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Preface

This book celebrates Martin Gardner’s 90th birthday with a series
of 25 articles about some of Martin’s favorite topics.

Martin Gardner is the father of recreational mathematics, an
avid puzzler, a lifelong magician, and a debunker of pseudoscience.
He has written more than 65 books throughout science, mathe-
matics, philosophy, literature, and conjuring. He has deeply in-
fluenced countless readers of his “Mathematical Games” column
in Scientific American, which ran for 25 years from 1957 to 1982.
This column popularized recreational mathematics and introduced
many connections between mathematics, puzzles, and magic. To-
gether with Gardner’s amazing ability to correspond with his many
readers, the columns gave the general public the opportunity to
enjoy mathematics and to participate in mathematical research.
Many of today’s mathematicians entered this field through Gard-
ner’s influence. A whole body of research into recreational math-
ematics has also emerged, solving problems that Gardner posed
years ago and introducing new problems in the same spirit.

Given the retrospective nature of this book, many of the articles
have a historical slant. The first two articles, for example, are
specifically about Martin Gardner and his influence on the world
of magic. Part II is entirely “In Hindsight,” describing the world’s
first puzzle “craze” of the Tangram and detailing the oldest book
on recreational mathematics (circa 1500) including both puzzles
and magic tricks. Several articles consider historical puzzles; for
example, Roger Penrose reminds us of a kind of maze he developed
with his son back in 1958. (Incidentally, the present book was also
edited by a father-son team.)
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The articles in this book are organized into six parts. Part I,
“Cast a Spell,” is about mathematical magic tricks. Part II, “In
Hindsight,” makes the historical discoveries described above.
Part III, “Move It,” is about puzzles involving motion, from mazes
to Instant Insanity to Peter Winkler’s walking ants. Part IV, “Fitting
In,” is about puzzles involving packing or entanglement, from Stew-
art Coffin’s work to burr puzzles, and the related art of mosaics.
Part V, “Speak to Me,” is about word puzzles, from Smullyan’s logic
puzzles to recreational linguistics on graphs and grids. Part VI,
“Making Arrangements,” is about puzzles and games that arrange
pieces into particular structures, from the classic Gardner topics
of ticktacktoe and magic squares to new developments inspired by
Gardner (or Dr. Matrix) like pandigital numbers.

We feel honored to gather this collection of exciting and fun
material in honor of a man who has touched so many: Martin
Gardner.

Erik D. Demaine
Cambridge, Massachusetts

Martin L. Demaine
Cambridge, Massachusetts

Tom Rodgers
Atlanta, Georgia

x A Lifetime of Puzzles
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Warning: Martin Gardner has turned hundreds of
mathematicians into magicians and hundreds of
magicians into mathematicians! ∼Persi Diaconis

Martin Gardner and His
Influence on Magic

Christopher Morgan

Persi Diaconis thinks the good-natured “warning” noted above
should appear on many of Martin Gardner’s books. A distinguished
Stanford mathematician, magician, and long-time friend of Mar-
tin Gardner, Persi has written several technical treatises on the
mathematics of card shuffling, among his many other accomplish-
ments. He has tremendous admiration for Martin Gardner: “Mar-
tin elevates magic in our eyes and in the public’s eyes. He’s such
a visible center that people from all over the world have written to
him. He picks the best ideas and amplifies them.”

Many magicians who know and love Martin Gardner’s magical
writings would agree. This short essay discusses Martin’s accom-
plishments in magic and their connections to mathematics, mostly
through the voices of those many “mathemagicians” who have been
influenced by him.

A Focal Point

Martin Gardner stands at the intersection between magic and
mathematics. “Mathematical magic, like chess, has its own cu-
rious charms,” he says. “[It] combines the beauty of mathematical
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structure with the entertainment value of a trick” [7]. Persi Diaco-
nis understands this synthesis:

The way I do magic is very similar to mathematics. Inventing
a magic trick and inventing a theorem are very, very similar
activities in the following sense. In both subjects you have a
problem you’re trying to solve with constraints. One difference
between magic and mathematics is the competition. The com-
petition in mathematics is a lot stiffer than in magic. [3]

Many of Martin Gardner’s fans may not know the extent of his
lifelong involvement in magic, or how many contributions he has
made to the art. Indeed, many future magicians began reading
Martin Gardner for the mathematics, only later becoming fasci-
nated by the magical content. Magician Dan Garrett [8], for exam-
ple, grew up with an interest in mathematics and science rather
than magic (other than as a hobby). In high school, he says, “I
read Martin’s ‘Mathematical Games’ column in Scientific American
and his book The Numerology of Dr. Matrix. I never even knew
he was a magician until much later.” (He notes that Gardner’s

Figure 1. Martin Gardner showing Joe Berg’s improved version of the
Hunter rope trick.

4 A Lifetime of Puzzles
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Encyclopedia of Impromptu Magic [5] is a tremendously significant
contribution to the vast world of magic literature.)

Martin has always been generous with his magical ideas. Colm
Mulcahy, a professor in the Department of Mathematics at Spel-
man College and creator of an excellent website devoted to math-
ematical card tricks [11], told me that over a period he gradu-
ally became fascinated by mathematical card tricks and ultimately
started corresponding with Martin Gardner, who graciously allowed
him to recycle any of the card tricks in his mathematics popular-
ization publications and even suggested that Colm write a book on
the subject of mathematical card tricks, which he is now doing.

Magic has always been Martin’s main hobby, and he pursues it
actively to this day. In Martin Gardner Presents [6, p. 374], a com-
prehensive 1993 collection of Martin’s magical creations, Stephen
Minch (magician, author, and founder of Hermetic Press) notes
that “card magic, and magic in general, owe a far greater debt to
Martin Gardner than most conjurors realize.” Martin was recog-
nized for these contributions in 1999, when he was named one of
MAGIC Magazine’s 100 most influential magicians of the twentieth
century [1].

Seven Decades of Magic

Martin has been writing about magic and contributing new effects
for nearly seventy years. His magical friends past and present have
included Dai Vernon (“The man who fooled Houdini”), Persi Diaco-
nis, Jerry Andrus, Stewart James, Wesley James, Ed Marlo, Doctor
Daley, Mel Stover, Ted Annemann, Ken Krenzel, Max Maven, Howie
Schwarzman, Jay Marshall, Richard Kaufman, Herb Zarrow, Karl
Fulves, and many, many others. Now, in his nineties, he keeps in
contact with magicians like Penn and Teller by phone and receives
occasional visits from magicians who come to trade notes with him.

I visited Martin recently to discuss his career in magic—which
we did, though we actually spent more time trading magic tricks!
His enthusiasm for new magical ideas remains as infectious as
ever.

The spriest of nonagenarians, Martin showed me Joe Berg’s im-
proved Hunter knot trick [6, p. 36], two false deck cuts, a revolving
card effect, some topological knot tricks, some rubber band tricks,
and several mathematical card tricks. Many of these tricks have
appeared in his writings over the years. Next, he demonstrated the
Wink Change, an elegant card effect he created years ago. “Of all
the moves I have invented,” he said, “the Wink Change is the one

Martin Gardner and His Influence on Magic 5
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Figure 2. Martin Gardner demonstrating his original card effect, the Wink
Change.

I’m most proud of” [6, p. 315]. The Wink Change instantly trans-
forms one card into another, and he performed it with the kind of
effortless technique that comes only from years of practice. Before
we knew it, the afternoon had flown by.

Martin prefers the intimate approach to magic:

I’m not a performer. I just do close up stuff for friends. The
only time I got paid for doing any magic was when I was a
student at the University of Chicago. I used to sell magic sets
at Marshall Fields during the Christmas season. One of the
Gilbert magic sets had some pretty nice apparatus in it, and I
worked out several routines. That’s the only time I had to do
magic in front of a crowd.

Early Work and a Meeting with Annemann

Martin’s first published magic manuscript, Match-ic, appeared in
1935. It was a booklet of tricks featuring matches. Many more
pamphlets would follow. Several of them, including 12 Tricks with

6 A Lifetime of Puzzles
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a Borrowed Deck and Cut the Cards, are highly regarded by magi-
cians.

One standout trick from 12 Tricks with a Borrowed Deck is
Martin’s “Lie Speller” trick [4, 6, p. 172]. In this effect, a spec-
tator secretly picks a card, replaces it in the deck, and ultimately
spells the name of the card, one card per letter. Amazingly, the last
card dealt is the spectator’s card. This works even if the spectator
lies about the name and/or suit of the card! Variations on this
seminal trick have been created by such magicians as Jack Avis,
Bruce Cervon, Milt Tropp, Harvey Rosenthal, Larry Jennings, Ed
Marlo, Jon Racherbaumer, Max Maven (a.k.a. Phil Goldstein), Bob
Somerfeld, Allan Slaight, Stewart James, and J. C. Wagner, among
others.

A turning point for Martin was his first meeting with Ted An-
nemann in the late 1930s. Annemann, editor of the influential
magic magazine The Jinx, was one of the most fertile minds in
magic and mentalism during the first half of the twentieth century.
Magician Steve Beam, author of the excellent Semiautomatic Card
Tricks book series, notes that Annemann was an important early
pioneer in mathematically based magic tricks. “Annemann hid
many mathematical principles in his card tricks,” he says. Many of
these mathematical tricks appeared in The Jinx during the 1930s
and 1940s, and Martin’s original effects were among them.

Martin recalls his first meeting with Annemann in New York in
1937:

I had just recently moved from Chicago to New York. I walked
into a bar restaurant on Broadway and 42nd Street and recog-
nized Annemann sitting at a table with Doc Daley. I recognized
him from his photo. I had just published a book of card tricks,
and I told Annemann I had a manuscript for a new book of
original ideas I had in magic. He invited me to come to his
apartment and demonstrate some of the tricks. He had a little
stage at one end of his apartment [laughs]. I stood up there
and did a series of tricks. He asked if he could borrow the
manuscript, and he devoted an issue to the tricks that were in
that manuscript. So, my Lie Speller trick first appeared in The
Jinx.

Annemann historian Max Abrams says:

The Jinx 1937–1938 Winter Extra consisted of 24-year-old Mar-
tin Gardner’s “Manuscript,” an eight-page bonanza containing
seventeen tricks by the prolific and profound Martin Gardner.
The collection of tricks presented in the Extra was an auspi-
cious occasion in a redoubtable career. [2, p. 364]

Martin Gardner and His Influence on Magic 7
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Mathematics, Magic and Mystery

Ask Gardner magical aficionados to name their favorite Gardner
book, and you’ll often hear Mathematics, Magic and Mystery [7].
Martin’s first published book, it appeared in 1956 and remains in
print a half century later. This seminal work has been a bible for
magicians interested in mathematically based tricks.

Max Maven, one of the most creative mentalists and magicians
in the field, wrote the introduction to Martin Gardner Presents. He
keeps two copies of Mathematics, Magic and Mystery in his library.
That’s because over the years he has referred to his first copy so
often that it has begun to fall apart. (He holds on to that first copy
“for sentimental reasons.” Thus far, the later reprint is holding up
to frequent handling.) He told me:

Martin is one of the great teachers, not only of magic, but of
science and mathematics. Although Martin’s work in magic
is not primarily invention, he has in fact devised some excel-
lent material, and several of his creations (most notably the Lie
Speller, both for plot and method) have become standards. But
his great gift is gathering really good information, separating
the wheat from the chaff, then explaining those ideas with writ-
ing skills that make them engaging and understandable. He
has been a conduit—perhaps a better word is “synthesizer”—
for a great deal of magical information that has filtered out into
the larger magic world.

A lot of his influence has been secondary and tertiary, sim-
ply because many people who’ve come up in magic more re-
cently have not realized that they were being influenced by
him. That’s because a lot of his ideas, or the ideas he was
conveying, had already passed through other people. In my
case, I had the benefit of having a father who was a physi-
cist, and therefore I was reading Martin’s [Scientific American
“Mathematical Games”] column from a very early age. I owe a
lot to Martin Gardner, for expanding my intellectual horizons.

Mathematics, Magic and Mystery is particularly valued because
it records some of the best mathematical tricks of the eccentric
magical genius Bob Hummer, whose parity-based card tricks in-
spire magicians to create interesting variations to this day. The
Hummer effects are just a few of the riches to be found there.
Martin’s elegant “Curry Triangle” (a deceptive geometrical vanish
effect) also appears there, for example [7, p. 145].

8 A Lifetime of Puzzles
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Patterns and Principles

Ken Krenzel, another respected name in the field of magic, is an
old friend of Martin’s. Ken told me:

Martin is brilliant. He has always been one of my magical
heroes. He’s a very quiet, almost shy person. When I first met
him in New York [in 1956], I saw him in the New York Public
Library on 42nd Street. He was always up in the reference
room, collecting material. That was back when he published
his first book, Mathematics, Magic and Mystery. The depth and
breadth of Martin’s writing is just incredible. If you look in
Hugard’s Encyclopedia of Card Tricks [9, p. 167], for example,
you’ll see a magnificent, little-known subtlety under his name,
called “Gardner’s Unique Principle.” It involves one-way backs.
His subtlety is that you can have the cards mixed every which
way, with the backs facing randomly in both directions. When
you spread the cards face down in a ribbon spread on the table,
you look for patterns, such as four cards going in one direction
followed by three going in the other, then perhaps five in the
other, and so on. That gives you your key as to where a card is
taken or replaced.

Magical Secrets and “Elevating Magic”

The aforementioned Steve Beam says that he’s always been a big
fan of Martin Gardner, and that reading him also got him hooked
on math. Over the years, Steve has used a highlighter on so many
passages in books like Gardner’s Mathematical Magic Show that
the pages are completely yellow. For magicians, he notes, one of
the most attractive aspects of Martin’s writing is the emphasis on
elegant principles rather than finished effects. Martin encourages
the readers to embellish the ideas: “There’s a lot of great raw ma-
terial in Gardner’s writings,” he notes. “People can run with his
material because he doesn’t work it to death.” This emphasis on
theory may be one reason, says Persi Diaconis, that magicians
are seldom bothered when Martin reveals elegant “mathemagical”
ideas in his columns and books:

In magic, secrets are sacrosanct, yet Martin has routinely put
wonderful secrets into his columns, and somehow the world
forgives him. Part of the reason is that having magic presented
in his Scientific American column or in his books—in the glow
of so many other important ideas—glorifies magic. People are
proud to have a trick in one of Martin’s books. In fact, my first

Martin Gardner and His Influence on Magic 9
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published magic trick appeared in Martin’s column years ago.
And, because he is able to elicit magic from unlikely sources,
often outside of the magic world, many unexpected new math-
emagical ideas have come to light.

A good example of this is the Kruskal principle [10], invented by
Princeton physics professor Martin Kruskal, and used in many
card effects. It is based on—of all things—Markov chains!

Colm Mulcahy adds, “Other ideas with far-reaching consequen-
ces that Martin has introduced to the reading world at large are
faro (perfect) card shuffles and the Gilbreath principle.” The
Gilbreath principle is named after its inventor, Norman Gilbreath.
In its simplest form, if you arrange a deck of cards so that the
colors alternate, cut the deck into two halves so that the bottom
cards are different colors, then riffle shuffle the halves together
once, each pair of cards will contain one red card and one black
card. Colm Mulcahy tells me that early in the twentieth century,
O. C. Williams published the basic fact that a single irregular riffle
shuffle falls far short of randomizing a deck of cards. This was
later expanded on by Charles Jordan. In the late 1950s, Norman
Gilbreath and others rediscovered the principle and took it to new
heights. Karl Fulves also says that Gene Finnell independently
discovered the principle.

Dignity for Our Little Mysteries

Gordon Bean, well-known magician and magical author, says:

As the son of a physicist, I lived in a house visited regularly
by Martin Gardner’s column in Scientific American. After my
interest in magic kindled, I can remember few satisfactions
greater than the tantalizingly infrequent times “Mathematical
Recreations” would veer into the realm of magic. Apart from
the actual principles and effects explored, I’ve never escaped
the reverberations of visiting a place where being able to mag-
ically predict the position of red and black cards after a legit-
imate shuffle seemed only a little less important than being
able to predict the rotation of planets.

English-speaking magicians have long been frustrated by the
inadequacy of the word “trick” to describe what they do. This
is a lack that we’ll most likely never fill, but Martin Gardner
has gone a long way in bringing our little mysteries a sense of
dignity without ever losing a sense of fun.

10 A Lifetime of Puzzles
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Figure 3. A portrait of Martin Gardner.

Martin Gardner and His Influence on Magic 11
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A Clarity of Perception

Atlanta-based magician Joe M. Turner [12] offers a fitting conclu-
sion to this essay by putting things in a larger context:

Martin Gardner’s long and continuing influence in magic is—if
you’ll pardon the pun—puzzling. After all, some of the most
common advice we magicians give ourselves is to “perform
magic” and not just to “do tricks.” We are encouraged to en-
chant and mystify our audiences by creating a theatrical ex-
perience, and to lift them above the perception of magic as a
“mere puzzle.”

And yet, Martin Gardner remains one of the most cited and
revered names in our field. Martin Gardner! His Encyclope-
dia of Impromptu Magic is guaranteed to show up in any poll
of magicians’ favorite magic books. His magazine columns
are the source of endless fascination among magicians as well
as actual human beings. Throughout his work we find items
which bear frighteningly close resemblance to (gasp!) puzzles.
Why does a mathematician with a predilection for impromptu
tricks and puzzles command so much attention that magicians
jockey to get invited to a convention named in his honor? It
must be more than simply the prestige of telling other magi-
cians you were there.

Perhaps Martin Gardner, for all the perception-twisting puz-
zles and tricks he has created, has a clarity of perception with
regard to magic that transcends even what magicians under-
stand our art to be. Magic is more than the special effects
we see on a stage or in the practiced hands of a trickster,
however talented. Martin Gardner shows us that magic, like
mathematics, may in fact be an intrinsic and often surprising
part of how the universe is put together. Just when we think
we’ve got something figured out, he shows up with a differ-
ent way of looking at it and we are surprised by the very thing
we thought we knew—whether it’s a mathematical principle, a
deck of cards, or a piece of string. Martin Gardner reveals the
surprising in the familiar, which—if one wishes to create the
illusion of magical powers—is a skill devoutly to be wished.

Acknowledgments. Thanks to the many magicians and mathemati-
cians who have graciously helped with this tribute. They include
Persi Diaconis, Max Maven, Steve Beam, Arthur Benjamin, Joe M.
Turner, Stan Allen, Colm Mulcahy, Howie Schwarzman, Ken Kren-
zel, Gordon Bean, and Dan Garrett. And, of course, I thank Martin
Gardner, for allowing me into his home and showing me such great
magic!
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Martin Gardner—Encore!

Prof. M. O’Snart

What is this eminent scholar and philosopher doing in the pages of
MAGIC?1 He is following his lifetime passion—sharing the mystery,
the surprise, and the joy of Magic!

The Challenge Set

The most mysterious figure in the realm of magical literature,
whose one contribution to the subject is still, after 25 years, one
of the classics, is S. W. Erdnase, author of The Expert at the Card
Table. Who was S. W. Erdnase? It has been said that his real name
was E. S. Andrews, which in reverse order produces the pen name
under which he wrote.

This challenge was laid down by Leo Rullman in The Sphinx for
February 1929 and was not met in his lifetime. But the puzzling
wordplay and the darker mystery of authorship would have struck
one very inquisitive 14-year-old student of magic very deeply: Mar-
tin Gardner’s subconscious stored the challenge away, biding its
time.

Rullman was soliciting lists of “The Ten, or Twenty, Best Books
on Magic” in his column, and Erdnase appeared in most; as a

1The original version of this article appeared in MAGIC Magazine, April 2004.
Reprinted with permission. www.magicmagazine.com

15



�

�

�

�

�

�

�

�

book dealer, he listed a “scarce original edition” for $2.25; Dariel
Fitzkee’s new book, Jumbo Card Manipulation, was hailed as “The
Erdnase of Jumbo Cards”—Erdnase was hot! Martin was well im-
mersed in the jog shuffles and fancy cuts, the ruse and subterfuge
of Erdnase. He read his 25¢ copy “with passionate interest.” And
the next year, he would be writing in The Sphinx himself!

Tulsa, Oklahoma

Martin was born October 21, 1914 in Tulsa, Oklahoma. His fa-
ther, Dr. James H. Gardner, geologist and oilman, taught Mar-
tin his first trick, “Papers on the Knife Blade.” Encouraged by
Roy “Wabash” Hughes, Roger Montandon, and Logan Wait, he ad-
vanced rapidly in the art. Much later, Montandon and Wait would
include two items from Martin in their 1942 booklet, Not Primige-
nial, commenting, “We’ve always enjoyed Martin Gardner’s quick
tricks.” In 1978, Martin dedicated his massive Encyclopedia of Im-
promptu Magic “For Logan and Roger.”

While 15, Martin contributed nine effects to The Sphinx: “New
Color Divination” (of gum balls) in May 1930, to “The Travelling
Stick of Gum” and “Vanishing Pack of Life Savers” in October 1930.
Fellow contributors and dealers that year were Stewart James,
with a new card effect, “Gnikool,” for 50¢ and John Booth, in-
troducing his original “Three Shell Monte,” also for 50¢. Beneath
Martin’s second contribution, “Borrowed Ring Off String,” Charles
“Baffles” Brush in his “Current Magic” department for July 1930,
commented, “This is the right way to do magic, take one trick and
use if for an entirely different one. Give him a little encourage-
ment and he will send in another good one.” Did Baffles hit the
old prophetic nailhead right in the bull’s eye, or what? Since that
first display of creativity in 1930, every single year has seen some
published work of Martin’s!

In the August 1930 issue of The Sphinx, Martin described his
own subtle and effective changes in handling for the “Papers on
the Knife.” In 1978, he devoted six pages to this classic in his
Encyclopedia. Martin’s name appeared for the first time on the
front cover of The Sphinx as a contributor (along with ten others)
in the February 1931 issue. Of course, he was now 16!

The March 1931 issue of The Sphinx was a special issue, mark-
ing the magazine’s 30th year with “the first rotogravure section ever
found in a magic periodical” of eight pages of portraits. Martin con-
tributed “An Impromptu Trick” in which a borrowed and marked
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coin travelled from pocket to opposite pant leg cuff twice. This title
must have amused Martin, since it required adding a secret pocket
and a two-foot-long cloth coin slide to your trousers! I suspect this
was a put-on, since this elaborate method was used by Martin as
the mock explanation for a similar effect done by simple sleight-
of-hand in the 1937–38 The Jinx Winter Extra. This contribution
also marked Martin’s debut as a dealer. For ten cents postage, he
offered, “a pair of black elastic shoelaces for use in seance work
where it is necessary to remove foot from shoe. They cannot be
told from the genuine article and save lots of time in taking shoe
on and off.” Baffles kindly let this blatant commercial message slip
by—after all, those were Depression days!

Chicago, Illinois

Martin left Tulsa for Chicago in 1932, expecting to spend two years
at the University of Chicago, then shift to Caltech and complete
his education as a physicist. However, he found the philosophy of
science and philosophy in general so attractive that he remained
to graduate Phi Beta Kappa in philosophy from the University of
Chicago in 1936. Fiction, poetry, philosophy, and politics engaged
Martin’s flowering writing talents, but chess engaged his spare
time to an extent so alarming that he decided to quit playing com-
pletely rather than become compulsive.

In November 1935, the Ireland Magic Company of Chicago pub-
lished Martin’s first booklet, Match-ic, “More Than Seventy Im-
promptu Tricks With Matches.”

Martin returned to Tulsa in 1936 for a stint as a reporter for
the Tulsa Tribune, did not like it, and returned quickly to Chicago
and the action at Joe Berg’s and Laurie Ireland’s magic shops. His
day job was public relations writing for the University of Chicago,
but Martin fondly recalls that he was “a charter member of the
old Round Table gang that used to meet every night at the Nankin
Chinese restaurant on Randolph Street. Werner ’Dorny’ Dornfield
was the group’s central figure, and I count my friendship with him
as one of the great privileges of my youth.”

Ed Marlo, or Eddie “Bottom Deal” Marlo back then, was an-
other good friend of Martin’s from the 1930s. Their joint effort, the
“Gardner-Marlo Poker Routine” in Marlo’s 1942 booklet Let’s See
The Deck, became the classic automated model. Another classic
card plot created by Martin, “The Lie Card Speller,” wherein the
spectator may lie or tell the truth to every question, first appeared
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in Here’s New Magic, published in 1937 by Joe Berg, ghosted by
Martin Gardner.

L. L. Ireland published Martin’s 12 Tricks with a Borrowed Deck
in 1940, full of remarkably durable material. Martin published
(that is, mimeographed) his own manuscript, After The Dessert, in
1940. Its quick success justified a printed edition, expanded from
24 to 30 impromptu tricks, which Max Holden published in 1942,
dedicated to “Dorny.” The title page is graced by a quote from
William Shakespeare: “After the Dessert ... ’Tis a Goodly Time
for Pleasantry.” Martin finally admitted it was just another of his
spoofs—he made up the quotation after he made up the title! The
Genii ad of December 1940 has the name of the author/dealer as
“Matt Gardner,” possibly to distinguish orders generated from the
ad in The Sphinx of November 1940?

In the late 1930s, Martin became known as an idea man, al-
ways ready to generate fresh material for novelty houses, stories
or articles for publishers, and ideas for cereal box inserts or mer-
chandising premiums. For 1938, 1939, and 1940, Martin worked
at Marshall Field’s department store, demonstrating and selling
“Mysto Magic Sets” through the Christmas season. Martin says
he learned there that you don’t know a trick until you have per-
formed it 50 times. Martin invented a transposition effect using
two large sponge balls in 1940, which Ireland marketed as “Gard-
ner’s Passe Passe Sponge Trick,” four pages plus two sponges for
50. Martin must know this effect extremely well. At the Chicago
1940 SAM Convention, he performed the moves “a few thousand
times,” pitching the package in the dealers’ room. No report as to
the number of sales made.

The North Atlantic

Martin enlisted in the Navy in 1941 and served four years on a
destroyer escort, the USS Pope, with the North Atlantic Fleet. He
spent much of his night-watch time thinking up plots for stories,
much like Stewart James in the Canadian Army, who volunteered
for night-guard duty so that he could work out his magical meth-
ods without interruption. The year 1942 saw Max Holden publish
Martin’s second booklet on cards, Cut the Cards. In the introduc-
tion, Martin worried that “tricks will continue to be forgotten and
later reinvented, or to be buried permanently in some remote cor-
ner of an old magazine or out-of-print booklet.” It is ironic that
Martin’s other booklets were all reprinted many times, but Cut the
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Cards went out of print for 50 years. It may now be found, ec-
centrically displayed, in Martin Gardner Presents, 1993. To solve
the problem, Martin envisaged “a mammoth card encyclopedia”
wherein “thousands of sleights, principles, and effects will be de-
scribed, classified and cross-indexed . . . Additions to the book will
appear annually as pamphlets, and at intervals, the entire work
will be revised and reissued.”

The Challenge Met

In 1945, Martin returned to civilian life, freelance writer style, in
Chicago. The next year, provoked perhaps by news of the death of
Leo Rullman or by some chance remark, an urge grew to take up
that long-ignored challenge, “Who was S. W. Erdnase?” Fortune
smiled on Martin and his oily old pea-jacket! In December 1946,
Martin found and met Marshall D. Smith, the actual illustrator of
The Expert at the Card Table, who had drawn the very hands of
Erdnase demonstrating his sleights! An elated Martin arranged
a guest appearance of M. Smith at the 1947 SAM Convention in
Chicago, where he met Erdnase enthusiasts and autographed their
copies. Alas! None of the leads to Erdnase so hoped for came from
the artist.

But Martin soon had a new lead. In the August 1949 Con-
juror’s Magazine, he proffered new evidence—an article by James
Andrews from the June 26, 1909 Harper’s Weekly entitled “The
Confessions of a Fakir.” Martin wrote that he could not prove it,
but he thought Andrews was Erdnase. But again, no real ties were
found.

Fortunately, Walter Gibson supplied Martin with a lead to an old
gambler, Ed Pratt, who had known Erdnase! His recollections pro-
vided the needed clues for the identification of Erdnase as Milton
F. Andrews, achieved October 29, 1949! By November, Martin had
found and interviewed Milton’s older brother, Alvin E. Andrews. In
The Phoenix #190, November 18, 1949, Bruce Elliott announced
that Martin had solved the case:

A really exciting thing has happened—Martin Gardner’s lone,
long quest for the truth about the mysterious author of The
Expert at the Card Table has been crowned by success. Pho-
tostats being airmailed to New York will show once and for all
who the strange Mr. Erdnase really was, what his life was like,
and how and when he died.

We’re hoping to be able to bring you the highlights of the story
in the next issue. If we were able to tell you the story, you’ll
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agree that it is one of the most remarkable ever told. Even if
we can’t, we must doff our dusty lid to Martin and his stick-to-
itiveness against seemingly insurmountable odds. Many have
tried to find out about Erdnase. Only Martin, working from
vague hints and even vaguer clues and hunches, has seen his
way through the web of misinformation.

Pictures, news stories, a confession all iron clad evidence pro-
vide that Martin has solved the case. When we saw Martin, he
had just come from interviewing a blood relative of Mr. Erd-
nase. In the excitement of the chase, Martin hadn’t had a
chance to change his clothes for three days. Even a literary
detective case can have its wild moments. This was the cul-
mination for Martin of years of work, of probing the libraries,
checking city directories, of adding two and two and getting
fourteen.

We envy him.

In the next issue Elliott could only say, “Still haven’t received
clearance on the Erdnase story. Maybe in next issue.” Five years
would go by before another word on the strange Mr. Erdnase saw
print. Martin preferred to spend more time gathering data and
verifying details with Pratt, Smith, and others. Even the cemetery
where Erdnase lay buried was checked. Finally, on December 24,
1954, Jay Marshall in The New Phoenix #321 announced the true
identity of Erdnase:

Martin Gardner brought with him a briefcase and a sheaf of
photostats. It was a complete newspaper account of the excit-
ing life and the dramatic suicide of Milton Franklin Andrews.
He had the correspondence and the notes made during the last
decade in his successful search for the true identity of the elu-
sive idol of the card sharps: S. W. Erdnase. It’s a story of crime,
murder, and adventure that is stranger than fiction. You’ll find
it all in these pages during the coming Summer.

In The New Phoenix #339, September 1956, Jay Marshall noted,
“We are still at work on the Erdnase story and hope to publish it in
full sometime this fall.” By the following issue #340, January 10,
1957, plans had changed. “Martin Gardner is going to write the
Erdnase story for True magazine.”

When True published Martin’s account of Erdnase in January,
1958, entitled “The Murdering Cardshark,” it had been heavily
rewritten, sensationalized in fact, by John Conrad, who shared
the byline. Martin the scholar was not happy with the tabloid con-
clusion to his investigations: no documentation, no referencing,
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no acknowledgments, and considerable groundless embellishment.
However, Leo Rullman’s challenge had been met, his ghost could
rest, and Martin was very busy.

Some decades later, Martin was happy to share his documents,
letters, and interview notes with Jeff Busby and Bart Whaley, who
tracked down much more material, written, printed, and pictorial.
Their book, The Man Who Was Erdnase [11], stands as a unique
monument. Martin wrote in the Foreword:

Bart Whaley, encouraged and assisted by Jeff Busby, has done
a truly magnificent job of pulling together everything known
today about Andrews and his masterpiece. He has set it all
down in such loving detail, with such clarity, brilliance, and
impeccable documentation, as to elevate him to the ranks of
our country’s top writers about true crime. I believe that this
amazing book will become as famous in the literature of magic
as Andrews’ own classic. And what a sad, bitter, violent fan-
tastic story it tells!

Martin contributed two articles, “The Mystery of Erdnase” (from
the Program Book of the 1947 SAM Chicago Conference) and “The
Man Who Was Erdnase,” to The Annotated Erdnase by Darwin Or-
tiz [10], who added his comments—in all 11 pages of pertinent
additional information.2

Returning to the year 1946, we find fortune smiled on Martin
twice more. He began the first monthly column of his career, “Puz-
zles – Tricks – Fun,” in Uncle Ray’s Magazine for September 1946.
Every year since, except 1982, when the Gardners moved from
New York to North Carolina, Martin has been engaged in at least
one monthly column. In the dizzy year of 1953, he ran six columns
simultaneously: in Hugard’s Monthly, Polly Pigtails, PigglyWiggly,
Humpty Dumpty’s, Parents’ Magazine, and Children’s Digest.

The year 1946 also marked Martin’s first sale as a professional
fiction writer. “The Horse on the Escalator” appeared in the Oc-
tober Esquire. Martin modeled the story’s narrator after his early
mentor and good friend, Dorny. In Martin’s 1987 anthology, The
No-Sided Professor and Other Tales of Fantasy, Humor, Mystery,
and Philosophy, he wrote, “it was the sale of this story to Esquire
that gave me the courage to decline an offer to have back my pre-

2The Erdnase mystery remains somewhat of a mystery. In an interview by
Richard Hatch appearing in the April 2000 issue of MAGIC, Martin Gardner said,
“you’ve convinced me now that there is good reason for doubt that Milton Franklin
Andrews was Erdnase. I still think it was Milton Franklin, but my conviction rate
is lowered ... to 60%.”
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war job in the press relations office of the University of Chicago. I
wanted to see if I could earn a living as a writer.”

New York, New York

Martin moved to New York in 1947 and rapidly entered the magic
whirl: Saturdays at Lou Tannen’s, then on to the restaurant or
to Bruce Elliott’s with Dai Vernon, Paul Curry, Clayton Rawson,
Persi Diaconis, Bill Simon, Dr. Jaks, and/or other like-minded
friends. Elliott’s “The Back Room” column in The Phoenix provides
a running account of New York activity: a line from #l89 says,
“managed to keep [Bill Woodfield] and Martin Gardner up till six
A.M. which is considered par for the course in these parts.”

During 1948, Martin initiated his ten-year run of monthly con-
tributions to Hugard’s Monthly, which became the basis of his
mammoth Encyclopedia of Impromptu Magic (574 pages, 894 il-
lustrations) [3]. Together with much new material, ideas, and ref-
erences, there are about 2,000 items in 161 categories, from “Ap-
ples” to “Zipper,” of unpredictable length: “Horn” has a paragraph,
“Muscle Reading” has four pages, “Coins” has 138 entries, “Hands”
has 96 entries. And, there are no card tricks and no rope tricks
included! In his introduction, Martin continued to worry about the
ideal format:

I hoped that someday I might find time for extensive revisions
and additions. I would obtain entry to a collector’s library and
plow through all his books, page by page. I would spend at
least a few months on major periodicals. After that, I would
attempt a comprehensive cross index.

A trick, for instance, that uses a glass, handkerchief, and coin
can be described only once, under one heading, but it should
be cross referenced under other headings. Many tricks can
be done with a variety of different objects. A trick with, say,
a pencil may be equally effective with a table knife or a cane
or a fountain pen. These, too, should be cross referenced as
fully as possible; otherwise a reader searching the “Encyclo-
pedia” for tricks with a certain object would be forced to go
through the entire work if he wanted to run down all tricks
applicable to that object. Also there should be cross indexing
under such categories as “Practical Jokes,” “Betchas,” “Mental
Effects,” and so on, that would cut across listings by objects
used.

In 1948, Martin also commenced writing on fringe science,
cranks, impostors, cultists, and hoaxers. His first book for the
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public appeared in 1952, In the Name of Science [5]. A second edi-
tion, expanded to 363 pages, was issued by Dover in 1957 with the
new name Fads and Fallacies in the Name of Science. Said Martin,
“Don’t care for the title myself, but the publisher wouldn’t budge
on it.”

Karl Fulves published two booklets for the magic trade by Mar-
tin, under the name Uriah Fuller: Confessions of a Psychic, 1975,
and Further Confessions of a Psychic, 1980. For general trade,
Prometheus issued Martin’s How Not to Test a Psychic in 1989.
They also issued a companion volume to Fads and Fallacies in
1981, Science: Good, Bad, and Bogus, collecting Martin’s arti-
cles and book reviews on pseudoscience and parapsychology up to
1981. Martin has been criticized for employing ridicule at times
rather than reason, but he answers, “one horse laugh may be
worth a thousand syllogisms.”

The Committee for the Scientific Investigation of Claims of
the Paranormal (CSICOP) was formed in 1976 with a journal,
The Skeptical Inquirer. Martin’s contributions are gathered by
Prometheus in The New Age: Notes of a Fringe-Watcher, 1988, and
On the Wild Side, 1992.

Martin burst out writing on several fronts in 1948: magic, phi-
losophy, fiction, science. Only a few significant titles will be men-
tioned from his widening fields of endeavor. Returning to the strand
of magic, in 1949 Martin linked his three homes neatly. His intro-
duction to Over the Coffee Cups was dated, “New York, 1949” and
was dedicated “To The Chicago Round Table Gang” and published
by Montandan Magic in Tulsa. Friends gave Martin good leads on
stories. In an article, “It Happened Even to Houdini,” printed in
Argosy for October 1950, for instance, he said:

Dai Vernon, one of the greatest card magicians of all times, was
performing his club act last summer on the Brazil, a steamship
en route to Buenos Aires. Dai had a card selected, then placed
it back in the deck. “When I throw this pack into the air,”
Dai said, “the chosen card will stick to the ceiling.” Dai gave
the deck a vigorous toss. To his great astonishment, the pack
vanished completely! It had gone through a small ceiling air
vent which he hadn’t noticed because he’d been working under
a spotlight.

In 1952, Martin entered two longterm relationships. Bill Si-
mon had introduced Martin to Charlotte Greenwald, and now he
served as best man at their wedding, performed by Judge George
Starke, another magic friend. Also, Martin sold an article, “Logic
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Machines,” to Scientific American. Typically, Martin had a special
page provided for the readers to cut up into logic window cards.

The year 1955 saw the birth of the Gardner’s first son, Jim,
and also the birth of a new book. “Fresh! Original! ... scores
of new tricks, new insights, new demonstrations.” For once, the
blurbs were quite correct. Martin’s Mathematics, Magic and Mys-
tery, 1956, was loaded with great ideas! (The preface was dated
1955, but publication was delayed.) It contained 115 actions de-
scribing over 500 tricks—still in print and still inspiring [7]. Even
sleight-of-hand experts Ed Marlo and Dai Vernon contributed,
among a host of Martin’s friends. The Gardners’ son, Tom, was
born in 1958.

Unknowingly, Martin reached a turning point in his career with
the sale to Scientific American of a fascinating article on “Flexagons”
for the December 1956 issue. These endlessly transforming pa-
per foldovers were an immediate success. Could Martin produce a
monthly column on mathematical games? Of course! Martin was
off and running and didn’t look back for 25 years!

His column became immensely popular as his topics broadened
to include everything from art, through carnival swindles and com-
puter games, to literature. Martin could not only explain abstruse
scientific topics in ways intriguing to high school beginners, but he
could also reveal unexpected depths in simple games and tricks,
sufficient to challenge the professionals. In September 1977, Mar-
tin’s “Mathematical Games” was moved from the back section to
the first position in the front of Scientific American—a signal honor!

After 24 years of meeting monthly deadlines, Martin wrote only
six columns in 1981, alternating months with his successor, D.
R. Hofstadter. Martin finished with the December column, while
Hofstadter kept the pace for 19 more columns, bowing out in July
1983.

Happily, Martin periodically gathered his columns into books,
made even more interesting by added material and comments from
readers. The first was The Scientific American Book of Mathematical
Puzzles and Diversions, 1959 [9]. They grew in size over the years,
with the 14th, Fractal Music, Hypercards, and More, 1992, hav-
ing 327 pages [4]. These 14 volumes, totaling 3,829 pages, with
a 15th forthcoming to complete the series, form an unparalleled
source of classic concepts, current principles, and inspiration for
new developments in magical and mathematical recreations.

Martin contributed three further “Mathematical Games” col-
umns to Scientific American—August and September 1983, and
June 1986—marking 35 years of association with the magazine.
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Martin’s most successful book (over 500,000 sold!) was pub-
lished in 1960, The Annotated Alice (including both of Lewis Car-
roll’s books Alice’s Adventures in Wonderland and Through the Look-
ing Glass) [2]. Many annotated works of all kinds had been pro-
duced in the past, but only for the scholarly community, with
cramped footnotes, little grace, and no illustrations. Martin’s book
was large format with legible type, delightful style, and profuse il-
lustrations. It was accepted by the general public, who are still
buying and enjoying it. Thirty years later, Martin followed up with
More Annotated Alice [8]. Martin annotated several other works, in-
cluding The Rhyme of the Ancient Mariner, 1965; Casey at the Bat,
1967; and The Night Before Christmas, 1991. Other authors soon
began “annotating” anything they could find in the public domain.

Martin had some fun in 1975! He wrote a straight-faced column
(though scattered with clues) of fictitious “science developments”
for the April issue (read: April Fool issue) of Scientific American.
Material that would have drawn a good laugh in Mad magazine
was treated with great respect! Some of the topics, complete with
illustrations, were: Leonardi da Vinci’s invention of the flush toilet,
a fatal flaw in Einstein’s theory of relativity, a map that required
more than the usual four colors to complete, and a simple motor
that ran on psychic energy. Martin received several thousand let-
ters, most patiently pointing out the one error Martin had made in
an otherwise excellent column!

Hendersonville, North Carolina

Martin’s retirement from Scientific American at the end of 1981
prompted national attention and congratulations, with articles in
Newsweek, Omni, and Science 81, among others. Time had writ-
ten Martin up in 1975—the Mathemagician! He was credited with
interesting more people in mathematics and science than anyone
else alive. The quieter days in Hendersonville, North Carolina, al-
lowed Martin to wrestle with the larger, intractable puzzles of life
and the universe, of religion and society. Two books were soon
readied.

In 1993, Martin gathered his separately marketed tricks and
novelties and his original contributions scattered through dozens
of books and magazine since 1930, revised and updated them, and
added new material to form Martin Gardner Presents (424 pages,
230 tricks, 450 illustrations) [6]. To the wealth of material cov-
ering all small objects including cards and rope, Dana Richards,
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Martin’s official bibliographer, added an extremely useful “Bibliog-
raphy of Martin Gardner in Magic” through the end of 1992, but
including Martin Gardner Presents. This adds another member to
Russell’s self-inclusive class! Aside from books and pamphlets,
Richard Kaufman records information very hard to find: book in-
troductions, book reviews, articles not in magic magazines, mar-
keted effects and puzzles, and 235 individual effects contributed
to 28 different books and 28 (!) different magazines, from Abra-
cadabra to The Swindle Sheet. The hundreds of tricks from Mar-
tin’s series in Hugard’s Encyclopedia of Card Tricks are not listed,
since they are compiled in the Encyclopedia of Impromptu Magic.

In January 1993, a three-month puzzle exhibition opened in the
Atlanta Museum of Art. Martin and Charlotte Gardner were hon-
ored guests at special “Gathering for Gardner” festivities, including
the unveiling of the incredible portrait of Martin in dominoes.3 A
book was presented to each person there, Martin, Articles in Trib-
ute to Martin Gardner, edited by Scott Kim. Of many good things
therein, Dana Richards’ “A Martin Gardner Bibliography” is out-
standing. Sixty-eight pages of entries!

First, what it does not list: the Scientific American columns;
magic tricks in magic periodicals; British editions and foreign trans-
lations; the individual stories, poems, and stunts in children’s
magazines.

Now, let us sample what is listed: 63 books and pamphlets;
19 books edited or annotated; 53 book introductions; 153 book
reviews; 105 letters published; 210 columns and articles and an-
thologized material! Even 46 articles about Martin are listed! Dana
Richards classified Martin’s writing under 14 subject headings:
Mathematics and Puzzles, Science, Fringe Science, Philosophy of
Science, Philosophy and Theology, Political, Fiction, Poetry, Litera-
ture, Oziana, Juvenile Literature, Magic, Journalism, and Unclas-
sified!

How to account for this amazing breadth of topics? How to
sound the depths of Martin’s creative talent? Truly, another “mys-
terious figure” is abroad, threading through our outposts, mug-
ging a psychic here, skewering a charlatan there, spreading anti-
irrational propaganda everywhere, then lightly dancing backward
and away, confounding sober citizens with his laughter. When
they ask, “Who are you, Nitram Rendrag?” he answers with G. K.
Chesterton’s riddle:

3An image of this domino portrait appeared on the cover of the April 1994 issue of
MAGIC and can also be found on page ii of The Mathemagician and Pied Puzzler. [1]
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I have a hat, but not to wear;
I wear a sword, but not to slay,
And ever in my bag I bear
A pack of cards, but not to play.
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Low-Down Triple Dealing

Colm Mulcahy

Consider the following three demonstrations of mathemagic:

1. A deck of cards is handed to a spectator, who is invited to
shuffle freely. She is asked to call out her favorite ice-cream
flavor; let’s suppose she says, “Chocolate.” Next, she is asked
to cut off about a quarter of the deck and hold it ready for
dealing.

You take another quarter of the deck and demonstrate a spell-
ing routine, dealing cards into a pile, one for each letter in
the word “chocolate,” before dropping the rest of your quarter
deck on top. Set those cards aside and have the spectator
perform this spelling routine three times with the cards in
her hands. You correctly name the top card in her pile at the
conclusion of her triple dealing.

2. A deck of cards is handed to two spectators, each of whom is
invited to shuffle at will and then choose a card (of not too low
a value) and place it face up on the table. Let’s suppose that
4♣ and 9♥ are selected and displayed. You run through the
deck face up, tossing out all of the aces, twos, and threes—
saying, “Sorry, I should have eliminated the low cards earlier.”
Then riffle shuffle a few times.
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Remark, “Since a 9 was selected, let’s count out nine cards,”
dealing into a pile on the table. Shuffle overhand and con-
tinue, “We’ll need four more,” as you peel off that many cards
as a single unit, without changing their order. Drop these on
top of the other nine. (The rest of the deck is ignored from now
on.) Pick up this pile of thirteen cards and demonstrate deal-
ing the nine top cards into a pile, thus reversing their order,
and then dropping the remaining four cards on top. Have
the first spectator do this deal three more times, and hand
the cards to the second spectator. Have the second volunteer
deal either four or nine cards into a pile, with the remainding
cards placed beside this to form a second pile.

Recap: The two numbers (4 and 9) being used were deter-
mined by freely selected cards, and as a result, a deal of nine
cards was performed (three times) on a packet of thirteen
cards, which was then split into two piles. Draw attention
to the two cards originally selected. Say, “Wouldn’t it be sur-
prising if, after all that triple dealing based on the values of
two randomly selected cards from a shuffled deck, there were
cards intimately related to the two you selected at the bottoms
of the two piles now on the table?” Have the piles on the table
turned over: one of the cards exposed is 9♣ and the other is
4♥. Add, “A curious alignment with the selected cards.”

3. Have each of three volunteers in turn pick a card at random,
and then have the cards returned to anywhere in the deck.
Shuffle with abandon. Ask a fourth person to name their
favorite magician, and assume “Harry Houdini” is called out.
Hold the deck in the right hand, and peel cards off the bottom
into a pile in the left hand, without altering their order, one for
each letter, as you spell out the whole name. Hand the stack
of twelve cards to the first volunteer and ask him to spell out
HOUDINI while dealing out seven cards, then dropping the
other five on top. Now give the cards to the second volunteer
with the same directions, and finally to the third volunteer,
for one last deal of the same type.

Take the cards behind your back and immediately produce
three cards, handing one to each volunteer, face down. Have
the chosen cards named, as they are turned over, to reveal
that you have correctly located each one.

The same purely mathematical principle underlies each of these
demonstrations, with a little more magic thrown in for good effect
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as we progress to the second and third tricks. We gradually reveal
this principle below and discuss how each of the tricks is done as
we go, before finally explaining why the principle works.

Let’s start with the first effect. There are two secrets working
behind the scenes for you here: an unadvertised but important re-
lationship between the length of the word being spelled out and the
size of the “quarter deck” with which the spectator starts, and the
fact that you must somehow know the identity of one card in the
spectator’s hand from the beginning. It should come as no surprise
that the card in question is the bottom card: asking the spectator
to hold the cards in her hand in preparation for the spelling is just
to give you an added opportunity to peek at this card, if you haven’t
already done that as she completed her shuffling. You must do
whatever it takes to discover that card’s identity!

This is the scoop on the ice-cream trick:

Claim 3.1. Start with n cards, the bottom one of which is known. If
k cards are dealt out into a pile, thus reversing their order, and the
remaining n−k cards are dropped on top as a unit, and this type of
deal is repeated twice more, then the known card rises like cream
to the top—provided that n ≤ 2k.

In the case of the 9-letter word CHOCOLATE, the trick works,
provided that the portion of the deck selected by the volunteer con-
tains at most 18 cards. If MINT CHOCOLATE CHIP (17 letters) is
named, you’ll ask for between a third and half of the deck. (If RUM
is selected, try to force RUM RAISIN!)

The triple deal described is actually 75% of a rather interesting
quadruple deal (which can be used as the basis for an in-hand
false shuffle).

This is the real scoop:

Claim 3.2. Start with n cards, and assume that n ≤ 2k ≤ 2n. If k
cards are dealt out into a pile, thus reversing their order, and the
remaining n−k cards are dropped on top as a unit, and this deal is
repeated three more times, the entire packet of n cards is restored
to its original order.

Now consider the second effect. Two cards (not aces, twos, or
threes) are chosen and set aside face up. Let’s suppose that they
are 4♣ and 9♥. As you run through the deck face up, ostensibly
to toss out the low valued cards, what you really focus on doing
is cutting the 9♣ and 4♥ to the top and bottom, respectively. They
will stay there if you are careful how you riffle shuffle. Continue as
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described earlier: reversing nine cards into a pile and then doing
some overhand shuffling, whose purpose is to bring the bottom
card to the top. Peel four more off the top without reversing them,
and drop on top of the other nine. You now have thirteen cards,
with the desired two cards at the top and bottom of that packet.
Your subsequent demonstration of dealing nine and dropping four
is just the first of a series of four deals: the first spectator does the
next three deals, thereby restoring the packet to its initial state.
The second spectator deals (either four or nine) cards into a pile,
and then there are two piles on the table, with one of the desired
cards at the bottom of each pile. You are all set for the grand finale.

The third effect uses the fact that after three deals of the type
described, not only does the bottom card rise to the top, but the
next to last card becomes the second card from the top, the one
above that becomes the third card, and so on.

This is the real triple scoop:

Claim 3.3. If k cards from n cards are dealt out into a pile, reversing
their order, and the remaining n − k are dropped on top as a unit,
and this process is repeated twice more, then provided that n ≤
2k ≤ 2n, the original k bottom cards become the top k cards, in
reverse order.

To perform the third trick, ask each of three volunteers to pick
a card at random. Have these cards returned, one at a time, to the
deck and then control them to the bottom—this means that you ap-
pear to allow free choice of where to put the cards, but you actually
use elementary magic techniques to get each card to the bottom.
As a result, the third volunteer’s card is at the bottom of the deck,
the second volunteer’s card is one up from the bottom, and the first
volunteer’s card is two up from the bottom. Peel cards off the bot-
tom of the deck—without altering their order—one for each letter
of the name of the magician called out, as you spell out both words
in full. Hand the resulting packet of cards to the first volunteer
and ask that the longer of the two names (HOUDINI in our exam-
ple) be spelled out as cards are dealt into a pile, before dropping
the remainder on top. Now give the cards to the second volunteer
and finally to the third volunteer for two more deals. The three
chosen cards are now on the top of the packet of cards, with the
order reversed, and you are all set to conclude in triumph.

Why are all of the above claims valid for any n and k with n ≤
2k ≤ 2n? It’s certainly easy to see if n = k (reversing all of the cards
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Figure 1. Proof without words. The dashed lines indicate the portions that
move around intact, subject at most to some internal reversals.

each time), and almost as easy to see if n = 2k (reversing exactly
half of the cards). Actually, it’s easy to see in all cases.

Suppose for the sake of concreteness that n = 13 and k = 8. Let’s
represent a pile of thirteen cards in some initial order by a vertical
strip of gray-scale panels in decreasing order of brightness, from
white for the top card to black for the bottom card, as depicted in
the leftmost strip in Figure 1.

Then, the results of the four deals—each of eight cards into
a pile with the other five cards dropped on top—is given by the
successive vertical strips. Since the rightmost strip shows a fully
restored pile, the deal in question has period four: after four deals,
we are always back to where we started. After three such deals,
the original bottom card (black) has risen to the top—in prepa-
ration for its final journey back to the bottom under one more
deal. Moreover, it is clear that the eight bottom cards become the
eight top cards, suitably reversed, after three deals. There are just
three portions of the packet—of sizes five, three, and five here—
of which to keep track, and they move around intact, subject at
most to some internal reversals (indicated by the dashed lines in
Figure 1).
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The only relationship between 13 and 8 that is needed to make
this sequence of images totally generalizable is the fact that 8 ≥ 13

2 .
We suggest that the cards are held low, close to the table, during

all dealing, so as to fully justify our title.
We are grateful to Finnish magic magazine JOKERI editor Martti

Sirén for pointing out that the principle generalizes a little: instead
of dealing the same number of cards, say k, each time, we can get
the desired results by dealing k then l, and then k then l again, for
suitably restricted values of k and l. For instance, starting with 13
cards as above, we can deal 8 then 7, and then 8 then 7. Or we
can deal 8 then 10, and then 8 then 10. In each case, the packet
is restored to its initial order and if we stop after the third deal, the
original bottom card is on top. We leave it to the keen reader to
determine the necessary conditions on k, l, and n.

Acknowledgments. This article is slightly modified from the inau-
gural “Card Colm” at MAA Online (October 21, 2004), which also
appeared in print in MAA FOCUS, in the November 2004 issue cel-
ebrating Martin Gardner’s 90th birthday. It appears here by kind
permission of the Mathematical Association of America. The prin-
ciple involved was discovered, while on leave, in a Madrid suburb
in spring 2003. More mathematical card tricks can be found at
http://www.spelman.edu/∼colm/cards.html.
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Products of Universal Cycles

Persi Diaconis
Ron Graham

Universal cycles are generalizations of de Bruijn cycles to combi-
natorial patterns other than binary strings. We show how to con-
struct a product cycle of two universal cycles, where the window
widths of the two cycles may be different. This mathematical theo-
rem leads to applications in card tricks.

Introduction

A de Bruijn cycle is a sequence of zeroes and ones such that each
window of width k running along the sequence shows a different
binary k-tuple. We assume the ends of the sequence are joined to
form a cycle. For example, when k = 3,

1 0 1 1 1 0 0 0

shows 101, 011, 111, 110, 100, 000, 001, 010 (where the window is run
“around the corner”). In this example, the total length of the cycle
is 23 = 8, so each 3-tuple appears once. This is not required, so
0 0 0 1 1 1 (for k = 3) is a de Bruijn cycle of length six. The reader
may enjoy the problem of constructing a de Bruijn cycle of length
52 for a window of width k = 6.
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De Bruijn cycles are used for cryptography, robot vision, ran-
dom number generation, and DNA sequencing. We show elsewhere
that they can be used secretly for card tricks [2, Chapters 2–4].
There are also a friendly introduction to de Bruijn sequences by
Stein [15, Chapter 8], a more comprehensive survey by Frederick-
sen [4], and an extensive discussion by Knuth [13, Section 7.2.1.1].
These articles show that maximal-length de Bruijn sequences al-
ways exist for any window width k. They give a variety of construc-
tions and properties (for example, they show how to determine the
binary pattern in position t). It is even known exactly how many
maximal-length de Bruijn sequences there are: 22k−1−k.

In joint work with Fan Chung [1], we have introduced a general-
ization called universal cycles that extends the notion from binary
strings to other combinatorial pattern, such as the relative order
of k consecutive symbols. Thus, consider for window width 3 the
sequence

1 3 2 1 3 4.

The relative order of the first three numbers is low-high-medium or
LHM. The successive relative orders (going around the corner) are

LHM, HML, MLH, LMH, MHL, HLM.

Thus, each of the six possible relative orders (or permutations) ap-
pears exactly once. This is an example of a universal cycle for
permutations. In our work with Chung, we showed that, for every
k, the numbers 1, 2, 3, . . . , k! can be arranged so that each consecu-
tive block of k has a distinct relative order. While such sequences
were shown to exist, no general rule for construction, nor any for-
mula (or approximation) for the total number is known. The reader
may enjoy one of the following two problems:

• Write the numbers 1, 2, 3, . . . , 24 in a sequence so that each
successive group of four shows a distinct relative order.

• Write down a sequence of length 24 using only the numbers
1, 2, 3, 4, 5 so that each successive group of four shows a dis-
tinct relative order.

We have also constructed sequences of symbols 1, 2, . . . , n so
that each consecutive k-tuple shows a distinct k-subset from the
set {1, 2, . . . , n}. These only exist for certain k and n; even the ex-
istence is an open research problem. This is a universal cycle for
k-subsets of an n-set. (See [8,11] for more details.)
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More generally, given any natural combinatorial object describ-
ed by k parameters (θ1, θ2, . . . , θk), one may ask for a sequence of
θ-values so that each consecutive block of k codes exactly one of
our objects. More carefully, there is a fixed finite alphabet Θ, and
each θi is in Θ. Further, there is a rule R(θ1, θ2, . . . , θk) taking values
one or zero. Our combinatorial object is the set of all (θ1, θ2, . . . , θk)
so that R(θ1, θ2, . . . , θk) = 1. For example, if Θ = {1, 2, . . . , k} and
R(θ1, θ2, . . . , θk) is one if the θi are distinct, and zero otherwise, then
the combinatorial object is the set of all permutations on k sym-
bols.

A variety of constructions have appeared: set partitions, or-
dered k-out-of-n, subspaces of a vector space, and others. It seems
fair to say that, up to now, the construction of universal cycles has
proceeded by clever, hard, ad-hoc arguments. There is nothing like
a general theory.

The purpose of the present article is to begin a theory by show-
ing that, for some cases, products of universal cycles can be formed.
In the next section, we introduce the product construction by tak-
ing the product of 1 0 1 1 1 0 0 0 and 1 3 2 1 3 4. A card trick version
is given, along with a general recipe for the product of a de Bruijn
cycle and an arbitrary universal cycle—both with the same window
width k. The following section gives products for universal cycles
more general than de Bruijn cycles with an arbitrary universal cy-
cle, which have (possibly) differing window widths. Following this
is a practical section that concerns “cutting down” universal cycles
(e.g., from 64 to 52). Proofs are deferred to the appendix, which
gives a very general product construction.

Products with Equal Window Widths

Suppose that x1 x2 . . . xR and y1 y2 . . . yS are each universal cycles
for the same window width k. We want to use these cycles to form
a sequence of pairs

x1 x2 . . . xRS

y1 y2 . . . yRS

so that a window of width k, run along the pairs, shows each of the
possible (vertical) pairs of x-tuples and y-tuples just once. The eas-
iest case occurs when the integers R and S have no common factor
larger than 1. We may then simply write x1x2 . . . xRx1x2 . . . xR . . .
x1x2 . . . xR, repeated S times. Under this row, write y1y2 . . . ySy1y2 . . .
yS . . . y1y2 . . . yS repeated R times.
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Example 1. Suppose that R = 3, S = 4, and k = 2. Let the x sequence
code the relative order with ties permitted. Thus, two successive
values may be low-high (LH) or high-low (HL) or equal (EQ). Thus,
the sequence 112 gives EQ, LH, HL (where the last pair comes from
going around the corner). The y sequence uses zeroes and ones,
such as 0011, for the usual de Bruijn sequence for window width
k = 2. Here, RS = 12. The product is

1 1 2 1 1 2 1 1 2 1 1 2
0 0 1 1 0 0 1 1 0 0 1 1.

Our interest in forming products arose from a card trick. We
wanted to take a product of the usual de Bruijn sequence
1 0 1 1 1 0 0 0 of length eight with the permutation sequence 1 3 2 1 3 4
of length six. Both have window width k = 3. This would give
an arrangement of 48 cards, so that the relative order and color
pattern of successive triples uniquely determines the position. We
originally constructed an example in an ad-hoc fashion (the naı̈ve
construction above doesn’t work because R = 6 and S = 8 are not
relatively prime). We then developed some theory (described below).
The following describes the construction that the theory gives.

Take an ordinary deck of cards. Remove the four kings. Arrange
the rest in the following order (ace is low), with D, C, H, and S for
diamonds, clubs, hearts, and spades, respectively:

A 7 5 3 9 J 2 7 6 3 10 Q A 8 5 4
D C D H H S C S H S D H H C S C

10 Q 2 7 5 3 10 J A 8 6 4 10 J 2 8
H S D D H C S H C H D D C C S D

6 4 9 J A 8 6 3 9 Q 2 7 5 4 9 Q
C H D D S S S D C D H H C S S C.

The reader will find that each successive group of three cards is
uniquely identified by the relative order and color pattern. For ex-
ample, the top three cards are AD, 7C, 5D and have relative order
low-medium-high (LHM) and color pattern red-black-red (RBR). No
other successive triple has both of these patterns. This property
can be used to perform a card trick. Put the 48-card deck, ar-
ranged as above, in the card case. Find an audience—the larger,
the better. Have the audience members take the cased deck and
pass it to the back of the hall. Have a “randomly chosen spectator”
cut the deck and complete the cut. The deck is passed to a second,
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adjacent, spectator, who also gives the cards a complete cut. Then,
the deck is passed to a third spectator, who gives it a complete cut.
This third spectator removes the current top card, showing it to no
one. The deck is passed back to the second spectator, who removes
the top card and then passes the deck back to the first spectator
who removes the top card. The performer patters as follows:

Three of you have freely cut the cards and selected a card. I’d
like you to look at your card and concentrate, form a mental
picture, and try to project. You’re doing a great job, but it’s
hard to unscramble things. Let me try this. I see red more
clearly than black. Would everyone with a red card please
stand up? That helps a lot! But still, it’s not in focus. Who has
the highest card of you three? [One of the spectators waves.]
Who has the lowest? [Again, one of the spectators waves.] I’ll
work on the middle man first. You, sir, have a spade. . . it’s the
nine of spades? Now, the high man. You have a high black
card. Is it the queen of clubs? Finally, the lady with the lowest
card. It’s a four. Is it the four of spades?

Practical performance details for tricks of this type are in [2,
Chapter 2]. We mention the magic application to explain our moti-
vation for the constructions in the present paper.

The 48-card arrangement was constructed in two stages. First,
we used the product theorem described below to get a “product”
of the universal cycle for permutations (namely, 1 3 2 1 3 4) with the
de Bruijn cycle (namely, 1 0 1 1 1 0 0 0). This results in the following
sequence of 48 pairs:

1 3 2 1 3 4 1 3 2 1 3 4 1 3 2 1 3 4 1 3 2 1 3 4
1 0 1 1 1 0 0 0 1 0 1 1 1 0 0 0 1 0 1 1 1 0 0 1

1 3 2 1 3 4 1 3 2 1 3 4 1 3 2 1 3 4 1 3 2 1 3 4
0 1 1 1 0 0 0 1 0 1 1 1 0 0 0 1 0 1 1 1 0 0 0 0.

Notice that the bottom row is not quite a repetition of 1 0 1 1 1 0 0 0.
Nonetheless, the product theorem guarantees that each three suc-
cessive pairs are uniquely determined by the relative order of the
top sequence and the zero–one pattern of the bottom sequence.

The second stage requires lifting the last pattern to the natural
context of playing cards, with twelve values, each repeated four
times, and four suits. We explain how to lift below. We now state a
first product theorem.

Theorem 4.1. (Product of a de Bruijn and universal cycle with equal
window lengths) Let x = x1x2 . . . xR be an arbitrary universal cycle
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with window width k. Let y = y1y2 . . . yS be a de Bruijn cycle with
window width k. Here, the symbols xi can be in any alphabet, and
the symbols yj are zero–one. Neither cycle need be maximal, but
we do assume that y ends with k consecutive zeroes. The following
construction gives a sequence of pairs

xi

yj

of length RS so that, if a window of width k is run along the pairs,
each ordered k-tuple of xi’s above an ordered k-tuple of yj ’s appears
just once.

If the sequence lengths R and S have no common factor, repeat
the x sequence S times above the y sequence repeated R times.
If the largest number that divides R and S is d, write R = rd
and S = sd. Observe that r and s are relatively prime. Begin
by writing down the x sequence S times, forming a sequence
of length RS. Under this, we construct the following sequence.
Recall that y is a de Bruijn sequence with k zeroes at the end.
Form a string of zeroes and ones by repeating the original se-
quence y a total of r times, and then removing the final zero.
This gives a sequence y∗ of length rS − 1. Now, repeat the y∗

sequence d times, and finish off with a string of d zeroes. Place
this, in order, under the x sequence of length RS.

Example 2. Look back at the product of 1 3 2 1 3 4 and 1 0 1 1 1 0 0 0 in
the preceding section. Here, R = 6, S = 8, and so the greatest
divisor is d = 2. The construction begins by repeating 1 3 2 1 3 4 eight
times to form the top row. For the bottom row, r = 3. The block
y∗ is formed from three copies of 1 0 1 1 1 0 0 0 and then deleting the
final zero. Thus, y∗ = 1 0 1 1 1 0 0 0 1 0 1 1 1 0 0 0 1 0 1 1 1 0 0. The bottom
row is formed from d = 2 copies of y∗ followed by d = 2 further
zeroes.

Example 3. Let us take the product of 1 1 0 0 with itself. Thus, R =
S = d = 4 and r = s = 1. The top sequence is formed from using four
copies of 1 1 0 0. For the bottom row, the building block is y∗ = 1 1 0.
Placing four repetitions of this followed by four final zeroes gives
the product sequence

1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0
1 1 0 1 1 0 1 1 0 1 1 0 0 0 0 0.
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The reader may check that the sixteen 2 × 2 windows are distinct:

1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1
1 1 1 0 0 1 1 1 1 0 0 1 1 1 1 0

1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1
0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 1.

Example 4. Of course, our product construction can be iterated.
Consider the extreme case of k = 1. A de Bruijn cycle for k = 1
is 1 0. The product of this with itself (using the product theorem) is

1 0 1 0
1 1 0 0.

We may now take the product of this with 1 0 to get

1 0 1 0 1 0 1 0
1 1 0 0 1 1 0 0
1 0 1 1 0 1 0 0.

Another product with 1 0 gives

1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0
1 0 1 1 0 1 0 0 1 0 1 1 0 1 0 0
1 0 1 0 1 0 1 1 0 1 0 1 0 1 0 0.

Can the reader see the simple pattern, and how it will continue?
(Hint: read the columns upside-down and backwards, in binary.)

We conclude this section with a few remarks that extend the
construction in various ways. The construction given was for y,
a zero–one de Bruijn sequence. This is not at all required. The
construction works for any universal cycle with window width k
that contains a block of k repeated symbols. We will call such
universal cycles special. Here are several other such examples.

Example 5. We have given a universal cycle for partitions of an
n-element set [1]. These partitions are counted by the Bell num-
bers. Martin Gardner gives a wonderful introduction to these num-
bers [5, Chapter 2] (see also [14, Section 7.2.1.5] for some exten-
sions). For example, there are 15 partitions of the four-element set
{1, 2, 3, 4}:
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1234 1|234 12|34 1|2|34 1|2|3|4.
2|134 13|24 1|3|24
3|124 14|23 1|4|23
4|123 2|3|14

2|4|13
3|4|12

A universal cycle for these is 1 2 3 2 3 3 3 3 4 4 3 4 5 5 3. As a window
of width four is run along, the equal positions run through all
possible set partitions exactly once (so that 1 2 3 2 corresponds to
the partition 1|3|24, 2 3 2 3 corresponds to the partition 13|24, etc.).
Because there is a block of four repeated symbols, namely 3 3 3 3,
these can be cycled to the end, and then the product with any
universal cycle can be formed.

Example 6. We have given a universal cycle for permutations with
ties [3]. For example, there are 13 possible relative orders of three
distinct values when ties are allowed. They are

123, 132, 213, 231, 312, 321, 112, 121, 211, 221, 212, 122, 111.

A universal cycle for these permutations of three symbols with ties
(using the symbols {1, 2, 3, 4}) is given by 1 1 1 2 1 2 2 1 3 4 1 3 2. For
any window width k for these universal cycles, there is always a
block of k repeated symbols (all k values are tied), so these cycles
are special and can be used in the product theorem.

Alas, not every universal cycle has a block of repeated symbols,
and we are at a loss for a general construction. For example, when
k = 3, with the permutation cycle 1 3 2 1 3 4, we do not know how to
form a product of 1 3 2 1 3 4 with itself. However, we can construct
a cycle of 36 pairs of numbers so that the relative order of the top
and bottom blocks of three are all distinct. We just need a little
more freedom in the alphabet size. An example of such a cycle is

1 3 2 1 3 4 1 3 2 1 3 4 1 3 2 1 3 4
1 4 3 2 5 1 4 3 2 5 1 4 3 2 5 1 4 3

1 3 2 1 3 4 1 3 2 1 3 4 1 3 2 1 3 4
2 5 1 4 3 2 5 1 4 3 2 5 6 7 8 9 10 11.

For this sequence, the first block of three is

1 3 2
1 4 3.
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The top row is in order L H M, and the bottom row is in the same
order L H M. This is the only time this pair of orders appears to-
gether. Similarly, every pair of blocks of three (going around the
corner) has a unique signature.

We created this sequence by “lifting” (see the section “Lifting/
Lumping” below) 1 3 2 1 3 4 to have all distinct symbols, e.g., 1 4 3 2 5 6.
Here, every block of three has a unique relative order. This lifting
has the property that it can be “cut down” (see the section “Cutting
Down” below) to 1 4 3 2 5. This has every block of three with distinct
relative orders, but omits LM H. Pasting six copies of this under six
copies of our original 1 3 2 1 3 4 leaves six places to fill at the end. We
filled them with 6 7 8 9 10 11 to give LM H six times, with all possible
order parameters occurring on top. What is also crucial (and this
is the result of “fooling around” and not of “higher math”) is that
the construction works going around the corner. Thus, the last
block of two,

3 4
10 11,

combined with the first block of length one,

1
1,

gives
3 4 1
10 11 1.

On top we have M H L and on the bottom M H L. This is the only
time this occurs. Similarly,

4 1 3
11 1 4

gives H L M and H LM uniquely. We hope that explaining our con-
struction demystifies it and suggests further ideas for progress in
constructing products.

More General Products

In the section above, we have explained how to form a product of a
universal cycle with a de Bruijn cycle provided that the two cycles
have the same window width k. It turns out that the construction
given works even if the window widths are different.
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Theorem 4.2. The construction given in Theorem 4.1 works mutatis
mutandis for a universal cycle with variable window lengths.

As explained below, this generalization can be applied to card
tricks in at least two ways. Suppose that x = x1x2 . . . xR and y =
y1y2 . . . yS are universal cycles of respective window widths k and l.
Suppose that we can construct a sequence of pairs

x1 x2 . . . xRS

y1 y2 . . . yRS

with xi in the alphabet used for the x sequence and yj in the al-
phabet used for the y sequence. The construction is a product if,
starting at any position

xi

yi
,

the symbols xixi+1 . . . xi+k−1 and yiyi+1 . . . yi+l−1 uniquely identify i.
Here is a simple example. Take x = 1 3 2 1 3 4. With k = 3, this

is a universal cycle for permutations. Take y = RRWBBRBWW .
With l = 2, successive windows of width 2 go through each of the
nine ordered pairs of “colors” {red, white, blue} or {R, W, B}. The
lengths R = 6 and S = 9 have the largest common factor of d = 3.
We may follow the construction of the product theorem virtually
word for word. Build a sequence of total length RS = 54 by first
repeating S copies of the x sequence. For the second row, R = rd =
2 · 3. Repeat the y sequence r = 2 times and delete the final symbol.
This gives y∗ = RRWBBRBWWRRWBBRBW . Next, repeat the y∗

sequence d times and finish off with d repetitions of the deleted
symbol W . This gives the final construction:

1 3 2 1 3 4 1 3 2 1 3 4 1 3 2 1 3 4
R R W B B R B W W R R W B B R B W R

1 3 2 1 3 4 1 3 2 1 3 4 1 3 2 1 3 4
R W B B R B W W R R W B B R B W R R

1 3 2 1 3 4 1 3 2 1 3 4 1 3 2 1 3 4
W B B R B W W R R W B B R B W W W W.

Consider this sequence. The relative order of the first three places
is L H M. The colors of the first two places are R . The reader may
check that this pattern only occurs at the start: The R R pattern
occurs just six times, and the three symbols directly above occur
in six distinct relative orders.
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Here are two ways such a product could be used for a card
trick. First, suppose k ≥ l. Have the deck of RS cards cut freely
and have k consecutive cards taken off. Each card is representated
by a labeled

xi

yi

pair. Ask for the x information. Then, ask the first l people for the
y information. This combined information uniquely identifies the k
cards. Here is a second procedure: Have k + l cards taken off. Ask
the first k people for the x information and the last l people for the
y information. This information uniquely specifies the cards.

As a check, the reader may try both procedures out on the se-
quence of length 54 given above.

Combining techniques, we have a way of taking a product of
two universal cycles, one of window width k and one of window
width l, provided only that at least one of the two cycles contains a
window of all identical symbols (or that the lengths of the two cycles
are relatively prime). Neither cycle need be maximal or de Bruijn.
We call this the General Product Construction (Theorem 3). The
validity of the construction described, and somewhat more, will be
proved in the appendix. Of course, higher-order products can be
constructed by iterating the procedure.

Some Practical Details and Problems

Over the years of working with de Bruijn sequences and their gen-
eralizations, four practical problems have emerged. These are

• products,

• cutting down,

• lifting/lumping,

• coding and neat generation.

We have treated products earlier. We briefly treat the three remain-
ing problems here.

Cutting Down

Maximal-length universal cycles come in tightly circumscribed
lengths. For binary de Bruijn sequences, these lengths are 2, 4,
8, 16, 32, 64, . . . . Practical considerations may demand a shorter
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total length. For example, 52 is boxed between 32 and 64. We know
there are maximal-length de Bruijn sequences of length 32 (win-
dow width 5) and 64 (window length 6). What do we know for 52?
One approach would be to take a de Bruijn sequence of length 64
and cut it down. Remove segments of total length 12 so that the
remaining 52 show all distinct patterns when a window of width six
is run along the cycle. With patience, the reader will find that this
is indeed possible.

However, there is a very beautiful method for accomplishing this
for any cycle length in any longer maximal de Bruijn cycle. While
we would love to take credit for this, it actually belongs to the “folk-
lore” of de Bruijn cycles. (We thank Hal Fredericksen and Al Hales
for tracking this down for us.) We have it catalogued as “Babai’s
Cutting Down Lemma.” It gives a way of taking a de Bruijn se-
quence created from a “shift register” of total length 2k − 1 (window
width k) and cutting down to any length L, k ≤ L ≤ 2k − 1.

We will illustrate this method with the example k = 6, 2k−1 = 63,
and L = 52. First, consider the long de Bruijn sequence (length 63)

0000010000|1100010100|1111010001|
1100100101|1011101100|1101010111|111

where we have put |’s after every ten symbols to help count. La-
bel the positions starting at the extreme left (position zero) to the
extreme right (position 62). For example, the window of width six
that starts at position 38 is 011011. The window starting at position
49 is 011010. These will figure into the discussion in a moment. As
with any de Bruijn sequence, a window of width six run along the
sequence shows all distinct blocks (except 000000, which does not
occur in sequences generated by shift registers).

The sequence is formed from the starting block 000001 by a sim-
ple rule: form the symbol at position i + 6 by adding the two sym-
bols at positions i and i + 1 (mod 2). Any of the articles cited in our
references show how to find such rules, and their relation to the
algebraic fact that 1 + x + x6 is a “primitive” polynomial.

To get from 63 to 52, we must remove 11 symbols. Note that
49 − 38 = 11 and that the blocks starting at 38 and 49 differ in their
last symbol only. We may thus simply replace the last symbol (a 1)
in the 38 block 0 1 1 0 1 1 by a zero, cut out the intervening symbols,
and get

0000010000|1100010100|1111010001|1100100101|1010101111|11.

The point of this construction (other than that it works) is this:
the cut-down sequence of length 52 is still generated by a simple
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rule. Consider any block of length six. The next symbol after a
block of six is formed by adding the first two symbols of the block
(mod 2) unless the string formed from symbols two through seven
would become 0 1 1 0 1 1. In that case, and in that case only, the
simple rule is broken and a zero is adjoined instead, forming the
block 0 1 1 0 1 0. This can happen at most once.

We claim that, for any window width k and any cut-down size,
the same scheme works, with just one forbidden sequence. To see
why (briefly), let P (x) be the primitive polynomial generating your
de Bruijn sequence. Our references show that the symbols are gen-
erated by raising x to successive powers x, x2, x3, x4, . . . (mod P (x)).
If we seek to cut out a chunk of length c (in our case, c = 11), we
need a power i so that

xi+c + xi ≡ 1 (mod P (x)) or xi(xc + 1) ≡ 1 (mod P (x)).

Because the nonzero elements mod P (x) form a field, this equation
always has a unique solution for i, as long as c �= 2k. The string
coded by xi begins at 38 in our example. All of this will be Greek
to the reader who does now know about finite fields; we hope it
induces some to learn more!

We make two final remarks. First, finding the i that works must
be done by trial and error (it is equivalent to finding logarithms
in finite fields). Second, the procedure can be written as a simple
“nonlinear” recurrence. In the example,

xn+6 ≡ xn + xn+1 + xnxn+1xn+2xn+3xn+4xn+5 (mod 2),

where xj denotes 1− xj . Indeed, the nonlinear term is always zero,
except at 011011 when it is one, shifting the sequence. We find this
a truly beautiful application of mathematics to solve a practical
magic problem (see [6, Section 7.5] for further details).

The same problem arises for other universal sequences. Here is
a practical example. A Tarot deck consists of 78 cards; there are
four suits, each of 14 values for 56 “ordinary” cards, and 22 cards
in the “major arcana.” These are trump cards with colorful names
such as “The Hanged Man.” Tarot cards have been around for
over 500 years (see the marvelous history of Stuart Hampshire [7]).
They are frequently used for fortune telling, and it is natural to try
to invent one of our card tricks using Tarot cards. We use them
here as an excuse for discussing available techniques.

One simple approach is to set aside the major arcana and work
with the remaining 56 cards. Now 56 = 8 ·7. An easy construction is
to take the usual de Bruijn sequence 1 0 1 1 1 0 0 0 for eight and then
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cut it down to seven as 1 0 1 1 1 0 0 . Taking a product of these two
will do the job.

Going back to the full deck of 78 = 6 · 13, there is a natural uni-
versal cycle of length 13 (permutations with ties with window width
3 given in Example 6), as well as one of length 6 (permutations
with window width 3). In this case, it is possible to form a product
universal cycle, because the cycle for permutations with ties does
indeed have a block of three repeated symbols. Even easier in this
case is to use the fact that the two cycle lengths 13 and 6 are rela-
tively prime. However, a general theory is lacking on how to do this
when a sufficiently long block of repeated symbols does not occur
in either sequence in the product. To crystallize things, we state
the situation as an open problem.

Problem 1. Let x1, x2, . . . , xR be a universal cycle with window width
k. For k ≤ j ≤ R, is it always possible to find a subsequence of
length j that is also a universal cycle with window width k?

Lifting/Lumping

Lifting involves resizing a universal cycle based on a small alphabet
with a larger alphabet. Lumping involves the opposite. Both are
well illustrated with universal cycles for permutations.

First, consider lifting. In the second section, we took the prod-
uct of the permutation cycle 1 3 2 1 3 4 with the binary cycle
1 0 1 1 1 0 0 0. Both have window width k = 3. The product construc-
tion yields a sequence of 48 pairs (shown in that section) with the
top row 1 3 2 1 3 4 repeated eight times, and the bottom row a slightly
scrambled version of 1 0 1 1 1 0 0 0 repeated six times. The next prob-
lem is to assign card values to these pairs. This was easy for the
binary part, using hearts and diamonds for 1 (red) and clubs and
spades for 0 (black). This is a primitive lifting. The lifting problem
is harder for other values. We discard kings and think of the other
card values as 1, 2, 3, . . . , 12. The first step was to lift the sequence
1 3 2 1 3 4 (on an alphabet with four symbols) to six distinct symbols:
1 4 3 2 5 6.

In fact, we can prove that the following lifting procedure always
works. Suppose that we have a sequence of digits such that a win-
dow of width k gives a distinct relative order as it is run along. Take
the highest digit (it may be repeated several times—just choose
one) and replace it with k!. Take the next highest digit (not count-
ing the k! factorial just created) and replace it by k! − 1, and so on.
Thus, working right-to-left in 1 3 2 1 3 4 with k = 3, we get succes-
sively 1 3 2 1 3 6, 1 3 2 1 5 6, 1 4 2 1 5 6, 1 4 3 1 5 6, and finally, 1 4 3 2 5 6. If
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we had replaced equal digits working left-to-right, the result would
have been 2 5 3 1 4 6. Both final sequences have successive groups
of three spanning all possible relative orders.

Now consider two adjacent copies of 1 4 3 2 5 6 1 4 3 2 5 6. Each “1”
can be assigned to one of {1, 2}, each “2” to one of {3, 4}, and so
on, with each “6” assigned to one of {11, 12}. Choosing the lower
possibility first gives

1 4 3 2 5 6 1 4 3 2 5 6
1 7 5 3 9 11 2 8 6 4 10 12.

This pattern is repeated four times, and then the suits are assigned
as explained above. We should point out that consecutive values
in {1, 2}, {3, 4}, etc. can be interchanged to make things look more
random (as we did in Example 1).

An example of a lumping problem appears in adapting an ar-
rangement of the numbers 1, 2, 3, . . . , k! with the property that the
relative order of each k-tuple is distinct into an arrangement of
values in the alphabet {1, 2, 3, . . . , k + 1} into a sequence with the
same property. For example, when k = 3, 1 4 3 2 5 6 can be lumped
to 1 3 2 1 3 4. It is easy to see that maximal-length permutation se-
quences cannot be lumped to the alphabet {1, 2, 3, . . . , k}. For a long
time the best that had been proved was {1, 2, 3, . . . , 3k/2} (see [8,9]).
The conjecture that it is always possible with {1, 2, 3, . . . , k + 1}
was recently solved by Dr. J. Robert Johnson of the Department
of Mathematics, Queen Mary College, London. He shows that
only k + 1 distinct values are required to form a universal cycle
of length k.

Lifting and lumping problems arise all over the subject (see [1]
for more examples). We would love to see some theory developed
for this problem.

Coding and Neat Generation

We have not dealt with one aspect of the applications herein. Given
the audience’s information, how does the performer know what the
cards are? We have treated this at some length in our book on
mathematics and magic tricks [2]. However, the performer may
have the order of the deck available, coupled to the possible pat-
terns. This availability may be through memory (mnemonics), an
assistant, or a hidden list. In our popular talks, we often just say,
“The performer has the information written on his sleeve.”

As an indication of the methods presently available, we record a
novel approach due to our student Gier Helleloid. It allows a neat
decoding for any de Bruijn sequence.

Products of Universal Cycles 49

  



�

�

�

�

�

�

�

�

Example 7 (Coding a binary de Bruijn cycle). Begin with a fixed
de Bruijn cycle of total length m and window width k. We need
not have m = 2k. The problem is to assign card values so that the
binary color pattern codes the card values in a simple way. Hel-
leloid proposes using a simple standard order of the m cards and
then using the binary pattern (as a binary number) to determine
which card in the standard order goes next.

This is most easily explained by example. Consider the binary
de Bruijn cycle 0 0 0 1 1 1 0 1 with m = 8 and k = 3. Form the standard
order of an eight-card deck:

position 0 1 2 3 4 5 6 7
card AC 2C AS 2S AD 2D AH 2H.

Here the positions have been labeled (from left to right) 0, 1, 2, 3, 4,
5, 6, 7 and AC stands for the ace of clubs, and so on. Helleloid’s
rule says to rearrange the standard order as

AC 2C 2S 2H AH 2D AS AD.

Thus, the first window 0 0 0 of our de Bruijn sequence says to use
the card in position 0 of the standard order (AC). The next window
0 0 1 says to use the card in position 1 of the standard order (2C)
next. The next window 0 1 1 says to use the card in position 3 of the
standard order (2S) next, and so on. The scheme works, provided
that the standard list has all the black cards first and all the red
cards last.

For performance, you must be able to easily determine which
card is at position j on the standard list. Thus, if the pattern
1 0 1 shows when everyone with a Red card is asked to stand, the
performer translates 1 0 1 = 5, and on the standard list, card 5 is
2D. This is possible (and even easy), provided that the standard
list is simple, e.g., for m = 32, k = 5, we could use 1–8 of clubs,
1–8 of spades, 1–8 of diamonds, and 1–8 of hearts. To continue
beyond the first card, a de Bruijn sequence that can easily be “run
forward” is essential. The shift register sequences discussed in our
references are one simple solution. In this case, the next binary
digit is a linear combination of the last few. While we know how
to do this for de Bruijn sequences, we do not know of analogous
procedures for any of our other constructions. Again, we feel it
must be possible. There is a fair amount of worthwhile research to
be done here.
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Appendix: Proof of Main Theorems, and Somewhat More

In this appendix, we give a proof of Theorem 1 (both windows of
equal width) and Theorem 2 (windows of possibly distinct widths).
These theorems involve universal cycles (going around the corner).
They also involve a restriction: one of the cycles must have re-
peated symbols for all of a window width.

Our proof proceeds by constructing a completely general prod-
uct (with no restriction on repeated symbols) of two sequences (not
going around the corner). This is Theorem 3, stated below. Theo-
rems 1 and 2 follow as corollaries.

To state Theorem 3, we need some simple notation. Let

x = x1x2 . . . xR, y = y1y2 . . . yS , R = rd, S = sd,

with d being the greatest common divisor of R and S. Thus, r and
s have no common divisor (greater than 1). The symbols xi, yj are
treated as distinct variables. In the corollaries, they may be set to
convenient values (e.g., zero or one).

Construction 1. Construct a two-line array with the top row drawn
from the xi and the second row drawn from the yj. Both rows will
contain RS symbols.

• Top Row. Repeat x1x2 . . . xR a total of S times.

• Second Row. Form Y − by repeating y1y2 . . . ys a total of r times
and then deleting the final occurrence of ys. Thus, Y − has
length rs−1. Then, form a sequence of length RS by repeating
Y − a total of d times and adding a total of d repetitions of the
symbol ys at the end.

Example 8. Suppose that x = x1 x2 and y = y1 y2 y3 y4. Then, R = 2,
S = 4, d = 2, r = 1, and s = 2. The construction gives an array of
total length 8:

x1 x2 x1 x2 x1 x2 x1 x2

y1 y2 y3 y1 y2 y3 y4 y4.

Note that each x1 occurs with each of y1, y2, y3, y4 exactly once, and
this is true for x2 as well. Theorem 3 says this happens in general.
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Theorem 4.3. Let x = x1 x2 . . . xR and y = y1 y2 . . . yS be strings of
distinct symbols. Then, the construction above produces a two-line
array of length RS where each pair

xu

yv
, 1 ≤ u ≤ R, 1 ≤ v ≤ S,

appears exactly once.

Proof: To check all details, we introduce notation for the blocks of
x symbols in the top row and for the blocks of y symbols in the
second row. Define

X =

s︷ ︸︸ ︷
x x . . . x, Y =

r︷ ︸︸ ︷
y y . . . y, Y − =

r−1︷ ︸︸ ︷
y y . . . y y1y2 . . . ys−1.

Thus, X has length rsd, as does Y , while Y − has length rsd − 1.
Next, define

Xi = X, Y −
i = Y −, 1 ≤ i ≤ d, Z =

d︷ ︸︸ ︷
ysys . . . ys .

Finally, the array defined by the construction is

X1 X2 . . . Xd−2 Xd−1 Xd

Y −
1 Y −

2 . . . Y −
d−2 Y −

d−1 Z.

Note that each row contains RS symbols. We show that each pair

xu

yv
, 1 ≤ u ≤ R, 1 ≤ v ≤ S,

occurs exactly once. There are two cases.

Case 1. The indices of the xu that are paired with yv in Y −
1 are u =

v, v + sd, v + 2sd, . . . , v + isd, . . . , v + (r − 1)sd where here, and in what
follows, we assume that index addition is done modulo rd, and
instead of 0, we use rd. In Y2, yv is paired with xu for u = v − 1, v −
1+sd, . . . , v−1+ isd, . . . , v−1+(r−1)sd. In general, in Yj, yv is paired
with xu for u = v − j + 1 + isd, 0 ≤ i ≤ r − 1, 1 ≤ j ≤ d. We need to
show that all these rd values v − j + 1 + isd are distinct modulo rd.

Suppose that v − j + 1 + isd ≡ v − j′ + 1 + i′sd (mod dr), 0 ≤
i, i′ ≤ r − 1, 1 ≤ j, j′ ≤ d. Thus, j′ − j + (i − i′)sd ≡ 0 (mod rd). This
implies that j′ − j ≡ 0 (mod d) because gcd(r, s) = 1, which in turn
implies that j = j′. From this we now conclude that (i − i′)sd ≡ 0
(mod rd). Consequently, we have (i−i′)s ≡ 0 (mod r), which implies
that i = i′. Hence, all the rd indices are distinct, so yv is paired with
every possible xu exactly once, when v �= sd.
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Case 2 (v = sd). In Y −
1 , ysd is paired with xu for u = sd, 2sd, . . . ,

(r−1)sd. In general, in Y −
j , ysd is paired with xu for u = isd−j+1, 1 ≤

i ≤ r − 1, 1 ≤ j ≤ d. Also, at the end of the sequence, ysd is paired
with the last d symbols of the top row of the array, namely, xu for
u = dr − d + 1, dr − d + 2, . . . , dr − 1, dr.

If isd − j + 1 ≡ i′sd − j′ + 1 (mod rd), then j′ − j + (i − i′)sd ≡ 0
(mod rd). As before, this implies that j = j′ and i = i′, so all these
(r − 1)d indices are distinct.

Now suppose that isd − j + 1 ≡ dr − m (mod rd), 0 ≤ m ≤ d − 1.
Thus, isd− j+1 ≡ −m (mod rd), from which it follows that j−1 ≡ m
(mod d), and finally, that j = m + 1. Hence, isd ≡ 0 (mod dr), which
implies that i ≡ 0 (mod r), a contradiction.

Consequently, ysd is paired with every possible xu exactly once.
This completes Case 2 and the theorem is proved.

Because Theorem 2 is more general than Theorem 1, we need
only prove Theorem 2.

Proof of Theorem 2: Take x to be an arbitrary universal cycle. It
need not have maximal length. Take y to be a universal cycle of
window length k. We assume that y has a block of k repeated
symbols that we take to be 0 for notational simplicity. These appear
as the last k symbols of y. Proceed with the construction as above.
What has to be checked is that the following hold:

1. When ysd = 0 is removed from the end of Yi to form Y −
i , then

as the window moves across the boundary between Y −
i and

Y −
i+1 in . . . Y −

i Y −
i+1 . . . we only lose one copy of the block

k︷ ︸︸ ︷
000 . . .0.

2. Because our construction has ysd = 0, we have Z =

d︷ ︸︸ ︷
000 . . .0.

Thus, the second row of the array ends with

k−1+d︷ ︸︸ ︷
0000 . . .00. Be-

cause y1 �= 0 (otherwise y would have two blocks equal to
k︷ ︸︸ ︷

000 . . .0), as our window of width k goes around the corner
in . . . Y −

d−1Y
−
d ZY −

1 . . ., we pick up exactly d extra copies of the

block

k︷ ︸︸ ︷
000 . . .0.

Therefore, our construction preserves all necessary occurrences of
the required k-tuples in the product. This completes the product
construction of the universal cycles x and y, and the proof of The-
orem 2 is complete. �
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Tangram: The World’s First
Puzzle Craze

Jerry Slocum

The world’s first puzzle craze occurred almost 200 years ago, dur-
ing the years 1817 and 1818, when transportation and communi-
cation consisted of sailing ships and horse-drawn carts and car-
riages. The Tangram, a seven-piece, put-together puzzle invented
in China between 1796 and 1802, was taken to London on “China
Trade” ships and soon became a fashionable puzzle craze in Eng-
land, Europe, and America. This remarkable event was the world’s
first puzzle craze. The Tangram is still popular and has been used
in schools worldwide since the 1860s to help students learn, while
having fun.

Among the international celebrities who amused themselves
with the Tangram are Napoleon Bonaparte (more about him later),
Lewis Carroll, Edgar Allan Poe, Hans Christian Anderson, and En-
glish scientist Michael Faraday, not to mention our good friend
Martin Gardner [1, Chapters 3 and 4].

The Tangram

The Tangram, a two-dimensional rearrangement puzzle, is formed
by dissecting (cutting) a square into seven pieces, called tans. (See
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Solutions

(a) (b)

(c) (d)

Figure 21. Solutions to the matching puzzles in Figure 2: (a) Martin Gard-
ner puzzles. (b) Tangram paradox. (c) A difficult Chinese Tangram puzzle.
(d) A difficult Russian Tangram puzzle.
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Figure 1. An ivory Tangram box and seven puzzle pieces made in China
for export.

(a) (b)

(c) (d)

Figure 2. Some Tangram challenges for the reader. Solutions are at the
end of the article. (a) Martin Gardner puzzles: make each initial individ-
ually. (b) Tangram paradox. (c) A difficult Chinese Tangram puzzle by
Ch’lu Llang-pal from 1885. (d) A difficult Russian Tangram puzzle by V. I.
Obreimov from 1884.
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Figure 1.) The pieces can be rearranged to form thousands of dif-
ferent figures of people in motion, animals, letters of the alphabet,
geometric shapes, and the universe. The puzzle is to assemble all
seven pieces, without overlap, to form a given problem figure (such
as the ones in Figure 2).

Several rearrangement puzzles were invented before the Tan-
gram, and many have been invented since, but the Tangram has
turned out to be the most popular by far. The seven pieces are
simple shapes: two small triangles, one medium-sized triangle,
two large triangles, a rhomboid, and a square. It is unique among
rearrangement puzzles in its ability to transform these simple ge-
ometric pieces into charming, elegant, sophisticated, and some-
times paradoxical figures. The silhouette problems are presented
in books or on cards that accompany the Tangram. Or you can
create your own designs, limited only by your imagination. The
inscrutable face of a Chinese emperor, the elegance of a bird in
flight, and puzzling paradox figures can all be made from the amaz-
ing Tangram. The puzzle’s very simplicity proves most maddening:
how can seven simple tans create such extraordinary images and
puzzling challenges? In Chinese, the Tangram is known as Ch‘i
ch‘iao t‘u, which translates to “seven ingenious plans” or “picture
using seven clever pieces.”

Invention of the Tangram

According to Chinese reference literature, Yang-cho-chü-shih (Dim-
witted recluse) invented the Tangram during the reign of Chia-
ch’ing (1796–1820). Recently, however, a second edition of his
book, Tseng-ting ch’i-ch’iao t’u, dated 1817, has been found, and
Yang-cho-chü-shih references Sang-hsia’k’o’s book as his source.
So, the inventor of the Tangram is still unknown. The earliest
found example of a Tangram is in a silk-covered cardboard box
with a handwritten inscription dated April 4, 1802. (See Figure 3.)
The box contains a carved ivory Tangram that was given to Francis
Waln, the third child of Robert and Phebe Waln. Robert Waln was
a major ship owner and importer in Philadelphia, with a financial
interest in at least twelve ships, trading with Canton, China.

Sang-hsia-k’o (a pen name, meaning “guest under the mulberry
tree”) compiled the problem figures for the second Tangram book,
entitled Ch’i ch’iao t’u ho pi (Harmoniously Combined Book of Tan-
gram Problems) and wrote a preface for it. The preface and the
334 problem figures in the book, published in 1813, were widely
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Figure 3. This is the earliest known Tangram (left) and its silk-covered
case (right). It was given to Francis Waln in 1802.

reprinted in numerous editions by several Chinese publishers for
over 100 years. No copies of the 1813 edition have been found in
China, Japan, England, Europe, or the USA. However, a replica of
the original 1813 Chinese book, including the cover, the text, and
130 of the problems, was discovered in Japan. (See Figure 4.) The
copy, with the text in blue and the figures in red, was published in
Japan in 1839.

The preface by Sang-hsia-k’o tells a bit about the history of the
Tangram and the problem figures:

“Its origin lies within the Pythagorean Theorem. Last year Hsü
Shu-t’ang traced 160 Tangram designs and published them. Mr.
Wang I-yüan brought a copy of Hsü Shu-t’ang’s booklet and added
designs by his younger brother, Ch’un-sheng, to it. The manuscript
included about 200 designs. I invented another 100 new designs,
which were added to the copy. I didn’t want to keep it for my plea-
sure only, so I decided to publish it for the entertainment of those
who also love this game.”

Our investigation of the Pythagorean Theorem in Chinese math-
ematics found no evidence that the Tangram was invented or known
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Figure 4. A replica, published in Japan, of Sang-hsia-k’o’s 1813 Chinese
Tangram book: title page (left) and sample problem (right).

by ancient Chinese mathematicians. However their method of dis-
secting a figure and rearranging the pieces to form a new figure
was an integral part of Chinese mathematics in the third cen-
tury A.D. and was the approach used by the Chinese to prove
the Pythagorean Theorem. This is one of the roots in the Chi-
nese culture that may well have contributed to the invention of the
Tangram many centuries later.

The publisher of Sang-hsia-k’o’s 1813 book published a new
edition in 1815, containing the same preface and the same prob-
lems as the earlier edition. A book of solutions was also pub-
lished, and the books were sold as a pair. The books were made
of accordion-folded rice paper sewn together with a string bind-
ing. Copies of the 1815 edition were widely distributed, not only in
China, but also in England, Europe, and America, and they were
responsible for spreading the Tangram craze to the Western world.
(See Figure 5.)

Tangram: The World’s First Puzzle Craze 63

  

http://www.crcnetbase.com/action/showImage?doi=10.1201/b10573-8&iName=master.img-099.jpg&w=157&h=252
http://www.crcnetbase.com/action/showImage?doi=10.1201/b10573-8&iName=master.img-100.jpg&w=156&h=261


�

�

�

�

�

�

�

�

Figure 5. The oldest surviving pair of Chinese Tangram problem and so-
lution books was published in 1815.

The Tangram Craze Hits Europe and America

Puzzles made in China of ivory and wood, as well as copies of Sang-
hsia-k’o’s Tangram books, were brought to England and Europe
on sailing ships. After the Chinese books reached England, the
problems were copied and published and the puzzle quickly be-
came fashionable in London. Its popularity rapidly spread to other
European countries. As the German author C. L. A. Kunze de-
scribes, “this game, soon after its appearance, had become a fa-
vorite amusement in educated families of Northern Germany. The
examples came from England and were offered by Hamburg art
dealers and, according to information passed by word of mouth,
they were very elegant: the figures printed on natural paper with
the beautiful Chinese cinnabar (brilliant red), the seven pieces dec-
oratively carved from foreign wood or ivory or mother of pearl, the
whole enclosed in cases being lacquered in black and gold.”

The credit for making the puzzle fashionable and popular, not
only in London, but throughout most of Europe, must be given to a
pair of elegant British books: The Fashionable Chinese Puzzle and
its companion, Key, published by John and Edward Wallis and
John Wallis, Junior, in March of 1817. (See Figure 6.)
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Figure 6. The Fashionable Chinese Puzzle, published in London during
March 1817 by John Wallis, was extensively copied and spread the Tan-
gram craze to Europe and America: cover (left) and sample spread (right).

The problem book includes a hand-colored illustration of a Chi-
nese scene on the cover and a poem called “Stanzas” as the preface.
The hand-colored problem drawings looked accurate, and the com-
panion solution book was easy to use. The books used high-quality
paper. The poem mentioned, among other things, that the Chinese
Puzzle was “the favourite amusement of Ex-Emperor Napoleon.”

Napoleon’s Tangram Found

One member of the team of researchers supporting the author
in the investigation into the history of the Tangram, Dic Sonn-
eveld, searched the Internet and libraries and read dozens of books
about Napoleon for clues to the mystery of almost 200 years of
whether, as Wallis said, the Tangram was Napoleon’s favorite pas-
time. On one trip to the Bibliothèque Nationale of France, in
Paris, he also visited museums containing Napoleon artifacts in
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Figure 7. This ivory Tangram and a pair of Chinese problem and solution
books, dated 1815, once belonged to Napoleon.

and around the city. In one of the museums, he found a display
case with Napoleon’s beautifully carved ivory Tangram case and
seven tans (Figure 7), as well as a pair of Chinese books from 1815
containing problems and solutions.

On the Continent

The first Tangram book on the Continent was published in France
by Grossin of Paris on July 19, 1817, and bore the title Énigmes
Chinoises (Figure 8). It was copied from Wallis’ Fashionable Chi-
nese Puzzle. Likewise, the first Tangram books published in Swit-
zerland, Italy, the Netherlands, and Denmark all copied Wallis.
And while the first Tangram books published in America copied the
Chinese book, this changed when the books by Wallis arrived. In
1817 most countries had laws forbidding the copying of books in-
side the country itself, but there were no treaties between countries
prohibiting the copying of books published in another country.

In France, in 1817 and 1818, artists improved on the plain out-
lines used for problems in the Chinese and British books and cre-
ated beautiful hand-colored problem figures of people and animals
that looked like miniature pictures. Cards with the problem draw-
ings were included in boxed sets, along with the seven pieces of the
puzzle. (See, for example, Figure 9.)

The Tangram craze peaked in France during the first quarter of
1818, as demonstrated by the number of Tangram sets and books
published, as well as by two elaborate caricatures showing the
excesses brought on in France by the Tangram craze. The first,
Le Goût du jour No. 45; Le Casse-tête Chinois [Caricatures Parisi-
ennes], was published in Paris on January 10, 1818, by Chez Mar-
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Figure 8. Énigmes Chinoises was the first Tangram book published on the
European continent.

Figure 9. The portrait of King Henry IV of France was published in Paris
in 1818 as one of a set of 16 Tangram problem cards.

tinet and shows a couple ignoring their crying baby’s needs and
the lack of heat in the house while they are staying up all night to
solve Tangram problems (Figure 10). The Martinet bookshop was
famous for its caricatures, and they always had some in the win-
dows, with new ones every fifteen days. The Tangram craze ended
in France by the end of 1818.
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Figure 10. Caricature of life in Paris, published at the height of the Tan-
gram craze in January 1818. The caption translates: “Take care of your-
self, you’re not made of steel. The fire has almost gone out and it is winter.
It kept me busy all night. Excuse me, I will explain it to you. You play this
game, which is said to hail from China. And I tell you that what Paris
needs most right now is to welcome that which comes from far away.”

The first Italian Tangram book, published in 1817, was a copy of
the British book by Wallis. But in 1818, G. Landi of Florence, Italy,
produced Metamorfosi Del Giuoco Detto L’Enimma Chinese (Meta-
morphosis of the Game also Known as Chinese Enigma), a beau-
tiful book of 100 miniature pictures of architectural features such
as monuments, buildings, fountains, and bridges, that were so ar-
tistically made that each problem was a beautiful picture. (See
Figure 11.)

Germany became fascinated by the Tangram at least six months
later than France, with numerous publications during 1818, in-
cluding two beautiful hand-colored sets of picture problem cards.
Although the Tangram did not reach the level of craze seen in
France, it was much more sustained, with German Tangram publi-
cations occurring every few years through the end of the nineteenth
century. (See Figure 12 for an example.)
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Figure 11. One of ten plates of engraved Tangram architecture problems
in Metamorfosi Del Giuoco Detto L’Enimma Chinese, published in Florence,
Italy, in 1818.

Figure 12. These figures are part of 24 problem cards published in
Germany with the title Hieroglyphen oder Bilderschrift (Game of Mystical
Characters).

Tangram: The World’s First Puzzle Craze 69

  

http://www.crcnetbase.com/action/showImage?doi=10.1201/b10573-8&iName=master.img-204.jpg&w=141&h=215
http://www.crcnetbase.com/action/showImage?doi=10.1201/b10573-8&iName=master.img-205.jpg&w=105&h=168
http://www.crcnetbase.com/action/showImage?doi=10.1201/b10573-8&iName=master.img-206.jpg&w=106&h=169


�

�

�

�

�

�

�

�

Figure 13. A glass Tangram, with a sheet of problem figures, was made in
China, but found in Denmark.

(a) (b)

(c) (d) (e)

Figure 14. Stort Chinesisht Gätspel: Grandes Énigmes Chinoises (Large
Chinese Puzzle Game) was published in Sweden by Fehr and Muller be-
tween 1817 and 1820.
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Denmark had a remarkable interest in the Tangram during
1818, with four publications. One of the books stated, “Many thou-
sands of sets are sold at different shops in Copenhagen made from
mother-of-pearl, ebony, mahogany, and other types of wood, even
of glass.” See Figure 13 for an example of a glass Tangram.

Sweden was also interested in the Tangram as the craze swept
Europe. A beautiful set of 36 hand-colored problem pictures was
published in Sweden. (See Figure 14.)

Across the Atlantic

In America, a pair of Sang-hsia-k’o’s 1815 Tangram books was
given to Captain Edward M. Donnaldson on October 30, 1815,
while he was docked in Canton. He brought them to the United
States on his ship, Trader, and arrived in Philadelphia in February
1816.

Although two books with Tangram problems, copied directly
from the 1815 Sang hsia k′o book, were published in the United
States in 1817, there was not nearly as much excitement about
the puzzle in America as there was in China, England, and Europe.

Figure 15. One of three Tangram sets published by McLoughlin Broth-
ers during the 1870s. The sets also included sixty hand-colored picture
problems copied from the French.
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The first book, Chinese Philosophical and Mathematical Trangram,
was published by James Coxe in August 1817; later the same year,
a New York publisher, A.T. Goodrich, published a pair of problem
and solution books entitled The New and Fashionable Chinese Puz-
zle.

The poor quality of these first Tangram books was probably a
major factor in the lack of enthusiasm for the puzzle in America.
Also, in 1818 the only new Tangram book published in America
was a copy of Wallis’ Fashionable Chinese Puzzle by A.T. Goodrich.
This book, and the puzzles themselves, continued to be adver-
tised in New York and Boston through the end of 1822. Inter-
est in the puzzles increased during the period from 1865 to 1880,
when numerous boxed sets of Tangrams were produced by sev-
eral companies. This increased activity may have been caused by
the use of Tangrams in schools, which began during the same pe-
riod. McLoughlin Brothers published a beautiful boxed set with
hand-colored problem cards copied from a French edition. (See
Figure 15.)

Figure 16. Sam Loyd’s The 8th Book of Tan, published in New York in
1903, popularized the name “Tangram,” as well as the puzzle itself, and
contained over 650 problems, 430 of which were invented by Loyd. It also
included an imaginative but bogus history of the puzzle that still persists
today.
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America’s greatest puzzle designer, Sam Loyd (1841–1911), de-
signed and published many Tangram problems. His first booklet
of original Tangram problems appeared in 1875, and his famous
Eighth Book of Tan (Figure 16), with untrue but imaginative stories
of the history of Tangram and hundreds of original problems, was
published in 1903.

Merchandising of the Tangram

According to Carl Crossman’s book, The China Trade, “Ivory puz-
zles intrigued every merchant who went to China. These seem-
ingly simple products of clever design and good craftsmanship were
made in all shapes and forms and were often described in great
detail by Westerners who had purchased them. The puzzles could
be bought singly or in groups, either in fabric covered pasteboard
boxes or very handsomely decorated lacquer boxes.”

The popularity of the Tangram in China inspired merchants
there to produce plain wooden and ivory Tangrams for domestic
use (see, for example, Figure 17), and fancy puzzles for export from
materials such as ivory, mother-of-pearl, tortoise shell, ebony, ma-
hogany, copper, and even glass.

Pairs of beautiful Tangram problem and solution books were
sold with intricately carved ivory and mother-of-pearl covers; some
books even had the pages covered with hand-painted silk. (See, for
example, Figure 18.) Sets of dishes in the form of the seven tans
using cloisonné over bronze were also marketed (Figure 19). Minia-

Figure 17. Uncarved ivory Tangram pieces in a handy wooden case for use
in China.
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Figure 18. Tangram problem book with ivory cover (left) and silk pages
(right) that contain over 340 problem figures.

Figure 19. The sides of these ceramic Tangram dishes are decorated with
colorful scenes of ancient Chinese legends.

ture sets of sandalwood and rosewood Tangram tables were pro-
duced for export, and beautiful full-sized Tangram tables of iron-
wood with burl inlay (Figure 20) were made to sell in the country
itself.

Conclusion

The Chinese have invented many new mechanical puzzles, from
the “impossible” Magic Mirror, to puzzle vessels and wire puzzles,
but the Tangram is the only Chinese puzzle to sweep the western
world, become a puzzle craze, and continue to be very popular in
schools and with the general public for almost 200 years.
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Figure 20. The author in his Slocum Puzzle Museum arranging Tangram
tables of ironwood with burl inlay, made in China around 1840.
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De Viribus Quantitatis by Luca
Pacioli: The First Recreational
Mathematics Book

David Singmaster

Luca Pacioli (ca. 1445–1517) was born and probably died in (Borgo)
San Sepolcro, a small city in southeastern Tuscany (see Figure 1),
so he is sometimes called Luca del Borgo. Vasari asserts that he
was a student of Piero della Francesca (ca. 1416–1492), also of San
Sepolcro, but there is no supporting evidence for this. He was a
Franciscan friar from ca. 1475. He was the most famous math-
ematician of his day, being a leading expositor of the new theory
of perspective and the author of the most important mathematical
work after Fibonacci.

He taught in San Sepolcro, Venice, Perugia (first professor of
mathematics there), Rome, Zara (on the Dalmatian coast, then part
of Venice), Naples, Milan, Florence, Pisa, and Bologna. He must
also have been in Urbino several times. His life was remarkably

This article describes Singmaster’s part of a joint presentation with Vanni
Bossi at the 6th Gathering for Gardner, 2004. Bossi’s part follows imme-
diately after this article.
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Figure 1. Map of the area where Luca Pacioli lived.

peripatetic, even for the day. There are indications that his superi-
ors in the Franciscan Order advised against his teaching boys, and
I wonder if this behavior may have led to his having to move fre-
quently. In Rome, about 1470, he stayed with Alberti, the author
of the first book on perspective, and became known as the leading
authority on perspective.
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Figure 2. Portrait of Pacioli, attributed to Jacopo de’ Barbari.

Pacioli is the earliest mathematician of whom we have a gen-
uine portrait. This splendid picture, shown in Figure 2, is in the
Museo Nazionale Capodimonte in Naples, apparently by Jacopo
de’ Barbari, probably done in Venice, about the time of publication
of Pacioli’s Summa of 1494 (or of De Divina Proportione in 1509).
The books depicted are his Summa and the first printed Euclid of
1482. It has been claimed that the youth on the side is Albrecht
Dürer, possibly a self portrait, and that the glass rhombicubocta-
hedron was done by Leonardo. A biographer of Pacioli objects to
this theory because the painting is done with great accuracy and
the young man has blue eyes, which Dürer did not. But we know
Dürer studied with de’ Barbari, and it is conjectured that Dürer
studied perspective with Pacioli, possibly in 1506.

It is claimed that Pacioli is the second figure from the right in
Piero della Francesca’s Madonna and Child Enthroned with Saints
and Angels, done about 1472 (Figure 3). The depicted saint is St.
Peter Martyr, distinguished by the gash on his head.
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Figure 3. Madonna and Child Enthroned with Angels and Saints by Piero
della Francesca (Brera Altarpiece).

In 1494, Pacioli published the greatest mathematical work since
Fibonacci (1202): Summa de Arithmetica, Geometria, Proportioni et
Proportionalità (Venice, 1494). This is a massive book, 616 large
pages, too large for my scanner! (See sample pages in Figures
4 and 5.) Part II, ff. 68v–73v, prob. 1–56, is essentially identi-
cal to Piero della Francesca’s Trattato, ff. 105r–120r. This was the
first printing of many mathematical concepts, e.g., algebra, double-
entry bookkeeping, and pictures of some Archimedean polyhedra.
He asserted that cubics and quartics cannot be solved by the meth-
ods used for quadratics, which inspired the development of alge-
bra. Pacioli spent some time in Venice supervising the publication.
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Figure 4. First page of the contents of the Summa.
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Figure 5. Title page of the Summa.

Novel recreational topics in the Summa are the following:

• First printed version of the Problem of Points. (If you agree to
play until one player has won three times, how do you divide
the stakes if you have to stop, say, when the score is 2–1?
This later was one of the sources of probability theory.)

• First Locate a Well Equidistant from the Tops of Three Towers
problem.
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• First printed pictures of Archimedean polyhedra, namely, the
truncated tetrahedron and cuboctahedron. He also mentions
the icosidodecahedron and the truncated icosahedron.

Pacioli was a professor at Milan in 1496–1499. This was the
high point of his career, being a leading member of the glitter-
ing intellectual court of Lodovico Sforza. He was a good friend of
Leonardo da Vinci (1452–1519); they even lived together! Pacioli
is our leading witness to Leonardo’s work at this time, particularly
the Last Supper during 1495–1497, and he probably advised on the
perspective of the painting. Certainly Pacioli stimulated Leonardo’s
interest in perspective, and it is possible that Leonardo’s famous
drawing of the proportions of the human body (Figure 6) was in-
spired by Pacioli’s comment on classical architecture; “For in the
human body they found the two main figures . . . , namely the per-
fect circle and the square.” Pacioli wrote his De Divina Proportione
here in 1498, and Leonardo drew splendid pictures for it, though
it was not published (in an expanded form) until 1509. (See Fig-
ures 7–9.)

Pacioli seems to have made several sets of models of the polyhe-
dra in his book, though we don’t know whether Leonardo assisted
in making them or used them for his drawings. Pacioli also wrote
much of De Viribus Quantitatis in Milan.

The printed version of De Divina Proportione (see Figures 10
and 11) included a version of Piero della Francesca’s Libellus de
Quinque Corporibus Regularibus of ca. 1487 and the handsome and
often reproduced geometric designs for letters of the alphabet.

When the Sforzas were overthrown by the French invasion in
1499, Pacioli and da Vinci moved to Florence, originally lodging in
the same house. Pacioli taught at the Universities of Florence and
Pisa during 1499–1507, but he may have taken some time out to
teach at Bologna, possibly during June–July 1501, and possibly
going there to meet Dürer in 1506.

In 1508–1509, Pacioli returned to Venice to publish his De Div-
ina Proportione and gave a renowned lecture on the Fifth Book of
Euclid. Erasmus was also in Venice at the time and may have at-
tended Pacioli’s lecture; he certainly satirizes Pacioli and his works
in In Praise of Folly. Pacioli may have met Dürer, who was in Venice
in 1505–1507. Dürer seems to have taken ideas from Piero della
Francesca’s De Prospettive Pingendi, which was at Urbino, and Pa-
cioli is the most likely person to have shown it to Dürer.

For more details of Pacioli’s life and work, see the Appendices.
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Figure 6. Leonardo’s geometric man.

84 A Lifetime of Puzzles

  

http://www.crcnetbase.com/action/showImage?doi=10.1201/b10573-9&iName=master.img-136.jpg&w=323&h=416


�

�

�

�

�

�

�

�

Figure 7. Title page of the De Divina Proportione manuscript.
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Figure 8. Picture of the truncated icosahedron, from the De Divina Propor-
tione manuscript.
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Figure 9. Several pictures from the De Divina Proportione manuscript,
from a poster.

De Viribus Quantitatis by Luca Pacioli 87

  

http://www.crcnetbase.com/action/showImage?doi=10.1201/b10573-9&iName=master.img-187.jpg&w=322&h=399


�

�

�

�

�

�

�

�

Figure 10. Title page of the printed version of De Divina Proportione.

Figure 11. Picture of the truncated icosahedron, from the printed version
of De Divina Proportione.
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The De Viribus Quantitatis

This article is primarily about the De Viribus Quantitatis of ca. 1500.
This is an Italian manuscript in Codex 250, Biblioteca Universi-
taria di Bologna. Pacioli petitioned for a privilege to print this book
in 1508, and a problem has a date of 1509, but he seems to have
been working on the manuscript since 1496. The title is a bit
cryptic, but I think the best English version is On the Powers of
Numbers.

Dario Uri has photographed the entire manuscript and enhanc-
ed the images and put them all on a CD. This CD has 614 images,
including the insides of the covers. The photographs are often more
legible than the microfilm version (compare Figures 12 and 13), but
the folio numbers are often faint, sometimes illegible. He has put
some material up on his website,1 which includes the indexes and
a number of the most interesting items, with his comments and
diagrams of later examples of the puzzles. All figures in this article
from De Viribus Quantitatis are from Uri’s photos, unless otherwise
specified.

There is a transcription by Maria Garlaschi Peirani, with a pref-
ace and editing by Augusto Marinoni (Ente Raccolta Vinciana, Mi-
lano, 1997).2 I will cite this text as Peirani. The transcription
is not exactly literal, in that Peirani has expanded abbreviations
and inserted punctuation, etc. Also, Peirani seems to have worked
from the microfilm or a poor copy, as she sometimes says the
manuscript has an incorrect form that she corrects, but Dario
Uri’s photo clearly shows that the manuscript has the correct form.
Peirani uses the problem numbers and names in the manuscript
(see comment below about these differing from those in the in-
dex), but with some amendments. I give problem names as in the
manuscript, with some of Peirani’s amendments.

This is the first large work devoted to recreational mathemat-
ics. There are three parts. It opens with a table of contents, which
turns out not to be very dependable. The actual text, with fo-
lios numbered with Arabic numerals, opens with some fragments
of dedication, possibly leaving room for some fancy initial lettering.
Part 1 is 81 arithmetical recreations. Part 2, “della virtù et forza ge-
ometrica” (On Geometric Virtue and Power), contains 134 geomet-
rical and topological problems. Part 3 contains several hundred

1http://digilander.libero.it/maior2000/
2Dario Uri says it can be bought from Libreria Pecorini, 48 foro Buonaparte,

Milano; tel: 02 8646 0660; fax: 02 7200 1462; web: http://www.pecorini.com.
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Figure 12. First page of the index, from the microfilm: F. Ir = Uri 4
= Peirani 3.
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Figure 13. The same as Figure 12, from Uri.
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Figure 14. Title page: F. 1r = Uri 30 = Peirani 21.
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proverbs, poems, riddles, and tricks (i.e., physical recreations, con-
juring, etc.), in several sections:

• Very Useful Moral Items like Proverbs (23 rhyming couplets);

• Lament of a Lover for a Maid (27 rhyming couplets, based on
the letters of the alphabet, and some extra couplets);

• Very Useful Mercantile Items and Proverbs (83 items);

• On Literary Problems and Enigmas (about 80 items);

• Common Problems to Exercise the Ingenuity and for Relax-
ation (222 items).

Part 1, “Delle forze numerali cioe di Arithmetica,” is described in
A. Agostini, “Il ‘De viribus quantitatis’ di Luca Pacioli,” Periodico di
Matematiche 4:4 (1924), pp. 165–192 (also separately published
with pp. 1–28). Agostini’s descriptions are sometimes quite brief:
unless one knows the problem already, it is often difficult to figure
out what is intended. Further, he sometimes gives only one case
from Pacioli, while Pacioli does the general situation and all the
cases. There are 81 problems in part 1, but the index lists 120!

I had copied Part 1 from the microfilm at the Warburg Insitute
and had seen that there were some other interesting problems in
Part 2, especially one diagram of a topological puzzle, but I only
copied a few pages. I found it difficult to read the Italian (many
words are run together and/or archaic), and referenced diagrams
are lacking. When I did work on the topological problem, I saw that
the following pages would be interesting, but the Warburg had mis-
laid the microfilm. With the later transcription, I could only read
about two further puzzles of this sort. Dario Uri was able to carry
on, and found the Chinese Rings and about a dozen other exam-
ples of the earliest known topological puzzles. Quite a number of
problems, some clearly of interest, remain obscure.

Interesting Recreational Material in De Viribus Quantitatis

In the following, I give the folio numbers from the manuscript, the
image number in Uri’s photos, and the pages in Peirani’s
transcription.

The manuscript includes the first European mention of the Blind
Abbess and Her Nuns: Ff. IVv–Vr = Uri 12 = Peirani 8. The Index
has (Part 1) Problem 89:
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De uno abate ch’ tolse aguardar certo monasterio de monache in
levante contandole sera e matina per ogni verso tante et pur daloro
schernito desperato la bandona (Of an abbot who tries to guard a
certain monastery of monks in the Levant by counting evening and
morning the same on each side and how the sneering desperados
abandoned it).

This is the problem where there is a 3 × 3 square, with three
nuns in each exterior cell, and the Blind Abbess can only count
the number of nuns along each side, namely nine. But this allows
considerable variation in the number of nuns present. At least one
Arabic version is known.

In the Summa, ff. 97r–97v, no. 34, Pacioli gives a general dis-
cussion of the use of 1, 3, 9, 27, 81, 243, . . . as weights. In De
Viribus Quantitatis, f. XIIIv = Uri 29 = Peirani 20, the Index for the
third part has Problem 85, De far 4 pesi che pesi fin 40 (To make
four weights which weigh to 40), but at the end, Pacioli says this
problem is in “libro nostro,” i.e., the Summa: Cf. Agostini, p. 6.

In the Summa, ff. 97v–98r, no. 35, Pacioli gives the problems
of using five cups to pay daily rent for 30 days. It uses cups of
weights 1, 2, 4, 8, and 15. In De Viribus Quantitatis, f. XIIIv = Uri
29 = Peirani 20, the Index for the third part has Problem 86, De 5
tazze, diversi pesi ogni di paga l’oste (Of 5 cups of diverse weights
to pay the landlord every day), but at the end, Pacioli says that this
problem is in “libro nostro,” i.e., the Summa: Cf. Agostini, p. 6.

Pacioli’s discussion of perfect numbers has an amusing error
(Ff. 44v–47r = Uri 117–122 = Peirani 74–77, XXVI effecto a trovare
un nů pensato quando sia perfecto (26th effect to find a number
thought of if it is perfect)). Pacioli gives the first five perfect num-
bers as 6, 28, 496, 8128, and 38836. The last is actually 4 · 7 · 19
· 73 and is so far wrong that I assumed that Peirani had miscopied
it, but it is clear in the manuscript. We do have 38,836 = 76 · M11,
so it seems Pacioli erroneously thought M11 = 511 was prime, but
the multiplication by 256 was corrupted into multiplication by 76,
probably by shifting the partial product by 2 into alignment with
the partial product by 5. (See Figure 15.)

The manuscript also includes the first One Pile Game: Ff. 73v -
76v = Uri 175-181 = Peirani 109-112, XXXIIII effecto afinire
qualunch’ numero na’ze al compagno anon prendere piu de un
termi(n)ato .n. (34th effect to finish whatever number is before the
company, not taking more than a limiting number). The One Pile
Game is like Nim, except with just one pile and a limit on the
amount one can play. Early versions were usually additive. Here,
the players can add a number less than 7 to a pile, and the object
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Figure 15. F. 44v = Uri 117 = Peirani 74.
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is to achieve 30. Pacioli describes how to win this case and the gen-
eral game. There are some early sixteenth-century references that
may be to Nim-type games, but this is the earliest, so we can view
it as the ancestor of all Nim or take-away games! (See Figure 16.)

Pacioli gives several problems of the type “Three odds make an
even,” which are impossible tricks. These only appear previously
in Alcuin. The problems include:

• Ff. 92v–93v = Uri 213-215 = Peirani 132-133, XLVII. C(apitolo).
de un casieri ch’ pone in taula al quante poste de d(ucati) aun
bel partito (Chap. 47. of a cashier who placed on the table
some piles of ducats as a good trick): Place four piles each of
1, 3, 5, 7, and 9 ducats. Ask the person to take 30 ducats in
5 piles. If he can do it, he wins all 100 ducats. The chapter
discusses other versions, including putting 20 pigs in 5 pens
with an odd number in each. However, the Italian word for 20,
vinti, written uinti, can be divided into five parts as u–i–n–t–i,
and each part is one letter.

• Ff. 93v–94r = Uri 215–216 = Peirani 133-134, XLVIII. C(apito-
lo). ch’ pur unaltro pone al quante altre poste pare bel partito
(Chap. 48. about another who placed some other even piles,
good trick): Place four piles each of 2, 4, 6, 8, and 10 carlini
(a small coin of the time) and ask the person to take 31 carlini
in 6 piles.

• F. IIIr = Uri 8 = Peirani 6: The index lists the above as Prob-
lems 50 and 51 and lists Problem 52, Del dubio amazar .30.
porci in .7. bote disparre (On the dubious placing of 30 pigs in
7 odd pens).

• Part 3, F. 281v = Uri 591 = Peirani 407, no. 133, Dimme
come farrai a partir vinti in 5 parti despare (Tell me how to
divide “vinti” into five odd parts): It divides as v–i–n–t–i and
mentions dividing 20 into 7 pens.

The first optimal solutions for the Jeep or Explorer’s Problem,
better called Crossing the Desert, also appear. In fact, the only
earlier example of this problem is in Alcuin, and Alcuin fails to find
the optimum solution. Pacioli does four examples, finding the best
solution each time:

• Ff. 94r–95v = Uri 216–219 = Peirani 134–135, XLIX. (Capi-
tolo) de doi aportare pome ch’ piu navanza (Of two ways to
transport as many apples as possible): One has 90 apples to
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Figure 16. F. 73v = Uri 175 = Peirani 108-109.
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transport 30 miles from Borgo [San Sepolcro] to Perosia [Pe-
rugia], but one eats one apple per mile and one can carry at
most 30 apples. He carries 30 apples 20 miles and leaves 10
there and returns, without eating on the return trip! (So this
is the same as Alcuin’s version.) Pacioli continues and gives
the optimum solution!

• F. 95v = Uri 219 = Peirani 136, L. C(apitolo). de .3. navi per
.30. gabelle 90. mesure (Of three ships holding 90 measures,
passing 30 customs points): Each ship has to pay one mea-
sure at each customs point (mathematically the same as the
previous).

• F. 96r = Uri 220 = Peirani 136–137, LI. C(apitolo). de portar
.100. perle .10. miglia lontano 10. per volta et ogni miglio
lascia 1a (To carry 100 pearls 10 miles, 10 at a time, leaving
one every mile): This takes them two miles in ten trips, giving
80 there. Then, it takes them to the destination in eight trips,
getting 16 to the destination.

• Ff. 96v–97r = Uri 221–222 = Peirani 137, LII. C(apitolo). el
medesimo con piu avanzo per altro modo (The same with more
carried by another method): This continues the previous prob-
lem, and it takes them five miles in ten trips, giving 50 there.
Then, it takes them to the destination in five trips, getting 25
to the destination.

(The last is optimal for a single stop—if one makes the stop at
distance a, then one gets a(10 - a) to the destination. One can make
more stops, but this is restricted by the fact that pearls cannot be
divided. Assuming that the amount of pearls accumulated at each
depot is a multiple of ten, one can get 28 to the destination by using
depots at 2 and 7 or at 5 and 7. One can get 27 to the destination
with depots at 4 and 9 or at 5 and 9. These are all the ways one
can put in two depots with integral multiples of 10 at each depot,
and none of these can be extended to three such depots. If the
material being transported was a continuous material like grain,
then I think the optimal method is to first move 1 mile to get 90
there, then move another 10/9 to get 80 there, then another 10/8
to get 70 there, and so on, continuing until we get 40 at 8.4563. . . ,
and then make four trips to the destination. This gets 33.8254 to
the destination. Is this the best method?)
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Pacioli presents the first impossible Jug Problems: Ff. 98v–99r
= Uri 225–226 = Peirani 139–140, LV. (Capitolo) de doi altri sotili
divisioni. de botti co’me se dira (Of two other subtle divisions of
bottles as described). Given a bottle of size A full of wine, divide
it in half using two bottles of sizes B and C. After several genuine
examples, he gives {A, B, C} = {10, 6, 4} and {12, 8, 4}. Pacioli
suggests giving these to idiots. This kind of impossible problem is
actually rare; I’ve only noted two other examples.

The first Josephus Problem counted out to the last two is pre-
sented in the manuscript. The Josephus, or “counting-out,” prob-
lem appears in European manuscripts back to the 9th century and
also appears in Japan, possibly as early as the 12th century and
clearly from ca. 1331. The classical version has 30 passengers on a
ship, of two types that we will label “good guys” and “bad guys”—15
of each. A fierce storm arises, and the captain announces that half
of the passengers must go overboard to save the ship. Someone
suggests that they all stand in a circle and count out every ninth
person, who then has to go overboard, willingly or not. After each
departure, the count continues, going around the reduced circle.
Surprisingly (or not), it happens that all the bad guys go overboard.

The early Japanese versions are the first known examples of
counting to the last man. In 1539, Cardan introduced this idea
into Europe and suggested this was how Josephus had escaped
death. Josephus was a Jewish captain in the rebellion of the Jews
against the Romans from 66 AD. He and forty of his fellow citizens
were hidden under the city of Jotapata as it was overrun by Ves-
pasian. He urged the men to surrender, but they preferred to die
and chose lots, each man striking off the head of the previously
chosen man. The standard version of Josephus’s text says he sur-
vived “by chance or God’s providence,” but a Slavonic version says
he “counted the numbers with cunning and thereby misled them
all.” Josephus went on to become a historian of the Jews and the
Jewish War, but he gives no further details.

Pacioli gives six versions of the problem as Probs. 56–60 (with
an unnumbered problem after 56), ff. 99r–103v = Uri 226–235 =
Peirani 140–146. In three problems—56, unnumbered, and 57—
he leaves two survivors, which is the first time that this occurs.
Unusually, there is a marginal diagram by the first problem, show-
ing the process. Ff. 99r–102r = Uri 226–232 = Peirani 140–143,
LVI. (Capitolo) de giudei Chri’ani in diversi modi et regole. a farne
quanti se vole etc (Of Jews and Christians in diverse methods and
rules, to make as many as one wants, etc.): two good guys and 30
bad guys counted by 9s. The marginal diagram is on f. 100r, but
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Figure 17. F. 100r = Uri 228 = Peirani 141 without the diagram.
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Figure 18. Enlargement of the diagram in Figure 17.

it is not in the transcription, and Peirani says another diagram is
lacking. (See Figures 17 and 18.)

Pacioli suggests counting the passengers on shore and doing
the counting out with coins or pebbles, in case one will need to
know the arrangement in a hurry. He also says one might count
by 8s, 7s, 6s, 13s, etc., with any number of Christians and Jews.

In examining this, I observed the unexpected feature that the
two survivors, marked by circles at the top, were adjacent in the
original circle. This seemed most unlikely to me, but one soon sees
that the same behavior holds for counting out 31, 30, 29, . . . , 3 by
9s. I found this sufficiently intriguing that I have written a paper
on how to determine the largest N such that counting out by ks
leaves two adjacent survivors.3

The other problems, which leave two survivors, have counting
2 and 18 by 7s and counting 2 and 30 by 7s. In the first case, the
survivors are adjacent in the original circle, but not in the second
case. Neither has a diagram. The problems are:

• Ff. 102r–102v = Uri 232–233 = Peirani 144, [Unnumbered] de
.18. Giudei et .2. Chri’ani.

• F. 102v = Uri 233 = Peirani 144, LVII. C(apitolo). de .30. Giudei

3David Singmaster, “Adjacent Survivors in the Josephus Problem.”
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et .2. contando per .7. ch’ toca va in aqua (Of 30 Jews and 2
counting by 7 with the touched going in the water).

The first River Crossing problems with four or more jealous hus-
bands or with larger boats— Ff. 103v–105v = Uri 235–239 = Peirani
146–148, LXI. C(apitolo). de .3. mariti et .3. mogli gelosi (About
three jealous husbands and three wives)—involves three couples
and says that a problem involving four or five couples requires a
three-person boat.

Pacioli wrote an early version of the Octagram Puzzle. This has
an octagram (or an octagon), and one has to place seven counters
on it, by placing each counter on a point and moving it ahead
one place (or three places). An earlier version was the problem of
shifting seven knights located on the edge of a 3 × 3 board, which
is known from ca. 1275. Here are two appearances of the Octagram
Puzzle:

• Ff. 112r–113v = Uri 252–256 = Peirani 158–160, C(apitolo).
LXVIII. D(e). cita ch’ a .8. porti ch’ cosa convi(e)ne arepararli
(Chap. 68. Of a city with eight gates which admits of rear-
rangement): This is an Octagram Puzzle with a complex story
about a city with eight gates and seven disputing factions to
be placed at the gates.

• F. IVv = Uri 11 = Peirani 8: The index gives the above as
Problem 83. Problem 82, De .8. donne ch’ sonno aun ballo
et de .7. giovini quali con loro sa con pagnano (Of eight ladies
who are at a ball and of seven youths who accompany them),
seems likely to describe a similar problem.

The first western Binary Divination—Ff. 114r–116r = Uri 256–
260 = Peirani 161–162, C(apitolo). LXIX. a trovare una moneta fra
16 pensata (To find a coin thought of among 16)—divides 16 coins
in half four times, corresponding to the value of the binary dig-
its. Pacioli doesn’t describe the second stage clearly, but Agostini
makes it clear. This idea is supposed to have been common in
Japan from the 14th century or earlier, but I haven’t seen exam-
ples. Pacioli gives many other simple divinations, some based on
the Chinese Remainder Theorem and the classic problem of divin-
ing a permutation of three items.

The first Rearrangement on a Cross, a variation of the Blind
Abbess and her Nuns, involves a person who has a cross and
counts the jewels on it from the base to each other end. A clever
jeweler or pawnbroker removes some jewels: Ff. 116r–117v = Uri
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260–263 = Peirani 162–164, Cap̊. LXX. D(e). un prete ch’ in pegno
la borscia del corporale con la croci de p(er)le al Giudeo (Of a priest
who pledges to a Jew the burse of the corporale with a cross of
pearls). For fifteen jewels with three on each arm, one counts to
nine from the base to each arm end. This is reduced to thirteen.
The problem asks how one can add one pearl and produce a count
of ten. The answer is to put it at the base. (See Figure 19.)

Pacioli associates magic squares with planets and gives Dürer’s
magic square of 1514, but both of these had been done before:
Ff. 118r–118v, 121r–122v (some folios are wrongly inserted in
the middle) = Uri 264–265, 270–273 = Peirani 165–167, C.A. [i.e.,
Capitolo] LXXII. D(e). Numeri in quadrato disposti secondo astronomi
ch’ p(er) ogni verso fa’no tanto cioe per lati et per Diametro figure de
pianeti et amolti giuochi acomodabili et pero gli metto (Of numbers
arranged in a square by astronomers, which total the same in all
ways, along sides and along diagonals, as symbols of the planets
and suitable for many puzzles and how to put them). The problem
gives magic squares of orders 3 through 9 associated with planets
in the system usually attributed to Agrippa (1533), but this dates
back to at least the early fouteenth century. Ff. 121v and 122r
have spaces for diagrams, but they are lacking. Paciloli gives the
first two lines of the order-4 square as 16, 2, 3, 13 and 5, 10, 11,
8, which is the same square as given by Dürer.

He gives an example of “Selling different amounts ‘at the same
prices’ yielding the same”: Ff. 119r–119v = Uri 266–267 = Peirani
154–155, LXV. C(apitolo). D dun mercante ch’ a .3. factori et atutti
ma’da auno mercato con p(er)le (Of a merchant who has three agents
and sends them to a market with pearls).

In addition, there are four more examples listed in the index,
Ff. IIIv–IVr = Uri 9–10 = Peirani 7, as problems 70–73:

• Problem 70: De unaltro mercante ch’ pur a .3. factori et man-
dali a una fiera con varia quantita de perle’ et vendano a mede-
simo pregio et portano acasa tanti denari al patrone uno quanto
laltro (Of another merchant who sends three agents to a fair
with varying numbers of pearls and they sell them at the same
price and they each carry as many pence as the others to the
master at home).

• Problem 71: De unaltro vario dali precedenti ch’ pur a .3. fac-
tori con vari quantita de perle’ pregi pari et medesimamente
portano al patrone d(enari) pari (Of another variant of the pre-
ceding with three agents having various quantities of pearls
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Figure 19. F. 116r = Uri 260 = Peirani 162–163.
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at equal prices and likewise taking as many pence to the mas-
ter).

• Problem 72: De unaltro mercante ch’ ha 4. factori ali quali da
quantita varie di perli ch’ amedisimi pregi le vendino et denari
equalmente portino (Of another merchant who has four agents
to whom he gives various numbers of pearls, which they sell
at the same prices and receive equal money).

• Problem 73: De un altro ch’ pur a .4. factori con quanti(ta) varie
di perle apari pregi et pari danari reportano a casa vario dali
precedenti (Of another who sends four agents with varying
numbers of pearls, and they report back to the house the
same prices and the same money, variation of the preceding).

He gives an example of “Combining amounts and prices inco-
herently,” sometimes called the Applesellers’ Problem or the Mar-
ketwomen’s Problem: Ff. 119v–120r = Uri 267–268 = Peirani 155–
156, LXVI. C(apitolo). D. de uno ch’ compra 60. perle et revendele
aponto per quelli ch’ gli stanno et guadago (Of one who buys 60
pearls and resells for exactly what they cost and gains). The so-
lution is to buy 60 at 5 for 2, sell 30 at 2 for 1, and sell 30 at 3
for 1.

The index, F. IVr = Uri 10 = Peirani 7, lists the above as Prob-
lem 74 and continues with Problem 75: De unaltro mercante ch’
pur compro perle’ .60. a certo pregio per certa quantita de ducati et
sile ceve’de pur al medesimo pregio ch’ lui le comparo et guadagno
un ducato ma con altra industria dal precedente (Of another mer-
chant who buys 60 pearls at a certain price for a certain quantity of
ducats and resells them at the same price at which he bought them
and gains a ducat but with different effort than the preceding).

The problem of gathering apples from a garden appears in Ff.
120r–120v, 111r–111v (some pages are misbound here) = Uri 268–
269 & 250–251 = Peirani 156–158, C(apitolo). LXVII. un signore ch’
manda un servo a coglier pome o ver rose in un giardino (A master
who sends a servant to gather apples or roses in a garden), which
involves losing half and one more three times to leave one. The
author discusses the problem in general and also discusses losing
half and one more five times to leave one and losing half and one
more three times to leave three.

Pacioli gives an example of Collecting Stones, which is a simple
summation of an arithmetic progression: Ff. 122v - 124r = Uri 273-
276 = Peirani 167-169, C(apitolo) LXXIII. D(e). levare .100. saxa a
filo (To pick up 100 stones in a line). One wagers on the number
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of steps to pick up 100 stones (or apples or nuts), one pace apart.
The problem gives the numbers for 50 and 1000 stones.

Pacioli gives rules for constructing (approximate) n-gons, for n
= 9, 11, 13, and 17, which were studied by Mackinnon.4 Let Ln

denote the side of a regular n-gon inscribed in a unit circle. The
rules given are:

• Ff. 147r–147v = Uri 322–323 = Peirani 198–199, XXIII afare la
7a fia dicta nonangolo. cioe de .9. lati difficile (23 to make the
7th figure called nonagon, that is of 9 sides, difficult): This
problem asserts that L9 = (L3 + L6)/4. Mackinnon computes
this as giving 0.6830 instead of the correct 0.6840.

• Ff. 148r–148v = Uri 324–325 = Peirani 200, XXV. Documento
della 9 fia recti detta undecagono (25 on the 9th rectilinear
figure called undecagon): This asserts that L11 = φ (L3 + L6)/3,
where φ is the golden mean, (1 +

√
5)/2. Mackinnon computes

this as giving 0.5628 instead of the correct 0.5635.

• F. 148v = Uri 325 = Peirani 200, XXVI. Do. de’ .13. (26 on
the 13th). This asserts that L13 = (1 – φ) · 5/4. Mackinnon
computes this as giving 0.4775 instead of the correct 0.4786.

• Ff. 149r–149v = Uri 326–327 = Peirani 201–202, XXVIII. Docu-
mento del .17. angolo cioe fia de .17. lati (28 on the 17-angle,
that is the figure of 17 sides). Peirani says some words are
missing in the second sentence of the problem, and Agostini
says the text is too corrupt to be reconstructed.

In Part 2, Pacioli presents the first Staircase Cut: Ff. 189v–
191r = Uri 407–410 = Peirani 250–252, LXXIX. Do(cumento). un
tetragono saper lo longare con restregnerlo elargarlo con scortarlo (to
know how a tetragon can be lengthened with contraction, enlarged
with shortening).

I was looking at this problem a few days before the G4G5 talk,
since it has an added diagram, seems to use atrick cut, and might
be an ancestor of the vanishing area puzzles. Pacioli’s descrip-
tion is a little cryptic and is thoroughly confused by an erroneous
diagram added at the bottom of f. 190v, redrawn on Peirani 458—
this must have been added by a reader who didn’t understand the
phrasing.

4Nick Mackinnon, “The Portrait of Fra Luca Pacioli,” The Mathematical Gazette
77: 479 (July 1993), plates 1–4 and pp. 129–219.
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Once one realizes what is going on, the text is reasonably clear.
He is converting a 4 × 24 rectangle to a 3 × 32 using one cut
into two pieces. So, this is the common problem of converting
from 4A × 3B to 3A × 4B, with A = 1 and B = 8, which is done
by a “staircase” cut, giving two pieces that can be assembled into a
second rectangle. Below the diagram on f. 190v is an inserted note,
which Peirani (252) simply mentions as difficult to read, but some
bits of it are legible. The drawing and the note made me think he
made a cut and then moved one piece so the cut would continue
through it to make three pieces with one trick cut. Pacioli clearly
notes that the area is conserved. (See Figures 20 and 21.)

The first Place Four Points Equidistantly problem is described,
though a bit vaguely: Ff. 191r–192r = Uri 410–412 = Peirani 252–
253, LXXX. Do(cumento). commo non e possibile piu ch’ tre ponti o
ver tondi spere tocarse in un piano tutti (how it is not possible for
more than three points or discs or spheres to all touch in a plane).
This problem says that you can only get three discs touching in
the plane, but you can get a fourth so that they are all touching by
making a pyramid.

Pacioli gives the earliest known versions of six “topological puz-
zles.” Unfortunately, only one of these has a picture, though they
generally refer to one! I had recognized some of these, but Dario
Uri has greatly extended the number of these. One is the first
Victoria Puzzle, called the Alliance or Victoria Puzzle in the late
nineteenth century: Ff. 206r–206v = Uri 440–441 = Peirani 282–
283, (C)apitulo. C. Do(cumento) cavare una stecca. de un filo per .3.
fori (To remove a stick from a cord through 3 holes). On f. 206r is
a marginal drawing clearly showing the string through three holes
in one stick, but this is not reproduced in the transcription. (See
Figures 22 and 23.)

Uri has found that several further problems are describing sim-
ilar puzzles. For example,

• Ff. 207v–208v = Uri 443–445 = Peirani 284–286, Capio. CII.
Do(cumento) unaltro speculativo cavar doi botoni di una stenga
fessa nel mezzo et sce’pia in testa (Another speculation—
remove two buttons from a string divided in the middle and
halved at the ends). Dario Uri says this is describing a ver-
sion of the Alliance or Victoria puzzle with four holes in each
button.

• Ff. 209r–210r = Uri 446–448 = Peirani 286–288, Capo. CIII.
Do(cumento) legare con la sopra detta strenga fessa. doi sola.
de carpe’ ambe doi. a uno modo. bella cosa (To tie two shoe
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Figure 20. F. 190r = Uri 408 = Peirani 251.
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Figure 21. F. 190v = Uri 409 = Peirani 251-252, without the diagram.
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Figure 22. F. 206r = Uri 440 = Peirani 282-283, without the diagram.
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Figure 23. Detail from Figure 22.

soles together into one with the above mentioned doubled
string—a beautiful thing). Pacioli says this is “quasi simile
alla precedente.” Dario Uri illustrates this with the Alliance or
Victoria puzzle from Alberti; see Figure 24.

• Ff. 213r–215r = Uri 454–458 = Peirani 292–295, Capitulo.
(C)VIII. Do(cumento). Cavare’ uno anello grande fore’ de doi
legati a una bacchetta per testa (Remove a large ring from two
tied to a stick by the ends). Dario Uri says there is a version
of this idea and illustrates it with an unidentified picture.

Part 2 also includes the first Solomon’s Seal (see Figure 25):
Ff. 206v–207r = Uri 441–442 = Peirani 283–284, Capitulo. CI.
Do(cumento) un altro filo pur in .3. fori in la stecca con unambra. per
sacca far le andare’ tutte in una (Another string also through three
holes in the stick with one bead per loop, make them go onto one
[loop]). The problem titles vary between the actual problem and
the table of contents, and the latter shows that “unambra” should
be “una ambra”—Peirani has given it as un’ambra. Sacca means
“pocket” or “bay” or “inlet,” and it seems clear he means a loop that
has that sort of shape. Ambra is amber, but it seems to mean an
amber bead here. In recent years, this has been called an African
puzzle, but the earliest recorded appearances in Africa are from
ca. 1940.

The Cherries Puzzle has two versions, and Pacioli gives both:

• Ff. 210r–210v = Uri 448–449 = Peirani 288–289, Capito. CIIII.
Do(cumento). cavare’ et mettere’ .2. cirege’ in una carta tramez-
zatta (To remove and replace two cherries in a cut card): Pa-
cioli’s description clearly shows there is one hole, but Dario
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Figure 24. The lower puzzle is the Ozanam version of ca. 1723, later copied
by Alberti.
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Figure 25. Solomon’s Seal from Schwenter, 1636.

Uri illustrates this with the picture from Alberti that has two
holes. (See Figure 26.)

• Ff. 215v–216v = Uri 459–461 = Peirani 296–297, Capitulo.
CX. Do(cumento). uno bottone’ de un balestro. o vero doi cirege’
de un botone’ et valestro (A button from a [cross] bow or two
cherries from a button and bow). Dario Uri translates “bale-
stro” as “flexible stick” and illustrates this with Alberti’s Fig-
ure 37.

See Figure 24 above for the second form of the cherries puzzle as
the upper part of this figure from Ozanam, ca. 1723, later copied
by Alberti.

Pacioli describes (without a picture) the first Chinese Rings puz-
zle in Europe (or in the world?): Ff. 211v–212v = Uri 451–453 =
Peirani 290–292, Capitulo CVII. Do(cumento), cavare et mettere una
strenghetta salda in al quanti anelli saldi. dificil caso (Remove and
replace a joined string with a number of joined rings—a difficult
thing). Dario Uri found that this describes the Chinese Rings. It
has seven rings. Previously, the earliest known version was given
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Figure 26. Cherries puzzle from Witgeest, 1686.

by Cardan in his De subtiliate of 1550, where his only illustration
is of one ring! On his website, Uri gives several of the legends
about its invention and says that Cardan called it Meleda, but that
word is not in Cardan’s text. He lists 27 patents on the idea in five
countries. It is supposed to have originated in China, but definite
evidence is lacking. (See examples in Figure 27.)

Also included is the first puzzle involving three knives making
a support: Ff. 228r–228v = Uri 484–485 = Peirani 315, Capitolo.
CXXIX. Do(cumento). atozzare .iij tagli de coltelli insiemi (Join to-
gether three blades of knives). Pacioli says that this was shown to
him on April 1, 1509 (Peirani has misread “1509” as “isog”) by “due
dorotea veneti et u perulo 1509 ad primo aprile ebreo.” Peirani tran-
scribes “u” as “un,” but Dario Uri thinks it is the initial of Perulo’s
given name. I wonder if “dorotea” might refer to some occupation,
e.g., nuns at St. Dorothy’s Convent. In Vienna, the Dorotheum is
a huge public auction house where estates are auctioned off. The
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Figure 27. Some modern examples of Interlocking Rings from China.
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Figure 28. Three knives from Prevost, 1584.

Figure 29. A 1793 engraving by Bartolozzi of a painting by Luini, ca. 1510.
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word “ebreo” means “Hebrew,” but I cannot see what it refers to.
(See Figure 28.)

We also find in Pacioli’s work the first mention of Jacob’s Ladder
(or Flick-Flack). The early form with two boards is also known as
the Chinese Wallet. Versions with more boards appear in the late
eighteenth century: Ff. 229r–229v = Uri 486–487 = Peirani 316–
317, Capitolo. CXXXII. Do(cumento). del solazo puerile ditto bugie
(On the childish recreation called deception[?]). It uses two tablets
and three leather straps. The problem describes how to use it to
catch a straw. Peirani’s references show that it is called “calamita
di legno” in Italian (“calamity of wood” or “magnet of wood,” de-
pending on whether the Italian is “calamità” or “calamita”). (See
Figure 29.)

Part 3 includes the first discussion of a geometrical optical il-
lusion: Ff. 256v–257r = Uri 541–542 = Peirani 364–365, Capitolo.
LXXIII. Do. in gannare’ uno della vista abagliarlo (to deceive some-
one’s eyes, an illusion). It takes two identical strips of paper and
places one perpendicular to the other to make a T shape. Nine
out of ten people say one direction is longer than the other. Then
he interchanges the sheets, but the same direction is still seen as
longer. This is generally called the vertical-horizontal illusion and is
attributed to Oppel (1855) or Fick (1851). (Thanks to Vanni Bossi
for pointing out this item.)

The third part also includes the first Two Fathers and Two Sons
Make Only Three People puzzle: F. 287v, no. 191 = Uri 603 =
Peirani 416. Pacioli gives several other “strange family” puzzles.

Vanni Bossi and Bill Kalush have looked at the tricks and dis-
covered several earliest examples of magic tricks; see Bossi’s arti-
cle immediately following this one. Those who have looked at this
manuscript now feel that it is definitely the earliest recreational
mathematics book—except that it was never published.

Borgo San Sepolcro has recently commemorated Pacioli on the
occasion of the 500th anniversary of the Summa, both with a hand-
some facsimile of it and a statue of him (Figure 30).

Acknowledgments. My thanks to Dario Uri and Bill Kalush.

Appendix 1: Chronology

ca. 1445 Born in San Sepolcro.
1466–1470 Pacioli spent some time in Venice, teaching in the house

of Antonio de Rompiasi in the Giudecca, near Sant’ Eufemia,
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Figure 30. Statue of Luca Pacioli in Borgo Sansepolcro.

and attended lectures of Domenico Bragadino at the Scuola
di Rialto.

1470+ Pacioli stayed with Alberti in Rome for about a year. He later
became attached to Cardinal Francesco della Rovere and lived
at his palace adjacent to the basilica of St Pietro in Vincoli.
The Cardinal became Pope Sixtus IV in 1471, and his nephew
Giuliano became a cardinal (later Pope Julius II) and took over
the palace and Pacioli.

ca. 1475 Pacioli entered the Franciscan Order in San Sepolcro.
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1477–1480 Luca Pacioli was the first mathematics lecturer at the
University of Perugia. His biographer says that Pacioli states
in his Summa that he was here in 1475–1480 and that in
1475, he lectured to a class of 150.

In the Galleria Nazionale dell’Umbria is another of Piero della
Francesca’s paintings: The Polyptych of St. Antony of 1470.
Pacioli’s biographer claims that the leftmost saint “is the same
as” the St. Peter Martyr in the picture in the Brera, Milan, and
hence is a picture of Pacioli, but this is dubious.

1481–1486 Pacioli taught at Zara, on the Dalmatian coast and then
part of Venice.

1486–1488 Pacioli was lecturing at the University of Perugia.
1489 Pacioli was in Rome, at the palace of Cardinal Giuliano della

Rovere.
1490s Pacioli taught in Naples for some time, possibly completing

his Summa here, though he certainly worked on it while it
was being printed in Venice. There is a passage in De viribus
quantitatis where Pacioli refers to one of his pupils in 1486 in
Naples, but this may have been a pupil in 1486 who was later
in Naples.

1493 Pacioli gave lectures on mathematics in San Sepolcro. Dürer
came to Venice during his Wanderjahre in 1493 and knew
Jacopo de Barbari, painter of the famous portrait of Pacioli,
now in Naples.

1494 Pacioli came to Venice to publish his Summa. As a Fran-
ciscan, he stayed at the Ospite del Convento dell’Ordine al
Ca’Grande.

1497 Pacioli contracted to have a chapel of St. Bernardino built in
the Church of St. Francis in San Sepolcro and is described
as Warden of the Monastery of St. Francis. Another 1497
document describes him as a Professor of Holy Writ.

1496–1499 Pacioli is Professor at Milan. He was inspired to start
his Divina Proportione on February 9, 1498 and completed it
on December 14, 1498, though it was not published (in an
expanded form) until 1509.

1499–1507 Teaching at the Universities of Florence and Pisa, living
in the monastery of Santa Croce. He and da Vinci had left
Milan together and came to Florence, originally lodging in the
same house. He spent most of 1500–1507 here.

1508–1509 Pacioli returned to Venice to publish his De Divina Pro-
portione and gave a lecture on the Fifth Book of Euclid at the
Church of S. Bartolomeo on August 11, 1508.
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ca. 1510 He retired to San Sepolcro as Commissioner (head or war-
den) of the Franciscan House, though he went briefly to teach
in Perugia in 1510 and in Rome in 1514.

1510 Pacioli taught at Perugia.
1514 Pacioli was in Rome, at the palace of Cardinal Giuliano della

Rovere.
1517 Pacioli probably died in San Sepolcro, but there is no grave-

stone or grave site.

There is a street named after him and there is a plaque with his
portrait on the Palazzo delle Laudi (photos of the Palazzo and the
plaque are in Giusti, pp. 20–21). A statue of Pacioli was recently
erected in the park at Via Matteotti and Via de gli Aggiunta. The
base uses designs from his De Divina Proportione. The leading ho-
tel/restaurant in town is the Albergo Ristorante Fiorentino at Via
Luca Pacioli 60, and the proprietor is interested in Pacioli: in the
restaurant is a banner from the 500th anniversary celebrations of
the publication of Summa in 1494.

In San Sepolcro, Piero’s house is at the corner of Via Piero della
Francesca and Via de gli Aggiunti. Piero is buried in the Cathedral.
There is a statue of him. The Museo Civico has a portrait and a
bust of him.

Appendix 2: Works

ca. 1480? Piero della Francesca’s manuscript Trattato d’Abaco.
Italian manuscript in Codex Ashburnhamiano 359* [291*] -
280 in the Biblioteca Mediceo-Laurenziana, Florence.

This work and Piero’s Libellus de Quinque Corporibus Regularibus
of ca. 1487 are the subject of a long-standing plagiarism ar-
gument. Giorgio Vasari, in his Le Vite de’ più eccellenti pittori,
scultori e architetti of 1550, states:

. . . Piero della Francesca, who was a master of perspective
and mathematics but who first went blind and then died before
his books were known to the public. Fra Luca di Borgo, who
should have cherished the memory of his master and teacher,
Piero, did his best, on the contrary, to obliterate his name,
taking to himself all the honour by publishing as his own work
that of that good old man. . . . Maestro Luca di Borgo caused
the works of his master, Piero della Francesca, to be printed as
his own after Piero died.
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The mathematical works of Piero were unknown until they were
rediscovered in 1850/1880 and 1917. Examination shows
that Pacioli certainly used 105 problems, many unusual, from
Piero in the Summa. But he does praise Piero in the Summa,
as “the monarch of painting of our times.” Entire books have
been written on the question, so I will not try to say any more.

ca. 1487 Piero della Francesca. Libellus de Quinque Corporibus
Regularibus.

Piero would have written this in Italian, and it is believed to have
been translated into Latin by Matteo da Borgo [Davis, p. 54],
who improved the style. It is the first post-classical discussion
of the Archimedean polyhedra, but it was not published un-
til an Italian translation (probably by Pacioli) was printed in
Pacioli and da Vinci, q.v., in 1509, as Libellus in tres partiales
tractatus divisus quae corpori regularium e depēdentiū actine
perscrutatiōis . . . , ff. 1–27. A Latin version was discovered
by J. Dennistoun, ca. 1850 and rediscovered by Max Jordan,
1880, in the Urbino manuscripts in the Vatican—manuscript
Vat. Urb. lat. 632.

Davis identifies 139 problems in this, of which 85 (61%) are taken
from the Trattato. The Latin text differs a bit from the Italian.

Piero describes a sphere divided into 6 zones and 12 sectors. He
gives the truncated tetrahedron, truncated cube, truncated
octahedron, truncated dodecahedron and truncated
icosahedron—see below for the cuboctahedron—and there is
an excellent picture of the truncated tetrahedron on f. 22v
of the printed version. The Latin manuscript gives different
diagrams than in the 1509 printed version, including clear
pictures of the truncated icosahedron and the truncated do-
decahedron. An Internet biographical piece, apparently by,
or taken from, J. V. Field,5 shows that the counting is con-
fused by the presence of the cuboctahedron in the Trattato
but not in the Libellus. So della Francesca rediscovered six
Archimedean polyhedra, but only five appear in the Libellus.

1494 Summa de Arithmetica, Geometria, Proportioni et Proportion-
alità, Venice, 1494. This is a massive book, 616 large pages,
too large for my scanner! A facsimile was produced in 1994.

Part II, ff. 68v 73v, prob. 1–56, are essentially identical to Piero
della Francesca’s Trattato, ff. 105r–120r.

5http://www-history.mcs.st-andrews.ac.uk/history/Mathematicians.
Francesca.html

De Viribus Quantitatis by Luca Pacioli 121

  

http://www-history.mcs.st-andrews.ac.uk/history/Mathematicians.Francesca.html
http://www-history.mcs.st-andrews.ac.uk/history/Mathematicians.Francesca.html


�

�

�

�

�

�

�

�

1498 Pacioli and da Vinci, De Divina Proportione. The manuscript
begins with “Tavola dela presente opera e utilissimo compen-
dio detto dela divina proportione dele mathematici discipline e
lecto.” Three copies of this manuscript were made. One is in
the Civic Library of Geneva, one is the Biblioteca Ambrosiana
in Milan, and the third is lost. Modern facsimiles exist. It
contains illustrations of six Archimedean polyhedra and the
first Stella Octangula.

ca. 1500 De Viribus Quantitatis. Italian manuscript in Codex 250,
Biblioteca Universitaria di Bologna. Pacioli petitioned for a
privilege to print this in 1508 and a problem has a date of
1509, but he seems to have been working on the manuscript
since 1496. The title is a bit cryptic, but I think the best
English version is On the Powers of Numbers.

1509 Pacioli and da Vinci: [De] Divina proportione Opera a tutti
glingegni perspicaci e curiosi necessaria Ove ciascun studioso
di Philosophia: Prospectiva Pictura Sculptura: Architectura: Mu-
sica: e altre Mathematice: suavissima: sottile: e admirabile
doctrina consequira: e delectarassi: cōvarie questione de se-
cretissima scientia. Illustrations by Leonardo da Vinci. In-
cludes Piero della Francesca’s Libellus and other extra mate-
rial. Paganino de Paganini, Brescia, 1509. Modern facsimiles
exist.

The printed version was assembled from three codices dating from
1497–1498 and contains the 1498 manuscript, with several
additional items.

Pacioli and da Vinci give six Archimedean solids. They assert that
the rhombicuboctahedron arises by truncating a cuboctahe-
dron, but this is not exactly correct.

Part of the printed version is Libellus in tres partiales tractatus divi-
sus quae corpori regularium e depēdentiū actine perscrutatiōis
..., which is an Italian translation (probably by Luca Pacioli)
of Piero della Francesca’s Libellus de quinque corporibus regu-
laribus. Some architectural material, and the handsome and
often reproduced geometric designs for letters of the alphabet,
are also appended.

Davis says the drawings were made from models prepared by da
Vinci, but Pacioli made, or had made, at least three sets of 60
models.
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Magic and Card Tricks in Luca
Paciolo’s De Viribus Quantitatis

Vanni Bossi

The De Viribus Quantitatis manuscript is a collection of “ludi math-
ematici” (mathematical games or recreations) where the author
wishes to teach mathematics and avoid the weariness of repeated
exercises that normally ask for the power of intellect and patience.

For the same reason, other authors before him did the same
(like Leonardo Pisano, better known as Fibonacci, or both Fran-
cesco and Pier Maria Calandri). But, in other “trattati d’abbaco”
(abacus treatises, which were actually arithmetic textbooks; both
abbaco and abaco occur), recreational problems are placed here
and there in the text, just to give a “pause” to the mind, while
Paciolo’s manuscript can instead be considered a real treatise on
the subject.

This article describes Bossi’s part of a joint presentation between him and
David Singmaster at the sixth Gathering for Gardner, 2004. Singmaster’s
part immediately precedes this article.
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The relationship with magic is clearly understandable in some
of Paciolo’s statements. For instance, he gives great importance to
the secret of the method used to accomplish the effect to astonish
the viewers, which is a basic and fundamental principle in magic.
His great care in hiding the secret is, he says, because the secret
is the “conditio sine qua non” to be able to amaze your friends, es-
pecially “i rozzi” (the rude fellows) and “maxime donne” (especially
women), who don’t know mathematical principles because neither
had access to the “scuole d’abaco” (abacus schools or schools of
arithmetic). So, if some rules are easy to learn and master, some
others are intentionally complicated, augmenting the number of
necessary operations to avoid detection. This allows you both to
give a different presentation of the same effect, or to disguise the
method using a different one, which is a second fundamental prin-
ciple greatly used in magic. Further, in most cases, the spectator
is invited to simply think of a number or the value of a coin or card,
which adds to the mystery.

Luca Paciolo’s (or Pacioli’s, or Fra Luca da Borgo Sansepolcro’s,
or “fra Luca’s”) manuscript has remained unpublished for about
500 years. We could consider the Peirani Marinoni transcription
as the first printed edition of this work.1 Notwithstanding this, we
have much proof that it has been a source for later works. One
popular work is Bachet’s Problemes plaisantes et delectables to
which, in the past, various scholars attributed the priority for be-
ing the first work on recreational arithmetic. Bachet’s respected
work is the first printed book, but the honor of producing the
first collection of entertaining mathematical problems belongs to
Paciolo.

Fra Luca doesn’t claim originality; some of the games come from
older works. Some have been invented by his students, and he
gives proper credit. (Paciolo explains that he encouraged his stu-
dents to do this.) For instance, in Chapter XLVII, he names his dis-
ciple Carlo de Sansone from Perugia; in Chapter XLVIII, he names
Catano de Aniballe Catani from Borgo, who performed the game in
Naples in 1486. This date is interesting because it suggests that
most of the problems in the manuscript could have been invented
in the last quarter of the fifteenth century.

According to Gilberto Govi, one of the great nineteenth-century
scholars of Leonardo, most of the tricks should be credited to
Leonardo. This is absolutely possible, as Fra Luca taught Leonardo
arithmetic and Euclid’s geometry, although unfortunately the man-

1Luca Pacioli, De viribus quantitatis, Milano, Ente Raccolta Vinciana, 1998.
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uscript doesn’t give credit to Leonardo for any of them. It is known
that two “giochi di partito” (party games) are described in note-
books of Leonardo, so this could be a proof of the connection.
Govi also wrote that Leonardo performed a trick where some light
objects made of wax (I believe, probably tissue waxed to make it
stiff and moldable) were made to fly in the way that oriental per-
formers make paper butterflies fly! Again this is possible. Soon
after the death of Professor Augusto Marinoni, Giunti Editore in
Florence published a monumental work that is his complete tran-
scription of Leonardo’s Codice atlantico. I met Professor Marinoni
many times (he was living in Legnano, very close to where I live),
and he confirmed to me that Leonardo had an interest in conjur-
ing and performed some tricks. Unfortunately, the personal notes
and files of Professor Marinoni are unpublished and unavailable at
present.

Back to Paciolo, we can also suppose that he shared some of
his secrets with street conjurers or court performers; this would
explain his knowledge of most of the non-arithmetical tricks and
puzzles described in the second and third parts of the manuscript.
This theory could also explain the finding of some principles ex-
plained in the manuscript, which we know was never printed and
was hardly accessible to common people, in many pamphlets of
“secrets,” usually sold by itinerant performers. These “secrets”
were probably transmitted orally and occasionally printed.

Many of these booklets have been discovered recently. As far as
is presently known, the most extensive work is Horatio Galasso’s
Giochi di carte bellissimi, di regola e di memoria ... published in
Venice, 1593, in which the author describes 25 card tricks (in-
cluding the first printed system for a stacked deck), many of them
based on arithmetical principles, some of which can be found in
Paciolo’s work. This is followed by 25 “secrets” of various types,
some of which can also be found in De Viribus Quantitatis. In
2001, I made a reprint of this booklet, with an introduction. It has
been translated into English, and I hope it will soon be available to
English-speaking people.

Coins, dice, and cards are the objects most used in the expla-
nation of tricks based upon arithmetical principles, the reason be-
ing that all these objects can represent a number or quantity: an
amount of equal coins with each one a unity, or coins with different
values; dice with six faces of different values and the possibility to
use more than one of them; and playing cards with values from 1
to 13 and the possibility of creating combinations, thanks to color
and suit. Coins and dice had been used before (e.g., in Calan-
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dri’s work), but the use of cards is described for the first time in
Paciolo’s work.

None of the effects are necessarily executed with cards, but in
some instances he says that the same trick done with cards is
more deceptive. Another interesting thing is the justification that
Paciolo, being a Franciscan Monk, gives to the use of such objects
as dice, cards, and “trionphi” (tarot cards), usually considered of
an unbecoming nature for a religious person: he uses them not
to gamble but to demonstrate the power of numbers in an easily
comprehensible manner.

Let’s see now in which chapters Paciolo describes the use of
cards:

• Quarto effecto. de un numero in tre parti diviso, etcetera [p. 30]2

(Fourth effect: of a number divided in three parts, etc.). He
gives the description of this effect with numbers, dice, and
cards.

• Quinto effecto. de un numero diviso fra 4, o vero in 4 parti
[p. 36] (Fifth effect: of a number divided by four, or in four
parts). This is an interesting principle, still in use today. He
mentally assigns a number to each of four spectators, each
one holding a different card. With the rule given, you know
who has which card.

• XXX effecto. de numero pensato, multiplicato più volte gli suoi
producti per diversi o medesimi numeri, trovare l’avenimento
partito [p. 87] (30th effect: of a number thought of, multiplied
several times, the products by the same or different numbers,
to find the resulting division [less literally] to find a num-
ber thought of, from the result of its being multiplied several
times, by the same or different numbers). In this chapter, Pa-
ciolo describes the use of a confederate, a child, who secretly
holds a paper where all the results of the possible multiplica-
tions are written; and when the performer asks for a product,
the child is instructed how to answer properly. To make this
easier for the child, and also more impressive, he suggests
putting the child in another room. In this way the child can
easily read directly from the paper without being seen. Then
Paciolo suggests that the sequence of the tricks should follow
a path with high and low, thus obtaining more emotional in-
volvement; these are practically the rules of a theatrical per-
formance. He also says that by instructing the child, it is

2Page numbers refer to the Peirani Marinoni transcription.
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possible to secretly communicate to him by code words, or
gestures, or signals (coughing, tapping with a knife on the
table, and so on), or by numbers. He mentions a magician,
whose name was Jasonne da Ferrara, who was performing
such effects with a boy in gentlemen’s houses where Paciolo
was personally attending.

• XXXV effecto. de saper trovare 3 varie cose divise fra tre per-
sone, et 4 divise fra 4, et de quante vorrai [p. 112] (35th ef-
fect: to know how to find three different things distributed
among three persons, and four distributed among four, and
of as many as you wish). I mention this chapter, although no
card tricks are described, because Paciolo suggests memoriz-
ing the operations by verses, a mnemonic method that will be
widely used later (and still is) to remember the order of the
sequence of the cards in a stacked deck.

• XL Capitolo. de doi cose una per mano divise o ver fra doi, o
ver doi numeri inequali, paro et imparo, senza alcuna interro-
gatione sapere [p. 118] (Chapter 40: to know of two things,
distributed one in each hand or between two people or two
unequal numbers, one even and one odd, without any ques-
tioning). This chapter gives a method for guessing, between
two spectators, who has an odd number and who has an even
number of things. In the second example, two cards, one odd
and one even, are used. They are thrown on the table face up,
so you can see their value.

• LXIIII Capitolo. d’un numero pensato per via de un cerchio
[p. 151] (Chapter 64: [to know] of a number thought of by
means of a circle). In this trick, cards are the perfect things
to use. It is the classical trick The Tapping Trick or Tapping
the Hours, where a known number of cards are placed in a
circle on the table, face down (you only know the value and
the order of them, which is progressive). Now a spectator is
invited to think of a number not higher than twelve (if you
are using twelve cards); then by given instructions, he has
to count starting from a point and will finish on a card that
when turned over will have the value of the number that was
thought of. This trick is also described in the Galasso booklet.

• LXXX Capitolo. De le gentileza che a le volte si fanno per
vie naturali senz’altro calcolo [p. 177] (Chapter 80: of per-
sons who instantly determine [a number] by natural means
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without other calculation). I mention this chapter where no
card tricks are found but a very interesting principle is ex-
plained. Paciolo names two persons who both used this prin-
ciple: one is Francesco de la Penna, and the other the already-
mentioned Giovanni de Jasone da Ferrara. The technique is
what we today call in card magic “estimation.” The performer
knows by experience how many nails, or walnuts, or what-
ever, can fill a certain container. In a performance, he invites
a spectator to fill, for instance, a bottle with nails and pre-
dicts how many will fill it, with a very close approximation
that amazes the audience. In the same way, he can say how
many walnuts can be held in a fist, and so on.

No more card tricks are described in the manuscript, but a lot
of magic and amusing physical principles as well as puzzles can be
found.

The second part of the manuscript is largely devoted to geome-
try, but from Chapter LXLIIII [p. 275] on, Paciolo describes a series
of puzzles and some hydraulic principles, as well as some optical
recreations, some stunts based on physics, secret writings, and a
few magic tricks. Many of these are described later in Cardano’s
and Della Porta’s works.

The third part of the manuscript has no card tricks but is filled
with very interesting things. Just to name the most intriguing:

• Capitolo VIII, second paragraph [p. 334]. Using prepared pieces
of paper (some of which float on water, some not), you can
make a friend become a victim who will pay a penalty.

• Capitolo IX [p. 334]. Paciolo describes the right-to-left mirror
writing of Leonardo, which can be read with a mirror.

• Capitolo X [p. 335]. How to write a sentence on the petals of
a rose or other flower.

• Capitolo XI [p. 335]. How to engrave letters on iron by the use
of chemicals. This technique will be developed soon afterward
for engraving and printing.

• Capitolo XXIII [p. 342]. A method for washing the hands in
molten lead without being hurt, a stunt used by mountebanks
and fireproof performers.

• Capitolo XXXVI [p. 348]. How to cut a pigeon’s neck with a
knife without killing him.
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• Capitolo XXXVII [p. 349]. How to kill a pigeon by hitting its
head with a feather . . . this time really killing it!

• Capitolo XL [p. 350]. How to make an egg crawl on a table.
A leech is placed into a hollowed egg. The hole in the egg is
closed with wax. The egg is placed next to a vase filled with
water and the leech will feel the water and start to move to
reach it, making the egg crawl on the table. A similar method
(using a bug) will be found described in many pamphlets of
secrets of the sixteenth and seventeenth centuries.

• Capitolo XLI [p. 350]. A very “modern” method to make a coin
go up and down in a glass filled with water using powder of
“calamita” (magnetite).

• Capitolo XLIIII [p. 352]. Another effect of a coin dancing into
a glass on your command using a woman’s hair attached at
one end to the coin with wax and the other end, again with
wax, attached to your finger (a method still in use).

• Capitolo XLVI [p. 353]. How to eat tow and spit fire—a clas-
sic, very old trick, still in use today by street performers and
pseudofakirs.

• Capitolo LXVI [p. 362]. How to cut a glass spiral shaped so
that it works as a spring.

• Capitolo LXXIII [p. 364]. An optical illusion demonstrating the
inability to compare horizontal and vertical distances.

Acknowledgments. My grateful thanks to all the friends who contin-
uously support me and my work; for Atlanta’s G4G6, my thanks
go especially to Bill Kalush, Mark Setteducati, and P.G. Varola.
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Railway Mazes

Roger Penrose

In homage to Martin Gardner for his 90th birthday, I wish to de-
scribe a very simple idea that has been familiar to me for many,
many years, but, strangely, I have never seen it discussed in any
detail. This is the notion of a railway maze.1 As far as my own ex-
perience is concerned, the basic idea came from my father (Lionel
S. Penrose, FRS, 1898–1972, who had been Professor of Human
Genetics at University College, London, from 1945 until his retire-
ment from the university), although this idea is such a simple one
that I cannot imagine that it had not been originated long, long
ago, in the shadows of antiquity. I was certainly a child when he
first acquainted me with the idea, but I have no recollection of how
old I was. The maze consists of a connected network of smooth
curves drawn in the plane (though planarity plays no critical role
here), branching and rejoining at various places. The object is to
find a smooth path along the curves, from the starting point S to
the final point F. We may think of a railway engine, with no reverse
gear, travelling along the track from S to F. I recall, from a quite
early age, my father showing a fairly simple example, perhaps like
the one illustrated in Figure 1, which I found to be surprisingly
tricky to do, considering its simplicity. Most routes return the en-

1I use the English term railway here, rather than the American railroad, because
this is what I have been brought up with.
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Figure 1. A simple railway maze. Find a smooth path, following the lines,
from S to F.

gine back to S, and it is a matter of “puzzle psychology,” in the
design of such a maze, to try to guide the solver to take the wrong
routes in attempting to progress from S to F.

I soon realized that the puzzle could be solved completely with-
out thinking if one chose to search for the route backwards, from
F to S, and, in fact, there is only one path, with no choices at
all! The oddity of this made an impression on me, because the
formulation of the rules of the maze is completely symmetrical un-
der interchange of S and F (although this particular example is, of
course, quite asymmetrical in this respect—curiously reminiscent
of the way that the second law of thermodynamics operates in our
particular time-asymmetrical universe, within the confines of time-
symmetric physical laws2). If one wishes to make the puzzle more
difficult to solve, one can limit the advantage of this kind of “prob-
lem solving by backward reasoning” by incorporating a portion of
the maze in the vicinity of F that is aimed at making it difficult
to start from F, with most routes that start from F returning to F
again. (See Figure 2.)

I shall refer to this latter portion of the maze as the F-directed
part (where the route is difficult to find starting from F ) and the
original part, which is hard starting from S and guiding the solver
back to S, as the S-directed part. However, if the F-directed part
and the S-directed part are not kept separate from each other, then
there are likely to be many different solutions. To avoid this unde-
sirability, one finds that these two parts have to be connected only
by a single line. If a point C on this connecting line is found, then

2For matters relating to the profound issue of symmetry/asymmetry in physical
laws, see Martin Gardner’s beautiful book The New Ambidextrous Universe [2]. For
some further information on these matters, see my book The Road to Reality: A
Complete Guide to the Laws of the Universe [3], particularly Chapter 27.
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Figure 2. To make it a little more difficult for those who like to solve mazes
by “backward reasoning,” an F-directed part has been added.

Figure 3. The maze is still readily solved if a point C can be located that
separates the S-directed part from the F-directed part, since the routes
from C to S and from C to F are now trivial.

the maze is extremely easily solved, simply by separately imagin-
ing travelling from C to S and from C to F and then connecting
the two routes. In fact, with merely the ingredients that we have
used so far, it seems to be difficult to disguise this central point,
and such mazes appear to be very easily solved. (See Figure 3.)
Accordingly, some new features need to be incorporated in order to
make railway mazes interesting.

I then found that a very useful obscuring device was to intro-
duce “whirlpool” traps that, once entered, would force the engine
to circle indefinitely without ever being able to escape. In a sense,
these somewhat change the character of the puzzle, as one might
imagine that whenever an engine returns to S, after having origi-
nally set out from S, then it might take advantage of the presence
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Figure 4. The central circle is a simple example of a whirlpool trap, from
which escape is impossible.

of a turntable at the station that could reverse the direction of
the engine, so that it could set out again to try to reach F, and
that it could repeat this process time and time again until it finally
finds its destination F ! But, with whirlpool traps, it can become
ensnared forever without prospect of ever being returned to S so
that it could try again to find the correct route. Nonetheless, the
presence of such whirlpools does not seem to violate the intentions
of the original prescriptions of a railway maze.

Such whirlpools can be highly localized, as in the circle in the
middle of Figure 4, or they can even globally surround the en-
tire maze, as in the example depicted in Figure 5. Also, multiple
whirlpools like the example shown in Figure 6 can be involved. Be-
cause the full extent of the basin of a whirlpool (that region from
which there is no escape but to enter the whirlpool) may not be
immediately obvious to the eye, and because this region may con-
nect to both the S-directed and the F-directed parts of the maze,
the central point C may not be so easily located, as its removal no
longer needs to separate these two parts.

Additional Subtleties

At this point, and before reading further, the reader might care to
try the two railway mazes depicted in Figures 7 and 8, which ap-
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Figure 5. A whirlpool trap need not be localized and can even surround
the entire maze.

Figure 6. An example of a multiple whirlpool trap.

peared in an article that I wrote jointly with my father in 1958 [4].
(The maze in Figure 8 is somewhat whimsical.) Figure 9 shows an-
other maze that I designed for James Dalgety’s “Millennium Bench”
by the entrance to St. Mary’s Church in Luppitt, Devon, U.K. [1].
There is a particular simple feature that these mazes incorporate
that is easy to overlook and, if unappreciated, may lead to the con-
clusion that solving the maze is impossible! I had an interesting
experience of this nature while visiting Princeton University on a
NATO Fellowship, in 1959. At the Physics Department’s Christ-
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Figure 7. A railway maze that appeared in the New Scientist in 1958.

mas party, I put a railway maze on the blackboard (together with
some pictures of impossible objects). Various faculty members col-
lected around the board, including the distinguished mathematical
physicist Eugene Wigner. After spending some time trying to solve
the maze, and learning that I was responsible for it, Wigner turned
to me and complained, in his distinctive Hungarian accent, “It is
impossible!” He was very surprised when I showed him the solu-
tion. I remember my father expressing some delight at this when I
later informed him about it by letter, and he referred to the maze
as the “stuck-Wigner” puzzle.

The new feature that is being incorporated into these mazes is a
track-reversing key loop, whose key role may be easily overlooked
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Figure 8. A whimsical example that accompanied that of Figure 7.

by the solver. To use such a device effectively, the maze should be
constructed so that, by the time the solver finally encounters the
key loop, there will already have been numerous ordinary track-
reversal loops that simply guide the engine from S back to S (or
from F back to F, for those “solving by backward reasoning”). The
point about a track-reversing key loop is that the entire route from
S to F must now essentially involve a portion in which the engine
reverses its journey along a considerable portion of track. The psy-
chological issue is that the solver may well be fooled into thinking
that “this is just another of those tiresome track-reversing loops,
sending me back to S, that I must avoid.” The key loop has to be
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Figure 9. A railway maze on the Luppitt Millennium Bench.

well hidden, and there are many ways to hide it, usually involving
the proximity of one or more whirlpool basins, but there are other
ways of sometimes catching the solver unawares. (See Figures 8
and 9.)
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There is a point of relevance to the “purist” puzzle maker for
the construction of railway mazes that incorporate such track-
reversing key loops. The solution to a maze containing such fea-
tures is, technically speaking, always non-unique. For the “loop”
part of the solution path can always be traversed in either of two
opposite directions. Of course, the two solutions arising in this
way are not “very” different from each other (and are always of the
same length), but the purist might worry! My own attitude to this
has been simply to make the reversal loop “small,” so that it is easy
to regard this ambiguity as unimportant. There is a more serious
type of “cook” (i.e., unintended solution) that can easily arise if one
is not careful to make sure that the stretch of track that is tra-
versed in both directions is separate from both the S-directed and
the F-directed region. (See Figure 10(a–b).) One can also incorpo-
rate two (or more) track-reversing key loops into a railway maze. In
this case, to avoid serious cooks, one must make sure that no part
of the track that joins the key loops lies in either the S-directed
or F-directed region. However, this situation will always result in
paths from S to F that might be regarded, technically, as cooks.
For, after employing the first key loop, one can use the second to
return to the first and then back to the second again before moving
on to F ; see Figure 10(c). This is clearly an inefficient procedure,
resulting in a route of excessive length, and I think that it is fair to
ignore this kind of cook. This sort of thing also occurs with the sit-
uation of Figure 10(d), where a “non-key” reversal is incorporated
into the route out from the key, seeming to have no value except to
introduce this kind of technical cook. In fact, such things can have
a psychological value in helping to disguise the intended solution
to the maze.

Toy Track Railway Mazes

Let us now move on to another (but related) type of railway-track
puzzle. Having had a four-year-old child with a passion for toy
train tracks (at the time of writing, he was five)—where I must
confess I get great enjoyment joining in the fun and constructing
complicated track designs of my own—I have found that there is a
quite different kind of puzzle that the idea of a railway maze pro-
vides. Here, one envisages that there is an unlimited supply of
straight and curved tracks, where bridges and crossings can, if de-
sired, also be supplied in unlimited numbers. In addition to these,
one is provided with a definite number (in fact, an even number) of
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(a) (b)

(c) (d)

Figure 10. Track-reversing key loops. (a) The part of the path that needs
to be traversed in both directions must be separate from the S-directed
part, or (broken curve) a serious cook arises. (b) It must also be separate
from the F-directed part if a serious cook is to be avoided. (c) Two track-
reversing key loops are legitimate, although technically a cook arises from
the possibility of doubling back and forth between the loops. (d) The same
could hold even for non-key loops, if directed inwards as shown.

railway points. Each of these enables the bringing together of two
tracks to produce one or, conversely, the dividing of a single track
into two. I shall refer to the end that joins on to a single track (the
track that is being made to bifurcate by the point) as the single end
and to each of the other two (together constituting the bifurcation
itself) as the double ends. (See Figure 11.)

Again, we are to have an engine with no reverse gear (or a re-
verse gear that is not supposed to be used), where the engine sim-
ply continues indefinitely in its (local) forward direction. The rail-
way points are of the type that each has a switch on it that can be
set in one of two possible states (“settings”), so that if the engine
enters along the single end, then this setting determines which
of the two double ends it exits along. If, on the other hand, the
engine enters along either one of the double ends, then it simply
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Figure 11. Railway points with a spring. There are two possible settings
for the point. For the setting shown, an engine entering along the single
end P must exit along the particular double end R; if the engine enters
along either double end Q or R, it will exit along P, leaving the setting
undisturbed.

leaves along the single end without altering the setting. (The Lego
DuploTM train-track points have this character—and also some
special Brio points—having a switch attached, for fixing the set-
ting, where there is a spring on the component determining the
setting, so that if the engine enters along the “wrong” double end,
then it simply pushes this component aside, the spring ensuring
that the component returns to its original position, as predeter-
mined by the setting.)

The object of the puzzle is now, for a given (even) number 2n of
railway-point pieces, to construct a train track, with no unattached
ends, in such a way that, for the appropriate collection of settings,
the train will continue indefinitely, without omitting any stretch of
track. We find that, for any n> 0, such tracks can be constructed.
In fact, for any given n >1, there are likely to be several solutions
for the collection of settings, so as a refinement we demand that the
entire track arrangement must be such that there is essentially a
unique collection of settings of all the points having the result that
no section of track is omitted in the course of the engine’s journey.

The word “essentially” is needed here, owing to the fact that,
given a particular track arrangement, it is always the case that,
for any collection of track settings that gives a solution, we also get
a solution if all the settings are reversed. (Here, “solution” refers
to a collection of settings for which the engine will necessarily visit
all stretches of track during its journey.) Why is this? Imagine
that, upon reversal of all point settings, we also reverse the direc-
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(a) (b)

Figure 12. A closed track will have 2n points. Here, the two possibilities
for n = 1 are shown, for which there are no whirlpool subregions. (a) In
this case there is no reversal, so there can be no solution for the settings
in which the engine must visit all track sections. (b) In this case, every
setting gives a solution, but not an essentially unique one.

tion of the engine. Consider one junction, as depicted in Figure 11.
Suppose that the engine enters along the single end P, and the set-
ting forces it to exit along the particular double end R. Because the
track portion entering along the remaining double end Q must also
be traversed during the course of the engine’s journey, this must
be when the train is moving in the opposite direction, namely in-
ward toward the junction, and it must leave at P along the single
end, following the opposite direction from which it was first con-
sidered to have entered the junction. If we now reverse the setting,
together with all the engine directions just considered, then we get
a situation, at the junction, that exactly mirrors what has been just
described, but with Q and R interchanged. The same will apply at
all the other junctions. Accordingly, we always have the necessary
ambiguity that a reversal of all the settings, all at once over the
entire network, will transform one solution into another. So, it is
reasonable to regard two solutions as being essentially the same if
one is obtained from the other simply by the reversal of the settings
of all points.

The case n = 0 is clearly trivial, because the track simply con-
sists of a single loop. If we take n = 1, there are, topologically,3

only two possibilities that do not contain proper whirlpool subre-
gions (the presence of which would obviously forbid any solution),
namely those shown in Figure 12(a–b). That of Figure 12(a) does
not allow for any reversing of the engine, so there can be no col-
lection of settings that provides a solution. The arrangement of

3This is topology in the sense of differential topology, so we are concerned with
smoothness, and not just the ordinary topological notion of continuous deformation
(which need not be a smooth deformation).
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Figure 13. The same as Figure 12(b), but giving a more interesting track
arrangement (with a bridge).

Figure 12(b) gives a solution for every collection of settings, but
there are four of these, so the solution is not essentially unique.
It may be remarked that although this arrangement is very sim-
ple as drawn in Figure 12(b), this simple topological organization
can be disguised in many ways, and many quite interesting ac-
tual track arrangements can be constructed, such as that shown
in Figure 13.

For every larger value of n (i.e., for n ≥ 2), we find track config-
urations for which the collection of settings is essentially unique.
For example, when n = 2, the arrangement of Figure 14 will achieve
this. This configuration can be rearranged into the symmetrical
configuration in Figure 15(a), which takes advantage of a bridge,
and the essential uniqueness is not hard to ascertain using the
symmetry. This construction easily generalizes to any even n >
2, giving essential uniqueness, the n = 4 case being illustrated in
Figure 15(b) (where I have used a multiple flyover at the center!).
For odd n > 2, we can use the simple-looking configurations of
Figure 16(a–b), giving essential uniqueness, where I have explic-
itly illustrated the cases n = 3 and n = 5. In fact, all of these
essentially unique configurations can, with a little rearrangement,
be expressed uniformly as part of the same series, shown in Fig-
ure 17. There are many other essentially unique configurations,
such as that depicted in Figure 18 for n = 4, but of course in most
cases where a solution exists, it is not essentially unique, such as
the example in Figure 19 for n = 6. It’s a nice exercise to find all
the solutions in this case (there are just three essentially different
ones) and to prove essential uniqueness in the other examples.

Martin Gardner would have written a great article on railway
mazes in Scientific American. Perhaps he did, and I missed it!
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Figure 14. For n = 2 there is an essentially unique system of point settings
that provides a solution (i.e., so that the engine is compelled to visit all
track segments).

(a) (b)

Figure 15. For even n we get solutions for essentially unique point settings
with these configurations: (a) the case n = 2 (equivalent to Figure 14), (b)
the case n = 4.

(a) (b)

Figure 16. Configurations giving solutions with essentially unique point
settings for odd n > 1: (a) the case n = 3, (b) the case n = 5.
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Figure 17. The configurations of Figures 15 and 16 redrawn so that it can
be seen that they are parts of the same sequence, for all n > 1.

Figure 18. There are also other configurations giving essentially unique
solutions; here, n = 4.

Figure 19. A non-essentially-unique case for n = 6; here, there are three
essentially different collections of point settings.
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Mechanical Mazes

M. Oskar van Deventer

Most people know mazes as printed pencil-and-paper problems,
where one has to draw a path from the start to the finish, such
as Martin Gardner describes in Chapter 10 of The Second Scientific
American Book of Mathematical Puzzles and Diversions [1]. Colorful
plastic mazes, where the goal is to remove a ball, are a direct trans-
lation from pencil-and-paper mazes into a mechanism. The same is
true for life-size mazes made from hedges, mirrors, or corn, where
the goal is to find the exit. This article is not about these types
of mazes. Rather, this article is about mechanical puzzles, which
may not look like a maze at all, but for which the solving experience
feels like solving a maze. Let me explain with some examples.

Cooksey Cylinder

My fascination with mechanical mazes began in July 1983, when
I visited Edward Hordern for the first time. One of the puzzles he
showed me was the Cooksey Cylinder, a red cylinder surrounded
by a bronze pipe with a pattern of slots. (See Figure 1.) A small
pin follows the slots. What made this puzzle so special is that the
pin could be pushed to the other side. This way, the actual maze
is distributed over two sides of the cylinder, which makes it quite
hard to solve. One way to solve the maze is by mapping it out,
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Figure 1. Cooksey Cylinder, © Mr. Cooksey, prototyped by Pentangle.

Figure 2. Map of the Cooksey Cylinder.

noting down rotations as horizontal moves and shifts as vertical
moves. To my large surprise, the resulting map is quite simple.
(See Figure 2.)
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Key Maze

In 1987, I designed Key Maze. (See Figure 3.) The disk can be
turned and moved up and down along the shaft of the key. The
notches and pins of the key interact with those in the disk, making
this puzzle a maze. The maze can be mapped in a similar way as
the Cooksey Cylinder, by unrolling the cylindrical surface. I based
the puzzle on a maze-like fractal called the Dragon Curve. You may
recognize the fractal-ness of the maze in its map. (See Figure 4.)
The map also makes clear why people get lost in this maze. The
maze has several loops. Moreover, you have to turn the key a full
720 degrees to solve the puzzle. If you move down too fast, you’ll
get stuck in the dungeons of this maze.

Figure 3. Key Maze, produced by Bits & Pieces, http://www.bitsand
pieces.com.

Figure 4. Map of Key Maze.
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Möby Maze

Möby Maze is a mechanical maze that I designed in 2003. It was
produced by rapid prototyping, as that was the only way to build
such a twisted shape. (See Figure 5.) The movement of the red ring
is obstructed by obstacles at “both” sides of the Möbius ring. It is
not possible to map the Möbius surface in a plane, because of its
half twist. The most effective way to map this maze is by drawing it
twice. (See Figure 6.) A 360-degree tour on this map corresponds

Figure 5. Möby Maze, produced by George Miller, http://www.puzzle
palace.com.

Figure 6. Map of Möby Maze.
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to a 720-degree tour on the Möbius ring. You may check for your-
self that the upper half of the map is essentially identical to the
lower half. The maze is quite simple, but still people will get lost.
At some point, there is a sharp Y-turn to the exit. People have the
tendency to preserve momentum and may go round and round in
the long loop around the center many times.

Tube Maze

Tube Maze is a plumbing puzzle that I designed in 2003. It too is
rapid prototyped. The object is to get the ring off the tube struc-
ture. At every T intersection, the ring can move straight or make
a turn. In its starting state, the asymmetric flag blocks the ring.
(See Figure 7.) The ring needs to be turned upside-down to be
able to take it off. The puzzle is essentially a parity problem. (See
Figure 8.) At one section of tube, the parity of the ring is changed,
where the thick circuit transitions into the thin circuit. One should
pass this section exactly once (or three times, or five) to solve the
puzzle. The map is a rather abstract representation of the actual
puzzle, and one needs an additional table to match the map inter-
sections with the T intersections of the maze.

Figure 7. Tube Maze, pro-
duced by George Miller,
http://www.puzzlepalace
.com.

Figure 8. Map of Tube Maze.
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Figure 9. O’Gear,
produced by Hanyama,

http://www.hanayamatoys.co.jp.

Exit

Start

Figure 10. Map of O’Gear, mapped out by
Peter Winkler.

O’Gear

In 1995, I designed O’Gear, which won an international puzzle
design competition award in 2001. It is a symmetric five-pointed
star that moves around a cube. (See Figure 9.) Some of the cube
edges are sharp, preventing the star from passing. The object is
to remove the star from a given starting position. The star can
be in ten orientations at each of the surfaces of the cube: five
orientations facing forward and five backward. As a cube has six
faces, the puzzle has a total of 6 × 10 = 60 states. Peter Winkler
found a way to map the state diagram such that the symmetry
of the puzzle is reflected in the symmetry of the map: five-fold
rotational symmetry and mirror symmetry. The map gives a good
indication of the complexity of the puzzle, although people may
find it hard to use this diagram to actually solve the puzzle.

Big Wheel

In 2001, I designed Big Wheel, in which the red wheel with eleven
teeth runs like a gear on the black floor piece. (See Figure 11.) The
object of this puzzle is to take the wheel off the floor. The floor
piece has five round holes, and the wheel has five “special” teeth.
When a special tooth matches up with a round hole, the wheel can
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Figure 11. Big Wheel, produced by
Bits & Pieces,

http://www.bitsandpieces.com.

ExitStart

ExitStart
a)

b)

Figure 12. Maps of Big Wheel: (a)
22-state map and (b) 25-state map.

be turned 180 degrees horizontally. The wheel can roll out when
the exit tooth matches up with the exit hole. Mapping this maze
is ambiguous, as the “states” of the maze can be defined in more
than one way. One mapping is by looking at the orientation of the
wheel at a particular position on the floor. As the gear has eleven
teeth and two sides, the gear has 11 × 2 = 22 states, resulting in a
22-state map. Andrea Gilbert made a different analysis. As there
are five holes and five special teeth, she defined the 5 × 5 = 25
combinations as states of the maze, resulting in a 25-state map.
As you can see from Figure 12, the two maps are significantly dif-
ferent. However, the topology of both graphs is the same, as they
both describe one and the same maze.

GGG or 1.5 Horses

I designed GGG in 1995, and a simplified version of it won an
international puzzle design competition award in 2002. The puzzle
has three G-shaped rings that are linked together. (See Figure 13.)
The object is of course to take them apart. Most puzzle collectors
would probably categorize this puzzle as a disentanglement puzzle.
However, the puzzle was designed as a maze and can be analyzed
as a maze. The different ways that the pieces can be tangled can
be defined as “state” of the maze. It was calculated that this puzzle
has (12 × 2) + (8 × 2) + 26 + 2 = 68 states. Needless to say, this
puzzle is very difficult. Figure 14 shows the resulting state map,
which is explained in more detail in [1]. By the way, the name GGG
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Figure 13. GGG or 1.5 Horses,
produced by James Dalgety,

http://www.puzzlemuseum.com.

Figure 14. Map of GGG or 1.5
Horses.

or 1.5 Horses is a pun by James Dalgety. Apparently, the British
refer to a horse as a “gee-gee” to their children. As the puzzle has
three G-shaped pieces (gee-gee-gee), it is one-and-a-half horses.

Epilogue: The Cooksey Cylinder

The puzzle it all began with, the Cooksey Cylinder, remains ob-
scure. Nine prototypes were made by Pentangle, but they de-
cided not to pursue this puzzle because of the production cost.
Mr. Cooksey, the inventor of this fascinating puzzle, has vanished
without a trace. Thanks to a trade with James Dalgety, I am now
the proud owner of prototype #4 from the Hordern–Dalgety collec-
tion. I hope that this classic design will be rediscovered by a puzzle
producer sometime in the future, so that more people will be able
to enjoy it in its physical form.

Copyright. All puzzles in this article, except for the Cooksey Cylin-
der, are copyright © M. Oskar van Deventer.
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Insanity Puzzles: Instant and
On-the-Spot

Rik van Grol

Until recently I thought that there had been only three major puz-
zle crazes: the Fifteen Puzzle, the Tangram, and the Rubik’s Cube.
Now I know better. In 1967, a puzzle was brought to the market
that sold over 12 million copies in no time: Instant Insanity. I have
had a similar puzzle for a long time, but I never knew it had been so
popular. I always loved this puzzle and designed a derived puzzle
for the International Puzzle Party in 2003. Wanting to present the
puzzle and its solution at G4G6, I started investigating the back-
ground of insanity puzzles and found a mountain of material in
terms of both books and Internet sites. In this paper I first present
my version of the story on Instant Insanity and reiterate the so-
lution technique for this puzzle (a method using graphs). Then,
I introduce my newly designed puzzle called On-the-Spot Insanity
and present its solution. Finally, I discuss the possibility of using
graphs to solve this puzzle.

Martin Gardner wrote about the puzzle twice: in Fractal Mu-
sic, Hypercards and More Mathematical Recreations from Scientific
American Magazine (W. H. Freeman, 1992, Chapter 6), and in
Mathematical Magic Show (MAA, 1989, Chapter 16).
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Instant Insanity: The Concept

Instant Insanity consists of four colored cubes that need to be lined
up in such a way that each of the four (long) sides shows four
different colors; see Figure 1. The four cubes are colored in four
colors only, which implies that some colors on each cube occur
more than once. Solved, the order of the cubes is irrelevant, but
finding the correct orientation of each cube is what this puzzle is
all about. As each cube has 24 possible orientations, solving the
puzzle by trial and error will be a time-consuming task. In other
versions of this type of puzzle, with five or even six cubes that need
to be lined up, the method of trial and error is even less fruitful.
Instant Insanity is the name by which this puzzle is best known,
but it is known by several other names, and in different forms, as
I will show in the next section.

long side

Figure 1. Instant Insanity.

“Instant” History

Instant Insanity is a puzzle designed by Franz O. Armbruster. He
licensed it to Parker Brothers, who brought it to the market. They
sold over 12 million copies in 1966–1967. For the colors and the
exact configuration in which Instant Insanity was sold, I refer to
the Insanity puzzles overview in Table 1 below. The puzzle, as
Armbruster designed it, was not the first version of this puzzle. Ac-
cording to T. H. O’Beirne in 1965 [1, pp. 112–129], earlier versions
exist that were over fifty years old at that time. Jerry Slocum and
Jack Botermans [5, p. 38] mention a patent by Frederick A. Schos-
sow from Detroit from around 1900, but their only source for this
is O’Beirne. David Singmaster [3, 4] however reports Schossow’s
patent and several others:
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• Schossow’s Patent (1900) for four cubes;

• Moffat’s Patent (1900) for up to six cubes;

• Meek’s UK Patent (1909) for four cubes;

• Wyatt’s Puzzles in Wood (1928) gives a six-cube version con-
sidering all six directions.

O’Beirne, who actually presents the most extensive description and
analysis of the Instant Insanity-type of puzzle, is not very reveal-
ing where it concerns the origins and the inventors. However, he
does provide a good listing of this type of puzzle available in 1965
prior to the appearance of Instant Insanity. Jerry Slocum’s book
nicely complements this by providing the illustrations. The puz-
zle Schossow designed was brought to the market with the name
Katzenjammer Puzzle. A German book by Rüdiger Thiele explains,
“This puzzle is known for a long time. First it made itself well-
known in the English-speaking part of the world with the name
‘Katzenjammer.’ Later it came back to us with the name ‘Instant
Insanity’” [6, pp. 75–77].

Instant Insanity uses four cubes with colored sides. The origi-
nal Katzenjammer Puzzle used the four card suit symbols. During
the First World War, the puzzle was brought to the market with the
flags of the allied nations. Jerry Slocum shows two versions, one
with four cubes and one with five. O’Beirne reports only a five-
cube version, called Flags of the Allies. He reports the flags being
those of the following nations: Belgium, France, Japan, Russia,
and the United Kingdom. O’Beirne furthermore reports a version
showing groceries; see Table 1. He also reports a recently circulat-
ing (1965) version showing a red triangle, a blue triangle, a bottle,
and a glass. (He suggests that English readers will need no fur-
ther clue to its source—I have no idea what it means.) O’Beirne
mentions that the puzzle used to be called Tantalizer and even
The Great Tantalizer (a version with colored faces). He finally men-
tions a version with colored dots. O’Beirne continues by telling the
reader that the puzzles he found appeared to be different but are
abstractly identical. The different colors and pictures have com-
plete correspondence, as can be seen in the top half of Table 1.
I share O’Beirne’s amazement that people or firms bringing out a
new version of a puzzle do not make the effort to design their own
version, but simply replace the original pictures with something
new. In duplicating an idea, they sometimes make mistakes that
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A B C D
Suit symbols Club Spade Heart Diamond
(Katzenjammer)
Groceries 1 Soup Gravy Table cream Custard powder
Groceries 2 Soup Gravy Table Cream Jelly Crystals
Colors Red White Green Blue
(Instant Insanity 1)
Colors Red Yellow Green Blue
(Instant Insanity 2)

Table 1. Same puzzle, different faces.

result in slight variations. Note that each cube can be replaced by
its mirror image without changing the solution (only four sides of
each cube are used).

Since O’Beirne’s book in 1965, other versions have been brought
to the market—to start with, Instant Insanity, as explained ear-
lier. Instant Insanity is itself a copy of the earlier versions; see
the bottom half of Table 1. Remarkably, O’Beirne mentions a
correspondent—Mr. C. H. Parker—who told him that he had found
a four-cube puzzle with the numerals 3, 4, 5, and 8. The object is
to line up the cubes in such a way that on all four long sides the
numerals add up to 20. This version is the Tantalizer in disguise.
The fact that 20 can also be made by 4 + 4 + 4 + 8 and 5 + 5 + 5
+ 5 does not matter, because these numerals are not available in
high enough frequency on the cubes. It is not clear (but perhaps
likely?) that Mr. C. H. Parker is related to Parker Brothers.

Personally, I have three other variations in my possession. The
first variant is a German puzzle called Mutando, brought onto the
market by Ingo Uhl. This puzzle is actually different from Instant
Insanity. The puzzle has some other goals as well. The first objec-
tive is to produce a 2 × 2 × 1 shape in which each side is colored
homogeneously. The second objective is the same as for Instant
Insanity. The second variant is a five-cube version given to my wife
in the late 1980s by Kevin Holmes. This five-cube version is two
puzzles in one, as it shows the numerals 1 to 5 in five different col-
ors (silver, gold, red, blue, and green). The coloring is independent
of the numerals, which allows you to first solve the puzzle in nu-
merals (two solutions) and then in colors (two solutions). The third
is another five-cube version that I bought in Japan, to be referred
to as Hanayama (all other text on the package is in Japanese; the
package shows Nob Yoshigahara’s logo).
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Insanity Puzzles Overview

This section presents the precise configurations of the different
insanity puzzles introduced in the previous section.

Katzenjammer Puzzle

Invented ca. 1900 by Frederick A. Schossow, the Katzenjammer
Puzzle was made of 2.1-cm wooden cubes, printed with the four
card suits.
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Simington’s Puzzle (1)

Appearing sometime in the early twentieth century, the first ver-
sion of Simington’s Puzzle was made of 2.7-cm wooden cubes, cov-
ered with printed paper showcasing various Simington’s products.
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Simington’s Puzzle (2)

A second version of Simington’s Puzzle also appeared in the early
twentieth century, made of 2.7-cm wooden cubes and covered with
printed paper.
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Instant Insanity (1)

Copyright 1967, 1986, by Parker Brothers Division, this version of
Instant Insanity was made of 3.3-cm hollow plastic cubes, color-
plated in the four colors white, green, red, and blue (in the figure,
white, light grey, medium grey, and black, respectively).

Instant Insanity (2)

Copyright 2000 by Hasbro, this version of Instant Insanity is equal
to the earlier version above, except for the colors: blue changed to
purple and white changed to yellow.

Mutando

Designed by E. Künzell in 1997 and copyright by Ingo Uhl in 2000,
Mutando was made of 1.8-cm solid plastic cubes, in the four col-
ors yellow, green, red, and blue (in the figure, white, light grey,
medium grey, and black, respectively).

 

Hanayama

First appearing in the 1990s, Hanayama is of Japanese origin and
is made of 2.5-cm hollow plastic cubes, marked with colored sym-
bols: purple square, green X, orange circle, yellow cross, and blue
four-pointed star. It comes with a display-tray.
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The Trench Tantalizer

Copyright by Kevin Holmes, The Trench Tantalizer that appeared
in the 1980s was made of 1.8-cm wooden cubes with imprinted
colored numbers, 1–5 in white, yellow, green, red, or blue (in the
figure, white, light grey, medium grey, dark grey, and black, re-
spectively). The puzzle has two solutions in numbers and two in
colors.

11 43 2

2
4

1 1 11 1
4 3 5

3 5

4

1 2 2 5

5

2 3

3 53 4 4 3

Allies Flag Puzzle

Appearing during the First World War, the Allies Flag Puzzle was
made of wooden cubes covered with printed paper, the two colors
red and blue printed on white.

Solving Instant Insanity and the Like

Solving Instant Insanity by trial and error is a tedious process. Al-
though the number of puzzle pieces is only four, the number of pos-
sible distinct configurations is 41,472. This count is derived as fol-
lows. The four cubes are put in sequence (in 4! possible ways) and
each cube has 24 orientations. However, in the solution, the se-
quence is not important, and each solved puzzle has 8 orientations.
Thus, the number of distinct positions is (4! ·244)/(4! ·8) = 41, 472. It
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Figure 2. Solution to Instant Insanity.

is difficult to systematically go through all possible positions with-
out making a mistake.

Before showing a much easier and systematic method, it is im-
portant to be able to uniquely identify each of the four blocks of
the puzzle, and to name the faces uniquely. O’Beirne describes a
straightforward method for this in four steps.

1. Search for the cube with three identical faces; call this cube
No. 1, and call these faces the A faces.

2. Search for the only cube with two A faces; call this cube No.
2. This cube has another pair of identical faces; call these the
B faces.

3. Search for a cube with one A face and two B faces; call it cube
No. 3. This cube has another pair of identical faces; call these
the C faces.

4. Call the fourth cube No. 4. This cube has two pairs of identi-
cal faces: C faces and D faces.

Having identified each of the cubes, the solution to Instant Insanity
can now easily be shown, as in Figure 2.

Avoiding the trial-and-error method and not having the above
solution available, there is a very elegant method available to solve
Instant Insanity using graphs. According to David Singmaster [4],
this graphical method is due to Carteblanche (1947).

The graph method starts by describing the puzzle in the form
of a graph. In the graph, the nodes represent the four ways the
faces appear, and each link represents a pair of opposing faces
on a cube. As each cube has three pairs of opposing faces (or
face pairs), each cube is represented in the graph by three links.
Figure 3 shows the graph representing Instant Insanity. If a face
pair has two identical faces, the link points back to its origin.

To find the solution shown in Figure 2, the challenge is to find
two loops that visit each of the four nodes, using each link at most
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Figure 3. Graph description of Instant Insanity.
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Figure 4. Three possible loops passing all four faces.

once. One such loop basically represents two sequences of all four
faces on the opposing sides of the row of four cubes. The number of
possibilities in the graph is very limited. Although three individual
loops can be found, only Loop 2 and Loop 3 together use each link
at most once; see Figure 4.

Although this is the case in Instant Insanity, finding two loops
is not necessarily the only way to find a solution. The correct re-
quirement is to find two sets of loops, each of which includes all
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Figure 5. Mutando in graph representation (left) and the two sets of loops
that form the solution (middle and right).

faces and which together use each link at most once. This is nicely
illustrated by the 4 × 1 × 1 solution for Mutando shown in Fig-
ure 5. This figure shows both the graphical representation of the
puzzle on the left, as well as the two sets of loops that form the
solution (middle and right).

For both Instant Insanity and Mutando, using the graph method
makes solving the puzzle childishly simple. This is somewhat dif-
ferent when the puzzle is extended by only one cube. Take, for
example, the five-cube version Hanayama. The graphic represen-
tation is shown in Figure 6 (O = Orange, G = Green, P = Purple, Y
= Yellow, and B = Blue).

Finding sets of loops in this graph is quite a bit more difficult
than in the case of Instant Insanity. Then again, the number of
distinct positions has grown from 41,472 to 995,328.

O 135
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Y

1524
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Figure 6. Graphic representation of Hanayama.
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On-the-Spot Insanity

At IPP 23 (the 23rd International Puzzle Party held in Chicago,
USA, in August 2003), I entered a puzzle called On-the-Spot In-
sanity in the Edward Hordern Puzzle Exchange. I see On-the-Spot
Insanity as a variation of Instant Insanity (hence the name). On-
the-Spot Insanity is a puzzle that consists of nine cubes (each face
having a distinct symbol) that need to be arranged in a 3 × 3 grid.
The faces on both sides of the grid need to be arranged in such a
way that no symbol occurs more than once in any column, row, or
diagonal (short or long). A picture of On-the-Spot Insanity is shown
in Figure 7. The instructions that accompany the puzzle are shown
in Figure 8.

On-the-Spot Insanity is a variation of a puzzle called Osiris that I
found a few years ago. The object of Osiris is the same, but it does
not use cubes. Each of the nine puzzle pieces has only two sides,
which makes the puzzle much easier. A picture of Osiris is shown
in Figure 9.

Figure 7. On-the-Spot Insanity.

On-the-Spot Insanity 
A Miscellaneous Put-Together Puzzle' designed and 

hand-made by H.J.M. van Grol for the 23rd 
International Puzzle Collectors Party, held in Chicago 

on July 31 – August 4, 2003. 

The object of On-the-Spot Insanity is to place its 9 cubes 
into a 3×3 square (two solutions). On both sides of the 

square the symbols (shown below) are not allowed to 'see' 
each other horizontally, vertically, or diagonally. 

 

Symbols used in On-the-Spot Insanity 

 

 
No two similar symbols along any of the indicated lines 

 

FRONT BACK 

Figure 8. The card with instructions for On the Spot Insanity.
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Figure 9. Osiris.

Solutions to On-the-Spot Insanity

On-the-Spot Insanity has multiple solutions, but I have not yet de-
termined the exact amount. One solution is shown in Figure 10,
which thereby also shows the exact configuration of the puzzle. If
you want to experience the level of difficulty of solving this puzzle,
this is the moment to stop reading. Make the cubes indicated in
the figure, mix them up, and try solving the puzzle.

Solving On-the-Spot Insanity

Before discussing an approach for solving On-the-Spot Insanity, I
will first look at some characteristics of the puzzle. First of all, let
us investigate the objective a bit closer. What does it mean that a
face may not occur twice in any row, column, or diagonal (short
or long)? In a 3 × 3 grid, there are only three distinct kinds of
places. Figure 11 shows, for each of these three locations marked
by a cross, where a duplicate face may be located, such that the
cross cannot “see” it. The left and middle graphics in Figure 11
show that, in each case, there are two locations that cannot be
“seen” by the cross. The cross in the third location can see all
other locations.

The above leads to the following conclusions:

• Each symbol can at most occur twice;

• Given nine locations, exactly five different symbols are needed
to fill the grid (no fewer);

• With five symbols, there are only two possible compositions
on the grid; see Figure 12.
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Figure 10. Solution to On-the-Spot Insanity.

Figure 11. Possible locations for an identical cube face.

Now let us compare the objectives of On-the-Spot Insanity and
Instant Insanity. Although, strictly speaking, the objectives are
different, there is a strong similarity. In both cases, the object
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D E B

B A C

A B D

C E A

B D C

Figure 12. The only two possible configurations.

X Z X

Z X Z

X Z X

Figure 13. Two sequences X and Z with non-matching cube faces.

is to find sets of non-matching cube faces. The difference is, of
course, that in On-the-Spot Insanity identical faces may be on the
same side of the puzzle, but only when a strict rule is obeyed: they
may not “see” each other. Thinking about it a bit longer, you might
recognize two sequences of non-matching cube faces: sequence X
of length 5, and sequence Z of length 4; see Figure 13. These
two sequences are not independent, as they are in Instant Insanity
(there are only two possible compositions, as shown in Figure 12),
but the sequences do suggest that the graph method might also be
used here.

Let us investigate the graph method by applying it to Osiris.
The graph for Osiris is shown in Figure 14. Because Osiris has
nine puzzle pieces, each with one face pair, there are only nine
links. Puzzle pieces 6 and 9 are identical, as are 4 and 7, and as
are 5 and 8. They are numbered according to their position in the
solution; see Figure 15.

Figure 15 shows two loop sets: Loop set 1 and Loop set 2. It
is clear that Osiris has only one solution. No other two loop sets
can be found in Figure 14. Note that, with the loop sets identified,
the puzzle has not yet been solved. The orientation of each puzzle
piece is clear (which face should be up), but both sequences still
need to be placed on the grid; see Figure 13. Remembering the
two possible configurations in Figure 12, we can conclude that the
order of the two sequences needs to be the same.
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Figure 15. The solution to Osiris and its two loop sets

The graph method seems a promising method also for finding a
solution to this type of puzzle. With that thought, I started using
it on On-the-Spot Insanity as well. Figure 16 shows the graph for
On-the-Spot Insanity, and Figure 17 shows the two loop sets that
represent the solution.

Using the graph method seems straightforward, and therefore
it is a useful method to solve these types of puzzles. However, the
real test, of course, would be to take the graph for On-the-Spot In-
sanity in Figure 16 and to determine the loop sets with which the
puzzle could be solved. This is more difficult than I hoped. Find-
ing the two loop sets from Figure 17 is far from trivial. On the
other hand, the graph method does facilitate a systematic search.
Without this approach, the puzzle is virtually impossible to solve
manually. Recall that Instant Insanity has 41,472 distinct posi-
tions. On-the-Spot Insanity has no less than 228,562,145,280 dis-
tinct positions. Nine cubes can be placed on the grid in 9! ways.
As each of the nine cubes has six distinct orientations, there are
69 different orientations for each ordering. Each grid is found eight
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Figure 17. The solutions to On-the-Spot Insanity and its two loop sets

times and can be mirrored over the diagonal. Thus, the total num-
ber of distinct positions is (69 · 9!)/(8 · 2). On-the-Spot Insanity thus
has 5,511,240 times as many distinct positions! In comparison,
Osiris has 11,612,160 distinct positions or 260 times as many dis-
tinct positions as Instant Insanity.

Open Issues

Clearly the graphical method is not the ideal method for solving
On-the-Spot Insanity. I would be interested in methods invented
by readers. It took about 50 years before the graph method was
found for Instant Insanity. Hopefully it will not take that long for
another method to arise. Note that, in general, Instant Insanity-
type puzzles get harder with more cubes. Robertson and Munro [2]
proved that Generalized Instant Insanity, with an arbitrary number
of cubes, becomes computationally intractable as the number of
cubes grows (formally, the puzzle is NP-complete).
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Going through the history of Instant Insanity, I came across the
Flags of the Allies puzzle. It is unclear to me how many versions
of the puzzle exist, whether it is always five cubes (or sometimes
four), which are the represented Allied countries (sources give con-
tradictory information, and samples from the collection of Jerry
Slocum show flags that neither I nor Jerry recognize). Reliable in-
formation about the Flags of the Allies puzzle and similar puzzles
is more than welcome.

If you know of other, older, newer, but above all different ver-
sions of Instant Insanity, please let me know. I would like to learn
their details: configuration, size, photo, origin, etc.

Acknowledgments. I thank Jerry Slocum for providing background
information and several pictures of puzzles in his collection. I also
thank my wife Maria and my son Peter for their patience while I
was working on this paper.
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The Adventures of Ant Alice

Peter Winkler

Ants, even in a one-dimensional environment, are a source of fasci-
nation for amateur puzzlists and mathematicians. Presented here
are ten puzzles (devised by myself, except where noted) involving
our “favorite ant” Alice. Each puzzle is intended to illustrate some
mathematical idea.
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We begin with the basic “ant puzzle.”

Falling Alice

Twenty-five ants are placed randomly on a meter-long rod, ori-
ented east-west. The thirteenth ant from the west end of the rod
is our friend, Ant Alice. Each ant is facing east or west with equal
probability. They proceed to march forward (that is, in whatever
direction they are facing) at 1 cm/sec; whenever two ants collide,
they reverse directions. How long does it take before we can be
certain that Alice is off the rod?

Guessing the End

When Alice does fall off, what is the probability that she falls off
the end that she was originally facing?

Last One Off

What is the probability that Alice is the last ant to fall off the rod?

Counting Collisions

During the process, what is the expected (i.e., average) number of
collisions that take place on the rod?

Damage to Alice

What is the expected number of collisions that Alice herself has?

Alice’s Insurance Rate

What is the probability that Alice has more collisions than any
other ant?

Damage to the Rest of the Ants

Suppose Alice has a cold, which is transmitted from ant to ant in-
stantly upon collision. How many ants will be infected, on average,
before the rod is cleared?

Alice at the Midpoint

Let us do a new experiment. Alice is carefully placed at the exact
center of the meter rod, with 12 ants placed randomly to her west
and 12 more to her east. As before, each ant faces randomly east
or west, and they all march in whatever direction they are facing
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at 1 cm/sec, reversing directions whenever any two meet head-on.
This time, however, ants do not fall off the rod: they turn around
when they reach the end. One hundred seconds later, the ants are
frozen in place. What is the maximum distance that Alice can be
from her initial position?

Alice’s NewWhereabouts

There are only 24 ants on the rod now, with 12 on the west half
facing east and the rest on the east half facing west. Alice is the
fifth ant from the west end. The ants proceed to march as usual,
reversing when they collide and falling off the ends. What do you
need to know about the initial configuration in order to predict
where Alice will be after 63 seconds?

Alice on the Circle

Now Alice is one of 24 ants randomly placed on a circular track
of length 1 meter. Each ant faces randomly clockwise or coun-
terclockwise and marches at 1 cm/sec; as usual, when two ants
collide, they both reverse directions. What is the probability that,
after 100 seconds, Alice finds herself exactly where she began?

Solutions

Falling Alice

The key to this (and succeeding) puzzles is to notice that if ants
were interchangeable, it would make no difference to the process if
they passed one another instead of bouncing. Then, it’s clear that
each ant is simply walking straight ahead and must fall off within
100 seconds. Because all the ants are off in 100 seconds, Alice in
particular has fallen off as well.

A nice way to think about the puzzle, which avoids making the
ants anonymous, is to imagine that each carries a flag. When two
ants meet and bounce, they exchange flags. Thus, at all times
each ant is carrying some flag, and the flags march straight past
one another. When all the flags are off the rod, all the ants are off
as well.

If you start an ant facing east at the west end of the rod, you
can arrange it so that Alice ends up carrying her flag off the east
end of the rod 100 seconds later. So waiting 100 seconds is both
necessary and sufficient to clear the rod.
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As far as I know, the first publication of the puzzle was in Fran-
cis Su’s “Math Fun Facts” web column at Harvey Mudd College;
Francis recalls hearing it in Europe from someone he can’t trace,
named Felix Vardy. The puzzle then showed up in the Spring/Fall
2003 issue of Emissary, the magazine of the Mathematical Sci-
ences Research Institute (Berkeley, California).

Dan Amir, a former Rector of Tel Aviv University, read the puzzle
in Emissary and posed it to T.A.U. mathematician Noga Alon, who
brought it to the Institute for Advanced Study; I first heard it from
Avi Wigderson of the I.A.S., in late 2003.

Guessing the End

The number of ants falling off the east end of the rod is the same
as the number of ants facing east at the start, because the number
of ants facing east never changes. (Alternatively, you can think of
flags falling off the rod instead). In any case, if k ants fall off the
east end, it is exactly the k easternmost ants who do so, because
the ants stay in order.

We may assume, by symmetry, that Alice is facing east at the
start, and we know she goes off the east end just when the number
of east-facing ants is at least 13. This means that 12 or more of the
other 24 ants are facing east. Of course, the probability that 13 or
more of 24 ants face east is the same as the probability that 11 or
fewer face east, so the probability of the event we are interested in
is one-half, plus half the probability of exactly 12 of 24 ants facing
east. The latter is

(
24
12

)
/224, which works out to 0.161180258; thus

the answer is 0.580590129. . . , a bit over 58%.

Last One Off

We may assume (by symmetry, again) that Alice departs by the east
end of the rod, which means that the 12 ants to her east do the
same. If she is last off, it must be that the 12 ants west of Alice
drop off the west end; it follows that initially exactly 12 flags, and
thus exactly 12 ants, faced west. This happens with probability(
25
12

)
/224, about 31%.
However, Alice is not necessarily the last ant off in these cases;

about half the time, her western neighbor has the honor. Thus the
desired probability is about 15.5%.

But are you satisfied with an approximation? Not when the
exact answer is available. The time each flag is fated to spend on
the rod is uniformly random, so the probability that the longest-
lived flag is one of the 13 east-facing flags is 13/25. Hence the

180 A Lifetime of Puzzles

  



�

�

�

�

�

�

�

�

correct value is 13/25 × (2512)/224, which is the same as the now-
familiar number

(
24
12

)
/224, about 16.1180258%.

Counting Collisions

Each flag crosses all others ahead of it that are headed towards it;
for the average flag, which starts at the midpoint of the rod, this is
6 of the 12 ahead of it. So the average flag hits 6 others; thus there
are 25 × 6 = 150 “hits” on average. But this counts each collision
twice, so the answer is 75.

An alternate, and slightly more rigorous, way to compute this is
as follows. What is the probability that two flags cross? No matter
where they are, this happens if and only if they face one another,
so the probability is 1/4. By linearity of expectation, then, the
expected number of flag crossings is

(
25
2

)× 1/4 = 25 × 24/8 = 75.
The maximum number of collisions is achieved if all ants are

pointed toward Alice (the center ant), in which case all 13 flags
facing Alice’s way hit all 12 flags facing the other way, for a total of
12 × 13 = 156 hits.

The least possible number of collisions is of course zero, but
this occurs with probability only 26/225 ∼ 0.000000774860382.

Damage to Alice

It’s easy to compute the number of collisions Alice’s flag has: as-
suming (say) that Alice initially faces east, there will be an average
of 6 (out of 12) flags ahead of Alice facing west, so her flag expects
to pass six other flags.

But Alice is not always carrying her original flag, and in fact we
expect Alice to have many more than 6 collisions on average. Why?
Because the average ant has 6 collisions (75×2/25) and Alice, being
the middle ant, should have more than average.

Now, any given ant collides only with its two neighbors and
alternates between them (because its direction alternates between
collisions). An ant’s last collision will be with its western neighbor
if it ends up falling off the east end, and with its eastern neighbor
if it goes off the west end.

Suppose that k ants face west initially. Because their flags
march off the west end of the rod, the k westernmost ants end
up dropping off the west end. Each of these ants who faced west
initially will have an equal number of collisions on each side; those
who faced east will have one extra collision on the east side. Thus,
the number of collisions between ant j (counting from the west)
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and ant j+1 is equal to the number of east-facing ants among ants
1 through j—as long as j < k.

By symmetry, we may assume that k is between 13 and 25
(i.e., Alice herself drops off the west end). Then, the number of
collisions between Alice and her western neighbor is exactly the
number of east-facing ants west of Alice; call this number x. The
total number of collisions experienced by Alice would then be 2x or
2x+1, depending on whether she herself faced west or east at the
start.

A priori, the expected value E[x] of x is 6, because there are 12
ants west of Alice and each could face either way. However, we
just assumed (darn!) that more than half the ants faced west. Note
that, because the expected number of east-facing ants east of Alice
is the same as E[x], the number 2E[x+1] that we seek is exactly
the total expected number of east-facing ants, given that they are
in the minority.

Suppose that the ants were assigned directions in alphabetical
order, with Ant Zelda last. There are 225/2 = 224 ways to do the
assignment so as to get a west-facing majority; of those,

(
24
12

)
result

in 12 east-facers among the first 24 choices. In those, Zelda is
forced to face west; in the rest, she is equally likely to face west
or east. It follows that the probability that she faces east is 1/2 −
(1/2)× (24

12

)
/224 ∼ 0.419409871.

Because Zelda’s probability of facing east is no different from
any other ant’s, we can multiply this by 25 to get the expected
number of east-facing ants, about 10.4852468. This, then, is the
average number of collisions experienced by Alice.

Alice’s Insurance Rate

Suppose that the westernmost k ants fall off the west end, and the
rest fall off the east end. We have seen in the previous puzzle so-
lution that, if ci is the number of collisions between ant i (counting
from the west end) and ant i+1, then ci stays the same or increases
by 1 up to i = k; after that, ci stays the same or decreases by 1. In
particular, ci = ci−1 exactly when ant i faces (initially) the end from
which he or she is fated to drop.

The number of collisions experienced by ant i is ci−1 + ci, so in
order for Alice to win the collision game, we need that c11 + c12 <
c12 + c13 > c13 + c14, which means that c11 < c13 and c12 > c14.
This can only happen if c11 < c12 = c13 > c14, which requires three
properties: k = 12 or 13, Alice faces the end from which she drops,
and her two neighbors face away from the ends from which they
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drop. This sounds like probability((
25
12

)
+
(

25
12

))
/225 ·

(1
2

)3

∼ 3.87452543%,

but the events are not quite independent.
Suppose that Alice faces east, her eastern neighbor is Ed, and

her western neighbor is Will. Then, Ed, like Alice, will be dropping
off the east end and must then be facing west (probability 1/2).
Will will be one of the 12 ants dropping off the west end and hence
must be facing east (probability 1/2). The remaining 22 ants must
be facing half west, half east (probability

(
22
11

)
/222), so the accurate

answer is (1
2

)2

·
(

22
11

)
/225 ∼ 4.20470238%.

Damage to the Rest of the Ants

Like many of the Ant Alice puzzles, this one is purely combinato-
rial. For example, somewhat counter-intuitively, it has nothing to
do with the length of the rod. You might think that a shorter rod
could enable some ants to get off the rod before they have a chance
to become infected, but once an ant is headed for the end with no
oncoming ants ahead, its collision days are over.

Probably the easiest way to make the required calculation is to
think of flags being infected instead of ants. We may assume that
Alice faces east; then all west-facing flags ahead of her will cross
hers and become sick, while east-facing flags ahead of her will
escape uninfected. In the meantime, the west-facing flags, after
crossing Alice’s flag, will infect all east-facing flags behind Alice,
while the west-facing flags behind Alice get away.

Because there are an average of 6 west-facing flags ahead of
Alice and 6 east-facing flags behind her, this seems to give an av-
erage of 13 infected flags (counting Alice’s), and thus 13 infected
ants.

However, there’s a slight glitch: if there are no west-facing ants
ahead of Alice, then there is no flag to cross Alice’s and infect the
east-facing flags behind her. This happens with probability 1/212

and reduces the expected number of infectees from 7 (Alice plus
an average of 6 east-facing flags behind her) to 1 (Alice alone). So
the correct answer is not 13 but 13 − 6/212 ∼ 12.9985352 sick ants
on average.
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Alice at the Midpoint

Suppose, as usual, that each ant carries a flag and that flags are
exchanged when two ants meet. Then, each flag travels exactly
one meter, bouncing once off the end of the rod and ending at a
position symmetrically opposite its initial position. In particular,
Alice’s flag ends up back in the center. But will Alice be carrying
it?

Indeed she will, because the ants remain in their original order.
The 12 flags originally on the west side of the rod are now on the
east side and vice versa, so Alice’s flag is once again the 13th flag,
and Alice herself is still the 13th ant.

So Alice ends exactly where she began; in other words, the max-
imum distance she can be from her starting spot is zero.

Contributed by John Guilford, of Agilent Inc., to Stan Wagon,
who made it the Macalester College Problem of the Week.1 I heard
it from Elwyn Berlekamp, at the Joint Mathematics Meetings in
Phoenix, January 2004. It was there that the central character
in this paper received her name; I believe that Elwyn actually has
an Aunt Alice. I was influenced as well by the presence at the
conference of Alice Peters of A K Peters Ltd., publisher of my puzzle
book, Mathematical Puzzles: A Connoisseur’s Collection (2003).

The puzzle was reprinted in the Spring 2004 issue of Emissary.

Alice’s New Whereabouts

Let x1, . . . , x12 be the initial positions of the 12 west-facing ants,
numbered from west to east; the positions are measured in cen-
timeters from the west end of the rod. Let k be the smallest num-
ber such that the flags beginning at xk+1, . . . , x12 remain on the rod,
ending, therefore, at xk+1 − 63, . . . , x12 − 63.

The ants, of course, remain in order. Because k flags drop off
going west, Alice is gone from the rod if k ≥ 5. Otherwise she is the
(5 − k)th remaining ant, counting from the west end, which puts
her in position xk+(5−k) − 63 = x5 − 63.

Thus, all you need to know is the position x5 of the fifth ant on
the east half of the rod, i.e., the 17th ant from the west end. Alice
will end up 63 cm west of that spot; if that spot was already less
than 63 cm from the west end, she falls off the rod.

This is a variation of a puzzle that was devised by Noga Alon
and Oded Margalit of Tel Aviv University and communicated to me
by Noga.

1http://mathforum.org/wagon/fall03/p996.html
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Alice on the Circle

As usual, we suppose that each ant carries a flag and that flags
are exchanged when two ants meet. Then, each flag travels exactly
once around the track in the given time period, ending where it
began. The ants themselves must remain in the same circular
order in which they started, so they have experienced (at most)
some rotation: every ant must move the same number of positions,
say k positions clockwise. In particular, Alice returns to her initial
position only if all the ants do.

Note however that, if m ants are initially facing clockwise, then
at any time there are always m ants moving clockwise and 24 −
m moving counterclockwise. This is because, at each collision, a
clockwise ant is exchanged for a counterclockwise ant; or, you can
think of it as conservation of angular momentum! In any case, the
average ant moves m − (24 − m) = 2m − 24 cm clockwise during the
experiment. Thus, we are back to the initial position if and only if
2m − 24 is a multiple of 24, i.e., if m = 0, 24, or 12.

The first two possibilities (where all ants initially face the same
way) have negligible probability, but the last contributes a healthy
16.1180377%.

To be precise, there are 224 = 16,777,216 ways to choose di-
rections for the ants, of which

(
24
0

)
+
(
24
12

)
+
(
24
24

)
= 1 + 2,704,156 +

1 bring Alice back to where she started. This gives probability
2,704,158/16,777,216.

The Adventures of Ant Alice 185

  



�

�

�

�

�

�

�

�

Part IV

Fitting In



�

�

�

�

�

�

�

�

Simplicity

Stewart Coffin

One hundred and sixty years ago, the iconoclastic hermit of Walden
Pond offered this advice: “simplify, simplify!” One can only wonder
what Thoreau would have thought today. My new cell phone came
with 50 pages of instructions, and Lasser’s latest income tax guide
has over 800 pages, most of which are incomprehensible to me. Do
things really need to be that complicated? Our natural yearning for
simplicity might also apply to mathematical recreations, and more
specifically to my special interest, which is geometrical and me-
chanical puzzles. Historically, it has been the simpler amusements
that have usually enjoyed the most enduring popularity. Tinker-
toys and building blocks are likely to still be around long after all
of today’s video games have been discarded.

Of course, to the aspiring inventor, it always seems as though
most of the simpler ideas have long ago been conceived and brought
to light, perhaps even copyrighted or patented. All the more satis-
faction, then, when the explorer of ideas stumbles upon a simple
amusement that appears to be new and original, as much as any-
thing in this world can truly be so described. For this article, I
have sifted though my 35-year accumulation of puzzle designs and
picked out a few that best illustrate the concept of simplicity.

Some of my more satisfying geometrical dissection puzzles have
involved fitting four pieces into a square or rectangular tray, while
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Figure 1. A peudo-dissection puzzle.

leaving some empty spaces. Because traditional dissection puz-
zles involve pieces packing solidly to fill all gaps, these puzzles are
perhaps more properly called pseudo-dissection puzzles. Shown in
Figure 1 is one that Mary and I frequently take on Elderhostel trips
to entertain our companions, very few of whom are ever able to
solve it, even after receiving hints. This puzzle exploits one’s over-
powering natural tendency to begin by trying to fit square corners
of pieces into square corners of the container, as we all have been
doing habitually, practically from birth. Even when the hapless
victims of this psychological trap are cautioned to try a different
approach, they will almost invariably revert to this hopeless first
step.

My most successful polyomino-type puzzles have involved fit-
ting just four or five pieces into a square or rectangular tray, as in
the example shown in Figure 2. The size of the square tray is such
that the five pieces fit snugly when they are arranged symmetrically
as shown. Again, the success of the design is based more on psy-
chology than mathematics. We spend most of our lives immersed in
a world of orthogonal arrangements—everything from city streets
and building plans to printed pages and computer screens. Thus
the unfortunate puzzle solver has much difficulty ignoring this pre-
disposition long enough to place the first piece skewed at an angle
to the tray. I call this general class of puzzles “Square Root Type,”
and I call this subclass “Square Root of Five,” referring to the rel-
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Figure 2. A “Square Root of Five”
puzzle.

Figure 3. A “Square Root of Ten”
puzzle.

ative dimensions of puzzle pieces and tray. Closely related is the
“Square Root of Ten” subclass, perhaps even more confusing, as
in the example shown in Figure 3. Many other variations on this
theme are possible.

In the world of cubic puzzles, the 3 × 3 × 3 size was popularized
by Piet Hein’s seven-piece Soma Cube. The puzzle is based on
dividing a cube into 27 equal parts according to a 3 × 3 × 3 grid
and joining these parts to form the puzzle pieces. Perhaps because
of the multiple solutions (over 200) for Piet Hein’s puzzle, the 27-
block size is often overlooked by puzzle designers as more of a
novel plaything rather than a real challenge. Indeed, the tendency
among puzzle designers these days (myself included) has been to
tinker with interlocking assemblies of greater size and complexity.
But of my designs in this class, my favorite is still the classic 3×3×3
Half-Hour Puzzle (see Figure 4). Here, my design objective was to
discover a set of pieces, all dissimilar and asymmetrical, preferably
all the same size, and with the maximum number of pieces that
would assemble into a 3 × 3 × 3 cube in only one way. Because
some of these requirements are mutually exclusive, a compromise
is required, resulting in the six pieces shown below. As the name
suggests, a half hour is a reasonable time for discovering the one
solution. Incidentally, many puzzle solvers now have access to
computer programs that can solve puzzles of this sort with blinding
speed, by a process that might be described as systematic trial and
error. One of the benefits of solving such puzzles the old-fashioned

Simplicity 191

  

http://www.crcnetbase.com/action/showImage?doi=10.1201/b10573-17&iName=master.img-049.jpg&w=154&h=154
http://www.crcnetbase.com/action/showImage?doi=10.1201/b10573-17&iName=master.img-050.jpg&w=154&h=153


�

�

�

�

�

�

�

�

Figure 4. Half-Hour Puzzle.

Figure 5. Drop Out Puzzle.

way is that nothing the human brain does can truly be described
as random. One is continually discovering educated tricks and
clever shortcuts to the solution, whether consciously or otherwise,
and that can be a recreation in itself.

In 1964, Martin Gardner wrote a Scientific American column en-
titled “The Hypnotic Fascination of Sliding Block Puzzles”.1 In it he
discussed the classic nine-piece Dad’s Puzzle, a particular favorite
of my childhood, although I don’t believe I ever solved it. In these

1Scientific American, 210:122–130, 1964. Reprinted in Martin Gardner’s Sixth
Book of Mathematical Diversions from Scientific American, Chapter 7, pages 64–70
(University of Chicago Press, 1983).
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many years, the hypnotic fascination hasn’t changed. Some of the
recently published designs of sliding-block puzzles are exceedingly
clever and complex, especially the three-dimensional ones. Even
among the flat kind, most are larger and more complex than the
4 × 5 Dad’s Puzzle. But I wondered: are simpler designs possible?
This question led to the creation of the Drop Out Puzzle, shown in
Figure 5. There are six movable pieces. The 3 × 4 tray has a clear
plexiglass top with a circular hole at one end, through which the
round disk can be dropped. The object is, by shifting the pieces
about, to eventually drop the disk through a hole in the bottom
of the tray at the opposite end. (An additional hole in the center
of the cover, not shown, is merely to facilitate pushing the pieces
around with the eraser-end of a pencil.) It may appear to be impos-
sible, but it can be done. I don’t think you will find a puzzle much
simpler than this. I wonder if Thoreau would have approved.
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Extreme Puzzles

Frans de Vreugd

For many years I have been interested in mechanical puzzles. One
of the types of puzzles I like best is interlocking puzzles. For these
puzzles, several pieces have to be moved before you can remove
the first piece from the puzzle. In the last 20–30 years, there have
been many developments in this category of puzzles. It seemed like
a worldwide, ongoing “race” to find the puzzle needing the highest
number of moves to remove the first piece. These puzzles are often
referred to as high-level puzzles. In the past ten years, many puz-
zle designs have appeared, requiring stunning numbers of moves
to take out the first piece. This article describes many of these
extreme puzzles.

History

One of the classic interlocking puzzles is the Chinese Cross (a.k.a.
Six-Piece Burr); see Figure 1. Bill Cutler made a complete study of
this type of puzzle using dedicated software. The standard version
of this puzzle is relatively easy to solve. A solid piece is removed
first, and then the rest would follow quickly. Most of these puzzles
are solid. Once assembled, there are no voids inside the puzzle.
Bill Cutler searched for puzzles that would take more than one
move to take the first piece out. Having empty spaces inside the
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Figure 1. Chinese Cross. Figure 2. Pieces of Bill’s Baffling
Burr.

puzzle is a requirement to have more than one move for removing
the first piece (or pieces). The internal voids allow pieces to be
moved without being taken out of the puzzle.

An amazing puzzle that Bill Cutler found with the aid of his pro-
gram was the first high-level puzzle published (in Scientific Ameri-
can), known as Bill’s Baffling Burr (see Figure 2). At the time it was
absolutely amazing that it took no less than five moves to remove
the first piece. Several years later Bruce Love designed a similar
six-piece puzzle that needs 12 moves to remove the first piece, ap-
propriately named Love’s Dozen; see the pieces of this puzzle in
Figure 3. The computer research done by Bill Cutler has proved
that this is in fact the highest level possible with six-piece burrs.

In 1958 Willem van der Poel from Zoetermeer, the Netherlands,
introduced another classic interlocking puzzle: the Van der Poel
Puzzle (Figure 4). It consists of 18 pieces, subdivided into a cage
of 12 identical pieces and an internal lock of six other pieces. The
puzzle is not extremely difficult (it needs only a few moves to get the
first piece out), but the introduction of the outside cage with the
internal lock proved to be an inspiration for many other high-level
puzzle designs.

It was again Bruce Love who came up with a stunning record.
He designed an 18-piece puzzle that needed no less than 18 con-
secutive moves to get the first piece out. The pieces of this puzzle
are shown in Figure 5. For many years the record of 18 moves was
unchallenged. Then, in the nineties, several puzzlers from all over
the world came up with improvements, which will be discussed in
this article. I will start discussing puzzles with many pieces and
continue with fewer and fewer pieces.
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Figure 3. Pieces of Love’s Dozen. Figure 4. Van der Poel Puzzle.

Figure 5. Pieces of Lovely.

Design Criteria

The number of moves you need to get the first piece out of puzzle
(called the level of a puzzle) is a good indicator of the level of diffi-
culty of the puzzle. A level 7-4 puzzle means that it requires seven
moves to get the first piece out and another four moves for the sec-
ond piece. There are more criteria that make a puzzle interesting.
It is nice to have a puzzle requiring many moves to solve, but it is
even nicer if there is only one way the puzzle goes together. If you
have a set of pieces that makes a level-18 solution but has many
alternative (and very easy) solutions, this is usually not a good
thing. If the pieces go together in only one way, it is called a unique
solution. Apart from looking for high-level puzzles, designers also
tend to look for these unique solutions.

When you look at the pieces of a high-level puzzle, they tend
to be rather complex. Producing a puzzle like that might be either
difficult, expensive, or both. Therefore, puzzle designers often look
for pieces with a special characteristic, called notchable pieces. A
notchable piece can be made with just a table saw. There are no
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Figure 6. (A) Notchable, (B) millable, (C) non-notchable pieces.

internal corners that have to be chiseled out or other operations
you cannot perform with a table saw. Some pieces can be milled
rather than notched; these are known as millable pieces. Figure 6
shows examples of notchable (A) and millable (B) pieces. Figure 6
(C) shows a piece with internal corners, which cannot be made
from a solid piece of wood without having to chisel out a blind
corner.

Using only notchable pieces is very convenient if you are manu-
facturing a puzzle. Another design criterion might be to have many
identical pieces.

Eighteen-Piece Puzzles

For many years it was thought that high-level puzzles were pos-
sible only if you had a puzzle with many pieces. The 18-piece
puzzle proved an important source of inspiration for puzzle inven-
tors worldwide. In the late 1990s, Brian Young from Tamborine,
Australia, reported his own design, needing 19 moves to get the
first piece out! This puzzle, called Coming of Age Mark II, is still a
best seller in his puzzle business, Mr. Puzzle. Brian did not use a
computer for this design.

The help of the computer meant an enormous leap forward in
creating high-level puzzles. Computer programmer Pit Khiam Goh
from Singapore designed a puzzle called Burrloon. The record of
19 moves from Brian Young was beaten, and not by just one or
two moves. To remove the first piece from the Burrloon puzzle
requires no less than a staggering number of 33 moves. Moreover,
this puzzle has two very interesting characteristics: the solution is
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Figure 7. Pieces of Burrloon.

Figure 8. Pieces of Tipperary.

unique, and all the pieces are notchable. The pieces of Burrloon
are shown in Figure 7.

In 2003, Jack Krijnen, a puzzle designer from the Netherlands,
improved the record again. His puzzle Tipperary has a wonderful
unique level-43 solution. The pieces are shown in Figure 8.

Two years later, Jack Krijnen and Pit Khiam Goh joined forces
and came up with another record-breaking design. This puzzle (for
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Figure 9. Pieces of the level-50 puzzle, whose solution is unique with three
colors.

pieces see Figure 9) has a level-50 solution, which is the highest
level known so far for this 18-piece puzzle.

The solution is not unique, but by applying different colors to
the pieces from the separate axes (x, y, and z), it can be made
unique in a very easy way. This cooperation shows that puzzle de-
signers are usually not competing with each other, but cooperating
with one another.

Fewer Pieces

Dic Sonneveld from the Netherlands has been a pioneer in the field
of high-level puzzles. From the early days on, he has been fine-
tuning many designs in order to try to raise the level of many of his
own designs. He uses an interesting technique for this. He starts
with an existing solution for a puzzle and analyzes where the open
spaces in the puzzle are. Then, he adds a cube to one of these po-
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sitions and tries to disassemble the puzzle again. In several cases
this resulted in a higher level. Although this method worked, it was
an arduous task to analyze all the different solutions, empty po-
sitions, and the new resulting puzzles. Often it took many weeks
to get just one extra move in the solution! Dic noticed that the
approach seemed to work, but that he really needed a computer
to do all the hard work. He developed a computer program that
started as a Word macro but soon turned into a complex Visual
Basic program. This program finds all the empty positions for ev-
ery single solution of the puzzle and generates new puzzles from
that. Then, all new puzzles are recalculated (to find out how many
moves it would take to disassemble these new puzzles), and then
the previous steps are repeated. As a test project, he used one of
his designs called Dic’s Dozen, a twelve-piece puzzle with an inter-
esting symmetry pattern; see Figure 10.

The results from his computer program were truly breathtak-
ing. By hand he had never come any further than 12 or 13 moves,
which seemed quite good at the time. When the program got up
and running, however, it started to pop out solutions with incred-
ible numbers of moves to remove the first piece. His first result
needed no less than 31 moves. That seems a lot less than the 43 of
the Tipperary design, but Dic’s Dozen used only 12 pieces instead
of the 18 of Tipperary. And this was only the start. The computer
ran for hours and hours, resulting in higher levels time after time.

Soon after the 31-move version, a 39-move version was found.
A week later the record was beaten again: 49 moves! And this
was not the end yet. A few weeks later, another leap forward was
reported: the computer had found a puzzle of level 64. (See Fig-

Figure 10. Dic’s Dozen.
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ure 11.) It is quite difficult to imagine having a structure of 12
pieces of wood for which you need 64 consecutive moves to get a
single piece out. And these were not the easiest moves. You had to
move five pieces in one direction, then three in another, then four
in another direction, etc.; see Figure 12 for an example of the com-
plicated moves. Actually, the research got a little bit out of hand.
It started as a theoretical exercise to find an interesting puzzle, but
in the meantime it had resulted in puzzles so horribly difficult that
no living human was ever able to solve these puzzles! Neverthe-
less, many people were interested in these record-breaking puzzles
and have had them made. I wonder how many actually found the
solutions themselves....

Six-Piece Puzzles

When it turned out that you could get high-level puzzles with 18-
and 12-piece puzzles, the question arose whether you could also
get high levels with fewer pieces. This usually adds to the attrac-
tion of a puzzle. If you have a puzzle with many pieces, people have

Figure 11. Pieces of Dic’s Dozen 64-5.

Figure 12. Complicated moves in the solution of Dic’s Dozen 64-5.
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no trouble understanding that it might be very difficult to put to-
gether or take apart. However, if a puzzle has only six pieces, how
hard could it be? Many different six-piece puzzles were designed
in the past years that look very much the same on the outside,
but have pieces that are very different. I will start with puzzles
with complicated pieces and then move on to puzzles with simpler
pieces.

Six Complicated Pieces

Lars Cristensen, a puzzle collector and designer from Denmark,
has designed several high-level puzzles. One of his creations is
called Belle L-Burr (see Figure 13), based on Kint-Bruynseels’ New
L-Burr. This puzzle has rather complicated pieces, as can be seen
in Figure 14. Making a physical model of this puzzle is therefore
not the easiest task. Once you have managed to make the pieces,
though, you will have a very difficult puzzle. The pieces will go
together in only one way, and once assembled, you need 40 moves
to remove the first piece. Needless to say, it is a very, very difficult
puzzle.

Figure 13. Belle L-Burr.
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Figure 14. Pieces of Belle L-Burr.

Six Board Burrs

An interesting group of puzzles that was researched by Bill Cutler
and myself is the so-called Six Board Burrs. These puzzles consist
of six flat pieces of dimensions 1 × 4 × 6, as shown in Figure 15.
Junichi Yananose from Japan has done a lot of fieldwork and has
designed many of these puzzles. Six Board Burrs have an extra
attraction. Removing the first piece might not be as difficult as
in other puzzles, but since the pieces are extremely interlocking, it
often takes many moves to get the second, third, and further pieces
out. In the research that Bill Cutler and I did, we considered not
only the regular pieces (pieces derived from the basic C-shape), but
also the irregular pieces; see Figure 16. We did a full analysis of all

Figure 15. Six Board Burr.
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Figure 16. Examples of a regular piece (left) and an irregular piece (right).

Figure 17. Four different Six Board Burr designs.

combinations of all 219 possible puzzle pieces. In total, we found
no less than 14,563,061,989 ways to fit six pieces together.

Some interesting designs are shown in Figure 17:

• Chocolate Dip Burr (highest level: level 13),

• Irregular Board Burr (unique level-11 solution),

• Tricolore (large number of moves for second and third pieces:
3-15-11-2-1),

• Chequered Board Burr (two solutions, both very hard: 2-9-8-
5-3 and 2-13-4-5-3).

Before we started our analysis, some interesting designs already
existed. Lars Christensen designed a six-board burr puzzle known
as Basic Board Burr (Figure 18), which is regarded as one of the
best in this category. By changing the length of the pieces from
six units to eight units, you could make the puzzle even harder, as
shown by the six-board burr in Figure 19 that was introduced by
Junichi Yananose from Japan.

The nice thing about the six-board burrs is that the puzzle stays
coherent even if you take a piece out. Sometimes a very specific
sequence of moves is needed just to interchange the place of two
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Figure 18. Pieces of Basic
Board Burr.

Figure 19. Pieces of Six Board Burr by
Yananose.

Figure 20. Two pieces of Tricolore changing places by moving through
each other.

Figure 21. Pieces that make all high-level solutions for Six Board Burr.
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pieces. An example of this is shown in Figure 20. This is an im-
portant mechanism to achieve high-level solutions.

From the research that Bill Cutler and I did, we started filtering
out the nice solutions. It turned out that if you use a subset of
only 31 pieces (out of the 219 possible pieces), you can make all
puzzles having a first level of 8 or higher, a second level of 13 or
higher, and/or a total number of moves for the first and second
level of at least 16 moves. Figure 21 shows this set of pieces.

Separated Board Burrs

An interesting sidestep from six-board burrs was introduced by
Jim Gooch from the United States. He suggested that it would be a
nice idea to have the pieces not side by side, but separated by one
unit; see Figure 22. These so-called Separated Board Burrs turned
out to be very difficult. I used this puzzle to test the program Dic
Sonneveld had written just for Dic’s Dozen.

Shortly after he had done the research on this puzzle, Sonn-
eveld rewrote the program for more general use. One of the first
and fascinating results was Zigzag, a six-piece puzzle with three
different pieces, two of each; see Figure 23. The distinct zigzag
shape of two of the pieces explains the name of the puzzle. George
Miller from Sonoma, CA, made some nice copies of this puzzle from
laser-cut acrylic; see Figure 24. Zigzag was just the beginning: the
potential for high-level puzzles in this group is enormous. It is in-
teresting to see that a puzzle with only six flat pieces, which do not
look too complicated, can result in a very difficult puzzle.

One of the most interesting puzzles of this type has a unique
level-17 solution. Only six pieces, and still you need 17 moves to

Figure 22. Transformation from Six Board Burr to Separated Board Burr.
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Figure 23. Zigzag. Figure 24. Zigzag made by
George Miller.

Figure 25. Pieces of Torture (left) and Extreme Torture (right).

get the first piece out. Tom Lensch from Dayton, OH, made some
very nice copies of this puzzle, which I call Torture (Figure 25, left).
But, it can be even better: a few days later I found a puzzle much
harder than the previous one. It needs no less than 28 moves
to remove the first piece! I called this improved version Extreme
Torture (Figure 25, right).
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The total sequence for complete disassembly is 28-21-9-8-3. So,
when you have removed the first piece after 28 moves, you need
another twenty-one to get the second piece out. And even at the
moment that only three pieces are left, you still need eight moves
to get a piece out!

Bent Board Burrs

Another interesting variation on the six-board burrs is the so-
called Bent Board Burrs. If you take the piece of a six-board burr
and “bend” over one of the ends, you get L-shaped pieces; see
Figure 26.

Initially, I thought that adding an extra “plate” to the end of
the piece would severely restrict the moves, resulting in lower lev-
els. This was not the case. For Six Board Burrs, the highest level
found was a level-11 puzzle; for the Bent Board Burrs, this num-
ber literally doubled. The hardest Bent Board Burr has a level-22
solution. Figure 27 shows the puzzle (middle) and the pieces of
this puzzle. Just like with the Six Board Burrs and the Separated
Board Burrs, getting the second piece out can be just as hard as,

Figure 26. “Bent” pieces. Figure 27. Bent Board Burr #1.
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Figure 28. Pieces of Bent Board Burr #4, with solution of level 10-10.

or harder than, getting the first one out. A nice example is Bent
Board Burr #4, where it takes ten moves to get the first piece out
and another ten to get the second piece out. Figure 28 shows the
pieces of this puzzle.

Other Six-Piece Puzzles

It turns out that six pieces are more than enough to make inter-
esting high-level puzzles. Many puzzle designers came up with
interesting new ideas for puzzles. Figure 29 shows a puzzle called
Mitosis, designed by Pit Khiam Goh. He was inspired by Dic Sonn-
eveld’s research and decided to write a level-raising program him-
self. One of the very nice results is Mitosis, a six-piece puzzle with
a unique solution of level 20-8.

Ronald Kint-Bruynseels from Belgium also made a whole range
of interesting six-piece puzzles. His puzzles are not only very-high-
level puzzles, but most of them are very nice geometric structures.
Figure 30 shows three of his interesting designs. On the left you
can see Escher’s Burr #1, with a solution of level 3-13. In the
middle, you can see Squarrel, with a level-10 solution. On the
right, you can see Sheffield Steel 6BB, which needs 17 moves to
take out the first piece and 14 more for the second.
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Figure 29. Mitosis and its pieces.

Figure 30. Three designs from Ronald Kint-Bruynseels: Escher’s Burr #1
(left), Squarrel (middle), and Sheffield Steel 6BB (right).

Boxed Burrs

An interesting group of interlocking puzzles is the so-called boxed
burrs (or framed burrs). Apart from having the pieces themselves,
there is a box in which they have to be fitted. Usually this means
severe restrictions for the movement of the pieces. A nice example
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Figure 31. Pieces of Framed Burr by Yananose.

Figure 32. Pieces of Fundamental Framed Burr by Christensen.

is a six-piece framed burr by Junichi Yananose. He came up with
the design shown in Figure 31. It has six pieces and a frame to fit
them in. When the puzzle is assembled, it takes 17 moves to get
the first piece out, and the solution is unique. Lars Christensen’s
Fundamental Framed Burr (Figure 32) has a level-27 solution; un-
fortunately, the solution is not unique.

Inspired by Dic’s Dozen and Yananose’s Framed Burr, I came
up with a design for a boxed burr combining the qualities of both
puzzles. The puzzle has only four pieces and a box, yet the results
were amazing. After doing a few test runs with Dic’s program,
I noticed the enormous potential of this puzzle shape. So far, we
had a record of 40 moves for a six-piece puzzle, meaning an average
of 6.6 moves per piece. Could this new criterion be beaten? The
answer was yes, although the number of pieces might be a bit
confusing. Do you have four pieces and a box, or do you consider
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Figure 33. Extreme Boxed Burr.

the whole puzzle to be five pieces? Anyway, the record was broken,
whichever way you count! One of the nicest results is a puzzle I
call Extreme Boxed Burr, which needs 23 moves to free the first
piece. It uses notchable pieces only (the box could be made from
two identical notchable halves) and has a unique solution. The
puzzle is shown in Figure 33.

A very similar design is called Life@21 (see Figure 34). The
pieces are very similar to the ones of Extreme Boxed Burr, but the
solution is not unique. It has another nice characteristic, though.
If you use two colors for the puzzle (which looks like a chocolate
dip), the colors of the box and pieces will match only if you find
the level-21 solution. In the other two solutions (being of levels 7
and 9 respectively), the colors do not match up. This puzzle was
made commercially by Bits & Pieces in the US. It was presented
assembled but with the colors not matching. It was the challenge
for the puzzler to first get the pieces out and then to put them back
in such a way that the colors would match.

There is another interesting variation. If you twist one end of
a piece, you get what I called “twisted” pieces. This makes solving
the puzzle quite confusing: on one end of the puzzle, you push
a horizontally oriented piece in, and on the other side a vertically
oriented piece comes out! Using these twisted pieces, some very
high levels were found. The highest was a level-47 puzzle. Even if
you count the box as a piece, it still means that you have an aver-
age of more than nine moves per piece! The puzzle had a problem,
though. This is a problem you often run into with high-level puz-
zles: if you allow rotational moves, you can easily find a shortcut
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Figure 34. Life@21.

Figure 35. Twisted Boxed Burr.

Figure 36. The Pelican.
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to disassemble the puzzle with many fewer moves. In this case,
the level 47 turned into a rather disappointing level 9 or so. For
some other puzzles in this group, the rotational moves are less of
a problem. An interesting design is the Twisted Boxed Burr, using
four rather complicated pieces (see Figure 35). The move sequence
is 29-22-6-3, resulting in 60 moves in total to disassemble the puz-
zle. Truly amazing is that when only two pieces are left in the box,
you still need six moves to get one out.

Dic Sonneveld also designed an interesting boxed burr. The
pieces are utterly complicated (not only to manufacture, but also
to handle). In Figure 36 you can see the pieces of this puzzle,
known as The Pelican.

Four Pieces

For an interlocking puzzle, four pieces seems an awkward num-
ber: very few four-piece interlocking puzzles are known. There is
one nice example, though: a puzzle designed by Vesa Timonen, a
talented Finnish puzzle designer. His Vesa Burr 4 has four compli-
cated pieces that intersect in only two directions; see Figure 37. It
still needs 14 moves to remove the first piece, however.

Three Pieces Only?

As announced earlier, I am reducing the number of pieces as the
article develops. Grand Giga Burr, designed by Lars Cristensen, is

A

B

C

D

A

B

C

D

Figure 37. Vesa Timonen’s Vesa Burr 4.
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a nice example of a three-piece puzzle with a high-level solution.
(See Figure 38.) The pieces are complicated, just like in Belle L-
Burr, and the number of moves is remarkable. You need 19 moves
to get the first piece out. If you allow rotational moves, you “only”
need 16 moves.

Three Simple Pieces

It was again Jim Gooch who had an interesting idea to make a
high-level puzzle with only three pieces. It is a variation on the
well-known Three-Piece Cross; see Figure 39. It requires only three
moves to get the first piece out and is therefore considered an easy
puzzle. Jim Gooch came up with an idea to replace the inner 1 × 1
units by a 2 × 2 grid, allowing more complicated pieces. Figure 40
shows the pieces of one of my designs that needs eight moves to
get the first piece out.

Figure 38. Grand Giga Burr. Figure 39. Three-Piece Cross.

Figure 40. Pieces of Three Piece NOT.
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Making Solutions Unique

If the solution of a puzzle is not unique (i.e., if there are more ways
than one to assemble a puzzle), there are many ways to make it
unique. What it basically comes down to is that you want to fix
certain pieces into certain places or orientations. You could do
this by using colors, as in Life@21. Sometimes it is enough to keep
just two specific pieces together. In that case, making an imprint
on these two puzzle pieces is enough. Other, more complex ways
to make a solution unique are to make a slightly deformed version
of your puzzle. You could squash it in one direction and stretch
it in another; see Figure 41. In that case you have isolated the
three main directions (you cannot use a y-direction piece in the x-
or z-direction).

If this is not enough, you might consider making a slanted ver-
sion of the puzzle, as shown in Figure 42. You can make it either
slanted in one direction (left) or slanted in two directions (right).
Stewart Coffin has made several slanted versions of well-known
puzzles. Do not forget that this makes production of a puzzle much
harder, because you are dealing with complicated compound an-
gles. If the orientation has to be fixed completely, you could use
dice as building blocks; see Figure 43. Another, rather sophis-
ticated way is to interconnect the pieces, as can be seen in Fig-
ure 44.

Figure 41. Stretched version of Dic’s Dozen.
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Figure 42. Slanted in (a) one direction and (b) two directions.

Figure 43. Dice as building blocks.

Figure 44. Another way to make a solution unique.
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Figure 45. Binary Burr.

Conclusion

The ongoing “race” to find high-level puzzles has resulted in many
interesting designs. In the early days, these designs were found by
hand, and puzzle designers were mainly aiming at finding a higher
level, independent of the number of pieces. When the computer
got involved, there were many leaps forward in the developments.
It was no longer just the number of moves that counted: getting a
high number of moves with fewer pieces started to become the new
goal. Other criteria, like finding unique solutions or having only
notchable pieces, started to become more important.

Another interlocking puzzle worth mentioning is Bill Cutler’s
design for a Binary Burr; see Figure 13. This puzzle uses a mech-
anism equivalent to a classic puzzle known as the Chinese Rings.
This puzzle is scalable. Every time you add one unit to the puzzle,
you almost double the number of moves. Bill Cutler was able to
translate the mechanism of this wire puzzle into an interlocking
puzzle. His Binary Burr has 21 pieces and needs 85 moves before
the first piece comes out. Since the system is scalable, the number
of moves you might get is virtually unlimited!

Copyright notice. In this article, many puzzle designs are shown.
The copyright of the puzzles is the propriety of the designers. None
of the puzzles described may be copied or otherwise reproduced
(except for personal use) without prior consent from the designer
concerned.
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Satterfield’s Tomb

David A. Klarner
Wade Satterfield

edited by Thane E. Plambeck

Imagine a stack of 20 cannonballs in the form of a regular tetrahe-
dron. The layers of such a stack are shown in Figure 1.

The number of balls in each layer are the so-called triangular
numbers, 1, 3, 6, 10, . . ., having the form

1 + 2 + 3 + · · · + L =
L(L + 1)

2
=
(

L + 1
2

)
.

The number of balls in a tetrahedral stack of L layers is the
sum of the first L triangular numbers, giving rise to the tetrahedral
numbers, 1, 4, 10, 20, . . . for L = 1, 2, 3, 4, . . ., respectively. In general,

12 3

48 9

10

6 75

18 19

20

16 1715

13 141211

Figure 1. Twenty cannonballs in four layers.
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Figure 2. The rhombic dodecahedron (interior cell).

the tetrahedral number corresponding to a stack with L layers will
have (

2
2

)
+
(

3
2

)
+ · · · +

(
L + 1

2

)
=

(L + 2)(L + 1)L
6

=
(

L + 2
3

)

cannonballs in the stack. The stack of 20 balls has four layers,
and indeed (

4 + 2
3

)
=

6 × 5 × 4
6

= 20.

Now, imagine that the stack is fitted into a regular tetrahedron
whose faces are tangent to the various balls on the outside of the
stack. Also, we cut this tetrahedron into cells, with each cell en-
closing a ball. The sides of the cells are the planes that are tangent
to the balls and separate the balls from one another.

If we were to separate a tetrahedral stack with five layers into
cells in this way, the most regular cell would be the one enclosing
the cannonball that is surrounded entirely by other balls. It turns
out that this cell is the rhombic dodecahedron shown in Figure 2.

Rhombic dodecahedra fill space just the way an infinitely large
stack of cannonballs would fill space. We could cut our regu-
lar tetrahedron from this three-dimensional lattice of dodecahe-
dra, extend the walls of some of the cells to meet the walls of the
tetrahedron, and delete some others (notably at the vertices of the
tetrahedron), and get the cellular decomposition of the tetrahedron
shown in Figure 3.

The nice property of this decomposition of the tetrahedron is
that the same shapes of cells can be used to form tetrahedra of
various sizes. We name the central dodecahedral cell the interior
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Figure 3. Satterfield’s Tomb.

Figure 4. Vertex cell. Figure 5. Edge cell. Figure 6. Face cell.

cell and name the other cells vertex, edge, and face cells, as shown
in Figures 4, 5, and 6.

To build a tetrahedron with L layers, we need

4
(
L−2

0

)
vertex cells,

6
(
L−2

1

)
edge cells,

4
(
L−2

2

)
face cells, and(

L−2
3

)
interior cells.

In particular, when L = 4,1 we use 4 vertex cells, 12 edge cells, 4
face cells, and 0 interior cells.

1As usual, we define the notation
(n

k

)
= n!

k!(n−k)!
when 0 ≤ k ≤ n and

(n
k

)
= 0

otherwise.
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Figure 7. Vertex cell net. Figure 8. Edge cell net.

Figure 9. Face cell net. Figure 10. Interior cell net.
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One of our fondest wishes is that some company would manu-
facture great numbers of these cells and make them available to us
and interested readers. Until this wish is fulfilled, we must satisfy
ourselves by making copies of the cells from tastefully colored, stiff
construction paper. To this end, we have furnished nets for the
various cells in Figures 7, 8, 9, and 10.

We recommend that the reader copy these nets with a larger
magnification. Then, tape a net temporarily to a construction card
and put pins through the vertex points of the pattern into the card.
Use a utility knife together with a steel rule to score the folds and
cut out the shapes. Another method is to copy the patterns directly
onto the construction paper. Some skill is required in taping the
cells, and a real expert must conceal all tape inside the cell!2

The Story of the Four Little Bears

There is a puzzle on the market that involves assembling various
pieces made out of balls into a six-layer tetrahedral stack of balls.
The pieces are made of marbles glued together at points. At least
four of the pieces of the puzzle are shaped like little bears, as sug-
gested in Figure 11.

Figure 11. The little bears.

It is a remarkable fact that these four little bears can be assem-
bled in two quite different ways to form a four-layer tetrahedral
stack. These two assemblages are indicated in Figures 12 and 13.

We wondered what the little bears would look like if they were
made to fill the tetrahedron without leaving holes between the mar-
ble segments of the bears. Imagine the marbles enclosed in a tetra-
hedron, and then let the marbles expand like soap bubbles until
they press against each other and the constraining walls of the
tetrahedral box enclosing them. What do the cells become? And
after gluing together the cells of a little bear, what would the shape

2One could also add tabs, and use glue and tape.
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Figure 12. The little bears form a four-layer pyramid.
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A BDA

Figure 13. The little bears form a four-layer pyramid a different way.

of a bear be like? The bears interlock in a complicated way; would
they pull apart when they were made of cells instead of marbles?
What other shapes analogous to the bears could fill the four-layer
tetrahedron? All of these questions concerning the four little bears,
and our inability to imagine in detail what they would look like as-
sembled into a tetrahedron, were the inspiration for this article.

One of us (Satterfield) used a computer to determine the various
shapes of the cells: all the measurements of the line segments, the
angles between them, the dihedral angles between planar faces,
and so on. These detailed measurements enabled us to build and
photograph a tinkertoy-like model. We also used the computer
to compute the nets shown in Figures 7, 8, 9, and 10. Because
of the near-death state induced by the effort involved in writing
these computer programs, we refer to the structure in Figure 3 as
Satterfield’s Tomb.

We urge the reader to make a set of colored cells to use while
reading the rest of this paper. Make the cells for four bears col-
ored, say, red, blue, green, and purple. Each colored set of cells
consists of one vertex cell, three edge cells, and one face cell. Our
first question is, how many different animals can be made with
these five cells? To answer this question, we need some notation
provided by Figure 14. The figure shows a numbering of the cells
as seen on the surface of the tetrahedron, cut along some of its
edges, and flattened. This is the numbering we will use for the
cells in the tetrahedron.
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7

11
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14

4 10 20
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11 12 13 14

15 16 17
18 19

20

20 410

18 8
15

Figure 14. Cell numbering for Satterfield’s Tomb.

Another useful device we need is the permutations of the cells
induced by rotating and/or reflecting the tetrahedron. There are
24 symmetries of the tetrahedron corresponding to rotations and
reflections. Such symmetries permute the four vertex cells among
themselves, the twelve edge cells among themselves, and the four
face cells among themselves. Table 1 lists these 24 permutations.

Armed with a notation for the cells and the permutations of
the cells induced by rotation and/or reflection, we now argue that
there are exactly 19 five-celled animals consisting of one vertex cell,
three edge cells, and one face cell. From now on, an animal means
a connected set of cells of these three types in these numbers.

We can assume without loss of generality that the animal has
vertex cell 1. (If the vertex cell is 11, 14, or 20, we use inverses of
the permutations b1, c1, or d1, respectively, to change the vertex cell
into 1). If 1 is the vertex cell, the face cell is either 6, 8, 9, or 16.
First, consider face cell 16. There are exactly six animals with
cells 1 and 16, namely, {1, 2, 5, 12, 16}, {1, 2, 5, 15, 16}, {1, 4, 10, 19, 16},
{1, 3, 7, 13, 16}, {1, 3, 7, 17, 16}, and {1, 4, 10, 18, 16}. It is easy to check
that these cells are

{ai · 1, ai · 2, ai · 5, ai · 12, ai · 16}
for i = 1, 2, 3, 4, 5, and 6, respectively, so they are really all equiv-
alent. We take the lexically smallest of these as representative.
So far, we have one animal, and all animals having the vertex cell
opposite its face cell are congruent to this one: {1, 2, 5, 12, 16}.

Now, we consider animals with vertex cell 1 and face cell either
6, 8, or 9. First, note that there is no loss in generality to assume
that, if the face cell is one of these three, it can be assumed to be
6. If the face cell is 8, apply a2 to change it to 6. If the face cell is 9,
apply a3 to change it to 6. Both a2 and a3 do not change cell 1, so

Satterfield’s Tomb 227

  



�

�

�

�

�

�

�

�

a1: (1)(2)(3)(4)(5)(6)(7)(8)(9)(10)(11)(12)(13)(14)(15)(16)(17)(18)(19)(20)
a2: (3, 4)(6, 8)(7, 10)(12, 15)(13, 18)(14, 20)(17, 19)
a3: (2, 4)(5, 10)(6, 9)(11, 20)(12, 19)(13, 17)(15, 18)
a4: (2, 3)(5, 7)(8, 9)(11, 14)(12, 13)(15, 17)(18, 19)
a5: (2, 3, 4)(5, 7, 10)(6, 9, 8)(11, 14, 20)(12, 17, 18)(13, 19, 15)
a6: (2, 4, 3)(5, 10, 7)(6, 8, 9)(11, 20, 14)(12, 18, 17)(13, 15, 19)

b1a1 = b1: (1, 11)(2, 5)(3, 12)(4, 15)(7, 13)(9, 16)(10, 18)
b1a2 = b2: (1, 11)(2, 5)(3, 15)(4, 12)(6, 8)(7, 18)(9, 16)(10, 13)(14, 20)(17, 19)
b1a3 = b3: (1, 20, 11)(2, 10, 15)(3, 19, 12)(4, 18, 5)(6, 9, 16)(7, 17, 13)
b1a4 = b4: (1, 14, 11)(2, 7, 12)(3, 13, 5)(4, 17, 15)(8, 9, 16)(10, 19, 18)
b1a5 = b5: (1, 14, 20, 11)(2, 7, 19, 15)(3, 17, 18, 5)(4, 13, 10, 12)(6, 9, 16, 8)
b1a6 = b6: (1, 20, 14, 11)(2, 10, 17, 12)(3, 18, 7, 15)(4, 19, 13, 5)(6, 8, 9, 16)
c1a1 = c1: (1, 14)(2, 13)(3, 7)(4, 17)(5, 12)(8, 16)(10, 19)
c1a2 = c2: (1, 20, 14)(2, 18, 13)(3, 10, 17)(4, 19, 7)(5, 15, 12)(6, 8, 16)
c1a3 = c3: (1, 14)(2, 17)(3, 7)(4, 13)(5, 19)(6, 9)(8, 16)(10, 12)(11, 20)(15, 18)
c1a4 = c4: (1, 11, 14)(2, 12, 7)(3, 5, 13)(4, 15, 17)(8, 16, 9)(10, 18, 19)
c1a5 = c5: (1, 20, 11, 14)(2, 19, 5, 17)(3, 10, 15, 13)(4, 18, 12, 7)(6, 9, 8, 16)
c1a6 = c6: (1, 11, 20, 14)(2, 15, 19, 7)(3, 5, 18, 17)(4, 12, 10, 13)(6, 8, 16, 9)
d1a1 = d1: (1, 20)(2, 18)(3, 19)(4, 10)(5, 15)(6, 16)(7, 17)
d1a2 = d2: (1, 14, 20)(2, 13, 18)(3, 17, 10)(4, 7, 19)(5, 12, 15)(6, 16, 8)
d1a3 = d3: (1, 11, 20)(2, 15, 10)(3, 12, 19)(4, 5, 18)(6, 16, 9)(7, 13, 17)
d1a4 = d4: (1, 20)(2, 19)(3, 18)(4, 10)(5, 17)(6, 16)(7, 15)(8, 9)(11, 14)(12, 13)
d1a5 = d5: (1, 11, 14, 20)(2, 12, 17, 10)(3, 15, 7, 18)(4, 5, 13, 19)(6, 16, 9, 8)
d1a6 = d6: (1, 14, 11, 20)(2, 17, 5, 19)(3, 13, 15, 10)(4, 7, 12, 18)(6, 16, 8, 9)

Table 1. Permutations of the twenty cells induced by symmetries of the
tetrahedron, in cycle notation. For example, (2, 3, 4) denotes that the per-
mutation maps face 2 to face 3, face 3 to face 4, and face 4 to face 2.

we have not violated the earlier assumption that the vertex cell is 1.
Given that the vertex cell is 1 and the face cell is 6, it is fairly easy to
see that, without any loss of generality, one of the three edge cells
can be assumed to be cell 2. Because cell 1 has to be connected
to the other cells in the animal, we must select a nonempty subset
of the edge cells {2, 3, 4}. Some of these subsets contain cell 2 in
the first place: {2}, {2, 3}, {2, 4}, {2, 3, 4}. Two subsets that do not
contain 2 are {3} and {3, 4}, but in these cases we can apply a4,
which does not change cell 1 or cell 6, but changes cell 3 to cell 2.
Only the subset {4} remains, but there is no connected animal that
includes cells 1, 4, and 6 but excludes cells 2 and 3.

So, now we want to find all inequivalent animals that include
cells 1, 2, and 6 and include two more cells from the remaining
eleven edge cells 3, 4, 5, 7, 10, 12, 13, 15, 17, 18, and 19. We
assume in turn that the smallest of these cells selected is 3, 4, 5,
. . . and see whether there is a second cell larger than it that con-
nects the animal. It is easy to check under these assumptions that
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A1: {1, 2, 3, 4, 6} A7: {1, 2, 4, 6, 12} A14: {1, 2, 6, 7, 12}
A2: {1, 2, 3, 5, 6} A8: {1, 2, 4, 6, 13} A15: {1, 2, 6, 7, 13}
A3: {1, 2, 3, 6, 12} A9: {1, 2, 5, 6, 7} A16: {1, 2, 6, 7, 17}
A4: {1, 2, 4, 5, 6} A10: {1, 2, 5, 6, 12} A17: {1, 2, 6, 12, 13}
A5: {1, 2, 4, 6, 7} A11: {1, 2, 5, 6, 13} A18: {1, 2, 3, 12, 15}
A6: {1, 2, 4, 6, 10} A12: {1, 2, 5, 6, 15} A19: {1, 2, 6, 13, 17}

A13: {1, 2, 5, 12, 16}
Table 2. Representatives of the 19 congruence classes of animals.

A5

A7

A12

A8

A19

A13

A1

A3

A2

A4

A9

A10

A14

A15

A16

A6

A11

A17

A18

Figure 15. The nineteen animals. The little bear is A15.

we can only get equivalent animals when cell 3 is selected. Then,
we get equivalent pairs {1, 2, 6, 3, 5} and {1, 2, 6, 3, 7} (apply a4 to the
first of these to get the second) and {1, 2, 6, 3, 12} and {1, 2, 6, 3, 13}
(again apply a4 to see that they are congruent).

The complete list of animals is given in Table 2 and Figure 15.
Now we turn to the problem of determining which of these nine-

teen animals can be used to fill the tetrahedron with four con-
gruent copies of themselves. It can be assumed without loss of
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generality that one of the copies is a representative Ai listed in Ta-
ble 2. Then we have to apply one of the permutations b1, b2, b3, b4, b5,
or b6 to Ai to fill vertex 11, then apply one of the permutations
c1, c2, c3, c4, c5, or c6 to Ai to fill vertex 14, and finally apply one of
the permutations d1, d2, d3, d4, d5, or d6 to fill vertex 20. Such a solu-
tion might be recorded (Ai : bu, cs, dt). Not all of these are distinct.
It might happen that Ai = a4Ai, in which case (Ai : a4bu, a4cs, a4dt)
is a solution equivalent to (Ai : bu, cs, dt).

The reader may want to have fun looking for these solutions by
making four sets of colored cells and filling the tetrahedron with
colored animals. Because the angles of these cells are not the
usual right angles, it is an intriguing pastime to build with these
little cells! We close with our list of results for each animal.

Results

Animal Number of nonisomorphic packings and their representatives

A1 2 {1, 2, 3, 4, 6}, {7, 9, 13, 14, 17}, {8, 10, 18, 19, 20}, {5, 11, 12, 15, 16},
{1, 2, 3, 4, 6}, {7, 9, 13, 14, 17}, {5, 8, 11, 12, 15}, {10, 16, 18, 19, 20}

A2 1 {1, 2, 3, 5, 6}, {7, 9, 14, 17, 19}, {4, 8, 10, 18, 20}, {11, 12, 13, 15, 16}
A3 3 {1, 2, 3, 6, 12}, {4, 5, 8, 11, 15}, {13, 16, 18, 19, 20}, {7, 9, 10, 14, 17},

{1, 2, 3, 6, 12}, {4, 5, 8, 11, 15}, {7, 9, 10, 19, 20}, {13, 14, 16, 17, 18},
{1, 2, 3, 6, 12}, {13, 16, 18, 19, 20}, {5, 8, 10, 11, 15}, {4, 7, 9, 14, 17}

A4 1 {1, 2, 4, 5, 6}, {10, 16, 17, 19, 20}, {8, 11, 12, 15, 18}, {3, 7, 9, 13, 14}
A5 2 {1, 2, 4, 6, 7}, {3, 9, 13, 14, 17}, {5, 8, 11, 12, 18}, {10, 15, 16, 19, 20},

{1, 2, 4, 6, 7}, {3, 9, 13, 14, 17}, {8, 10, 15, 19, 20}, {5, 11, 12, 16, 18}
A6 1 {1, 2, 4, 6, 10}, {5, 8, 11, 12, 13}, {9, 15, 18, 19, 20}, {3, 7, 14, 16, 17}
A7 0

A8 1 {1, 2, 4, 6, 13}, {5, 8, 10, 11, 12}, {3, 9, 18, 19, 20}, {7, 14, 15, 16, 17}
A9 1 {1, 2, 5, 6, 7}, {3, 9, 14, 17, 19}, {4, 8, 10, 15, 20}, {11, 12, 13, 16, 18}
A10 1 {1, 2, 5, 6, 12}, {13, 16, 17, 19, 20}, {8, 10, 11, 15, 18}, {3, 4, 7, 9, 14}
A11 1 {1, 2, 5, 6, 13}, {12, 16, 17, 19, 20}, {4, 8, 11, 15, 18}, {3, 7, 9, 10, 14}
A12 1 {1, 2, 5, 6, 15}, {9, 14, 17, 18, 19}, {3, 4, 8, 10, 20}, {7, 11, 12, 13, 16}
A13 1 {1, 2, 5, 12, 16}, {6, 13, 17, 19, 20}, {9, 10, 11, 15, 18}, {3, 4, 7, 8, 14}
A14 2 {1, 2, 6, 7, 12}, {3, 9, 10, 14, 17}, {4, 5, 8, 18, 20}, {11, 13, 15, 16, 19},

{1, 2, 6, 7, 12}, {3, 9, 10, 14, 17}, {4, 5, 8, 11, 18}, {13, 15, 16, 19, 20}
A15 3 {1, 2, 6, 7, 13}, {5, 8, 10, 11, 18}, {12, 15, 16, 19, 20}, {3, 4, 9, 14, 17},

{1, 2, 6, 7, 13}, {5, 8, 10, 11, 18}, {3, 4, 9, 19, 20}, {12, 14, 15, 16, 17},
{1, 2, 6, 7, 13}, {5, 8, 10, 15, 20}, {3, 4, 9, 14, 17}, {11, 12, 16, 18, 19}

A16 0

A17 1 {1, 2, 6, 12, 13}, {4, 5, 8, 10, 11}, {3, 7, 9, 19, 20}, {14, 15, 16, 17, 18}
A18 0

A19 1 {1, 2, 6, 13, 17}, {5, 12, 16, 19, 20}, {3, 4, 8, 11, 15}, {7, 9, 10, 14, 18}
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Give a small boy a hammer and he will find
that everything he encounters needs pounding.
∼Abraham Kaplan

Whenever anything remotely face-like enters our
field of vision, we are alerted and respond.
∼H. Gombrich

Computer-Assisted Seashell
Mosaics

Ken Knowlton

A typical mosaic, seen from a distance, appears to be a landscape
or a portrait. But, as you approach it, you see neither leaves nor
whiskers, but small separated pieces like tiles or seashells. The
picture you saw from a distance fades, particularly if the pieces
have interesting shapes and patterns. (In technical terms, high
spatial frequencies mask lower spatial frequencies, on many levels
of processing, from retinal to semantic.) The intrigue of mosaics
comes largely from seeing, at a distance, more than is there.

To make a mosaic, we easily imagine starting with a sketch,
painting, or photograph and replacing subareas with pieces of the
same kind (tesserae in mosaic lingo). What I describe here is my
own experience in making mosaic seashell portraits, along with the
obvious questions:

1. how/whether to preprocess a picture,

2. how to fragment the picture into subareas, and

3. how to choose the tessera for each area.

My answer to the larger question of whether to use computers in
these steps is obvious: as Kaplan would have expected, my shtick
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is computer graphics, and therefore every image that confronts me
needs my kind of pounding.

The seashells that I’ll talk about come in an almost-sepia range
of tones, but I speak of them, and the input pictures that guide the
work, as grey scale values.

Picture Enhancement

Some pictorial information is lost when turning a picture into a
mosaic. The crucial question is, how do we best preserve what we
want to see? An information theorist might say, “first of all, use
the available shades of grey equally, i.e., level the histogram of the
picture so that it has equal amounts of each shade: black, very
dark, medium dark, etc.” The expert might also say, “increase lo-
cal contrast so that small features just slightly lighter or slightly
darker than their immediate surroundings are made much lighter
or much darker.” (However, it is obviously difficult, though not im-
possible, to show detail smaller than the tesserae.)

These preprocessing methods have generally been used in pic-
ture preparation for the seashell portraits to be described, before
proceeding to the main planning phase.

Planning

The following sections describe, in chronological order, five meth-
ods that I’ve used for planning the seashell portraits. I think of
each as a successive improvement to the previous; your appraisal
may differ.

(One arguably instructive method, which is not included here,
is an attempt at more authentic representation: completely avoid
picture enhancements and map the brightness range of available
seashells as directly as possible to the dynamic range of the orig-
inal picture. I tried this, and the result was so washed out that
it served only as my entry in an exhibit of “Vague Art” in Phoenix
and, later, as a huge FrisbeeTM that I flung into a New Hampshire
landfill.)

Large Pixels, White Tesserae

After the starting image is enhanced, a computer graphicist’s first
inclination is to chop the picture regularly into “big pixels” and rep-
resent each such pixel with an object whose reflectance is roughly
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Figure 1. Square tiling with different sized shells of the same shade
(Jacques Cousteau, 1987, collection San Franscisco Exploratorium).

the average value within the pixel. Figure 1 resulted from such a
process, where I replaced each square tile with a light-meter cali-
brated seashell that reflects the called-for amount of light. These
highly bleached shells, and associated teeth, vertebrae, and bits of
coral, came from a small section of beach on Vieques Island; all are
essentially white. Intermediate shades were achieved, in effect, by
choosing the proper sizes of pieces, thus getting the right “bright-
ness” from the percentage of occupancy (similar to the dark end of
the halftone printing scale, where different sizes of white spots are
regularly positioned on a black background).
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Large Pixels, Shells of Varying Brightness

The example of Figure 2 used seashells of many shades of bright-
ness. Spacing was again according to a grid of squares. One might
alternately consider a hexagonal tessellation: hexagons are more
rounded and thus better approximations to seashell shapes. The
regularity of either tessellation lends itself to straightforward pro-
cessing methods and data structures; for similar reasons of regu-
larity, both tessellations are common in tiled floors.

There is, however, a problem. An input picture may be cut inap-
propriately by any regular grid laid upon it. In a portrait, the white
of an eye, or the iris or pupil, might be distributed into two or more
subareas and not show clearly in the result. The same mismatch,

Figure 2. Square tiling with similarly sized shells of different shades
(Statue of Liberty, 1991).
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to a lesser degree, can happen with other facial features- mouth,
eyebrows, lines, and shadows.

Fortunately, we can tweak the picture somewhat, because peo-
ple tolerate modest distortion. Specifically, we can interactively
distort the picture as we watch it onscreen under the proposed
grid and get crucial features of the picture lined up with subareas
of the grid. In practice, I have found that each corner of a portrait
can be moved independently, a few percent of the picture size—
stretching, shearing, and/or keystoning the whole picture—while
producing no obtrusive effects. In fact, instead of interactively dis-
torting the picture, I find it easier to interactively distort the lines
of the grid, and then apply the inverse map to appropriately distort
the picture to straighten the grid (imagining the grid as latching
everywhere onto the picture and righting itself).

Automatic Picture-Appropriate Picture Division

With seashells and other irregular tessera, why not use freer divi-
sion of the picture into subareas, making the division more appro-
priate for the picture and taking advantage of varied shapes? More
ambitious yet, why not let a computer program determine picture
fragmentation? Here’s a description of one such attempt.

The approach starts with the picture tessellated by small regu-
lar hexagons. The idea is to collect these hexagons automatically
into tight groups of three, four, and five, each group suggesting the
size, shape, and light reflectance of a seashell to occupy the area,
as indicated in Figure 3(a). Atomic operations are (1) to collect
three free hexagons to form a “triangle,” (2) to add a free hexagon to
a triangle, thus forming a “diamond,” and (3) to add a free hexagon
to a diamond to form a “half-moon.” Note that triangles can occur
in two orientations, diamonds in three, and half-moons in six.

After executing several such operations, there remain some free
hexagons and several choices of atomic operations to apply to them.
I used the following heuristics, in order of priority, to pick which
atomic operation to do next: (1) if a free hexagon has only one pos-
sible atomic operation to join it to other hexagons, perform that
operation now; otherwise (2) favor operations near the center of the
picture, and (3) make a combination whose contributing hexagons
are most similar in light value, but (4) defer groupings in large
monotone areas, as these will have many options.

Even with all of these considerations, lone ungroupable “or-
phan” hexagons can result; two such orphans already appear in
Figure 3(a). Instead of complete backtracking, the program con-
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(a) (b)

Figure 3. (a) Hexagon tiling with grouping. (b) New shell mosaic resulting
from that technique (Statue of Liberty, 1995).

tinues the grouping until the end and then compiles a list of the
orphan hexagons that resulted. The grouping is then attempted
again, with one change: the process begins by forming triangles
involving all of the previous orphan hexagons. If orphan hexagons
result from this grouping as well, the grouping process is repeated
with additional triangles involving these orphans.

The perversity of seashells presents a final problem: they refuse
to fill certain areas, particularly where the remote vertices of three
diamonds and/or half-moons meet. In ad-hoc post editing, I in-
serted another small seashell in such a place. Conceivably, the
process might better have started with smaller hexagons, to be
grouped by 7s, 8s, etc., but the complexity introduced by so many
patterns and orientations was daunting.

A result of this automatic picture division appears in Figure 3(b),
to be compared with Figure 2’s treatment of the same input pic-
ture. The mosaic in Figure 3(b) is “freer” in that one cannot easily
perceive the regularity. Many consider it more attractive, possibly
because there are more kinds of local patterns and various me-
andering paths that one may trace visually. The alert critic who
observes that Figure 3(b) is hardly an improvement over Figure 2
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should note that Figure 3(b) comprises only 855 seashells, as com-
pared with the 1386 seashells in Figure 2.

Distorted Hexagonal Tessellation

Another method is to start with a complete tessellation of seashell-
size regular hexagons superimposed on the input picture and in-
teractively displace vertices, one by one, so as to make edges bet-
ter fit the contours of the picture. This manual process is time-
consuming, but ultimately satisfying, because space gets better
filled. The method is also attractive because a small visual approx-
imation can show the developing result, step by step. An artwork
from this kind of treatment appears in Figure 4, where one can

Figure 4. Distorted hexagonal tiling done by hand (Albert Einstein, 1997,
collection Donald G. McNeil, Jr.).
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easily trace almost-horizontal lines across the mosaic; almost as
easily, slash and backslash diagonals can be discerned through-
out.

Hands-on Polygonal Tessellation

A similar, but freer, method is to start with no picture division and
to interactively create a mesh by (1) creating/erasing vertices, (2)
creating/erasing edges between vertices, and (3) moving vertices
(as with the previous method). Figure 5 shows one result. In large
smooth areas it exhibits the hexagonal tessellation seen previously;
in more complex areas it contains areas more varied in size and
shape.

Figure 5. Example of hands-on polygonal tessellation (Thomas Edison,
2004, collection John Caldwell).
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Other Methods and Tesserae

With a wide range of methods and tesserae, I have made other
real mosaics (physical constructions) using dominoes, dice, key-
board keys, puzzle pieces, tile fragments, pottery shards, spools
of thread, and jigsaw puzzle pieces; also, virtual mosaics (prints)
using “alphabetic” characters (normal letters, Morse code, Braille,
playing card symbols, and other alphabets); and finally, virtual
mosaics made of geometric forms (triangles, squares, tangrams,
pentominoes, etc.). Many of these works involve colored pictures
and tesserae, paying attention, of course, to individual color com-
ponents, but still considering agreement in brightness more im-
portant than agreement in red, green, or blue components.

These results can be seen on my website, http://www
.KnowltonMosaics.com. (And for details about other graphics work,
essays, and vita, see http://www.KenKnowlton.com.) For a wider
assortment of other artists’ variously perceived images, see Al
Seckel’s book Masters of Deception: Escher, Dali and the Artists
of Optical Illusion (Sterling Publishing Co., New York, 2004).

The world abounds with small things that could be pieces of
pictures. The challenges are to find an appropriate subject for an
inviting set of pieces, or to find and use appropriate pieces to por-
tray a worthwhile subject. Beyond such a close connection, I be-
lieve that some materials, for example seashells, become a medium
in their own right, eligible for wider use.
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Memories and Inconsistencies

Raymond Smullyan

Here I present some memories involving (mathematical) recreations,
and then some puzzles connected with Gödel’s incompleteness the-
orem and tricking the statement-proving machine.

Some Memories and Other Things

April Fool

I first knew Martin Gardner when we were both students at the
University of Chicago. Martin is a great April fooler; for example,
on one April 1st an article by him appeared in Scientific American
in which Martin claimed such fabulous things as that Leonardo
da Vinci was the inventor of the flush toilet, and that, in chess, a
winning move for White is pawn to king’s rook 4!

I am also fond of pulling April-fool jokes. A friend might receive
such a phone call:

Me: Have you read the amazing article in the New York Times
about Leonardo da Vinci?

Friend: No, what was it?

Me: There is now incontrovertible evidence that Leonardo da
Vinci was really a woman!
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Friend: That’s fantastic!

Me: By the way, what is the date today?

Even more amusing is what might aptly be called a meta April-
fool joke pulled by a six-year-old girl on her eight-year-old brother.
On one April 1st, the brother tried an April-fool joke on his sister.
The following dialogue then took place:

Sister: What’s the matter with you? Today is not April Fool’s!

Brother: (in amazement) It isn’t?

Sister: April fool!

A Dream

When I first studied algebra in high school and heard about irra-
tional numbers, I had the following curious dream: I was riding
in a New York subway, and to my horror, it stopped at a station
“17

√
2.” I realized that I could never get to a rational numbered

station again!

A Curious Puzzle

When I first studied high-school geometry, the following idea oc-
curred to me. Imagine that you have an infinite solid plane table
with a finite rod bolted perpendicular to the table. To the top of
this finite rod is hinged one end of an infinite rod. The hinging
allows the infinite rod to move up and down, but the curious thing
is that the rod cannot possibly move down because both it and
the table are solid, and therefore the rod cannot pierce the table.
And so, you have the curious phenomenon of the hinged rod being
supported at only one end!

Omega Inconsistency

Imagine that we are all immortal, but there is a sleeping sickness
that, if you catch it, will put you to sleep forever. However, there
is an antidote that will wake you up, but only for a limited time.
The problem now is this: imagine that your loved one contracts the
sleeping sickness today. If you give her the antidote today, she will
wake up for two days and then go back to sleep forever; if you give
the antidote on the next day, she will wake up for four days; and
so on. In general, if you give her the antidote in n days from now,
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she will wake up for 2n days. Now, you wish her to be with you
awake for as many days as possible, but on any one day, if instead
of giving her the antidote, you wait just one more day, you will have
her for twice as long! Thus, on any one day, it is irrational to give
her the antidote on that day, yet it is certainly irrational never to
give her the antidote at all!

This disturbing situation might be an example of an ω-incon-
sistency (omega inconsistency), a concept in mathematics defined
as follows. Consider a mathematical system that deals with the
natural numbers 0, 1, 2, . . . , n, . . . . It is called inconsistent if some
sentence and its negation are both provable. The system is called
ω-inconsistent if there is a property such that there is a proof that 0
doesn’t have the property, a proof that 1 doesn’t have the property,
and for each natural number n, there is a proof that n doesn’t
have the property; yet at the same time, there is a proof that there
exists a number having the property! Despite the oddness of the
situation, one cannot derive a formal inconsistency from it. There
are indeed consistent systems that are ω-inconsistent. The point is
that a proof consists of only a finite sequence of sentences, so given
an infinite sequence of sentences, even though it may be impossible
that all of them are true, one cannot necessarily demonstrate this
with any finite number of the sentences.

The situation can be nicely analogized as follows. Imagine that
we are all immortal and that there are infinitely many banks in the
universe: Bank 1, Bank 2, . . . , Bank n, . . . . You get a check saying
PAYABLE AT SOME BANK, but unknown to you, it is invalid. You
have taken it successively to Bank 1, Bank 2, . . . , Bank n, . . . , and
at no time have any of the banks honored it. Even after you have
tried billions of banks, you cannot be sure that the next bank you
try will not honor it, so at no time can you prove that the check
is invalid. Now, if there had been only finitely many banks in the
universe, then after having tried them all and failed with each one,
you would have proved that the check is invalid. But with infinitely
many banks, you can never prove the check invalid, even though
it is. This is an example of an ω-inconsistency.

A humorous illustration of an ω-inconsistency was given by the
mathematician Paul Halmos: he defined an ω-inconsistent mother
as a mother who says to her child: “You may not do this, you
may not do that, you may not do . . . .” The child asks, “Isn’t there
something I can do?” The mother replies, “Yes, there is something
you can do, but it’s not this, nor that, nor . . . .”

The notion of ω-consistency will play an important role later in
this article.
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Some Gödelian Puzzles

I am fond of constructing puzzles that illustrate the essential ideas
behind the proof of Gödel’s incompleteness theorem. As many of
you know, Gödel showed that, even for the most comprehensive
mathematical systems of our times, there is always a sentence
that is both true and unprovable in the system. He constructed
a sentence that, in a certain sense, asserted its own unprovability
in the system. How did he do this? The puzzles below embody the
essential ideas. The first one is an updated and improved version
of one that I have published previously.1

An Accurate Proving Machine

We consider a machine that proves various sentences constructed
from the three symbols P, R, and N. By a positive sentence I mean
any expression of one of the following two forms (where X is any
expression built from those symbols):

1. PX.

2. RX.

These sentences are interpreted as follows: PX means that X is
provable (by the machine, of course) and is accordingly called true
if and only if X is provable. RX asserts that XX (the repeat of X) is
provable, and hence is accordingly called true if and only if the re-
peat of X is provable. RX has the same meaning as PXX, and thus
the two sentences are either both true or both false (depending on
whether XX is provable).

By a negative sentence I mean one of the following two forms:

1. NPX.

2. NRX.

NPX is called true if and only if X is not provable (unprovable),
and NRX is called true if and only if XX is unprovable.

We have an interesting loop: the machine is self-referential in
that it proves various sentences that assert the provability or un-
provability of other sentences. Now, we have given a precise def-
inition of what it means for a sentence to be true. We are now
given that the machine is accurate in the sense that every sentence

1See Raymond Smullyan’s chapter “Gödelian Puzzles” in Tribute to a Mathemagi-
cian, A K Peters, 2004.
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proved by the machine is true; it never proves any false sentences.
This has several ramifications. For example, if PX is provable, so
is X, because if PX is provable, it must be true, which means that
X is provable. Now, suppose that X is provable; does it necessarily
follow that PX must be provable? No, it does not. If X is provable,
then PX is true, but I never said that all true sentences are prov-
able. I said only that no false sentences are provable. As a matter
of fact, there is a true sentence that is definitely not provable (as-
suming that the machine is accurate), and your problem now is to
find one.

Problem 1. Find a sentence that is true, but the machine cannot
prove it. (Solutions to problems are given at the end of this article.)
Hint: Construct a sentence that asserts its own unprovability.

A Curiosity

Actually, one can construct two distinct sentences X and Y such
that one of the two must be true but unprovable, but there is no
way to tell which one it is!

Problem 2. Find two such sentences X and Y . (There are in fact
two possible solutions.) Hint: Find sentences X and Y such that
X asserts that Y is unprovable and Y asserts that X is provable.

Remark. I think that it was problems like the ones above that in-
spired Professor Melvin Fitting to once introduce me at a math
lecture by saying, “I now introduce Professor Smullyan, who will
prove to you that either you don’t exist or he doesn’t exist, but you
won’t know which.”

A Truly Gödelian Machine

The solution to Problem 1 comes somewhat close to Gödel’s ar-
gument, but Gödel never used the notion of truth, which was only
later made precise by Alfred Tarski. What now follows comes closer
to Gödel’s original argument. Our present machine uses the same
symbols P, R, and N, as before, as well as subscripts with the sym-
bol 1. For any positive integer n, Pn means P followed by n sub-
scripts of 1 (e.g., P5 denotes P11111). Our sentences are the same as
before, together with sentences of the following two forms (for all n
and X):

1. PnX.

2. NPnX.
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The idea now is this: the machine proves its sentences at var-
ious stages, and PnX is interpreted to mean that X is provable at
stage n, while NPnX means that X is unprovable at stage n. We
are given, as part of the definition of “provable,” that a sentence is
provable if and only if it is provable at some stage n.

We shall refer to PX and NPX as negations of each other, and
similarly with RX and NRX. A sentence is called undecidable (by
the machine) if neither it nor its negation is provable. The machine
is called consistent (or sometimes simply consistent) if no sentence
and its negation are both provable. And now we call the system ω-
consistent if it is simply consistent and also there is no expression
X such that all the infinitely many sentences NP1X, NP2X, . . . ,
NPnX, . . . are provable and at the same time PX is provable. The
intuition is that PX means that X is provable at some stage or
other, so if PX is true, there must be some n for which PnX is
true, and hence NPnX must be false. Thus, if the machine prints
only true sentences, then it cannot be ω-inconsistent. However,
ω-consistency (which is the assumption that Gödel used) is much
weaker than the assumption of accuracy that we used previously.

We are no longer given that the machine proves only true sen-
tences. Instead, we are given that the machine obeys the following
four conditions:

G1: If X is provable at stage n, then PnX is provable.

G2: If X is unprovable at stage n, then NPnX is provable.

G3: If PnX is provable for some n, then PX is provable.

G4: If RX is provable, so is PXX, and if NRX is provable, so is
NPXX.

The idea behind G1 and G2 is that, at any stage, the machine
has perfect memory for what it has and has not previously proved.

From these four conditions follows a theorem:

Theorem 16.1. G. (for Gödel) If the machine is ω-consistent, then there
is an undecidable sentence. More specifically, there is a sentence G
such that

1. if the machine is simply consistent, then G is unprovable; and

2. if the machine is ω-consistent, then the negation of G is also
unprovable.
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The proof of Theorem G can be facilitated by first proving the
following two facts:

Fact 1. If X is provable, then so is PX (assuming conditions G1

through G4).

Fact 2. The statement of ω-consistency implies that, if PX is prov-
able, then so is X (again assuming conditions G1 through G4).

Problem 3. Prove the above facts and Theorem G, and exhibit an
undecidable sentence G.

Solutions

Problem 1. One such sentence is NRNR. Recall that, for any expres-
sion X, the sentence RX is true if and only if XX is unprovable.
Taking NR for X, we see that NRNR is true if and only if the re-
peat of NR is unprovable, but the repeat of NR is the very sentence
NRNR! Thus, NRNR is true if and only if NRNR is unprovable, which
means that either NRNR is true but unprovable, or false but prov-
able. The latter alternative is ruled out by the given condition that
no false sentences are provable.

Problem 2. First let us show the following. Suppose that X and Y
are sentences satisfying the following two conditions:

1. X is true if and only if Y is unprovable.

2. Y is true if and only if X is provable.

Then, one of the two must be true and unprovable, but there is
no way of telling which one it is! Here is the reason why. Either Y
is true or it isn’t. If it is true, then X is provable (as Y says); hence,
X is true (because no false sentence is provable), and therefore Y
is unprovable (as X says). And so, if Y is true, it is unprovable.
Now, suppose that Y is false. Then Y is unprovable, so X is true
(by (1)). Also, if Y is false, then X is unprovable (because Y wrongly
asserts that X is provable). And so, if Y is false, then X is true but
unprovable.

In summary, if Y is true, it is unprovable, and if Y is false,
then X is true but unprovable. However, there is no way of telling
whether Y is true or false, and hence there is no way of knowing
which of X or Y is the one that is true but unprovable.

Now we need to find sentences X and Y satisfying conditions
(1) and (2). One solution is to take X = NPRNPR and Y = RNPR.
Another is to take X = NRPNR and Y = PNRPNR.
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Problem 3.

Proof of Fact 1: Suppose that X is provable. By definition, it is
provable at some stage n. By G1, PnX is provable, so by G3, PX is
provable. �

Proof of Fact 2: Suppose that PX is provable and X is unprovable.
By definition, X is unprovable at any stage, so by G2, the sentences
NPIX, NP2X,... , NPnX, ... are all provable. But PX is provable,
contradicting ω-consistency. Hence, if the machine is ω-consistent,
then the provability of PX implies the provability of X. �

Proof of Theorem G: The undecidable sentence is the same as that
of Problem 1—NRNR—but the proof is now different, and, I believe,
more interesting.

1. Suppose that NRNR is provable. By Fact 1, so is PNRNR. On
the other hand, applying the second half of G4 with X = NR,
because NRNR is provable, so is NPNRNR. Thus, if NRNR is
provable, then PNRNR and NPNRNR are both provable, and
the machine is then inconsistent. Thus, if the machine is
simply inconsistent, then NRNR is unprovable.

2. Suppose that RNR (the negation of NRNR) is provable. Apply-
ing the first half of G4 with X = NR, PNRNR is also provable.
By Fact 2, if the machine is ω-consistent, then NRNR is prov-
able, and the machine is then simply inconsistent. Therefore,
if the machine is ω-consistent, then RNR is also unprovable,
and thus NRNR is undecidable. �
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A Bouquet for Gardner

Jeremiah Farrell
Thomas Rodgers

In celebration of Martin Gardner’s 90th birthday, we present a bou-
quet of word puzzles and games based on regular solids and their
graphical representations as flowers.

Puzzling Pelargoniums

Our tribute bouquet starts with several PELARGONIUMS1—all but
two of which are red, all but two of which are yellow, and all but
two of which are green. How many flowers are in our main bou-
quet? The reader should be able to determine the answer from
just this information. This riddle is an adaptation of one of Mar-
tin Gardner’s charming Snarkteasers [4, #52]. The answer will be
given soon below.

1Pelargonium is a genus of the Geraniacae family of plants, with common name
“geranium,” notable for their brightly colored flowers. All-capital words in this arti-
cle refer to flowers or flowering plants.
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Figure 1. The five regular convex Platonic solids.

Platonic Pelargoniums

Meanwhile, there is some mathematics to be explained about our
PELARGONIUMS and the hybrids that we obtain from them. We
start with one of Gardner’s earliest articles, “The Five Platonic
Solids” [2, Chapter 1]. There he proves that the tetrahedron, the
hexahedron (cube), the octahedron, the dodecahedron, and the
icosahedron are the only possible regular convex solids (Figure 1).

Most of our flowers will grow from these five Platonic seeds. In
his article, Gardner points out that

the cube and octahedron are ‘duals’ in the sense that if the
centers of all pairs of adjacent faces on one are connected by
straight lines, the lines form the edges of the other. The dodec-
ahedron and icosahedron are dually related in the same way.
The tetrahedron is its own dual.

We will combine planar graphs of the solids with their duals in a
special way to obtain our PELARGONIUMS. Such planar graphs
are called Schlegel diagrams. This is a model that, as Gardner ex-
plains [8, p. 23], “is simply the distorted diagram of the solid, with
its back face stretched to become the figure’s outside border.” In
Figure 2 we draw with solid, curved lines the Schlegel diagrams of
a tetrahedron, an octahedron, and an icosahedron. Superimposed
with dashed lines are the Schlegel diagrams of the respective du-
als, the tetrahedron, the hexahedron, and the dodecahedron, re-
spectively. The three outer dashed lines in each diagram are to be
regarded as meeting in the back face.
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Figure 2. Schlegel graphs and their duals.

Figure 3. The three main flowers: ROSE, ORCHID, and PELARGONIUMS.

We label the nodes with the letters of ROSE, ORCHID, and
PELARGONIUMS. Finally, we extend the drawings into the com-
pleted flowers by making new nodes at the intersections of the for-
mer dashed and solid arcs and then labeling each new node with
the two letters on the endpoints of the former nodes. We connect
two new nodes that share a common letter in their labels.2 Figure 3
shows the resulting three flowers. These three flowers answer our
opening riddle.

2In graph theory, this transformation is called the line graph.
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Figure 4. Coloring the petals of the flowers.

Figure 5. The two ORCHID hybrids: PELARGONIUMS and GERANIUM.

The flowers have 3-, 4-, and 5-cycles that bound new regions.
Some of these cycles correspond to the former nodes of the Pla-
tonic solids, and they inherit the single letter as their label. The
other cycles—the petals of the flower—correspond to the former
regular faces of the Platonic solids. Shading these petals results
in a two-coloring of the flower; see Figure 4. Each petal inherits
the labels from its boundaries, and the labels have been chosen to
form words that are main entries in most unabridged dictionaries
or atlases. (We used the Merriam-Webster New International Dictio-
nary, third edition.) We will be able to use these labels for certain
puzzles and games that we have in mind on the flower graphs.
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The numbers of different flower parts are as follows:

Nodes 3-petals 4-petals 5-petals
ROSE 6 8 0 0

ORCHID 12 8 6 0
PELARGONIUMS 30 20 0 12

Recall that the outside of each flower is also a petal.
It is possible to form hybrids by judicious relabeling of the flow-

ers. For instance, Figure 5 illustrates the new flowers PELARGO-
NIUMS and GERANIUM formed on ORCHID. It may be possible
to obtain other hybrids using the labels WILD ROSE, VIOLET,
MARIGOLD, MYRTLE, etc. Remember that the labeling should
yield bona fide dictionary entries on the new names of the parts.

Puzzles on Pelargoniums

There is a famous puzzle invented in the 1850s by the Irish mathe-
matician Sir William Rowan Hamilton that was originally played
on a solid dodecahedron and that can be played on our green
PELARGONIUMS grid. Gardner first described this puzzle in “The
Icosian Game and the Tower of Hanoi” [1, Chapter 6]:

[T]he basic puzzle is as follows. Start at any corner of the solid
(Hamilton labeled each corner with the name of a large city),
then by traveling along the edges make a complete “trip around
the world,” visiting each vertex once and only once, and return
to the starting corner.

Today this is called finding a Hamiltonian circuit. The twenty 3-
cycles of PELARGONIUMS are the “vertices” that must be visited
in a circuit on our graph. They are each joined by a two-letter node
on the flower. It is also possible to write the twenty three-letter
words on tiles and try to arrange them in a chain so that abutting
tiles have two letters in common. If the chain closes, you have
solved the puzzle.

Gardner writes:

On a dodecahedron with unmarked vertices, there are only two
Hamiltonian circuits that are different in form, one a mirror
image of the other. But if the corners are labeled, and we con-
sider each route “different” if it passes through the 20 vertices
in a different order, there are 30 separate circuits, not count-
ing reverse runs of these same sequences. Similar Hamiltonian
paths can be found on the other four Platonic solids.
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One of the 30 solutions is given at the end of this article. Other
informative Gardner articles about Hamiltonian circuits include
“Graph Theory” [3, Chapter 10], “Knights of the Square Table” [6,
Chapter 14], and “Uncrossed Knight’s Tours” [4, p. 186]. John
H. Conway’s very interesting puzzle “A Dodecahedron-Quintomino
Puzzle” [8, p. 23] can be adapted to our flower.

Gardner has often written about magic squares in his Scientific
American columns, and we were especially interested in his report
about Room squares reprinted in “The Császár Polyhedron” [10,
Chapter 11]:

A Room square is an arrangement of an even number of ob-
jects, n + 1, in a square array of side n. Each cell is either
empty or holds exactly two different objects. In addition, each
object appears exactly once in every row and column, and each
(unordered) pair of objects must occur in exactly one cell.

The Australian mathematician Thomas G. Room had called this
concept “A new type of magic square” in 1955, but it was later dis-
covered that they had been in use before 1900 in scheduling bridge
tournaments. We have discovered in our flowers a generalization
of these squares. For instance, using the yellow ORCHID, we can
form this 4 × 4 square from the 12 nodes:

4 RI HD CO
3 CH ID OR
2 OH IC DR
1 DO CR HI

a b c d

This square is magic on the rows and columns in the sense that
each set of three entries transposes into the word ORCHID, the
magic constant. It is not a Room square because the taboo pairs
IO, HR, and CD never occur together. It is instructive to locate
these pairs on the ORCHID graph.

A pleasant little puzzle is possible by preparing 12 tiles with
the two-letter words on them and trying to reconstruct one of the
1,152 solutions to the puzzle that look different to the eye. Two
people can play the puzzle as a game by drawing a tile in turn and
placing it on the grid so that no common letter occurs in any row
or column. The last player to be able to play wins. To play expertly,
one must heed complementary pairs of words consisting of taboo
mates: RI-OH, ID-CO, IC-DO, HI-OR, CR-HD, and CH-DR. If any
of these occur in the same row or column, it will be impossible
to complete the trio of words in that row or column. It can also
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be proved that, where the blank squares in the grid intersect, we
must insert complementary words. For example, the two blanks at
a2 and b4 intersect at a4 and b2, where the complements RI and
OH, respectively, occur.

This last property can be used in a magic trick. Let the sub-
ject find one of the possible solutions to the puzzle and then turn
all the tiles face down. The subject turns over and exposes any
tile, and the magician can then call out another (the complement)
and is able to locate it in the grid. This is repeated until all tiles
are exposed. If the grid is on a board, it may be carefully rotated
before any tile is exposed, and of course the trick will still work. In-
terchanging pairs of rows or columns—including the blanks—can
make the trick even more mysterious.

The 12 two-letter words are the edges of a three-dimensional
cube with one letter at each corner. Similar square grids are possi-
ble using the edges of an n-dimensional cube. This generalization,
as far as we know, has never been explored.

The 20 three-letter words in the green PELARGONIUMS flower
yield another magic square. One solution with the magic constant
PELARGONIUMS is the following:

MAR OIL SUN PEG
PUG MRS ALE ION
LIE PUN MOS RAG

AGE PIN MOL SUR
SON RUG PIE LAM

The taboo pairs are MP, AN, LU, RI, GO, and ES, which lead
to the complementary pairs MAR-PIN, MRS-PIE, MOS-PEG, MOL-
PUG, LAM-PUN, ALE-SUN, RAG-ION, AGE-SON, SUR-LIE, and
RUG-OIL.

There are 28,800 solutions to this puzzle that will look different
to the eye. (Purists would not regard all of these as truly different
because of certain symmetries of the grid.) Each of the remarks
about the 4 × 4 ORCHID grid hold as well for this 5 × 5 PELARGO-
NIUMS grid.

These magic squares may have applications in designing tour-
nament schedules. For instance, suppose that we have three two-
person teams that are to play one-on-one games of four types, a, b,
c, and d, over four days. If the team members have initials IO, HR,
and CD, respectively, our 4 × 4 square gives the pairings on each
day.
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Other Possible Pelargoniums

It is possible to extend our flower garden into higher dimensions.
For example, there are six regular polytopes in four dimensions—
the analogues of the Platonic solids. One is the hypercube [11,
Chapter 13], but perhaps the simplest is the polytope ASTER, or
the regular simplex, as geometers call it, whose Schlegel diagram
appears in Figure 6. See also Gardner’s “Tetrahedrons” [3, Chap-
ter 19]. It has five nodes, ten lines, ten 3-cycles, and five 4-cycles.
Specifically, the parts are A-REST, S-TEAR, T-SEAR, E-STAR, R-
SEAT, AS-RET, AT-ERS, EA-STR, RA-SET, ST-ARE, SE-RAT, SR-
TEA, TE-RAS, RT-SEA, and RE-SAT. This flower is self-dual, like
the tetrahedron to which it is similar, and so a dual ASTER, in-
terchanging nodes with 4-cycles and lines with 3-cycles, could be
superimposed on the graph. When reproduced in two dimensions,
the result would be a very “busy” flower!

There are of course other solids of interest that are not regular.
One such infinite class is prisms, solids with polygonal bases and
tops, with quadrilateral sides. As an example, consider the flower
in Figure 7. This flower is the Schlegel diagram of a hexagonal
prism. As a puzzle, we ask the reader to place the twelve letters
of PELARGONIUMS in the nodes so that each of the six 4-cycles,
as well as the two 6-cycles forming the base and top of the prism,
transposes into words. Our solution is given at the end.

Figure 6. The ASTER. Figure 7. The Schlegel
diagram of a hexagonal
prism.

Playing with Pelargoniums

The basic flower diagrams can be used for a variety of board games.
One game that can be played on any of the three flowers starts by
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placing tokens on all the nodes. Two players alternately remove
one or more tokens from any one of the cycles on the board. The
player that removes the last token wins the game. This game is
a Nim-type game that superficially resembles David Gale’s Chomp.
See Gardner’s accounts “Nim and Tac Tix” [1, Chapter 15] and
“Sim, Chomp and Race Track” [9, Chapter 9] for details. On our
flower boards, however, these games are second-player wins. Can
you figure out the strategy?

A more challenging game, and one we cannot predict the win-
ner of, is Ten Men’s Morris played on the green PELARGONIUMS
flower. Each of two players has ten distinctive tokens that they
alternately place on the nodes. When a player obtains a cycle of
tokens, that player has formed a Mill and may remove one of his
or her opponent’s tokens. A token that is part of a Mill cannot be
removed. After all their tokens have been placed, the players alter-
nately move their tokens to empty, adjacent nodes, trying to form
Mills. The game continues until one player loses by being reduced
to two tokens.

All of our games and puzzles may be played strictly as word
games, without using the board at all. This usually makes them
immensely harder to play. In “Jam, Hot and Other Games” [5,
Chapter 16], Gardner recounts a word version of tic-tac-toe by
Canadian mathematician Leo Moser, who called it Hot. Without
the symmetry of the board or grid as a guide, the games take on
new life. Even our Ten Men’s Morris game can be played as a word
game. The players have a word list composed from the 3- and 5-
cycles of PELARGONIUMS and begin play by drawing, in turn, ten
tiles from a face-up bone pile of 30 tiles. The tiles contain the two-
letter words of the nodes. When someone is able to form a word
Mill with their tiles, they take a tile from their opponent’s ten and
place it back, face up, in the bone pile. After drawing their ten
tiles, the players continue by exchanging one of the tiles in front of
them with one from the bone pile that has a letter in common, still
hoping to form Mills. When a player is reduced to just two tiles,
they have lost the game.

Conclusion

It should be obvious that this paper could not have been writ-
ten without the tremendous influence of Martin Gardner. Instead
of “A Bouquet for Gardner,” it would be far more proper to ti-
tle this essay “A Bouquet from Gardner.” We are grateful for the

A Bouquet for Gardner 261

  



�

�

�

�

�

�

�

�

years of pleasure he has given us and the pleasure he continues to
give us.

Solutions

Puzzling Pelargoniums. If there are n PELARGONIUMS, n− 2 of them
are red, n−2 of them are yellow, and n−2 of them are green. Thus,
n ≥ (n− 2)+ (n− 2)+ (n− 2) = 3n− 6, or n = 3. Implicit in the puzzle
is that there are only three colors, implying that, in fact, n = 3.
(Otherwise, technically, there could be just two PELARGONIUMS,
of some other color.)

Hamiltoniancircuit puzzle. One solution is MAR-RAG-RUG-SUR-SUN-
SON-ION-OIL-LIE-PIE-PIN-PUN-PUG-PEG-AGE-ALE-LAM-MOL-
MOS-MRS.

Hexagonal prism problem. The best set of words we found is GLAMOR,
SUPINE, GAIN, LUNG, PLUM, POEM, ROSE, and AIRS. (See Fig-
ure 8.)

Figure 8. Solution to Figure 7.

Nim-like game. Our hint for the Nim-type game is to take advantage
of the symmetry of the board, keeping in mind the complement of
your opponent’s play. For further insights on this kind of strategy,
see Gardner’s “The Game of Hex” [1, Chapter 8] and “Dodgem and
Other Simple Games” [10, Chapter 12].
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NetWords: A Fascinating New
Pencil-Paper Game

Mamikon Mnatsakanian
Gwen Roberts
Martin Gardner

In 2004, the first author of this paper invented NetWords, a pencil-
and-paper game that combines creative construction of words with
topology. In its development phase, this game was played many
times by the three authors of this paper. As they played, the three
refined the rules of the game until they arrived at the version de-
scribed here.

In NetWords, players write different letters of the alphabet and
connect them with nonintersecting lines. They compete to find the
most and longest words formed by connected letters. The result
is a network densely interwoven with numerous unexpected words
(hence the name NetWords).

Players will be surprised and delighted to discover what words
they can form. The game can be enjoyed by both adults and chil-
dren. Besides enhancing language skills, NetWords can serve as a
playful introduction to the mathematical field of topology.

The structure of the game makes NetWords rich in strategy. It
allows for more creativity in composing words than other popular
word games, because players are free to choose letters and connect
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them in any direction. And the rules are still flexible, so players
can change and improve them.

A Sample Game

To explain how to play NetWords, we have shown a sample game
actually played by the authors. Because the game is played in
turns, any number of players can participate. Two players—let’s
call them Ana and Bob—start with the word GAME, as shown in
Figure 1.

Suppose that it’s Bob’s turn now. First, Bob looks for words
in this mini-network, formed by four letters and three connecting
lines. Words can be traced along paths of connected letters. Bob
reads GAMMA by following the lines between the letters G-A-M
back and forth. As you see, a letter may be included more than
once in a word, and a letter may repeat itself as if it were connected
to itself. It’s essential to make your connections clear; thus, we
suggest circling each letter as it is written.

Next, Bob may connect a pair of letters if this results in a new
word. He connects E to G, forming EGG. Notice that more words,
like GEM, AGE, and GAGE, have appeared. Bob claims GAGE for
scoring. Bob may draw new connections between letters in the
same turn, as long as each forms a word and does not cross other
connection lines. Do you see another such connection that forms
a word?

Finally, Bob may add a new letter and connect it to an existing
letter. This is his last connection during this turn. It also should
not intersect any other connection line. Bob adds N and connects
it to A. He need not form a word with this connection.

Bob may search for more words in his final diagram. Surpris-
ingly, MANNA and MANAGE emerge. Bob claims them for scoring
(in addition to GAGE and GAMMA claimed earlier).

A MG

E

Figure 1. The beginning of a NetWords game.
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A
MG

E

N
Figure 2. The end of Bob’s first turn (dashed lines indicate his additions).

Bob looks for any more words, but finds none to claim. His turn
ends, leaving the configuration shown in Figure 2.

Not all words may be claimed for scoring. Ana and Bob have
agreed that a word must have at least three letters for connecting
purposes, and at least four letters for scoring purposes. Observe
that short words, like A, I, AM, and ME, are ignored, and three-
letter words like EGG and MAN are not claimed for scoring.

When Ana and Bob were beginners, they used shorter words for
both purposes, beginning with two-letter words. But shorter words
lead to frequent connections, and thus to many smaller regions.
More letters become isolated from one another, which severely lim-
its options for longer and more interesting words. Later, they
played with at least three-letter words for both purposes. Now,
in this game, they decided only to score words of at least four
letters. A four-letter word—being the shortest possible scoring
word—counts 1 point; a five-letter word is worth 2 points; and so
on. (The point value of a word is 3 less than its length.) The longer
a word, the more effectively it scores. For example, a six-letter
word scores the same as three four-letter words, and a nine-letter
word scores the same as three five-letter words. Clearly, aiming for
long words is a winning strategy.

During Bob’s turn, Ana has been looking for words, too. Her
turn begins with the opportunity to claim other words that she
finds in the network. She claims NAME, which Bob missed. To
make more words, she needs to draw more connections; each must
form a word of at least three letters. Connections without intersec-
tions are easy to make early in the game. She connects E to A,
claiming MEAN. She then connects E to N for AMEN.
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A
MG

E

NI

Ana

NAME
MEAN
AMEN
MAMA
MANE
GENE
ENEMA

Bob

GAMMA
GAGE
MANNA
MANAGE

Figure 3. The end of Ana’s first turn (dashed lines indicate her additions),
including the words for scoring.

Bob objects to AMEN, but finds it in the dictionary. The rea-
son for Bob’s objection was that he had planned to form the word
MAGMA, but can’t, since it is now impossible to connect G to M
without crossing other lines. All words containing these two adja-
cent letters will now be impossible to form in this game. A player’s
hopes can be dashed with a single stroke of the pen.

Ana looks for more words; she finds and claims MAMA, MANE,
GENE, and ENEMA. Then, Ana adds the letter I, as shown in Fig-
ure 3, and connects it to G. She finds no other words to claim and
turns the game over to Bob.

Ana realizes that she could have formed IMAGE by placing I in a
different region, adjacent to the letter M, although IMAGINE would
still be impossible.

At this point in the game, the network contains six letters and
eight connections. Each player’s words are shown on the playsheet.
Ana has 8 points, and Bob has 8 points.

Bob connects I to N for NINE. He connects I to A for AGAIN. Bob
adds C and connects to I. Then, he finds MAGIC, and MAGICIAN
appears. Bob ends his turn.

Ana claims CINEMA. She adds T, connects it to E, claiming
NINETEEN, TEENAGE, and GAMETE. Ana ends her turn.

Bob connects N to T, claiming GIANT. He connects I to T for
GIGANTIC and GENETIC. Bob connects C to E for NICE and I to
E for NIECE. He then adds L, which he connects to I. He claims
ILLICIT and LIGAMENT. Only after his turn does Bob notice that
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C

L

Bob’s second turn
Ana’s second turn

Bob’s third turn

Figure 4. The end of Bob’s third turn.

he has lost MANAGEMENT to Ana. Figure 4 shows the network at
this point in the game.

In three more turns, Ana and Bob finished their designated
12-letter game. The game took about an hour. The final net-
work (not shown) contained some 100 words, including ANTENNA,
CIGARETTE, ELEGANT, ELEMENT, GARAGE, GARRET, INTEND-
ED, INTELLIGENT, LENIENT, MEANDER, REMAINDER, and SI-
LENT. The players’ total scores exceeded 200 points.

We suggest that you try to reconstruct the diagram and find
some of the many words not mentioned above.

Formal Rules and Guidelines

To summarize, here is a list of the formal rules of NetWords.
A letter of the alphabet may be written only once in a game.

Players decide ahead on the total number of letters in the game.
A word is a sequence of connected letters with a minimum

length (three letters in the sample game). Words must either be
accepted by all players or listed in an agreed-upon dictionary. A
letter can be repeated or duplicated in tracing a word.
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Two structural rules are essential to the game’s subtlety. First,
a line connecting two letters must not cross any other connection
lines. Second, only one connection line is allowed between two
letters, and a letter cannot be connected to itself.

A turn consists of two parts. In the first part, the player con-
nects pairs of existing letters. A player may make any number of
such paired connections in a turn, provided that each connection
results in a new word. In the second part, the player adds a new
letter and draws only one line connecting it to an existing letter.
This connection is the last one. It need not result in a word.

Words may be claimed at any time during the turn. To be
claimed for scoring purposes, a word must have at least four let-
ters. Its point value is its length minus the minimum length of
a word defined (three letters in the sample game). When a player
forms a word, it should be announced and written down for ev-
eryone’s view and judgment, and its connections should be traced.
A word may be claimed only once in a game. The player with the
highest score wins.

Starting NetWords with a word like GAME gives a memorable
title to that game. Players may begin with several connected letters,
or they could start by simply adding and connecting one letter at a
time. In this sample game, Bob could start with A and Ana could
form GAME; in that case, the first claimed word may serve as a
convenient title for that particular game.

After the last letter is written, each player takes a turn without
adding letters to find more words to claim. A final group brain-
storming session (unscored) will usually reveal a surprising num-
ber of overlooked words. Using a different color for each player
helps everyone see and evaluate each individual’s input.

A friendly “no-timing” approach works well. If necessary, “idle
timing” can be used: if no word is claimed within a minute, the
turn ends.

Proper nouns, abbreviations, and acronyms are not advised.
Slang words can be used. If a player has variations of the same
word (plural, roots, forms with prefixes or suffixes, adjective or ad-
verb forms), s/he can claim only the longest. Thus, if a player who
has claimed GAMESTER (for 5 points) later claims GAMESTERS,
only 1 more point is added to that player’s score. If a different
player claimed GAMESTERS, however, that player would score the
full 6 points for a nine-letter word, and the player who originally
claimed GAMESTER would still earn the 5 points scored earlier
(scores are never taken away). If a longer form of a word has
already been claimed, shorter versions of the word may not be
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claimed by any player. (Thus, if GAMES were the first word claimed
in a game, no one could later claim GAME.) Players should agree
in advance on what constitutes a variation on a word; for example,
if RENOVATE were claimed, would players then be barred from
claiming NOVA because the words have the same root?

One can see many more words that could have been formed
with just a few illegal crossings, such as CENTIMETER, EMER-
GENCE, DETERMINANT, and INTELLIGENCE. A variant that ad-
vanced players may wish to explore is to allow players to pay a
penalty—such as 3 points per crossing—in order to claim words
that can be formed only by moving between one or more pair of
letters that are separated by lines.

Experienced players may choose words with higher numbers of
letters for connecting and claiming purposes. In our sample game,
a new letter could be added in any of the regions (closed or not),
but not on an existing connection line. More advanced versions of
NetWords may allow players to insert a new letter in a connection
line between two letters, provided it forms a word (without drawing
a new line). Another version may allow players to cross connection
lines with a new letter inserted at the intersection, if doing so forms
words in both directions. Playing a solitaire game is always a good
way to hone your strategies.

In addition to a wealth of words, there are many interesting
topological features embedded in the game. For example, you could
figure out how to specify the network so that the game could be
played over the phone. You may also observe the “triangulation”
features of the final network; for instance, we can predict that the
final network in a 12-letter game will contain almost (but no more
than) 30 connections. Perhaps you might try to prove that three-
letter words will never repeat, so they won’t need to be checked for
duplication. Here’s a fascinating question to ponder: what network
would provide the highest total score using all the letters of the
alphabet?

What about playing NetWords on a torus? That would signif-
icantly enrich the connecting options. Of course, you don’t have
to play on a bagel! When drawing a connection, simply match the
opposite edges of the playsheet, as if it had been rolled into a cylin-
der, and allow a line to go off one edge of the sheet and continue
from the corresponding point on the opposite edge. Treat the other
pair of opposite edges as being similarly connected, and you will in
effect be playing on a torus. Can you think of such a topological
surface that allows tracing all the words in a dictionary without
intersections?
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The rules given above have been refined further by the authors
as they have played more games. If you do the same, you too will
discover and address many nuances along the way: what consti-
tutes a word, how to fix various mistakes or violations with penal-
ties, how to claim a shorter word found inside a claimed word (for
example, when it does not share a common root with the longer
word), and so on. In all cases, the decisions should be agreed upon
by all players, though always there will be some uncertainties.

If you think of rule modifications that will make NetWords more
interesting or enjoyable, the authors would be pleased to hear your
suggestions.
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The Wizard Is Always In

James Randi

In my professional life I get to meet a great number of interesting
folks, some famous, others not. One of the most thoroughly enjoy-
able persons that I’ve ever met and gotten to know well is Martin
Gardner. I haven’t the slightest idea of when I first met him, and
it seems to me that I’ve always known him. Martin thinks that
we might have had first contact at a magicians’ convention some-
where. Might be.

When I first began visiting Martin, he lived in Croton-on-Hudson,
New York, in his private “kingdom of Oz” at an appropriate address:
10 Euclid Avenue. I’ve never summoned up enough nerve to ask
Martin if he chose the house for its address or for its topology,
which I suspect on close examination would have proven similar to
a Klein bottle. Its many rooms were jammed with columns of full
filing cabinets bearing exotic labels reading, typically, “Geometry,
plane, solid, 4D and up” and “Combinational Color Cubes, Magic
Squares, Logic & Misc. problems.” It makes one’s mouth water and
mind boggle.

His bookshelves boasted originals of many classics in the field
of mathematics and in the art of conjuring, as well as first edi-
tions of all the L. Frank Baum “Oz” books. One section several feet
long was devoted entirely to volumes on “Hollow Earth” theories,
and there must have been several shelves consisting only of his
own books, in several languages and various combinations. A copy
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machine—using that dreadful old “thermo” paper that smelled like
soap and turned brown after a few months—stood humming at
“ready” so that every clipping gleaned might be copied for filing
under as many headings as possible. Thus, an article on the sub-
ject of telepathy could show up under that category but also in the
“ESP” file, the “Rhine” file, and the “pseudoscience” file.

Martin filed numbers. If a number was shown to be a prime,
it was filed under “primes” and then given its own file so that any
other of its specifics might be noted. Was it the sum of cubes? Then
it went into that file, as well. Any peculiarity of any sort that Martin
came upon was described and preserved. I recall the advantages
of this system when I was employed by International Business Ma-
chines (IBM) to work up a presentation involving logic, multiple
solutions, and new ways of approaching problems. IBM was con-
cerned with promoting their Series-370 business machines, and I
asked Martin about that specific number.

“Aha!” he said (thus also inventing a book title). “The number
370 is one of only four numbers, aside from 0 and 1, that is the
sum of the cubes of its own digits. What’s the next highest one?”
I had no answer, and felt like a fool when he told me, “The answer
is obvious once you see it.” (Solutions are at the end of the article.)
“And if you’re interested in a Spanish connection,” he continued,
“turn the number upside-down.” I did, and IBM was happy with
the results. I’m sure Martin could have gone on and on with fas-
cinating facts about 370, or any other number I’d have cared to
choose.

Martin is the most organized person I know. His tastes are sim-
ple but in keeping with his interests. Numerous Escher prints—
originals, of course, bought from the artist when no one else
cared—graced the walls of 10 Euclid, and a few are still on display
at his retirement home in Oklahoma. A few ingenious mechanical
devices occupied various shelves, and typically a table might dis-
play some puzzle that needed a solution. One such puzzle was a
group of eight cards with letters spelling out “PICTURES.” Told that
these cards could be rearranged to form another English word of
eight letters, all I could come up with was “SCRIPTURE”—leaving
me short one “R.” Can you find the word that I missed?

One letter of a greatly treasured stack of letters from Martin
poses this partially-filled crossword puzzle with four “across” clues
(see Figure 1).Can you fill in the blanks to match the clues? Com-
pare your answers to make sure you found the intended solution.

A silver ring is the only personal adornment that I’ve ever seen
on Martin, shaped as a tiny Möbius strip. I suppose that there are
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S
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T

1.  Intercourse
2.  Noise
3.  Female
4.  Dirt

Figure 1. The partially filled crossword puzzle.

numerous other artifacts of this kind about, but that particular
shape seems to express the man fully: it is fascinating in a direct
and amusing way, has many unsuspected facets and possibilities,
is simple and basic, suits him quite well, and attests to his good
taste. (The original of this ring was sadly lost down a drain some
years ago; the one he now wears is a replica.)

At four o’clock in the afternoon at Emerald City—pardon me, at
10 Euclid—after a long day of cerebration, a holler would come up
the winding stairway (counterclockwise, two complete turns, going
up) from wife Charlotte, the only other inhabitant of Oz besides the
very proper cat—which one presumed was probably Cheshire, in
another life. Four P.M. was “Manhattan time,” and deadline or no,
Martin would break away from his labors to relax. It was a cere-
mony carefully observed and respected by all visitors upon pain of
banishment. I don’t think Martin could ever drink a Martini. The
possible puns that might be developed on this would be more than
he could bear.

Martin impresses me in so many varied ways. Looking over just
some of my correspondence with him, I note that he was never re-
luctant to say that he’d been wrong or ignorant about something,
he always checked with me before quoting me on anything, as a
proper journalist should, and his inborn sense of humor and de-
light with his universe was always obvious. He never stopped de-
spairing over parapsychologists who came to silly conclusions, and
in a letter sent to him by Dr. Joseph Banks Rhine of ESP fame, one
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that particularly amused him, he found himself referred to as “a
professional denigrator.”

Closing these few brief observations, let me return to that IBM
symposium in San Francisco. After my presentation, I credited
Martin with having supplied the raw data for the production and
was pleased to see that the Systems Engineers present gave him
a prolonged round of applause in absentia. But I was astonished
when, immediately afterwards, I was surrounded by a large group
of them who asked me a strange question: was Martin Gardner a
real person or a composite? They found it difficult to believe that
he was only one person and that he turned out such an astound-
ing amount of material on a regular basis. They suggested that
perhaps he was Isaac Asimov and John Dickinson Carr working as
a team, and other combinations were also put forth.

To those folks I said, as I say to you, “Yes, there is a Martin
Gardner, and he is a delight and a frustration, a wonder and a good
friend to every rational mind. He’s rare, generous, thoughtful, shy,
valuable, and valued all in one.” And he would rather I had not
written any of this. But I had to.

In the last century, we had Einstein, lunar landing, instant cof-
fee, biorhythms, black holes, and Doctor Matrix. And Martin made
it all worthwhile just by being here.

Solutions

Properties of 370

The next highest number after 370 that is the sum of the cubes of
its own digits is 371. A complete list of such numbers is 153, 370,
371, and 407. And turning 370 upside-down spells “OLE.” (“Olé”
is Spanish for “bravo.”)

PICTURES anagram

The letters of “PICTURES” can be rearranged into the English word
“piecrust.”

Crossword

The intended words are (1) TALK, (2) BARK, (3) AUNT, and (4) SILT.
Shame on you!
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Symmetric Graphs in
Mathematical Puzzles

Ed Pegg Jr

Many mathematical puzzles are based on wonderfully symmetric
graphs. We start with some such puzzles that the reader may wish
to try to solve. Then, we describe the underlying mathematical
graphs in their solutions.

Puzzle 1. Three houses (1, 2, 3) must be connected to the utilities
water, gas, and electricity (W, G, E). Can all nine connections be
made without any of the lines crossing?

Puzzle 2. Arrange sixteen knights on a chessboard so that each
knight can attack exactly four others.

Puzzle 3. Can you arrange the ten dominoes {1–3, 2–4, 0–1, 2–3,
0–4, 1–2, 0–3, 1–4, 0–2, 3–4} in a circle so that any two neighboring
dominoes do not share a number?

Puzzle 4. Write the English words {wiz, two, bet, pub, lip, sly, son,
gun, zag, aye} on a sheet of paper and then connect two words if
they share a letter. Can you do this with only two line crossings?

Puzzle 5. Arrange ten lines and ten points so that each line goes
through exactly three points and each point is on exactly three
lines.
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Puzzle 6. Imagine a circular room where traveling to a point on the
circular boundary teleports you to the opposite point on the circle.
Using this circle, connect six points to each other (with all fifteen
possible edges).

Puzzle 7. Each day, for 21 days, a five-player game of Hearts is
played in the lunch room. No two people ever play in a game to-
gether more than once. What is the fewest possible number of
players?

Mathematics and Solutions

Each of the puzzles above reveals some structure of a symmet-
ric graph—in many cases, the same graph. We now describe and
show these graphs, which will also reveal the solution to each puz-
zle. The avid puzzler is encouraged to try the puzzles above before
proceeding.

First, a bit of background for the reader unfamiliar with graphs.
A graph is a mathematical structure consisting of vertices, or nodes,
and edges, which are point-to-point connections between pairs
of vertices. Often we draw vertices as small disks and edges as
straight-line connections. A cycle in a graph is a sequence of edges
such that the first and last edges share a vertex; we call a cycle
consisting of k edges a k-cycle. A graph is symmetric if there is a
mapping of the graph onto itself that maps any specified vertex to
any other specified vertex, and similarly there is a mapping that
maps any specified edge onto any other specified edge.

Puzzle 1

It is a well-known result in graph theory, going back to 1930, that
this first puzzle has no solution. As a graph, the structure is known
as K3,3, meaning that it makes all possible connections between
two groups of three nodes. Here, three points (water, gas, elec-
tricity) are completely connected to three other points (houses 1,
2, 3).

To show that it is impossible to draw without crossings, con-
sider drawing any one of the 6-cycles (shown in Figure 1). All three
pairs of opposite corners remain to be connected. Either the inside
or the outside must get two of these connections, and they will
cause a crossing.

This graph is highly symmetric. Every edge can be either on
the outer 6-cycle or one of the diagonals of this cycle. For example,
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W1

E

3 G

2 3

E2

G

1 W

3

W2

E

1 G

Figure 1. The three 6-cycles of the K3,3 graph from Puzzle 1.

any edge can be chosen to be the top edge of the 6-cycle, and either
endpoint of the edge can be chosen to be the top-left corner of the
6-cycle.

Puzzle 2

The solution to the knights’ puzzle makes another very symmetric
graph. If we draw a node for each knight and draw an edge between
each pair of mutually attacking knights, we obtain the hypercube,
which is shown in Figure 2.

Figure 2. Solution to Puzzle 2.
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Puzzle 3

In this puzzle, if you draw a line between dominoes that do not
share a number, each domino connects to exactly three others.
It is not too hard to leave out one domino and to make a ring of
nine with the others, as shown in Figure 3. This graph is called
the Petersen graph, which goes back to 1898. This graph has no
3-cycles or 4-cycles; the minimum cycles have five edges.

Now suppose that a ring of ten is possible. Draw a regular
decagon. Five more connections are necessary. Not all of them
can connect to the opposite corner of the decagon. At least one
connection must be to a corner that is four corners away. Now
the neighboring corners cannot be connected without making a 3-
cycle or a 4-cycle. Therefore a ring of ten is not possible. In other
words, the Petersen graph does not have a Hamiltonian cycle—a
cycle visiting every vertex exactly once.

Figure 3. Petersen graph with ten dominoes.
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(a) (b) (c) (d)

Figure 4. The Petersen graph, (a) rearranged so that only two lines cross
and (b) in its traditional orientation, and the Heawood graph, (c) rear-
ranged so that only three lines cross and (d) in its traditional orientation.

Puzzle 4

This word puzzle also gives a Petersen graph. It is possible to ar-
range the points and connections so that there are only two cross-
ings, as shown in Figure 4 on the left. This drawing still has a
reflectional symmetry, though it lacks the other symmetries of the
Petersen graph.

As another example, the symmetric graph called the Heawood
graph, shown above on the right, can be drawn so that it has only
three crossings. All of the three-crossing embeddings that I have
found are asymmetric. The crossing numbers of larger symmetric
graphs are unknown.

Puzzle 5

In this puzzle, the ten points can be replaced with the ten domi-
noes that we used for the Petersen graph in Puzzle 3, producing
the Desargues configuration shown in Figure 5. Consider one of

0-1

0-2

0-3

0-4

1-2

3-4

2-4

2-3

1-4

1-3

Figure 5. The Desargues configuration.
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the lines, for example, through 1–2, 2–3, 1–3. The line itself can
be identified by the numbers not on it, 0 and 4 in this case. In
the Desargues graph, a point is connected to the three lines go-
ing through it, and a line is connected to the three points that are
on it. Again, the graph is symmetric.

Puzzle 6

This puzzle uses the projective plane—the topological space caused
by the circle of teleportation—to introduce the Petersen graph again.
If you solved the puzzle, you might have a sketch like the one in
Figure 6 on the left. If you look at the ten regions that the circle
has been divided into and create the graph’s dual—draw a vertex
for each region and draw edges to represent adjacent regions—as
shown in Figure 6 on the right, you will see that it is the Petersen
graph again.

Figure 6. The solution to Puzzle 6 (left) and its dual, the Petersen graph
(right).

Puzzle 7

The best solution requires only 21 players, with every player meet-
ing every other exactly once. The first day is shown in bold; for
day n, rotate the bold drawing by n notches. In the end, we obtain
the complete graph of all possible edges K21, which is symmetric.
As shown on the right, a daily 6-player game can last 31 days with
31 players, again with every pair of players playing together exactly
once.
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Figure 7. The complete graphs K21 (left) and K31 (right).

Drawing Symmetric Graphs

Symmetric graphs are fascinating, but I have not had much luck
in finding pictures of them. For many, I had to create the pictures
on my own. For example, Figure 8 is one picture that I made of the
Hoffman-Singleton graph.

This particular graph can be constructed with triplets. Pick
three numbers from {1, 2, 3, 4, 5, 6, 7}. There are 35 ways to do
this, from 123 to 567. Call each of these a triad. Triplets 136, 613,

Figure 8. The Hoffman-Singleton graph.
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Figure 9. Fifteen Fano planes (fanos).

361, 631, 316, and 163 all have the same three numbers and are
thus the same triad, which we write in sorted order as 136. In my
maa.org column [14], I present these as a set of fifty cards that can
be printed out. So far, I have described 35 cards.

Fifteen more cards are Fano planes, which I will abbreviate to
fanos. The first fano in Figure 9 contains seven triads: 136, 235,
145, 127, 347, 567, and 246 (the circle). If you select any two
of these fanos, they will share exactly one triad. Each of the 35
possible triads is found in exactly three Fano planes.

That is enough to make the graph. Every fano is connected
to seven triads. Every triad is connected to three fanos and four
triads. Every card is connected to exactly seven other cards. For
any two cards that are not connected, there is exactly one card
connected to both. Here are a few examples: 123 and 234 are both
connected to 567; 123 and 345 are both connected to the 11th
fano; 123 and the last fano are both connected to 457. The graph
is controlled by the following connection rules:

1. Two fanos are never connected.

2. If a fano contains a triad, they are connected.

3. Two triads with no numbers in common are connected.

This graph came about in 1960, when Edward F. Moore asked
Alan Hoffman and Robert Singleton a question about graphs of
diameter 2, that is, where every two vertices can be connected by a
path of at most two edges. The Petersen Graph has diameter 2, and
each node has three incident edges. Moore showed them that the
Petersen graph is the graph with the maximum possible number of
vertices and with these properties. Moore asked if other graphs—
now called Moore graphs—met his upper bound. Hoffman and
Singleton gave the start of a proof [12], finished in 1971, that the
only possible Moore graphs are those defined in Table 1.

In addition, they discovered the third graph—now called the
Hoffman-Singleton graph—which is one of the most remarkable
objects in mathematics. It is a strongly regular graph, an inte-
gral graph with graph spectrum (−3)2122871, the unique (7, 5)-cage
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Name Degree Δ Diameter d Vertices v
(edges per vertex)

Odd n-gon 2 (n − 1)/2 N

Petersen Graph 3 2 10
Hoffman-Singleton 7 2 50

Graph
??? 57 2 3250

Table 1. The possible Moore graphs.

graph, and a symmetric graph. Whether the fourth graph exists
has been a famous unsolved problem since 1960.

From the Hoffman-Singleton graph, we can produce another
remarkable symmetric graph, named after the famous geometer
H. S. M. Coxeter. Select 15 cards from the Hoffman-Singleton deck
that are disconnected from each other. For example, you could
select all fifteen fanos or all of the triads containing a 1. From the
remaining 35 cards, discard the seven cards that are connected
to one of the 15 cards. The remaining 28 cards make the Coxeter
graph.

Another way to make the Coxeter graph is as follows. Form
all 35 possible triads with the consonants D, L, N, P, R, S, and T.
Add vowels to create words, then delete this fano of words: plus,
surd, land, pirn, nest, dept, terl. The resulting object, shown in Fig-
ure 10, is the Coxeter graph. The words salt and pond do not share

SPED

TURN

PLOD REST

PONDSAL T

RIND

PAST

SP AN

DIRT

PLAN

DUST

PERL

NODS

PEL T

RUNS

TO LD

SPUR

DINT SLUR PENT

SLID

TRAP

LENSPROD

LIN T

LORN

LORD

Figure 10. The Coxeter graph.
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Figure 11. F64.

consonants, so they are connected. Words lint and trap share a t,
so they are not connected.

From any word, you can reach any other word within four steps,
so the Coxeter graph has a diameter of 4. H. S. M. Coxeter was a
great lover of symmetry—he liked this graph so much that he wrote
a paper about it called simply “My Graph” [7].

When I first started looking at symmetric graphs, I learned of
the Foster Census, which is a listing of all of the cubic symmet-
ric graphs up to 768 vertices. Figure 11 is an example of one of
them, F64, found for me by Guenter Stertenbrink. For almost a
year, F90—the Foster Graph—was a minor obsession of mine. I
wanted to see it in some sort of symmetrical glory. I moved dots
and lines around in all sorts of different ways. I learned many
tricks—computer searches, symmetry finding, line crossings, and
Hamiltonian paths.

Here are pictures of various cubic symmetric graphs. F56A
was an early success—just moving nodes around on my computer
screen, I got clobbered by symmetry—and I got hooked on finding
more.

In 1965, Joshua Lederberg developed a method for describing
hundreds of cubic graphs. H. S. M. Coxeter and Roberto Frucht
subsequently modified his method, producing the LCF notation.
The cube, F8, can be represented as [3,−3]4 in LCF notation. The
graph starts with a Hamiltonian cycle on the outside. After that,
the vertices are connected by going clockwise three spaces, then
counterclockwise three spaces—do this four times. F14 is [5,−5]7,
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F6 F8 F10 F16 F18

F20A F20B F24 F40 F48

F50 F54 F56A F56B F56C

Figure 12. Various cubic symmetric graphs.

F38

F54

F24

F42

F60

F18

F30

F40

F56A

F16F

F26

F32

F48

F1F14F14F8F8F8

F20B

Figure 13. Cubic symmetric groups based on LCF notation.
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Figure 14. The Foster graph, F90.

F16 is [5,−5]8, F38 is [15,−15]19. The raw form of F38 is somewhat
long, so you can see why I started liking LCF notations. F18 is
[5, 7,−7, 7,−7,−5]3. F60 is a bit complicated: [12,−17,−12, 25, 17,−26,
−9, 9,−25, 26]6. See these and more in Figure 13.

After many different computer searches, I hit on [17,−9, 37,−37,
9,−17]15, which is the Foster Graph (F90). I finally got a chance to
see it. I am glad I searched.

A puzzle to close with: make nice pictures of the larger symmet-
ric graphs. I would love to see your results.
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Martin Gardner and
Ticktacktoe

SolomonW. Golomb

On at least three occasions (March 1957, August 1971, and April
1979), Martin Gardner devoted his “Mathematical Games” column
in Scientific American to ticktacktoe (as he spells it—it is also spelled
tic-tac-toe, and the game is known in the U.K. as noughts and
crosses) [2–4].

This article is my personal collection of the most interesting, cu-
rious, and remarkable facts that I know about ticktacktoe and its
generalizations, especially to the hypercube of side n in k dimen-
sions (the “nk board” discussed at length by Golomb and Hales [5]).
Familiar ticktacktoe is the case of side n = 3 in k = 2 dimensions.

Ticktacktoe and Magic Squares

Consider the following game. The numbers from 1 to 9 are written
on individual cards, which are placed face up on a table. Two
players alternately select cards (one on each turn) from the table,
to hold in their hands. The first person to hold three cards that
sum to 15 is the winner. If all nine cards have been selected and
neither player has a subset of three cards summing to 15, the game
is a draw.
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2 9 4

7 5 3

6 1 8

Figure 1. Ticktacktoe as a game on a magic square.

While it may not be immediately obvious, this game is mathe-
matically identical to ticktacktoe. To see this, look at the magic
square in Figure 1. Each row, column, and principal diagonal
sums to 15. In fact, three of the numbers from 1 to 9 sum to 15 if
and only if they lie along a winning ticktacktoe path.

Winning Paths on the nk Board

Generalized or hypercube ticktacktoe is played on a “board” of a k-
dimensional hypercube with “side” n, which has nk cells. A winning
path is any set of n cells that lie on a straight line, including diago-
nal lines. The number of these winning paths is 1

2 [(n+2)k−nk]. For-
mally, this is shown as follows. A cell is located by a position vector
α = (a1, a2, . . . , an), which specifies the k coordinates of the cell in
k-dimensional space. (Each ai is a number from 1 to n.) A winning
path P is a sequence of n cells, P = 〈α1, α2, . . . , αn〉, such that if we
look at the ith coordinates of α1, α2, . . . , αn, we see either (1, 2, . . . , n),
or (n, n−1, . . . , 2, 1), or (c, c, . . . , c) for some constant value c between
1 and n. There are thus n + 2 possibilities for each of the k coor-
dinates, for a total of (n + 2)k; however, if all k coordinates remain
constant, P is not a path but merely an n-fold repetition of a sin-
gle cell. Because each of the k coordinates can remain constant in
each of n ways, we must subtract nk from (n + 2)k to get the num-
ber of directed winning paths. If we regard 〈αn, αn−1, . . . , α2, α1〉 as
the same path as 〈α1, α2, . . . , αn−1, αn〉, but merely traversed in the
opposite direction, then the number of (undirected) winning paths
is 1

2 [(n + 2)k − nk].
There is an intuitive, geometric way to interpret this formula.

Embed the nk hypercube centrally in an (n+2)k hypercube, so that
there is a (hyper)shell of unit thickness around the nk “board.”
When extended, each winning path on the nk board terminates in
exactly two “shell cells,” and each shell cell is on an extension of
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Figure 2. Each of the eight winning paths on the 3 × 3 board terminates
in two shell cells of the embedding 5 × 5 board.

exactly one path. Hence, the number of paths is half the number
of shell cells: 1

2 ((n + 2)k − nk).
This geometric interpretation is illustrated in Figure 2 for the

familiar n = 3, k = 2 ticktacktoe board.

Ticktacktoe in Three Dimensions

To a mathematician, two-dimensional ticktacktoe is quite uninter-
esting. If n = 2, i.e., on the 2 × 2 board, the first player must win
on her second turn. The 3 × 3 board, with best play on both sides,
will always be a draw. In general, because the first move cannot be
a disadvantage, the first player tries to win and the second player
tries to draw. The drawing strategy for the second player on the
3 × 3 board is easily learned. The longer the side of the board, the
easier it is for the second player to draw. (We return to this in the
next section.)

This leads us to look at three-dimensional ticktacktoe (k = 3).
On the 3 × 3 × 3 “board,” the central cell is so powerful that, if it is
used as the opening move of the first player, a win quickly ensues.
If the first player does not occupy the central cell on the first move,
the second player can occupy it and force a win within several
more moves. In fact, there is no way to fill the 3 × 3 × 3 “board”
with 14 crosses (Xs) and 13 noughts (Os) without completing one
(or more) winning paths, so the game cannot be a draw, and with
no restrictions (and with best play on both sides) it must be a win
for the first player.

This leads us to an amazing result. Suppose that the rules are
modified to state that the first player to complete a ticktacktoe path
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is the loser. (In combinatorial game theory, this reversal of the rule
for winning is called the misère form of the game.) On the 3 × 3 × 3
board, where no draw is possible, the first move would now seem
to be a disadvantage, when the first player to complete three-in-
a-row is the loser. But, there is a remarkable winning strategy for
the first player: on the first move, occupy the center cell! (But, you
object, isn’t that the worst move, because the center cell lies on 13
different ticktacktoe paths?) Then, after each move by the second
player, the first player occupies the diametrically opposite cell! In
this way, the first player can never complete a path through the
center (it’s already blocked), and any path completed not through
the center by the first player will be the mirror image of one just
completed by the second player! So the first player cannot lose;
thus, because no draws are possible on the 3 × 3 × 3 “board,” he
must win!

The same winning strategy for misère ticktacktoe works for the
first player on any nk “board” where n is odd and no draw is possi-
ble, for n > 1.

Now back to the normal game, where the first player to complete
a path wins. The playable three-dimensional ticktacktoe game is
4 × 4 × 4, and several commercial versions of this game have been
sold. There are 43 = 64 cells, and 1

2 (63 − 43) = 76 winning paths.
A number of attempts were made to “solve” this game. Finally,
O. Patashnik, in 1980 [7], showed that with perfect play on both
sides, the first player can win. (The exhaustive computer analysis
used to show this fact does not constitute a “winning strategy” that
can be easily learned.)

Draws by the Pairing Strategy

On the nk “board,” if the number of cells (nk) is at least twice as
large as the number of paths ( 1

2 [(n+2)k−nk]), it may be possible for
the second player to force a draw by following a pairing strategy:
Dedicate two cells (exclusively) to each path, so that if the first
player occupies one of these cells, the second player will occupy
the other. (If the first player occupies an undedicated cell, or a
cell paired with one already occupied by the second player on a
previous “free move,” the second player is free to occupy any vacant
cell.)

When k = 2, the smallest board with at least twice as many cells
as paths is the 5× 5, which has 25 cells and (49− 25)/2 = 12 paths.
A pairing strategy for this board is shown in Figure 3.
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Figure 3. On this 5 × 5 board, each row has two dedicated cells shown
by horizontal lines; each column has two dedicated cells shown by ver-
tical lines; each diagonal has two dedicated cells shown by appropriately
slanted lines; and the central cell (containing an X) is undesignated.

The smallest “board” with k = 3 to have at least twice as many
cells as paths has n = 8, and a pairing strategy is known (see [5]).

In general, “at least twice as many cells as paths” is equivalent
to nk ≥ (n + 2)k − nk, which can be rewritten as 2nk ≥ (n + 2)k or
2 ≥ (1 + 2

n )k.
Hales and Jewett [6] conjecture that whenever this inequality

holds, the second player can force a draw. This conjecture has
now been proved for all “large” k, e.g., for k > 100 (see [1]). The
draw is not by a pairing strategy, however, and it remains open
whether a pairing exists whenever the inequality permits. (It has
been shown for the first few values of k only: k ≤ 5.) It is reasonable
to believe that when a pairing strategy exists on the nk “board,”
such a strategy will exist for all larger values of n (with the same k)
and for all smaller values of k (with the same n). For partial results
on this, see [5].

For a given dimension k, let nk be the smallest “boardside” n for
which the number of cells is at least twice the number of winning
ticktacktoe paths. That is, nk is the smallest n for which 2 ≥ (1 +
2
n )k. Solving for n gives nk = �2/(21/k − 1), where “�x” means the
smallest whole number greater than or equal to the real number x.

I had observed that this exponential (exact) expression for nk

seemed to give the much simpler-looking linear expression nk =
�2k/ ln 2�, where �x� denotes the largest whole number less than or
equal to the real number x, and ln 2 ≈ 0.69315 . . . is the natural log-

arithm of 2. I tested the conjecture nk = �2/(2
1
k − 1) ?= �2k/ ln 2� for

the first several thousand values of k, and it always held. In fact,
it holds for the first 777 trillion values of k, but it is false! The first
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counterexample occurs at k = 777,451,915,729,368, where the true
nk is 2,243,252,046,704,767, but � 2k

ln 2� is “only” 2,243,252,046,704,766.
That is, if you happened to be playing “hypercube ticktacktoe” in
k = 777,451,915,729,368 dimensions, and the side of the board was
“only” n = 2,243,252,046,704,766 (i.e., in excess of two quadrillion),
the second player would not have quite enough cells (even with
nk cells—are there that many atoms in the universe?) to hope to
pair them so as to dedicate two cells to every ticktacktoe path!
These values for the smallest counterexample k, and the corre-
sponding nk, were recently found by Joe Buhler. They correct
the erroneous values (due to a faulty multiple-precision computer
program) given in [5], where k = 6,847,196,937, too small by five
orders of magnitude, was claimed as the first counterexample.
Candidates for possible counterexamples occur at the “continued-
fraction convergents” of 2

ln 2 , with the first actual counterexample
appearing at the 36th convergent. The first six counterexamples
occur at the convergents numbered 36, 40, 42, 58, 78, and 90,
suggesting that there are probably infinitely many counterexam-
ples, albeit quite sparsely distributed among the integer values
of k.

The number of hypercells in the smallest “board” where nk �=
� 2k

ln 2�, namely (nk)k for k = 777,451,915,729,368, is my candidate for
the largest integer that occurs as the specific solution to a problem
that arose “naturally,” i.e., not constructed specifically to lead to
a huge number, and that is known explicitly and not merely as an
upper or lower bound on some answer. (Of course, even if this is a
current record, all records are made to be broken; and this record
is sensitive to how the rules are formulated.)

When Are Draws Possible?

If no draw is possible on the nk board, meaning that no matter how
you fill in the board with Xs and Os one player has won, then no
draw will be possible for larger k with the same n, and no draw will
be possible for smaller n with the same k. Thus, for each k, there
is a largest n for which no draws are possible, and this value of n
is a monotonic nondecreasing function of k.

For k = 1, no draw is possible when n = 1, but a draw is forced
for n ≥ 2. For k = 2, no draw is possible when n = 2, but one
can be obtained by the second player when n ≥ 3. When k = 3, as
mentioned earlier, no draw is possible when n = 3, but a draw can
occur when n = 4 (though not with best play by the first player).
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Figure 4. Two 4 × 4 boards whose 44 tensor product has no “solid” tick-
tacktoe paths.

For n ≥ 5, it is believed that the second player can obtain a draw by
best play, and for n ≥ 8, the second player can do so by a pairing
strategy.

Thus, for each of k = 1, 2, and 3, the largest n for which no draw
is possible on the nk board occurs at n = k (on the 11, the 22, and
the 33 “boards”). Is this also true for the case n = k = 4?

Some 45 years ago, A. W. Hales showed that a draw can be con-
structed on the 44 board, by the following ingenious construction
(see [5]). We take the tensor product of the two 4 × 4 boards shown
in Figure 4. The concept of a tensor product is illustrated in Fig-
ure 5 with two 2 × 2 arrays. The 2 × 2 arrays on the right side in
Figure 5 are first stacked horizontally, to get two 2 × 2 × 2 “cubic”
arrays, and these are then stacked “vertically” (this may tax your
four-dimensional visualization ability!) to get one 24 array.

In Figure 4, the left 4×4 array has exactly two +s and two −s on
each ticktacktoe path (a nonzero even number of each), while the
right 4×4 array has exactly three +s and one − on each ticktacktoe
path (an odd number of each). In the tensor product, each of the
520 ticktacktoe paths will be one of the following types: (a) a path
from one of the two 4 × 4 squares (hence nonsolid +s or −s), (b)
the negative of a path from one of the two 4 × 4 squares (again

a
zy
xw

dc
b

aw
azay
ax bw

bzby
bx

cw
czcy
cx dw

dzdy
dx

=

Figure 5. The tensor product of two 22 arrays is a 24 array.
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nonsolid with either +s or −s), or (c) the term-by-term “product”
(where + = +1 and − = −1) of a path from the left square with
a path from the right square; but this term-by-term product will
necessarily have an odd number of −s, so it cannot have all four
entries the same!

Phase Transitions in the (n, k) Plane

For each value of the dimension k ≥ 1, we can consider, with in-
creasing n, the following situations:

(a) The first player must win.

(b) No draws are possible, and while a win is not forced, the first
player should win.

(c) The first player, although draws are possible, can win with
skillful play.

(d) The second player can draw with skillful play, although there
is no pairing strategy to force a draw.

(e) The second player can draw by use of a pairing strategy.

Each of these situations corresponds to a region (among the lat-
tice points in the first quadrant) of the (n, k) plane. The boundaries
between these regions may be thought of as phase transitions (as
in physics and chemistry). In a few cases, the precise boundaries
are known; but more generally, qualitative statements can be made
about the shapes of these regions, such as row convex, or column
convex, or possibly both of these. This topic is described (along
with several other things) in more detail in [5], which also has a
more complete list of references.

Acknowledgment and Dedication. This article is dedicated to Martin
Gardner, for his 90th birthday, and in acknowledgment of his im-
measurable contribution to the popularization of mathematics and
mathematicians and his ability to find and describe the fun in do-
ing math.
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Scheduling Tennis Doubles
Competitions

Dick Hess

Some time ago, a friend wrote to me that his club was organizing
a mixed doubles competition involving 20 players (10 men and 10
women). Their plan was to play a series of rounds using five ten-
nis courts. In each round, all the men and women are paired as
partners, and two teams are assigned to each court to play each
other in that round. It is required that no two players partner each
other more than once or oppose each other more than once. My
friend asked how many rounds could be played subject to these
restrictions. He made it clear that it is OK for a player to partner
someone in one round and oppose that same person in a differ-
ent round. He had five rounds laid out as shown in Table 1, with
men as odd numbers in the odd-numbered positions and women

Court 1
1 2 3 4
1 16 17 2
1 6 11 10
1 8 9 20
1 12 13 16

Court 2
5 6 7 8
3 12 7 18
3 2 9 14
3 10 13 4
3 20 15 10

Court 3
9 10 11 12
5 20 11 14
5 8 15 18
7 14 11 18
5 18 9 4

Court 4
13 14 15 16
9 8 13 10
13 12 17 20
15 2 17 12
11 2 19 8

Court 5
17 18 19 20
15 6 19 4
7 4 19 16
5 16 19 6
7 6 17 14

Table 1. A possible five-round mixed doubles schedule.
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as even numbers in the even-numbered positions. He could do no
better than five rounds.

A closely related problem applies to scheduling men’s or
women’s doubles events in which there is no restriction that play-
ers partner with those of the opposite sex. The purpose of this pa-
per is to report results for scheduling such tennis doubles events
for 20 or fewer competitors and to compare results with those for
the better known “social golf problem” with foursomes and the
“bridge problem” for people playing duplicate bridge.

Related Problems

Scheduling problems are notoriously difficult to solve in the gen-
eral case, so it is instructive to examine related problems. A very
famous related problem is Kirkman’s Schoolgirl Problem, initially
involving threesomes to be scheduled, first published by Thomas
Kirkman in 1847 and 1850 [5]. Soon the problem was expanded
to foursomes and larger groups. Methods to solve the problem
for various cases are given by Rouse Ball [2, pp. 267–298] and by
Martin Gardner [3]. Today, the general problem is often referred to
as the social golf problem and results are reported in [4, 6]. When
stated with foursomes, the problem has 4m golfers split into m
foursomes in each of several rounds. No two golfers may be in
a foursome together more than once, and the problem is to deter-
mine the maximum number of rounds the golfers may play without
violating the restriction. This problem is more restrictive than the
tennis doubles problems because, in the doubles problems, two
players may be on the same court with each other two times, once
as partners and once as opponents. On the other hand, the mixed
doubles problem has the added restriction that only a man and a
woman are allowed to be partners.

A problem called the bridge problem in [2] asks that 4m mem-
bers of a bridge club schedule 4m − 1 rounds so that no two mem-
bers partner each other more than once and each member opposes
each other member exactly twice. This problem has been solved for
many values of m, as reported in [2].

Upper Bounds

In the social golf problem, each round uses up three golfers playing
with the first player. Thus, the number of rounds can never be
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more than (4m − 1)/3. For 8 or 12 golfers (m = 2 or 3), a further
restriction applies: each of the four players of a foursome in the
first round needs three new golfers to join in a possible second
round. This need cannot be filled by only 4 or 8 remaining golfers,
so only one round is possible with 8 or 12 golfers.

In the bridge problem, 4m− 1 rounds is the upper bound and is
achievable for many values of m.

In both types of doubles events with 4m players, each round
uses up two players as opponents of the first player. Thus, the
number of rounds can never be more than 2m − 1.

Disk Method of Solution

Many approaches have been used to solve these scheduling prob-
lems. The one using disks, as discussed in [2] and [3], will be
demonstrated here for eight players in the bridge and doubles
problems. For the bridge problem, the approach is to represent
seven of the players as points equally spaced on a circle, with the
eighth player as a point in the center of the circle; see Figure 1. We
join points 2 through 7 in pairs by solid-line chords to represent
partnerships and by dashed-line chords to represent opponents.
Points 1 and 8 are also joined by a solid line and by dashed lines to
their opponents. If the solid chord lengths are all different and the
dashed chord lengths are represented only twice each (as shown

8 

1 

2 

3 

4 5 

6 

7 

Bridge  

8 

7 

3 

5 

6 1 

4 

2 

Doubles 

Figure 1. Disks for solving the eight-player bridge problem (left) and eight-
player doubles problems (right).
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Table 1
8 1 3 4
8 2 4 5
8 3 5 6
8 4 6 7
8 5 7 1
8 6 1 2
8 7 2 3

Table 2
2 6 5 7
3 7 6 1
4 1 7 2
5 2 1 3
6 3 2 4
7 4 3 5
1 5 4 6

Court 1
1 2 3 4
1 4 5 8
1 8 7 2

Court 2
5 6 7 8
3 2 7 6
3 6 5 4

Table 2. The bridge and doubles problems for eight players.

in Figure 1), then a one-step cyclic permutation of the numbers 1
through 7 will give the assignments of the players for each of the
seven rounds. The left half of Table 2 shows the assignments cor-
responding to the left half of Figure 1, giving the maximum number
of rounds possible for the bridge problem.

The mixed doubles problem can use the same geometry as that
for the bridge problem if the labels of the points are scrambled to
keep partnerships only between even- and odd-numbered players,
as shown in the right half of Figure 1. The maximum possible three
rounds emerge by moving the numbers on the circle two spaces
counterclockwise to generate Round 2 and then two more spaces
to generate Round 3. The right half of Table 2 gives the result,
which is also the best possible for men’s or women’s doubles.

Twelve-Player Problems

The disk method solves the 12-player bridge problem easily. One
such solution from [2] is (12 & 1 vs. 5 & 6), (2 & 11 vs. 3 & 9),
and (4 & 8 vs. 7 & 10) for the first round, with the ten remaining
rounds developed by cycling the numbers 1 through 11. Figure 2
(left) shows the disk for this solution. As mentioned before, the
social golf problem for 12 players has only the trivial one-round
solution.

After attempting to achieve the theoretical maximum of five
rounds by using disk methods for the 12-player doubles problem, I
wrote a small computer program in BASIC to do a compete search
of all possibilities. The result is that only three rounds are possible
in mixed doubles and only four rounds are possible in men’s or
women’s doubles. Table 3 shows solutions from the program.
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Figure 2. Disks for solving the 12-player and 16-player bridge problems.

Court 1
1 2 3 4
1 3 5 7
1 4 6 9
1 7 10 12

Court 2
5 6 7 8
2 9 6 10
2 8 7 12
2 3 8 9

Court 3
9 10 11 12
4 11 8 12
3 5 10 11
4 6 5 11

Court 1
1 2 3 4
1 4 5 8
1 6 11 2

Court 2
5 6 7 8
3 6 9 12
3 12 5 4

Court 3
9 10 11 12
7 2 11 10
7 10 9 8

Table 3. Optimal doubles scheduling for 12 players: men’s or women’s
(top) and mixed (bottom).

Sixteen-Player Problems

The disk method solves the 16-player bridge problem; one such
solution from [2] is (16 & 1 vs. 6 & 11), (2 & 3 vs. 5 & 9), (4 & 12
vs. 13 & 15), and (7 & 10 vs. 8 & 14) for the first round, with the
14 remaining rounds developed by cycling the numbers 1 through
15. The right half of Figure 2 shows the disk for this set of initial
pairings. The theoretical optimum is achievable for the social golf
problem with 16 players and is reported in [6]. Table 4 shows the
result.

Remarkably, the theoretical maximum seven rounds can be
reached for both types of doubles problems with 16 players. I could
not find any solution on a disk (it may not be possible), but a com-
puter program found the optimal solution given in Table 5. It has
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Group 1
1 2 3 4
1 5 9 13
1 6 11 16
1 7 12 14
1 8 10 15

Group 2
5 6 7 8
2 6 10 14
2 5 12 15
2 8 11 13
2 7 9 16

Group 3
9 10 11 12
3 7 11 15
3 8 9 14
3 5 10 16
3 6 12 13

Group 4
13 14 15 16
4 8 12 16
4 7 10 13
4 6 9 15
4 5 11 14

Table 4. Optimal golf scheduling for 16 players.

Court 1
1 2 3 4
1 4 5 8
1 6 9 14
1 8 15 10
1 10 13 6
1 12 11 2
1 14 7 12

Court 2
5 6 7 8
3 2 7 6
3 8 11 16
3 6 13 12
3 12 15 8
3 10 9 4
3 16 5 10

Court 3
9 10 11 12
9 12 13 16
5 2 13 10
5 14 9 2
5 4 11 14
5 16 15 6
9 6 15 4

Court 4
13 14 15 16
11 10 15 14
7 4 15 12
7 16 11 4
7 2 9 16
7 14 13 8
11 8 13 2

Table 5. Optimal doubles scheduling for 16 players.

the interesting property that, if the players are eight married cou-
ples, no married couple ever needs to play together as a team. This
property holds for any number of players if the theoretical maxi-
mum of 2m − 1 rounds can be achieved. It is interesting that the
theoretical optimum can be achieved for 16 players for each of the
four problems studied here.

The 20-Player Problems

The disk method solves the 20-player bridge problem in many dif-
ferent ways; one such solution is (20 & 1 vs. 2 & 3), (4 & 6 vs. 10
& 16), (5 & 15 vs. 13 & 18), (7 & 19 vs. 11 & 14), and (8 & 12 vs. 9
& 17) for the first round, with the 18 remaining rounds developed
by cycling the numbers 1 through 19. Figure 3 shows this solution
on a disk. The theoretical optimum of six rounds for the social
golf problem for 20 players cannot be achieved. Table 6 gives the
best possible five rounds as produced from a complete search, as
reported in [6].

The 20-player doubles problems have not been completely
solved, to my knowledge. The disk method seems not to work, and
complete searches take a long time to complete. My BASIC pro-
gram that searches for solutions to each doubles scheduling prob-
lem ran for several weeks to produce the best known solutions in
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Figure 3. Disk for solving the 20-player bridge problem.

Group 1
1 2 3 4
1 5 9 13
1 7 11 15
1 8 12 16
1 6 10 14

Group 2
5 6 7 8
2 10 15 17
2 9 16 20
2 11 14 19
2 12 13 18

Group 3
9 10 11 12
3 8 14 20
3 6 13 19
3 5 15 18
3 7 16 17

Group 4
13 14 15 16
4 7 12 19
4 8 10 18
4 6 9 17
4 5 11 20

Group 5
17 18 19 20
6 11 16 18
5 12 14 17
7 10 13 20
8 9 15 19

Table 6. Optimal golf scheduling for 20 players.

Court 1
1 2 3 4
1 4 5 8
1 6 9 14
1 8 7 18
1 16 17 10
1 18 13 2
1 20 15 6

Court 2
5 6 7 8
3 2 7 6
3 8 11 16
3 10 15 4
3 14 13 20
3 6 19 10
3 12 17 8

Court 3
9 10 11 12
9 12 13 16
5 2 13 10
5 16 11 20
5 18 9 6
5 4 17 16
5 10 19 14

Court 4
13 14 15 16
11 10 17 20
7 20 19 4
9 2 17 14
7 4 15 12
7 12 11 14
7 2 9 16

Court5
17 18 19 20
15 14 19 18
15 18 17 12
13 12 19 6
11 8 19 2
9 8 15 20
11 4 13 18

Table 7. Best known mixed doubles scheduling for 20 players.

Tables 7 and 8. It shows a seven-round solution for mixed doubles
and an eight-round solution for men’s or women’s doubles; neither
is the theoretical maximum of nine rounds, so the question re-
mains whether these solutions can be improved. I estimate that if
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Court 1
1 2 3 4
1 3 5 8
1 4 6 10
1 5 2 9
1 6 12 15
1 7 14 16
1 11 13 19
1 16 11 17

Court 2
5 6 7 8
2 10 6 17
2 20 8 16
3 6 11 13
2 3 7 9
2 18 10 11
2 5 12 20
2 8 15 18

Court 3
9 10 11 12
4 7 9 11
3 11 12 14
4 8 14 19
4 5 16 18
3 5 4 19
3 14 6 18
3 9 10 20

Court 4
13 14 15 16
12 13 14 18
5 7 13 17
7 10 15 20
8 19 10 13
6 13 9 20
4 9 15 17
4 12 7 13

Court 5
17 18 19 20
15 19 16 20
9 15 18 19
12 18 16 17
11 14 17 20
8 15 12 17
7 16 8 10
5 19 6 14

Table 8. Best known men’s or women’s doubles scheduling for 20 players.

the BASIC program were allowed to run to completion on my home
computer, it would take 244 million years. A restricted program
searching only for nine-round schedules would take 214 years to
complete and might only verify that nine rounds are impossible.

Conclusions

Scheduling foursomes to play golf, bridge, and mixed and men’s or
women’s doubles events is a difficult problem, but it has been com-
pletely solved for between one and four foursomes. For five four-
somes, the social golf and bridge problems are completely solved.
For five-foursome mixed doubles, the best known solution has only
seven rounds; for five-foursome men’s or women’s doubles, the
best known solution has eight rounds. Schedules for more than
20 players have not been investigated.
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When Multiplication Mixes Up
Digits

David Wolfe

When I was in grade school, my father’s workplace was about to
throw out several decades of Scientific American magazines. He
rescued them and delivered them to our basement. I would open
each issue and flip to the “Mathematical Games” column, read-
ing it with care. While school introduced me to arithmetic, Martin
Gardner introduced me, along with countless other budding math-
ematicians, to mathematics.

Dr. Matrix was particularly fond of numbers consisting of all ten
digits. In The Magic Numbers of Dr. Matrix, he suggests subtracting
123456789 from 987654321, and 0123456789 from 9876543210;
both yield surprising answers. He also suggests puzzles such as
inserting + and − signs in 123456789 to make 100. (See Solutions
section at the end.)

Now that my daughter, Lila, is learning about counting, I re-
cently wrote out the digits 1 through 9 on our whiteboard. She
asked, “What number is that?” I explained, “Why, that’s 123 mil-
lion, 456 thousand, 789.” She responded, “That’s a very big num-
ber. Can you make a bigger one?” I doubled the number, and
got

123456789× 2 = 246913578.
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Wow! The product has the same digits 1 through 9, reordered.
Before long, I found myself doubling it over and over again:

123456789 × 2 = 246913578,
246913578 × 2 = 493827156,
493827156 × 2 = 987654312,
987654312 × 2 = 1975308624,

1975308624 × 2 = 3950617248,
3950617248 × 2 = 7901234496 (first exception).

Notice that every result is pandigital, until the last result, which
has two 4s and two 9s. Why are there so many pandigital multi-
ples?1

It turns out that the doubling process is a red herring, for lots
of multiples of 123456789 are pandigital. If you list the numbers
under 10 that, when multiplied by 123456789, are pandigital, you
find

123456789 × 1 = 123456789,
123456789 × 2 = 246913578,
123456789 × 4 = 493827156,
123456789 × 5 = 617283945,
123456789 × 7 = 864197523,
123456789 × 8 = 987654312,

that is, all the single-digit numbers that don’t have a prime factor
of 3.

To investigate what exactly is going on, we generalize the ques-
tion to base b:

Theorem 23.1. Let x be the base-b number 123 . . . (b−1), and choose
an n between 1 and b. The product n · x is pandigital if and only if
b − 1 and n share no prime factors.

In particular, in base b = 10, we have b−1 = 9, which has a single
prime factor, 3. The theorem says that for values of n that don’t
have a factor of 3, i.e., when n is 2, 4, 5, 7, or 8, multiplication by
n results in a pandigital product.

Using a diagram, we can compute the product another way by
“walking around a clock,” and in so doing can shed light on the the-
orem. After describing this clock method, we’ll see why it explains
the theorem and then why the clock method correctly computes
the product.

1A pandigital number in base b contains all the base-b digits. The literature varies
about whether 0 needs to be one of the digits. Here we say a number is pandigital
if it contains either all the digits or all the nonzero digits.
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Grade-school method Drawing the clock Counting off digits

carries: 01122333
x: 123456789
n: × 4

0
1

2

3

4
5

6

7

8

9
0

1

2

3

4
5

6

7

8

9

product: 493827156 56 27156

Figure 1. The clock method.

To explain the clock method, we’ll walk through an example of
multiplying 123456789 by n = 4. On the left in Figure 1 is the
usual method for multiplying that we learned in grade school.

For the clock method, first write the digits 0 through b − 1 in a
circle. The last two digits in the product are b − n (in the example,
b−n = 6) and b−n−1 (which is 5). Write these down in the product.
Cross out the b − n = 6. Now, beginning with b − n − 1 = 5, count
counterclockwise n = 4 positions around the circle to read off the
digits in the product. In the example, you’ll go from 5 to 1 to 7 to 2
to 8 to 3 to 9 to 4 to 0. Don’t count the crossed-out b−n = 6. Upon
recording the nine-digit product, stop; the tenth digit will be 0.

This process hits all the nonzero digits if and only if b − 1 (the
number of digits not crossed out) and n share no common factors.
(Otherwise, you’d repeat digits as you used the clock method.)

To see why this alternative way of computing the product works,
let us compare what happens when you multiply 123456789 by
small numbers like 4, using both the clock method and the grade-
school method. First, look at the carries. The carry from the last
digit is n − 1 = 3, and the carries stay the same or decrease, pro-
ceeding leftward from digit to digit. In our example on the left,
123456789 · 4, the digit products with carries are, in order from right
to left,

36, 35, 31, 27, 22, 18, 13, 9, 4.

Suppose that while computing the product by the grade-school
method, we forgot to carry. Because, working from right to left, the
digits of 123456789 decrease by 1, each digit’s product by n = 4
would decrease by n = 4. Reintroducing the carries, because the
rightmost digit has no carry but generates a carry of n − 1 = 3,
the last two digits of the product will differ by n − (n − 1) = 1.
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Doing arithmetic modulo b, proceeding from right to left, the digit
products decrease by 1 and then by either n or n + 1, depending
on whether the carry stayed the same or decreased. Further, the
carry decreases when the ten’s (or, in general, b’s) digit decreases
and the unit’s digit increases.

This brings us to why we cross out the 6. Returning to the cir-
cle of digits, counting by 4 reflects the fact that consecutive digit
products differ by 4 or 5. They differ by 5 when the previous carry
decreased, and that’s exactly when the previous count around the
circle passed 0. If you are currently on digits 7 through 9, the
carry must have just dropped, and the next product should de-
crease by 5 rather than 4. Crossing out the 6 is tantamount to
counting down 5 rather than 4 when the current digit is 7 through
9, because the next count will skip the 6.

We can use the same method of analysis for 987654321 and its
generalization to base b:

Theorem 23.2. Let x be the base-b number (b−1) . . . 321 and choose
an n between 1 and b. The product n · x is pandigital if and only if
b − 1 and n share no prime factors.

Here we use a slightly different clock process to generate the prod-
uct. Start with the same circle of digits. Cross out n, and write
it down as the rightmost digit. Then, count by ns (skipping the
crossed-out n) clockwise until all b digits are recorded.

Returning to Theorem 23.1, 123456789 times n is pandigital for
lots of larger values of n, too. In particular, n can be any of 10, 11,
13, 14, 16, 17, 20, 22, 23, 25, 26, 31, 32, 34, 35, 40, 41, 43, 44,
50, 52, 53, 61, 62, 70, 71, or 80 (and no other two-digit number).
For instance,

123456789× 71 = 8765432019.

Note that this list includes no numbers that are a multiple of 3
(which comes as no surprise) but also omits other numbers, such
as 19. We leave it open to generalize this example to base b.

Note: The fact that multiples of 123456789 and 987654321 are
pandigital has long been observed. See, for example, David Wells’
The Penguin Dictionary of Curious and Interesting Numbers (Pen-
quin, 1986), or do a web search on “123456789 pandigital.” The
author is surprised not to have seen the generalization to base b.

Acknowledgments. Thanks to David Molnar, who identified that the
multipliers yielding pandigital numbers are relatively prime to b−1
in Theorem 23.1.
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These results were first published in Mathematics Magazine,
December 2007, and are reprinted here with permission.
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Solutions

The first difference is

987654321− 123456789 = 864197532,

which is pandigital.
The second difference is

9876543210− 0123456789 = 9753086421,

which is also pandigital.
There are 11 ways to insert + and − signs in 123456789 to

make 100:

1+2+3−4+5+6+78+9, 1+2+34−5+67−8+9, 1+23−4+5+6+78−9,
1+23−4+56+7+8+9, 12+3+4+5−6−7+89, 12+3−4+5+67+8+9,
12−3−4+5−6+7+89, 123+4−5+67−89, 123+45−67+8−9,
123−4−5−6−7+8−9, 123−45−67+89.
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Magic, Antimagic, and
Talisman Squares

Rodolfo Kurchan

Magic squares are a classic topic in recreational mathematics. Mar-
tin Gardner discusses them in 12 of his 15 books on mathematical
games; see, for example, his article “Magic Squares and Cubes” [1].
Here I describe some modern variations on magic squares and my
findings about these squares by myself and others. All of my solu-
tions were found without using computers.

Pandigital Magic Squares

A magic square is an n × n array of numbers such that the rows,
columns, and main diagonals produce the same sum, called the
magic sum. Here is a simple example, with a magic sum of 15:

6 1 8
7 5 3
2 9 4

A decimal number is pandigital if it uses precisely all ten dig-
its and zero is not the leading digit. A pandigital magic square
consists only of pandigital numbers and has a pandigital magic
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sum. In 1989, Rudolf Ondrejka [5] posed this problem: what is the
pandigital magic square with the smallest pandigital magic sum?

In 1991, I found this solution [2], with pandigital magic sum
4,129,607,358:

1,037,956,284 1,036,947,285 1,027,856,394 1,026,847,395
1,026,857,394 1,027,846,395 1,036,957,284 1,037,946,285
1,036,847,295 1,037,856,294 1,026,947,385 1,027,956,384
1,027,946,385 1,026,957,384 1,037,846,295 1,036,857,294

In 2003, I found an improved solution [3], with pandigital magic
sum 4,120,736,958:

1,034,728,695 1,035,628,794 1,024,739,685 1,025,639,784
1,024,639,785 1,025,739,684 1,034,628,795 1,035,728,694
1,035,629,784 1,034,729,685 1,025,638,794 1,024,738,695
1,025,738,694 1,024,638,795 1,035,729,684 1,034,629,785

In 2004, Carlos Rivera [6] quested for the smallest 3× 3 pandig-
ital magic square. By a computer search, he found the following
great minimal solution, with pandigital magic sum 3,205,647,819:

1,057,834,962 1,084,263,579 1,063,549,278
1,074,263,589 1,068,549,273 1,062,834,957
1,073,549,268 1,052,834,967 1,079,263,584

Some interesting open problems about pandigital magic squares
are the following:

(a) What is the pandigital magic square with the largest sum?

(b) Is there a 5 × 5 or larger pandigital magic square?

Antimagic Squares

An antimagic square is an n × n array of the numbers from 1 to n2

such that the rows, columns, and main diagonals produce different
sums, and the sums form a consecutive sequence of integers. An-
timagic squares were invented by J. A. Lindon in 1962 [4, p. 103].
Here is an example:

29
6 8 9 7 30
3 12 5 11 31
10 1 14 13 38
16 15 4 2 37
35 36 32 33 34
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In 2004, I found this 5× 5 antimagic square that contains in its
center a 3 × 3 magic square [7]:

59
7 8 24 22 2 63
4 16 9 14 21 64

25 11 13 15 5 69
6 12 17 10 23 68

18 20 3 1 19 61
60 67 66 62 70 65

In 2005, I found a 6 × 6 antimagic square that contains in its
center a 4 × 4 magic square:

108
1 36 34 33 2 3 109

35 26 13 12 23 6 115
27 15 20 21 18 5 106
10 19 16 17 22 30 114
9 14 25 24 11 29 112

31 7 8 4 28 32 110
113 117 116 111 104 105 107

An interesting open problem is to find an n × n magic square
that contains in its center an (n − 2) × (n − 2) antimagic square, or
to prove that this is impossible.

Talisman Squares

The Talisman constant of an n × n array of the numbers from 1 to
n2 is the minimum difference between any element and one of its
eight immediate neighbors (including diagonal neighbors). A Tal-
isman square is an n × n array with the largest possible Talisman
constant over all n × n arrays of the numbers from 1 to n2. Tal-
isman squares were invented by Sidney Kravitz [4, p. 110]. As an
example, consider the following two 4 × 4 squares:

16 3 2 13 9 5 11 7
5 10 11 8 13 1 15 3
9 6 7 12 10 6 12 8
4 15 14 1 14 2 16 4

The left square is the well-known Dürer Magic Square (appear-
ing in Dürer’s Melancholia I engraving from 1514) and has a Tal-
isman constant of 1. On the other hand, the right square has a
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Talisman constant of 3. So, the left square cannot be a Talisman
square, while we may assert that the right square is a Talisman
square because 3 is the largest Talisman constant possible for any
4 × 4 square.

But how do we construct an n×n Talisman square for any given
order n? Carlos Rivera and I [8] have been studying this problem,
and we have found a pair of algorithms (one algorithm for even val-
ues of n, the other for odd n) that we conjecture produce a Talisman
square for any given order n, as desired. Instead of providing long-
winded and boring general instruction rules, we will demonstrate
the algorithms using a couple of examples and some explanations
about them.

Even n

We obtain a Talisman constant of n2/4 − 1 for even n. Here is an
example of our algorithm applied to n = 6, where the Talisman
constant is 8:

19 10 22 13 25 16
28 1 31 4 34 7
20 11 23 14 26 17
29 2 32 5 35 8
21 12 24 15 27 18
30 3 33 6 36 9

As you may have noticed, the filling pattern in the previous ex-
ample divides the numbers 1, 2, 3, ..., n2 into four sets (S1, S2, S3, S4),
each with n2/4 consecutive numbers, as follows:

S1 = {1, 2, 3, ..., X − 1},
S2 = {X, X + 1, X + 2, ..., Y − 1},
S3 = {Y, Y + 1, Y + 2, ..., Z − 1},
S4 = {Z, Z + 1, Z + 2, ..., n2}.

The n2/4 consecutive numbers of each set are allocated in the
same general trend:

Starting from a certain specific position inside the four cells in
the upper-left corner, the rest of the numbers of each set are
allocated consecutively according to the rule “every two cells
downward and rightward.” At the moment you finish allocating
the last number of the first set, you know the first number of
the following set, and so on.
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So, the only important thing you should know in advance is the
cells in which the first numbers of each set (1, X, Y, and Z) must
be allocated. The answer is this:

1 goes in the cell (2, 2),
X goes in the cell (1, 2),
Y goes in the cell (1, 1), and

Z goes in the cell (2, 1),

as shown below. Moreover, if you want to know the values in ad-
vance, X = n2/4 + 1, Y = n2/2 + 1, and Z = 3n2/4 + 1, but this is not
really necessary to know.

Y X
Z 1

We call this filling pattern “22A”: “22” because it starts in the
cell (2, 2), and “A” because the four starting numbers of each set—
1, X, Y , and Z—describe the profile of a letter “A.”

Odd n

We obtain a Talisman constant of �n(n− 1)/4�, the integer immedi-
ately below n(n − 1)/4, for odd n. Here is an example of our algo-
rithm applied to n = 7, where the Talisman constant is 10:

13 40 17 32 21 36 25
1 29 4 44 7 47 10
14 41 18 33 22 37 26
2 30 5 45 8 48 11
15 42 19 34 23 38 27
3 31 6 46 9 49 12
16 43 20 35 24 39 28

As before, there are four sets (S1, S2, S3, S4) of consecutive num-
bers. Now, however, the four sets have distinct quantities of inte-
gers. Again, the starting numbers of the four sets, 1, X, Y , and Z,
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are allocated in the four cells in the upper-left corner, but now

1 goes in the cell (2, 1),
X goes in the cell (1, 1),
Y goes in the cell (2, 2), and

Z goes in the cell (1, 2),

as shown below. We call this pattern “21N” for analogous reasons
as before.

X Z
1 Y

The consecutive numbers belonging to each of the four sets
are allocated in the same general trend as before: every two cells,
downward and rightward. But we have a very important difference:

When allocating the numbers of the set S3, starting in column
4+2(�c/4�−1), shift upward by one cell all the cells that would
receive the corresponding numbers for this column. The same
happens with all columns rightward of this column.

Consequently, when allocating the numbers of the set S4, start-
ing at column 4 + 2(�c/4� − 1), shift downward by one cell all
the cells that would receive the corresponding numbers for this
column. The same happens with all columns rightward of this
column.

Summary

Talisman squares are constructed as follows.

• For n even:

Use the filling pattern 22A1 for the starting numbers (1, X,
Y , and Z) of the four sets (S1, S2, S3, and S4) of n2/4 con-
secutive numbers; allocate the numbers of each set using
the general procedure “every two cells downward, right-
ward.” Proceeding this way, we obtain a Talisman constant
of n2/4 − 1.

1In fact, for even n, we have found two more general patterns that produce the
same Talisman constant. We have selected the pattern 22A because it seems ap-
propriate for producing Talisman rectangles, as well. However, this is still a work
in progress.
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• For n odd:

Use the filling pattern 21N for the starting numbers (1, X,
Y , and Z) of the four sets (S1, S2, S3, and S4) of consecutive
numbers; allocate the numbers of each set using the gen-
eral procedure “every two cells downward, rightward.” For
the sets S3 and S4, shift upward and downward, respec-
tively, the starting cell in each column from 4+2(�c/4�−1)
rightward. Proceeding this way, we obtain a Talisman con-
stant of �n(n − 1)/4�.

n, order of Talisman square 3 4 5 6 7 8 9 10 11
Talisman constant:
n2/4 − 1, for n even; 3 8 15 24

�n(n − 1)/4� for n odd. 1 5 10 18 27
First shifted column:

4 + 2(�c/4� − 1), – – 4 – 4 – 6 – 6
sets S3 and S4, just for n odd.

It is an open problem whether our Talisman constants can
be improved, or whether our constructions are indeed Talisman
squares. In May 2004, Luke Pebody [8] proved that our algorithm
produces Talisman squares for even n. But, the situation seems
significantly more complicated for odd n.
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Rectangle Arithmetic: Another
Slant on Fractions

Bill Gosper

This article describes a geometric view of numbers that connects
grade-school arithmetic, geometric slopes, continued fractions, and
electrical resistance.

For starters, boxes represent numbers. A square, , regardless
of size, has value 1:

= .

For the original, color version of this article, please see http://www.
tweedledum.com/rwg/rectarith12.pdf. It is much clearer and prettier and
may yet appear in print.
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A stack of two squares, , means 2, again regardless of their
sizes:

> ,

+ = .

A stack of equal squares can form a rectangle:

= .

This means 1 + 1 + 1 = 3. So,

+ = .

Size doesn’t matter—only shape. We add rectangles by stacking
them vertically, like with squares:

= .

Here, two equal rectangles sum to 1. So, if the rectangles each
represent x, we have x + x = 1. Thus, x = 1

2 , which we can see as 2
turned sideways.
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A tall rectangle that is not a whole number of squares is an
“improper” fraction. By marking off the squares, we make a mixed
number:

= .

In symbols, 5
2 = 2 + 1

2 .
A 3 turned sideways is obviously 1

3 . And 2
3 is

.

Turning this sideways, we get 3
2 :

.

Turning any rectangle sideways reciprocates its value. In gen-
eral, the value represented by a rectangle is just its height divided
by its width, that is, the slope of its diagonal. Engineers use the
fancy term “aspect ratio,” but they like to make it greater than or
equal to one by sometimes switching height and width. But, if we
did that, we’d confuse 3 with 1

3 !
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So, rectangles just represent fractions: the height is the numer-
ator, and the width is the denominator. The reason size doesn’t
matter is that magnifying a rectangle is the same as multiplying
the numerator and denominator by the same quantity.

When adding 1
3 + 1

2 , scaling the summands to have the same
width and making a nice rectangle is the same as finding a com-
mon denominator: for example,

= .

This equation, and the whole idea that shape matters, but not
size, may seem artificial and slapdash, but there is actually a sim-
ple physical example of this behavior. If each square is made of
the same electrically resistive material, and we coat their top and
bottom edges with a good conductor and then apply a voltage be-
tween the topmost and bottommost edges of the above figures, the
currents that they pass will be equal and will not change if the
figures are scaled up or down. To help your intuition, suppose
that you have a square conducting a certain current. Placing an-
other square beside it (creating the rectangle value 1

2 ) doubles the
current, and thus halves the resistance:

1 1
2

2 1

But then stacking two of these rectangles vertically creates a large
square and redoubles the resistance back to the initial value.
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We can subtract a smaller rectangle from a larger one by scaling
to equal width (finding a common denominator) and lopping off the
smaller from the larger:

− = .

But the extra machinery that we’d need for handling negative
numbers probably isn’t worth it. We could draw a diagonal along
each rectangle. The opposite diagonal means the opposite sign;
vertical flipping reverses the sign. To add values, scale them to
equal width, and never let diagonals join end to end; instead, su-
perpose the rectangles to have a common upper or lower edge.
Then, the sum is the rectangle whose diagonal joins the beginning
of one diagonal with the end of the other. We’ll avoid this compli-
cation in the rest of this article by focusing on positive numbers.

From the 1
2 + 1

3 example, we can read off the answer 5
6 , i.e., 5

high and 6 wide, if we subdivide one of the larger squares (say, the
lower left) by trisecting its edges:

.
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A more methodical way to read off a rectangle’s value is to convert
it to a mixed number, reciprocate the fraction, and repeat:

.

We removed zero squares in the vertical dimension, because the
fraction was “proper.” Then, we got one square horizontally. Then,
we got five squares vertically with no remainder, so the process
(known as a continued fraction) terminated with the value

0 +
1

1 +
1
5

=
5
6
.

When the slope is not a rational fraction, the continued fraction
process does not terminate, as with the number π:

π = 3 +
1

7 +
1

15 +
1

1 +
1

292 +
1

. . .

,
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Due to limited resolution, the column of 15 (more nearly 16) is
barely visible. We call the sides of such a rectangle incommensu-
rable because there is no scale of measurement in which both are
whole numbers. Scaling a rectangle doesn’t affect the commensu-
rability of its sides.

What does it mean to stack rectangles horizontally rather than
vertically? In other words, what is the slope of a rectangle joined by
stacking equally tall rectangles horizontally? The answer is easy: if
we turn it sideways, it’s the sum of the reciprocals. Reciprocating
the sum of the reciprocals (harmonic sum) is also how you add
resistors in parallel. If we add two frequencies or angular velocities,
we harmonically sum the periods (and wavelengths). For example,
the time it takes the stars to fully circle Polaris (The North Star) is

1 sidereal day =
1

1
1 year

+
1

1 day

because the Earth both rotates and revolves.
Here is an algebra exercise. The following rectangle is composed

of nine unequal squares. Is it a perfect square?
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If not 1, what number does the rectangle represent? (Hint: Ar-
bitrarily assign the value 1 to the sides of the tiniest square, and
the value x to the square just above it. Then, their left neighbor
has side x + 1. You can continue assigning sizes in terms of x to
all nine squares. Then, equate the top edge of the rectangle with
the bottom, and you should get an equation that determines x.)
Answer: x = 7, and the rectangle has slope 32

33 .
For a dozen or so more of these diagrams, see [2]. For hundreds

more (with the sizes filled in), search the web for “squared rectan-
gles.” If I were king, one of these diagrams (undimensioned) would
appear daily in the newspaper puzzle pages, along with the answer
to “Yesterday’s Answer.” Sundays would feature an extra-large one
requiring simultaneous equations. Related is the ancient problem
of finding a squared (or “perfect”) square, covered by Martin Gard-
ner [1] and first solved in the late 1930s.

Besides adding and subtracting, it’s easy to multiply slopes. If
four rectangles fit to form a larger one,

,

then the products of the diagonally opposite slopes are equal. In
other words, upper left × lower right = lower left × upper right. This
gives the term cross product a whole old meaning. In the example
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above, the upper left is square, and we get that 2× 1
3 = 2

3 (lower left
× upper right = lower right). Making the lower-left square instead,
we have 1

3 × 1
2 = 1

6 (lower right × upper left = upper right):

.

For division, just put the dividend diagonally opposite the 1
square, or reciprocate the multiplier.

We can represent the number 0 = 0
1 = 0

2 = . . . with a horizontal
stroke,—, i.e., a box of zero height. You can safely reciprocate it to
make 1

0 = 2
0 = . . ., represented by a harmless vertical stroke, |. We

see that stacking up zeroes makes no difference, and multiplying
by | makes |, except that multiplying | by — makes a single point,
· = 0

0 , and trying to do anything with this just makes another ·.
Here is how to take the square root of a slope. Let B stand for

Bond. James Bond. He and Auric Goldfinger, G, creep out from
opposite corners of the rectangular quarters of M . Slope M . They
creep at identical speeds, so that JB = AG. As soon as they can
see each other along the diagonal of a rectangle, they shoot. The
line of fire JA has slope

√
M .

In this illustration, M = 3, creating half an equilateral triangle.
But how do we actually synchronize Bond’s motion with Goldfin-
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ger’s to find the line JA? Without scaling, adjoin to the rectangle a
sideways copy, as shown below.

Join the two upper corners of the combined figure with a semi-
circle. This intersects Bond’s vertical path at the desired point J,
from which we draw straight lines through those upper corners.
The lines will be perpendicular, with the desired (reciprocal) slopes
s1 =

√
M and s2 = − 1√

M
, as shown by the top-left square (slope

1) and the multiplication rule: 1 × M = s1 × s1. In fact, we don’t
even need the top-left square to see this: instead, use the elbow
square as the lower-left pane of the cross product 1 × 1

s1
= s1 × 1

M
(ignoring signs). (To see that the two lines drawn from J are per-
pendicular, draw a radius to J, making two isosceles triangles with
supplementary apex angles whose average coincides with the angle
at J.)

One last operation on rectangles, called mediant, is to join them
corner-to-corner and then take the bounding box:

.

The above example says mediant(1
2 , 1

3 ) = 2
5 . This is the fraction
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between 1
2 and 1

3 that has the smallest numerator and denomina-
tor. In general, the mediant is the sum of the numerators over
the sum of the denominators—the way you’re not supposed to add
fractions.

You can find the best rational approximations to any number
between zero and infinity by repeatedly taking the mediant of the
last underestimate and overestimate, starting with an underesti-
mate — (zero) and an overestimate | (infinity). For example, what’s
the easiest way to bat 0.239? Write the underestimates on the left
and the overestimates on the right, working toward the middle:

0
1

1
0

1
5

1
4

1
3

1
2

1
1

2
9

3
13

4
17

5
21

6
25

11
46

(In decimals, 5
21 ≈ 0.2381, and 11

46 ≈ 0.2391.) So, you need (at least) 46
at-bats to bat 0.239. Graphically, a slope of exactly 0.239 requires
a rectangle with one corner at (0, 0) and the opposite at (1000, 239),
way off the page. We chain together a | ( 1

0 ), putting us too high.
Then, five —’s ( 0

1 ) put us at (5, 1), too low. Then, five 1
4 ’s put us a

bit too high, and finally, a 5
21 gets us within 0.0005:

(46, 11)

(0, 0)

The big rectangle in the top right is the same as the box bound-
ing (0, 0) and the first four 1

4 rectangles. If we continue the process,
we will soon reach the point (1000, 239), which is the first time the
slope will be exactly right, because 239

1000 is in lowest terms. The grid
point nearest (0, 0) through which a diagonal passes is its slope in
lowest terms. This mediant process finds that point, thus reduc-
ing fractions without first finding the greatest common divisor. For
example, for 65

286 ≈ 0.2273,

0
1

1
0

1
5

1
4

1
3

1
2

1
1

2
9

3
13

5
22
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where the 5
22 is in the middle because it’s exact. The “usual” way to

do this graphically is to repeatedly eat off the largest square from
a 65-by-286 rectangle, which will terminate with the removal of a
13-by-13 square, which is the greatest common divisor, which you
then divide out:

65 65 65 65 13 13

.

Instead of rectangles, it is also possible to compute mediants
with circles. Below is a perspective view of “Euclid’s orchard” as de-
scribed in the “Lattice of Integers” chapter of Martin Gardner’s Sixth
Book of Mathematical Diversions from Scientific American (Univer-
sity of Chicago Press, 1984).

Notice how only grid points with coprime coordinates are “visible.”
Grid points such as (2, 2) or (2, 4) are hidden behind trees growing
out of the corresponding grid point with the common divisor scaled
out. If we flip this drawing vertically, it turns into the graph of the
notorious “ruler” function that manages to be continuous at every
irrational number and discontinuous at every rational one.
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The exact definition is simply 0 at every irrational and 1
d for every

rational n
d . Now adjoin points 0 and 1, where the function is 1, and

square it.

Finally, let each of these vertical segments be the diameter of a
circle.
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These are known as the Ford circles. Each circle’s x-coordinate
is the mediant of the x-coordinates of the two larger circles that
confine it. If this is n

d , then the circle’s radius is 1
d2 .

For our last example of rectangle arithmetic, let us investigate
whether three grid points (i.e., having integer coordinates) can form
an equilateral triangle. If we double the size of the triangle (and
maybe even if we don’t), the midpoint of the base will also be a grid
point, and we supposedly have a grid rectangle with diagonal slope
equal to

√
3. But,

√
3 is irrational, i.e., not a ratio of integers. To

see this, try iteratively removing the largest square. As we have
seen, when the slope is a ratio of integers, this process terminates
(consumes the entire rectangle) in a finite number of steps; the
sides are commensurable. But after removing three squares for

√
3,
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we have a rectangle (in the top middle) with diagonal slope

2
√

3 − 3
2 −√

3
=

(2 −√
3)
√

3
2 −√

3
=

√
3.

In other words, this rectangle has the same diagonal as the origi-
nal, so the process will go on forever. In fact, this gives the infinite
continued fraction for

√
3:

√
3 = 1 +

1

1 +
1

1 +
√

3

= 1 +
1

1 +
1

2 +
1

1 +
1

2 +
1

1 +
1

. . .

.

So, in the grid there is no equilateral triangle with a horizontal
base. But what about tilting the triangle at some angle? Surprise!
The slopes of all of the angles in the infinite, two-dimensional grid
are rational and are thus found among the (untilted) grid rectan-
gles. In fact, if two lines through a point have slopes s and t, the
slope of the angle between them is

s − t

1 + st
,

which is clearly rational when s and t are both rational. But, in-
stead of deriving this formula, there is a more intuitive way to see
that there are no new angles to be had by tilting. As an example,
we’ll use the angle between slopes 3 (upper diagonal line) and 1

5
(lower diagonal line), but the argument works in general.
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Arbitrarily choosing the slope-3 line, make a square grid using
increments (sides of the squares) (1, 3) and (3,−1). Now follow the
slope-1

5 line from (0, 0). The heavier vertical grid lines interrupt it
at (5, 1), (10, 2), (15, 3), and so on. Notice that (0, 0) is the corner of
a square-grid square, and (5, 1), (10, 2), and so on land in various
places inside these squares. But there are at most 10 = 3× 3+1× 1
(in this case) different places to land before winding up on another
square corner, in this case, (25, 5). But then (0, 0), (4, 12), and (25, 5)
form half a rectangle (with a slope-1

5 diagonal) in the square grid,
and by counting these squares, the angle between the slope-3 and
slope-1

5 lines has slope 7
4 , just as predicted by the formula:

3 − 1
5

1 + 3(1
5 )

=
14
8

=
7
4
.

Notice that the sequence (0, 0), (5, 1), (10, 2), . . . , (25, 5) visits ex-
actly half of the ten possible grid points in the square grid. If we
simulate wraparound by subtracting multiples of the edges (1, 3)
and (3,−1) so as to confine the moving point to one square, we
have the sequence

(0, 0), (1,−1), (2,−2), (3,−3) = (0,−2), (1,−3), (2,−4) = (−1,−3) = (0, 0).

Thus, for any pair of grid points, there is a rectangle of grid
points with one vertex at the origin, one side through the first
point, and one of its diagonals through the second point.

Let us finally escape from Flatland and idly ask, “Are there equi-
lateral triangles in the three-dimensional grid?” Abundantly! With
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coordinates limited to just 0, 1, and 2, there are 24, as well as four
regular hexagons.

How many dimensions before we see (regular) octagons, pen-
tagons, dodecagons, and so on? We won’t! Even in an infinite-
dimensional grid, the only regular polygons of finite size are tri-
angles, hexagons, and squares. We could probably prescribe the
nth coordinate of the kth vertex of a regular pentagon, say, but
infinitely many coordinates would be nonzero, resulting in infinite
size. And it would only approach regularity as we consider higher
and higher dimensions.

Acknowledgment. Illustrations in this article were prepared with Mac-
syma.

Bibliography

[1] Marin Gardner. The 2nd Scientific American Book of Mathematical
Puzzles and Diversions. New York: Simon and Schuster, 1961.

Rectangle Arithmetic: Another Slant on Fractions 343

  

http://www.crcnetbase.com/action/showImage?doi=10.1201/b10573-32&iName=master.img-433.jpg&w=258&h=278


�

�

�

�

�

�

�

�

[2] Bill Gosper. “Rectangles Divided into (Mostly) Unequal Sqares.” Avail-
able at http://www.tweedledum.com/rwg/squares.htm, 2007.

344 A Lifetime of Puzzles

  



�

�

�

�

�

�

�

�

About the Authors

Vanni Bossi is the president of Milan’s Club Arte Magica (CLAM).
In addition to his magical performances and publications, he is
engaged in spreading the history of magical culture.

Stewart Coffin is recognized as one of the world’s best designers
of polyhedral interlocking puzzles. He is the creator of AP-ART and
author of several books on puzzle craft.

Frans de Vreugd is a Dutch puzzle designer and collector, travel-
ing around the world in the search for puzzles. He is one of the
editors of the puzzle newsletter Cubism For Fun.

Persi Diaconis is famous for combining mathematics and magic,
with professional experience in both fields, and for studying the
mathematical properties of such fundamental topics as coin flip-
ping and card shuffling. With Ron Graham, he has recently written
a book where mathematics meets magic, From Magic to Mathemat-
ics—and Back (to appear).

Jeremiah Farrell, an emeritus professor in mathematics at Butler
University, is, with his wife Karen, editor and publisher of Word
Ways: The Journal of Recreational Linguistics (a journal started in
1968 at the suggestion of Martin Gardner).

Martin Gardner is the father of recreational mathematics, most
famous for his 25-year “Mathematical Games” column in Scientific
American. He has written more than 65 books throughout science,
mathematics, philosophy, literature, and conjuring.

345



�

�

�

�

�

�

�

�

Solomon W. Golomb, University Professor and Viterbi Professor
of Communications at the University of Southern California, is an
elected member of the National Academy of Sciences and the Na-
tional Academy of Engineering. He has authored several articles in
Martin Gardner’s “Mathematical Games” column in Scientific Amer-
ican, and he is well known as the inventor of polyominoes.

Bill Gosper is a mathematician and programmer, recognized for
his work in computer algebra, Lisp, and Macsyma. He is consid-
ered one of the founders of the hacker community, cowriting the
notorious HAKMEM document. He also found the first infinitely
growing pattern in Conway’s Game of Life, the glider gun.

Ron Graham is famous for his profound contributions throughout
combinatorics, coauthoring the book Concrete Mathematics, and
using the largest number in a mathematical proof (Graham’s num-
ber), as well as being an expert juggler. With Persi Diaconis, he
has recently written a book where mathematics meets magic, From
Magic to Mathematics—and Back (to appear).

Dick Hess is a designer and collector of puzzles and riddles, and a
mathematician. He wrote a puzzle column, “Puzzles from Around
the World,” for ten years, and those puzzles are collected in his
article in The Mathemagician and Pied Puzzle. He also has written
the Compendium of Over 10500 Wire Puzzles.

David Klarner was an old friend of Martin Gardner, frequently
contributing material to Gardner’s “Mathematical Games” columns
and books. Klarner edited a volume dedicated to Martin Gard-
ner’s 65th birthday, The Mathematical Gardner (retitled Mathemat-
ical Recreations: A Collection in Honor of Martin Gardner by Dover
in 1998), and Gardner dedicated his book Time Travel and Other
Mathematical Bewilderments to Klarner.

Ken Knowlton works in computer-assisted art and since about
1980 has concentrated on creating mosaics that integrate the ma-
terial used and the nature of the subject. He received a PhD from
MIT and worked from 1962 to 1982 at Bell Telephone Labs, dur-
ing the formative years of computer graphics. In 1993, he created
a domino portrait of Martin Gardner using six sets of double-9
dominoes.

346 A Lifetime of Puzzles

  



�

�

�

�

�

�

�

�

Rodolfo Kurchan is a designer and collector of riddles and me-
chanical puzzles in Buenos Aires. He is the author of two books,
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