingdoms fuch is my renown,
I often have been honour'd with a crown.
Whene er you find me in a fervile ftate,
My wrongs, alas, are fhocking to relate.
I from my mafter many a drubbing get,
Yet I at his ill-ufage never fret;
But without once complaining condefcend,
Both on his door and table to attend;
Still am no better treated than before,
But forc'd to fleep upon the ground or floor ;
And when I can no longer ferve his turn,
He then regards not if I farve or burn.
My noble parent too was flay'd alive,
Such cruel punifhments fome men contrive.
Survey the trees that in yon foref grow,
Kind heaven on them all did me beftow;
And in the fields quite pleafing 'tis to ree,
The birds in fpring conftruet their nefts near me.
When for amufement reads the hoary fage,
He always meets with me in ev'ry page.
I'm not to fcenes at land alone confin'd,
At fea I'm known to fly before the wind;
There when rude blats with bluft rous fury fweep;
The troubled furface of the mighty deep;
When foaming billows curl their heads on high,
Loud thunders roar, and forked lightnings fly;
Though dangers round me rife in ev'ry form,
I ride aloft, and dauntlefs brave the ftorm.

NEW REBU'SES, CHARADES, छ๒ QUERIES.

> 1. Rebus, by Mr. Thomas Fox, Norton.

The frongeft of giants that heaven would foale;
The youth for conceit) that now grows in the vale;

The mountain, where judgment for beauty was given,
The river in India where gold is down driven;
The goddefs of wifdom, of arte, and of war ;
The goddefs of morning, who rides in her car ;
The initials, when join'd, will bring to your view,
A fubject, though ancient, is ev'ry jear new.
2. Rebus, by Mr. Pbilip Norris, Liverpool.

A river in Egypt, when fever'd in twain ;
Two-fifths of a tree, and the head of a dame;
When rightly connected, will fhew at one view,
The name of a poet, out-rivali'd by few.
3. Rebus, by Mr. Fonathan Wood, Schoolmafier, of Rußtens Narthaurptonfisire.
Two-fixths of a mufical infrument take, That's frequently ufed at a country wake, And next fubjoin fifty; then afterwards add, Three-fourths of a thing, that for writers is made ;
'Twill bring to your view a Diarian bard,
Whofe kind compolitions deferve our regard.

4. Rebue, by Mr. F. Fildes, Schoolmafer, in'Livergool.

To a place and a number; an infect unite; And a poft in the navy you'll then have in fight.

1. Charade, by Mr. Fonathan Wood.

In marlhy places, and in wat'ry ground,
A worthlefs plast, my firt is often found;
A certain weight my fecond will appear,
My whole's a village in Northamptonfhire.
2. Chiarade, by Mr. Wm. Blackburn, Fryup, near Wbitbyo

My firt has oft unruly been, My next's a ufeful friend;
My whole is of no fervice feen,
Unlefs my firt attend.
3. Charade, by Mr. Germián Buitoo, London.

My firt is a place of abode for the poor,
My fecond ftands for hundreds twice ten;
My whole by the Britifh fair ladies is wore;
It is too in great vogue with the men.
4. Charade, by-Mr. Wm. Shipfides, Normanton on the Misodido.

My ample firt old Gripus will explore,
Who oft unto its care intrufts his תore;

The fpotlefs beauty of my next behold,
Whofe charms oft captivate the young and old ;
Tho' you, ye fair, enjoy fweet liberty,
A captive held, alas! my whole muft be.
3. Cuarade, by Mr. Olintbus Gregory, Afiftant at Mr. Wefion's Boarding School, Yaxley, Hants.
My firft is found of gen'ral ufe,
And 'tis no trifle reckon'd;
And many a maid, neat and fpruce,
Is courted by my fecond.
Oft in my third my fecond goes,
To fome far diftant land;
'Tis oft the feat of human woes,
As you may underftand;
My whole will thew an ufeful art,
Well known throughout the nation;
In which I fain would do my part ;
'Tis proper in my fation.

1. Query, by Mr. Fohn Fildes, Liverpool.

Does not the xranting of patents for particular inventions retard the progrefs of the mechanic arts?
2. Query, by Mr. Wm. Marfden, Nether burfl.

What moft probably was the difpute concerning the body of Mofes, mentioned St. Jude, ver. 9th ?
3. Query, by Mr. Fohn Cairns, Monkton.

What is the criterion of a divine miffion ; and whether or not thofe preachers called Methodifts have any right to that claim?
4. Query, by Mr. Richard Elliott, Lizerpool.

It is recorded in the gofpel of St. Matthew, chap. 27, ver. 52, 53, that the graves were opened, and many bodies of the faints which fept arofe, and came out of the graves after his refurrestion, and went into the holy city, and appeared unto many: whether thofe bodies were united to their fouls, and lived as beforetime, or were they only vifionary?
N. B. Mr. Fo.r's Enigma will bave a place in our next.

0 The Prizes have been determined by Lot, as follow - For the Prize Queftion, to Mr. I. Brookes, 12 Diaries; 2d, for the Prize Enigma, to Mr. Jonathan Wood, 6 Diaries; 3d, for the General Anfwer to the Enigmas, to Mr. J. Fildes, and Mr. Jofeph Gelltrap, 6 Diariey each; 4th, for the General Anfwers to the Rcbufes, Charades, \&c. to Mr. Thomas Moore, 6 Diaries-all of whom will pleafe co fend for them to Mr. PEARSON, Printer, in BlRMINGHAM.

Answers to the Mathematical Questions,

I. Question (80) anfwered by Mr. Richard Elliott, Liverpoot.

It is plain from the firft equation, that x, y, and z are the fides of a right angled triangle, and are as the numbers 3,4 , and 5 ; therefore as $3: 4:: x: y=\frac{4 x}{3}$, and as $3: 5:: x: z=\frac{5 x}{3}$, thefe values fubftituted in the equation x y $z=480$, we have $\frac{20 x^{3}}{9}=480$, or $x=\sqrt[3]{\frac{4320}{20}}=216 \frac{1}{3}=6 ; \because y=8$, and $z \pm 10$; then the diameter of the infcribed circle being equal to the dil. ference of hipothenuce and fum of the 2 legs of all right \angle ' d triangles, we have $14-10=4$, and $4^{2} \times \cdot 7^{9} 54=12.5664$, the required area.
The fame by Mr. Wn. Eaton, jun. Sutton-o'th'-Hill, Dei byfhire.
It is evident from the firft equation, that the triangle is rightangled; therefore, put $3 n=x, 4 n=y$, and $5 n=z$; which values put in the laft equation is $\left.60 \cdot n^{3}=480 ; \because n=\frac{480}{60}\right)^{\frac{2}{3}}$ $=2$; hence $x=6, y=8$, and $z=10$, and the area of the infcribed circle $=\overline{6+8-(0)}=\times .7^{8} 54=12.5654$.
Solutions to this Quettion were alfo given by Mefirs. Afton, Booth, Brookes, Burton, Fox, Gregory, Hall, Sall, Stevenfon, Travis, and W collin. II. Question (8i) anfuered by Mr. Wim. Travis, Shaw, near Rochdale, Lancujhire.
It is plain by the fecond equation, that x and y are fquare numbers; alfo, that they are whole numbers, and that the greater cannot be above 49 ; then, by making trial of the fquare numbers under, I find $x=16$, and $y=9$.

The fame by Mr. German Burton, the propofer,
Aflume $s=x+y\left\{\begin{array}{l}\text { thcn the given eq. } \\ \text { will fand thus; }\end{array}\right\} \begin{aligned} & x+y \sqrt{x y}+x \sqrt{x} y+y^{2}=a-s,\end{aligned}$
divide the 1 it equation by the 2 d , and you have $\sqrt{ } \bar{x}+y_{2}^{1}=\frac{c-s}{b-s}$; or $s+2{ }^{\prime} \vec{s}=\frac{a 2-2 a s+s^{2}}{b^{2}-2 b b^{2}+s^{2}}$, by fq. both fides of the eq. and fub. s for $x+y$: by this laft eq. $s(x+y)$ is found $=25$; hence $\sqrt{s}=(\sqrt{x+y})=5$, each of thefe two laft eq. being brought to a quadratic, x will be found $=16$, and $y=9$.
Anfwers were given by Mellis. Brookes, $E_{\text {aton, }}$ juc. Sheridan, and Stevearon.
III. Ques -
III. Question (82) anfaered by Mr. Fames Stevenfon, the propofer.
Put $x=$ the fength, and $y=$ the breadkh of the glafs; then by the quef. $2 x+2 y=160$, and $x^{2}-y^{2}=1280$; by folving thefe equations, we obtain $x=48$, and $y=33$; therefore 24 : 11:: $48 \times 32: 704$ the area of the frame. Put $z=$ the breadth of the frame, then per the nature of the queft. we have : $60 z+$ 3.1416 $z^{2}=704$, folved, $z=4.074$ inches.

The fame by Mr. M. T. Sadler, Doveridge.

Put x for the length, and y for the breadth of the glafs, and we fhall have the two following equations, viz. $x+y=80$, and $x^{2}+y^{2}=1280$, the fecond divided by the firf gives $x-y=16$, this added to the firf gives $2 x=96$, whence $x=48$ inches the length of the glafs; and by fubftitution, $y=32$ the breadth; therefore $x y=1536$ the area of the glas ; then as $24: 11::$ $1536: 704$ the area of the frame; and if z be, put for the width of the frame, and taking the length, and the breadth of the frame on the infide, equal to the length and breadth of the glafs; then $160 z+4 z^{2}=704$ (fuppofing the frame to be fquare on the out lide edge) whence $z=4$ inches: but if the corners on the outfide of the frame be circular, then $160 z+4 z^{2} \times .7854$ $=704$, whence $z=4.074$ inches for the width of the frame.
Meffrs. Afhton, Blackburn, Booth, Burton, Eaton, jun. Elliott, Brookes, Gregory, G. F. Ha!l, Sheridan, Saul, Travis, and Woollin, alfo gave anfwers:

IV. Question (83) anfwered by Mr. 7. Brookes, of Leeds.

Confruction. Upon A B the given bafe, defcribe a fegment of a circle to contain the given vertical angle; make B D equal to, and 1 to $A B$: upon BD as a diameter defcribe a circle, and to the point of inserfection C, draw AC and BC, and ABC will be the triangle required.

Demonfration. Draw CE\|AB; then by conftruction, and the known properties
 of the figure $\mathrm{AB} \times \mathrm{BE}=\mathrm{BB} \times \mathrm{BE}=$ $B E^{2}+E^{2}=B C^{2}=$ twice the area of the triangle.

Calcu. Join CD and $\mathrm{BF} ;$ then becaufe the angles BDC , $B F C$ are equal, and BCD a right angle; rad. (1) : D B:: fine $L B C F: B F=23.4342585$. Again, in the triangle $A B F$, becaufe the $L A B F=L A C B$; two fides and the included angle are given to find $\mathrm{AF}=37.81 \mathrm{I}_{2} 992$. Now by the pro-
pert'y of the circle $\mathrm{AC} \times \mathrm{AF}=\mathrm{AB}^{2}$; therefore $\mathrm{AC}=$ $7^{2.8042903 ;}$; and by fimilar triangles $\mathrm{AF}: \mathrm{AB}:: \mathrm{BF}: \mathrm{BC}$ $=37.9 \times 365$: therefore $\frac{1}{2} B C^{2}=4 \mathrm{~A} \cdot 1 R \cdot 3^{8.72 P}$. the area.

The fame by Ferdinando.
Analyfis. Let ABC be the \triangle, AB the given bafe, and $\angle C$ the given vertical L. It is well known that the double of the $\triangle A B C$ is =AC.BC. $\mathrm{S} . \angle \mathrm{C}$, and which being alfo $=\mathrm{BC}^{2}$ by the quefion, \because A C. $S . \angle C=B C$, or AC:BC:: I (radius) : S. LC. Hence the following

Conf. Take any line $\mathrm{C} a$, make the $\angle \mathrm{C} a b=$ the given one, and demit the $\perp \mathrm{C} b$ to meet $a b$ in b; make $a \mathrm{C} d$

$=$ the given vertical L, and with rad. C b defcribe an arc to cue $\mathrm{C} d$ in d; through d, a draw d ae, till $d e=$ the given bafe; lafly, draw $e \mathrm{~A} \|$ to $\mathrm{C} d$ to cut $\mathrm{C} a$ produced (if neceffary) in A, and draw $\mathrm{AB} \|$ to ad to cut $\mathrm{C} d$ produced in B , and the thing will be done.-For $a \mathrm{C}: \mathrm{Cb}(c d):: \mathrm{I}(\mathrm{rad}):. \mathrm{S} . \angle \mathrm{C} a b(a \mathrm{C} d)$: :, by fim. \triangle 's AC: CB.

Cal. Affume $a \mathrm{C}$ at pleafure, then $\mathrm{C} b$ or $\mathrm{C} d$ will be known, and conf. $a d$; and, by fim. \triangle 's BC and AC, \&c.
Geometrical anfwers are alfo given by Meffrs. Affoton and Saul. Algebraical Solution by Mr. Wm. Hulland, the propofer.
Let CL be perpen, to the bafe A B produced, and put $b=$ tang. $\mathrm{BCA}=31^{\circ}{ }^{\circ} 23^{\prime}, c=\mathrm{BA}=45, x=\mathrm{CL}$, and $y=\mathrm{BL}^{*}$; then pertrig. $x: y:: 1: \frac{y}{x}=$ tang. BC L, $x: c+y:: 1:$ $\frac{c+y}{x}=\operatorname{tang}$. LCA, and the tang. of their difference BCA= $\frac{c x}{x^{2}+c y+y^{2}}$, and by the queft, $x^{2}+y^{2}=c x$, and $\frac{c x}{x^{2}+c y+y^{2}}=$ b, by the fecond equation $\frac{c x}{6}=x^{2}+c y+y^{2}$; the firft taken from the laft $\frac{c x}{b}-c x=c y$, and $y=\frac{x-b x}{b}$, fubflitute this in the firf $x^{2}-2 b x^{2}+2 b^{2} x^{2}=b^{2} c x$, and $x=\frac{b^{2} c}{2 b^{2}-2 b+1}=$ $3^{1.94}=\mathrm{CL}, y=20.4^{2}=\mathrm{BL}, \sqrt{\mathrm{c} x}=37.9 \mathrm{I}=\mathrm{CB}$, and $7^{2.8}$ $=\mathrm{CA}$.

Solutions were given by Meffrs. E.aton, jun. Elliott, G. F. Gregory, Hall, and Travis.

V. Qusstion (84) anfwered by Mr. Y. Saul, of Rochdale.

Let B A C be the given angle, on AB take AD = the common difference of the fides, and on AC take AE $=2 \mathrm{AD}$; draw DF fuch that $\mathrm{FE}=$ DF; alfo take $\mathrm{DH}=\mathrm{EF}$, draw HF , and parallel thereto draw DC, draw C B parallel to FD, fo will ACB be
 the triangle required.

Demon. Take GF $=$ FE, draw G D and EB, fo will GD and E B be parallel, and triangle H DF is fimilar to $\triangle \mathrm{DBC}$, and HD being = DF by conftruction, DB is equal to BC ; alfo \triangle DFG is fimilar to $\triangle B C E$, and $D F=F G, \because B C=E C$, hence AD is the common difference, AE being $=2 \mathrm{AD}$.

Algebraically by Mr. 7. Brookes, of Lee's.

This queftion is the fame as the 1 foth queftion in Carnan's Diary, which reas notanfuered, as that twork was difcontinued; wehere there is "given the vertical angle $134^{\circ} 39^{\prime}$, and the common difference 18 chains; to find the fides and area."

Put $s=$ fine $L B A C, t=$ tang. of half the faid angle, $a=$ 18 , and $\mathrm{BA}=x$; then per queftion $\mathrm{AC}=x+a$, and $\mathrm{BC}=$ $x+2 a$. Now rad. (I) $: t:: \frac{3}{4} \cdot \overline{x+a}, \overline{x-a}: \frac{3 t}{4} \cdot \overline{x^{2}-a^{2}}=$ the area of the triangle : likewife rad. (1):s:: $\frac{x}{2}, \overline{x+a}: \frac{s x}{2}, \overline{x+a}$ =the area of the trianglealfo, confequently $\frac{3 t}{4} \cdot \overline{x^{2}-a^{2}}=\frac{x}{2} \cdot \overline{x+a_{0}}$ by divifion $3: \overline{x-a}=2 s x$; hence $x=\frac{3 t a}{3 t-2 f}=22.44^{8}$ chains; $\because \mathrm{AC}=40.44^{8}, \mathrm{BC}=58.44^{8}$, and the area (found by either of the above expreffions) $=32 a$. I $r \cdot 7 \cdot 55 p$.

Geometrically. Conf. Produce indefinitely the legs containing the siven angle: along one of them take $A D=$ the common difference, and along the other $A G=2 A D$. In $A G$ twe the point F fuch, that $D F$ and $D E$ may be each equal to FG. Draw $B D \| E F$, and $B C \| D F$; fo fhall $A B C$ be the triangic fought.

Demorffration. Draw CH\|DG; then becaufe of the fimilar taiangles $A D G_{0} A C H ; 2 A C=A H=A B+B H=$ (becaufe
eaufe the triangles $F D G, B C H$ are fimilar) $A B+B C$. Hence the fides $A B, A C, B C$ are in arithmetical progreffion, the common difference of which is $D C(=B C)-A C=A D$.
Calculation. In the triangle AD G, the fides AD, AG, and the included angle ate given to find the angles $G=14^{\circ} \cdot 44^{\prime} \cdot 44^{3^{\prime \prime}}$. Hence by addition and fubtraction only, the following angles are found, viz. $\mathrm{ADG}=30^{\circ} \cdot 36^{\prime} \cdot 12^{\prime \prime} \cdot \mathrm{ADF}=\mathrm{ACB}=$ $15^{\circ} \cdot 51^{\prime} \cdot 2^{\prime \prime \prime} \cdot \mathrm{DFE}=\mathrm{DEF}=\mathrm{CDB}=\mathrm{CBD}=82^{\circ} \cdot 4^{\prime} \cdot \mathrm{r}^{\prime \prime \prime}$. and $\mathrm{ABD}=5^{\circ} \cdot 34^{\prime} \cdot 42^{\prime \prime}$. Hence $\mathrm{AB}=22.44^{8}, \mathrm{AC}=44^{\circ} .44^{\circ}$, $\mathrm{BC}=5^{8.448}$, and the area $3^{2 a}$. ir. $7 \cdot 56 p$. the fame as before.
Note. This method is general, whether E falls on the fame or contrary fide of A with refpect to D.
Elegant geometrical anfwers are alfo given by Ferdinando, and Mr. Hall; algebraical ones by Meffrs. Afhton, and Eaton, jun.

Vi. Question (85) anfwered by Ferdinando.

Confl. In any indefinite line MM take $\mathrm{BF}=$ the given difference of the legments; on E the middle thereof erect the 1 $E G$, and draw $B G=$ the given bifecting line; draw G G II to MM, and by Prob. XV. Simpfon's Geom. determine CF $\mathrm{CB}=$ the given diff. of the fides; make $\mathrm{CA}=\mathrm{CF}$, then will the $\triangle \mathrm{ABC}$ be that re-
 quired.

For, if CH, CD be drawn $\|$ to $G B, G E$ refpectively, it is evident $\mathrm{CH}=\mathrm{GB}, \mathrm{HD}=\mathrm{BE}$, and $\mathrm{AD}=\mathrm{DF}$: conf. AD $-D B=D F-D B=B F$, and $H B=D E=D F(A D)-$ $\mathrm{EE}(\mathrm{HD})=\mathrm{AH}$; the reft is evident by conftruction.
Elegant geometrical anfwers are alio given by Meffrs. Brookes, Hall, and Sheridan ; algebraical ones by Meffis. Ahton, and Eaton, jun.

VII. Question (86) anfwered by Mr. Fames A/hton.

Let AE B be the leaft, or required arc, B GC one of the equal arcs. By Wilfon's Rule, put $a=57.29578, c=10000$, the ratio of the chords as I to $r, x=$ the degrees in the arc BG, $y=$ degrees in the arc $B E$ to the radius I; then we fhall have $a c+3 x^{2}$.
$c_{x}: 1:$: I (the hypothenufe): $\frac{c x}{a c+3 x^{2}}$
$=B F$; whence by the queftion, $\frac{r \cdot x}{a c+3 x^{2}}$

$$
=B D ;
$$

The Britifh Diary.

$=B D$; but $\frac{c y}{a c+3 y^{2}}=B D$; therefore $\frac{r c x}{a c+3 x^{2}}=\frac{c y}{a c+3 y^{2}}$. Let the number of equal arcs be n, then $n x+y=180^{\circ}=s$, and $y=s-n x$, which fubfituted gives $\frac{r c x}{a c+3 x^{2}}=$ $\frac{c s-c n s}{a c+3 s^{2}-6 n s x+3 n^{2} x^{2}}$, and $\overline{3 r c n^{2}+3 c n . x^{3}-\overline{6 r c s n+3 c s} .}$ $x^{2}+a c^{2} r+3 c r s^{2}+a c^{2} n . x=a c^{2} s$. If $n=4$, and $r=.896$, then $x=36.86988$ degrees $=3^{\circ} \cdot 5^{\prime} .111 .6^{\prime \prime \prime}$. the fine of which is $.6=\mathrm{BF}$, and $.6 r=.5376=\mathrm{BD}$ which is the fine of 3^{2}. $31^{\prime} .13 \cdot 75^{\prime \prime}$. then the required are $=65^{\circ} \cdot 2^{\circ}: 27^{\prime \prime} .9 \mathrm{gm}$. one of the equal arcs $73^{\circ} \cdot 54^{\prime} \cdot 23^{\prime \prime}$. 12^{m}. the lear chord $\mathrm{I} .075^{2}$, one of the equal chords 1.2 , and the diam. 2 ; which, in the leaft whole numbers are, leaft chord 336 , equal chord 375 , and diam. 500 . But the latter part of the queftion may be iolved thus; when the number of equal arcs are four, the arc $\mathrm{CGB}+\frac{1}{2} \mathrm{BE}=\frac{1}{4}$ of the circum. $=90^{\circ}$. Put $\sqrt{x}=$ fine of $B G(=B F)$ to the sadius 1; then $.896 \sqrt{x}=b \sqrt{x}=\mathrm{DB}$; then $2 \sqrt{x} \sqrt{1-x}$, nr $\sqrt{4 x-4: x^{2}}=$ fine of the arc $B G C=\operatorname{cof}$. of $\frac{1}{2} \mathrm{BE}$; whence $\sqrt{1-4 x+4 x^{2}}=$ fine of $\frac{3}{2} \mathrm{BE}$; then will $3 \sqrt{4^{x-4 x^{2}}} \times$ $\sqrt{1-4 x+4 x^{2}}=6 \sqrt{x}$, which reduces to $x^{3}-2 x^{2}+\frac{x}{4} x=$ $\frac{4-\frac{1}{3} 62}{16}=.237456$, which folved, gives $x=.36$, and $x=.6$; therefore $b \sqrt{x}=.5376$, and diam. $=2$, then as above.

Mr . Woters, the propofer's diam. is 1250 . We reifh Meffrso Waters. and Aghton to examine their folutions, for they crill takie more time than. we have to Jpare at prefent. Mr. Erookes's form was general.
ViII. Question (87) anf. by Mr. James Afton, the propojer.

Let P be, the pole, Z the zenith, S and The places of the fun at the times of the two obfervations; then SZ and TZ will be the two zenith diftances, \angle TPS the L of time ($2 \frac{2}{2}$, hours) $=37 \frac{1}{2}$ degrees, SP
 $=T P$, and $\angle T Z S=$ the difference of the azimuths, being the L included between the two fhadows, 89.44 and 33.5 ; the other fide of the plain triangle being 64.9^{2}, this \angle is found $=35^{\circ} \cdot 1^{\prime} \cdot 36^{\prime \prime}$. To find the altitudes, $12 \div$ $89.44=.1341^{631}=$ tang. of $7^{\circ} \cdot 3^{8 \frac{12}{2}}$, and $122 \div 33.5=.35^{3209}$ $=$ tang; of $19^{\circ} \cdot 4 \frac{2^{\frac{1}{2}}}{}$; the corrections for refraction will be
 fervation, and $15^{\circ} \cdot 42^{\prime} \cdot 30^{\prime \prime \prime}-2^{\prime} \cdot 35^{\prime \prime \prime} \cdot=19^{\circ} \cdot 39^{\prime} \cdot 55^{\prime \prime}{ }^{\prime \prime}=$ the true altitude at the fecond; then the zenith diftance $\mathrm{SZ}=$
$82^{\circ} \cdot 28^{\prime}$, and $\mathrm{TZ}=70^{\circ} \cdot 20^{\circ} \cdot 5^{\prime \prime}:$ Put a and b =fine and cofine $\mathrm{T} Z, m$ and $n=$ line and coline $\mathrm{SZ}, c=$ cofine $\mathrm{T} Z \mathrm{~S}=$ diffo of the azimaths $t=\mathrm{cot}$. of TPS $=$ the time, and $x=$ the fine of T P $=$ SP. then (by prop. 38, book 3d, Emerfon's Trig. ${ }^{\circ}$. in the triangle TZS, $a c m+b n=.80858698=$ coff $\mathrm{ST}=$ $36^{\circ} \cdot z^{\prime} \cdot 30^{\prime \prime}$. and, in the triangle SPT, $t x^{2}+1-x^{2}=$ cof. ST; whence $t x^{2}+\dot{1}-x^{2}=a \subset m+b n$, and $x=$. $\frac{1-\operatorname{coc} m-b \pi}{1-t}=.9684352=$ fine of co-dectination $=74^{\circ}$. ${ }^{1} 4^{\prime} .45^{\prime \prime}$. which-muft be greater than a quadrant, becaufe the fun's declination is known to be fouth; therefore $180^{\circ} .-74^{\circ}$. $14^{\prime} \cdot 45^{\prime \prime} \cdot=105^{\circ} \cdot 45^{\prime} \cdot 15^{\prime \prime} .=\mathrm{SP}=\mathrm{TP}$, and 90°. fubtracted leaves $15^{\circ} \cdot 45^{\prime} .15^{\prime \prime}$. the deelination, which anifwers to the 5 th of November. Now, by logs. in the triangle SPT, fine TS $:$ fine $\angle P::$ fine $S P$: fine $\angle S T P=84^{\circ} \cdot 44^{\prime} \cdot \mathrm{F}^{\prime \prime \prime}$. greater than a quad. becaufe its oppofite fide is to; then $\angle S T P=t$ $95^{\circ} \cdot 15^{\prime} \cdot 48^{\prime \prime}$. atio in the $\triangle \mathrm{SZT}$, fine TS: fine $\angle \mathrm{Z}::$ fine SZ : line $\angle \mathrm{STZ}=75^{\circ} \cdot 15^{\prime} \cdot 27^{\prime \prime}$, alfo greater than a quadrant; $\because L S T Z=104^{\circ} \cdot 44^{\circ} \cdot 33^{\prime \prime}$. and $\angle \mathrm{STZ}-\angle S T P=9^{\circ} .28^{\circ}$. $45^{\circ}=\angle \mathrm{PTZ}$. ln the triandie PTZ, there are given two ndes' and their included angle, to find the third fide; then by common rulles in fpherics, the coline of the complement of the lat. $P Z=0.9044957$ the fine of the lar. required $=53^{\circ} \cdot 22^{\prime} \cdot 42^{\prime \prime}$. the lat of Liverpool. To find the times of the oblervations, We have $\mathrm{PZ}=36^{0^{\circ}} \cdot 37^{\prime} \cdot 18^{\prime \prime} \cdot \mathrm{PS}=105^{\circ} \cdot 45^{\prime} \cdot 15^{\prime \prime} \cdot \mathrm{SZ}=82^{\circ} \cdot 28 \circ^{\circ}$ then fine $P Z \times$ fine $P S: I^{2}($ rad. fquare $)::$ fine $\frac{S Z+P Z-P S}{2}$ $\frac{\overline{S Z+P S-P Z}}{2}:$ to the quare of $\frac{1}{2} L Z P S=.196047 .0133^{1} 434 \mathrm{r}^{\circ}$ its root $=4427719=$ fine of $26^{\alpha} \cdot 16^{\prime} \cdot 51^{\prime \prime}$. which $\times 2=52^{\circ}$. $33^{\prime} .42^{\prime \prime \prime}$, this reduced to time gives 3 h. 30 m .25 . before noor: whence the refpective times were half after eight, and at 1 in oclock in the forenoon,

The fame by Mr. Richard Elitott, of Liverpool.

From the queft. the fun's altitudes are found to be $7^{\circ} \cdot 3^{8^{\prime}} \cdot 30^{10}$. and $19^{\circ} \cdot 42^{\prime} \cdot 30^{\prime \prime}$. from which fubtracting the fun's temidiameteri, and allowing for refraction, we have $7^{\circ} \cdot 14^{\circ} \cdot$ and 19°. $23^{\circ} \ldots$ for the atritudes of his center. Then, in the triangle PST (fee the preceding figure) we have $S \mathrm{Z}=82^{\circ}$. 46^{\prime}. and $\mathrm{ZT}=70^{\circ} ; 37^{\prime}$.. Angle $Z=35^{\circ} \%^{\prime \prime} 3^{\prime} \cdot 30^{\prime \prime}$, from which $S T$ is fousd 36°. 4°. the angle ZTS $=104^{\circ} \cdot 33^{\prime}$. and as $37^{\circ} \cdot 30^{\prime}: 1(\mathrm{rad}):.: 36^{\circ} \cdot 4^{\prime}$; $.0617 \%=$ cofine of dittance fromequator, anfwering to $15^{\circ} \cdot 54^{\circ}$. the declinatioct, fouth: Again, in triangle 's PT, we have $\angle \mathrm{P}^{\prime \prime}$

from which the angle PTS is found $=96^{\circ}$. 1^{\prime}. this taken from 3 TS, found as above, gives the $\angle \mathrm{ZTP}=8^{\circ} .32^{\prime}$. then in the triangle Z T P is given two fides, and included angle to find the oppofite fide $\mathrm{PZ}=36^{\circ}$. 16^{\prime}. the colatitude, and angle $\mathrm{ZPT}=13^{\circ}: 4^{2} .=57 \mathrm{~min}$. and $4^{8} \mathrm{fec}$. the time from noon. Then the lat. $=53^{\circ} \cdot 44^{\prime}$. decl. $=15^{\circ} \cdot 54^{\circ}$. anfwering to Nov. 5 . The hours are 5 min . 12 fec. paft 11 , and 35.12 . paft 80° clock.
Mr. J. Brooket, and Mr. Wm. Eaton, jun. alfo gave anfwers to this quef\&ion.
IX. Question (88) anfuered by Muficus.
D. Smith in his Treatife on Harmonics, page 204, finds by experiment, that the organ pipe D la. Jol. re. made 262 whole vibrations in a fecond of time; whence A la. mi. re. a 4th below D will be found to make 196.5 whole, or 393 femivibrations in the fame time. Put $A=20$ inches the length of the firing, $\mathrm{B}=4 \circ$ grains its weight, $n=393$ femivibrations, and $\mathrm{P}=$ the sention; then page 262 we have $n^{2}=\log \frac{\mathrm{P}}{\mathrm{BXA}}+2.586765$, whence log. $\mathrm{P}=\log$. $\mathrm{B} \times \mathrm{A} \times n^{2}-2.586765$ which gives $\mathrm{P}=$ 319971 grains the tenfion required. Now put x the tenfion of the ftring when made to found a fharp; then $\sqrt{3{ }^{19971}}: \sqrt{ } x$ $:: 15: 16$, whence $15 \sqrt{x}=16 \sqrt{319971}$, and $x=364055.9$, from which take 3 19971, and we have 44084.9 grains, or 6.297° pounds avoirdupois, the weight to be added to found a fharp.

The Jame by Mr. Olinthus Gregory, Affiftant at Mr. Wefon's Boarding School, 1 axley, Hants.

In Emerfon's Fluxions, page 265, it is faid that "a fring founding $\mathrm{E}-l a$ in the bafs, made 300 vibrations in one fecond;" but A-la-mi-re is a diateffaron, or perfect fourth above E-la, which is $\frac{3}{4}$ of the monochord, and will vibrate $300 \times \frac{4}{3}=400$ times in a fecond: alfo A fharped, is a femidiapente, or imperfect fith above E-la, which is $\frac{5}{7}$ of the monochord, and will vibrate $300 \times \frac{7}{5}=420$ times in a fecond; for each of which numbers of vibrations put v, alfo put $2 f=32 \frac{1}{6}=386$ inches, n co 40 grains, $a=20$ inches, and $p=$ required tenfion: then by cor. 2 , fame page, fame book, $\sqrt{\frac{2 \overline{f p}}{n a}}=v$, which equation folved gives $p=\frac{\text { narv }^{2}}{2 f}$, in the firft cafe $=331606.2$ grains, or $47.3723^{2} \mathrm{lb}$. avoirdupois, and in the fecond cafe $p=365595.8$ grains, or $53.2279 l b s$. which is 4.8556 more than in the hrft cafc.

Remark I. If inftead of taking A fharped as a femidiapente above E-la, we had taken it as a femitone above A-la-mi-re, a femitone being $\frac{1}{1} \frac{5}{6}$ of the monochord, we fhould have had 400 $\times \frac{16}{1}=426 \frac{2}{3}$ for the number of vibration of A fharped; this confiderably alters the conclufion, and by the bye thew the imperfection of the common diatonic divifion of the monochord.'

Remark II. The true divifion of the monochord will be by finding eleven geometrical means between unifon and octave; - for, from fuch a divifion, no fuch imperfection as that mentioned above will arife.

The fame by Mr. Tim. Simpfon, Papplewick, near Nottingham.
Put $l=20$ inches, the length of the ftring, $w=40$ grains, its weight, $t=$ its tenfion in grains, and $v=$ the number of femivibrations made in one fecond; then (per Cor. 1, page - 240 , 2.ed. Smith's Harmoniacs) we have $\frac{355}{113} \sqrt{\frac{\sqrt{t}}{v}} \times \frac{39 \cdot 126}{l}=$ v; hence $t=\frac{b^{2} v^{2} w v}{15109}$. But before we can find the values of t in numbers, the numeral values of v for the notes A-la-mi-re natural, and A-la-mi-re fharp, mult be aicertained; but the value of v, for the note D next above the cliff of C , is 524.16 (Schol. I, page 242 of the above book); therefore (per diatonic fcale) the values of v, for the notes A-la-mi-re natural, and A-la-mi-re fharp, will be refpectively $=393.12$ and 419.33 ; which being feverally fubfituted for v, in the above value of t, gives its numeral values, for the notes A-la-mii-re natural, and A-la-mi-re Iharp, refpectively $=164034$ grains $(=28 \mathrm{lb} .5 \mathrm{oz} .14 \mathrm{drot}$. 18 grs.) and 186636 grains ($=32 \mathrm{lb} .40 \mathrm{z}$. 16 dret. 12 grs.)
Mr. Marfden, the propofer, alfo aniwered it.
Errata in Laff year's Diary ly MMr. T. Simpfon.—Page 38 , line I_{3}, for $\frac{3}{4}$, rend $\frac{x}{4}$, and in line 18 , infert the third term of the analogy, $\sqrt{\frac{x}{4}} b^{\circ}$.
X. Question (89) anfwered by Mr. Patrick Hall, of Denby.

It is evident from Simpfon's Geometry, on max, and min. that the rectangle of the legs of a right angled Δ, will be the greateft when equal to each other ; therefore, in this cafe, the half diff. of the two diameters, equal to the perp. altitude of the fruftum $=\sqrt{\frac{50^{2}}{2}}=\sqrt{1^{225}}=35.3553$: then the area of the fruftum $=\mathrm{r} 6924^{8.696}$.
Solutions to this queftion were alfogiven by Meffrs: A fhton, Blackburn,
Booth, Brookes, Eaton, jun, Elliott, Ferdinando, Gregory, Holland, Booth, Brookes, Eaton, jun. Ehiott, Ferdinando, Gregory, Hulland, suul, Stevenfon, and Youart, the propoier.
XI. Question (90) anfivered by Mr. Hall, tbe propofer.

Put $x=$ perp. $\mathrm{BD}, \mathrm{CB}=\mathrm{A} \mathrm{B}=3=a ; 3.14 .59$ $=c, \mathrm{I}_{\frac{1}{1} 3}=s$ the defcent of a ball in $\mathrm{I}^{\prime \prime}, y=\mathrm{pe}$ riodic time, and $\mathrm{F}=\mathrm{I}$; then $\mathrm{AC}=2 \sqrt{a^{2}-x^{2}}$, and DB:CB.: r : to tenfion of the fring compared with the weight of the body; but (BD) x :
 (C D) $\sqrt{a^{2}-x^{2}}:: 1: \frac{c^{2} \times 2 \sqrt{a^{2}-x^{2}}}{s y^{2}}$ the central force $\because y=$ c $\sqrt{\frac{\overline{2 x}}{s}}$, and the central force in terms of $x=\frac{\sqrt{\overline{a^{2}-x^{2}}}}{x}$; where fore by the queftion $\sqrt{\frac{2 c^{2 x}}{3}} \times \frac{\sqrt{a^{2}-x^{2}}}{x}=a$ maximum, or $\frac{a^{2}-x^{2}}{x}=a$ max. in fluxions $-\frac{2 x_{2} \dot{x}}{a^{2}-x^{2}}-\dot{x} \times \overline{a^{2}-x^{2}}=0$; hence $x^{4}+16 x^{2}=8 \mathrm{r}$, and $x=\sqrt{: \sqrt{145}-8}=2.0104$ feet:, then by menfuration the area of the cone is 2.984 .

The Jame by Mr. 7 . Brookes, of Leeds.
Put $n=3 \cdot 1416, p=16 \frac{3}{\mathbb{T}^{2}}$ feet, the fpace defcended by gravity in the time $t, 3$ feet $=a$, and $\mathrm{BD}=x$ (fee the preceding fig.) ther $C D=\sqrt{ } a^{2}-x^{2}$; and by prop. IX. Emerfon's Forces, ni $\sqrt{\frac{2 x}{p}}=$ the periodic time, and $\sqrt{a^{2}-x^{2}}$ the force tending to the center (which is, I fuppofe, what the propofer means by central force) therefore per queftion $n t \sqrt{\frac{2 x}{p}} \times \sqrt{a^{2}-x^{2}}$; or $a^{2} x-x^{3}$ is a maximum; hence $x=\frac{a}{\sqrt{3}}=\sqrt{3}$ in the prefent cafe, and the curve fuperficies $=3 \times 3.1416 \times \sqrt{6}=9.4248$, $\sqrt{6}$..

> The fame by Mr. Fames Aftion, of Harrington.

Let BC be the ftring, $=36$ inches long, then $A B C$ will reprefent the cone, fee the preceding fig. Pur $\mathrm{AB}=a=36$, and $x=\mathrm{DB}$; then $\sqrt{a^{2}-x^{2}}=\mathrm{D}$ will be an expreffion for the central force. Now the timie of ofcillation of a pendulum being as the fquare root of its length, \sqrt{x} will exprefs the time of one vibration of BD , atid its cqual the femiperiodic time of

$=a$ maza then $a^{2} x-3 x^{2} x=o_{r}$ and $x=\sqrt{\frac{a^{2}}{3}}=\sqrt{43^{2}}$ 20.7\%48:
$20.7846 ; \because \sqrt{a^{2}-x^{2}}=29.7877538$; hence the circumference: $=184.687607$, the furface 23.08595 , and area of the bottom 18.8496 fq. feet.

Corol. The expreffion of the maximum ($a^{2} x-x^{3}$) is precifely the fame as when B C is an inclined plane, and a heavy body moving freely down it, fhall frike an object erecied at \mathbf{C}, perpendicular to the horizon, with the greateff force porfible; whence the $\angle D C B$ is the fame, $=35^{\circ}$. 16^{\prime}. nearly; therefore the problem may be conftructed:
XII. Question (91) anfwered by Mr. F. Brookes, of Leeds.

Mr. Simpfon has proved at prop. 7 th on the maxima and minima of geometrical quantities, that the dividing line muft cut off an ifofceles triangle : now as the triangle is to be divided into two equal patts, it is evident that $\frac{B A \times B C}{2}=B E \times B D=B E^{2}$;

therefore $\mathrm{BE}=\sqrt{600}=24,4948974$, and $\mathrm{DE}=\sqrt{\frac{\mathrm{AC}^{2}--\overline{\mathrm{EA}-\mathrm{BC})^{2}}}{2}}$ $=\sqrt{150}=5 . \sqrt{6}=12.24744^{8} 7$. Remark. $\mathrm{E} B=2 \mathrm{ED}$ in this. cafe.

The fame otherwife, by Mr. Y. Affton, of Harrington.

It is evident, from the maxima and minima of geometrical quantities, that the fhorteft line will be the arc of a circle, as containing the greateft area. Put $p=$ the degrees in the angle $\mathrm{B}=28.955^{\circ} \cdot m=.05236$, and $x=$ the radius $\mathrm{BD}=\mathrm{BE}$ (lee the preceding fig.) then $3: p:: m x: \frac{p m x}{3}=$ the length of the $\operatorname{arc} \mathrm{DE}$; whence $\frac{p m x^{2}}{6}=a$; then $x=\sqrt{\frac{\overline{\sigma a}}{p^{n g}}}=23.9746$, and $\frac{p m x}{3}={ }^{12.11553}$, the length required.

Meffrs. Brown, Eaton, jun. Ferdinando, Hall, Hulland, Saul, Sheridan 2 . and Travif, alfo gave ingenious anfwers.
XIII. Question (92). anfwered by Mr. F. Soul, Rochdale.

Put $\mathrm{W}=4 \mathrm{lb}$. the greater weight, and $w=3 \mathrm{lb}$. the lefs', $a=$ $16 \frac{1}{12}$ the diftance a heavy body will defcend freely, the firft fecond of time; then per mechanics, as W +w : W-w : : $a:$: $\frac{\mathrm{W}-w}{\mathrm{~W}+w} \times a=\frac{16 \frac{1}{12}}{7}=\frac{193}{84}=2 \frac{25}{84}$ feet, the fpace defcended in the: firft fecond of time.

Meffro Brookes, Elliott, Ferdinanjo (the Prepofer) Gregores and Flall, atfo gave antwers.
XIV. Question (93) anfwered by Mr. 7. Brookes, Leeds.

Let $Q N$ and $P M$ be parallel to AL, fee the propofer's figure. Then by fimilar triangles $A Q: Q N:: L E=A F: A L$, and $\mathrm{AN}: \mathrm{QN}:: \mathrm{AE}: A L$. Again, $\mathrm{AF}: \mathrm{AN}:: \mathrm{AF}+\mathrm{EM}=$ $\mathrm{LM}: A E$; hence by multiplication $\mathrm{AF}: \mathrm{QN}:: \mathrm{LM}: \mathrm{AE}$, and $A Q: Q N^{2}:: L M=A P: A L^{2}=\mathrm{PM}^{2}$; which is a known property of the parabola.

Mr. Whiting, the Propofer, alfo anfwered it.

XV. Question (94) anfwered by Mr. Fof. Waters, the Propofer.

Conceive the motion of the fwiftef body fo regulated as to go over any affignable diftance in a given particle of time, and let both thefe be denoted by unity; fo that if the body itfelf be fuppofed to move through any indefinite fpace, the time elapfed from its firft fetting out to its arrival at any propofed pofition, fhall be truly meafured by the difance gone over. Put radius $=r, 2.03=n, .75=a$, and $\mathrm{BE}=y$ (fee the figure annexed to the queftion); then by uniform motion $n: 1:: \mathrm{AE} \frac{\mathrm{AE}}{n}=$ the fpace which the latter body is capable of generating with its relative celerity, while the former goes over the plane A E, which fpace : its time AE:: DB:nDB=the whole time of N 's motion: but the fum of thefe times $=\mathrm{AE}+n \mathrm{DB}=$ $\sqrt{2 r^{2}+2 r y+y^{2}}+n \sqrt{r^{2}+a^{2}-2 a y+y^{2}}=a$ minimum ; confequently its fluxion $=\frac{r \dot{y}+y \dot{y}}{\sqrt{2 r^{2}+2 r y+y^{2}}}+\frac{-a n \dot{y}+n \dot{y}}{\sqrt{r^{2}+a^{2}-2 a y+y^{2}}}=$ $\frac{r \dot{y}+y \dot{y}}{\sqrt{2 r^{2}+2 r y+y^{2}}}-\frac{n \times a y-y \dot{y}}{\sqrt{r^{2}+a^{2}-2 a y+y^{2}}}=0$; in which equation we have $\overline{r+y} \times \sqrt{r^{2}+a^{2}-2 a y}: \frac{a}{a-y} \times \sqrt{2 r^{2}+2, y+y^{2}}:: n: \mathrm{I}_{2}$ or $\mathrm{CE} \times \mathrm{D}: \mathrm{CD} \times \mathrm{AE}$ in the ratio of the given celerities; from which proportion $\mathrm{BE}=y$ is found $=\frac{1}{3}$, and $\mathrm{CD}=a-$ $y=\frac{1}{1}_{5}^{5}$. If inftead of the fum ($D E+B E$) there be given the, fum of any powers, as $\mathrm{DE}^{p}+\mathrm{BE}^{p}=a$, it will be found more convenient to make $\mathrm{C} \cdot \mathrm{D}=x$, fo that the fluxion of $\mathrm{AE}+n$ B D may be denoted by $\frac{r \dot{y}+y \dot{y}}{\sqrt{2 r^{2}+2 r y+y^{2}}}+\frac{n \dot{x} \cdot}{\sqrt{r^{2}+x^{2}}}$, fince the relation of the fluxions will be eafier derived from that of their fluents, by means of the equation $x=\overline{a-y p} p$, which may alfo. be extended to different exponents, as $\mathrm{C} \mathrm{D}^{P}+\mathrm{BE}^{4}$, where p and q denote any given quantities whatever.
xVI. or Prize Question (95) anfwered by Ferdinando.

Conff. Let BDB be the given circle, C its center, $\mathrm{M} N$ the line, and P the given point. Join P, C, and make the L C PS \Rightarrow the given one ; make $\mathrm{CP}=\mathrm{CP}$, and with $c d=\mathrm{CD}$ defrribe the circle $d b \mathrm{~V}$; then, by Prob. III. page 42, Burrow's Diary, $\mathbf{1 7 7 6}$, determine the points $\mathrm{V} v$, - fo that the ratio of PA to PV or $\mathrm{P} v$ may be the leaft or greateft poffible; then making the L's BPA, BPA $=$ the given one, and drawing PB, PB, the thing will be done.

Denzonf. The L 'OBPA, $B P A$ are $=$ the given one by conf. $=$ CPS ; by taking away the common L 's $\mathrm{CPA}, \mathrm{BPS}$, there remain the $\angle \mathrm{BPC}=\mathrm{VP} \subset$, and the $\angle \mathrm{CPB}={ }_{\mathrm{P}} \mathrm{P}$, Hence, PC being $=\mathrm{P} c$, and $\mathrm{BC}=c \mathrm{~V}$ or $c v$ by cont. PB is evidently $=\mathrm{PV}$ in the one cafe, and $=P v$ in the other, and \because when the ratio of $P A$ to $\mathrm{P} v$ or PV is a minimum or maximum that of PA to their refpective equals PB, PB muft be fo too.

The fame anfeered by Mr. F. Brookes, the Propojer,
Conft. Draw P E perpendicular to $A G$ (the line given in pofition) and make the angle EPG = the given angle; take $\mathrm{PC}=\mathrm{PE}$; erect the perpendicular CD, and parallel thereto draw a line to touch the circle in B; then drawing PB and PA to make the given angle, they will be the lines required.

Demon. Becaufe P.C $=$ PE, and the angle CPD = the angle EPA; $P A$ will therefore always be $=P D$; but the ratio of $\mathrm{PD}(=\mathrm{PA})$ to PB is evidently lef's than that of $\mathrm{P} d$ to Pb.-In like manner the ratio will be the greateft when the tangent is
 drawn on the contrary fide of the circle.
XV. Question (94) anfuered by Mr. Robert Carlifle.

Let $x=\mathrm{D} \mathrm{C}$, then $75-x-\mathrm{BE}$, and $\mathrm{t} .75-x=\mathrm{CE}$ (fee the figure annexed to the queftion); put $b=1.75$, and $r=2.08$; then by (Euc. 47.1) $\sqrt{x^{2}+1}=\mathrm{DB}, \sqrt{\left.\sqrt{-x^{2}}\right)^{2}+1}=\sqrt{\mathrm{AC}^{2}+\mathrm{CE}^{2}}$ $=A \mathrm{E}$. Let \boldsymbol{t} or I be the time of defcribing the fpace I and 2.08 refpec:
refrectively ; and $1: 1^{2}:=\mathrm{DB}$ or $\sqrt{x^{2}+1}: \sqrt{x^{2}+1}=$ the fquare of the time of defcribing D B (by mec.) becaule the fpaces deicribed by a body down any inclined plane, are as the fquares of the times: : alfo $r: 1^{2}:: \sqrt{\left(-x^{2}\right)^{2}+1}: \frac{7}{7} \sqrt{\frac{x_{-x}^{2}}{2}+1}=$ the Square $\rho \mathrm{f}$ the time in defcribing $A \mathrm{E}$; hence by whe queftion $\overline{x^{2}+\lambda \frac{1}{4}}$
$+\overline{\left.b-\frac{1}{2}\right)^{2}+1}{ }^{\frac{1}{4}} \times \frac{1}{\sqrt{r}}=\mathrm{a}$ max. and $\frac{\frac{\pi}{4} \times 2 x^{\frac{x}{x}}}{x^{2}+1 \frac{1}{2}}+\frac{\frac{x}{4}}{\sqrt{r}} \times \frac{2 x \dot{x}-2 b x}{b-x^{2}+1 \frac{3}{4}}$
$=0$; but $1: r: \quad \sqrt{\overline{x^{4}+1}}: \sqrt{\overline{b-x^{2}}+1}$ by the queft. fubftitute for $6-x^{2}+11^{\frac{3}{4}}=x^{2}+i \times r^{2} \frac{3}{4}$ in the above equation, and dividing by $\dot{x} \& \mathrm{c}$. we have $\frac{1}{\sqrt{r}} \times \frac{x-b}{r^{\frac{3}{2}}}+x=0$, or $x-b+r^{2} x=0=\overline{r^{2}+1}$ $x x-b$; therefore $x=\frac{b}{r^{2}+1}=.3285$.

NEW QUESTIONS.

I. Question (96) by Mr. Wm. Marfden, Netherhurf. It happen'd one morning I went to furvey, A triangular meadow, right angled at \mathbf{E};
Twelve chains eighty links did the Tongeft fide bound,
Of the other two fides were two ehains difference found;
The angles and fides, with the area alfo,
From what is here given, be pleafed to fhew?
III. Questien (97) by Mr. Faf. Weollin, Smalley, near Derby.

A gentleman baving a garden, in form a parallelogram, containing two ftatute acres, whofe length to the breadth is as 7 to 3. which he wifhes to have divided into two parts, in the ratio of 3 to 4 , by a walk drawn from one of the angles to the oppofite fide : required the length of the walk?
III. Question (98) by Mr. Fohn Fildes, Schoolnafer, Liverpool.

A fhip from latitude 40°. N. and longitude 20°. W. fails S.W. by S . till her diftance run, and meridianal diff. of lat. become equal to each other: required her latitude and longitude come to?
IV. Question (99) by M. Famas Afton, of Harrington.

In a plain triangle ABC , the bafe of which is AB , and vertical angle C , there are given the two fegments of the bafe made by a perpendicular from the vertical angle, viz, $\mathrm{AP}=35$, and $\mathrm{PB}=$ 8o: required the other two fides fuch, that a circle being defcribed with the center A_{2} and radius $A C_{2}$, thall cut off juft $\frac{2}{3}$ of the area of the trigangle ?

V. Question (iop) by the fame.

Two thips A and Blying in the channel, bearing E. S.E. and W. S.W. of each other, at the diflance of 26 miles, the thip A (being that to the weftward) being in 1at. $53^{\circ} \cdot 30^{\prime}$, and longitude $2^{\circ} \cdot 45^{\prime}$. W. the hip B fets fail, and feers at the rate of 5 miles an hour N. N. E. and juft one hour after the fhip A fets out, and, having the wind more in her favour, can make.good 6 miles an hour: it is required to find the courfe and diftance A mult fteer to overtake B in the leaft time; and alfo the latitude and longis tude then arrived in?
VI. Question (IOI) by M. J. Stevenfon, Heath, near Chefferfeld.

A wine-merchant bought three forts of wine, at different prices, viz. Claret at 5 s. Sherry at 6 s , and Canary at 8 m . per gallon; for which he gave 3601 . now, if the cube of the number of gallons of Claret, the fquare of the number of gallons of Sherry, and the number of gallons of Canary are multiplied together, the product will be a maximum: required how many gallons he bought of each fort? VII. Question (102) by Mr. Olinthus Gregory, Yaxley, Hantso

I have a cone whofe whole furface is 452.389392 inches, and its folidity the greateft pofijble ; now if it was hollow, and filled with water, how long would it be in exhaufing through an aperture in the bafe, whofe area is one inch ?
VIII. Question (ro3) by Mr. P. Hall, Schoolmafer, Denby.

Given the angles of an oblique triangle, and the neareft diftance between either angle at the bafe to the circumference of the infrribed circle; to confruet the triangle?
IX. Question (104) by Mr. Fajeph Waters, Graves-Lane,

A perfon has 32 acres of land lying in the form of a triangle, within a cifcular meadow whofe diameter is an Englifh mile ; the bafe of the triangle as a chord cuts 90°. from the circle, and its vertex is at a point in the included arch: the pofition of which it is propofed to determine?

> X. Question (105) by Mr. F. Brookes, Leeds.

Between the Radii CA, C B, of a given fecter of a circle produced, it is required to draw a tangent of a given length?
XI. Question (106) by Honeftienfis.

Given the ratio of two fides of a triangle infcribed in a given circle, to determine the triangle when its area is a maximum ?
XII. Question (io7) by Ferdinando.

In two fimilar right-angled plane triangles, the longer leg of the one, and the fhorter leg of the other, being given, together with the difference between the perpendiculars falling from the right angles upon the hypothenufe of each triangle; it is required to determine the triangle ?

> N. B. This Quefion is taken from tbe Britibs Oracle, but bas never (to my nnowedgef buen pullicly anfwerrd.

XIII. Question (io8) by the fame.

To determine, geometrically, two lines in a given ratio, fo that if a given line (L) be added to each, the rectangle of the compound lines fhall be of a given magnitude ?

XIV. Question (iog) by Muficus.

Two mufical ftrings are unifon, the one with the pipe of an organ founds C on the cliff line; and the other founds A , the fixth above (concert pitch); what is the breadth of each pulfe, or wave of the air of the frings ? And this confonance of a fixth being tempered flat by $\frac{1}{5}$ of a comma; what is the difference of time between each beat of this tempered confonance? what is the length of a cycle of the pulfes? and of a period of the leatt imperfections? and what is the temperament of fuch 6th tempered fharp, making the cycle, and periods of the fame length as when tenfipered flat as aforefaid?

- XV. Question (ilo) by Mr. Robert Carlifle.
$\begin{aligned} & \text { If } \frac{x}{\mathrm{I} \cdot 4}+\frac{x}{2 \cdot 5}+\frac{x}{3 \cdot 6}+\frac{8}{4.7} \& \mathrm{c} \cdot \text { ad infinitum }=\mathrm{r}+n+n \cdot \frac{\overline{n-1}}{2} \\ +n \cdot \frac{n-1}{2} \cdot \frac{n-2}{3} & +n \cdot \frac{\overline{n-1} \ldots \cdot \frac{n-3}{2 \cdot 3 \cdot 4}}{} \text { continued to } n \text { terms : re- }\end{aligned}$ quired the value of x expreffed in finite terms?
XVI. Prize Question (iii) by Mr. F. Waters, of Graves-Lane.

Admit, the arc of a femicircie APB , to be divided into any two parts, as AP, BP; if thole parts are bifected at C and D , and the points $A C, A D, B C, B D$, joined ; the fum of the fquares of the areas of the triangles ACB, and ADB , is equal to the fourth power of the radius : and if from I (the point o: interfection of the fupplemental chords) there be drawn IF, and IE, refpectively equal and parallel to CA and DB ,
 and the rectangles $A C B G, A D B H$ are completed, the parts ACIF, and BDIE are perfect fquares, and the remaining fpaces IBFG, and IAHE include equal magnitudes: a demonftration is required?
0.s All Letters for the afe of this Diary are defired to be directed thus ; Cotes and Taylor, to be left with Mr. Page, near the Hen-Crofs, Nottingham (pof paid) to como to hand before the firft of May.

$$
F I N \mathbb{N} .
$$

