

Pantologia. A new (cabinet) cyclopædia, by J.M. Good, O. Gregory, and N. Bosworth ...
 John Mason Good, Olinthus Gilbert Gregory

.399 d.
1877
5

$$
m
$$

Digitized by GOOgle

PANTOLOGIA.

VOL. V,

FLU - HOM.

PANTOLOGIA.

A
 NEWCYGLOP \mathbb{C} DIA,
 COMPREEENDING

A COMPLETE SERIES OF

Cssans, ©reatises, and grystmx,

ALPHABETICALLY ARRANGED;
WITH A GENERAL DICTIONARY OF
ARTS, SCIENCES, ANDWORDS: THE WHOLE
PRESENTINGA DISTINCTSURVEYOF

Guman deniuฐ, zearning, and \mathfrak{J} ndustry.

muveratiso wira

ELEGANT ENGRAVINGS;

THOSE ON NATURAL HISTORY BEING FROM ORIGINAL DRAWINGS BY EDWARDS AND OTHERS, AND BEAUTIFULLY COLOURED AFTER NATURE.

BY JOHN MASON GOOD, ESQ. F.R.S.
HEYEER OP THE AMERICAN PRILOBOPRICAL SOCIETY, AND OF THE LINNEAN SOCIETY OF PHILADELPHLA;
OLINTHUS GREGORY, LL. D.
OF TEE ROYAL IILITARY ACADEMY, WOOLWICH, AND HONGRARY MEMBER OF THE LITERARY AND PHLLOSOPHICAL SOCIETY, NEWCABTLE-LPON-TYNE; AND

MR. NEWTON BOSWORTH, OF CAMBRIDGE;
ASSISTED BY OTHER GENTLEMEN OF EMINENCE, IN DIFFERENT DEPAR'TMEN'I'S OF LITERATURE.

!

PANTOLOGIA.

FLU

FLUKES. Worms of the intestinal order, tound frequently in the liver and brain of sheep, and the chief source of the rot. See Fasciola.
FLL'MMERY. s. A kind of food made by coavulation of wheat-flower or oatmeal (Loc.).

FLUNG. The participle and preterit of fling.

FLUOR, in oryctology, a genus of the class earths, order calcareous. Consisting of carbonat of lime and fluoric acid; somewhat ponderous, parasitical, never hard, shining in the dark, and crackling when heated to the degree of boilin:g water; not effervescing with acids; but if distilled with the mineral acids, emitting the fluoric acid gass which has the property of dissolving slass; melting before the blowpipe into a transparent glass. Six species.

1. F. pulierulentus, Sandy or earthy fluor. Earthy fluat of lime. Whitish, without lustre, powdery, with the larger particles not cohering. Found at Kabola Poiana in the district of Marmaros in Hungary, between two beds of quartz; colour light gray, greenish white, or blueish green; when strewed on an iron plate a little below redness diffusing a blue or pale yellow phosphorescent light; feels harsh and stains a little.
2. F. compactus. Solid or compact fluor. Hardish, compact, of an even texture, diaphonous, brittle, breaking into indeterminate fragments, of a common form. Found in Britain, and near Stolberg and Strasburg, whitish-grey, more or less passing into green, often spotted; fracture even or conchoidal, specific gravity from 3,120 to 3,165.
3. F. spatosus. Flior spar. Sparry fluor. Harilish, shining, brittle, of a common form breaking into pyramidal fragments, lamellar. Another variety, with the fragments into VOL. V.

FLU

which it spontaneously falls, resembling rery minute granulations: denominated fluor mineral, or granular. Found in Britain, Norway, Sweden, Spain, and Germany, white, smokecolour, green, violet, purple, rosy, honey-colour, or varied with spots, blotclies, or veins, semi-pellucid, or transparent, breaking into three, rarely four-sided fragments, takes a fine polish, and is manufactured into various vases and figures.
4. F. tabularis. In rhombic oblong tables. Found in Switzerland, Alsace, and Saxony.
5. F. cubicus. Fluat of lime. Cubic fluor. Hardish, shining, smooth, lamellar, brittle, breaking into pyramidal fragments, cubic. Many varieties, cubes perfect; or imperfect; angles, or margins, or both truncate ; margins terminating in a point, or in a three-sided pyramid. Found in Derbyshire and Northumberland, Spain, France, Saxony, Germany, $\& \mathrm{c}$. of the same variety of colours as F. spatosus; most frequently pellucid, rarely opake ; the crystals solid or hollow, or containing a small drop of water, or some fossil, and placed in a decussate manner, laterally or irregular, or aggregate in a kidney or imperfectly globular form.
6. F. pyramidalis. Pyramidal fluor; fluor spar, Huat of lime.
a With a single pyramid, inversed, or straight, or three-sided, or truncate, or six-sided.
6 With a double pyramid ; the pyramid sour-sided. Found in Derbyshire, Devonshire, and Cornwall ; and in various parts of Sweden, Saxony, and Bohemia: the colours vary as in F. spatosus. Sec Fluoric sifar.
Fluor albus, a morbid secretion incilent B

FLUORIC SPAR.

to women, commonly known by the name of manner deposited if the gass is receired in whites. See Medicine, and leucorrhesa.
fleoric acid. See Fivoric spar.
Fluoric spar. (acide fluorique, Fr. fluss spathsiure, Germ.) In the Transactions of the Academy of Sciences at Berlin for 1763, is contained a memoir by Margraaf on fluor spar. This able chemist found that when the above mineral was distilled with sulphuric acid a volatile acid vapour was disengaged, which deposited a white earth on coming into contact with water: he also remarked that the retort in which the distillation was carried on was corroded and worn into holes by the process. Three years after, Scheele published a valuable essay on the same subject, in which he proved that fluor spar consisted of lime combined with a peculiar acid, many of the properties of which were investigated by him with great success. Priestley then tonk up the subject, confining his attention for the most part to the action of fluoric acid in the state of gas. Since the date of these last experiments but few additions have been made to our knowledge of this acid and its various combinations.

The distinguishing property of fluoric acid is that when dry and in the state of gass it readily combines with silex, and still retains its elastic form : hence arises the peculiar and almost insurmountable difficulty of obtaining this substance in a state of purity.

Fluoric acid is procured from fluor spar: for this purpose a quantity of the mineral being reduced to a fine poweler is to be mixed in a thick glass retort with an equal weight of concentrated sulphuric acid: upon the application of a gentle heat the sulphuric acid will combine with the calcareous base of the spar, and fluoric gass will at the same time be liberated, and may be received in the mercurial pncumatic apparatus in the usual way. If the heat applied to the retort is somewhat considerable, and the gas is rapidly produced, the retort will give way in the space of a minute or two, being eaten into tholes by the action of the acid ; if the process is conducted caution:ly and at as low a mmperature as possible, the setort may be made to last a consilerable while longer. The gass thus procured, while confined over wercury, is perfectly colourless and transparent ; it has a punzent suffocating odour like muriatic acid, produces immediate death to aninals which are immersed in it, extinguishes the flame of a candle after having previously tinged its flame of a green colour, and changes certain vegetable blues to red. Its specitic gravity is considerably greater than that of atmospheric air, but has not yet been a.sertained with any accuracy. If this gas is mixed with atmospheric air, a white vapour siniliar to but more copious than that occasioned by the muriatic acid gass in the same circumstances is the result; this appearance is partly occationed by the combination of the acid with the moisture of the air, but principally by the deposition of silex, which takes place at the same time. The earth is in like
water, and this experiment, according to the circumstances under which the acid is disengaged, exhibits a variety of singular and interesting appearances. As soon as a bubble of gas passes from the beak of the retort into the water it is immediately diminished in size from the absorption of a portion of the acid, and the whole would be taken ap if the globule did not instantly become coated with the earth deposited by that part of the acid which is absorbed, for the earthy film being interposed between the gass and the water prevents any further combination till the bubble reaches the surface of the water, where it bursts. If this is performed in a jar full of water inverted over niercury, and care is taken to prevent the gas from being mixed with atmospheric air, the whole of the gass is absorbed, and the silex, in proportion as it is deposited, diffuses itself through the liquor, which thus at length arquires a gelatinous consistence: when in this state, the greater part of the earth may be separated by putting the whole in a piece of linen and squeezing it. The acid liquor thus procured being again inverted over mercury, will absorb an additional quantity of gas, and by thus treating it three or four times successively, a strong fuming acid liquor mas be obtained, consisting principally of fluoric acid and water, but still holding in solution a portion of silex, and probably also alkali, from the decomposition of the glass of the retort. If this saturated liquor is mixed with a few drops of fluat of silver, a slight precipitate of cornea takes place, and the fluoric acid is thus separated from a small portion of muriatic acid, which, when prepared in the foreroing manner, it is always found to contain. From the liquor thus purified a cousiderable quantity of pure fluoric acid gas may be obtained by heating it almost to ebullition in a retort, and receiving the product in mercury. This gass appears to consist merely of fluoric acid, saturated with as much water as it can hold in an elastic state, and at a moderately cool teniperature seems to have no action on glass. It combines readily with water without depositing in any earth, and has an astringent acidulous taste. A candle inımersed in it is extinguished without any previous change in the colour of the flame: it combines with ammoniacal gass, forming a white cloud: it dissolves camphor, and is taken up in large quantity by oil of turpentine, to which it communicates an orange colour and a pungent acid odour. If kept for some time in a bottle of soft glass it acts upon it though slightly, on which account it is a useful precaution before puting the acid in, to line the hottle with a thin coating of a mixture of oil and wax. It has been proposed by some chemists, as a method of obtaining pure liquid fluoric acid, to make use of a leaden retort and receiver; in which case the fluor spar being previously reduced to an exceedingly fine powder, is to be mixed in the retort with an equal weight of strong sulphuric acid ; the application of a gentle heat, not exceeding that of

FLU

boiling water, will force into the receiver a large quantity of acid gass, where it combines to saturation with water, and thus produces liquid thoric acid. In this process, provided the spar selected was free from quartz, there is indeed no deposition of silex, but a very notable proportion of lead is volatilized, and remains for the most part dissolved in the liquor, which, on this account, is by no means so pure as the acid produced by Dr. Priestley's method.
Fluoric acid has not yet been decomposed, its base therefore is wholly unknown, and it is only from analogy that chemists suppose it to contain oxygen. A remarkable difference between the fluoric and muriatic acid is that the latter is incapable of becoming oxygenated : it will neither unite with oxygen in the state of gas nor when digested with manganese. Fluoric acid combines with the alkalies and alkaline earths, with alumine and silex, and with the metallic oxyds; the metals in a reguline state appear to have no affinity for dry fluoric acid, but when liquid it will dissolve iron, zinc, copper, and arsenic, hydrogen being at the same time disengaged. The order of its affinities is as follows: lime, barytes, strontian, magnesia, potash, soda, ammonia, alumine, and silex.

The only use to which fluoric acid has been applied is engraving on glass. It appears from Beckman that this was first practised by an artist of Nuremberg, in the year 1670 , who prepared his etching liquor by digesting together nitrous acid and finely powdered fluor spar for several hours on a warm sand bath, and then using the clear liquor as aquafortis is employed by the copper-plate engravers. But the knowlege and application of this liquor was confined to a few German artists, till, after the discoveries of Scheele and Priestley, the fluoric acid in a pure state was used for the same purpose by various ingenious artists in England and France. Puyinaurin found the liquid acid prepared in leaden vessels according to Scheele's process to anwer very well for this purpose in warm weather, but by cold its activity is so much impaired as to produce litile effect even in three or four days. The gasseous acid however is much more efficacious; and being at the same time sufficiently manageable with proper care, merits the preference. To engrave on glass, select a piece of plate glass of the requisite size, cover it with hard engraver's wax, and with a needle or other suitable instrument trace the intended design as in common etching, observing that every stroke passes quite through the wax to the surface of the glass; which may be ascertained by placing the plate on a sloping frame like a portable reading desk, in which sitnation the light will shine through wherever the wax is removed. When the etching is completed, lay the plate with the engraved side downwards on a frame, in a box lined with strong sheet lead or thick tin foil, and place on the bottom of the box a few leaden cups containing a
mixture of one part of very fine pulverized fluor spar and two parts of sulphuric acid: then close the lid of the box, and place it on a stove, or in any other convenient situation where it may be exposed to as high a heat as it can bear without risking the melting of the wax : fluoric acid gass will be copiously disengaged, and in a short time (from one hour to three, according to circumstances) the plate will be found sutliciently corroded. See Fi UOR.

FLU'RRY. s. 1. A gust of wind; a hasty blast (Suift). 2. Hurry; a violent commotion.

To FLUSH. v. n. (fluysen, Dutch.) 1. To flow with violence (Nortimer). 2. To come in haste (Ben Jonson). 3. To glow in the skin (Collier). 4. '「o shine suddenly: obsolete (Spenser).

To Flush. v. a. 1. To colour; to redden (Addison). 2. To elate; to elevate (Atterliu).

Flush.a.1. Fresh; full of vigour (Cleave.). 2. Affluent; abounding (Arbuthnot).

Flush. s. 1. Aftux; sudden impulse; violent flow (Rogers). 2. Cards all of a sort. FLUSHING, a handsome, strong, and considerable town in Zealand, and in the island of Walcheren, with a good harbour, and a great foreign trade. It was put into the hands of queen Elizabeth as a security for the money she advanced. It is one of the three places which Charles V. advised Philip II. to preserve with care. It is four miles S. W. of Middle, burg. Lon. 3. 35 E. Lat. 51. 29 N. This town was taken, in August, 1809, by the English under the command of earl Chatham.

To FLUSTER. v. a. (from To flush.) To make hot and rosy with drinking (Shakspeare).

FLU'STRA. Horn-wrack In zoology, a genus of the class vermes, order zoophyta. Animal, a polype procceding from porous cells; stem fixed, foliaceous, mebranaceous, consisting of numerous rows of cells united together and woven like a mat. Eighteen spes cies ; inhabitants of the European or Mediterranean seas; one or two of the Indian and Atlantic; eight found on the British coasts; adhering to fucior other submarine substances.
F. chartacea may serve as an example. This, as its name evinces, is papyraceous, or of a thin semitransparent texture, like fine paper; of a very light straw colour, with cells on both sides ; the tops of the branches sometimes digitated, sonetimes irregularly divided, and truncate like the edge of an axe : the cells are ob-long-square. It is found on the British shores, adhering to sea-wrack, shells, and rocks.

FLUTE, a musical instrument, the most simple of those which are played by the breath impelled from the lips. The common flute, or flute a leec, is a tube about eighteen inches in length and one in diameter; it has eight holes along the side, and the end is formed like a beak, to apply the lips to. The German flute consists of a tube formed of several joints or pieces screwed into each other, with holes disposed along the side, like those of the

F L U

enmmon flute. It is stopped at the upper end, and furnished with noveable brass or silver keys, which, by opening and closing certain holes, serve to temper the tones to the various flats and sharps. In playing this instrument the performer applies his under lip to a hole about two inches and a half from the upper extremity, while the fingers, by their action on the holes and keys, accommodate the tones to the notes of the composition.

Fletes, or Flutings, in architecture, channels or cavities running perpendicularly along the shaft of a column or pilaster. They are chiefly affected in the lonic order, in which they had their first rise; though they are also used in all the richer orders, as the Corinthian or Composite; but rarely in the Doric ; and scarce ever in the Tuscan. Their number is ustally twenty-four, though in the Doric it is only twenty. Each flute is hollowed exactly in a quadrant of a circle. Between the flutes are little spaces that separate them, called by Vitruvius, stria, and by us, lists; though in the Doric, the flutes are frequently made to join each other, without any intermediate space at all, the list being sharpened off to a thin edge, which forms a part of each flute.

To Flute. v. a. To cut columns into hollowe.
\boldsymbol{T}_{ρ} FLU'TTER. v. \boldsymbol{n}. (flozenan, Saxon.) 1. To take short flights with great agitation of the wing: (Deuteronomy). 2. To move about with great show and bustle withnut consequence (Grew). 3. To be mored with quick vibrations or undulations (Pope). 4. To move irrcgularly (Howel).

To Flu'tter.v.a. 1. To drive in disorder, like a flock of birds suddenly roused (Shatisprare). 2. To hurry the mind. 3. To disorder the position of any thing.

Flu'tter.s. (from the verb.) 1. Vibration; nndulation (Addison). 2. Hurry; tumult; disorder of mind. 3. Confusion; irregular position.

FLUVIATICK. a. (furiaticus, Latin.) Belonging to rivers.

FLUX. s. (fluxus, Latin.) 1. The act of flowing ; passage (Digly). 2. The state of passing away and giving place to others (Bro.). 3. Any flow or issue of matter (Arluthnot). 4. Dysentery; disease in which the bowels are excoriated and bleed; bloody flux (Hu / i fax). 5. Excrement; that which falls from bodies (Shahspeare). 6. Concourse; confluence (Shahspeare). 7. The state of being melted. 8. That which mingled with the body makes it melt.

Fifuxand reflux of the sea. See Tides.

Flux (fluss, German), in chemistry, any substance which is added to another to assist its fusion when heat is applied. Thus alkali is a flux for fint, as when mixed with it in due proportion, and heated, it causes it to melt into the compound called glass.

The term flux is almost exclusively, in che-

FLU

mistry, applied to those substances, often saline mixtures, that are added to minerals or metallic cres to assist in the process of reduction.
W hite flux is made simply by mixing equal parts of tartar or cream of tartar and nitre, and deflagrating them in a clean crucible The nitrons acid burns the carbonaceons part of the tartar, and the mixed alkalies of the nitre and tartar alone remain. This fux is, therefore, litule else than a pure subcarbonat of potash. The mixture of these substances before deflagration is called crude flux. But of all the saline reducing substances that most frequently employed is black flux. This is made by deflagrating in a large crucible a mixture ef one part of nitre and two of tattar; and differs from the former is containing, besides carbonat of potash, a quantity of charcoal of the tartar, which there has not been nitre enough to consume. It therefore both assists in the fue sion of ores by its alkaline ingredient, and oxyzenates, and reduces them to the metallic state by means of its carbon.

In making this last flux, the materials, previously well mixed, should be thrown by small quantities into a red-hot crucible, and lonsely covered after each projection; and as soon as the last portion is deflacerated, it should be removed from the fire, and kept in well-closed bottles to prevent the deliquescence of the alkali. Bergman however uses the term flux in a much more extensive sense; and intends by it not only substances useful in the reduction of metals, but substances capahle of analyzing by the blowpipe saline, earthy, or inflamnable matters. The fluxes recommended by him for this purpose are the following.

1. The phosphotic acid, or rather the microcosmic salt, as it is callecl, which contains that acid partly saturated with mincral, partly with ammonia, and loaded besides with much water. This salt, when exposed to the flame, boils and foams violently, with a continual crackling noise, until the water. and ammonia have fown off: afterwards it is less agitated, sending forth something like hlack scorice arising from the burned gelatinous part: these, however, are soon dispelled, and exhibit a pellucid sphericle encompassed by a beautiful green cloud, which is occasioned by the deflagration of the phosphorus, arising from the extrication of the acid ty means of the inflammable matter. The clear globule which remains, upon the removal of the flame, continues longer soft than that formed by borax, and therefore is more fit for the addition of the matter to be dissolved. The ammonia is expelled by the fire; therefore an excess of acid remains in what is left behind, which readily attracts moisture in a cool place. 2. Soda, when put upon charcoal, melts superficially, penctrates the charcoal with a crackling noise, and then disappears. In the spoon it yields a permanent and pellucid sphericle, as long as it is kept fluid by the blue apex of the flame; but when the heat is diminished, it becomes

FLUX.

opaque, and assumes 2 milky colour. It atturns several earthy matters, particularly those of tie siliceous kind, but cannot be employed on cinarcoal. 3. Crystallized borax, exposed to the flame urged by the blowpipe, or charcoil. first becones opaque, white, and excessinely swelled, with various protuberances, or bransthes proceeding out from it. When the water is expelled, it easily collects itself into a mass, which, when well fused, yichls a transparent sphericle, retaising its transparency evenafter cooling. If calcined borax be employed, the clear spliericle is obtained the sonuer.

Having provided every thing necessary, the following directions are next to be attended to. 1. A common tallow candle, not too thick, is generally preferable to a wax candle, or to a lamp. The snuff must not be cut too short, as the wick should bend towards the object. 2. The weaker exterior flame must first be directed upon the object, until its effects are discovered; after which the interior flame must be applied. 3. We must observe with attention whether the matter decrepitates, splits, swells, vegetates, boils, \&ic. 4. The piece exposed to the flame should scarcely ever exceed the size of a pepper-corn, but ought always to be large enough to be taken up by the forceps. 5. A small piece should be added separately to each of the fluxes; concerning which it must be observed whether it dissolves wholly or only in part; whether this is effected with or without effervescence, quickly or slowily; whether the mass is divided into a powder, or gradually and externally corroded; with what colour the g'ass is tinged, and whether it becomes opaque or remains pellucid.

Having given these directious, M. Bergman proceeds next to consider the subjects proper to be examined by the blowfipe. These he divides into four classes: 1. Saline; 2. Farthy; 3 Inflammable; and 4. Metallic. As the subject, however, is treated at conside erable lengh, we sha!l refer the reader to Mr. Bergman's writings, and confine ourselves in this place to what he has advanced concerning the last of the-e subjects, namely, metallic suistances.

The perfect metals, when calcined (oxygenated) in the moist way, recover their former nature by simple fusion. The imperfect metals are calcined by fire, especially by the exterior flame; and then, in order to their being reduced, indispensably require the contact of an inflammable substance. With respect to fusibility, the two extremes are mercury and platina; the former being scarcely ever seen in a solid form, and the latter almost as difficult of fusion. The metals, therefore, may be ranked in this order, according to their degrees of fusibility. 1. Mercury; 2. Tin; 3. Bismuth; 4. Lead; 5. Zinc; 6. Antimony; 7. Silver; 8. Gold; 9. Arsenic; 10. Cobalt; 11. Nickel; 12. Iron; 13. Manganese; 14. Platinum. The last two do not yield to the blowpipe, and indeed forged iron does not melt without difficuty; but cast iron perfectly.

Hetals in fusion affect a globular form, and
easily roll off the charcoal, especially when of the size of a grain of pepper. Smaller pieces, therefore, oustat either to be used, or they should rest in hollows made in the charcoal. On their firs: melting they assume a polished surface, an appearance always retained by the perfect metals; but the imperfect are soon obscured by a pellicle formed of the cals (ovide) of the nietal. The colours communicated ly the calces vary according to the nature of the metal from which the calx is producel. Some of the calces easily recover their metallic form by simple exposure to flame upon the charcoal; oihers are teduced in this way with more difticulty; and some not at all. The reduced calces of the volatile metals immediately fly off from the charcoal. In the spmon they exhibit globules; but it is very difficult to prevent them from being first dissipated by the blast.

The metals are taken up by the fluxes; but as soda yields an opaque spherule, it is not to be made use of. Globules of borax dissolve and melt any metallic calx; and, unless too much loaded with it, appear pellucid and coloured. A piece of metal calcined in flux produces the same effect, but more slowly. A portion of the calx generally recovers its metallic form, and floats on the melted matter like one or more excrescences.

The calces of the perfect metals are reduced by borax in the spoon, and adhere to it at the point of contact, and there only. The microcosmic salt acts like borax, but does not reduce the metals. It attacks them more powerfully on account of its acid nature; at the same time it preserves the spherical form, and therefore is adapted in a peculiar manner to the investigation of metals.

The tinge communicated to the flux frequently varies, being different in the fused and in the cooled globule; for some of the disoolved calces, while fused, show no colour, but acquire one white cooling; but others, on the contrary, have a much more intense colour while in the state of fluidity. Should the transparency be injured by too great a concentration of colour, the globule, on compressing it with the forceps, or drawing it out into a thread, will exhibit a thin and transparent mass; but if the opacity arises from supersa:uration, more flux must be added; and as the fluxes attract the metals with unequal fores, the latter precipitate one another.

Metals when mineralized hy acids have the properties of metallic salts; when mineralized by carbonic acid, they possess the properties of calces, that volatile substance being casily expelled without any effervescence; but when combined with sulphur they possess properties of a peculiar kind. They may then be melted, or eren calcined upon the charcoal, as also in a golden or silver spoon. The volatile parts are distinguished by the smell or smohe; the fixed resilua, by the particles reduced or precipitated upon iron, or from the tinge of the fluxes.

Gold in its metallic state fises on the charcoal, and is the only metal which remains un-

FLUX.

changed. It may be oxygenated in the moist way by solution in aqua regia; but to calcine it also by fire, we must pursue the following method : To a globule of microcosmic salt, let there be added a small piece of solid gold, of gold leaf, purple mineral, or, which is best of all, of the crystalline salt formed by a solution of gold in aqua regia containing sea-salt. Let this again be melied, and added while yet soft to turlith mineral, which will immediately grow red on the contact. The fusion being afterwards repeated, a vehement effervescence arises; and when this is considerably diminished, let the blast be stopped for a few moments. again hegun, and so continued until almost all the bubbles disappear. After this the spherule, on cooling, assumes a ruby colour; but if this does not happen, let it be just made soft by the exterior flame, and upon hardening, this tinge generally appears. Should the process fail at first, owing to some minute circumstances which cannot be described, it will succeed on the second or third trial. The rubycoloured globule, when compressed by the forceps while hot, frequently becomes blue; by sudden fusion it generally assumes an opal colour, which by refraction appears blue, and by reflectinn of a brown red. If further urged by the fire it loses all colour, and appears like water ; but the redness may be reproduced several times by the addition of turbith mineral. The flux is reddened in the same manner by the addition of tin instead of turbith; but it has a yellowish hue, and more easily becomes opaque; while the redness communicated by turbith mineral has a purple tinge, and quite resembles a ruhy. Borax produces the same phenomena, but more rarely; and in all cases the slightest variation in the management of the fire will make the experiment fail entirely.
The ruby colour may also be produced by copper; whence a doubt may arise, whether it is the gold or the remains of the copper that produce this effect. M. Beroman thinks it probable that both may onntribute towards it, especially as copper is often found to contain gold.
This precious metal cannot directly be mineralized by sulphur; but by the medium of iron is sometimes formed into a gorlen pyrites. Here, however, the quantity of gold is so small, that a globule can scarcely be extracted from it by the blowpipe.

Grains of native platinum are not affected by the blowpipe, either alone or mixed with fluxes: which, however, are frequently tinged green by it-but platinum, precipitated from aqua regia ly vegetable or volatile alkali, is reduced by microcosmic salt to a small malleable globule. Our author has been able to unite sevel or cight of these into a malleable mass; but more of them produced only a britle one. platinum scarcely loses all its iron, unless reduced to very thin fusion.
Silver in its metallic state easily melts, and resists calcination. Silver leaf fastened by means of the breath, or a solution of borax, may easily be fixed on it by the fame, and
through the glass it appears of a gold colour; but care must be taken not to crack the glass. Calcined silver precipitated from nitrous acid by fixed alkali is easily reduced. The microcosmic acid dissolves it speedily and copiously; but on cooling it becomes opaque, and of a whitish yellow, which is also sometimes the case with leaf-silver. Copper is discovered by a green colour, and sometimes by that of a ruby, unless we choose rather to impute that to gold. The globules can scarcely be obtained pellucid, unless the quantity of calx is very small; but a longer fusion is nccessary to produce an opacity with borax. The plobule, loaded with dissolved silver during the time of its fusion in the spoon, covers a piece of copper with silver, and becomes itself of a pellucid green: antimony quickly takes away the milky opacity of dissolved luna cornea, and separates the silver in distinct grains. Cobalt, and most of the other metals, likewise, precipitate silver on the same principles as in the moist way, viz. by a double elective attraction. This metal, when mineralized by marine and vitriolic acids, yields a natural luna cornea, which produces a number of small metallic globules on the charcoal: it dissolves in microcosmic salt, and renders it opaque, and is reduced, partially at least, by borax. Sulphurated silver, called also the glassy ore of that metal, fusel upon charcoal, easily parts with the sulphur it contains; so that a polished globule is often produced, which, if necessary, may be depuritted by borax. The silver may also be precipitated by the addition of copper, iron, or manganese. When arsenic makes part of the compound, as in the red ore of arsenic, it must first be freed from the sulphur by gentle roasting, and finally entirely depurated by borax. It decrepitates in the fire at first.
Copper, together with sulphur and arsenie mixed with silver, called the white ore of silver, yields a regulus having the sme alloy.
Galena, which is an ore of lead containing sulphur and silver, is to be freed in the same manner from the sulphur; after which the lead is gradually dissipated ly alternately melting and cooling, or is separated in a cupel from the zalena by means of the flame. Bergman has not been able to precipitate the silice distinct from the lead, but the whole mass becomes mallcable; and the same is true of tin, but the mass becomes more brittle.
Pure mercury flies off from the charcoal with a moderate heat, the fixed heterogeneous matters remaining behind. When calcined, it is easily reduced and dissipated, and the fluxes take it up with eflervescence; but it is soon totally driven off. When mineralized by sulphur, it liquefies upon the charcoal, burns with a blue flame, smokes, and gradually disappears; but, on exposing cinnabar to the fire on a polished piece of copper, the mercurial globules are fixed upon it all round.
Lead in its metallic state readily melts, and continues to retain a metallic splendour for some time. By a more intense heat it boils and sunokes, forming a yellow circle upon the

FLUX.

charcoal. It communicates a yellow colour, scarcely visible, to the fluxes; and when the quantity is large, the globule, on cooling, contracts more or less of a white opacity. It is mot precipitated by copper when dissolved; nor do the metals precipitate it from sulphur in the same order as fruma the acids. When united to carbonic acid, it grows red on the first touch of the flame; when the heat is increased it melts, and is reduced to a multitude of small globules. When nnited with phosphoric acid It reclus, and yields an opaque globule, but is not reduced. With fluxes it shows the same apicarance as oxide of lead. When mineralized by sulphar, lead casily liquefies, and being gradually deprived of the volatile part, yields a distinct regulus, unless too much loaded with irun. It may be precipitated by iron and copper.
A smadl piece of copper, either solid or foliated, semetimes conmmuicates a ruby colour to fluses, especially when assisted by tin or turbith mineral. If the copper is a little more or furth $=\mathrm{r}$ calcined, it produces a green pellucid globule, the tinge of which grows weaker by cooting, and even verges towards a blue. By long fusion with borax, the colour is totally destrused apon charcoal, but scarcely in the spoon. When once destroyed, this colour can scarcely be reproduced by nitre; but it remains fixed with microcosmic salt. If the calx or metal to be calcined is alded in considerable quantity during fusion, it acquires an opaque red on cooling, though it appears green while peliucid and fused; but by a still larger quantity it contracts an opacity even while in fusion, and upn cooling a metallic splendour. Even When the quantity of copper is so small as scarcely to tinge the flux, a visible pellicle is precipitated upon a piece of polished iron alded to it during strong fusion, and the globule in it: turn takes the colour of polished iron; and in this way the smallest portions of copper may be discovered. The globule made green by copper, when fused in the spoon with a small portion of tin, yields a spherule of the latter mixed with copper, very hard and brittle: in this case the precipitated metal pervales the whole of the nass, and does nor adhere to the surface. Cobalt precipitates the calx of copper dissolved in the spoon by a flux, in a metallic form, and imparts its own colour to glass, which nickel cannot do. Zinc also precipitates it separately, and rarely upon its own surface, as we can scarcely avoid melting it. When mineralized by the carbonic acid, copper grows black on the first contact of the flame, and melts in the spoon; on the charcoal the lower part, which touches the support, is reduced. With a superbundance of marine acid, it tinges the flame of a beautiful colour; but with a small quantity shows no appearance of the metal in that way. Thus the beautiful crystals of Saxony, which are cubic, and of a deep green, do not tinge the flame, though they impart a pellucid greenness to microcosmic salt. An opaque redness is easily
obtained with borax: but Mr. Bergman could not produce this colour with microcosinic salt. Copper simply sulphurated, when cantiously and gently roasted by the exterior flame, yields at last by fusion a regulus surrounded with a sulphurated crust. 'The mass roasted with borax separates the regulus more quickly.

If a small quantity of iron happens to be present, the piece to be examined must first be roasted, after which it must be dissolved in borax, and tin added to precipitate the copper. The regulus may also be obtained by sutficient calcination and fusion, even without any precipitant, unless the ore is very poor. When the pyrites contain copper, even in the quantity of the one-hundredth part of their weight, its presence may be detected by these experiments. Let a grain of pyrites, of the size of a flax-seed, be roasted, but not so much as to expel all the sulphur; let it then be dissolved by borax, a polished rod of iron added, and the fusion continued until the surface when cooled loses all splendour. As much borax is required as will make the whole of the size of a grain of hemp-seed. Slow fusion is injurious, and the precipitation is also retarded by 100 great tenuity; but this may be corrected by the addition of a little lime. Too much calcuation is aloo inconvenient; for by this the globule forms slowly, is somewhat spre:d, beconies knotty when warm, corrodes the charcoal, destroys the iron, and the copper does not precipitate distinctly. This defect is corrected by a small portion of crude ore. When the globule is properly melted, according to the directions already given, it ought to be thrown into cold water immediately on stopping the blast, in order to break it suddealy. If the copper contained in it is less than one-hundredth part, one end of the wire only has a cupreous appearance, but otherwise the whole.
Dr. Gahn has another methol of examining the ores of copper, namely, by exposing a grain of the ore, well freed from sulphur by calcination, to the action of the flame driven suddenly upon it by intervals. At those instants a eupreous splendour appears on the surface, which otherwise is black; and this splendour is more quickly produced in proportion as the ore is poorer. The flame is tinged green by cupreous pyrites on roasting.
Forged iron is calcined, but can scarcely be melted. It cannot be melted by borax, though it may by microcosmic salt, and then it becomes brittle. Calcined iron becomes magnetic by being heated on the charcoal, but melts in the spoon. The fluxes become green by this metal; but in proportion as the oxygen is more abundant, they grow more of a brownish yellow. On cooling, the tinge is much weakened, and when originally weak, vanishes entirely. By too much saturation the globule becomes black and opaque. The sulphureous pyrites may be collected into a globule by fusion, and is first surrounded by a blue flame; but as the metal is easily calcined, and changes
into black scorixe, neither by itself nor with finses does it exhibit a regulus. It grows red on roasting.
\therefore Tin eavily melts before the blow-pipe, and is calcined. The fluxes dissolve the calx sparingly; and when saturated, contract a milky opacity. Some small particles of this metal dissolved in any flux may be distinctly precipitated upon iron. Crsstallized ore of tin, uryed by tire upon the charcoal, yields its metal in a reguline state.
Bismuth presents nearly the same apiparances of lead; the cals is reduced on the coal, and fused in the spoon. The calx, dissolved in microcosmic salt, yields a brownish ycllow globule, which grows more pale upon corling, at the same time losing some of its trunspasency. Too much calx renders the matter jeefectiy opaque. Borux produces a similar mass in the sposin, but on the coal a grey one, which can scarcely be freed from bubbles. On fiusion the glass tmokes, and forms a cloud about it. Bismuth is easily precipitated by copperand iron. Sulphurated tismuth is easily fised, exhibiting a blue fiame and sulphureous smell. Cobalt, when added, by means of sulphur, enters the globule; but the scorix soon swells into distinct partitions; which, when further urged by fire, throw out ghobules of lismuth. Sulphurated bismuth, by the addition of borax, may be distinctly precipiated by irou or manganese.
Regulus of nickel when melted is calcined, but more slowly than other metals. The calx imparts an hyacinthine colour to fluxes, which prows yollow on cooling, and by long-continucd fire may be destroyed. If the cals of nickel is contaminated by ochre of iron, the latter is first dissolved. Nickel dissolved is precipitated on iron, or even on copper: an evident proof that it does not originate from either of these metals. Sulphurated nickel is no where found without iron and arsenic ; the rezulus is obtained by roasting, and fusing with borax, though it still remains mixed with some other metals.

Regulus of arsenic takes fire by a sudden heat, and not onle deposits a white smoke on charcoal, but diffuses the same all around. The calx smokes with a smell of garlic, but does not burn. The fluxes grow yellow withnut growing opaque, on adding a proper quantity of calx, which is disperied by a long continuance of the heat. This seminatal is precipitated in a metallic form by iron and copper, but not by gold. Yellow arsenic liquefies, smokes, and totally craporates: when licated by the external flame, so as neither to liquefy nor smoke, it grows red, and vellaw again upon cooling. When it only begins to melt, it aequires a red colour, which remains afier conling. Realgar liquefies more easily, and is besides totally dissipated.
Rigulus of cobalt melts, and may partly be depurated by boerx, as the iron is first calcined and taken up. The smallect portion of the culs theses the flux of a deep-blue colour,
which appears of a violct by refraction, and this colour is very fixed in the fire. Cobalt is precipitated upon iron from the blue globule, but not upon copper. When calx of iron is mixed with that of cobalt in a flux, the former is dissolved. This semimetal takes up about one-third of its weyght of sulphur in fusion, after which it can hardly be nelted again. It is precipitated by iron, copper, and several other metals. The conmon ore yields an impure regulus by roasti:g. The green cobalt, examined by our author, tinges the microcosmic salt blue; but at the same time shows real spots indicating copper.

Zinc exposed to the blow-pipe molts, takes fire, sending forth a beautiful bluish-green flame, which, however, is soon extinguished by a lanuginous calx: but if the reguline nucleus included in this lanuginous mater (commonly called flowers of zinc) is urged by the flame, it will be now and then inflamed, and, as it were, explode and fly abont. With Lorax it froths, and at first tiuges the flame. It continually diminishes, and the flux spreads upon the charcoal ; but in fused microcosmic salt, it not only froths, but sends forth flashes with a crackling noise. Too great heat makes it explode with the emission of ignited particles. The white calx, or flowers, exposed to the flame on charcoal, becomes yellowish, and has a kind of splendour which vanishes when the flame ceases. It remains fixed, and cannot be melted. The fluxes are scarcely tinged, but when saturated by fusion, they grow oppaque and white on cooling. Clouds are formed round the globules, of a nature similar to those of the metallic calx. Dissolved zinc is not precipitated by any other metal. When mineralized by carbonic acid gass, it has the same properties as calcined zinc. In the pseadogalena sulphur and iron are present. These generally, on the charcoal, smell of sulphur, melt and tinge the flame more or less, depositing a cloud all around. Those which have no matrix are tinged by those which contain iron, and acquire by saturation a white opaque colour, verging to brown or black, according to the variety of composition.
Regulus of antimony, fused and innited on the charcoal, affords a beautiful oljecet; for if the blast of air be suddenly stopyed, a thick white smoke rises perpendicularly, while the lower part round the globule is crivelensed into crystalline spicula, similar to those c.lled argeitine flowers. The calx tinges fluxes of an hyacinthine colour ; but on fusion stuoles, and is easily dissipated, especially on the charcoal, though it also deposits a cloid on ir. The dissolved metal may be precipitated by iron and copper, but not by gold. Crude antmony liquefies on the charcoal, spreads, smokes, penetrates it, and at last disappears entirely, except a ring which it leaves behind.
Regulus of manganese scarcely yields to the flame. The black calx tinges the fluxes of a bluish colour; borax, unless saturated, communicates more of a yellow colour. The con-
lour may be fradually dissolved altogether by the interior thime, and again reproduced by a smali putticle of nitre, or the extetior flame alone. Combined with carbonic acid, it is of a white coluur, which chanzes by ignition to black. In other respects it shows the same experiments as the black calx.
Flux, in medicine, a disease generally described under the term dysentery, and in the nosology of Cullen denominated specifically disenteria sanguinca. See Dysenteria.
Flex. a. (fturzs, Latin.) Unconstant; not durable; maintuined by a constant successon of parts.
To Flex.e.a. 1. To melt. 2. To sulivate; to evacuate by spitting (South).
FIUXI'LITY. s. (flurus, Latin.) Easiness of separation of parts (13oy/e).
FLl XION. s. (fluaio, Latin.) 1. The act of fowing. 2. The matter that flows (${ }^{\text {Piseman) }}$.
Fluxion, in the Newtonian analysis, denotes the velocity with which a flowing quanutt is increased by its generative motion: by which it stands contradistinguished from fluent or the flowing quantity, which is gradually and indefinitely increasing, after the manner of a space which a bocly in motion describes.
Or, a fluxion may be more accurately defined, as, the maznitude by which any flowing quancity would be uniformly increased in a given portion of time, with the generating celerivy at any proposed position, or instant, suppaing it from thence to continue invariable.
From this defuition it appears, that the flaxions of quantities are, always, as the celerifies ly which the quantities themselves increase in nosgnitude.
Mr. Simpon observes, that there is an advinare in considering fluxions, not as mere re'ocities, but as the magnitudes which these relcities would, uniformiv, generate in a given finite tine: the imagination is not here confisad in a single point, and the higher orders of theinus are rendered much more easy and inelligitle. And though sir Isaac Newton deines fluxions to be the velocities of motions, yet he hath recoure to the increments or moments, generated in equal particles of time, in order to determiac those velocities, which he aiteruards teaches us to expound by finite maznitudes of other kinds.
Method of Fluxions, is the algorithm and analy yis of fluxions, and fluents or flowing quantities.
Most foreigners define this as the method of diferences or differentials, being the analysis of indefinitely small quantities. But Newton, and other English authors, call these infinitely small quantitics, moments; considering them as the m.omentary increments of variable quantities ; as of a line considered as generated by the flux or motion of a point, or of a surface generated by the flux of a line. Accordingly, the variable quantities are called fluents, or flowing quantities; and the method of finding either the fluxion or the firent, the method of fluxions.
M. Leibnitz considers the same infinitely small quantitics as the differences, or differentials of
quantities; and the method of finding those differences, he calls the differential calculus.
Besides this difference in the name, there is another in the notation. Newton expresses the fluxion of a quantity, as of x, by a dot placed over it, thus \dot{x}; while Leibnitz expresses his differential of the same x, by prefixing the initial letter d, as dr. But, setting aside these circumstances, the two methods are just alike; though the principles on which they ane established are differeat: fluxions being referred to the doctrine of motion; diferentials to such 2 kind of augmentation as is more directly referable to analy ysis.
The method of tluxions is one of the greatest, most subtle, and sublime discoveries of perhaps any age : it opens a new world to our view, and extends our knowledge, as it were, to infinity; carrying us beyond the bounds that seemed to have been prescribed to the human mind, at least intinitely beyond those to which the ancient geometry was confined.
The history of this important discovery, recent as it is, is a little dark, and embroiled. Two of the greatest men of the last age have both of them claimed the invention, sir Isaac Newton, and M. Leibnitz; and nothing can be more glorious for the method itself, than the zeal with which the partizans of either side have asserted their title.
The two great authors themselves, without any seeming concern, or dispute, as to the property of the invention, enjoyed the prospect of the progresses continually making under their auspices, till the year 1699, when the peace began to be disturbed.
M. Facio, in a Treatise on the Line of Swiftest Descent, declared, that he was obliged to own Newton as the first inventor of the differential calculus, and the tirst by many years; and that he left the world to judge, whether Leibnitz, the second inventor, had taken any thing from him. This precise distinction betwcen firot and second inventor, with the suspicion it insinuated, raised a controversy between M. Leibnitz, supported by the editors of the Leipsic Acts, and the English mathematicians, who declared for Newton. Sir Isaac himself never appeared on the scene; his glory was become that of the nation; and his adherents, warm in the cause of their country, needed not his assistance to animate them.
Writings succeeded each other but slowly, on either side; probably on account of the distance of places; but the controversy grew still hotter and hutter: till at length M. Leibnitz, in the year 1711, complained to the Royal Society, that Dr. Keil had accused him of publishing the Method of Fluxions invented by sir I. Newton, under other names and characters. He insisted that nobody knew better than sir lsaac himself, that he had stolen nothing from him; and required that Dr. Keil should disavow the ill construction which might be put upon his words.
The society, thus appealed to as a judge, appointed a committec to examine all the old letters, papers, and documents, that had passed among the several mathematicians, relating to the point; who after a strict examination of all the evidence that could be procured, gave in their report as follows: "That Mr. Leibnitz was in London in 1673 , and kept a correspondence with Mr. Collins by means of Mr. Oldenburgh, till September 1676, when he returned from Paris to Hanover, by way of London and Amsterdam: that it did not appear that Mr. Leibnitz knew any thing

FLUXIONS.

of the differential calculus before his letter of the 2 ist of June, 1677, which was a year after a copy of a letter, written by Newton in the year 1672, had been sent to Paris to be communicated to him, and above four years after Mr. Collins began to communicate that letter to his correspondents; in which the Method of Fluxions was sufficiently explained, to let a man of his sagacity into the whole matter; and hat sir I. Newton had even invented his method before the year 1669, and consequently 15 years before M. Leibnitz had given any thing on the subject in the Leipsic Acts." From which they concluded that Dr. Keil had not at all injured M. Leibnitz in what he had said.
The society printed this their determination, together with all the pieces and materials relating to it, under the title of Commercium Epistolicum de Analysi Promota, 8vo. Lon. 1712. This book was carefully distributed through Europe, to vindicate the title of the English nation to the discovery; for Newton himself, as already hinted, never appeared in the affair: whether it was that he trusted his honour with his compatriots, who were zealous enough in the cause; or whether he felt himself even superior to the glory of it.
M. Leibnitz and his friends however could not show the same indifference: he was accused of a theft ; and the whole Commercium Epistolicum either expresses it in terms, or insinuates it. Soon after the publication therefore, a loose sheet was printed at Paris, in behalf of M. Leibnitz, then at Vienna. It is written with great zeal and spirit ; and it boldly maintains that the Method of Fluxions had not preceded the Method of Differences; and even insinuates that it might have arisen from it. The detail of the proofs however, on each side, would be too long, and could not be understood without a large comment, which must enter into the deepest geometry.
M. Leibnitz had begun to work upon a Commercium Epistolicum, in opposition to that of the Royal Society ; but he died before it was completed.

A second edition of the Commercium Epistolicum was printed at London in 1722 ; when Newton, in the preface, account, and aunotations, which w re added to that edition, particularly answered all the objections which M. I, Leibnitz and Bernoulli were able to make since the Commercium first appeared in 1712; and from the last edition of the Commercium, with the various original papers contained in it, it evidently appears that Newton had discovered his Method of Fluxions many years before the pretensions of Leibnitz. Sce also Raphson's History of Fluxions, and the valuable account of the Commercium Epistolicum, given in vol. 24 of the Plilosophical Transactions, or New Abridgement, vol. 6. pp. 116-153.

There are however, according to the opinion of some, strong presumptions in favour of Leibnitz; i. e. that he was no plagiary : for that Newton was at least the first inventor, is past all dis. pute; his glory is secure; the reasonable part, even among the foreigners, allow it: and the question is only, whether Leibnitz took it from him, or fell upon the same thing with him; yet Leibnitz himself acknowledges, that in 1676, heing in England, he staid some days in London, where he became acquainted with Collins, who shewed him several letters from Gregory, Newton, and other mathematicians, which turned chiefly on series. This visit to England was probably oc-
casioned by Collins's communication of the lettes of 1672; and though we, instead of positive, have only presumptive proof, we are decidedly of opinion that Leibnitz saw, in Colling's possession, papers which acquainted him with Newton's discovery. We request that the reader will compare with Leibnitz's acknowledgment the following relation, for the truth of every part of which we hold ourselves responsible.
In the year 1669, amongst other series by sir Isaac Newton, one for tinding the are of a circle from the sine, and, in 1671, another by Mr. Gregory, for finding the arc from the tangent, were sent to Mr. Collins, who was very free in communicating these and other discoveries. In 167t Leibnitz mentions in a letter to Oldenburgh his being possessed of the first series; and the next year those of both Newton and Gregory were sent by Oldenburgh to Leibnitz. But in 1676 Leibnitz dropped his pretensions to the first series, not being able to demonstrate it, and sent to Oldenburgh, as his own, that of Gregory, with a demonstration. Both Newton and Gregory admitted that Leibnitz found out this series; for they knew nothing of Oldenburgh's letter, the copy of which lay buried for more than 30 years anong the papers of the Royal Society: so that at length, though not till 1713, L, cibnitz was compelled to acknowledge Gregory as the original author. Nay, from the whole tenour of this gentleman's conduct, he may be justly suspected of having often learned by information what be affirmed to have invented: for he pretended to Mouton's differential method; to a property of a series that had been discovered by Pascal; to four or five different series invented by 人ewton; to a method of progression; to the differential analysis, when it is certain he was ignorant of it ; and lastly, to some of the principal propositions in the Principia. Newton's graid work was first published in 1686° : it was criticised at Leipsic by Leibnitz, in a review managed by himself, in 1587; and, two years afterwards, he pretended to have invented some propositions contained in the Principia, relative to the motion of the planets in ellipses. Well might this gentleman be characterised as having " a vast and devouring geuius !" for he was determined to devour every choice morsel that fell in his way. We attempt not to depreciate his talents: but that he was a playiary by regular habit there can be no reasonable doubt; and that he should abstain from appropriating to himself unjustly the greatest mathematical invention of any age, when he seized greedily every smaller discovery, is contrary to all the laws of human thought and all the rules of human action.

Direct method of Flurions.-All finite magnitudes are here conceived to be resolved into infinitely small ones, supposed to be generated by motion, as a line by the motion of a point, a superficies by a line, and 2 solid by a superficies; and they are the elements, moments, or differences, thereof.

The art of finding these infinitely small quantities, or the velocities by which they are generated, and of working on them, and discovering other infinite quantities, by their means, makes the direct method of fluxions.

What renders the knowledge of infinitely small quantities of such great use and extent is, that they have relations to each other, which the finite magnitudes, whereof they are the infinitesimals, have not.

Thus e. gr. in a curve, of any kind whatever,

FLUXIONS.

the infinitely small differences of the ordinate and ab.ciss have the ratio to each other, not of the ordinate and absciss, but of the ordinate and subtargent: and, of consequence, the absciss and ordinate alone being known, give the subtangent unknown; or, which amounts to the same, the tangent itself.

The mithod of notation in fluxions, introduced by the inventor, sir I. Newton, is thus:
The variabie, or flowing quantity, to be uniformly augmented, as suppose the absciss of a curve, he denotes by the final letters $0, x, y_{1}, x$; and their fluxions by the same letters with dots placed over them, thus, $\dot{x}_{i} \mathrm{z}$. And the initia! letters $a, b, c, d, \& c$. are used to express invariable quantities.

Arrin, if the fluxions themselves are also variable quantities, and are continually increasing, or decreasing, he considers the velocities with which thev increase or decrease, as the fluxions of the former fluxions, or second fluxions; which are denoted by two dots over them, thus, $\ddot{y} \ddot{x} \ddot{x}$.
After the same manner one may consider the augments and diminutions of these, as their fluxions also; and thus proceed to the third, fourth, \&c. fluxions, which will be noted, thus,
 that the fluxions of all kinds and orders whatever are coniemporaneous, or such as may be generated together, with their respective celerities, in one and the same time.

Lastiv, if the flowing quantity be a surd, as $\sqrt{a-b}$; he notes its fluxion $(\sqrt{a-b})$: if a frartion $\frac{x x}{d-y}$ he notes it, $\left(\frac{x x}{d-y}\right)$.

The chiei s-ope and business of fluxions is, from the fowing quantity given, to find the fluxion: for this we shall lay down one general rule, as stated by Dr. Wallis, and afterwards apply and exemplify it in the several cases. "Multiply each ierm of the equation separately by the several indices of the powers of all the flowing quantities contained in that term; and in each multiplication, change one root or letter of the power into is; proper tuxion : the aggregate of all the prodacts conntcied together by their proper signs, will be the fluxion of the equation desired."

The application of this rule will be contained in the following caves:

1. To express the fluxions of simple variahle quantitier. as alreazy mentioned.- Put the letter, or letters, which express them, with a dot over them: thus, flusion of x is \dot{x} and the fluxion of y is \dot{y}, and the fuxion of $x+y+0+z$, is $\dot{x}+\dot{y}+\dot{v}+\dot{x}, \& c$.

Note. For the fluxion of permanent quantities, when any such are in the equation, imagine 0 , or a cypher; for such quantities can have no fluxion, properly speaking, because they are without motion, or invariable. Again, the fluxion of a quantity, which decreases, instead of increasing, is to be considered as negative.
II. To frad the furxions of the prodects of troo or more ariable or foncing quantities.-Multiply the fluxion of each simple quantity by the factors of the products, or the product of all the rest; and connect the last products by their proper signs: then the sum, or aggregate, is the fuxion sought.

Thus, the fluxion of $x y$, is $x y+x y$. For, let two right lines, DE and FG, move parallel to themselves from two other right lines, BA and BC , (Plate 68. fig. 10.) and generate the rectangle DF. Let them always intersect each other in the curve BHR, and let $\mathrm{Dd}(\dot{x})$ and $\mathrm{F} f(\dot{y})$ be the fluxions of the sides BD (x) and BF (y); and draw $d m$ and $s n$ parallel to DH and FH. I be fluxion of the area BDH is Der or $y \dot{x}$, and that of the area BFH is $\mathrm{F} n$ or $\dot{2} \dot{y}$, and therefore the fluxion of the whole rectangle $\mathrm{EF}=\boldsymbol{x y}=\mathrm{BDH}+\mathrm{BFG}$ will be $\dot{x} y+x \dot{y}$. The fluxion of $y z u$ is $\dot{y} x u+y \dot{z} u+y z u ;$; for if x be put $=x u$, then $y=u$ will be $=y x$, and its fluxion $=y \dot{x}+x \dot{y}$: but x being $=x y$, and $\dot{x}=$ $\dot{x} u+u \dot{z}, y \dot{x}+x \dot{y}$, by substitution, will be $=y z \dot{u}+$ gwi $+\dot{y} z N$. And the fluxion of $a x y x$, is any $\dot{z}+$ $\dot{x} \dot{z} z+\dot{x} u y z+\dot{x} u y z$; and the fluxion of $\overline{a+x} \times \overline{b-y}$ (the common product being $a b+b x-y a-x y$) wifl be bx-ya-xy-xy.

The fluxion of the square of a variable quantity being settled upon sound and uncxceptionable principles, that of the product or two variable quantities might be proved thus; withuut the consideration of quantities indetinitely less than others.

Flux $x=\dot{x}$
Flux $y=\dot{y}$
Flux. $(x+y)=x+y$
Flux $(x+y)^{2}=2 \times(x+y) \times\left(x^{\dot{x}}+y\right)$
That is,
Flux. $x^{2}+2 x y+y^{2}=2 x \dot{x}+2 x \dot{y}+2 y \dot{x}+2 y \dot{y}$
or, $2 x \dot{x}+2 \dot{y} \dot{y}+f .2 x y=2 x \dot{x}+2 x \dot{x}+2 \dot{y} \dot{x}+2 y \dot{y}$.
Taking away the common quantities fromborl members of the equation, leaves

$$
\text { Flux. } 2 x y=2 x \dot{y}+2 y \dot{x}
$$

or, 2 Flux. $x y=2(x y+y \dot{x})$
or, Flux. $x y=x y+y \dot{x}$.
Otherwise, thus:
Make $x+y=s$.
Then $x^{2}+2 x y+y^{2}=s^{2}$
whence $x y=\frac{1}{1} s^{2}-\frac{1}{2} x^{2}-\frac{1}{2} y^{2}$
Flux. $x y=s \dot{s}-x \dot{x}-y \dot{y}$
But, since $s=x+y, s=\dot{x}+\dot{y}$

$$
\text { Flux. } \begin{aligned}
x y & =(x+y)(\dot{x}+\dot{y})-x \dot{x}-y \dot{y} \\
& =\dot{x} x+x y+y \dot{x}+y \dot{y}-x \dot{x}-y \dot{y} \\
& =x \dot{y}+y \dot{x}, \text { as before. }
\end{aligned}
$$

III. To find the fuxion of a fraction.-Multiply the fluxion of the numerator by the denominatar, and from this product subtract the fluxion of the denominator drawn into the numerator; and this will be the numerator, and the square of the denominator will be the denominator of the fraction expressing the fluxion of the given fraction.

Thus the fluxion of $\frac{x}{y}$ is $\frac{x y-x y}{y y}$.
For suppose $\frac{x}{y}=x$, then will $x=y x$, which equal quantities must have equal fluxions; therefore $\dot{x}=\dot{y} x+\dot{z} y$ and $\dot{x}-x \dot{y}=i y$; and dividing all

FLUXIONS.

by $y, \frac{\dot{x}-x \dot{y}}{y}=\dot{x}=\left(\right.$ because $\left.\frac{x}{y}=x\right)-\frac{\dot{x}-\frac{x}{y}+\dot{y}}{y}=$ $\frac{\cdot x y-x \dot{y}}{y} \div y=\frac{\dot{x} y-x \dot{y}}{y y}$: wherefore this last is the fluxion of the fraction $\frac{x}{y}=x$; because z bcing $=$ $\frac{x}{y}, \dot{z}$ will be equal to the fluxion of $\frac{x}{y}$.
And the fluxion of $\frac{a}{x}$ will be $\frac{-\mathrm{ra}}{\mathrm{ax}}$; for the permanent quantity a having no fluxion, there can be no product of the fluxion of the numerator into the denominator, as there would have been, had a been x, \pm, or any other variable quantity.
IV. To find the furion of a power.- Multiply the fluxion of the root by the exponent of the power, and the product by that power of the same root, whose exponent is less by unit than the given exponent; and likewise by the invariable quantity and coefficient, if there be any.

Thus, the fluxion of $x \times$ will be $2 x \dot{x}$; for $x x=$ $\dot{\alpha} \times x$; but the fluxion of $x \times x=\dot{x} \dot{x}+\dot{x}=2 \dot{x}$, , \&c. and the fluxion of x^{3} will be $3 x x x$. That of x^{4} will be $8 x^{7} \dot{x}, \& \mathrm{c}$. that of $5 x^{5}$ will be $95 x+\dot{x}$; that of $3 a x^{4}$ will be $12 a x^{3} x$.

Or, if m express the index of any power, as suppose x^{m}; its fluxion will be $m^{m-1}{ }^{m}$. .

If the power be produced from a binomial, \&c. 2s suppose $\bar{x}+y^{4}$, or $x x+2 x y+y y$, its fluxion will be $2 \times x+y \times \dot{x}+\dot{y}$, or $2 x \dot{x}+2 \dot{y}+2 \dot{x} y+2 y$.
If the exponent be negative, as suppose x^{-m} or $\frac{1}{\kappa^{\prime n}}$ its fluxion will be $-m x^{m-1}$.
Or, if it be done by way of fraction, $\frac{-m x^{m-1} \dot{x}}{x^{2 m}}$ (for the square of $x m$ is $x^{2 m}$) $=-m \times m-1-2 m \dot{x}=$ $-m x-m-1 \dot{x}$ as before; $=$, removing x^{m-1} to the denominator, by changing the sign of the ex-
ponent, $\frac{-m \dot{x}}{k^{\prime m}+i}$.
If the power be imperfect, i. e. if its exponent be a fraction, as suppose $\sqrt[n]{1 m}$; or in the other notation $x \frac{m}{n}$, suppose $x \frac{m}{n}=x$: then if each member be elevated to the power of n, it will stand thus, $x^{m=}=z^{n}$; the fluxion of which will be, by this general rule, $m x^{m-1} \dot{x}=n \mathbf{x}^{n-1} \dot{x}$.
Wherefore \dot{z} will be $=\frac{m \times x^{m-1}}{n z^{n}-1}$ (by dividing both parts by $n x^{n-1}$) and $\frac{m x x^{m-1}}{n z^{n}-1}=\frac{m}{n} \times \frac{x^{n-1}}{z^{n-1}}$ $\times \dot{x}$; or $\frac{m}{n} \dot{x} n /: \kappa^{m-n}$; putting instead of ε^{n-1}, its value $x \frac{m n-m}{n}$, and the above expression will

 the fluxion of $\sqrt[n]{x / m}$ or $\times \frac{m}{n}$ will be $\frac{m}{n} \times \dot{x} \times x$ $\frac{m}{n}-1=\frac{m}{n}: x \frac{m-n}{n}, \& c$.
V. To find the fuxions of surd quantities.-Suppose it required to find the fluxion of $\sqrt{2 r_{1}-x x}$, or $\overline{3 r x-x_{x}} \frac{1}{2}$. Suppose $2 r x-x \times \frac{1}{2}=z$; then is $2 r x-$ $x x=x x$; and consequently $\dot{r x}-x x=x x$; and, by division, $\frac{r \dot{x}-x \dot{x}}{z}=\dot{z}=$ (by substitution)
$\frac{r x-x x}{\sqrt{2 r y-x x}}=$ to the fluxion of $\sqrt{2 r x-x r}$.
Or, by the preceding rule, the fluxion of
$\overline{2 r x-x x} \frac{1}{2}$ will be $\frac{1}{2} \times \overline{2 r i-2 x \times x} \times \overline{2 r a-x x^{2}}=$ $\overline{r \dot{x}-x x}+\overline{2 r x-x x}-\frac{x_{2}}{r \dot{x}-x \dot{x}} \underset{2 r x-1 . \pi}{\frac{1}{2}}$.

If it be required to find the fluxion of ay-an ; for $a y-2 x \left\lvert\, \frac{1}{1}\right.$ put z; then $a y-x x=z \frac{1}{3}$ and $a_{y}-\frac{2 x x}{}$ $=\frac{1}{3} \tilde{z}-\frac{2}{1}$; and multiplying by $3,3 a y-6 x x=$ $\dot{\boldsymbol{z}} \dot{\bar{x}}-\frac{2}{3} ;$ aud, consequently, $5 u z_{\frac{2}{2}}^{\dot{y}}-6 z_{3}^{2} \dot{x}=\dot{x}$; equal (substituting $\left.\widehat{a y-x x}{ }^{2}=x_{j}^{2}\right) 3 u^{3} y^{2} y-6 a^{2} x^{2}$ $2^{2} y \dot{y}+3 a x^{4} y-n a^{2} y^{2} x \dot{x}+12 a y x^{3} \dot{x}-6 x^{5} \dot{x}=$ to the fluxion of $a y-x, 1!$.
To find the fluxion of $\sqrt[3]{a+b x+c x^{2}+d_{3}^{3}}$. Put $\sqrt[3]{a+b x+c 2^{2}+d x^{3}}=x^{\frac{1}{3}}$. Then $\left(x^{\frac{1}{3}}\right)=\left\{z^{\frac{1}{1-1}} x=\right.$
$\frac{\dot{z}}{3 \sqrt[1]{\frac{1}{z}}}=$ by restitution, \&c. $\frac{\dot{b}+2 c \dot{x} \dot{x}+3 d x^{2} \dot{x}}{3 \sqrt[3]{a+b x+c x^{2} d x^{3}}}$.
By a similar process the fluxion of
$\sqrt{a+b x+c a^{2}+d x^{3}+e x^{4}+\& c \cdot t o m x^{n}}$ is found to
be, $\frac{\left(b+2 c x+3 d x^{2}+4 e x^{3}+\& c . \text { to }(m-1) l_{x}-2\right)^{2}}{n\left(a+b x+c x^{2}+d x^{3}+c x^{4}+\& c . t 0 m x^{n}\right)^{n-1}}$
VI. To find the fuxion of quantitics compounded of rational and surd guantitiss.-Let it be required to find the fluxion of $\overline{b x^{2}}+c a x+c a^{2} \times \sqrt{x x+a a}=z$. Put $\overline{b x^{2}+c a x+c a^{2}}=p$, and $\sqrt{x x+a a}=q$. Then the given quantity is $p q=z$, and the fluxion there$\dot{x} \dot{x}$
of is $\dot{p}+q \dot{p}=\dot{x}$: but \dot{q} is $=\overline{\sqrt{x x+a a}}$, and \dot{p} is $=2 b \times \dot{x}+c a \dot{x}$; therefore, in the equation $\dot{p} \dot{q}+\dot{q} \dot{\rho}$ $=\dot{x}$, if in the place of p, q, \dot{p}, \dot{q}, we restore the quantities they represent, we shall have

$\sqrt{2^{2}+a^{2}}=\dot{x}$. Which being reduced to one de nomination, gives

FLUXIONS:

$\frac{\overline{3 \alpha^{3}+2 a^{2}}+e n^{2} x+26 a^{2} x+c a^{2} r \times \dot{x}}{x}=\dot{z}=$ the flux

$$
s^{\prime} x+n a
$$

ion of the given quantity.
VII. To fini the fiucion of a logarithm. -The fluxion of the hyperbolic logarithm of any quantity is equal to the fluxion of chat quantity divided by the quantity itself: e. gr. the fluxion of the hyperbolic iogarithm of x is $=\frac{x}{x}$: the fluxion of the common logarithm of x (viz. $\frac{x}{\mathrm{~L} x}$) will be $=$ $\frac{x}{x} \times M$; or, the fluxion of the hyperbolic logarither of any number multiplied by M or $0.43+29$, $\& \mathrm{c} . \mathrm{i}=\mathrm{the}$ fluxion of the common logarithm of the said number.
Vill. To fina the furricn of exponential quantities, tbat i, grantities which have tbcir exponent a flu wing or sar: b.e leter. - I hese are of two kinds, viz. when the root is a constant quantity, as e^{x}; and when the root is rariable, as $\boldsymbol{y}^{\mathrm{x}}$.

In the former case, put the proposed exponential $r=z$ a single variable quantity; then take the logarithm of each, so shall \log. of $z=x \times \log$. of e; take the fluxions of these, so shall $\frac{x}{z}=\dot{x} \times$
\log of e; hence $x=x \dot{x} \times \log$ of $e=e^{x} \geq \times \log$ of e, the turion of the proposed ex;onential e^{\prime}; and which therefore is equal to the said proposed gicantity, drawn into the fluxion of the exponent, and aiso into the log. of the root.
Aiso in the second case, put the exponential $y^{x}=x$; then the logarithms give log. $z=x \times \log y$, and the fluxions give $\frac{\dot{z}}{z}=\dot{x} \times \log . y+x \times \frac{\dot{y}}{y}$;
heace $\dot{z}=x \times \log \cdot y+\frac{z x y}{y}=$ (by substituting y^{x} for z) $y^{x} \dot{x} \times \log y+x y^{x-1} y$, is the fluxion of the propused exponential y^{x}; which therefore consits of two terms, of which the one is the tlusion of the proposed quantity considering the exponent only as constant, and the other is the fuxion of the same quantity considering the root as constant.
IX. 7o fird the fierion of a rectangle, when one s.de x moteuses, und the wher y decreases. - In this cave the lluxion of the decreasing quantity is negati:e with respect to that of the increasing quantiv (see the beginning of this article), and therefore, the sign of the term affected with it ought to be charged; e. gr. the fluxion of the rectangle $x y$ in these circumstances will be expressed by $x y-x y$.
X. To find the furions of sines, cosines, \&c. Suppose we require the fluxion of $\sin x$, that is, the sine of the angle or arc denoted by x, we must suppose that by 2 motion of one of the legs induding the angle, it becomes $x+\dot{x}$, then $\sin (x+\dot{x})$ $-\sin x$ is the flurion of $\sin x$. But according to the formale for the sines of sums of arcs (see Sime and Trigonometry), we have $\sin (z+\dot{x})=$ $\sin z \cos \dot{z}+\sin x \cos x$ the radius being assumed equal to unity. But the sine of an arc indefinitely matl does not differ sensibly from that are itself, mor its covine differ perceptibly from radius: hence
we have $\sin z=z$, and $\cos z=1$; and therefore $\sin (z+z)=\sin z+z \cos x$; whence $\sin (z+\dot{z})-$ $\sin z$, or $(\sin z) \cdot=\boldsymbol{z} \cos z$: viz. the fluxion of the sine of an arc whose radius is unity, is equal to the product of the fluxion of the angle into the cosine of the same arc.

In like manner the fluxion of $\cos z$, or cos $(x+\dot{z})-\cos z=\cos x \cos \dot{z}-\sin z \sin \dot{x}-\cos x$, since(art. Sin z) $\cos (g+\dot{z})=\cos x \cos \dot{x}-\sin x \sin \dot{z}$: therefore, because $\sin \dot{x}=\dot{x}$, and $\cos \dot{x}=1$, we have $(\cos x) \cdot=\cos \varepsilon-\dot{y} \sin z-\cos z=-\dot{z} \sin z$: that is, the fluxion of the casine of an are, radius being 1 , is found by multiplying the fluxion of the arc (taken with a contrary sign) by the sine of the same arc.

By means of these two formulæ, many other fluxional expressions may be found. As that
$(\cos m z) \cdot=-m \dot{z} \sin m z$.
$(\sin m z)=+m \dot{z} \cos m z$
$(\tan z) \cdot=\left(\frac{\sin z}{\cos x}\right)^{\cdot}=\frac{\dot{z}\left(\cos ^{2} z-\sin ^{2} z\right)}{\cos ^{2} x}=\frac{\dot{z}}{\cos ^{2} x}$
$(\operatorname{cotan} z)=-\frac{x}{\sin ^{2} x}$.
$(\sec z) \cdot=\frac{z \sin z}{\cos ^{2} z}$.
$(\operatorname{cosec} z)=-\frac{i \cos z}{\sin ^{2} z}$.
$\left(\sin ^{m} z\right)=m \sin ^{m-1} z \cos z$.
$(\cos m g)=-m \cos ^{m-1} \dot{2} \dot{\operatorname{s}} \sin \mathrm{~g}$.
X1. To find the second, third, F'c. fuxion of a fiorxing quantity.-These fluxions differ in nothing, except their order and nutation, from first tluxions, being actually such to the quantities from which they are immediately derived; and thereiore, they may be found, in the same manner, by the general rules already delivered.

Thus, by the 4 th rule, the first fluxion of x^{3} is $3 x^{2} x$; and if x be supposed constant, or if the root x be generated with an equable celerity, the fluxion of $3 x^{2} \dot{x}$, or $3 \dot{x} \times \dot{x}^{2}$, will be $\dot{3 x} \times 2 \dot{x}=6 \dot{x}^{2}$, which is the second fluxion of x^{3}; and $6 \dot{2}^{3}$ will be its third fluxion: but if the celerity with which x is generated be variable, either increasing or decreasing, then \dot{x} being variable, will have its fluxion denoted by $\ddot{x}, \& 8 c$. In this case the fluxion of $3 x^{2} \times \dot{x}$ will be, by the 2 d and 4 th rules, $6 x \dot{x} \times i+$ $3 x^{2} \times \ddot{x}=6 x i^{2}+3 x^{2} \ddot{x}$, the second fluxion of x^{3}. And the third fluxion of x^{3} obtained in like manner from the last, will be $6 \dot{x} \times \dot{x}^{2}+6 x \times \underset{x}{x} \ddot{x}+$ $6 x \dot{x} \times \ddot{x}+3 x^{2} \dot{x}=6 \dot{x^{3}}+1 \dot{8} \ddot{x} \ddot{x}+3 x^{2} \dot{\ddot{x}}$. Thus also, if $\dot{y}=n x^{n-s} x$ then $y=n \times n-1 \times s^{n-2} x^{2}+\ddot{n x}$ x^{n-1}; and if $\dot{z}^{2}=\dot{x} \dot{y}$, then $2 z \ddot{z}=\dot{x} \ddot{y}+$ $\dot{y} \ddot{x}, \& c$.

If the function proposed were $a x_{n}$ we should find $\left(a x_{n}\right)=n a x^{n-1} i$: the factors $n a$ and x being regarded as constant in the first fluxion nax ${ }^{n-2}$ \dot{x}, to obtain the second fluxion it will suffice to

FLUXIONS.

make x^{n-1} flow and to multiply the result by nar. But $\left(x^{n-1}\right)=(n-1) x^{n-2} \dot{\varepsilon}$ we have, therefore,

$$
\left(a \Sigma^{n}\right) \cdots=n(n-1) a x^{n}
$$

Ia a similar manner, we find,

$$
\begin{gathered}
\left(a x^{n}\right) \because=n(n-1)(n-2) a x^{n-3} i^{3} \\
\left(a x^{n}\right)^{\because}=n(n-1)(n-2)(n-3) a x^{n-4} \dot{x^{4}}, \& c .
\end{gathered}
$$

And the fluxional coefficients will have the following values:

$$
\begin{aligned}
& \frac{\left(a x^{n}\right)^{n-1}}{\ddot{n}}=n a x^{n-2} \\
& \frac{(a x n) \cdot n}{\ddot{n}}=n(n-1) a x^{n-2} \\
& \frac{\left(a x^{n}\right)}{\because}=n(n-1)(n-2) a x^{n-3} \\
& \frac{\left(a x^{n}\right): \because}{\because}=n(n-1)(n-2)(n-3) a x^{n-4} \& c_{0}
\end{aligned}
$$

Hence it is manifest that in the case where the exponent n is a positive whole number, the function $a z^{n}$ has only a limited number of fluxions, of which the most elevated is $(\cdot)^{n} a x^{n}=n(n-1)$ ($n-2$)...2.1. $a^{\prime} n$; an expression which is no longer susceptible of fluxing, since it contains no more variable quantities.

Inverse methond of fuxions, relates to the finding of fluents, and is of great utility though of considerable difliculty.

As it is orly in certain particular forms and cases that the fluents of given fluxions can be found; there being no method of performing this universally a priori, by a direct investigation; like finding the fluxion of a given fluent quantity; we can do little more than lay down a tew rules for such forms of fluxions as are known, from the direct method, to belong to such and such kinds of fluents or flowing quantities; and these rules, it is evident, must chiefly consist in performing such operations as are the reverse of those by which the fluxions are found to given flowing quantities. The principal cases of which are as follow:
L. To find the fuest of a simple fuxion; or that in which there is no varialle quantity, and only one fuxional quantity.-This is done by barely substituting the variable or flowing quantity instead of its fluxion, and is the result or reverse of the notation only. Thus,
The fluent of $a x$ is πx.
The fluent of $a \dot{y}+2 \dot{y}$ is $a y+2 y$.
The fluent of $\sqrt{a^{2}+x^{2}}$ is $\sqrt{a^{2}+x^{2}}$.
II. When any puwer of a flowing quantily is multiplied ly the fuxion of the root.-Then, having substituted, as before, the flowing quantity for its fluxion, divide the result by the new index of the power. Or, which is the same thing, take out, or divide by, the fluxion of the root; add 1 to the index of the power; and divide by the index so increased.

> So if the fluxion proposed be $3 x^{3} \dot{x}$;
> Strike out \dot{x} then it is - - $3 x^{5}$;
> add 1 to the index, and it is - $3 x^{6}$;
> divide by the index 6 , and it is ${ }_{3} \times x^{6}$ or $3 x^{6}$;
which is the fluent of the proposed fuxion $3 x^{3} \dot{x}$.

In like manner, the fluent
of $4 a x \dot{x}$ is $2 a x^{2}$;
of $3 x^{\frac{3^{2}}{2}}$ is $2 x^{\frac{1}{3}}$;
of arni is $\frac{a}{n+1} n^{n+1}$;
of $\frac{z^{2}}{z^{2}}{ }^{z-2}{ }_{z}$ is $-z^{-1}$ or $\frac{-1}{z}$.
of $\left(a^{3}+z^{3}\right) 4 z^{2} \dot{z}$ is $\frac{1}{1}\left(u^{3}+\varepsilon^{3}\right)^{5}$.
III. When the root under a vinculum is a compound quantity; and the index of the part or factor without the vinculum increased by 1 , is some multiple of that under the vinculum. - Put a single variable letter for the compound root; and substitute its powers and thuxion instead of those, of the same value, in the given quantity; so will it be reduced to a simpler form, to which the preceding rule can then be applied.
So, if the given fluxion be $\dot{F}=\left(a^{2}+\kappa\right)^{\frac{1}{2}} x^{3} \dot{x}$;
where 3 , the index of the quantity without the vinculum, increased by 1 , makes 4 , which is double of 2 , the exponent of x^{2} within the same; therefore putting $x=a^{2}+x^{2}$, thence $x^{2}=x-a^{2}$, and its fluxion is $2 x \dot{x}=\dot{\boldsymbol{z}}$; hence then $x^{3} \dot{x}=\frac{1}{2} x^{2} \dot{x}=$ $\frac{1}{2}\left(z-a^{2}\right)$, and the given quantity \dot{F} or $\left(a^{4}+x^{2}\right)^{\frac{7}{3}} x^{3} \dot{w}$ is $=\frac{1}{2} 2^{\frac{2}{3}} \dot{z}\left(z-a^{2}\right)$ or $=\frac{1}{2} 2^{\frac{5}{3}} \frac{1}{8}$ -
$\frac{1}{4}^{a^{2} a^{2}} \frac{2}{2}$; and the fluent of each term gives
 ing the value of x instead of i, the same fluent is

IV. When there are several terms intolving two or more variaile qunnitities, having the flusion of each multiplied by the other quantity or quantities.Take the fluent of each term, as if there was only one variable quantity in it, namely that whose fluxion is contained in it, supposing all the others to be constant in that term ; then if the fluents of all the terms so found be the very same quantity, that quantity will be the fluent of the whole.

Thus, if the given fluxion be $x y+x y$. Then, the fluent of $x y$ is $x y$, supposing y constant; and the fluent of $x \dot{y}$ is also $x y$, when x is constant; thercfore the conmon resulting quantity κy is the required fluent of the given fluxion $x y+x i y$.
And in like manner the fluent of
$\dot{x} y z+x y z+x y \dot{i}$ is $x y z$.
v. When the given fuxional expression is in this
form $\frac{x y-x y}{y^{2}}$, viz. a fraction including tuo guantities, being the fuxion of the former drawn into the latter, minus the furion of the latter drawn into the former, and divided by the square of the latuer: then the fluent is the fraction $\frac{x}{y}$, or of the former quantity divided by the latter. That is,

$$
\text { the fluent of } \frac{x y-x \dot{y}}{y} \text { is } \frac{x}{y z} \text {; }
$$

and the fluent of $\frac{2 x \dot{x} y^{2}-2 x^{2} y \dot{y}}{y^{4}}$ is $\frac{x^{4}}{y^{2}}$.
Though the examples of this case may be performed by the foregoing one. Thue the given fluxion

FLUXIONS.

$\frac{\dot{x} y-\dot{x} y}{y^{2}}$ reduces to $\frac{\dot{x}}{y}-\frac{\dot{y}}{y^{2}}$ or $\frac{\dot{x}}{y}$ or $x \dot{y}^{-2}$; of
which the fluent of $\frac{\dot{x}}{y}$ is $\frac{x}{y}$ when y is constant; and the finent of $x y y^{-2}$ is $+x y^{-1}$ or $\frac{\pi}{y}$ when \pm is constant; and therefore, by that case, $\frac{\pi}{y}$ is the fluent of the whole $\frac{\dot{x} y-x \dot{y}}{y^{2}}$.
VI. When the faxion of a quantity is divided by the quantily itself.-Then the fluent is equal to the hyperbolic logarithm of that quantity; or, which is the same thing, the fluent is equal to 2.30258509 , \&c. multiplied by the common log. of the same quantity.

Thus the fluent
of $\frac{\dot{z}}{x}$ or $x^{-1} \dot{x}$, is the hyp. log. of x;
of $\frac{\dot{2 x}}{x}$, is $\varepsilon \times$ hyp. log. of x, or hyp. log. of x^{2};
of $\frac{\dot{x}}{a+x}$, is the hyp. log. of $a+x$;
of $\frac{s^{2} x^{2}}{a+x^{3}}$, is the hyp. log. of $a+x^{3}$;
of $\frac{x}{\sqrt{x^{2} \pm e^{2}}}$, is hyp. log. of $\left(x+1 / \overline{x^{2} \pm \mu^{2}}\right)$;
of $\frac{\dot{x}}{\sqrt{\kappa^{2} \pm 2 a x}}$, is hyp. log. $\left(x \pm a+\sqrt{x^{2} \pm 2 a x}\right)$;
of $\frac{2 a_{x}}{e^{2}-x^{2}}$, hyp. log. of $\frac{a+x}{a-x}$;
of $\frac{20 x}{x \sqrt{a^{4} \pm x^{2}}}$, is hyp. log. of $\frac{a-\sqrt{a^{2} \pm x^{2}}}{a+\sqrt{a^{2} \pm x^{2}}}$.
Vil. Maly fuen's may be found by the direct onfitod of fumions, thus.-Take the fuxion again of the given flu zional expresoion, or the $2 d$ fluxion of the fluent sought; into which substitute $\frac{\dot{x}^{2}}{x}$ for \ddot{x} and $\frac{\dot{y}}{y}$ for \ddot{y}, \&c. that is, male x, \dot{x}, \ddot{x}, as also $y, y, \ddot{y}, \& c$. in continual proportion. Then divide the square of the given fluxional expression by the $2 d$ fluxion, just found, and the quotient will be the fivent sought in many cases.
Or the same rule may be delivered thus. In the given fluxion \dot{F} write x for \dot{N}, y for \dot{y}, sc. and call the result G, taking also the fluxion of this quantity, \dot{G}; then make $\dot{G}: \dot{\mathbf{F}}:: \mathbf{G}: \mathbf{F}$, ω shall the fourth proportional F be the fluent, as before. This is the rule of M. Paccassi.

It may be proved whether this be the true fluent, by taking the fluxion of it again, which, if it agree with the proposed fluxion, will shew that the fluent is right; otherwise, the method

Thus, if it be proposed to find the fluent of $x^{n-1} \dot{x}$. Here $\dot{\mathrm{F}}=n x^{n-1} \dot{x}$; write first n for \dot{x};
and it is $n x^{n-1} x$ or $n \times n=G$; the fluxion of this is $\dot{\mathbf{G}}=\pi^{2} x^{n-1} \dot{x}$; therefore $\dot{G}: \dot{\mathrm{F}}:: \mathbf{G}: \mathbf{F}$ becomes $n^{2} \kappa^{n-1} \dot{x}: n x^{n-1} \dot{x}:: n \times n: x_{n}=F$, the fluent sought.

For 22 d ex. suppose it be proposed to find the fluent of $\dot{x} y+\dot{x} y$. Here $\mathrm{F}=\dot{x} y+\dot{x} \dot{y}$; then, writing x for \dot{x}, and y for \dot{y}, it is $x y+x y$ or $2 x y=G$; the fluxion of which is $2 \dot{x y}+2 x \dot{y}=\dot{\mathbf{G}}$; then $\dot{\mathbf{G}}: \dot{\mathbf{F}}:$: G : F becomes $2 x y+2 x \dot{y}: \dot{x} y+x \dot{x}:: 2 x y: 2 y=\mathrm{F}$,
the fluent sought.

VIIL. But fluents are more generally found by means of a table of forms of fluxions and Huents, in which comparing any proposed tluxion with a corresponding form given in the table, the Huent of it will be found. A very useful table of this kind is inserted under the article Floent in Dr. Hutton's Math. Dictionary, and illustrated by examples. But the most comprehensive table of this kind is from Cotes's Harmonia Mensurarum, and given in Emerson's Fluxions; its use has been amply shewn by Holliday and succeeding writers.
IX. To find fluents ly means of infinite series.When a finite form cannot be found to agree with a proposed fuxion, it is then usual to throw it into an infinite series, either by division, or extraction of roots, or by the binomial theorem, \&c. after which the fluents of all the terms are taken separately.

For ex. To find the fluent of $\frac{1-x}{1+x-x^{2}} \dot{x}$.
Here, by dividing the numerator by the denominator, this becomes $\dot{x}-2 x \dot{x}+3 x^{2} \dot{x}-5 x^{3} \dot{x}+8 x^{4} \dot{x}$, $\& \mathrm{c}$; and the fluents of all the terms being taken, give $x-x^{2}+x^{3}-\frac{1}{8} x^{4}+{ }_{5}^{3} x^{5}, \& c$., for the fluent sought.

Some excellent examples of this method may be seen in Simpson's Fluxions, vol. i.

To correct a Fluent. -The fluent of a given ीluxion, found as above, sometimes wants a correction, to make it contemporary with that required by the problem under consideration, \&c.: for the fluent of any given fluxion, as \dot{x}, may lie either x (which is found by the sule) or it may be $x \pm c$, that is x plus or minus some constant quamity ; ; because both x and x 士 c have the same fluxion \dot{x} : and the finding of the constant quantity, is calied correcting the fluent. Now this correction is to be determined from the nature of the problem in hand, by which we cume to know the relation which the fluent quantities have to each other at some certain point or time. Reduce therefore the general fluential equation, found by the rules above, to that point or time; then if the equation be true at that point, it is correct; but if not, it wants a correction, and the quantity of that correction is the difference between the two general sides of the equation when reduced to that particular state. Hence the general rule for the correction is this:

Cunnect the constant, but indeterminate, quantity c with one side of the fluential equation, as determined by the foregoing rules; then, in this equation, substitute for the variable quantities such values as they are known to have at any particular state, place, or time; and then from that particular state of the equation find the value of c, the constant quantity of the correction.

[^0]
FLUXIONS.

the general fluent of this is $z=a x^{4}$, or $z=a x^{4}+c$, taking in the correction c.
Now if it be known that z and x begin together, or that $z=0$, when $x=0$; then writing 0 both for x and z, the general equation becomes $0=0+c$, or $c=0$; so that the value of c being 0 , the correct fluents are $z=a x^{4}$.
But if x be $=0$, when x is $=b$, any known quantity; then substituting 0 for z, and b for x, in the seneral equation, it becomes $0=a b^{4}+c$, from which is found $c=-a b^{4}$; and this being written for it in the general equation, this becomes $z=$ $a_{1}{ }^{4}-a b b^{4}$, for the correct or contemporary fluents.
Or lastly, if it be known that x is $=$ some quantity d, when π is equal some other quantity, as b; then substituting d for z, and b for x, in the gener al Ruential equation $z=a a^{4}+c$, it becomes $d=$ $a b^{4}+c$; and hence is deduced the value of the correction, viz. $c=d-a b^{4}$; consequently, writing this value for c in the general equation, it becomes $z=a x^{4}-a b^{4}+d$, for the correct equation of the fluents in this case.
And hence arises another easy and gencral way of correcting the fluents, which is this: In the general equation of the fluents. write the particuLar values of the quantities which they are known to have at any certain time; then subtract the sides of the resulting particular equation, from the corresponding sides of the general one, and the remainders will give the correct equation of the fluents sought. So, as above, the general equation being - $x=a x^{4}$; write d for x, and b for x, then - $d=a b^{4}$; hence by subtraction - $z-d=a x^{4}-a b^{4}$, or $z=a x^{4}-a b^{4}+d$, the correct fluents as before. (Hutton's Dict.)

As this is a very important part of the doctrine of fluxions, it may be as well to illustrate it a little farther. Let us demand, therefore, the area of a parabola, commencing not at the summit A, but at the point B (fig. 11. PI. 68.), taken upon the :ixis at any distance whatever from that summit. Here, then, the abscissa RP being represented by x, the distance $A B$ from the vertex by a, and the parameter by p, we have for the equation of the curve, $y=\sqrt{ } \overline{p a+p x}=P Q$; and the fluxion of the area will be $y \dot{x}=\dot{x}, \sqrt{p a+p x}$: the fluent of this found by the usual methods will be
$\frac{{ }_{3}^{2} p a+p x \sqrt{p a+p x}}{p}=\frac{2}{3}(a+x) \sqrt{p a+p x}=$
3 AP P PQ. Now, it is evident that the area required should be nothing, when x or BP becomes nothing. The area above is therefore too great by the area $A B C$; and this area $A B C$ is found by making $x=0$ in the above expression; for it then becomes $\underset{\{ }{2} a \sqrt{ } p a=\frac{2}{1} A B \cdot B C$. Whence we sce that to apply this correction to the fluent, it is requisite to know what it becomes when x is made equal to nothing; and if the result be positive, it must be subtracted; but if it be negative it must be added: for in the former case the fluent is too great, and in the latter it is too little.

There are cases also where by the conditions of the problem, we know that the fluent ought to be equal to nothing when the abscissa or x, instead of being 0 , is of a determinate magnitude as a. It is then requisite to suppose r in the fluent equal to a; and if the result is positive to subtract it from the fluent, since it is too great; and, on the contrary, to add it if the result is negative, since it is too little. This would have happened if, in
the preceding problem, the abscissa AP had becs supposed equal to x, while we only required the magnitude of the segment CBPQ. For we should
find the fluxion of this area $=\dot{x} \sqrt{ } p^{r}$, and its fluent $=\frac{2}{3} x \sqrt{ } \beta x$. But this expression is that of the eotal area APQ, and the area demanded should vanish when $A P=A B$. We must thercfore suppose $x=a$, and the preceding fluent becomes reduced to ${ }_{3}^{2} a \sqrt{ } p a$, which being deducted from the iormer expression, will give for the true value of the area sought, ${ }_{3}^{2} x \sqrt{ } p x-\frac{1}{3} a \sqrt{ } p a$.

A sketch of the principles of fluxions being now delivered, we may next say a little respecting the chicf writings and improvements that have been made by divers authors, since the first discovery of them : indeed some of the chief improvements may be learned by consulting the preface to Dr. Waring's Meditationes Analytica.
The inventor himself brought the doctrine of fluxions to a considerable degree of perfection; as may be seen by many specimens of this science, given by him; paricularly in his Principia, in his Tract on Quadratures, and in his Treatise on Fluxions, published by Mr. Colson; from all of which it will appear, that he not only laid down the whole theory of this method, both direct and inverse; but also applied it in practice to the solution of many of the most useful and important problems in mathematics and philosophy.
Various improvements however have been made by many illustrious authors on this science; particularly by John Bernoulli, who treated of the fluents belonging to the fluxions of exponential expressions; James Bernoulli, Craig, Cheyne, Cotes, Manfredi, Riccati, Taylor, Fagnanus, Chairaut, D'Alembert, Euler, Condorcet, Walmesley, Le Grange, Emerson, Simpson, Landen, Waring, lezout, Bossut, Lacroix, \&c. There are several other treatises also on the principles of Fluxions, by Hayes, Newyentyt, LHopital, Hodgson, Rowe, Vince, \&c. \&c., delivering the elemenis of this science in an easy and familiar manner.

The elements of the doctrine of fluxions have been delivered by its great author in so concise a manner, as to give occasion to the most ingenions bishop Berkeley to represent it as founded on inconceivalle prínciples, and full of falie reasoninga. This author, in a letter under the title of the Analyst, published in the year 173t, has been at great pains to convince his readers, that the obr jects, principles, and inferences of the modern analysis by fluxions, are not more distinctly conceived, or more evidently deduced, than religious mysteries and points of faith. He says he does not controvert the truth of the conclustons, but only the logic and method of mathenaticians. An answer to the objections of the Analyst appeared very early under the name of Philaletlies Cantabrigiensis, since known to be Dr. Jurin. And various others were published on the same side of the question. But the most able defences of the doctrine of fluxions were made by Mr. Robins (sce his Tracts, vol. ii.) and by Mr. Maclaurin, in his very elaborate and excellent Treatise on Fluxions. The demonstrations of these two gentlemen are, we think, suflicient to satisty the most scrupulous: to them, therefure, we with pleasure refer. Mr. Woodhouse, who, in his Principles of Analytical Calculation, has revived many of Berkeley's objections with gredier mathematical talent, but with lens meiaphy-ical acuteness, says, the prolixity of the redsoni.\%s of Maclaurin and Robins "contirm the notion that the

F L \mathbf{Y}

method they defend is an incommodious one." This remalk we think uncandid: the prolixity is occasioned not by want of simplicity in the method they defend, but by the tortuous intricacy and obectrity of many of the objections, which required much time to be pursued throughout, and, as several of them were subtile and specious, much k brour and room to refute them completely. With regard to the comparative perspicuity of the no methods of establishing the principles, from the doctrine of motion and from pure analysis, we cannot hesitate to say that the former has the preierence: and we are convinced that every unbiassed reader of the treatises of Maclaurin and Simpron on the one hand, and of Bossut and Lasroix on the other, will agree with us in opinion. Yet, we are constrained to acknowledge, notwithsanding this, that the principal improvements and extensions of the modern analysis, during the last forty years, have been made by continental, not by British, mathematicians.

For the various applications of fluxions to practical purposes, see the articles Asymptoti, intlexion, Maxian, Tangent, \&e.

Tu FLY. v. n. pret. flew or fled; part. fled or $f_{i j u}$: $f l e d$ is properly from flee. (Fleozan.) 1. To nove through the air with wings (Shakspeare). 2. To pass through the air (Jol). 3. To pass away (Prior). 4. To pass swifily (\boldsymbol{P}, ,pe). 5. To move with rapidity (Dryden). 6. To part with violence (Shakspeare). 7. To break; to shiver; to burst asunder with a sudden ceplosion ($\mathrm{Su} \cdot \mathrm{ifl}$). 8. To run away ; to fice (Priur). 9. To Fly at. To spring with violence upon; to fall on suddenly (sisth). 10. To Fly in the face. To insult (Sutit). 11. To Fly in the face. To act in defiance. 12. To Fly off. To revolt (Addient. 13. To Fey out. To burst into passion (Ben Jovion). 14. To Fly ont. To break out into licence. 15. To Fly out. To start violeatly from any direction (Bentley). 16. Tolet Fiv. To discharge (Glanville).

Tofly. v. a. 1. To shun; to avoid; to decline (.Sthakspeare). 2. To refuse associauim with (Dryden). 3. To quit by flight (Dryien). 4. To attack by a bird of prey (Siscon).

Fly, in entomology. See Musca.
FLy (Honeysuchic), in botany. See Loxiefra.
$F_{\text {Lv }}$ (lloneysuckle), African. See Halleria.
fiy-catcher, in ornithology. See Muscicapa.
Fly (Spanish). See Cantharides.
Fly-trap(Venizs), See Dionea.
Fiy the eeels, in the manage, is when a horse obeys the spurs.

FLy (V'egetable), a very curious natural producion, chiefly found in the West Indies, and thus improperly denominated. Excepting that it has no wings, it resembles the drone both in size and colour more than any other British insect. In the morith of May it buries itself in the earth, and begins to vegetase. By the latter end of July, the tree is amired at is fult growth, and resembles a coral branct: and is about three inches high, end bears several litule pods, which dropping YOL. V.

F L \mathbf{Y}

of become worms, and thence flies, like the British caterpillar. Such was the account originally given of this extraordinary production. But several boxes of these flies having been sent to Dr. Hill for examination, his report was this: "There is in Martinique a fungus of the clavaria kind, different in species from those hitherto known. It produces soboles from its sides; I call it, therefore, clavarid soholifera. It grows on putrid animal bodies, as our fungus ex pede equino from the dead horse's hoof. The cicada is common in Martinique, and in its nympha state, in which the old authors call it tettigometra: it buries itself under dead leaves to wait its change ; and, when the season is unfavourable, many perish. The seeds of the clavaria find a proper bed in this dead insect, and grow The tettigometra is among the cicadx in the British museum; the clavaria is just now known. This is the fact, and all the fact; though the untavaht inhabitants suppose a fly to vegetate, and though there is a Spanish drawing of the plants growing into a trifoliate tree, and it has been figured with the creature flying with this tree upon its back." Edwards has taken notice of this extraordinary production in his Gleanings of Natural Histoy-
Fly, in mechanics, is a name given to a certain appendage to many machiurs, either as a regulator of their motions, or as a collectur of power. In the first case the fy is a heary disk ur hoop, or other mass of matter balanced on its axis, and so connected with the nachinery as to turn briskly round with it. This may be done with the siew of rendering the motion of the whole more regular, notwithstanding unavoidable inequalities of the accelerating forces, or of the resistances occasioned by the work. It becomes a RegulaTOR. Suppose the resistance extremely unequal, and the imperling power perfectly constant; as when a buchet wheel is employed to work one pump. When the piston has ended its working stroke, and while it is going down the barrel, the porrer of the wheel being scarcely opposed, it accelerates the whole machine, and the piston arrives at the bottom of the barrel with a considerable velocity. But in the rising again, the wheel is opposed by the column of water now pressing on the piston. This immediately retards the wheel; and when the piston has reached the top of the barrel, all the acceleration is undone, and is to begin again. The motion of such a machine is very hobbliug: but the superplus of accelerating force at the beginning of a returning stroke will not make such a change in the motion of the machine if we connect the fly with it. For the accclerating momentum is a determinate quantity. Therefore, if the radius of the fly be great, this momentum will be attained by communicating a small angular motion to the machine. The momentum of the fly is as the square of its radius; therefore it resists acceleration in this proportion; and although the overplus of power generates the same momentum of rotation in the whole machine as before, it makes but a small addition to its velocity. If the diameter of the fly be doubled, the augmentation of rotation will be reduced to one-fourth. Thus, by giving a rapid motion to a small quantity of matter, the great acceleration, during the returning stroke of the piston, is prevested. This acceleration continues, howerer,

F L Y .

during the whole of the returning stroke, and at in the Albion mills, a heavy fy was added whels the end of it the machine has acquired its greatest velocity. Now the wurking stroke begins, and the overplus of power is at an end. The machine accelerates no more; but if the power is just in equilibrio with the resistance, it keeps the velocity which it has acquired, and is still more acceleratthe beginning of the subsequent working stroke, there is all overplus of resistance, and a retardation begins, and continues during the whole rise of the piston; but it is considerable in comparison of what it would have been without the fly; for the fly, retaining its acquired momentum, drags forward the rest of the machine, aiding the imppelling power of the wheel. It does this by all the communications taking into each other in the opposite direction. The teeth of the intervening wheels are heard to drop from their former contact on one side, to a contact on the other. By considering this process with attention, we easily perceive that, in a few strokes, the overplus of power during the returning stroke comes to be so stroke, that the deficiency during the working exactly destroy each other, and every aucceating stroke is inade with the same velocity, and an equal number of strokes is made in every succeeding minute. Thus the machine acquires a general uniformity with periodical inequalities.
It is plain It is plain, that by sufficiently enlarging either the diameter or the weight of the fly, the irregullarity of the motion may be rendered as small
as we please, it is much better to enlarge the diameter. This preserves the friction more moderate, and the pivot wears less. For these reasons, a fly is in general a considerable improvement in machinery, by equalising many exertions that are naturally very irregular. Thus, a man working at a common windlass exerts a very irregular pressure on the winch. In one of his positionsin each turn he can exert a force of near 70 pounds without fatigue, but in another he cannot exert above 25 ; nor must be be loaded with much above this in general. But if.a large fly be connected properly with the windlass, he will act with equal ease and speed against 30 pounds.

This regulating power of the fy , is without bounds, and may be used to render uniform a motion produced by the most desultory and irregular power. It is thus that the most regular motion is given to mills that are driven by a single-stroke steam engine, where for two or even three. seconds there is no force pressing round the mill. The communication is made through a massive fly of very great diameter, whirling with great rapidity. As soon as the impulse ceases, the fiy, continuing its motion, urges round the whole machinery with almost unabated speed. At this. instant all the teeth, and all the joints, between the fly and the first moser, are heard to catch in the opposite direction.
If any permaueut change should happen in the mpelling power, or in the resistance, the fiy makes no obstacle to its producing its full effect on the machines, and it. will be observed to accelerate or retard uniformb, till a new general speed is acquired exactly correaponding with this new power and resistance.

Many machines include in their conatruction. movements which are equivalent ta this intentional regulator. A flour mill, for example, can.

great proprity; for if the mills had been regulated by their millstones ouly, then at every change of stroke in the steam engine, the whote train of communications between the beam, which is the grst mover, and the regulating millstone, which is the very last mover, would take in the opposite
direction. Although each joints be but a trifle, the whole, added teeth and would make a considerable jolt. This is avoiden, by a regulator immediately adjoining to the beam. This continually presses the working machinery in one direction. So judicionsly were the movements of that noble machine contrived, and 80 nicely were they executed, that not the least noise was heard, nor the slightest tremor felt in Mr. Valoue's beautifol pile engine employed atWestminster Bridge isanother remarkable instance of the regulating power of a fly. When the ram is dropped, and its follower disengaged immedown, because the load, against which thanbe been straining hard, is at once taken off; but the gin is connected witt a sery large ay, which checks any remarkable accelcration, allowing the horses to lean on it duriug the descent of the load; after which their draught recommences immediateIF. The spindles, cards, and bobbins, of a cotton mill, are also a sort of flies. Indeed all bulky machines of the rotative kind tend to preserve. their motion with some degree of steadiness, and their great momentum of inertia is as useful in or any reciprocation whudicial to the acceleration
There is another kind of regulating fiy, consisting of wings whirled briskly round till the resistance of the air prevents any great accelerationThis is a very bad one for a working machine, for it produces its effect by really wasting a part of the moving power. Frequently it employs a very great and unknown part of it, and robs the proprietor of much work. It should never be introduced into any machine employed in manafactures.

Some rare cases occur where a very different regulator is required: where a certain determined velocity is found necessary. In this case the machine is frmished, at its extreme mover, with a conical pendulum, consisting of two heary balls hanging by rods, which move in very niee and steady joints at the top of a vertical axis. It is well known, that when this axis turns reund, with. an angular velocity suited to the length of those pendalums, the time of a revolation is determined. rinus, if the length of each peadulnm be 992 inches, the axis will make a revolution in two seconds very nearly. If we attempt to force it more swiftly round, the balls will recede a little from the axis, but it employs as long tine for a revolution as before; and we cannot make it turn switter, unless the impelling power be increased
beyond all probnbility; in which case the beyond all probnbility; in which case the pendu-
lum will fiy out from the centre tiN the rods are horizontal, after which every increase of power. will accolerate the machine very sensibly. Wats, and Boadton have applied this contrivance with great ingenuity to their steam engines, when they. are employed for triving machinery for manufactures. Which have a very changeable resistance ${ }_{2}$ and where a certain speed camot be much de-
axis (bhich gives immediate indication of an increase of power or a diminution of resistance) with the cock which admits the steam to the working cylinder. The balls flying out cause the cock to close a little, and dimmish the supply of steam. The impelling power diminisbes the next moment, and the balls again approach the axis, and the rotation goes on as before, although thero may have occurred a very great excess or deficiency of power.

A fly is sometimes employed for a very different purpose from that of a regulator of motionit is employed as a collector of power. Suppose all resistance removed from the working point of a machine furnished with a very large or heavy fy immediately connected with the working point. When a small force is applied to the impelled point of this machine, motion will begin in the machine, and the fly begin to turn. Continue to press uniformly, and the machine will accelerate. This may be continued till the fly bas acquired a very rapid motion. If at this moment a resisting body be applied to the working point, it will be acted on with very great force; for the fly has now accomalated in its circumference a very great momentum. If a body were exposed immediately to the action of this circumference, it would be violently struck. Much more will it be so, if the body be exposed to the action of the workiog point, which perhaps makes one turn thile the fly makes a hundred. It will exert a bundred times more force there (very nearly) than at its own circumference. All the motion wich has been accumulated on the fly during the whole progress of its acceleration is exerted in an instant at the working point, multiplied by the momentum depending on the proportion of the parts of the machine. It is thus that the coining press performs its office; nay, it is thus that the blacksmith forges a bar of iron. Swinging the great sledge bammer round his head, and urging it with force the whole way, this accumulated motion is at once extinguished by impact on the iron. It is thus also we drive a nail, \&ce. This accumalating power of a bly has occasioned many to imagine that a fy really adds power or mechanical force to an engine; and, not understanding 00 what its efficacy depends, they often place the fly in a situation where it only adds a useless burden to the machine. It should, always be made to move with rapidity. If intended for a mere regulator, it should be near the first maver; and if it be intended to accumulate force in the working point, it should not be far separated from it. In a certain sense, a fly may be said to add power to a machine, because by accumulating into the exertion of one moment the exertions of many, we can sometimes overcome an obstacle that we never could have balanced by the same machine unaided by the fly. And it is this accumolation of force which gives such an appearance of power to some of our lirst movers.

Fly, in the sea language, that part of the mariner's compass on which the several winds or points are drawn. "Let fly the sheet," is a word of command to let loose the sheet, in case of a gust of wind, lest the ship should overset, or spend her top-sails and puasts; which is prevented by letting the sheet go a-main, that it may hold no wind.
To FLY'BLOW, v. a. (fly and wow.) To aint with flies; to fill with maggots (Still.).'

FLY'BOAT. s. (fly and loat.) A kind of vessel nimble and light for sailing.

FI.YCATCHER. s. ($f y$ and catch.) One that hunts flies (Dryden).

FLY'ER. s. (from $f l_{\text {l }}$) See Flier. 1. One that flies or runs away (Sandys). 2. One that uses wings. 3. The Hy of a jack.
FLYERS, in architecture, such stairs as go straight, and do not wind round, nor have the steps made tapering 3 but the ends, and the fore and back part of each stair, respectively parallel.

To.FLY'FISH, v. n. (fly and fish.) To angle with a hook baited with a fly.
FLYING,

FLYING, the progressive motion of a bird; or other winged animal, in the liquid air. The parts of birds chiefly concerned in flying are the wings, by which they are sustaned or wafted along. The tail, Messiears Willoughby, Ray, and many others, imagine to be principally employed in steering and turning the body in the air, as a rudder: but Borelli has put it beyond all doubt, that this is the least use of it, which is chiefly to assist the bird in its ascent and descent in the air; and to obviate the vacillations of the body and wings: for, as to turning to this or that side, it is performed by the wings, and inclinations of the body, and but very little by the help of the tail. The flying of a bird, in effect, is quite a different thing from the rowing of a vessel. Birds do not vibrate their wings towards the tail, as oars are struck towards the stern, but waft them downwards: nor does the tail of the bird cut the air at right angles, as the rudder does the water; but is disposed horizontally, and preserves the same situation what way soever the bird turns.

In effect, as a ressel is turned ahout on its centre of gravity to the right, by a brigk application of the oars to the left, so a bird in beating the air with its right wing alone, towards the tail, will turn its fore part to the left. Thus pigeons, ehanging their course to the left, would labour it with their right wing, keeping the other almost at rest. Birds of a long neck alter their course by the inclinations of their head and neck, which altering the course of the line of gravity, the bird will proceed in a new direction.

The general mode of flying is this : the bird first bends his legs, and springs with a violent leap from the ground; then opens and expands the joints of his wings, so as to make a right line perpendicular to the sides of his hody: thus the wings, with all the feathers therein, constitute one continued lamina. Being now raised a little above the horizon, and vibrating the wings with great force and velocity perpendicularly against the subject dir, that fluid resists those succussions, both from its natural inactivity and elasticity, by means of which the whole body of the bird is protruded. The resistance the air makes to the withdrawing of the wings, and consequently the progress of the bird, will be so much the greater, as the waft or stroke of the fan of the wing is longer: hut as the force of the wing is continually did

FOC

minished by this resistance, when the two forces come to be in equilibrio, the bird will remain suspended in the same place: for the bird only ascends so long as the arch of air the wing describes makes a resistance equal to the excess of the specific gravity of the bird above the air. If the air, therefore, is so rare as to give way with the same velocity as it is struck with, there will be no resistance, and consequently the bird can never mount. Birds never fly upwards in a perpendicular line, but always in a parabola. In a direct ascent, the natural and artificial tendency would oppose and destroy each other, so that the progress would be very slow. In a direct descent they would aid one another, so that the fall weuld be too precipitate.

Flying-fish, in ichthyology. See Exoceetus.
Flying pinion, is part of a clock, having a fly or fan by which to gather air, and so bridle the rapidity of the clock's motion when the weight descends in the striking part.

FO. See Fe.

FOAL, the produce of a horse and mare in 2 general sense; though more usually applied to the colt or male produce; the female being commonly called a filly foal. It is said to be no difficult matter to know the shape that a foal is likely to be of when full grown; for the same shape that he carries at a month he will carry at six years old, if he be not abused in after keeping; and as the good shape, so will be the defects also. As to the height, it is observed, that a large shin-bone, long from the knec to the pastern, indicates a tall horse. Another way of judging is, to see what space he has between his knee and withers; which being doubled, it will be his height when he is a competent horse. There are also means to know the probable goodness of foals in a subsequent period; for if they be stirring, not apt to be frighted, active, and striving for mastery, some writers assert, they generally prove good mettled horses.

Foal-teeth. See the article Age.
To Foak. v. a. (from the noun.) To bring forth a foal (May).

FOAM. s. (fam, Saxon.) The white substance which agitation or fermentation gathers on the top of liquors; froth; spume (Hosea).

To Foam. v. n. (from the noun.) 1. To froth; to gather foam (Shakspeare). 2. To be in rage; to be violently agitated (Mark).

FO'AMY. a. (from fuam.) Covered with foam; frothy (Sidney).
FOB. s. (fuppe, German.) A small pocket (Addison).
To Fos. y. a. (fuppen, German.) 1. To cheat; to trick; to defraud (Shakispeare). 2. To Fob off. To shift off; to put aside with an artifice (Addison).
FO' $^{\prime}$ CAL. a. (from focus, Latin.) Belonging to the focus (Denham).

Focal distance, the distance of the focus, which is sometimes understood as its distance from the vertex, as in the parabola; and

FOC

sometimes its distance from the centre, as is the ellipse or hyperbola.
FO-CHAN, a village of China, in the province of Quangtong. It is called a village, because it has no walls nor a presiding governor, although it has a great trade, and contains more houses and inhabitants than Canton. It is reckoned to be nine niles in circumference, and to contain $1,000,000$ inhabitants. It is 12 miles from Canton.

FOCHIA NOVA, a seaport of Natolia, with a good harbour, and a castle. It is seated on the gulf of Sanderly. Lat 38.44 N . Lon. 26. 39 E .

FOCIL. s. (fucile, French.) The greater or less bone betiveen the knee and ankle, or elbow and wrist (Wiseman).
FOCILLATION. s. (focillo, Lat.) Comfort; support.

FOCOSO, in music, with fire and spirit.
FOCUS, in geometry and the conic sections, is applied to certain points in the ellipse, hyperbola, and parabola, where the rays reflected from all parts of these curves do concur or mect ; that is, rays issuing from a luminous point in the one focus, and falling on all points of the curves, are reflected into the other focus, or into the line directed to the other focus, viz. into the other focus in the cllipse and parabola, and directly from it in the hyperbola. Which is the reason of the nanie focus, or burning-point. Hence, as the one focus of the parabola is at an infinite distance; and consequently all rays drawn from it, to any finite part of the curve about the vertex, are parallel to one another; therefore if rays from the sun, or any other object so distant as that those rays may be accounted parallel, fall upon the curve of a parabola or concave surface of a paraboloidal figure, those rays will all be reflected into its focus.

In all the three curves the double ordinate drawn through the focus is the parameter of the axis, or a third proportional to the transverse and conjugate. If there be any tangent to these curves, and two lines drawn from the foci to the point of contact, these two lines will make equa! angles with that tangent.

In the parabola, the distance from the focus to the vertex is equal to t of the parameter, or $\frac{1}{2}$ the ordinate at the focus.

For other properties of the foci, see the different authors on Conics.
Focus, in optics, is a point in which several rays meet, and are collected, after being either reflected or refracted. It is so called, because the rays being here brought together and united, their force and effect are increased, insomuch as to be able to burn; and therefore it is that bodies are placed in this point to be burnt, or to shew the effect of burning glasses, or mirrors. It is to be observed, however, that in practice, the focus is not an absolute point, but a space of some small breadth. over which the rays are scattered; owing to the different nature and refrangibility of the rays of light and to the imperfections in the

FOE

figure of the lens, \&c. However, the smaller this space is, the better, or the nearer to perfection the machine approaches. Huygens shews that the focus of a lens convex on both sides, has its breadth equal to i of the thickness of the lens.

Jirtual Focus, or Point of Divergence, so ca!led by Mr. Molyneux, is the point from whence rays tend, after refraction or reflection; being in this respect opposed to the ordinary focus, or point of concurrence, where roys are made to meet after refraction or refleccion. Thus, the foci of an hyperbola are mutually virtual fuci to each other: but, in an ellipse, they are common foci to each other : for the rays are reflected from the other focus in the hyperbola, but towards it in the ellipse.

Practical Rules for finding the Foci of Glasses.

1. To find, by experiment, the focus of a convex spherical glass, being of a small sphere; apply it to the end of a scale of inches and decimal parts, and expose it before the sun; upon the scale may be seen the bright intersection of the rays measured out : or, expose it in the hole of a dark chamber; and where 2 white paper receives the distinct representation of distant objects, there is the focus of the. glass. 2. For a glass of a pretty long focus, obserre some distant object through it, and recede from the glass till the eye perceives all in confusion, or the object begins to appear inverted; then the eye is in the focus. 3. For a plano-convex glass: make it reflect the sun against the wall; on the wall will then be seen two sorts of light, a brighter within another more obscure: withdraw the glass from the wall, ull the bright image be in its least dimensions; then is the glass distant from the wall about a fourth part of its focal length. 4. For 2 double couvex: expose cach side to the sun in like manner; aad observe both the distances of the glass from the wall: then is the first distance ahout half the radius of the convexity turned from the sun; and the second is about half the radius of the other convexity. The radii of the two convexities being thas known, the focus is then found by this rule; As the sum of the radii of both convexities : is to the radius of either convexity : : so is double the radius of the other convexity : to the distance of the focus.
Dr. Halley gave general methods of finding the foci of all kinds of glasses, both geometrically and algebraically. See Phil. Trans. No. 205, \&c. The same is also shewn by the principal writers on optics; as by Emerson, Martin, Smith, Wood, \&cc. See also our articles CAtoptrics and Dioptrics.
FƠDDER. s. (foðre, foðen, Saxon.) Dry food stored up for cattle against winter (Knolles).

To Fódder. v. a. (from the noun.) To feed with dry food (Evelyn).
FODDERER. s. He who fodders catle.
FODW AR, a town of Hungary. Lat. 46. 39 N . Lon 19.36 E
FOE. 3. (fah, Saxon.) 1. An enemy in

F © T

war (Spenscr). 2. A persecutor; an eneriy in commou life. 3. An oppouent; an ill wisher (Watts).
FO'EMAN. s. (from foe and man.) Enemy in war; antagonist: obsolete (Spenser).
FOEN1'CÚLUM. (faniculum, quasi fa- $^{\text {a }}$ num osulorum, the hay or herb good for the sight ; so called because it is thought good for the eyes.) Fennel. See Anethum.
feniculum aquaticum. Water fennel. Fine-leaved water hemlock. The plant which bears this name in the pharmacopøeias is the phellandrium aquaticum; foliorum ramificationibus divaricatis, of Linnéus. It possesses vertiginous and poisonous qualities, which are best counteracted by acids, after clearing the primæ vix. The seeds are recommended hy some, in conjunction with peruvian bark, in the cure of pulmonary phthisis. See Phelifandium.

Feeniculum dulce. Common fennel. Anethum foeniculum fructibus ovatis of Linnéus. Class pentandria. Order digynia. The seeds and roots of this indeginous plant are directed by the colleges of London and Edinburgh. The seeds have an aromatic smell, and a warm sweetish taste, and contain a large proportion of essential oil. They are stomachic and carminative. The root has a sweet taste, but very little aromatic warmth, and is said to be pectoral and diuretic.
Faniculum porcinum. See Pbucedanum and Anethum.

Fgniculum vulgare. Common fennel or fenckle. A variety of the anethum feniculum. See Faniculum dulce.

FEENUGREEK, in botany. See Trigonella.

FCENUM GRECUM. (farum, hay, and gracus, belonging to Grecce, because in Greece it grew in the meadows like hay.) Fe nugreek. Trizonella fænum grecum leguminibus sessilibus strictis erectiusculis subfalcatis acuminatis, caule erecto, of Linnéus. Diadelphia. Decandria. A native of Montpelier. The seeds are brought to us from the southern parts of France and Germany; they have a strong disagreeable smell, and an unctuous farinaceous taste, accompanied with 2 slight bitterness. They are esteemed as assisting the formation of pus in inflammatory tunours; and the meal, with that intention, is made into a poultice with milk; though the meal of linseed is at present more frequently resorted to, as a better emollient and sedative.

Fenum camblorum. See Juncus odoratus.

FOETIDIA. In botany, a genus of the class icosandria, order monogynia. Calyx superior, four-cleft ; corolless; capsule woody, four-celled; the cells one or two-seeded. A tree of Mauritius, with one-flowered terminal peduncles.

FOETUS. (fotus.) The child enclosed in the uterus of its mother is called a foetus from the fifth month after pregnancy until the time of its birth. This term should rather be spelt fetus, as derived from the old Latin $f e 0$, whence fio, and is so spelt by all the old

FOG

Roman writerr. From the same root we obtuin fecundus, fermen, femina. The internal parts peculiar to the foetus are the thymus gland, canalis venosus, canalis arteriosus,
foramen ovale, and the membrana puillaris Besides these peculiarities, there are other circumstances in which the foetus differs from the adult. The lungs are black and collapsell, and sink in water; the liver is very large; all the glands, espe.ially the thyinus and suprarenal, and the vermiform process of the cxcum, are also considerably larger in proportion, The tecth of the fæetus are hid within their sockets; the great intestines contain a substance called meconium ; the membrana tympani is covered with a kind of mucous membrane, and the bones in many places are cartilaginous.

FOG, or MIsT, a meteor, consisting of gross vapours, floating near the surface of the earth. Mists, according to lord Bacon, are imperfect condensations of the air, consisting of a large proportion of the air, and a small one of the aqueous vapour: and these happen in the winter, about the change of the weather from frost to thaw, or from thaw to frost; but in the summer, and in the spring, from the expansion of the dew. If the vapours, which are raised plentifully from the carth and waters, either by the solur or subterraneous heat, do at their first entrance into the atmosphere meet with cold enough to condense thein to a considerable degree, their specific gravity is by that means increased, and so they will be stop ped from ascending; and either return back in form of dew or of drizzling rain, or remain suspended some time in the form of a fog. Vapours may be seen on the high grounds' as well as the low, but more especially about marshy places. They are easily dissipated by the wind, as also by the heit of the sun. They eontinue longest in the lowest grounds, be. cause those places contain most moisture, and are least exposed to the action of the wiud. Hence we may easily conceive, that fogs are only low clouds, or clouds in the lowest region of the air ; as clouds are no other than fogs raised on high. (See Cloud.) When fogs stink, then the vapours are mixed with sulphureous and offensive exhalations. Ohjects viewed through fogs appear larger and more remote than hrough the common air. Mr. Boyle observes that, upon the coast of Coromandel, and most maritime parts of the East Indies, there are, notwithstanding the heat of the climate, annual fogs, so thick, as to occasion poople of other nations who reside there, and eyen the more tender sort of the natives, to keep their honses close stiut up. Fogs are comnonly pretty strongly electrified, as ap. pears from Mr. Cavallo's experiments upon, them.

Fog. s. (fogagium, low Latin.) Aftergrass. FOGGILY. ad. (from foggy-) Mistily; darkly; cloudily.

FO'GGINESS. s. (from foggy.) The state of being dark or misty; cloudinesis ; mistiness. FO'GGY. a. (from fog.) T: Misty ; cloudy ;
 dull.

FOGLIETA (Uberto), a Genoese priest, born in 1518. He was banished from his naHe country for the freedom of his writings. He then retired to Rome, where he died in Genuensium principal works are, 1. Historia dinis Tusium, 1585. ${ }^{\text {R. De Causa Magnitu- }}$ Turcarum Imperiu, 3. Della Republica di Genoa.

FOGO. See Fuego.
$\mathrm{FOH}!$ An interjection of abhorrence. FO-HI, the first Chinese monarch, who is said to have founded that kingdom 200 years after the deluge. He removed the seat of the empire from the province of Xen Si to Chin Cheu. To him the Chinese are indebted for musical instruments, a code of laws, the regulation of the sexual intercourse, which before him was promiscuous, and for relizious observances. He is said to have reigued 115 years, but so much fable is blended with his story, that it is not proper to mention more concerning him.

FOI'BLE. s. (French.) A weak side; a blind side; a failing (Freind).
To FOIL. v. a. (affoler, old French.) 1. To put to the worst ; to defeat (Milton). 2. (fouiller, French.) To blunt; to dull (Shakspeare). 3. To defeat; to puzzle (Addison).
Foil. s. (from the verb.) 1. A defeat; a miscarriage (Southern). 9. Leaf gilding: (fcuille, French:) (Millon). 3. Something of another colour near which jewels are set to rase their lustre (Sidney). 4. A blunt sword used in fencing (Shakspeare).
FoIL,
Foil, a term used in hare hunting. When, during the chase, a hare, after a head or doas ble, runs over the ground she has run before;
she is then she is then said to be running the foil, and with strict truth; as nothing can so much foil hares, who a chase of this description. Old and get considerably a-head, almost invariably throw themselves out to the right or lef ble, and quat; particularly if a hed, douhedge, fern, furze, or any sind of covert row, sents itself favourably for the purpose. The hounds continuing to run the scent to the spot where she made her head, over-run the hare, and having no continuance of scent, are necessarily at fault; during which delay of trying forward, trying back, making a cast to the right, then a cast to the left, the hare slips into her foil ; by which repeated runnings, stie often obtains an escape she could obtain in no. other way.

FO'ILER. s. (from foil.) One who has gained advantage over another.

To FOIN. $v: n$. (foindre, Fr . Skinner.) To push in fencing (Dryden).

Foin. s. (from the verb.) A thrust; a push:
FO'ISON. s. (Foron, Saxon.) Plenty; abundance : out of use (Shakspeare).
To FOIST. v. a.' (faussé, french.) To insert by forgery (Сатеw):

FOMSTINESS. 3. (from foisty.) Fustiness;

FOL

FOIX, a sown of Prance, in the department of Arriege, at the foot of the Pyrenees. Lat. 43. 0 N. Lon. 1.32 E .

FOKIEN, a province of China in Asia, commodionsly situated for navigation and commerce, pert of it burdering on the sea, in which they catch large quantities of fish, which they send salted to other parts of the empire. Its shores are very uneven, by reason of the number and variety of its bays; and there are many forts built thereon to guard the coast. The air is hot, but pure and wholesome. The mountains are almost every where disposed into a kind of amphitheatres, by the labour of the inhabitants, with terraces placed one above another. The fields are watered with rivers and springs, which issue out of the mountains, and which the husbandmen conduct in such a manner as to overflow the fields of rice when they please, because it thrives best in watery ground. They make use of pipes of bamboe for this purpose. The chief town is Fou-ucheou-Fou.

FOLARD (Charles), a French officer, born at Avignon, in 1669. In 1780 he becaune aid-du-camp to M. de Vendome, who undertook nothing without consulting him. For his great services he was rewarded with a pension, and the cross of St. Louis. He received a wound at the battle of Cassano, by which he was deprived of the use of his left hand. About 1710 he was made prisoner by prince Eugene, and on his being exchanged he was sent to Malta, to assist in its defence against the Turks. He afterwards served under Charles XII. of Sweden, and was present at the siege of Frederickshall, when that prince was killed in 1718. He then returned to France, and in 1719 served as colonel under the dake of Berwick. He died in 1752. He wrote as follows : 1. Commentaries upon Polybius, 6 vols. 4to. 2. A book of new Discoveries in War. 3. \boldsymbol{A} Treatise on the Defence of Places.

FOIC-LANDS, the name given to eopyhold lands, in the time of the Saxons.

FOLCMOTE, or Folкмотв, according to Kennet, was the common-council of all the inhabitants of a city, town, or borough ; though Spelman will have the folkmote to have been a sort of annual parliament or conrention of the bishops, thanes, akdermen, and freemen, on every May-day. Dr. Brady, on the contrary, tells as, that it was an inferior court, held before the king's reeve, or his steward, every month, to do folk right.

FOLD. s. (falt, Saxon.) 1. The ground in which sheep are confined. 9. The place where sheep are housed (Raleigh). 3. The glock of sheep. (Drgden). 4. A limit; a boundary (Creech). 5. A double; a complication; one part added to another. (from filb, Saxon.) (Arbuthnot). 6. Prom the foregoing signitieation is derived the nse of fold in composition. Fotd sigmifies the same quantity added: m, twenfy-fold, twenty times repeated (Matthew).

To Fold. v, a. (from the nown.) 1, To

FOI

shat sheep in the fotd (Milton). 2. To enclose; to include; to shut (Shakspeare). 3. To doobles to complicate (Collier).

To Fold. v. n. To close over another of the same kind (Kings).

FOLIA, among botanists, particularly signify the leaves of plants; those of fowers being expressed by the word petals.

FOLIACEOUS SPIKE. In botatay. A leafy spike. Having leaves intermixed with the flowers. Glandula foliaceæ. Leafy glande, or glands situated on the feaves. See Gland.

FO'LIAGE. s. (folism, Latin.) Leaves; tuts of leaves (Addison). Representations of tufts or clusters of leaves.

FOLIATE, a name given by some to a curve of the second order, expressed by the equation $x^{3}+y^{3}=a x y$, being one species of defective hyperbolas, with one asymptote, and ennsisting of two infinite legs crossing each other, forming a sort of leaf. It is the 42d species of Newton's Lines of the third order.

Foliate tendril. In botany. A tendril placed on the leaf. Foliate gem. A leaf bud. Containing leaves, not flowers.

Foliate caul. In botany. A leafy stalk. In opposition to aphyllabus, leafless.

Foliating of looking-glasses, the spreading the plates over, after they are polished, with amalgam, in order to reflect the image. It is performed thus: a thin blotting paper is spread on the table, and sprinkled with fine chalk; and then a fine lamina or leaf of tin, called foil, is laid over the paper; upon this mercury is poured which is to be distributed equally over the leaf with a hare's foot, or cotton : over this is laid a clean paper, and over that the glass plate, which is pressed down with the right-hand, and the paper drawn gently out with the left : this being done, the plate is covered with a thicker paper, and loaden with a greater weight, that the superfluous mercury may be driven out, and the tin adhere more closely to the glass. When it is dried, the weight is removed, and the lookingglass is complete. Some add an ounce of marcasite, melted by the fire; and, lest the mefcury should evaporate in smoke, pour it into cold water; and, when cooled, squecze it through a cloth or through leather.
Some add a quarter of an ounce of tin and lead to the marcasite, that the glass may dry the sooner.

Folititing of olose lookingoLAssEs, is done as follows: Take five ounces of quicksilver, and one ounce of bismath; of lead and tin half an ounce each : first put the leart and tin into fusion, then put in the bismuth, and whelr you perceive that in fusion too, let it sand tin it is almoss cold, and pour the quicksilver into it ; after this, take the glass globe, which must be very clean, and the inside free from dust; make a poper funnel, which put into the hole of the globe, as near to the glass as you can, so that the amalgam, When you pour it in, may not splash, and cause

FOL

the glass to be full of spots; pour it in gently, and move it about, so that the amalgam may tourh every where. If you find the amalgan begiu to get curdly and fixed, then hold it over a geatle fire, and it will easily fow again. And if you find the amalgam too thin, aldd a little more lead, tin, and bismuth to it. The finer and clearer your globe is, the better will the Jooking-glass be.

To Fóliate. y. a. (foliatus, Latin.) To beat into lannina or leaves (Newton).

FOLIATION. s. (foliatio, Latin.) 1. The act of beating into thin leaves. 2. Foliation is one of the parts of a flower, being the collection of those fugacious coloured leaves called petals, which constitute the compass of the Hower (Quincy).

FO'LIATURE. s. (from folium, Latin.) The state of being hammered into leaves.

FOLIGNI, an episcopal and trading town of Italy, in the duchy of Uinbria. It is noted for its sweetmeats and paper-mills. Lat. 42. 48 N. Lon. 12. 24 E .

FO'LIO. s. (in folio, Latin.) A large book of which the pages are formed by a sheet of paper once doubled.

Folio, in merchants accounts, a page, or sometimes two; being so much of the ledger as contains both the debtor and creditor side of an account.

FO'LIOMORT. e. (filium mortuum, Lat.) A dark yellow; the colour of a leaf faded: vulgarly called philomot (Wooduard).

FOLIS, or Follis, anciently signified a dittle bag or purse; whence it came to be used for a sum of money, and very different sums were called by that name: thus, the scholiast on the Basilics mentions a follis of copper which was worth but the twenty-fourth part of the miliarensis; the glossx nomicx, quoted by Gronovius and others, out of a hundred and twenty-five miliarenses, and another of two hundred and fifty denarii, which was the ancient sestertium ; and three different sums of eight, four, and two pounds of gold, were each called follis.

FOLIUM ORIENTALE, in medicine. See Senna.

FOLK. s. (folc, Saxon.) 1. People, in familiar language (Nidncy). 2. Nations; mankind (P salms). 3. Any kind of people as discriminated from others (Shakspeare).

FOLKES (Martin), an English antiquary, mathematician, and philosopher, was born at Westminster about 1090 ; and was greatly distinguished as a member of the Royal Society in London, and of the Academy of Sciences at Paris. He was admitted into the former at 24 years of aze; and made one of their council two years after; named by sir Issac. Newton himself as vice-president; and, after sir Hans Sloane, became prosident. There are numerous Memoirs of his in the Philosophical Transactions. Coins, ancient and modern, were a great object with him; and his last production svas a book upon the English Silver Coin, from dee couguest to his own times. He died at

FOM

London in 1754. Dr. Birch had drawu up materials for a life of Mr. Folkes, which are preserved at large in the Anecdotes of Bowyer. p. 562 et seq.

FOLKSTONE, a town in Kent, with a market on Thursdays. It is a member of the port of Dover, governed by a mayor, and scat ed on the English Channel. Lat. 51.5 N . Lon. 1. 14 E .

FOLLIA. a species of musical composition consisting of variations on a given air.
FOLLICLE. (from follis, a bag.) In botany. A univalvular pericarp, opeaing on oue side longitudinally, and having the secds toose in it. Pericarpium univalve latere altero longitudinaliter dehiscens, nec suture semina aftigens. Exemplified in asclepias, apocyum, stapelia. Sec Conceptacle.
In Philos. Botan. follicles (folliculi) are vessels distended with air: (air bags, with,) as at the root in utricularia, and on the leaves in aldrovanda.

Follicle, in anatomy, a cell or little bay: it is generally applied to the cells of the cellular membrane, or of the simplest order of glands which (as the mucous) contain a single cavity and excreting duct.

FOLLICULOSE GLAND. One of the most simple species of gland, consisting merely of a hollow vascular membrane or follicie and an excretory duct ; such are the muciparous glands, the sebaceous, \&c.

To FOLLOW. v. a. (rolzıan, Saxon.) I. To go after; not before, or side by side. 2. To pursue as an enemy; to chase ($D_{\text {ryden }}$). 3. To accompany; not to forsake (Milton). 4. To attend, as a dependant (Pupe). 5. '⿴os go after, as a teacher (Dryden). (6. To succeed in order of time (Pope). 7. To be consequential in argument (Milson). 8. To imitate; to copy, as a pupil (IInolier). ©. To obey; to observe, as a guide (Tillofson). 10. To pursue as an object of desire (Helren's). 11. To confirm by new endeavours (Spenser). 12. To attend to; to be busied with (Ecches). To Follow. v. n. 1. To come after another (Ben Jonson). 2. To attend servilely (Shahspeare). 3. To be posterior in time. 4 . To be consequential, as effect to cause. 5. To be consequential, as inference to premises (Tcmple). 6. To continue endeavours (IIosea).
FO'LLOWER. s. (from follow.) 1. One who comes after another ; not before him, or side by side (Shankpeare). 2. One who observes a leader (South). 3. An attendant, or dependant ($\boldsymbol{P}_{\text {ope }}$). 4. An associate; a companion (Shukspeare). 5. One under the command of another (Dryden). 7. A scholar; an imitator; a copier (Sprat).
FO'LLY. s. (folic, French.) 1. Want of understanding; weakness of intellect (Ilawksworth). 2. Criminal weakness ; depravity of mind (Shakspeare). 3. Act of negligence or passion unbecoming gravity or deep wisdom (Pupe).
FOMAHAUT, or Fomalhaut, in astro-

FON

nomly, a star of the first magnitude, marked α, in Piscis Australis.

To FOME NT. v. a. (fomentor, Latin.) 1. To cherish with heat (Millon). 2. To bathe with warm lotions (Arluthnot). 3. To encourave; to cherish (Wolton).

FOMENTA'TION. (fomentatio.) A sort of partial bathing, by applying hot flannels to any part dipped in medicated decoctions, whereby stearns are communicated to the discased parts, their ressels are relaxed, and their mortid action sometimes removerl.

FUNiENTER. s. (from foment.) An encourazer: a supporter.

FUMES, the plural of which is fomites, (irom foces, to cherish.) The contagious or wher miasm that produces or feeds and maturates a disease.

FON. s. A fool ; an ideot : obsolete (Spcn.).
FUND. a. 1. Foolish; silly; indiscreet; imprudent; injudicious (Ascham). 2. TriHiag; valued by folly (Shakspeare). 3. Foolishiy teader; injudiciously indulgent (Addisom. . 4. Pleased in too great a degree; foolishly delighted (Prior).

To Fond. To Fo'nnle. c. a. To treat with great induigence; to caresi ; to cocker (Dry(den).

To Fond. v. n. To be fond of ; to be in love with; to dote on (Sihahspeare).

FONDLER. s. (from fond.) One who fonilies.

FYNDLING. s. (from fondle.) A person or this.g much foudled or caressed; something rezarterl with great affection (Surift).

IU'NDLY. ad. (from fond.) 1. Foolishly; weskly ; imprudenily (Pupe). 2. With exteme tenderness (Sarage).

FONI)NESS. s. (fromifond.) 1. Foolishnew; weakness; want of sense; want of jadzoient (Spenser). o. Fonlish tenderness didison). 3. Tender passion (Suift). 4. laresamable liking (Hammond).

FoNF s. Plural of fice: obsolete (Spenser).
FONG-TSI ANG-FOU, a city of China, in the province of Chen-si. Its district contatns eizht cities of the second and third class. I_{t} is $+f, 5$ miles S.W. of Pekin.

Foxg-yang, a city of China, in the prosince of Kiang-Nan. It is situated on a mountan, which hangs over the yellow river, and incioves with its walls several fertile little hills. It juridiction is very extensive, for it comprehends 18 cities; 5 of which are of the sccoind, and 13 of the third class.

foNS PULSATILIS. See Fontanel-

 IA.FONT, or maptismal pont, a stone or marble vessel, at the lower end of a parish church, serving to hold water to be used in administering the sacrament of baptism.

Font, in printing. See Fount.
FONTAINBLEAU, a town of France, in the department of Seine and Maine, remarkalsle for its fine palace; a hunting seat of the late kings of France. Lat 48. 25 N. Lon. 2.47 E .

FONTAINE (John de la), the celebrated

FON

French poet, was born at Chateau-Thierry in 1621 , and educated ainong the fathers of the oratory. He did not shew any marks of a poeti-cal genius till he was past twenty. Soine of his pieces introlnced him to the notice of the duchess of Bunillon, whom he followed to Pa ris, where he obtained a pension. Madame de la Sahbliere gave him apartments in her house, and here he resided twenty years in habits of intimacy with the greatest wits of the age. He died in 1695 . Besides his Tales, he also wrote Fables, in both of which he possesses all the merit of originality. Four volumes of his miscellaneous works were printed at Paris, in 1744.

Fontaine's character is remarkable for a simplicity, candour, and probity seldom to be met with. He was of an obliging disposition; cultivating a real friendship with his brother poets and authors; and, what is very rare, beloved and esteemed by them all. His conversation was neither gay nor brilliant, especially when he was not among his intimate friends. One day being invited to dinner at a farmer general's, he ate a great deal, but did not speak. Rising up from table very early, under pretext of going to the academy, one of the company represented to him that it was not yet a proper time: "Well," says he, "c if it is not I will stay a little longer." He had one son by his wife in the year 1660 . At the age of 14 he put him into the hands of M. de Harley, the first president, recommending to him his education and fortune. It is said, that having been a long time without seeing him, he happened to meet him one day visiting, without recollecting him again, and mentioned to the company that he thought that young inan had a good deal of wit and understanding. When they told him it was his own son, he answered in the most tranquil manner, "Ha! traly I am glad ou't."

FONTAINES (Peter Francis Guyot des), a French critic, born at Rouen in 168\%). At fifteen he joined himself to the jesuits, but quitted them when he was thirty. In 1794 he succeeded the abbe Bignon in the management of the Journal des Savans. In 1731 le began a new work, called Nouveliste du Parnasse, on Reflexions sur les Ouvrages nouveaux, which did not continue long. He started several other periodical publications, and died in 1745. He also translated several esteemed English books, and some of the Latin classics.

FONTANA (Domenico), an eminent architect and mechanic, born at Milan in 1543. He raised the Roman obelisk from the dust in the front of St. Peter's, a work deemed impracticable, and which many others had attempted in vain. He removed to Naples in 1592, and died there in 1607.

FONTANALIA, or Fontinalia, in antiquity, a religious feast held among the Romans, in October, in honour of the deities who presided over fountains.

FO'NTANEL. s. (fontarelle, Fr.) An issue; a discharge opened in the body (Wiseman).

FON

FONTA'NGE. s. A knot of ribands on the top of the headdress: out of use (Addi20n).
FONTANELLA, (fontanella, of fons, a fountain.) Fons pulsatilis. In anatomy. The parietal bones and the frontal bones do not coalesce until the third year, so that before this period there is an obvious interstice, commonyy called mould, and scientifically the fontancl, or fons pulsatilis. There is also a smaller space, occasionally, between the occipital and parietal bones, urimed the posterior fontanel. These spaces between the bones are filled up by the dura mater and the external integuinents, so that, during birth, the size of the head may be lessened; for at that time the bones of the head, upon the superior part, are not only pressed nearer to, but frequently wrap over one another, in order to diminish the size during the passage of the head through the pelvis.

FONTANE'SIA, in botany, a genus of the class diandria, order monosynia. One species: a Syrian shrub with opposite branches; opposite, entire, lancenlate leaves, Howers yellowish in axillary corymbs.

FONTARABIA, a sea-port of Spain, in Biscay, well fortified both by nature and art. It has a gond hafbour, thougli dry at low water, and is surrounded on the land side by the Pyrenean mountains. Lat. 43.23 N. Lon. 1.33 W.

FONTENAI-LE-COMTE, a town of France, in the department of Vendee. It has a woollen manufacture, and a famous fair for cattle. Lat. 46. 30 N. Lon. 0. 55 W.

FONTENELLE (Bernard do), a celebrated French author, was born in 1657, and died in 1756, when he was near 100 pears old. He discharged the trust of perpetual secretary to the Academy of Sciences above 40 years with universal applause; and his History of the Academy of Sciences throws a great light upon their memoirs, which are very obscure. The eloges which he pronounced on the deceased members of the academy have this peculiar merit, that they excite a respect for the sciences as well as for the author. In his poetical performances, and the Dialogues of the Dead, the spirit of Voiture was discernible, though more extended and more philosophical. His Plurality of Worlds is a work singular in its kind; the design of which was to present that part of philosophy to view in a gay and pleasing dress. In his more advanced years, he published comedies, which, though they shewed the elegance of Fontenelle, were little fitted for the stage; and An Apology for Dos Cartes's Vortices. M. de Voltaire, who declares him to have heen the most universal genius the age of Louis XIV. produced, says, "We must excuse his comedies, on account of his great age; and his Cartesian opinions, as they were those of his youth, when they were universally received all over Europe."

FONTENOY, a town of Hainauk, in the Austrinn Netherlands, remparkable for a batte fought between the Allies and the French, in

FOO

May 1745, in which the latter were victorions. It is four miles S. W. of Tournay. Lat. su. 32 N. Lon. 3. 26 E.
FONTEVRAULT, a town of France, in the department of Maine and Loire. Here was a famous abbey, founded by Robert d'Arbrissel in 1100 . Lat. 47.9 N . Lon. 0. 0 .
FONTI'CUFLUS (fonticulus, i, m. dim. of fons, an issue.) An artificial ulcer formal in any part, and kept discharging by introducing daily a pea, covered with any digestive ointment.

FONTINALIS. Water-moss. In botany, a genus of the class cryptogamia, order musci. Capsule oblong, lateut, invested with an imbricate scaly sheath; fringe double; outer of sixteen broadish teeth; inner a conic reticulated membrane. Four species: three of them indigenous to our own country, and found on the brinks of rivulets and the trunks of trees. The most remarkable is f. antipyretica with purple stalks: so called from the difficulty with which it catches fire; or rather from the practice of the Scandinavians of lining the inside of their chimney places with this moss to defend them against taking fire.

FOOD. s. (fxban, Saxon.) 1. Vietuals; provision for the mouth (Shakispeare). 2. Any thing that nourishes (Shakspeare).

Food, the substances eaten by animals, under the impulse of natural instinct, to sustain the body. Providence has ordained that different beings should be supported by such productions of the earth as are especially adapted to tbeir urganization. Various directions upon this subject, as it relates to man, will be found in the article DIET. The kinds of food usually appropriated to the use of different domestic animals are too well known to need a description. Some observations on the difierent qualities of fodder and graiu that are used for horscs may be important, and may point out the effects they produce on the body, in consequence of an improper use of them.
Hay is the principal fodder used for borses in Britain. Although there are a great number of herbs and grasses mixed with it, yet they are all included under the general denomination of hay. The common distinction that is made is that of natural or meadow-hay, and the sown or rye-grass hay. The natural hay is generally used in the southern parts of Britain. From the method observed in the making of it, and allowing it to heat to a certain degree in the rick, it acquires an uncommon sinell, something like that of malt dried on the kiln. This practice likewise gives it a sweetishness to the taste, and it is then callod mow-burnt bay. Horses eat greedily of it; and, as it is of a sof quality, they swallow large mouthfuls without chewing it properly. This, producing thirst, causes them to drimk a great deal of water, which considerably imereascs the bulk of the stomach. In this state, the lungs, the diapbragw, and other viscera surroumding it, are compressed to an uncomenom degree: and if tbe borse is then put to any exercise that requires activity or expedition, he is in danger of becoming broken windel; for it is alwals observed, that the later disease may be trace 1 to some instance of sharp exercise performed when the stomach is full. There is a greater number of broken-winded horses in countries where this kind of hay is used
than in those parts where rye-grass i; the common rodder.

Gibson, lowever, in his treatise on the food of borses, condemns the use of rye-grase He says, that c^{s} in England, it is seldom given but in the months of August and September, except to horned cattle. Before Michaclmas it is tolerably hard and dry, especially in dry seasons; and many feed their working horses with it, mixed with dry clover: but afterwards it imbibes so much moisiure that it becomes unwholesome, and few horses that have been used to good hay will care for it." Here, bowever, Mr. Clarke differs from Mr. Oib$s 00$; for be says, that, where rye-grass mixed with a litule ctover is much used, it is found to be a clean wholesome fodder for horses; and those that are constantly fed upon it are not so subject to be broken-winded as those that are fed with natural Lay that is mow-burnt, whilst, at the same time, tbey perfurm the exercises required of them with strength add vigour. Nor does he, in another respect, agree with Gibson, who, in the same page, eays, that "sof hay, of all others, imbibes moisture the easiest, and retains the effects of it the longest, which generally turns it rotten and unvhotesome, and so affords but a crude faint nourishment; and those horses that are forced to foed upon it, for wrant of better, are generally weak and faint, and in time grow diseased."

* It is trell tnown," gays Mr. Clark, "c that natural bay is moch sufter than rye-grass hay; of course, it is more liable to attract moisture, and to acquire all the bad qualities above mentioned: bereas rye-grass hay, being harder and firmer is its texture, will not so readily become moist; coosequently, according to the author's reasoning, the latter should be the wholesomest fodder for horses. Another recommendation is its favour is, that, being harder and firmer than natural hay, it obliges a horse to chew it more completely be. fore be can swallow it. This makes it casier of ingestion, less bulky in the stomach, and, of course, bot so liable to produce the bad effects which have been mentioned.
« But, whatever be the quality of hay, much depends apon its being well got in; for the best grass that ever was cut for this purpose may be spoiled by wret weather, or by bad management; and, where there is a choice, the best should alwiys be given to horses that are employed in active exercises.
*Clover-hay," says Mr. Clark, "s should only be given to cattle and draught-horses, whose labour is slow and equal. It cannot be recommended as a proper fodder for horses that stand much at rest, nor to those who are used in violent exercise of $20 y$ kind, as they are apt to over-feed upoe it.
*Wheat-atraw is generally used as litter. It is seldom giren as forder, unless to draught. borses, or then it is chopped or cut small, and mised with oats, \&ce. in order to oblige horses to break their food thoroughly before they can svalto it. Yet the 'highest fed horsex, when it is fresh laid before them, are not only fond of picking she unthreshed heads of wheat that remain on the straw, but are likewise fond of the strav itcelf, by way of a change.
c Bariey and oat straí are the commop fodder of cattle and farm-horses. They are seldom gives to the bettef kind of horses, unless it be out of econoany, or by way of amusing them when they stand idle in the stable, ind to prevent them from being restless lor want of other food.
- Pease and bean stireī ase fapgerons fodder
to horses that are not brought up or gradually accustomed to it, as it is hard of digestion. It is likewise apt to produce flatulencies, attended with griping pains and obstructions in the bowels. It is commonly given to work-horses and horned cattle.
"New hay of any kind should not be given to horses, more especially to those employed in active excrcises, as they feed upon it too grecdily, and swallow it without chewing it properly. It overloads the stomach, and, at the same time, produces a crude watery chyle, which disposes the horse to sweat much, which weakens greatly; therefore it should never be given till the superfluous moisture it contains is dried up, which will require some months after it is got in. But to such horses as are employed in very active exes cises, it should at least be eight or ten months old.
'G Grass is the most natural food for horses; but, whether it proceeds from the coldness of the soil or climate in Britain, it docs not produce such rich nourishment as to enable them to perform any active exercises with the same strength and vigour as in warmer climates, without the addition of grain, as oats, \&cc. When horses are allowed to run abroad, and have a sufficiency of oats, and, at the same time, are provided with proper shades to protect them from the inclemency of the weather, we find, from experience, that they thrive and perform any active labour as well as those horses that are kept in stables on dry food only; together with this advantage, that they are not so subject to diseases, nor to lame ness, but what, in the latter case, may proceed from accidents among themselves.
" Grass is not only food, but it is likewise physic to horses-I mean the early or spring grass. When the viscera are sound, it cures most of the diseases they are subject to with more certainty and expedition than can be donc by medicinc. After a long course of dry feeding and hard labour, it restores the constitution to the highest health and strength. It cleanses the bowels, and carries off those chalky concretions that are apt to be produced in the stomachs of such horses as have been long used to dry hard feeding. It likewise carries of the different species of worms with which they are infested. It renovates, as it were, the whole mass of fluids in the body. It promotes all the secretions, and removes glandular obstructions; and, in many cases, it carries off stifiness in the joints, and other lameness; and, upon the whole, it restores the body to the highest state of perfection of which it is capable."

The aythor, however, observes, that the usual advantages that arise to horses from their feeding on spring grass are in a great measure lost to them, if they are allowed to continue through the summer, when the grass becomes tor rank; for they then grow fat and corpulent, and by no means fit for active exercises of any kind, which cannot be attempted without danger. It is customary, indeed, when horscs are too fat, and full of blood, to reduce them by bleeding, purging, sc.; but these, when too frequently repeated, impair their constitutions, and bring on a premature old age.
lf, instead of undergoing this kind of medical discipline, those horses that are intended for hunting, \&cc. were taken up from grass as soou as it begins to shoot, and kept in constant daily exeqrise, although fed with a very moderate allow. ance of oats at the time, as the hunting season approaches, both their feeding and exercise may
be gradually increased. They will become, by this management, in a proper condition for the severest exercises, without any purging or othe evacuation. Se the article Physic.

A nuther salutary effect of grass is, that it dissolves the concretions that are apt to grow in the stomach and other viscera of horses. Van Swieten, when treating of chalky matter found in the liver in the human subject, says, that incrustations, like gypsum, or plaster of Paris, were often observed by Glisson in the pori biliarii, and its larger branches, dispersed through the livers of oxen that had been fed in stalls with hay and straw, during the winter season, and without exercise. These concretions, however, were very friable, and would " dissolve again, and pass out of the body, when the cattle came to feed upon the fresh grass of the meadows;" for, in oxen that are slaughtered in spring and summer, these substances are very rarely found.

The experience of Mr. Clark confirms this statement; for, in dissecting horses, he frequently met with chalky concretions in the liver and in the lungs, especially in those animals that had been fed long on dry food. In other instances, he found round or oval balls in the stomach, Eecming, for the most part, to be composed of the dust they lick from their own bodies, mixed with the hair. Whether the fresh grass dissulves these, he says, is not so certain; but that it causes these concretions to pass through the intestines, he had a full demonstration in the following.instance:
"In May, 1786, a horse that had been long fed on dry food was turned out to grass; in about cight or ten days afterwards, he was seized with violent griping pains, which lasted about twentyfour hours, when he died. As the horse was very lat, the man who had the charge of him wanted to make something of his grease: in searching for it, he observed a large portion of the intestine of a very black colour; and, on feeling it, found soncthing hard and weighty. He immediately cut the intestine open with his knife, and took out a large oval hard ball, which measured four inches in length, and three inches and a half in breadth. That this concretion was originally formed in the stomach there can be no doubt, as they frequently, upon dis-ection, have been found there; and nothing but its great bulk had hindered it from proing through the intestines." - That these solid accumulations are not by any means unfrequent we have shown under the articie Caiculus, where a micans of preventing this evil is suggested by Dr. Withers of Newbery.

Mr. Clark further observes, with respect to the properties of spring grass, that those horses that cannot be turned out to pasture should have it given them in the house as soon as it can be cut. Indeed he reprobates the too gencral, and even boasted practice, of feeding horses for years together on hard dry food; to which he ascribes that loathsome disease the farcy, which prevails most in England, where dry food is more persevered in than in Scotland. To the objection that horses kept for active exercises reap no advantage from oats, \&c. Whilst they are at grass, because the grass tends to carry off the uourishment that should be produced by the former, he answers that, "although the early grass purges a horse gently at first feeding ou it, yet this purging docs not continne long, neither is it attended with that weakness, faintness, and loss of flesh, which is obstrved in horses purged by strong medicines, where the evacuation is brought on suddenly, and perhaps to au excess."
"A change of diet," the author observes, n is not only agreeable, but wholesome for horses, as it contributes to keep them open in the body. Malt mixed occasionally with their food proves a medicine.
" Wheat, notwithstanding it affords the most nourishment, is seldom given to horses, probabiy owing to its price being higher than that of other grain. It is apt to purge horses a little on the first using of it; they eat it greedily, and are fond of it: but, as it becomes very slippery from the moisture in the mouth, it is swallowed whole, and passed through the body in that state; but, when it is given bruised, or mixed with chopped straw, the horse is obliged to break it minutely with bis teeth before he can swallow it." It then proves very nourishing, and enables him to go through much labour. It likewise makes a horse coat well, and causes his hair to lie smooth and shining."

By lord Kaimes's calculation, the boll of middling wheat weighs fourteen stone, Dutch weight; the husks weigh two stune: for which reason, when wheat is given to horses, a less quantity will be necessary than of oats, the proportion of nourishment being as the weight.

It is well known, that barley purges horscs on the first using of it; but, when it is given mixed with cut straw, it proves a wholesome nourisbing diet. The Arabian, the Barbary, and other eastern horses, eat it; and these animals undergo great fatigue, and perform journeys with incredible swiftucss. In England, however, farmers, grooms, \&c. are much prejudiced against feeding their horses with barley, as they allege that it gives them the itch. But Mr. Clark affirns, from his own experience, that it has a very opposite effect; and that, if horses troubled with cutancous eruptions are fed on barley, either raw or boiled, it will contribute greatly towards their cure. The boll of middling barley weighs eighteen stonc, Dutch weight; the husks one stone four pounds. When it is boiled, it proves light, and easy of digestion; for which reason it may be properly given to horses when they are sick, or to prevent costiveness.
" Oats, notwithstanding they are reckoned more beating and binding than any of the former grain, yet they are gencrally given to horses in Britain. To post and other carriage horses they are frequently given mixed with bcans, which obliges them to break both oats and beans minutely before they can be swallowed. The adding of the beans makes this feeding rery nourishing. On that account, beans should never be given mixed with oats to those horses that stand much at rest, or have not sufficient exercise. The boll of middling oats weighs fourteen stone, Dutch weigbt; the busks weigh six stone. Therefore, as aats have more husks than any other grain, a greater quantity is necessary. For this reason, it is probable that the standard measure of oats is larger than that of other grain. The constant feeding with oats, although it is esteemed what is called clean feeding, yet it is apt to make borses too costive, \&c.; to prevent which, bran, mashed up with boiling water, is given once a-week, or as circumstances may require.
"Beans are seldom or never given to horses by themselves, unless to labouring horses. When they are boiled, they afford the strongest nourishment of all the other grain. The boll of middling beans weighs fifteen stone eight pounds; the husks weigh eight pounds, which is the smallest proportion of husks in all the grain now mentioned. Of course, they contain mure nourishment;

FOOD.

but, as they contain a great proportion of fixed air. When given in a raw state and in too ereat a quantity, they are found to produce flatulence, gripes, \&c."

After having fully devribed the different kinds of fodder, grain, \& \dot{c}. and their uses in the feerling of burses, Mr. Clark proceeds to consider how liese are or ousht to be applied to the greatest benciit. He quutes the count de Buffon (vol. iii. paze 375), who asserts, "that the Tartar horscs will travel two or three days without stopping; mreiring, for four or five days on end, only a handful of berbage every eight hours; and, at the same time, kept from drinking for twenty-four bours." In the same volume (page 369), the sarve writer says, "that the Arabian horses are ratber meagre than fat. During the day they are not permitted to eat, but are watered twice or thrice. At sun-set, a bas, containing about half a bushel of bariey, is passed over their heads, and fatened to their necks. This bag is not remored till west morning, when the barley is entirely cuosumed. When the grass is good, they are turned out to pacture; and, during the rest of the year, they are allowed neither grass nor hay, and rarety straw, barley being their only food: and greas care is taken to give them only as much as is barely necessary; for too much nourishment makes their legs swell, and soon reuders them unc!ess."

In ancther place, the count tells us, that " the borses which are bred in the Indies are very indisfrent. Those used by the great men of the country are brought frum Persia and Arabia. Thoy are fed with hay during the day; and, at r. itht, in place of barley and vats, they get pease b,iled with sugar and butter. This nourishing det supports them, and gives them some degree of strewoth: without it they would soon perish, the climate not being adapted to their constitution."

Mr. Berringernotices that " the Indians feed their borses in the rice-fiells; and, when flesh is plentr, they boil the offal to rags, and, mixing it with tiatter, and some sorts of grain, make balls, which tiey thrust down the horses' throats. In scarcity of provision, they give them opium, which has the same effects both on horses and men; for it at once damps their appetites and enables them to cordure fatisue."

We may bere adrert to Gibson's objection to tle ane of greasy or oily substances as food for horses.

Bcy.m likewise tclis us (vol. iij. page 38s), that, " in Icrland, where the cold is excessive, and where often no wher food can be had than dried fistes, the horses, though small, are extremely -igromus."

* The Arabian horses intended for hunting in Arabia or Barbary soldum eat herbage or grain. Their common food, which consists of dates and camels' milk, is given them every morning and at night. These aliments, instiead of fattening them, render them meagre, nervous, and very fleet. They spontaneousiy suck the she-camels, whom they follow till the time they are ready for mounting, wich is not before the age of six or seven years."

Mr. Berringer, in his curious work on horsemanship, says, " Nemesian recommends straw and bariey as very nourishing diet; and it certainIy conduces very much to keep horses in health; epirits, and wind, and in a state of body fit for a ay kind of labour, as it supports and strengthens, -ritbout rundering the animal heavy and corpulent.
" The Kalmuck horses are so hardy and strong
in their constitution as to be able to run three or four hundred English miles in three days. Tiney subsist, summer and winter, solely upon grass in the great desarts."

The rules of diet applicable to horses, and the common errors of those concerned in the care of them, are thus judiciously treated of by Mr. Clark.
"As horses are not endowed with reason, but guided entirely by instinct to such aliments as correspond with their constitutions, the appetite for food excites in them a strong desire to gratify this sense. They are therefore apt to indulge in it to excess when it is laid belure them, especially grain of any kind, and more so when confined in the stahle, where they have no other amusement to divert them from it. For, in the firlds, at grass, after they are satisfied with eating, they run about, and play with one another a considerable part of their time, and do not begin to eat till prompted to it by hunger. For this reason, there are few or no instances of horses over-eating themselves when running at grass.
"Young horses, in particular, are most liable to be injured by too much feeding with grain. The blood of young animals is naturally disposed to be hot; high feeding increases this disposition, and renders them more subject to inflammatory diseases. Hence dry feeding with oats, \&c. produces a plethoric habit of body, wbich renders them liable to fevers, swelled legs, and greasy heels, and, upon catching the least cold, to a variety of other disorders.
" Besides the ordinary feeding with oats, \&cc. at stated times through the day, it is too common to keep the racks at all times filled with hay. Hence many horses, having stuffed themselves, drink a great quautity of water, and, when they come to be exercised, they are bardly able to breathe. Numbers of horses are daily ruined from this practice; yet many people are not aware of its effects.
". There are horses too of delicate stomachs, who loath their food, from its being too constantly before them, and not having suificient time or exercise to digest what they bave caten; besides. having constantly breathed upon it, they cannot relish it afterwards. It ought, in all cases, to be remembered, that it is not the quantity of forod merely which a horse eats that produces tho wholesomest nourishment, but it is what he digests well that invigorates and strengthens; for, when the stomach is overloaded with food, the body is dull, heavy, oppressed, sluggish, and stupid, and the digestive faculty is impaired.
"Throwing great quantities of grain before horses at one time is very improper : they, in this case, dip their mouths in it with eagerness, by which means they grasp more than they can break down properly; they devour it greedily, and swallow whole mouthfuls of it almost dry. The natu. ral moisture of the stomach, or water drunk immediately after eating, causes the grain to swell, by which the stomach is greatly distended, and thereby loses its contractile power to act upon the food. By its uncommon pressure upon the intestines, the passage for the food backwards is obstructed. The confined air, arising from the indigested food not having a ready passage backwards, and horses not possessing the power of eructation, or belching, the air, by the heat and confinement, becomes rarefied to a great degree, and the horse is seized with the most acute pains; as they increase, he becomes convulsed, and in many cases the stomach bursts, and death follows of course."

Thete cases cleariy' shew how necessary it ts not to allow horses to eat too great a quantity of grain at one time, but to give it them in small quantities, and repeat it the more frequently, apreating it carefully in the trough or manger. At the same time, they shew the propriety of mixing chopped straw or hay with the grain, in order to make them chew it thoroughly before they swallow it; a circumstance to which the earl of Pembroke particularly adverts in his excellent treatise upon horses. "Every grain," says he, " goes to nourishment: none is to be found in the dung; and three feeds of it go farther than four, as commonty given, which have not been in the mitl. But wheaten straw, and a little hiag too sometimes mixed with it, is excellent food. To a quarter of corn put' the same quantity of straw. It obliges them to chew their meat, and is in thany other ways of use."

The opposite extreme, namely, too stmalt an allowance of food; when horses are worked hart, also disposes them to many diseases. A famished horse becomes weak and spiritless; his body emaciated, his circulation faint and languid. Dropsical swellings appear' in different parts of the body, hat particularly in the extremities; the blood loses its natural colour and quality, and the animal sinks under a complication of diseases, which are conseqnent upon an impoverished state of the blood and juices. "Hence, therefore, it will appear," says Mr. Clark," what care and attention are necessary in the feeding of horses, and how much depends on the conducting it in a proper and regular manner.
"Although it is extremely difficult to lay down any fixed rales for the feeding of horses, yet it may be observed, in general, that all extremes in the feeding of them ought to be avoided. Those that are constantly employed in hard labour, or active exercises, require to be fed with more grain than those that stand much at rest in the stable, or only perform gentie exercises, which occasion no great waste in the constitution. Upon the whole, the feeding of horses ought at all times to be proportioned to their labour, or the exercised they are employed in.
co Post-horses, hunters, and other horses em: ployed in such violent exercises, ought to be fed chiefly with grain during the time of their being so employed. The former frequently eat from four to six or more feeds of oats, mixed with beans, per day, of the oat standard measure, which is the largest measure of all other grain. But this bigh feeding should not be continued for too great a length of time, without a little relaxatibn both from severe labour and ligh feeding. The latter should be changed occasionally to that which is soft and moist, as boiled barley, mait, or a little fresh grass in the season. This should be contirued for a short time only, by way of change of diet.
"Wheat and barley should likevise be given to horbes frequently, by way of a change of diet; and all grain thit is given them, if possible, should be braised in a mill, or otherwise, for the reasons alreddy mentioned. This would not only be a aeving of grain, but attended with considerable advantage in other respects."
Toc new grain of any kind should never bed sfven to horses that are employed in active exer: cises: it produces the same bad effects as net hay, and disposes the horse to sweat much, and frequantly occasions a severe looseness. Indeèd, if the grain, at the same time, charce to be badi of

FOO

its kind, the diarrhoea may continue with sach severity as to prove fatal; of which we have too many instances.

Costiveness, which is another effect of hard dry food, Mr. Clark says, should be particularly guarded against. This, like most diseases to which horses are liable, is easier prevented than cured, by giving mashes of bran, boiled barley, or malt, once a-w'eek, or oftener, by way of prevention.
FOO'DFUL. a. (food and full.) Fraitful; full of food; plenteous (Dryden).

FOO'DY. a. (from food.) Eatable; fit for foorl.

FOOL. s. (ffol, Welsh.) 1. One to whom nature has denied reason ; a natural; an ideot (Pope). 2. (In Scripture.) A wicked man (Psalms). 3. A term of indignity and reproach (Dryden). 4. One who counterfeits folly; a butfoon; a jester (Denhams). 5. To piley the Fool. To play pranks like a hired jester; to make sport (Sidney). 6. To play the Foor
To act like one void of common understanding (Shakspeare). 7. To make a Fool of. To disappoint ; to defeat (Shakspeare).

To FOol. v. n. (from the noun. To trifle; to toy; to play; to idle; to sport (Heriert).

To Fool. v.a. I. To treat with contempt; to disappoint ; to frustrate; to defeat (B. Jonson). 2. To infatuate; to make foolish (Calamy). 3. To cheat; as, to fool one of his money.

FOO'LBORN. a. (fool and bom.) Foolish from the birth (Shakspeare).

FOO LERY. s. (from fool.) 1. Habitual folly (Shakspeare). 2. An act of folly; trifling practice (Watts). 3. Object of folly (Raleigh).

FOOLHA'PPY. a. (fool and kappy.) Lucky without contrivance or judgment (Spenser).

FOOLHA'RDINESS. s. (from foolhardy.) Mad rashness ; courage without sense (Soxth).

FOOLHARDISE. s. (fool and hardiesse, French.) Foolhardiness : obsolete (Spenser).

FOOLHA'RDY. a. (fnol and hardy.) Daring without judgmént; madly adventurous (Honker).
FOO'LISH. a. (from fool.) 1: Void of mderstanding; weak of intellect. 2. Imprudent; indiscreet (Shakspeare). 3. Ridiculous ; contemptible (Laiv). 4. (In Scripture.) Wicked ; sinful.

FOO'LISHLY. ad. (from foulish.). Weakly; without understanding. In Scriptare, wickedly (Swift).
FOO'LISHNESS. s. (from foolish.) 1. Folly; want of understanding. 2. Foolish practice; actual deviation from the right (Prior).

FOOLSTONES. s. A plant (Miller $^{\prime}$).
Foolstones; in botany. See Orchis.
FOO'LTRAP. s. (fool and trap.) A snaie to catch fools in (Dryden).

FOOT. s. plural feet. (por, Sax.) 1, The part upon which we stand (Clarend.). 8. That by which any thing is supported in the nature of a foot: as, the foot of a tulle. 3. The lower part; the base (Hakevill). 4. The end; the lowet part.(Dryden). 5. The act of walluing
(Waccalees). 6. On Foot. Walting; without carriage. 7, On Foot. In a posture of action (Shakspeare). 8. Infantry; footmen in arms (Clarendon). 9. State; character; condition (Addison). 10. Scheme ; plan ; settlement (Sucift). 11. A state of incipient existence (T illotson). 12. A certain number of eyllables constituting a distinct part of a verse (Aschame). 13. Motion; action (Grev.) 14. Step (L'Estrange). 15. A measure containing twelve inches.

Foor (Square), is a square, each side of which is 12 inches; its surface, therefore, contains 144 square inches.

Foot (Solid), is a cube whose three dimensions are each 12 inches: its capacity is therefore 1798 cubic inches.

Foor of a horse extends from the fetlockjoint to the onter sole at the bottom of the hoof: it inclades the cononary-bone, the nutboae, the coffin-bone, and the inner sole (or meabrawous mass), in which it is deposited; as well as the frog and the wall or boof surrounding and supporting the whole.

To Foot. ©. n. (from the noun.) 1. To dance; to tread wantonly; to trip (Dryden). 2. To walk; not ride (Somth).

T• Foot. o. a. 1. To spum; to kick (Shatspeare). 2. To settle; to begin to fix (Shekspeare). 3. To tread (Tickel).

FOOTBALL. s. (foot and ball.) 1. A ball commonly mede of a blown bladder, cased - with leather, driven by the foot (Waller). 2. The sport or prastice of kickiag the football (Art manot).
FOOTBOY. s. (foot and boy.) A low menial; an attendent is livery (Boyle).

FOOTBRIDGE. s. A bridge on which passengers walk; a narrow bxidge (Sidney).

FOOTCLOTH, s. A sumpter cloth (Shakspeare).

FOOT DEROBE, in the manage. A horse's. foot has this appellation when it is worn and wasted by going without shoes, so that, for wans of hoof, it is a hard matter to shoe him. A horse's foot is said to be worn and wasted, called in Prench ust, when he has but little boof, and not enough for shoeing.

FOOT-FAT, is the manage. A horse is sid to have a fat foot, when the hoof is so thin and weak, that unless the naila be driven very short, he runs the risk of being pricked in stocing.

FOUT-HALT, the name of a particalar disorder incident to sheep. It arises from an insect, which, whee it cornes to a certain macurity, resembles a worm-of two, three, or four inches in length. The first appearance of the malady is, when the sheep give signs of being lame, which increases so fas as to prevent his krazing; when, what with want of sufficient food, and pain, the poor animal suffers greaty, and lingers till it dies a natural death, if not properly attended to by extracting the insect; which is very easily done.
As 200 n as the lameness is perceived, let the foot that is lame be examined between the cloce of the claws, and it will be found that in
the skin where the close separates' is a small hole (not natural), through which the insect, when yet smaH, gets its entrance, and by degrees has worked itself upwards along the leg, between the outwand skin and bone, and obtains its largest magnitude. Proportionally it finds its nourishment, and is left undisturbed. This worm must be extracted by moving the claws backward and forward in contrary directions; and it will not be long before the under.part of the worm makes its appearance at the above-mentioned sinall hole ; and continuing the same operation of moxing the claws, the whole worm will work itself out; which is better than when at its first appearance it is attempted to be drawn out with dareger of breaking off, for part of it might remain in the sheep's leg, and by its rotting there be hurful.This easy and simple operation wih be found effectual without any other kind of application whatever, nature herself cuting the channel which the worm had made along the leg.

FOOTSTALIK, has been put by Enghish writers both for the peduncle and petiole. Set Pedunculus and Prtioles.

FOOTE (Samuel), an English drarratic writer and performer, was born at Truro, in Comwall, in 1722 . His father was a justicé of the peace for that county, and his mother sister to sir John Dinely Goodere, of Herefordshire, who was murdered by' his brother, captain Goodere, at Bristol. Foote was edus cated at Worcester college, Oxford, from whence he removed to the Temple; but the liveliness of his mind did not suit with the profession of the law; he therefore abandoned it for the stage.

His first performance was in the character of Othello. In 1747 he opened the little theatre in the Haymarket, with a dramatic piece of his own, called, The Diversions of the Morning, which was represented abore forty mornings to crowded audiences. The next season he brought forward another exhibition. called, An Auction of Pictures, in which he took off some of the most noted characters of the day. He still contimued to play at one or other of the theatres, and frequently brought out new pieces. In 1760 he produced the Minor at his own house in the Haymarket, and from that time it became a summer theatre. In 1766 he had the misfortune to break his leg while on a visit to lord Mexborough's in the country, in consequence of which he was obliged to have it amputated. He now began to aequire a great deal of money, and his genius being very prolific, he every seasori pros guced some laughable carieature of persons well known; which filled the theatre, and consequestly his poekets. In 1776 he attacked a lady, then the subjeet of mach conversantion ; bat his piece was suppressed; and some charges were' brought agamost him of a veity: serious nature, no less than of his having been' guilty of an unnatural offence. He was honourably aequitted of this accusation; but it had a deep effect upon his mind; and the year fots:

FOP

Inwing he died at Dover, in his way to France, for the benefit of his health. His remains were brought to town, and interred in Westminster abbey. Foote has been called the English Aristophanes, and no greater proof can be given of his comic powers than in the following anecdote, related by Dr. Johnson: "The first time," says he, "I was in company with Foote, was at Fitzherber's. Haring no good opinion of the fellow, I was resolved not to be pleased; and it is very difficult to please a man against his will. I went on eating my dinner pretty sullenly, affiecting not to mind him; but the dog was so very comical, that I was obliged to lay down my knife and fork, throw myself back in my chair, and fairly laugh it out. Sir, he was irresistible." His dramatic works have been published in 4 vols. 8 vo.

FOOTED. a. Shapel in the foot (Grew).
FOOTFIGHT. s. A fight made on foot, in opposition to that on horseback (Sidney).

FOOTHOLD. s. Space to hold the foot; space on which one may tread surely (L ' E strange).

FOOTING. s. (from foot.) 1. Ground for the foot (Shakspeare). 2. Support; root (Dryden). 3. Foundation; basis (Locke). 4 Place; possession (Dryden). 5. Tread; walk (Milton). 6. Dance (Shahs.). 7. Steps; road; track (Bacon). 8. Entrance; beginning; establishment (Dryden). 9. State; condition; settlement (Arluthnot).

FOOTLICKER. s. (font and lick.) A slave; an humble fawner (Shakspeare).

FOO TMAN. s. (fuot and man.) 1. A soldier that marches and fights on foot (Raleigh). 2. A low menial servant in livery (Bacon). 3. One who practises walking or running.

FOOTMANSHIP.s. (from footman.) The art or faculty of a runner (Hayward).

FOOTPACE. s. (foot and pace.) 1. Part of a pair of stairs, whereon, after four or five steps, you arrive to a broad place (Moxon). 2. A pace no faster than a slow walk.

FOO"TPAI). s. (foot and pad.) A highwayman that robs on foot.

FOOTPATH. s. (fuot and path.) A narrow way which will not admit horses (Shatspeare).

FOOTPOST. s. (fuot and post.) A post or messenger that travels on foot (Carew).

FOO'TSTALL. s. (foot and stall.) A woman's stirrup.

FOOTSTEP. s. (foot and step.) 1. Trace; track; impression left by the foot (Denham). 2. Token; mark; notice given (Bentley). 3. Example.

FOOTSTOOL. s. (foot and stool.) Stool on which he that sits places his feet.

FOP. s. (probably derived from the vappa of Horace, applied in the first satire of the first book to the wild and extravagant Nævius). A simpleton; a coxcomb; a man of small understanding and much ostentation; a pretender (Roscommon).
FO'PDOODLE. s. (fop and doodle.) A fool; an insignificant wretch (Hudilras).

FOR

FO'PPERY. s. (from fop.) 1. Folly; impertinence (Shakspeare). 2. Affectation ot show, or importance ; showy folly. 3. Foolery; vain or idle practice (Silllingfleet).
FO'PPISH. a. (from fop.) 1. Foolish; idle; vain (Shakspeare). 2. Vain in show; foolishly ostentatious (Garth).
FOPPISHLY. ad. Vainly; ostentatiousl 5 .
FO'PPISHNESS. s. Vanity; showy or ostentatious vanity.

FO'PPLING. s. (from fop.) A petty fop; an underrate coxcomb (Tickel).
FOR. prep. (fon, Saxon.) 1. Because of : he died for love (Hooker). 2. With respect to; with regard to: the troops for discipline zoere good (Stilling fleet). 3. In the character of = he stood candidate for his friend (Locke). 4 , With resemblance of: he lay for dend (Dryder). 5. Considered as; in the place of: rushness stands for valour (Clarendon). 6. In advantage of; for the sake of: he fights for fame (Cowley). 7. Conducive to: this sichness is for good (Tillotson). 8. With intention of going to a certain place: he is gone for Oxford (Ilayward). 9. In comparative respect: for height this boy is a man (Dryder)10. With appropriation to: frieze is for olis men (Shakspeare). 11. After O an expression of desire: O for better times (Shakspare). 12. In account of; in solution of: 1 speai enough for that question (Burnet) 13. Inducing to as a motive: he had reason for his conduct (Tillotson). 14. In expectation of: ie. stood still for his follower (Locke). 15. Noting power of possibility: it is hard for me to learn (Taylor). 16. Noting dependence : for a good harvest there must be fine weather (Boyle). 17. In prevention of; for fear of: he urapped up for cold (Bacon). 18. In remedy of: a medicine for the gout (Garretson). 19. In exchange of: money for goods (Driden). 20. In the place of; instead of. a club, for a weapon (Coulley). 21. In supply of; in serve in the place of (Dryden). 22. Through a certain duration: it lasted for a year (Roscommon). 23. In search of; in quest of: $h=$ went for the golden fleece (Tillotson). 24. According to: for aught I know, it was othererise (Boyle). 25. Noting a state of fitness or readiness (Dryden). 26. In hope of: he acrole for money (Silahispeare). 27. Of tendency to; toward : his wish was for peace (Knolles). \&8. In favour of; on the part of: leing honest die fought for the king (Cowley). 29. Noting accommodation or adaptation: the torl is foo lrittle for the abood (Felton). 30. With intention of: the lonk was contrived for yount students (Tillotson). 31. Becoming; belonging to: must is for a king (Cowley). 32. Notwithstanding: he might have cntered for the keeper (Bentley). 33. To the use of; to be used in (Spenser). 34. In consequence of: he did it for anger (Dryden). 35. In recompense of; in return of: he worked for money formerly paid (Dryden). 36. In proportion to: he was tall for his age (Shakspeare). 37. By means of; by interposition of: bul for vee you had failed (Hale). 38. In regard of; iu

FOR

preservation of: he cannot for his life do it (Addison). 39. For all. Notwithstanding (South).

For. conj. 1. The word by which the reason is given of something adranced before (Concley). 2. Because; on this aceount that (Spenser). 3. Foz as much. In regard to that ; in consideration of (Hooker). 4. For chy. Because; for this reason that (Knoll.).

To FORAGE v. a. (from foris, abroad, Lat.) 1. To wander far; to rove at a distance: not in use (Shakspeare). 2. To wander in search of provisions (Denham). 3. To rarase; to feed on spoil (Shakspeare).
To Fo'rage. v.a. To plunder; to strip; so spoil (South).

Fo'rage. s. (fourage, Germ. and French, from foris, Latin.) 1. Search of provisions; the act of feeding abroad (Milton). 2. Provisions sought abroad (Dryden). 3. Prorisions in general (Dryden).
FORA'MEN. (foramen, from foro, to pierce.) A little opening.

Fora'men cecum. A single opening in the basis of the cranium between the ethnoid and the frontal bone, that gives exit to a small vein.
Forajem ovale. The opening between the two auricles of the heart of the foetus. See also innominatum os.
Foramina lacera in basi cranif. A pair of foramina in the basss of the cranium, through which the internal jugular veins and the eighth pair of accessory nerves pass.

FORA'AIINOUS. a. (from foramen, Lat.) Pall of holes; porous (Bacon).

To FORBE'AR. v. n. pret. I forbore, anciently forlare; part. forlorn. (fonbxyan, Saxon.) 1. To cease from any thing; to intermit. 2. To pause; to delay (Shah,peare). 3. To omit voluntarily; to abstain (Denham). 4. To restrain any violence of temper; to be patient (Proverls).

Tu Forbe'ar. \boldsymbol{n} a. 1. Todecline; to avoid voluntarily (Waller). 2. To abstain from; to omit (Clarendon). 3. To spare; to treat with ckemency (Ephesians). 4. To withhold (Chrosicles).

FORBE'ARANCE. s. (from forlear.) 1. The care of avoiding or shunning any thing; negation of practice (South). 2. Intermission of something. 3. Command of temper (Shakspeare). 4. Lenity; delay of punishnient; mildness (Rogers).

FORBE'ARER. s. (from forlear.) An intermitter; interceptor of any thing (Tusser).

To FORBID. v. a. pret. I forbade; part. forlidden or forlid (fonbeoran, Sax.) 1. To probibit ; to interdict any thing (Shaksp.). 2. To command to forbear any thing (Sidney). 3. To oppose; to hinder (Dryden). 4. To accarse; to blast : obsolete (Shakspeare).

To Forbi'd. v. n. To utter a prohibition (Shakspeare).

FORBI'DDANCE. s. (from forlid.) Prohibition ; edict against any thing (Milton).

FORBI'DDENLY. ad. (from forlid.) In an unlaw ful mapper (Shakepoere).

VOL. V.

FOR

FORBIDDER. s. (from forlid.) One that prohibits (Brown).
FORBI'DDING. particip.a.(from forlid.) Raising abhorrence (Aaron Hill).

FORCE. s. (force, French.) 1. Strength; vigour; might (Donne). 2. Violence (Dryden). 3. Virtue; efficacy (Locke). 4. Validness; power of law (Denham). 5. Armament; warlike preparation (Waller). 6. Destiny; necessity; fatal compulsion.

To Force. v. a. (from the noun.) 1. To compel; to constrain (Suifl). 2. To overpower by strength (Milton). 3. To impel, to press; to draw or push by main strength (Dryden). 4. To enforce ; to urge (Milion). 5. To drive by violence or power (Decay of Piety). 6. To gain by fiolence or power (Dryden). 7. To storm; to enter by violence (Waller). 8. To ravish; to violate by force (Dryden). 9. To constrain; to distort (Addisort. 10. To man; to strengthen by soldiers (Raleigh). 11. To Force out. To extort (Atterlury).

To Force.v.n. To lay stress upon (Camder).

Force, or Power, in physics, is that which canses a change in the state of a body, whether that state be rest or motion.

We speak here of proximatc causes, for it is not the business of mechanics to search into the cssential and hidden causes of motion. The enquiry whether they are material or spinitual may exercise the talents of ingenious speculatists, and may, perhaps, be of some importance in a moral point of view; but certainly forms no part of the principles of mechanical science. The muscular power of animals, as likewise pressure, impact, gravity, electricity, \&cc. are by us looked upon as forces. or sources of motion; for it is an incontrovertible fact that bodies exposed to the free action of either of these are put into motion, or have the state of their motion changed. All forces, however various, are measured by the effects they proluce in like circumstances; whether the effects be creating, accelerating, retardint, or deflecting motious: the effect of some general and cominonly observed force is taken for unity; and with this any others may be compored, and their proportions represented by numbers or by lines: in this point of view they are cousidered by the mathematician; all else falls within the province of the universal philosopher or the metaphysician. When we say that a force is represented by a right line $\triangle B$ it is to be understond that it would cause a material point situated'at rest in A, to run over the line $A B$ (which we name the direction of the power) so as to arrive at B, at the end of a given time; while another power should cause the same point to have jnoved a greater or less distance from A in the sime time.

Mechanical forces may be reduced to two sorts; ore of a body at rest, the other of a body in motion.

The force of a body at rest, is that which we conceive to be in a body lying - It on a table, or hanging by a rope, or supported by a spring, \&c.; and this is called by the names of pressure, tension, force, or vis mortia, solicitatio, cunalus movendi, conamen, \&c.; which kind of force may be always measured by a weight, viz. the weight that sustaius it. To this clacs of forces may also be referred,
centripethl and centrifugal forces, though they resile in a body in motion; because these forces are homogencous to weights, pressures, or tensions of any kind. The pressure, or force of gravity in any boly, is proportional to the quantity of matier inl.

The force of a body in motion, is a power residing in that body, so long as it continues its motion; by means of which, it is able to remove obstacles lying in its way; to lessen, destroy, or overcome the force of any other moving body, which meets it in an opposite direction; or to surmount any the largest dead pressure or resistance, as tension, gravity, friction, \&cc. for some time; hut which will be lessened or destroyed by such resistance as lessens or destroys the motion of the body. This is called cis motrix, moving force, or motive force, and by some late writers vis vioa, to distinguish it from the cis morlua, spoken of before.

Concerning the measure of moving force mathematicians have been divided into two parties. It is allowed on both hands, that the measure of this force depends partly upon the mass of matter in the body, and partly upon the velocity with which it moves: the point in dispute is, whether the force varies as the velocity, or as the square of the velocity.

Descartes, and all the writers of his time, assumed the velocity produced in a body as the measure of the force which prodaces it; and observing that a body, in consequence of its being in motion, produces changes in the state or motion of other bodies, and that these changes are in the proportion of the velocity of the changing body, they asserted that there is in a moving body a vis insita, an inherent force, and that this is proportional to its velocity; saying that its force is twice or thrice as great, when it moves twice or thrice as fast at one time as at another. But Leibnitz observed, that a body which moves twice as fast, rises four times as high, against the uniform action of gravity; that it pençfrates four times as deep into a piece of uniform clay; that it bends four times as many springs, or a spring four times as strong to the same degree; and produces a great many effects which are four times greater than those produced by a body which has half the the initial velocity. If the velocity be triple, quadruple, \&c. the effects are nine times, 16 times, \&c. greater; and, in short, are proportional, not to the velocity, but to its square. This observation had been made before by Dr. Hooke, who has enumerated a prodicious variety of important cases in which this proportion of effect is observed. Leibnitz, therefore, affirmed that the force inberent in a moving body is proportional to the square of the velocity.

It is evident that a body, moving with the same velocity, has the same inherent force, whether this be employed to move another body, to bend springs, to rise in opposition to gravity, or to penetrate a mass of soft matter. Therefore these measures, which are so widely different, while each is agreeable to a numerous class of facts, are not measures of this something inherent in the moving body which we call its force, but are the measures of its exertions whem modified according to the circumstances of the case; or, to speak still more cautiously and sccurely, they are the measures of certain classes of phenomena consequent on the action of a moving body. It is in vain, therefore, to attempt to support either of them by demonstration. The measure itself is nothing but a definition. The Eartesian cails that a double force which produces a
double relocity in the body on rchich it acts. The leibe nitzian calls that a quadruple force which makes a quadruple penetration. The reasonings of both in the demonstration of a proposition in dynamics may be the same, as also the result, though expressed in different numbers.

But the two measures are far from being equally proper; for the Leibnitzian measure obliges us to do continual violence to the common use of words. When two bodies moving in opposite directions meet, strike each other, and stop, all men will say that their furces are equal, because they have the best test of equallty which we can devise. Or when two bodies in motion strike the parts of a machine, such as the opposite arms of a lever, and are thus brought completely to rest, we and all men will pronounce their mutual energies by the intervention of the machine to be equal. Now, in all these cases, it is well known that a perfect equality is fuund in the products of the quantities of matter and velocity. Thus a ball of two pounds, moving with the velocity of four feet in a second, will stop a ball of eight poands moving with t!e velocity of one foot per second. But the followers of Leibnitz say, that the force of the first ball is four times that of the second.

All parties are agreed in calling gravity an uniform or invariable accelersting force; and the defiuition which they give of such a force is, that it always produces the same acceleration, that is, equal accelerations in equal times, and therefore produces augmentations of velucity proportionable to the times in which they are produced. The only effect ascribed to this force, and consequently the only thing which indicates, characterises, and measures it, is the augmentation of velocity. What is this velocity, considered not merely as a mathematical term, but as a phenomenon, as an event, a production by the operation of a natural cause? It cannot be conceived any other way than as a determination to move on for ever at a certain rate, if nothing shall change it. We cannot conceive this very clearly. We fecl ourselves forced to animate, as it were, the body, and gire it not only a will and intention to move in this manner, but a real excrtion of some faculty in consequence of this determination of mind. We are conscious of such a train of operations in ourselves; and the last step of this train is the exertion or energy of some natural faculty, which we, in the utmost propricty of language, call furce. By such aualogical conception we suppose a something, an energy inherent in the moving body; and its only office is the production and continuation of this motion, as in our own case. Scientific curiosity was among our latest wants, and language was formed long before its appearance: as we formed analogical conceptions, we contented ourselves with the words already familiar to us, and to this something we gave the name Forcr, which expressed that energy in ourselves which bears some resemblance (in office at least) to the determination of a body to move on at a certain rate. This sort of allegory pervades the whole of our conceptions of natural operations, and we can hardly think or speak of any operation without a language, which supposes the animation of matter. And, in the present case, there are so many points of resemblance between the effects of our exertions and the operations of nature, that the langrage is most expressive, and has the strungest appearance of propriety. By exerting our furce, we not only move and keep in motion, but we move other

FORCE

badies. Just so a ball not only mores, but puts other bodies in motion, or penetrates them, \& c This is the origin of that conception which so forcibly obtrudes itself into our thoughts, that there is inherent in a moving budy a force by which it produces changes in other bodies. No such thing appears in the same body if it be not in motion. We therefore conclude, that it is the production of the moving force, whatever that has been. If so, it must be conceived as proportional to its producing cause. Now this force, thus produced or exerted in the moving body, is only another way of conceiving that determination which we call relocity, when it is conceived as a natural event. We can form no otber notion of it. The dis insila, the determination to move at a certain rate, and the velocity, are one and the same thing, considered in different relations.
Therefore the ois insila corpori moventi, the determination to move at a certain rate, and the velocity, should have one and the same measure, or any one of them may be taken for the measure of the other. The velocity being an object of perception, is therefore a proper measure of the inherent force; and the propriety is more evident by the perfect agreement of this use of the words with common language. For we conceive and express the action of gravity as uniform, when we think and say that its effects are proportional to the times of its action. Now all agree, that the velocity produced by gravity is proportional to the time of its actinal. And thus the measure of force, in reference to its producing cause, perfectly agrees with its measure, independent of this consideration.
But this agreement is totally lost in the Leibuitzian dectrine; for the body which has fallen foor times as far, and has sustained the action of gravity twice as long, is said to have four times the force.
The quaintness and continual paradox of expression which this measure of inherent force leads us into, would have quickly exploded it, had it not been that its chief abettors were leagued in a keen and serimonious warfare with the British mathematicians who supported the claim of Sir Isaac Newton to the invention of fluxions. They rejoiced to find in the elegant writings of Huyghens a physical principle of great extent, such as this is, which could be set in comparison with some of the wonderful discoveries in Newton's Principia. The fact, that in the mutual actions of bodies on each other, the products of the masses and the squares of the velocities remain always the same (which they call the conservatio virium vioarum), is of almost nniversal extent; and the knowledge of it enabled tbem to sive ready and elegant solutions of the most abstruse and intricate problems, by which they acquired a great and deserved celebrity. Dr. Robert Hooke, whose observation hardly any thing escaped, was the first (long before Huygbens) who remarked that in all the cases of the gradual production and extinction of motion, the sensible phenomenon is proportional to the equare of the produced or extinguished velocity.
John Bernoulli brought all these facts together, and systematized them according to the principle advanced by Huyghens in his treatise on the centre of oscillation. He, and Daniel Bernoulli, gave most beautiful specimens of the prodigious use of this pripeiple, for the solution of difficult physical problems, in their dissertations on the motion and impulse of flaids, and on the communication of motion. It was, however, very early objected to shem (we think by Marquis Poleni), that in the
collision of bodies, perfectly hard, there was no such conservatio virium vicarum; and that, in this case, the forces must be acknowledged to be proportional to the velocities. The objections were unanswerable. But John Bernuulii evaded their force, by affirming, that there were and could be no budies perfectly hard. This was the origin of another celebrated doctrine, on which Leibnitz greatly plumed himself, the Law of Continuity, viz. that nothing is observed to change abruptly, or per saltum. But no one will pretend to say that a perfectly hard body is an inconceivalle thing: on the contrary, all will allow, that softness and compressibility are adjunct ideas, and not in the least necessary to the conception of a particle of matter ; nay, totally incompatible with our notion of an ultimate atom

Sir Isaac Newton never could be provoked to engage in this dispute. He always considered it as a wilful abuse of words, and unworthy of his attention. He guarded against all possibility of cavil, by giving the most precise and perspicuous definitions of those measures of forces, and all other quantities which he bad occasion to consider, and by carefully adhering to them. And in one proposition of about 20 lines, viz. the 39th of the 1 st book of the Principia, he explained every phenomenon adduced in support of the Leibnitzian doctrine, shewing them to be immediate consequences of the action of a force measured by the velocity which it produces or extinguishes. There it appears that the heights to which bodies will rise in opposition to the uniform action of gravity are as the squares of the initial velocities : so are the depths to which they will penetrate uniformly resisting matter: so is the number of equal springs which they will bend to the same degree, \&c. We have had occasion to mention this proposition as the most extensively useful of all Newton's discoveries. It is this which gives the immediate application of mechanical principles to the explanation of natural phenomena. It is incessantly employed in every problem by the very persons who hold by the other measures of forces, although such conduct is virtually giving up that measure. They all adopt, in every investigation, the two theorems $\dot{f}=\dot{v}$, and $\dot{f}=0 \dot{0}$; both of which suppose an accelerating force f proportional to the velocit $p 0$ which it produces by its uniform action during the time t, and the theorem $f \dot{f=0^{2}}$ is the 39th 1 . Princip. and is the conservatio dirium vivarum.

Let a certain force \mathbf{Q}, such, for instance, as would propel a body B with a velocity U, be capable, by its instantaneous action, of raising a mass M, whose weight is W to a certain height H ; and let g denote the force of gravity, while i is an evanescent element of time. Then, that which has been employed to raise W, to the height H , will be equivalent to WH , this being the effect produced. But H , being a space run over, may be expressed by the product of a velocity V and a time T; and, on the other hand, we have $\mathbf{W}=g M$ $=\frac{g^{i M}}{i}$, where gi is manifestly the velocity V^{\prime}, which would be generated by gravity in the element of time i. Consequently $W H=\frac{V^{\prime} M}{\dot{i}} \times V T$

FORCE.

tional between the velocities \mathbf{V} and V^{\prime} : and since I and t are homogeneous quantities, we shall have WH $\propto M u^{2}$, the original force being thus fesolved into the product of a mass by the square of a velocity, conformably to the notion attached by most forigners to the term vis viva. This force is, notwithstanding, measured by the product BU above: so that the warn discussions on the measure of the force of moving bodies, is reduced to a dispute about words.

Mr. Robins, in his remarks on J. Bernoulli's treatise, intitled, Discours surles Loix de la Communication du Mouvensent, informs us, that Leibe nitz adopted this opivion through mistake; for though he maintained that the quantity of force is always the same in the universe, he endeavours to expose the error of Des Cartes, who also asserted, that the quantity of motion is alwoys the spme; and in his discourse on this sulject in the Acta Eruditorum for 1686, he says that it is agreed, on by the Cartesians, and all other philosophers and mathematicians, that there is the same force requisite to raise a body of 1 pound to the height of 4 yards, as to raise a body of 4 pounds to the height of 1 yard; but being shewn how much he was mistaking in taking that for the common opinion, which would, if allowed, prove the force of the body to be as the square of the velocity it moved with, he afterwards, rather than own himself capable of such a mistakic, endeavoured to defend it as true; since he found it was the necessary consequence of what he had once asserted; and maintained, that the force of a body in motiou was proportional to the height from which it must fall, to acquire that velocity; and the heights being as the squares of the velocitits, the forces would be as the masses multiplied by them; whereas, when a body descends by its gravity, or is projected perpendicularly upwards, its motion may be considered as the sum of the uniform and continual impulses of the power of gravity, during its falling in the former case, and till they extinguish it in the latter. Thus when a body is projected upwards with a double relocity, these uniform impulses must be contitued for a double time, in order to destroy the motion of the body; Ind hence it follows, that the body, by setting out With a double velocity, and ascending for a double time, must arise to a quadruple height, before its motion is exhausted. But this proves, that a body with a double velocity moves with a double force, since it is produced or destroyed by the same uniform power continued for a double time, and not trith a quadruple force, though it rises to a quad. ruple height; so that the ertor of Leibnitz con-: sisted in his not considering the time, since the velocities alone are not the causes of the spaces described, but the times and the velociiies together: yet this is the fallacious argument on which he first built his now doctrine; and those which have been since much insisted on, and derived from the indentings or hollows produced in sof bodies by others falling into them, are much of the same kind. Robins's Tracts, vol. 2. p. 178. See also farther on this subject Dr. Reid's valuable disquisition on Quantity, in vol. 45, of the Philosophical Trausactions, or New Abridgment, vol. 93, p. 562.

A second observation which has been made by come eminent writers, is, that the effect of a shock of two or more bodies is not produced in an instant, but requires a certain interval of time. If this bu en, the heterogeneity between the vip vive-
and morlua, or living and dead force, vil! vanish: since a pressure may always be assigned; which in the same time, however little, shall produce the same effect. If then the vis vioa be homogeneous to the vis mortua, and having a perfect measure and knowledge of the latter, we need require uo other measure of the former than that which is derived from the vis mortua equivalent to it.

Now that the change in the state of two bodies, by their shock, does not happen in an instant, appears evidently from the experiments made on soft bodies: in these, percussion forms a mall cavity o. visible after the shock, if the bodies have no elasti-city. Such a cavity cannot certainly be made in. an instant. And if the shock of soft bodies require a determinate time, we must certainly say as much of the hardest, though this time may be so small as to be beyond all our ideas. Neither. can an instantaneous shock agrec with that constant law of nature, by vitue of which nothing is performed per sallum. But it is needless to insist farther upon this; since the duration of any shock may be determined from the most certain prigciples.

There can be no shock or collision of bodies, without their making mutual impressions on each. other: these impressions will be greater or less, according as the bodies are more or less soft, other circumstances being the same. In bodies, called. hard, the impressions are small; but a perfect hardness, which admits of no impression, seems. inconsistent with the laws, of nature; so that while the collision lasts, the action of bodies is the result. of their intually pressing each other. This pressure changes their state; and the forces exerter in percussion are really pressures, and truly vires mortuce, if we will nse this expression, which is no longer proper, since the pretended infinite dificrence between the vires oive and morlue ceases.

The force of percussion, resulting from the pressures that bodies exert on each uther, whide the collision lasts, may be perfectly known, if these pressures be determiued for every instant of the. shock. The mutual action of the bodies begins the first moment of their contact; and is then least; after which this action increases, and becomes greatest when the reciprocal impressions are strongest. If the bodies have no clasticity, and, the impressions they have received remain, the: forces will then cease. But if the borlies be exastic, and the parts compressed restore themselves to their former state, then will the bodies continue to. press each other till they separate. Tp comprehend, therefore, perfectly, the force of perctussion, it is requisite first to define the time the shock. lasts, and then to assign the pressure corresponding to each inotant of this time; and as the effect of pressures in changing the state of any body mar. be known, we may, thence come at the true cause, of the change of motion arising from collision. The force of percussion, thercfore, is no more than, the operation of a variable, pressure during a givem, time; and, to measure this force, we must havd, regard to the time, and to the variations according, to which the pressure increases and, decreases.

Mr. Euler has given some calculations relatita. te these particulars; and he illustrates their ten. dency by this instances suppose that the hardaess, of the two bodies, A_{1} and B_{3}, is equal; and such h_{p}, that being pressed together with the force of $1001 b_{0}$ the impression made on each is of the depth of roboth part of a foot. Suppose also that B is fixed, anditurat A strikesoit, with the velecity of 100, fest.

FORCE.

In a second; according to Mr. Euler, the greatest Sorce of campression will be equiralent to 400 lb . and this farce will produce, in each of these bodies, an impression equal to $\frac{1}{7}$ of a foot ; and the duraration of the collision, that is, till the bodies arrive at their greatest compression, will be about ido of a secund. Mr. Euler, in his calculations, supposes the bardness of a body to be proportional to the force or pressure requisite to make a given impression on it; so that the force by which a given impression is made on a body, is in a compound ratio of the hardness of the body and of the quansity of the impression. But he observes, tbat regand must be had to the magnitude of the bodies, as the same impression cannot be made on the least bodics as on the greatest, from the defect of space through which their component particles soust be driven: he considers, therefore, only the least impressions, and supposes the bodies of such magnitudes, that with respect to them, the imprestiuns may be looked upon as nothing. What be supposes concerniug the hardness of bodies, neither implies elasticity nor the want of it, as elasticity only produces a restitution of gigure and impression when the presing force ceases; but this restitution need not be here considered. It is also supposed, that the bodies which strike each ather have plain and equal bases, by which they touch cach other in the collision; so that the impression hereby made, diminishes the length of each body. It is farther to be observed, that in Mr. Euler's calculations, bodies are supposed so constituted, that they may not only receive impressions from the forces pressing them, but that a greater force is requisite to make a greater impression. This excludes all bodies, fuid or solid, in which the same force may penetrate farther and farther, provided it have time, without ever bqing in equilibrio with the resistance: thus a body may continually penetrate farther into soft wax, although the force inpelling it be not increased: in these, and the like cases, nothing is required but to surmount the first obstacles; which being once done, and the connection of parts broken, the penetrating body always advances, meeting with the came obstacles as before, and destroying them by as equal force. But Mr. Euler only considers the first obstacles which exist before any separation of parts, and which ore doubtless such, that a greater impression requires a greater force. Indeed, thin chiedy takes place in elastic bodies; but it seems likewise to ubtain in all bodies, when the impres. sions made on them are small, and the contexture of their parts is not altered.
These thiugs being premised, let the mass or weight of the body A be expressed in general by A, and let its relocity before the shock be that which it might acquire by falling from the height a. Farther, let the bardness of A be expressed by M, and that of B by N, aind let the area of the base, ou which the impression is made, be ce; then will the greatest compresision be made with the
force $\sqrt{\frac{M N \subset c}{M+N} \times A a}$. Therefore if the hardness of the two bodies, and the plane of their contact during the whole time of their collision be the same, this force will be as NAa, that is, as the equare root of the ois pica of the striking body \mathbf{A}. And as $\sqrt{ } a$ is proportional to the velocity of the body A, the force of percussion will be in a compound ratio of the velocity, and of the subdupli-. cate ratio of the mass of the body striking; so that
in this case, neither the Leibnitzian nor the Carte sian propositions take place. But this force of percussion depends chictly on the hardness of tl bodics; the greater this is, the greater will the force of percussion be. If $M=N$, this force will be as $\sqrt{M c e} \times$ Aa, that is, in a compound subduplicate ratio of the cis cica of the striking body, of tle hardness, and of the plane of contact. Hut if M_{3} the hardness of one of the bodies, be infinite, tie force of percussion will be as $\sqrt{\overline{\operatorname{Noc} \times A a} \text {; }}$ at the same time, if $\mathrm{M}=\mathrm{N}$, this force will be as $\sqrt{\frac{1}{2} \text { Ncc } \times A a}$. Therefore, all other things being equal, the force of percussion, if the strikiug budy be infinitely harl, will be to the fuice of percussion when buth the bodies are equally hard, as $\sqrt{ } 2$ to 1.

Mr. Euler farther deduces from his calculation, that the impression received by the bodies A and B will be as follows; viz. as
 ively. If, therefore, the hardness of A, that is in be infinite, it will suffer no impression; whereas, that on B will extend to the depth of $\sqrt{\mathrm{Na} a}$. But if the hardness of the twe bodies be the same, or $M=N$, they will each receive equal impres:sions of the depth $\sqrt{\frac{A a}{2 N c c}}$. So that the impression received by the body B, in this case, will be to the impression it receives in the former, as 1 to $\sqrt{2}$.

Mr. Euler has likewise considered and computed the case where the striking body has its anterior surface convex, with which it strikes an iminoveable body, whose surface is plain. He has also examined the case, when both bodies are supposed immoveable; and from his furmula he deduces the known laws of the collision of clastic and nonelastic bodies. He has also determined the greatest pressures the bodies rective in these cases; and likewise the impressions made on them. In particular he shews, that the impressions received by the body struck, or B, if moveable, is to the impression received by the same body when innmoveable, as $\sqrt{\bar{B}}$ to $\sqrt{\bar{A}+B}$.

There are several curious as well as useful obe servations in Desaguliers's Experimental Pbilosophy, concerning the comparative forces of men and horses, and the best way of applying them. A horse draws with the greatest adiautage when the line of direction is level with his breast; in such a situation, he is able to draw 2001b. for civht hours a day, walking about $2 \frac{1}{2}$ miles an hour. But if the same borse be -made to draw 2401 l . he can work only six hours a day, and cannot go quite so fast. On a carriage, iudeed, where friction alona is to be overcome, a miduling horse will draw $10001 b$. But the best way to try the force of a horse, is to make bim draw up out of a well, over a single pulley or rolleri and in, that case, an grdinary horse will draw about 2001 b , as before observed.

It is found, that five men are of equal force with 1 horse, and can, with equal ease, push round the horizontal heam of a mili, in a walk 40 feet wide; whereas, three inen will do it in a walk only 19 feet wide.

The parst way of applying the force pf horse

FORCE.

is, to make him carry or draw up hill: for if the hill be steep, three mell will do more than a horse, each man climbing up faster with a burden of 1001b. weight, than a horse that is loaded with 3001b.: a difference which is owing to the position of the parts of the human body being better adapted to climb, than those of a horse.

On the other hand, the best way of applying the force of a horse, is the horizontal direction, in which a man can exert the least force: thus, a man that weighs 140 lb . when drawing a boat along by means of a rope coming over his shoulders, cannot draw above 97 lb ., or exert above $\frac{1}{\text { th }}$ part of the force of a horse employed to the same purpose; so that, in this way, the force of a horse is equal to that of seven men.

The best and most effectual postare in a man, is that of rowing; when he not only acts with more muscles at once, for overcoming the resistance, than in any other position, but also as he pulls backwards, the weight of his body assists by way of lever. See Desaguliers's Exp. Philos. v. 1. p. 241, where several other observations are made relative to force acquired by certain positions of the body; from which, that author accounts for most feats of strength and activity. See also a Memoir on this subject by M. De la Hire, in the Mem. Roy. Acad. 1729; or in Desaguliers's Exp. \&c. p. 267, \&c. who has published a translation of part of it witb remarks.

Force is distinguished into motive and accelerative or retardive.

Motive force, otherwise called momentum, or force of percussion, is the absolute force of a body in motion, \&c.; and is expressed by the product of the weight or mass of matter in the body mula tiplied by the velocity with which it moves. But,
Accelerative force, or retardive force, is that which respects the velocity of the motion only, accelerating or retarding it; and it is denoted by the quotient of the motive force, divided by the mass or weight of the body. So,
if \boldsymbol{m} denote the motive force, and b the body, or its weight, and f the accelerating or rctarding force,

$$
\text { then is } f \text { as } \frac{n}{b}
$$

In centripetal forces, the absolute quantify is defined from the magnitude, or at least from the strength and efficacy of the central body. The accelerating is that force as perpetually decreasing in the increase of the distance, et contra. The moving force is the weight itself, which arises from the body or mass drawn into the accelerating force. From whencc, the absolute furce being given, the moving force in a given body will be as the accelerating; and, the accelerating being given, it will be as the body. These three forces, therefore, are referred to three things, to bodies, to the places of bodies, and to the centre of force. The motive force respects the body, and the endeavour and propension thereof to the centre, as compounded of the endeavours and propensions of all the parts. The accelerating refers to the place of the body in the medium, as the efficacy of the same absolute force, according to divers distances from the centre: and, the absolute force respects the centre or central body itself, as endowed with some power, without which the moving forces are not propagated round about; whether that power or cause be the central body (as the magnet in the centre of the magnetic force, or the earth in
the centre of the gravitating force), or be some other thing which does not appear.

Again, furces are either constaut or variable.
Constant forces are such as remain and act continually the same for some determinate time. Such, fur example, is the force of gravity, which acts constantly the same upon a body while it continues at the same distance from the centre of the earth, or from the centre of force, wherever that may be.

Here the following nine propositions will often be of utility :

1. If different forces are successively applied to accelerate equal quantities of matter from quies cence, the spaces described in any given time will be in the same proportion with the forces.
2. If the same force impels different quantities of matter, for any given time, the spaces described from quiescence will be inversely as the quantities of matter moved.
3. If the force be increased or diminished, in the same proportion with the mass moved, the spaces described from rest, in the same time, will be equal.
4. If a body is moved from quiescence, during any given time, it will, at the end of that time, have acquired such a relocity as will, if continued uniform, carry it, in the same time, through double the space which the body has already described to acquire that velocity.
5. If the same force acts on the same mass, for different times, the velocities generated will be respectively in the same proportion with the times in which the given force acts.
6. If any given quantity of matter is moved from quiescence by different forces, during a giren time, the velocities acquired will be in the same proportion with the forces.
7. If a given force impels different quantities of matter for the same time, the velocities generated will be inversely as the quantities of matter.
8. If a body be moved from quiescence, through the same space by different forces, the velocities generated will be in a subduplicate ratio of the forces.
9. If a given quantity of matter is impelled from quiescence, through different spaces, by the action of the same force, the velocities generated will be in a subduplicate ratio of the spaces described.
In the case of a constant force F, acting upon a body b, for any time t, we have these following theorems; putting
$f=$ the constant accelerating force $=\mathrm{F} \div b$,
$v=$ the velocity at the end of the time t,
$s=$ the space passed over in that time, by the constant action of that force on the body: and $\frac{1}{2} g=16 \frac{1}{12}$ feet, the space generated by gravity in 1 second, and calling the accelerating force of gravity 1 ; then is

$$
\begin{aligned}
& s=\frac{1}{2} t v=\frac{1}{2} g f^{2}=\frac{v^{2}}{2 g f} ; \\
& v=g f=\frac{2 s}{t}=\sqrt{2} g f s ; \\
& t=\frac{v}{g f}=\frac{2 s}{0}=\sqrt{\frac{8 s}{g f} ;} \\
& f=\frac{v}{g t}=\frac{2 s}{g^{2}}=\frac{v^{2}}{2 g s}
\end{aligned}
$$

Variable forces are such as are continually changing in their effect and intensity; such as the force of gravity at different distances from the centre of the earth, which decreases in proportion

FOR

es the square of the distance increases. In vasiable forces, theorems, similar to those above, may be exhibited by using the fluxions of quantities, and afterwards taking the fluents of the given fuxional equations. And herei consists one of the sreat excellencies of the Newtonian or modern analysis, by which we are enabled to manage, and compute the effects of all kinds of variable forces, wriether accelerating or retarding. Thus, using the same notation as above, for constant forces, viz. f the accelerating force at any instant, the time a body has been in motion by the action of the variable force, 0 the velocity generated in that line, s the space run over in that time, and $g=32 f$ cet; then is

$$
\begin{aligned}
& \dot{s}=\frac{\pi}{g f}=\dot{i} ; \\
& \dot{v}=\frac{g f s}{0}=g f_{i} \\
& i=\frac{\dot{s}}{0}=\frac{0}{f^{\prime}} ; \\
& f=\frac{\dot{0}}{g \dot{g}}=\frac{0}{g i}
\end{aligned}
$$

In thest four theorems, the force f, though variable, is supposed to be constant for the indefinitety small time i; and they are to be used in all cases of variable forces, as the former ones in constant forces; viz. from the circumstances of the problem ander consideration, deduce a general expression for the value of the force f, at any indefinite time t; then substitute it in one of these theorems, which shall be proper to the case in hand; and the equation, thence resulting, will determine the corresponding values of the other quantities in the prublem.

It is also to be observed, that the foregoing theorems equally bold good for the destruction of montion and velocity, by means of retarding or resising forces, as for the generation of the same by means of accelerating forces.

Forces, central, centrifugal, \&cc. See the respective words.

Force cozrcitive, the name given by Coulomb to the resistance opposed by the molecula of certain borlies to the motion of the electric fluid, when it endeavours to escape from them. This force augments with the defect of the conducting power.

Fogce of combination, is that in virtue of which the particles of two or more heterogeneous budies become so intimately united, that the resalt of their union is a body which has none of the properties of the constituents.

Force expansive. See Expansion.
Foncz or torsion, the effurt made by a thread or vire, which has been twisted, to return to its former state.

Forcr projectile. See Projectiles.
FORCEDLY. ad. (from force.) Violently; constrainedly; unnaturally (Burnet).

FORCEFUL. a. (force and full.) Violent; strong; imjetuous (Pope).

FOrRCEFULLY. ad. (from forceful.) Violently; impetuously.

FORCELESS. a. (from force.) Having little force; weak; feeble; impotent.

FORCEPS. (forceps, -cipis, quasi ferrireps, as being the iron with which we seize any thing hot, from farrum, iron, and ca-

FOR

pio, to take.) A surgical instrument with which extraneous bodies or other substances are extracted: also an instrument used occasionally by men midwives to bring the head of the fetus through the pelvis.

FO'RC'ER. s. (from force.) 1. That which forces, drives, or constrains. 2. The embolus of a pump working by pulsion (Wilkins).

For an account of Trevithick's temporary forcer to produce a constant stream, consult Nicholson's Juurnal, No. 9. N. S., or Gregory's Mechanics, vol. ii. p. 197.

FORCHEIM, a strong town of Franconia, in the bishopric of Bamberg. It is seated at the confluence of the Wisent and Reduitz. Lat. 49. 44 N . Long. 11. 2 E .

FO'RCIBLE. a. (from farce.) 1. Strong; mighty (Milton). 2. Violent; impetuous (Prior). 3. Efficacious: active; powerful (Bacon). 4. Prevalent; of great influenco (Raleigh). 5. Done by force; suffered by force (Swift). 6. Valid; binding; obligatory.

Forcible entryand detainer. Forcible entry, is a violent actual entry into a house or land, \&c. or taking a distress of any person, armed, whether he offer violence ur fear of hurt to any there, or furiously drive any out of the possession; if one enter another's house, without his consent, although the doors be open, this is a forcible entry punishable by the law.

And an indiciment will lie at common law for a forcible entry, though generally brought on the several statutes against forcibly entry. The punishment for this offence is by fine and imprisonment.

Forciblemarriage. If any person shall take away any woman having lands or goods, or that is heir apparent to her ancestors, by force and against her will, and afterwards she be married to him, or to another by his procurement; or defiled; he, and also the procurers, aud receivers of such a woman, shall be adjudged principal felons. And by 39 Eliz. c. 9 , the benefit of clergy is taken away from the principals, procurers, and accessaries before. And by 4 and 5 Phil. and Mary. c. 8, if any person shall take or convey away any unmarried woman, under the age of sixteen (though not attended with force), he shall be imprisoned two years, or fined, at the discretion of the court; and if he deflower her, or contract matrimony with her without the consent of her parent or guardian, he shall be imprisoned five years, or fined in like manner. And the marriage of any person under the age of twenty-one, by licence, without such consent, is void.
FO RCIBLENESS. s. Force; violence.
FOURCIBLY. ad. (from forcible.) 1. Strongly; powerfully (Tillotson). 2. Impe• tuously; with great strength. 3. By violence; by force (Hammond).

FORCING, in garrening, the art of raising and producing plants, flowers, and fruits, by means of artificial heat. It is accomplished. either by the gentle moist heat that is evolved
during the fermentation and decomposition of stable dung, tanner's bark, and other similar materials, or by the use of actual fire in stoves, flues, and other contrivances for the purpose.

The former of these methods is principally employed in raising cucumbers, melons, and some other fruits, and the latter in producing pine apples, various kinds of wall fruits, and several other sorts of vegetable productions. The great difficulty in the management of this process, is that of adapting and regulating the heat, of whatever sort it may be, in such a manner as to promote and bring forward the plants in the most perfect and healthy growth, without their sustaining injury either by a deficiency or excess. The various methods of effecting this in the most perfect manner are fully described under the culture of the different trees, plants, and vegetables that require such treasment in their cultivation. It is by this process that different sorts of vegetable productions, fruits, and flowers are afforded at much earlier periods than could otherwise be the case, and it of course constitutes an important branch of practical gardening.

Forcing frame, that kind of large framework or erection which is made use of in procuring different sorts of vegetables, fruits, and flowers at an early period, by the application of artificial heat in same of the above modes. It is a construction covered with sloping glass sliding frames on the top, and sometimes In the front. It may be either fixed or moveable; but in the former case the walls are mostly made of brick-work.

These sorts of forcing frames are usually placed full to the south sun, and the length may be from ten to fifty, or one hundred feet; the width from five to fifteen, and from five to ten high; having an upright back wall of wood, where small, but where large, of brick; and a front of glass-work, made sometimes in one continued range of slope to the top of the back wall; and sometimes with upright glasswork, head high, ranging immediately along the front, and from the top of which a glass roof is carried to the top of the back or main wall: when wrought by dung heat, it is chief1y applied against the outside of the back wall, and by being formed into a bed internally; when hy bark heat, by forming it into a bed in a pit within side; and when by fire heat, by having several returns of flues agaiust the inside of the back wall, and that of the front and both ends, for the heat to pass along, constructed according to the sorts of plants chiefly intended to be forced, and the nature of the materials to be employed in producing the heat.

Where the first kind of materials is employed in affording heat, the frame is usually formed with an upright back and ends of deal planking, and a sloping front of moveable glass lights; the length may be ten, twenty, or thirty feet, or more; the width from three to five (or more), and five or six high ; the frame-work should be of inch and half deal planking, tongued, and closely joined, that no steam from
the dung may penetrate into the frame ; raised five, six, or seven feet high behind, and only ten or twelve inches high in front, raising both ends answerable to the front and back; the glass work to range, from the upright in front, sloping upward towards the back wall, to about a foot width at top, there resting the ends upon proper frame work of wood; and bars or bearers, three inches in width, ranged sloping from the back to front, for the support of the lights, as in common hot-bed frames, and the tep of all boarded wind and water tight; having sometimes withinside two or three ranges of narrow shelves, along the back and ends, for pots of small plants, and the bottom levelled, on which to place pots of larger kinds; or shelves may be made, rising one above another, quite from the front, half way up the back wall, in order to place the lowest plants in front, the others in order behind them, rising gradually to the tallest in the back rows.

In working these frames, after having placed the pots of plants in regular order, the lights are put on, and a sufficient quantity of fresh, hot, stable dung, prepared as for commore dung hot beds, is to be piled up close against the outside of the back and ends, a yard wide at bottom, drawing it gradually into a foot width at top, finishing it somewhat sloping, to throw off wet ; and as the dung settles or sinks down, a fresh supply must be added at top, to maintain the lining to the full height of the frame, additions being occasionally made of fresh dung, as the heat declines; by this means a fine growing heat will be thrown in. See Hot bed.

Where bark is made use of in producing heat, the frame may be constructed either of wood or brick work, and frontef, \&c. with sashes of glass as the former ; the length may be ten, twenty, or thirty feet, or more ; eight or ten wide, and six or eight high; and, like the dung heat frame, be six or eight feet high behind, and one in front, the ends conformable and sloping, having glass work fromes raised from the front, sloping either quite to the top of the back wall, or inclined only about one half towards that part, meeting a tiled roof at top half way, which should be raised high enough in front to throw the water off behind, as well as to admit as much sun as possible to every part of the frame; it may likewise be constructed with an upright front of glass, head high, and a sloping roof of glass work, ranging from the upright front to the top of the back wall, which is the most eligible form, both for convenience and benefit of the plants; cither of which constructions may be erected detached, or against a south wall already built, which will serve for the back, and save some expense ; the ends may either be of wood or brick, and should be glazed like the front, 8 c . and the glass work in every part be made to move on and off, as well as to slide backward and forward, to give air, and perform other necessary work. At one end, near the back wall, a door should be made to enter occasionally at, and withinside,

FORCING.

a pit formed for the bark bed, three feet deep, part sunk, the greater part raised, continued the whole length and width, except about a foot and half alley to pass in to perform the necesisty cuiture, as well as view and gather the prociuce of the different plants.

The pit within is to be filled with new tan, in onder to afford a proper heat for the growth and support of the plants that are to be cultivated. See Hot bed.
Where fire heat is to be employed, the frame must be furmed of brick work, at least the back or main wall, for the convenience of having ere flues, and the whole front, \&c. be glass lise the other sorts; the length may be from iwenty to forty or fifty feet, or more, though one fire will not warm more than that length; the width from five or six to twelve or filteen feet, and eight or ten high. In this case the fire is burned in a furnace behind, at oue end or mitule, thence communicating the heat by inierial flues or funnels running the whole length of the back wall, in three or four returns one atwre another, and continued in one or two flues in the front. And frames thus constructed may be contrived either of moderate width, for one row of trees only, to range aminst the back wall, or may be capacious enough to have a range of trained wall trees behind, and some small half or full standards, ranging also from the back to the front, or entirely for standards, especially those of chersies.

Where it is intended to have a narrow frame for only a row of trained trees behind, the width of from four to five or six feet is sufficieot, haring the back or main wall formed of brick or stone, as just observed, eight or ten feet high, with sereral flues withinside, returned over each other, running the whole length of the wall; in the front must be a low will a foot high, on which to lay a plate of umber, and from which are ranged glass frames or lights in one continued slope to the top of the back wall, there received into proper frame work; but, for the greater convenience, the lights may be in two tiers or ranges, an under and upper tier, the upper range made to slide up and down over the others, butso that all the glass work can be moved away occasionally, to edmit the foll air to the trees after the work of forcing is over: the whole bottom space within the frame should be of good loamy earth, or any good garden mould, two spades deep, which should be dug or trenched in the common way; then a range of trees planted behind, towards the wall, two or three yards asunder, erecting a trellis behind them, upon which to train the branches, as against a wall or expalier. Other inferior plants may libewise the set in the border, or in pots, in front of the t rees.

In forcing frames of this construction, from forty or fifty feet long may be sufficient; but if longer, two furnaces for fires are necessary. See llot hause.

Different sorts of frames of this nature may
be seen in the plates on forcing frames, hot houses, \&c.

In the first description of forcing frame, various kinds of fruits may be produced both of the dwarf fruit tree, and other sorts, as well as difierent sorts of vegetables and plants of the flowery and other kinds.

Frames of this sort may have such dimensions as to have substantial hot beds prepared within them, for the purpose of receiving naany diffierent sorts of potted plants.

And in the second sort of frame, from the heat being more regular and lasting, a still greater variety of the finer sorts of fruits, and the more tender flowers and other vegetable productions, may be produced, not only long before they could be raised in any other way. but with much greater ease and convenience, as well as with greater certainty.

The last kind of forcing frame is employed in furnishing many of the finer sorts of fruits, that require high degrees of heat to produce them in the utmost perfection, such as pineapples, grapes, apricots, peaches, nectarines, and various others, as well as many tearder sorts of vegetables, and numerous planis of the curious flower and other kinds.

Forcing ground, the portion of ground in a garden that is destined to the purpose of forcing or raising vegetable productions by means of artificial heat. Grounds of this sort should always be detached from the garden, and situated as near to the stable as the nature of the land will admit, in order that dung may. be conveyed to them with as much ease and couvenience as possible, litter prevented, and the disagreeable appearance of the beds conccaled.
It is necessary in most situations, and particularly in such as are exposed, to have them inclosed with a fence, either of brick work or paling, six or eight feet in height. They should have rufficient space for containing a suitable number of frames and pits, and such linings as may be necessary in the working of them. And it is of great advantage in rising many sorts of tender crops, both of the vegetable and fruit kind, to have four or six feet borders made round them in a raised manner. Where melons are raised, it is usual to havo brick pits coped with stone or wood. Those which are most convenient, according to Mr. Forsyth, are such as are about twelve feet is width, and two and a half in depth; the length in proportion to the number of frames employed. They are, however, often made of much smaller dimensions, especially where the extent of forcing ground is but small.

In regard to the size of the lights for early melons, the above author advises, that they should be five feet in length, and three in breadth; and for others six feet in length, and four in breadsh, the former being four, and the latter three light boxes. Sce Frame.

In constructing the pits, nine inch walls will be sufficient, square spaces of wood being
huilt in the upper parts of them, where wood copings are made use of, to nail them to. As wood decays rapidly, stone should be preferred. Sometimes the walls are not built solid, but square openings left, so as to admit the heat from the outsides.

Mr. Forsyth directs, that there " should be a walk between the ridges, about six or seven feet broad, sufficient to admit a cart to carry dung," as being more expeditious than wheeling it in.
-. The wak should be made up as high as the roping, and sloping gently towards each end," being laid in the bottom with brick rubbish, and covered over with sea coal ashes or sand. By this means, after the linings are made up, it may be kept perfectly neat and clean. A loose drain will likewise be necessary in the middle of the bottom of the pit, for conveging off wet and the cozing from the dung, to a tank or cistern constructed for its reception. The fluid thus collected may be made use of in watering cabbage and other plants of the same kind.

Forcing pit, a sort of pit constructed of brick work, with fire flues, in various ways, for the purpose of making tan or other hot beds in, being covered with glass frames.
It is useful for receiving different sorts of tender potted plants which require considerable degrees of heat in their cultivation.
Forcing wall, a wall constructed with flues for the purpose of conveying and communicating fire heat, in order to ripen various kinds of tree fruits that are planted and trained against them, and which are protected in the front by glazed frames.

Walls of this sort should always be erected in warm sheltered situations, and have southern aspects, in order that they may derive the greatest possible advantage from the influence of the sun.

FORCIPATED. a. (from forceps.) Formed like a pair of pincers to open and enclose (Derham).

FORD. s. (font, Saxon.) 1. A shallow part of a river where it may be passed without swimming (Fairfax). 2. The stream; the current (Milton).

To Ford. v. a. (from the noun.) To pass without swimming (Raleigh).

FO'RDABLE. a. (from ford.) Passable without swimming (Raleigh).

FORDINGBRIDGE, a town in Hampshire, with a market on Saturdays. Lat. 50. 50 N . Lon. 1. 49 W .

FORDOUN (John of), the father of Scottish history, flourished in the reign of Alexander III. towards the end of the 13 th century. But of his life there is nothing known with certainty, though there was not a monastery that possessed not copies of his work. The first five books of the history which bears his name were written by him : the rest were fabricated from materials left by him, and from new collections by different persons. A ma-

FOR

nuscript in vellym of this historian is in the library of the university of Edinburgh.

FORDWICH, a member of the town and port of Sandwich in Kent, seated on the river Stour, and governed by a mayor, jurats, and commonalty. It is noted for its excellent trouts, and lies three miles N. E. of Canterbury.

FORDYCE (David), an ingenious writer, born at Aberdeen in 1720. He was educated at that university, and becane professor of moral philosophy in the Mareschal college. On his return to England from a tour through several parts of Europe, he was shipwrecked and drowned in 1751. He wrote; 1. Dialogues concerning Education, 2 vols. 8vo. 2. A Treatise of moral Philosophy in Dodsley's Preceptor. 3. Thendorus, a Dialogue, concerning the Art of Preaching.
Fordyce (Dr. James), a noted divine, was brother of the preceding, and born also at Aherdeen in the same year : he was educated at that university. Early in life he was settled minister of the parish of Brechin, and became very celebrated as a preacher. After a few years he received a presentation to the church of ALloa, near Stirling. About the year 1760 he preached before the General Assembly of the Church of Scotland, a fine sermon on the folly, infamy, and miscry, of unlawful pleasure, which raised his fanie as a pulpit orator so high, that the university of Glasgow soon after sent him a diploma, creating hìm D. D. ; and, which was more extraordinary, he received an invitation from a very respectable congregation of protestant dissenters, meeting in Monkwellstreet, London ; this invitation he accepted. About 13 years previous to his death, the doctor's ill health obliged him to resign this charge: and he retired to a village in Hampshire. He died at Bath, Oct. 1. 1796. His most noted works are, Sermons to Young Women, 2.vols. Addresses to Young Men, 2 vols. and Addresses to the Deity, 1 vol. His Sermons to young women have attracted most general notice; but, for our own part, we do not perceive in them many excellencies. Had we been so fortunate as to hear them from the pulpit, we conclude we must have admired them, for Dr. Fordyce was qualified to excel as a preacher. The effect of his pulpitaddresses was much heightened, not only by an action and an elocution, which he studied with care and practised with success; but by the figure of his person, which was peculiarly dignified, and by the expression of his countenance, which was animated at all times, but animated most of all when lighted up by the ardor of his soul in the service of God. By some of his hearers, it was observed that, on many occasions, he seemed not merely to speak, but to look conviction to the heart. His eye, indeed, was particularly bright and penetrating. and he had carefully attended to the effect which an orator may often produce upon as audience by the judicious use of that little, but invaluable organ.

FORE, a. (rone, Saxon.) 1. Anteriour;

FOR

not behind (Bacon). 2. That is first in a progressive motion (C'heyne).
Fore. ad. 1. Anteriourly. (Raleigh). 2. Fore is a word much used in composition to mark prionily of time.
Fore and aft, is used by seamen for the whole ship's length, or from end to end.

Fore-legs ofa horse, the fore-legconsists of the arm, fore-thigh, and shank, which should be large, broad, and nervous.
Fore-skin. See Prepuce.
To FOREADVI'SE. v. n. (fore and adtise.). To counsel early; to counsel before the ume of action, or the event (Shakspeare).
To FOREARM. v. a. (fore and arm.) To provide for attack or resistance before the time of need (South).
To FOREBO'DE v. n. (fore and lode.) 1. To prognosticate; to foretell (Dryden). 2. To foreknow; to be prescient of (Pope).
FOREBO'DER. s. (from forelode.) 1. A prognosticator; a soothsayer (L'Estrange). 2. A forcknower.
FOREBY'. prep. (fore and by.) Near; hard by; fast by (Spenser).

To FORECA'ST. v. a. (fore and cast.) 1. To scheme; to plan before execution (Daniel) 2. To adjust; to contrive antecedently (Dryden). 3. To foresee; to provide a jainst (L'Estrange).
To Foreca'st. v. n. To form schemes; to contrive beforehand (Spenser).

Foreca'st. s. (from the verb.) Contrirance beforehand; antecedent policy (Addison).
FORECASTER. s. (from forecast.) One who enntrives beforehand.
FORECASTLE. s. (fore and castle.) In a ship, is that part where the foremast stands.
FORECHO'SEN. part. (fore and chosen.) Pre-elected.
FORECITED. part. (fore and cite.) Quoted before, or above (Arluthnot).
To FORECLOSE. v. a. (fore and close.) 1. To shut up; to preclude; to prevent. 2. To Foreclose a Morlgage, is to cut of the power of redemption.
FOREDECK. s. (fore and deck.) The anterinur part of the ship (Chapman).
To FOREDESIGN. v. a. (fore and deo sign.) To plan teforehand (Cheyne).
To FOREDO' v. a. (from for and do, not forc.) 1. To ruin; to destroy: obsolete (Shakspeare). 2. To overdo; to weary; to harass (Shakspeare).
To FOREDO'OM. v. a. (fore and doom.) To predestinate; to determine beforehand (Pope).
FORE-END. s. (fore and end.) The anteriour part (Bacon).

FOREFATHER. s. (fore and father.) Ancestor; one who in any degree of ascending genealogy precedes another (Raleigh).
To FOREFEND. v, a. (for or fore and

FOR

fend.) 1. To prohibit; to avert (Dryden)2. To provide for; to secure (Shakspeare).

FOREFI'NGER. s. (fore and finger.) The finger next the thumb; the index (Brown).
FOREFOOT. s. plur. forefeet. (fore and font.) The anteriour foot of a quadruped (Peacham).
To FOREGO'. v. a. (fore and go.) 1. To quit ; to give up; to resign (Locke). \&. To go before; to be past (Raleigh). 3. To lose (Shakspeare).
FO'REGOER. s. (from forego.) Ancestor; progenitor (Shakspeare).
F'OREGROUND. s. (fore and ground.) The part of the field or expanse of a picture which seems to lie before the figures ($D_{r y}$ den).
FO'REHAND. s. (fore and hand.) 1. The part of a horse which is before the rider. 2. The chief part: not in use (Shakspeare).
Fórehand. a. Done too soon (Shakspeare.)

FO'REH ANDED. a. (from fore and hand.) 1. Early ; timely (Taylor). 2. Formed in the foreparts (Dryden).

FO'REHEAD. s. (fore and head.) 1. That part of the face which reaches from the eyes upivard to the hair (Dryden). 2. Impudence; confidence; assurance (Collier).

Forehead of a horse. This should be somewhat broad; some would have it a little raised; but a flat one is most beautiful. A horse should have in his forehead what is called a feather. (See Feather). It is also to be desired that he should have a star or blaze in his forehead.

FOREHO'LDING. s. (fore and hold.) Predictions ; ominous accounts (L 'Estrange).

FOREIGN. a. (forain, French; foruno, Spanish.) 1. Not of this country; not domestic (Addison.) 2. Alien; remote; not alliel (Swift). 3. Excluded; not admitted; held at a distance (Shakspeare). 4. (In law.) A foreign plea, placitum forinsecum; as being a plea out of the proper court of jnstice. 5 . Extraneous ; adventitious in general (Philips).

FO'REIGNER. s. (from foreign.) A man that comes from another country; not a native ; a stranger (Addison).

It has long been the wise policy of tho British government to encourage emigration from foreign countries, with a view to introduce the various manufactures peculiar to them; and perhaps the encouragement to aliens to settle among us ought to be extended and increased, at a moment when some of the most wealthy parts of Europe are a prey to the horrors of war, and when thousands must be anxious to meet with an asylum for themselves, their families, and property.

It appears that there are domesticated among us at present (1807) about 11,400 foreigners, and that 16,000 others are engaged in our va. rious military or naval services, \&\&., chiefly abroad.

FOt

1 Foreign troops in British pay, mostly Germans........... 12,500
2 Foreigners of different nations, intermixed in our army and navy
\% In the merchant service, as seamen men

4 Emigrant French clergy....... 250
5 Italians and Swiss........... 800
6 French........................ 5,000
\% Germans 2,500
8 Dutch
500
9 Americans
700
10 Russians
150
11 Spaniards....................... 300
12 All other nations 1,200

Total

27,400
Of the class No. 1, above one half are eithet in Ireland, or abroad on various services.

No. 2, are interspersed in every regiment in the army, and ships of the line.
4. Mostly kept on charity.
5. Mostly vagabonds, travelling the country with images and pictures, and persons escaped from the conscription of France.
6. The greater part are valcts, teachets in schools, \&c.
7. The greater part are sugat-boilers and other labourers, including above 700 Jews.
8. Mostly employed in trade and commerce. (Monthly Mag.)
FO'REIGNNESS. s. (from foreign.) Remotencss ; want of relation to something (Locke).

FOREIMA'GINE. v. a. (fore and imağine.) To conceive or fancy before proof (Camden).

To FOREJUDGE. v. a. (fore and judge.) To judge beforehand; to be prepossessed.
To FQREKNO W. v. a. (fore and know.)
To have prescience of; to foresee (Ralcigh).
FOREK NOW ABLE. a. (from foreknow.) Possible to be known before they happen (More).

FOREKNOWLEDGE. s. (foreand knowledge.) Prescience ; knowledge of that which has not yet happened (Milton.)

FORELAND, or Foreness, in navigation, a point of land jutting out into the sea In England, there are two promontories or headlands, called North and South Foreland respectively. The former is the N.E. point of the Isle of Thanet in Kent, and is situated in Lon. 1. 17 E. Greenwich, and Lat. 51. 23 N. The latter forms the east point of the Kentish coast, but is called South in respect to its bearing from the forner: its Lon. is 1.17 E. and its Lat. 51. 12 N.

To FORELA'Y. v. a. (fore and tay.) To lay wait for ; to entrap by ambush ($D_{r y d e n}$).

To FORELIFT. $v . \boldsymbol{a}$. (fore and ift.) To raise ahoft any anteriour part (Spenser).

FO'RELOCK. s. (fore and lock.) The hair that grows from the forepart of the head (Millon).

FOR

FOREMAN. s. (fore and man.) The first or chief person (Addison).

FOREMAST of a ship, a large round piece of timber, placed in her forepart, or forecaste, and carrying the fore-sail and fore-top-sail yards. Its length is usually $;$ of the main-mast. And the fore-top-gallant-mast is $\frac{\pi}{2}$ the length of the fore-top-nast. See Mast.

Foremast-nen, are those on board a ship that take in the top-sails, fling the yards, furl the sails, bowse, trice, and take their ture at the helm, \&c.

FO'REMENTIONED. a. (fore and mention.) Mentioned ot recited before.
FO REMOST. a. (from fore.) 1. First in place (Sidney). 2. First in dignity (Dryden).
FORENA'MED. a. (fore and paime.) Nominated before (Ben Jonson).

FO'RENOON. s. (fore and noon.) The time of day reckoned from the middle point, between the dawn and the meridians to the meridian (Arluthnot).

FORENOTICE. s. (Jore and notice.) Information of an event befori it happend (Rymer).

FORE'NSIC. a. (furensis, Latin.) Belonging to courts of judicature (Lucke).

To FOREORDA'IN. v. a. (fore and ordain.) To predestinate; to predetermine; to préordain (Huoker).
FO'REPART. A. (fore and part.) 1. The part first in time (Raleigh). 2. The part anteriour in place (Ray).

FORE'PAST. a. (fore and past.) Past before a certain time (Hammond).

FOREPOSSE'SSED. a. (fore and possess.) Preoccupied; prepossessed (Sanderson).

FO'RERANK. s. (fore and rank.) First rank; front (Shakspeare).

FORE REACH, in the sea language: a ship is said to fore reach upon another, when both sailing together, one sails better, or outgoea the other.

FORERECITED. a. (fore and recife.) Mentioned or enumerated before (Shakspenre).
To FORERUN. v. a. (fore and mun.) 1. To come before as an earnest of sonuething following (Dryden). 2. To precede; to have the start of (Graunt).

FORERUNNER. s. (from foresux.) 1, A harbinger; a messenger sent before to give notice of the approach of those that follow (Nillling fleet. Dryden). 2. A prognostic; a sign foreshowing any thing (South).
To FORESA'Y. v. a. (fore and say.) To predict; to prophesy; to foretell (Shakspeare).

To FORESE'E. v, a. (fore and see.) To see beforeliand; to see what has not yet happened (Taylor).

To FORESHAME. v. a. (fore and shame.) To shame; to bring reproach upon (Shakspeare).

FORESHIP. s. (fore and skip.) The anteriour part of the ship (Acts).

To FORESHO_ITEN, v. a. (fore and
atorten.) To shorten figures for the sake of seeung those behind (Dryden).

To FORESHOW. v. a. (fore and show.) 1. To discover before it happens; to predict; to prognosticate (Denham). 2. To represent before it comes (Hooker).

FORESIGHT. s. (fore and sight.) 1. Preocience ; prognostication ; foreknowledge (Miltoz). 2. Provident care of futurity (Spenere).

FORESI'GHTFUL. a. (foresight and full.) Prescient ; provident (Sidney).

To FORESI'GNIFY. v. e. (fure and signify.) To betoken beforehand; to foreshow; ω irpify (Hooker).

FORESKIN. s. (fore and shin.) The prepuse (Coveley).
FORESKIRT. s. (fore and skirt.) The pendulous or loose part of the cuat before (Shakspeare).

To FORESLA'CK. v. a. (fore and slach.). To deglect by idleness (Spenser).

To FORESLOW. v. a. (fore and slow.): 1. To delay ; ro hinder ; to impede (Dryden): 2. To neglect ; to onit (Fletcher).

To Eoreslo'w. v. n. To be dilatory; $t 0$ loiter (Shakspeare).

To FORESPE'AK. v. n. (fore and speak.) 1. To predict ; to foresay (Camden). 2. To forbid. (Shakspeare).

FORESPE'NT. a. (for and spent.) 1. Wasted; tired; spent (Shakspeare). 2. Forepassed; past. (fore and spent.) (Spectator). 3. Bestowed before (Shakspeare).

FORESPURRER. s. (fore and spur.) One that rides before (Shakspeare).

FOREST, in geography, a huge wood; or - lagge extent of gmund covered with trees. The word is formed of the Latin foresta, which first occurs in the capitulars of Charlemagne, and which itself is derived from the. Gerraan frost, signifying, the same thing. Spelman derives it from the LLatin foris restat, by reason that forests are out of towns. Others derive foresta from feris, q. d. Foresta, quoad nit tate statio ferarum, as being a safe station or abode for witd beasts. The Caledonian and Hercynian forests are famous in history. The first was a celebrated retreat of the ancient Picts and Scots : the latter anciently occupied the greatest part of Europe; particularly Germany, Poland, Hungary, \&ic.

Forest, in law, is defined by Manwood a certaiq territory of woody grounds and fruitful pastures, privileged for wild beasts and fowls of forest, chase, and warren, to rest and abide under the protection of the king, for his princely delight; 'bounded with unremoveable marks and meres, either known by matter of record of prescription; replenished with wild beass of venery or chase, with great coverts of rert for the said beasts $;$ for preservation and contiuyapce whereof, the vert and venison, there are certain particular laws, privileges, and officers. Forests are of, snch antiquity in England, that, excepting the New. Forest in Hampshire, erected by Williaph the Conqueror, and thamptop-Coprt, ergeted by Heury VIIL,

FOR

it is said, that there is no record or history which makes any certain mention of theif erection.

Fobest (Beasts of the), are the hart, hind, . buck, doe, boar, wolf, fox, hare, \&ce.

Forsst-courts, courts instituted for the government of the king's forests in different parts of the kingdom, and for the punishment of all injuries done to the king's deer or venison, to the rert or greenswand, and to the covert in which such deer are lodged.

Forest-laws, are peculiar laws different. from the common law of Eugland. Even to ${ }^{-}$ this day, in trespasses relating to the forest, voluntas repulatitur pro facto; so that if a man be taken hunting a deer, he may be arrested as if he had taken a deer.

Forest-towns, in geography, certain towns of Suabia in Germany, lying along the Rhine, and the confines of Switzerlaud, and subject to the house of Austria. Their names are Rhinefictd; Seckingen, Lausenburg. and Waldshut.

Fonests (Plantation of), This of late has been too much neglected in our own country; whence the high and enormous price of timber of every kind, and the extreme difficulty of obtaining it during war. Even those who are possessed of extensive tracts of woodlands are more generally disposed to convert them into arable than to maintain them upon their existing use. It is a national cril; but will always be found to accompany a population that demands a larger proportion of grain than the soil actually cultivated produces, and where landed estates are perpetually flitting from hand to hand.

The trees that answer best for fresh planta. tion are such as grow to a large size, and lofty height, whether deciduous or evergreen: those. chiefly employed are the oak, ash, elm, beech, chesuut, maple, birch, alder, poplar, larch. and pine. Many of these are as omamental as they are useful, and where ornament is principally the object, they may be intermixed with mountain-ash, lime, horse-chesrnat, willow, and all the varieties of fir, box, holly, yew, cypress and cedar.

In forming plantations of this kind, the following rules may be found useful.

Great care should, in the first place, be taten to adapt the trees as much as possible to the soils and situation, as some sorts succeed beston a.soil of one kind, and other sorts on a soit: of another kind. Thus the oak, elin, maple, and birch, answer well on all the deeper kindsof soil; while those of the ash, beech, chesnut, mountain-ash, larch, pine, box, holly, and yew thrive most perfectly where the soils, are light, dry and friable; at the same time that the'alder, willow, and poplar demand a soil whete there is a considerable degree of moisture; and the beech, mountain-ash, and larch succeed well in exposed situations.

The manual labour required in laying out a. forest, is nearly the same as that for fruit trees and shrubs; and though plantations of forest ures. need nops be so nicely attended to as fruit

FORESTS.

Grees, yet the better the work is performed, the fairer is the prospect in growing good timber : a check by an error at first planting is a loss of time, and a damage done to trees which is sometimes never recovered. To give an instance : the mould is often thrown on the roots of a forest tree in lumps, when if a little sifted earth was used, so as just to cover them with fine mould, the trouble would be amply repaid by the quick striking, and future strength of the tree.

Ground designed for planting should be prepared as long as it can beforehand, by the use of the plough or spade; and if some sort of previous cultivation, either in corn or vegetables, was adopted, the soil would be better fitted to receive the trees. At any rate, the places where the trees are to be set should be previously dug somewhat deep, and cleared of rubbish, perennial weeds, couch, \&c. If wet, let it be properly drained, for none but aquatics can do well in a cold and very moist soil.

In open planting for timber, to make only the holes good where the trees are set, is sufficient, if the soil be not strong (which, generally speaking, however, it should be); and in such plantations, the plough being used for corn, or some sort of crap to be carried off, the whole soil will be prepared for the tree's roots to spread. A plantation of this sort may be constantly under the plough, till the trees shade too much; and then it may be sown down for grass, which lying warm, and coming early, would be found useful. The opportunity given to improve a soil by this cultivation would insure very fine timber. But a plantation of trees being made (as suppose of oaks) at due distances, and the ground ploughed for two or three years, while they get a little a head, then it might be sown profitably with nuts, keys, and sceds for underwood, observing to thin the plants the second year, and again the third, till two or three feet asunder in poor ground, and to three or four feet distance if rich. In fourteen or fifteen years (or much sooner for some purposes), the ash poles, \&c. will be fine, and meet with a ready sale as useful stuff: afterwards the underwood will be fit to cut, in a strong state, every eleven or twelve years. In the management of underwood, some have thinned the plants while young, to three feet asunder, and cut them down at three years, to about six inches, in order to form stools, which in about ten years are cut, having produced several stems from each. Some persons have cut seedling trees down at this age to three inches for timber, leaving only one strong shoot to grow from each stool; and thus finer trees are frequently (or rather certainly) produced, than from seedlings not cut down. The distances of the timber plants may be from twenty-five to thirty-five feet, according to the soil, or opinion of the planter. If no view to underwood, the above open planting may be made close, by setting first the principals (which should be fine plants), and then filling tup with others that are worse, to within about eight or nine feet of one another. They will at this distance
come to fair timber, or may be thinned at pleasure; and even among these, a small crop of underwoorl might be had, which would shelter the timber plants, and help to draw them up straicht.

As to little plantations, of thickets, coppices, clumps, and rows of trees, they are to be set close according to their nature, and the particular view the planter has, who will take care to consider the usual size they attain, and their mode of growth. An advantage at home for shade or shelter, and a more distant object of sight, will make a difference. For some immediate advantage, very close planting may take place, but good trees cannot be thus expected; yet if thinned in time, a straight tall stem is thus procured, which afterwards is of great advantage.

For little clumps or groups of forest trees (as elms), these may be planted three or four in a spot, within five or six feet of one another, and thus be easily fenced; having the air freely all round, and a good soil, such clumps produce fine timber.
Single trees of every sort grow off apace, and are more beautiful than when in the neighbourhood of others, and particularly firs, pines, larches, limes, walnuts, and chesnuts: the edible fruited chesnut is exceedingly good for timber; but the horse is only ornamental, flourishing most on high dry ground. As to rows of trees, whether single or double, when planted for a screen, they may be set about seven or eight feet asunder, upon an average, according to their nature, taking care to prune them occasionally from too galling an interference.
Avenues are now seldom planted; but when they are, two good rows of elms, limes, chesnuts, \&c. should be set at the width of the house, at full thirty feet distance in the rows : to thicken which, intermediate plants may be set; and also an inner row, to be removed when the principal trees are full grown. Avenues to prospects should be fifty or sixty feet wide. The best season for planting deciduous kinds of forest trees is toward the end of Oc tober, and for evergreen sorts, the end of March; though the soil, whether light and dry, or heavy and wet, should somewhat direct; evergreen trees being to be planted generally with safety, early in autumn, if the soil is warm; but in all cases trees should be planted in dry weather, that the mould may be loose to drop in, and lie close between the roots, which is a material thing: trees planted in rain or mists are injured by the moisture moulding the roots.
Forest trees for planting are generally preferred rather large, and being so, should not be taken up carelessly, but with as much of an uninjured spread of roots as possible; yet free growing plants, of about three or four feet high, promise in the end to make finer trees than those that are planted larger. Some say they are best at this size from the seed bed; and others, to have been once planted out, having had their tap roots then cut: and generally
reaking, this is the case, as they have a more bushy and horizontal root. In the act of plantiag, let every thing be done as for fruit trees; i. e. the hole duy wide and deep, the ground well broken, or rather sifted, to lie immediately about their roots, \&ic. Let the trees be made fast by stakes, and litter laid about their roots to keep out frost and drought. It is of much consequence to take care that the roots (especially of evergreen trees) do not get withered before planted. Evergreens do best im a dry, but deciduous forest trees (generally) in a moist soil, if it is not wet. Oaks in particular, though at first they may appear to do poorly, grow well in strong moist ground, and make the best timber.
Fencing is the last thing to be considered. If trees be planted where cattle go, their stems must be protected from barking and rubbing. The common way of small pusts and little rails is well known ; but if large cattle be not fed where the trees are, good thorns stuck round them, and tied to them, are sufficient, and indced this might do in almost all cases. There are rarious ways, ordinarily known ; but whatever mode is used, let it be at first well executed, and afterwards repaired in time, as often as there is need.
Whoerer plants forest trees, should take care to dress them by proper pruning, and suffering no suckers to remain about their roots. Their tops should be kept equal, and not permitted to spread too much in heavy branches, but trained in a light and spiral way, always preserring the leading shoot, to encourage mounting, which is the perfection of a forest tree. The stems of all trees designed for timber should be constantly and timely attended to, as it is necessary to rub off buds, or cut off the side shoots, except here and there a small one, which may serve to detain the sap to the swelling of the trunk; but branches being left on of any strength, keep the tree from mounting, and draw it crooked; and such branches, if cut off when large, occasion knots, and sometimes decay at the part.
Plantations growing thick should be thinned in time, but not too much at once, especially in hilly situations; for those trees which remain come suddenly to be exposed (after having been brought up under the shelter of others), and suffer much; getting crooked, stonted, and bushy, instead of having their desirable form, withoat which they are not aflapted for superior uses, or agreeable to the ege.

Ornamental trees, as the crab, black cherry, mountain ash, \&ce. may prove profitable, as well as agreeable, one being here and there scattered amongst forest trees, and should therefore not be omitted: the wood is good.

FORE-STAFF, an instrnment used at sea, for taking the altitudes of the heavenly bodies; being so called, because the observer, in using it, turns his face forward, or towards the object, in contradistinction to the back-staff, with which he turns his back to the object. It is
also called the cross-staff, because it consists of several pieces set across a staff.

The fore-staff is formed of a straight square staff, of about three feet long, having each of its four sides graduated like a line of tangents, and four crosses, or vanes, sliding upon it, of unequal lengths, the halves of which represent the radii to the lines of tangents on the diffierent sides of the staff. The first or shortest of these vanes is called the ten cross, or ten vane, and belongs to the 10 scale, or that side of the instrument on which divisions begin at 3 degrees, and end at 10. The next longer cross is called the 30 cross, belonging to that side of the staff where the divisions begin at 10 degrees, and end at 30 , called the 30 scale. The third vane is called the 60 cross, and belongs to that side where the divisions begin at 20 degrees, and end at 60 . The last or longest vane, called the 90 cross, belongs to the side where the divisions begin at 30 degrees, and end at 90 :
The chief use of this instrument is to take the height of the sun, and stars, or the distance between two stars; and the $10,30,60$, or 90 cross, is to be used, according as the altitude is more or less ; that is, if the altitude be less than 30, the 30 cross is to be used; and so on.
Toobserve an Altitude with the Forestaff. Apply the flat end of the staff to the eye, and slide one of the crosses backwards and forwards upon it, till over the upper end of the cross be just seen the centre of the sun or star, and over the under end the extreme horizon; then the degrees and minutes cut by the cross on the side of the staff proper to the vane in use, gives the altitude above the horizon.
In like manner, for the distance betueen two luminaries; the staff being set to the cye, bring the cross just to subtend or cover that distance, by having that luminary just at the one end of it, and the other luminary at the other end of it ; and the degrees und minutes, in the distance, will be cut on the proper side of the staff, as before.
To FORESTA'LL. v.a. (fonercallan, Sax.) 1. To anticipate; to take up beforehand. 2. To hinder by preoccupation or prevention (Pope). 3. To seize or gain possession of before another (Spenser).
FORESTA'LLER. s. (from forestall.) One that anticipates the market; one that purchases before others to raise the price (Locke).
FORESTALLING, is the buying or bargaining for any corn, cattle or other merchandize, by the way, before it comes to any market or fair, to be sold; or by the way, as it comes from beyond the seas, or otherwise, towards any city, port, haven, of creek of this realm, to the intent to sell the same again at a higher price.
At the common law, all endeavours to enhance the common price of any menchandize, and all things which have an apparent tendency thereto, whether by spreading false rumours, or by purchasing things in a market before the accustomed hour, or by buying and selling

FOR

again the same thing in the same market, or by any other such like devices, are highly criminal, and punishable by fine and imprisonment.

Several statutes have, from time to time, been made against these offences in general, which were repealed by 12 Geo. MII.

But though these offences are no longer combated by the statutes, they are still punishable upon indictment at the comnon law, by fine and imprisonment.

FORESTBO'RN. a. (forest and lorn.) Born in a wild (Shakspeare).
FO'RESTER. s. (furestier, French.) 1. An officer of the forest (Shakspeare). 2. An inhabitant of the wild country.

FO'RESWAT. Fo'regwart. a. (from fore and swat, from sweat.) Spent with heat Sidney).
To FORETA'STE. v. a. (fore and taste.) 1. To have antepast of; to have prescience of. 8. To taste before another (Milton).

Fo'retaste. s. Anticipation of (South).
To FORETE'LE. v. a. (fore and tell.)

1. To predict; to prophesy (Dryden). 2. To Coretoken; to foreshow.

To Poretéll. v. n. Toutter prophesy.
FORETELLER. s. (from foretell.) Predicter; foreshower (Boyle).
FORETHIGH; a name denoting the arm of a horse.
To FORETHINK. v. a. (füre and think.)
1: To anticipate in the mind'; to trave prescience of (Raleigh). 2. To contrive antecedently (Hall).
To Forethink v. n. To contrive beforehand (Smith).
FORETHOUGHT. s. (from forethink.) 1. Prescience; anticipation ($L^{\prime} E^{\prime}$ strange). 2. Provident care.

To FORETO'KEN. v. a. (fore and token.) To foreshow; to prognosticate as a sign (Daniel).

Foretóxen. s. (from the verb.) Prevemient sizn ; proznostic (Sidney).
FORETO'OTH. s. (fore and looth.) The rooth in the anteriour part of the mouth; the Incisor (Ray).
FORETOP. s. (fore and top.) That part of a woman's headdress that is forward, or the top of a periwig (Dryden).
FOREVOUCHED. part. (fore and vouch.) Affirmed before; formerly told (Shakspeare).
FOREW ARD. s. (fore and ward.) The van; the front (Maccalees).
To FOREW A'RN. v. a. (fore and warn.) 1. To admonish beforehand (Luke). 2. To inform previously of any future event (Milton). 3. To caution against any thing beforehand.
To FOREWA'STE. v. a. (fore and waste.) To desolate; to destroy: out of use (Spenser).
To FOREWISH. v. n. (fore and wish.) To desire beforehand (Knollcs).
FOREWORN. part. (fore and worn,

FOR

from wear.) Worn out; wasted by time of use (Sidney).
FOREZ, a late province of France, bounded on the W. by Auvergne, on the S. by Velay and the Vivarais, on the E. by the Lyonnois, and on the N. by Burgandy and the Bourbonnois. It is watered by the Loire, and several other streams, and has several mines of coal and iron. It now forms, with the Lyonnois, the department of Rhone and Loire.
FORFAR, the county town of Angus-shire. It contains many neat houses. Lat. 56.35 N . Lon. 2.54 W .
FORFARSIIRE. See Angus-shire. Part of the Grampian mountains runs through this county. The population of this county amountal to 08,297 in the year 1755, and to 97,778 in the year 1801.

FORPEIT. s. (forfait, French.) 1. Something lost by the commission of a crime; a fine; a mulct (Wa aller). 2. A person obnoxious to punishment (Shakspeare).
To Fo'rfitt. v. a. (from the noun.) To lose by some breach of condition; to lose by some offience (Davics. Boyle).
Fo'rfeit. part. a. (from the verb.) Liable to penal scizure; alienated by a crime (Pope).
FO'RFEITABLE. a. (from forfeit.) Possessed on conditions, by breach of which any thing may be lost.
FO'RHEITURE. s. (forfaiture, French.) 1. The act of forfeiting. 2. The thing forfeited; a mulct; a fine.
Forfeiture, is a punishment annexed by law to some illegal act or negligence in the owner of lands, tenements, or hereditaments, whereby he loses all his interest therein, and they go to the party injured, as a recompense for the wrong which either he alone or the public together have sustained. (2 Blackstone, $267)$.
The offences which induce a forfeiture of lands and tenements are principally the following : treason, felony, misprision of treason, promunire, drawing a weapon on a judge, striking any one in the presence of the king's court of justice, and popish recusancy, or monobservance of any certain laws, enacted in restraint of papists.
By the common law, all lands of inheritance of which the offender is seised in his own right, and also all rights of entry to lands in the hands of a wrong-doer, are forfeited to the king on an attainder of high treason, although the lands are holden of another; for there is an exception in the oath of fealty, which saves the tenant's allegiance to the king; so that if he forfeits allegiance, even the lands he held of another lord, are forfeited to the king, for the lord himself cannot give of lands, but upon that condition. (Co. Lit. 8.)
Also upon an attainder of petit treason or felony, all lands of inheritance of which the offender is seised in his own right, as also all rights of entry to lands in the hands of a wrong-doer, ase forfeited to the lord of whom

FOR

they are inmediately holden : for this by the feudal law was deemed a breach of the tenant's oath of fealty in the highest manner; his body with which he had engaged to serve the lord, being forfeited to the king, and thereby his bluod corrupted, so that no person could represent him; and all personal estates, whether they are in action or possession, which the party has or is entited to, in his own right, and not as executor or administrator to another, are liable to such forfeiture in the following cases:

1st. Upon a conviction of treason or felony. But the lord cannot enter into the lands holden of him upon an escheat for petit treason or felony, without a special grant, till it appears by due process that the king has had his prerogative of the year, day, and waste. (Stanf. P.C. 191.

As to forfeiture of goods and chattels, it seems agreed that all things whatever, which are comprehended under the notion of a personal estate, are liable to such forfeiture.

2d. Upon a flight found before the coroner, on view of a dead body.
3d. Upon an acquital of a capital felony, if the party is found to have fied. 2 Haw. 450.

4th. If a person indicted of petit larceny and acquitted, is found to have fled for it, he forfeits his goods as in cases of grand larceny. 2 Haw. 451. But the party may in all cases, except that of the coroner's inquest, traverse the finding of the flight; and it seenis agreed that the particulars of the goods found to be forfeited may also be traversed.
sth. Upon a presentment by the oaths of twelve men, that a person arrested for treason or felony fled from, or resisted those who had him in custody, and was killed by them in the pursuit or scuffle. Id.

6ih. If a felon waive, that is, leave any goods in his flight from those who either pursue him, or are apprehended by him so to do, he forfeits them, whether they are his own goods, or goods stolen by him; and at common law, if the owner did not pursue and appeal the felon, he lost the goods for ever: but by 91 H. VIII. c. 11, for encouraging the prosecution of felons it is provided, that if the party comes in as evidence on the indictment, and attaints the felon, he shall have a writ of restitution. 4 Inst. 134.

7th. If a man is felo de se, he forfeits his goods and chattels. 5 Co. 109.

8 th. A convict within clergy, forfeits all his grods, though he may be burnt in the hand, yet thereby he becomes capable of purchasing other goods. Bat, on barning in the hand, he ought to be immediately restored to the possession of his lands. 2 H. 388, 389.

The forfeiture upon an attainder of treason or felony, shall have relation to the tinie of the offence for the avoiding all subsequent alienation of the lands; but to the time of conviction, or fugam fecit found, \&c. only as to chatuels, uniess when the party was killed in Aying from, or resinting those who had arrested him: in which case it is said that the forfect-

VOL. V .

FOR

ure shall relate to the time of the offence. Plowd. 488.
Forfeiture in civil cases. \mathbf{A} forfeiture of copyhold by felling timber, was relieved in equity; but the lord-keeper declared, that in case of a wilful forfeiture he would not relieve. Chan. Cas. 96 . In case of a forfeiture equity can relieve, where they can give satisfaction. 1 Salk. 156.
Forfeiture opmarriage, a writ which anciently lay against him, who by holding knight's service, and being under age, and unmarried, refused her wiom the lord oflered him without his disparagement, and married another. F. N. B. 141.
FORFE ND. o. a. To prevent; to forbid.
FORFEX (quasi ferifex.) The same as forceps.
FORFI'CULA. Ear-wig. In zoology, a genus of the class insecta, order coleoptera: anteunas setaceous; feelers unequal, filiform; shells half as long as the abdomen ; wings folded up under the shells; tail armed with a forceps. Eighteen species, chiefly inhabitants of Europe and America; two found in our own country ; F. auricularia, and F. minor. It is sufficient to describe the first, which is of a dark chesnut colour ; forceps curvei, toothed at the base; antennas with fourteen joints. Very common in wet ground, ripe fruit, and old wood; and has been occasionally found to creep into the ears of such as sleep in the open air: when it is easily destroyed by dropping into the ear either a little oil or spirits, or both. The eggs are white, and oval, and large for the size of the insect ; they are found deposited in damp situations, and generally under stones. The parent is more provident of the young larves than insects generally are, brooding over them for several hours in the day, after the manner of birds. See Nat. Hist. PI. CXVI.

FORGA'VE. The preterit of forgive.
FORGE. s. (forge, French.) 1. The place where iron is beaten into form. 2. Auy place where any thing is made or shaped (Hiouker). 3. Manulacture of metalline bodies (Bacon).

To Forge. v. a. (forger, old French.) I. To form by the hammer (Chapman). 2. To make by any means (Locke). 3. To counterfeit ; to falsify (Nhakspeare).
Forge properly signifies a little furnace, wherein siniths and other artificers of iron or steel, \&c. heat their metals red hot, in order to soften and render them more malleable and manageable on the anvil. An ordinary forge is nothing but a pair of bellows, the nozzle of which is directed upon a smooth area, on which coals are placed. The nozzle may also be directed to the bottom of any furnace, to excite the combustion of the coals placed there, bv which a kind of forge is formed. In laboratories, there is generally a small furnace consisting of a cylindrical piece, open at top, which has at its lower side a hole for receiving the nozzle of a double bellows. This kind of forge furnace is very convenient for fusions, as the operation is quickly performed, and with few coals. In its lower part, a little above the hole for receir-

E

FOR
ing the nozale of the bellows, may be placed an iron plate of the same diameter, supported upon two horizontal bars, anr pierced near its circumference, with four holes diametrically opposite to each other. By this disposition the wind of the bellows, pushed forcibly under this plate, enters at these holes; and thus the heat of the fire is equally distributed, and the crucible in the furnace is equally surrounded byit. As the wind of bellows strongly and rapidly excites the action of the fire, a forge is very convenient when a great heat is required. The forge, or blast-bellows, is nsed tofuse salts, metals, ores, \&cc. It is much used also in works which require strong heat, without much management; and chiefly in the smelting of ores, and fusion of metallic matters.

FORGE, in the traiu of artillery, is generally called a travelling forge, and may not be improperly called a portable smith's shop : at this forge all manner of smith's work is made, and it can be used upon a march, as well as in canp.

FOrge is also used for a large furnace, wherein iron-ore taken out of the mine is melted down; or it is more properly applied to another kind of furnace, wherein the iron-ore, metted down and separated in a former furnace. and then cast into sows and pigs, is heated and fused over again, and beaten afterwards with large hammers, and thus rendered more soft, pure, ductile, and fit for use

FO'RGER. s. (from forge.) 1. One who makes or forms. 2. One who counterleits any thing (West).

FO'RGERY. s. (from forge.) 1. The crime of fasification (Sitcphens). 2. Smith's work; the act of the forge (Milton).

Forgery, is where a person counterfeits the signature of another with inient to defraud, which by the law of England is made a capital felony.

A receipt to a cash memorandum is not a receipt on acquittance for the payment of money within 2 Geo. II. c. 25, against forgery.

Forgery may be committed by making a mark in the name of another person. It may also be conmitted in the name of a person who never had existence. And it may be committed of an instrument, though such an instrument as the one forged does not exist either in law or fact.
Indorsing a real bill of exchange with a fictitious name is forgery; although the use of a fictitious name was not essential to the negociation.
A forged bank-note (although the word pounds is omitted in the body of it), and there is no water-mark in the paper, is a counterfeit note for the payment of money.
Altering an entry of money received, made by a cashier of the bank, in the bank-book of a person keeping cash there, by prefixing a figure to increase the amount of the sum received, is forging a receipt for money.
A reccipt indorsed on a bill of exchange in a fictitious name is forgery, although such name

FOR

does not purport to be the name of any particular person.

If a person who has for many years been known by a name which was not his own, and afterwards assumes his real name, in that name draws a bill of exchange, he will not be guilty of forgery, although such bill was drawn for fraudulent purposes.
If any person shall falsely make, forge, or counterfeit, or cause or procure to be falsely made, forged, or counterfeited, or willingly aid or assist in the false making or counterfeiting, any deed, will, bond, writing obligatory, bill of exchange, promissory note for payment of money, acquittance, or reccipt, either for money or goods, with intent to defraud any person; or ghall utter or publish the same as true, knowing the same to be false, forged, or counterfeited, he stall be guily of feiony without benefit of clergy ; tut not to work corruption of bloral, or disherison of hirs. 2 Gico. 11 . c. 25.

Forging or imitating stamps to deffaud the revenuc, is forgey by the several stamp acts; and the receiving of them is made sinde felons, punishable with seven years transporation. iz Gen. III. c. 48.

Tu FORGE"T. v. a. preter. furgot, part. forgotten or forgot. (fonf yam, Saxom.) I. Tolose memory of; to let go from the remembrance (Atterlury). 2. Nut to attend; to negiect (Isaiah).

FOLGETFUL. a. (from forget.) 1. Not retaining the menory of. 2. Causing oblivion; oblivious (Dryden). 3. Inattentive; negligent; neglectful; careless (Helrews. Prior).

FORGE'TIULNESS. s. (from forgetful.) 1. Oblivion; cessation to remember ; luss of memory (Shakspeare). 2. Negligence; neglect ; inattention (Hooker).

FƠRGFTIVE. a. (from forge.) That may forge or produce (Shatispeare).

FORGETTLER. s. (from forget.) 1. One that forgets. 2. A careless person.

FORGING, in suithery, the beating or hammering iron on the anvil, after having firss made it red-hot in the forge, in order to extend it into various forms, and fashion it into works. (Sce Forge.) There are two ways of forging and hammerng iron. One is by the force of the hand, in which there are usually seteral persons employed, one of them turning the iron, and hammering likewise, and the rest ouly hammering. The other way is by the force of a water-mill, which raises and works several huge hammers, beyond the force of man; under the strokes whereof the workmen present large lumps or pieces of irun, which are sustained at one end by the anvils, and at the other by iron chains fastened to the cieling of the forge. (See Mrll.) This last way of forging is only used in the largest works, as anchors for ships, \&ec. which usually weigh several thousand pounds. For the lighter works, a single man serves to hold, heat, and turn with one hand, while he hammers with the other. Each purpose the work is designed for requires its proper heat; for if the iron be too

FOR

cold, it will not feel the weight of the hammer, as the stuiths call it when it will not batter under the hammer; and if it be too hot it will redsear, that is, break or crack under the hammer. The several degrees of heat the smiths give their iron are, first, a blood-red heat; secondly, a white-flame heat; and thirdly, a sparkling or welding heat.
To FURGI'VE. v. a. pret. forgave; part. pass. forgiven. (fonsıan, Saxon.) 1. To pardon; not to punish (Prior). 2. To pardon a crime (Isaiuh). 3. To remit; not to exact debt or penalty.

FORGI'VENESS. s. (Fonzיfenirre, Sax.) 1. The act of forgiving (Daniel.) 2. Parion of an offiender (Dryden). 3. Pardon of an offence (South). 4. Tenderness; willingness to pardon (Sprat). 5 Remission of a fine, penalty, or debt.

FURGIVER. s. (from forgive.) One who pardons.

FORGOT. Forgo'tten. (part. pass. of forget.) Not remembered (Prior).

To FORHA'IL. v. a. To harass, tear, torment (Spenser).

FORISFAMILIATION, in law. When a child, upon receiving a portion from his father, or oiherwise, renounces his legal title to any further share of his father's succession, he is said to be forisfamiliated.

FORK, a well known instrument, consisting of a handle and blade, divided at the end into two or more points or prongs. The pitchfork is a large utensil of this construction, employed in hay-making, \&c. The table-fork, an instrument now so indispensable, did not come into use in Eugland till the reign of James I. as we learn from a remarkable passage in Coryat. The reader will probably smile at the solemn manner in which thisimportant discovery or innovation is related: " Here 1 will mention a thing that might have been spoken of before in discourse of the first Italian towns. I observed a custom in all those Italian cities and townes through the which I passed, that is not used in any other country that I saw in my trave's, neither do I thinke that any other nation of Christendome doth use it, but only Itaiy. The Italian and a iso most strangers that are commonant in Italy, doe always at their meals use a litle forke when they eat their meate; for while with their knife, which they hold in one hand, they cut the meate out of the dish, they fasten the forke which they hold in the other hand upon the same dish, so that whatsocver he be, that sitting in the company of any others at meale, should unadvisedly touch the dish of meat with his fingers, from which all the table doe, he will give occasion of offence unto the company, as having transgressed the lawes of good inanners, insomuch that for his error, he shall be at least brow-beaten, if not reprehended in wordes. This form of feeding I understand is generally used in all parts of Italy, their forkes for the most part being made of yronn, steele, and some of silver, but those are used only by gentlemen. The reason of this their curiosity is, because

FOR

the Italian cannot by any means endure to have his dish touched with fingers, seeing all men's fingers are not alike cleane. Hereupon I myself thought good to imitate the Italian fashion by this forked cutting of meate, not only while I was in Italy, but also in Germany, and oftentimes in England since I came home : being once quipped for that frequently using my forke, by a certain learned genteman a familiar fricnd of mine, Mr. Lawrence Whitaker : who in his merry humour doubted not to call me a table Furcifer, only for using a forke at feeding, but for no other cause."

Fork (Tuning), an instrument used by musicians to pitch the key of a tune to be sung. It is made of steel, much in the shape of a table fork, though with longer and thicker prongs; these being put into motion by striking or otherwise, yield, in consequence of their vibration, a fine, clear tone, as of the note G, A, C, from which the key note of the tune is readily taken.

Forx. (furca.) In botany. A divided prickle. Called bifid or trifid from the number of divisions, Exemplified in berberis, ribes, gleditsia, \&c.
To Fork. v. n. (from the noun.) To shoot into blades, as corn does out of the ground.
FO'RKED. a. (from fork.) Opening into two or more parts (Shakspeare).

Forked, furcatus: branched or sub-divided, usually into two. Applied to anthers; to bristles; as in leontodon hispidum, Arabis thaliana; to fronds, as in Jungermannia furcata; and to stems; but dichotomons is more proper, at least when they divide more than once.

FO'RKEDLY. ad. In a forked form.
FO'RKEDNESS. s. (from forked.) The quality of opening into two parts or more.

FO'RKIIEAI). s. (fork and head.) Point of an arrow (Spenser).

FORKY. u. (from fork.) Forked; furcated; opening into two parts (\boldsymbol{P} ope).

FORLANA, a kind of dance much used in Venice.

FORLI, an ancient town of Romagno, capital of a territory of the same name, with a bishop's see. Lat. 44.16 N. L.on. 11. 44 E.

FORLORE. a. Deserted; forsaken (Fairfax).

FORLO'RN. a. (fonlopen, Saxon.) 1. Deerted; destitute ; forsaken ; wretched; helpless; solitary (Knilles. Fenton): 2. Taken away (Syenser). 3. Small; despicable (Shaksрсате).

Forlórn.s. 1. A lost, solitary, forsaken man (Shakspeare). 2. Forlorn Hope. The soldiers who are sent first to attack, and are therefore doomed to perish (Dryden).

FORLO'RNNESS. s. Destitution ; misery; solitude (Boyle).

To FORLI'E. v. n. (from fore and lie.) To lie before (S_{p} enser).

FORM. s. (forma, Latin.) 1. The external appearance of any thing; representation; shape (Grew). 2. Being, as modified by a paricular shape (Dryden). 3. Particular

F O R

model or modification (Addison). 4. Beauty; elegance of appearance (lsaiah). 5. Regularity ; method ; order (Shahspeare). 6. External appearance without the essential qualities ; empty show (Swift). 7. Ceremony; external rites (Clarendon). 8. Stated method; established practice; ritual and prescribed mode (Hooker). 9. A long seat (Watts). 10. A class; a rank of students (Drydru). 11. The seat or bed of a hare (Prior). 12. The essential, specifical, or distinguishing modification of matter, so as to give it a peculiar manner of existence (Harris). See also on the word Form ourarticle Dictionary.

Form, in the sportsman's dialect, is the spot in which the hare takes her seat at the dawn of day, to secrete herself, after having followed her various exercise all night (or rather in the early part of the morning) to avoid discovery. When found sitting, she is said to be in her form. If shot as she sits, without being previously disturbed, she is then said to have been shot in her form. Hares vary their places of sitting according to the season, the sun, and the wind. Soon after harvest they are found in wheat, barley, and oat stubbles, as well as in rushy grass moors: when these become bare, they retire to coverts, banks, hedges, and hedge-tows. After Christmas, and in the spring months, dry fallows, particularly those lying towards the sun with an ascent, are seldom without hares, if there be any in the district.

Form (Printer's), an assemblage of letters, words and lines, ranged in order, and so disposed into pages by the compositor; from which, by means of ink and a press, the printed sheets are drawn. Every form is inclosed in an iron chase, wherein it is firmly locked by a number of pieces of wood; some long and narrow, and others of the shape of wedges. There are two forms required for every sheet, one for each side; and each form consists of more or fewer pages, according to the size of the book. See Printing.

Form of a series, in algebra, that affection of an undeterminate serics, which arises from the different values of the indices of the unk nown quantity.
To Form. v. a. (formo, Latin.) 1. To make out of materials (Pope). 2. To model to a particular shape (Milfon). 3. To modify; to scheme; to plan (Dryden). 4. To arrange ; to combine in a particular manner: as, he formed his troops. 5. To adjust; to settle (Decay of Picty). 6. To contrive; to coin (Rowe). 7. To model by education or institution (Dryden).

FORMA PAUPERIS, in law, is when a person has just cause of suit, but is so poor that he cannot defray the usual charges of suing at law or in equity; in which case, on making oath that he is not worth 51 . in the world, on all his debts being paid, and producing a certificate from some lawyer that he has good cause of suit, the judge will admit him to sue in forma paupris; that is, without paying any fee to counsellors, attorneys, or clerks : the statute

FOR

11 Hen. VII. c. 12. having enacted, that counsel and attorneys, \&cc. shall be assigned to such poor persons gratis. Where it oppears that any pauper has sold or contracted tor the bencfit of his suit whilst it is depending in court, such cause shall be thenceforth totally dismissed ; and a person suing in forma pauperis shall not have a new trial granted him, but is to aquiesce in the judgment of the court.

FO'RMAL. a. (formel, Fr. formalis, Lat.) 1. Ceremonious; solemn; precise; exact to affectation (Bu.). 2. Done according to established rules and methods; not sudden (Hooker). 3. Regular ; methodical (Waller). 4. External; having the appearance but not the essence (Dryden). 5. Depending upon establishment or custom (Pope). 6. Having the power of making any thing what it is ; constituent; essential (Hölder). 7. Retaining its proper and essential characteristic ; regular; proper (Si/ahspeare).

Fo'rmalist. s. (formaiiste, French.) Ote who practises external ceremony; one who prefers appearance to reality (Nouth).

FORMA'LITY. s. (jormalité, French.) 1. Ceremony; established mode of behaviour. 2. Solemn order, mode, habit, or dress (Sirifi). 3. External appearance (Glawville). 4. Essence; the qualty by which any thing is what it is (Stil'ing flect').

To FO'RMALIZE. v. a. (firmalizer, Fr.) 1. To model; to modify (llooker). 2. To affect formality.

FO'RMALLY. ad. (from formal.) 1. According to established rules (Shakspeare). 2. Ceremoniously; stiffly; precisely (Collier). 3. In open appearance (Horker). 4. Essentially; characteristically (Smalridge).

FORMATION. s. (formation, French.) 1. The act of forming or generating (Watts). 2. The manner in which a thing is formed.

FO'RMA'TIVE. a. (from formo, Latin.) Having the power of giving form; plastic (Bentlcy).

FORME, in the manage, a French term for a swelting in the very substance of a horse's pastern, and not in the skin. Solleysel says, this complaint occurs as well in the hind legs as in the fore; " and though it be an imperfection not very common, yet it is dangerous, in that it wilh admit of no other remedy but fring, and taking out the sole; neither can the fire be given to that part without great diffculty aud hazard. In the heginning the forme does not exceed half the bigness of a pigcon's egg, but labour and exercise will make it, in time, to grow to about half the bigness of a hen's cgg; and the nearer it is situated to the coronet upon the quarters, so much the more dangerous it is." This seems to be nothing more than the disease caller a quittor.

FORMEDON, in law, (breve de forma donationis) a writ that lies for a person who has a right to lands or tenements, by virtue of an entail, arising from the statute of Westminster. 2. Ch. II.

FO'RMER. s. (from form.) He that forms; maker; contriver; planner (Ray).

NATURAL HISTORY。

FOR

Fóraer. a. (from fonma, Saxon, firit.) 1. Before another in time (Nlakspeare). 2. Mentioned before another (Pope). 3. Past: as, this was the custom in former times.

FORMERLY. ad. In times past ($A d d$. .).
FORMIAT. See Formic acid.
FORMIC ACID. Acid of auts. There can be no doubt that the strong acid smell which is observed to arise from the atmosphere of an ant-bed, after being disturbed, must have been known to the ancients, but from their want of chemical knowledge, it is not very extraorlinary that they should have been ignorant that this smell proceeded from an acid of a peculiar kind. In more modern times, the existence of this acid was first made known by Mr. Ray, in a correspondence with Dr. Huse. The doctor informed him that these insects, when irritated, give out a clear liquid, which ringes blue flowers red; a fact which had been obserred by others. Hence it was found to be an acid, which was obtained by bruising the insects, by distilling them, and by infusing them in water. The French chemists obtained the acid by bruising ants, and macerating them in alcohol. When the alcohol was distilled over, an acid liquor remained, which saturated with lime, mixed with sulphuric acid, and distilled, gielded a liquid that possessed all the properties of acetic acid. This acid has been thought by some chemists, and especially by Margraaf, to be acetic acid, or at least to have a great analogy to vinegar; and by others in be a mixture of acetic and malic acid. A minute examination of it, however, sufficiently proves, that it differs yery essentially from both, whether separate or in conjunction, quite as much, indeed, as these differ from each other; it differs in its specific gravity, in its effects with alkalies, in its metallic salts, and in its affinities.

Thouvenel, on the contrary, contended, that it is very closely related to the phosphoric, or, as he calls it, the microcosmic; but he has not stated in what the relation or analogy consists. Lisier affirmed that he had extracted a similar acid from wasps and bees; but Arvidson and Oehrn failed in making the attempt after him, nor has any one been able to succeed since.

The formic acid, therefore, is an acid sui generis: it is extracterl from ants, either by cissillation or expression with water; in the living insect it reddens blue flowers; flies off in the form of a vapour smelling like musk : destrons animals under this gasseous form ; is capable of serving econonical purposes like vinegar ; is decomposed by a great heat; takes oxygen from oxygenated muriatic acid; and forms salts with alkalies and earths, which are erystallizable and not deliquescent.

These salts are called formiats.
FORMICA. Ant or emmet. In zoology, 2 genus of the class insecta, order hymenopcen. Feelers four, unequal with cylindrical ariculations placed at the tip of the lip which is cylindrical, and nearly membranaceous; antemnas filiform; a small erect scale between the thorax and abdomen; femeles and neuters

FOR

(or rather those commonly called neulers) armed with a concealed sting; males and females with wings; neuters wingless. This is a gregarious and proverbially industrious family, consisting, like bees, of males, females, and a third kind which are yet called neuters. These last are the well-known little insects who construct the nests or ant-hills, who labour with such unrenitting assiduity for the support of themseives and the idle males and females, and who guard with such ferocity the larves, or what are commonly called ants eggs. They wander about all day in search of food or materials for the nest ; and assist each other in bringing home what is too cumbersome for such as have attempted it. Thev every day bring-put of the nest and expose to the warmith of he sun the newly hatched larva, and feed them till they are able to provide for themselves. In the evening they consume tonether whatever has becn collected during the day, and do not, as is commonly supposed, lay up any store for the winter, bue probably against that season become torpid or die. They are peculiarly fond of plant-lice, and are themselves eagerly sought after by the ant-eater and various birds. A very grateful acid is procured from them by maceration and distillation. See Formic acid: as also Nat. Hist, Plate CXVI.

1. F. cospitum. This is the common ant or emmet : black in colour, petiole of the abdomen with two tubercles: scutel two-tooth. ed. Inhabits Lurope in dry meadows under moss. The males and females fly abroad in large swarms in a serene day, like the day fly.
2. F. herculanea. Herculanean ant. So called from being the largest species of the genus: in colour black; abdomen ovate ; legs ferruginous. Found chiefly in dry wouds of pine or fir, where it inhabits a large conical nest or hillock, composed of dry vegetable fragments, chiefly of fir-leaves; the nest is internally divided into distinct roads or avenues con.verging towards the centre, and opening externally: in the centre are placed the ooung lariæ under the care of the neutrals. Found in our own country, and in Europe in general.
3. F. omnivora. Thorax rough, with raised dots; petiole with two tubercles; borly testaceous; abdomen very minute. Inhabits Surinam; and in such swarns that a sheep killed and left abroad in the evening will be found entirely devoured by the morning.

FORMICATION, in building, arched vaulting.

FO'RMIDABLE. a. (formidabilis, Lat.) Terrible; dreadful; tremendous; terrific.

FO'RMIDABLENESS. s. (from formidable.) 1. The quality of exciting terror or dread. 2. The thing causing dread (D. of P.).

FO'RMIDABLY. ad. (from formidable.) In a terrible manner (Dryden).

FO'RMLESS. a. (from form.) Shapeless; wanting regularity of form (Shakspeare).

FORMOSA, a large island in the Eastern ocean, between 119° and $122^{\circ} \mathrm{E}$. lou. and 29° and 25° N. lat. about 100 miles E. of Canton

FOR

in China. It is subject to the Chinese, who, notwithstanding its proximity, did not know of its existence till the year 1430. It is about 255 miles long and 75 broad. A long chain of mountains, running from N . to S . divides it into two parts, the E. and W. The Dutch built the fort of Zealand in the W. part in 1634. This secured to them the principal port of the island. They were driven thence in 1661 by a Chinese pirate, who had made himself master of all the W. part. But in 1682 the whole island submitted to the emperor of China. It contains extensive and fertile plains, watered by a great number of rivulets that fall from the mountains. Its air is pure and wholesome; and the earth produces abundance of corn, rice, \&c.
FORMULA, or Formulary, a rule or model, or certain terms prescribed or decreed by authority, for the form and manner of an act, instrument, proceeding, or the like.

Formula, in church history and theology, signifies a profession of faith.

Formula, in medicine, a little form of prescription, such as physicians direct in extemporanesus practice, in distinction from the greater fornis in pharmacopeeias, \&ic.

Formula, in mathematics, a theorem or general rule or expression for resolving certain particular cases of some problem, \&ic. So $\frac{s}{2}+\frac{d}{2}$ is a general formula for the greater of two quantities whose sum is s and dificrence d; and $\frac{s}{2}-\frac{d}{2}$ is the formula, or general value for the less quantity. Again $\sqrt{d x-x^{2}}$ is the formula or general value of the ordinate of a circle whose diameter is d and absciss \boldsymbol{x}.

FORNAX, a goddess at Rome, who presided over the baking of bread. Her festivals, called Fornicalia, were first instituted by Numa. (Ovid).

Fornax chemica, in astronomy, the chemist's furnace, a new southern constellation, consisting of 14 stars of the first six magnitudes, i. e. 0.0.0.1.2. 11 .

FORNICATE. (fornix, an arch or vault.) In botany, Arched or Vaulted, which see.

To Fórnicate.v.a. (from fornix, Lat.) To commit lewdness (Brown).

FORNICA'TION. s. (fornication, Fr.) 1. Concubinage, or commerce with an unmarried woman (Graunt). 2. In scripture, sometimes idolatry (Ezekiel).
FORNICA'TOR. s. (fornicateur, French.) One that has commerce with unmarried wopen.
FORNICATRESS: s. A woman who withput marriage cohabits with a man (Shaks.).
FORNIX. (fornix, an arch or vault. A part of the corpus callosum in the brain is so called, because, if viewed in a particular direction, it has some resemblance to the arch of an encient vault.) The medullary body, composed of two anterior and two posterior crura, situated at the botom and inside of the lateral ven,

FOR

tricle, over the third ventricle, and below the septum lucidum.
FORRAGE, among military men, denotes hay, oats, barley, wheat, grass, clover, \&c. brought into the camp by the troopers, for the sustenance of their horses.
FORRES, a town of Murrayshire, seated on an eminence, 2 miles E . of the river Findhorn. Here are manufactures of linen and sewing thread; and east from the town is a remarkable obelisk $\mathbf{2 3}$ feet high, said to be the most stately monument of the Gothic kind to be seen in Europe.
To FORSA'KE. v. a. preter. forsook; part. pass. forsook or forsaken. (versarken, Dutch.) 1. To leave in resentment or dislike (Cowley) 2. To leave; to go away from (Dryden). 3. To desert ; to fail (Rowe).

FORSA'KER. s. (from forsake.) Deserter ; one that forsakee (Apocrypha).

FORSKOLEA, in bntany, a genus of the classoctandria, order tetragynia. Calyx four or five-leaved, longer than the corol ; petals eight or ten, spatulate pericarpless ; seeds four or five, connected by wool. Three species; Egypt, Teneriffe, and the Cape.

FORSO'OTH. ad. (fonrore, Saxon.) In truth; certainly : very well (Hayward).

FORS'IER (John Reinhold, LL.D.) professor of natural history in the university of Halle, member of the academy of science at Berlin, and of other learned societies, was born at Dirschau, in West Prussia, in the month of October, 1729, and was formerly a Protestant clergeman at Dantzick. He had a numerous family, and the emoluments of his office were slender. He therefore quitted Dantzick, and went, first to Russia, and thence to England, in quest of a better settlement than his own country afforded. In the Socinian academy at Warrington, he was appointed tutor in the modern languages, with the occasional office of lecturing in various branches of natural history. For the first of these he was by no means well qualified; his extraordinary knowledge of languages, ancient and modern, being unaccompanied by a particle of taste. As a natural historian, a critic, geographer, and antiquary, he ranked much higher. But these were acquisitions of comparatively little use to him in that situation.
At length he obtained the appointment of naturalist and philosopher (if the word may be so used) to the second voyage of discovery undertaken by captain Cook; and from 1772 to 1775 he accompanied that immortal navigator round the world. On his return he resided in London, till the improper conduct of himself and his son made it expedient for them both to leave the kingdom. Fortunately he received an invitation to Halle, where, for 18 years, he was a member of the philosophical and medical faculties. Among his works are: An Introduction to Mineralugi, or, An accurate Classification of Fossils and Minerals, \&c London, 1768, 8vo. A Catalogue of the Animals of North America, with short Directions for collecting, preserving, and transporting all

FOR

Kidds of Nataral Curiosities, London, 1771, 8vo. Observations made during a Vovage round the World, on Physical Geography, \&c. Loodon, 1778. He was the author of a great many productions in English, Latin, or German, and of scveral papers in the Philosophical Transactions. He translated into English, Bourgainville's Voyage round the World, and Kalm's, Bossu's, and Reidsel's Travels. He was employed likewise, when in England, in the Criucal Review; and he wrote various detached papers on different subjects, which have been inserted in foreign journals and the transactions of learned academies. He died at Halle on the 16th of December 1798, in the 70th year of his age.

FORSTERA, in botany, a genus of the class gynandria, order diandria. Calyx double; the outer inferior, three-leaved; inner, superior, six-cleft; corol tubular; berry inferior, one-celler, oue-seeded. One species: an ascending herlaceous plant of New Zealand, having white flowers with a red throat.

To FORSWE'AR. v. a. pret. forswore; part. forsworn. (ролғpænıan, Saxon.) 1. To renounce upon oath (Shakspeare). \&. To deny upon oath (Shakspeare). 3. With the reciprocal pronoun: as, to forswear himself; to be perjured; to swear falsely (Smith).
To Forsméar. v. n. To swear falsely; to commit perjury (Shahspeare)
FORSW E'ARER. s. (from forsucar.) One who is perjured.
FORT, in the military art, a small fortified place, environed on all sides with a moat, ranıpart, and parapet. Its use is to secure some high ground, or the passage of a river, to make good an advantageous post, to defead the lines and quarters of a siege, \&e. Forts are made of different figures and extents, according as the ground requires. Some are fortified with bastions, others with demi-bastions. Soine again are in form of a square, others of a pentagon. A fort differs from a citadel, as this last is built to command some town.
Forts (Vitrified), a very singular kind of structure found in the Highlands and northern parts of Scotland, in which the walls have the appearance of being melted into a solid mass, so as to resemble the lava of a volcano, fur which indeed they have been taken by several persons who have visited them.
These walls were taken notice of by Mr. Williams, an engineer, who wrote a treatise upon the subject, and was the first who supposed them to be the works of art; other naturalists having attributed them to a volcanic origin. These works are commonly situated on the tops of small hills, commanding an extensire view of the adjacent valley or low country. The area on the summit, varying, as is supposed, according to the number of cattle the proprietor had to protect, or the dependents he was obliged to accommodate, is surrounded with a high and strong wall, of which the stones are melted, most of them entirely; while others, in which the fusion has not been so complete, are sunk in the vitrified matter in
such a manner as to be quite inclosed with it; and in some places the fusion has been so perfect, that the runins appear like masses of coarse glass.

In the Phil. Trans. of the Royal Society of I.oudon for 1777, Part II. No. 20. is an account of Creck Faterick, there termed a volcanic hill near Inverncss, in a letter from Thomas West, esq. to Mr. Law, F.R.S. in which the writer does not hesitate to pronounce this hill an extinguished volcano: and having sent specimens of the burnt matter for the inspection of the Royal Society, the secretary subjoins a note to the paper, intimating that these specimens, having been examined by some of the members well acquainted with volcanic productions, were by them judged to be real lava. Such was likewise the opinion of the late Andrew Crosbie, esq. who, in an account which he gave to the Philosophical Society of Edinburgh in 1780, offered some very curious conjectures with regard to that process of nature, by which he supposed the whole of this hill to have been thrown up from the bottom of the sea by the operation of intestine fire.
Mr. Tytler agrees with those who think the vitrified structures to be artificial works; but he differs from Mr. Williams and others, who think that they were vitrified on purpose for cementing the materials together. His reason for this is, that the number of forts that show marks of vitrification is inconsiderable when compared with those that do not. He therefore considers the vitrification as accidental, and describes the manner in which he conceives it must have been accomplished. Among other observations of his opinion, he urges, that, in the fortification on Craig Phadrick, a large portion of the outward rampart bears no marks of vitrification. Mr. Cordiner, on the other hand, is of opinion, that the vitrifications in question cannot have been the works of art, and ridicules the contrary hypothesis, though without adducing any argument against it.
Mr. Tytler concludes his dissertation with a conjecture, which indeed seems well supported, that the forts in question were constructed, not only before the Roman invasion, but before the introduction of the rites of the Druids into Britain; as "there appears no probability that the inhabitants either lived under such a government as we know to have prevailed under the influence of the Druids, or had any acquaintance with those arts which it is certain they cultivated." On a view of the disputes which have agitated the learned on this obscure subject, we can only observe, that their arguments seem to have placed it in a state of equiponderance, and that the fact remains open to the investigation of future speculators.

FORTE, a musical term, directing the performer to sing or play loudly ; its superlative is F. F. or fortissima.

FO'RTED. a. (from fort.) Furnished or guarded by forts: out of use (Shatispeare).

FORTMENT, a musical term, implying strength and energy.

FORTESCUE (Sir John), an English

FOR

judge. He was born in the parish of Wear Gifford, in Devonshire, and educated at Oxford, from whence he removed to Liucoln's-inn. In 1430 he was made a sergeant at law, and in 1441 chicf justice of the court of King's-bench. He served Henry VI. with such fitelity, that in the first parliament of Exlward IV. he was attainted of high treason with other adherents of that unfortunate prince, whom he followed into Scotland, where Henry made him chancellor of England. In 1463 he went abroad, and settled in Lorrain. While in exile, he wrote his famous book, entitled, De Laudibus Legum Anglix, which however was not published till the reign of Henry VIII.; since which it has been frequently primied. When the affairs of the house of Lancaster turned, Fortescue came back to England, and though his party. did not succeed, yet he remained unnolested. He lived to the age of 90 , and was buried in the church of Elberton in Gloucestershire, where he had bought an estate. The best edition of his book is that of 1741 .

FORTEVENTURA, one of the Canary Islands, 65 miles in length, and of a very irregular breadth. It produces plenty of wheat, barley, beeves, and goats. Lat. 28.4 N. Lon. 14. 26 W .

FOR'TH. ad. ($\mathfrak{c o n t}$, Saxon; whence further, furthest, corrupted from forther, forthest.) 1. Forward ; onward in time (Spenser). 2. Forward in place or order (Whitgift). 3. Abroad; out of doors (Shakspeare). 4. Out away; beyond the boundary of any place (Spenser). 5. Out into public view (Waller). 6. Thoroughly; from beginning to end (Shukspeare). 7. To a certain degree (Hammond). 8. On to the end (Memoir in Strype).

Fortheprep. Out of (Donne).
Forth, a fine river of Scolland, which rises in Perthshire. Afier a course of nearly 40 miles it meets the Gcrman ocean a little below Alloa, where it forms a noble æstuary, called the Frith of Forth.

FORTHCO'MING. a. (farth and coming.) Ready to appear; not absconding (Shukspeare).

FORTHI'SSUING. a. Coning out; coming forward from a covert (Pope).
FORTHRI'GHT. ad. Straight forward; without flexions (Dryden).

Forthright. s. Astraight path (Shakspeare).

FORTHWITH. ad. Immediately; without delav; at once; straight (Davirs).

FO'RTIETH. a. (from forty.) The fourth tenth.
FO'RTIFIABLE. a. (fromforlify.) What may be fortified.

FORTIFICATION. s. (forfification, Fr.) 1. The science of military architecture. 2. A place built for strength (Sidney). 3. Addition of strength (Gov. of Tongue).

Fortipication, called also Military Architecture, is the art of strengthening a place by erecting batteries, walls, and other works, around the same, to render it capable of being dcfended by a small force against the attack of a more numerous enemy.

F OR

At a time when the great simplicity of manners gave a limit to the ambition even of the most as piring, and when science was yet in the womb of time, we may reasonably conclude, that the means of control and of resistance, then in use, were neither costly, labotious, nor very effectual. The details furnished in seripture prove incuntestibly, that even the circumallations used at their date were inadequate to the purposes of security and duration. In fact, the events that shone conspicuous in those times were, with very few exceptions, pitched battles in the open plain, ambuscades, and treasonable comspiracies!

Nor do we find in the more recent histories of Rome, of Greece, of Asia, or of other parts then holding any rank in the military world, much to support the opinion of the ancients having knowledge of fortitication. The few places that made any resistance appear to have been principally maintained by the personal prowess of their defenders. Their walls were, indeed, sometimes of great moment, as we see in the instance of Troy; which, if existing in the eighteenth century, would probably capitulate at the first summons.

It was not to be expected that where the powers of demolition were insignificant, the means of resistance would be extended beyond the quantum absolutely necessary. The catapulta, the battering ram, the tower, and such devices, were oppos. ed by heavy masses of stone, or of other adequate materials, on which the besieged mounted to repel the assault. The varions contrivances whereby those machines receival additional vigour, and the necessity that arose for opposing to their progress more resistance than could be accumulated immediately in their front, (of the tower in particular) first gave rise to the introduction of projections from the even line of the wall, whereby the besiegers could be annoyed laterally, as well as immediately front to front.

Still the engineer confined himself to small projections, generally semicircular, which, for the most part, appear to have been added to the old walls, impending like our modern balcony windows. In the sequel, these towers were built the same as the other parts of circumvallation, and, like the modern bastion, rested on the terra firma. It however scems doubtful, whether the former mode was not the best, considering every circumstance attendaut upon the ancient mode of assault, and the nature of their weapons.

The invention of zunpowder does not appear to have made any important change for several years, nor indeed until heavy artillery formsed a part of the assailants' means, as may be proved by all examination of the remainiug castles, towers, keeps, \&c. the dates may be traced beyond the middle of the fourteenth century. Such were the solidity and the hardness of many ancient buildings, that the stone shots, originally used, produced a very slight effect; nor was it until iron balls werebrought into use that the powers of camnon were, in any measure, ascertained.

That point being gained, the whole system of defence was necessarily made to conform to the destructive engines which now were added to the common practices of assault. The sword, buckler, lance, dart, javelin, sling, bow and arrow, lost their wonted estimation, and, dwindling into insignificance on the great scale, were reserved for individual contest, or for the lesser purposes of desultory warfare. The great object was to construct such stapendous bulwarks as might not only oppose the newly devised missiles, but, at the

FORTIFICATION.

same time, support similar means of destroying the invading army.

Hence arose the formation of ramparts, and, gradually, the necessity for deep ditches, and various outaorks; whereby considerable delay and difficulty might be created.

The fortitications of the fifteenth century, althoush to a certain extent new modelled, and made conformable to the necessity imposed by the invention and use of cannon, neverthetess did not display any ingenuty in regard to mutual defence. That sreat principle was little understood, and the minutiz of the science remained, for a long time, miscrably defective. Men of genius, at length, in part remedied the errors of the old schoot, and opened the way for that exactness of proportion, and for that systematic arrangement, which characterize the works of modern times. The imprecnable fortresses to be seen in various parts of Europe, cannot fail to transmit the names of their several engineers in posterity; unhappily, not unaccompanied by those of the traitors who, eren since the commencement of the present century, have shamefully abandoned the posts of honour, and gielded to inferior powers.

The immense armies now constantly hrought into the field, and the heavy trains of artillery by whieh they are, in almost all cases, attended, occasion not only an adequate preparation for resistance, but the necessity for establishing lines of communication, of depots, \&c. all of which must be on the best construction for defence, containing safe lodgment for a sufficient garrison, tugether -ith ample and sccure magazines for provisions and for stores. Henice the province of the engineer becomes peritiarly important; it comprises various branches of information, and requires that readiness of computation, of discernment, and of appropriate resource, which rarely combine in the rame individual. The merely planning in the clocet, and the laying down on the snil such defences as may perhaps be void of fault, so far as relates to mutual support, and to the great work of procrastination, will avail nothing, if the other essentia!s are neglected; and even when they are mot, the whole may be rendered abortive, and become contemptible, merely from a want of judgment in point of locality.

Those whose turn of mind, or whose professional parsnits, lead them to trace the gradual progress of fortification minutely from its rude origin to its present state, will read with pleasure the history given by Mr. Robins in the preface to his Gunnery. The principal treatises on fortification are Melder's Praxis Fortificatoriz: Les Fortifications du Comte de Pagan: L'Ingénieur Parfait du Sieur de Ville: Sturmy's Architectura Militaris Hypothetical.: Blondel'a Nouvelle Maniere de Fortifier les Places: the Abbe de Fay's Veritable Maniere de Bien Fortifier: Vauban's Ingéniear Prançois: Coehorn's Nouvelle Fortification tant pour un Tcrrain bas et humide, que sec et elevé : Alexander de Grotte's Fortification: Donatus Roselli's Fortification: Medrano's Ingénieur FranCois: the chevalier de St. Julien's Architecture Militaire: Lansberg's Noupetle Maniere de Fortifer les Places: an anonymous treatise in French, called Nouvelle Maniere de Fortifier les Places, tirée des Methodes du chevalier de Ville, \&c.: Oranam's Traité de Fortification: Memoires de PArtillerie de Suritey de St. Remy: Muller's treatises of Elementary and Practical Fortification: Montalambert's Portification Perpendiculaire: Landmann's wortes on Fortification: Pley-
dell's Fortification: and Lochee's Field Fortifcation.

From the general idea and office of fortification some useful fundamental rules or maxims may be drawn: as,

1. That the manner of fortifying should be eccommodated to that of attacking; so that no one manner can be assured always to hold, unless it be assured the manner of besieging be incapable of being altered; and that to judge of the perfection of a fortification, the method of besieging at the time when it was built must be considered.
2. All the parts of a fortification should be able to resist the most forcible machines used in be sieging, and they should be equally strong on all sides.
3. A fortification should be so contrived, as that it may be defended with as few men as possible; which consideration, when well attended to, saves a vast deal of expence.
4. That the defendants may be in the better condition, they must not be exposed to the enemy's guns and mortars; but the aggressors must be exposed to theirs.

Hence, 5. All the parts of a fortification should be so disposed, as that they may defend eacb other: in order to this, every part there is to be flanked, i. e. capable of being seen and defended from some other; so that there be no place where an enemy can lodge bimself, cither unseen, or under shelter.
6. All the campaign around must lie open to the defendants; so that no hills or eminence must be allowed, behind which the enemy might shelter himself from the guns of the fortification; or from which he might annoy them with his own.

The fortress, then, is to command all the place round about; consequently the out-works must all be lower than the body of the place.
7. No line of defence is to be above point-blank musquet-shot, which is from one hundred and twenty to one hundred and fifty fathom.
8. The acuter the angle at the center, the stronger is the place; as consisting of the more sides, and consequently more defensible.
9. All the defences should be as nearly direct as possible. Such are the general laws and views of fortification: the particular ones, respecting each several work or member thereof, will be delivered under their propur articles. Sce Bastion.

The art of Fortfication may be distinguished into two parts, viz. the elementary or theoretical, and practical.

Elementary or theoretical Forlification, consists in tracing the plans and profies of a fortification on paper, with scales and compasses; and in examining the systems proposed by different authors, in order to discover their adrantages and disadvantages.

Practical Fortification, consists in forming a pro ject of a fortification according to the nature of the ground, and other necessury circumstance, tracing it on the ground, and executing the proje ? together with all the military buildings, such as magazines, store-houses, bridges, \&c.

Fortification again is either offensive or defensivr. Offensive forlification is the same with the attack of a place, and is the art of making and eonducting all the different works in a siege, in order to gain possession of the place.

Defensive, or defence Fortification, is the art of defending a town that is besieged, with all the advantages which the fortification of it will admit.

Fortification is also used for the place fortified;

FORTIFICATION.

or the several works raised to defend and flank it, and keep off the enemy.

All furtifications consist of lines and angles, which have various names, according to their various offices.
.The principal angles are those of the center, the flanking angle, flanked angle, angle of the epaule, \&c.
The principal lines are those of circumvallation, of contravaliation, of the capital, \&cc. See each in its place.

Fortifications are divided into regular, and irregular, and again into durable and temporary.

Regular Fortification is that wherein the bastions are all equal; or that which is built in a regular polygon, the sides and angles whereof are generally about a musquet shot from each other.
In a regular fortification, the parts being all equal, have the advantage of being equally defensible; so that there are no weak places. See PI. 72. fig. 2.

Irregular Forlification, is that wherein the bastions are unequal, and unlike; or the sides and angles not all equal, and equidistant.
In an irregular fortification, the defence and strength being unequal, there is a necessity for reducing the irregular figure, as near as may be, to a regular one; i. e. instead of inscribing it in a circle, it shuuld be inscribed in an oval, so that one half may be similar and equal to the other half.

And as the irregularity of a figure depends on the quantity of angles and sides; the irregularity of a fortification arises either from the angles being too small, or the sides being too long, or too short.

Consequently an irregular figure being proposed to be fortified; all the angles, with the quantity of the sides, must be found, to be able to judge how it is to be fortified. See PI. 72. fig. I. which represents a fortification inscribed in an oval.

In this case the sides CD, GH, on the flat parts, are stronger than the sides $A B, E F$, on the narrow parts, supposing all the exterior sides equal, and the place equally fortified. When the angles BCD, CDE of the polygon are very great, and the besieger comes within a smail distance of the works, he cannot approach nearer, without being seen in front, except by a direct sap, with traverses; and as this way of approaching presents but a small front, the besieged, who have a much larger, may oppose with peculiar advantage: whereas, if the angles $\mathrm{HAB}, \mathrm{ABC}$ of the polygon, are very small, the besiegers may carry their approaches to the counterscarp itself, and have always a larger front than the besieged; and, as the besiegers must extend their approaches to three fronts, whether thoy are small or large, the work of the approaches before the front BCDE will be to the work before the front HABC, as the line BE is to the line HC, nearly, i. e. as the greater axis of the oval j to the less; and therefore the front $C D$, on the flat side, is stronger than the front $A B$, on the narrow side; consequently, the longer CD is, so that the lines of defence are within the reach of musketeshot, and the angles $\mathrm{BCD}, \mathrm{CDE}$, are the same, the stronger will the front be; since the works become more spacious, hold more troops to defend them, and the besiegers are obliged to extend their trenches farther. Moreover, the greater the angles of the polygon BCD , CDE are, the exterior sides being the same, the stronger will be the front CD; because the length of the line BE increases, and the extent of the be-
siegers approaches in proportion; and, thelefore, the strensth of a fortification increases in proportion to the number and length of its sides; so that a dixdecagon is stronger than an octagon, when the length of their sides is the same. However, as it is found difficult to inscribe a polygon in an ellipse or oval, the following more eavy method will answer the purpose. Reduce the spot of grourd to be fortified to the figure ACEG 6g. 3. and draw BE, AF, parallel to each other; draw CH , DG, perpendicular to these lines, and at equal distance from the points B and E, and let their interval be equal to that of the lines $B E$ and $A F$; then, draw DC, GH, parallel to AF and BE, and equally distant from them; and from their intersections C, D, G, H, with DG, CH, as centers, describe arcs, with a radius equal to CD or GH, so as to intersect the lines AF, IBE, in A, B, E, F; join the points A, B, E, F, and $A B C D E F G H$, will be an oblong octagon, having one half similar and equal to the other half. If a hexagon be to be dcscribed, instead of drawing the two lines CH, DG, one will be sufficient; in a decagon there must be three, and four in a dodecagon. If the sides cannot easily be made equal, then the sides $A B, E F$, on the narrowest part of the polygon, should be the longest, because it is the weakest. But when the figure cannot in any respect be made regular, the strength of each side must be est mated according to the works a besieger is obliged to make in the attack, and according to the obstacles he meets with in his approaches.

Marine Furtification, is sometimes used by way of distinction from land fortification, and denotes the art of raising works fit for the defence of a harbour against the attacks of any kind of shipping; but the works proper for this purpose depend in a great measure on the priaciples employed in the fortification of towns. However, attention should be given to the situation of roads or harbours in contriving works for their defence: e. gr. when a town lies open to the sea, on a curved, or straight hold shore, and has before it a sufficient depth of water and good anchorage, the ships, in this situation, may be well defended by fort: built near the water's edge on each side of the anchoring place, so contrived as to have two or three batterius, one higher than the other, and furnished with a sufficient number of cannor, carrying shot from twenty-four to forty-eight pounds. A tuwn, in this situation, may be drfended by a rampart, or wall, well flanked, built along the shore, beside the fortifications on the land side. The works along the shore should be carried so near to the water's edge, that troops, attempting to land under the cannon of a fleet, inight not find ground on which to intrench theinselves. Farther. when a harbour, being a bay, has a shoal or smali island lying before its entrance, a strong fort should be built upon the island, in a place where it can command the entrance on both sides, if the islaud be not too large; otherwise two or more forts should be erected in such places as may command the avenues to the bay; other forts should also be raised on the most convenient points of land, forming the mouth of the bay. Again, when the harbour is in a bay, whose points, forming the entrance, stretch into the sea, and approarb one another within cannon shot; such a haibour may be fortified by building on both sides of its entrance one or more forts; and, if possible, a fort should also be built within the harbour's mouth in such a manner, that its cannon can rake the shipping fore and aft as they come in.

Madow Stinotu

FORTIFICATION.

When a harbour is formed by a cluster of islands, it is casily fortificd, if the channel between the islands is not ton wide for the cannon from one or both shores; but if :t be too wide, the shipping that rides there must be defended from the batteries on the shore. When the harbour lies in an inlet, or river, cone miles above its mouth, a fort built at each point of the cutrance, when the passage lies strait, and can be commanded from side to side, and two others between them and the barbour, but not directly opposite, unless the breadth of the channel requires it, will be a preper security for the shipping in such a harbour; and if the channel or river is winding, the forts should be built where they can command a reach at least, or be so placed at the bends, as to command two adjacent reaches. See Robertson's Treat. of Marine Fort. part ii.

Durable Fortificalion, is that built with design to remain a standing shelter fur ages. Such are the usual fortifications of cities, frontier places, \&c.

Temporary Fort fication, is that erected on some emergent occasion, and only for a little time.

Such are field-works, cast up for the seizing and maintaining a post, or passage; those about camps, \&c. as circumvallations, contravallations, redoubts, trenches, batteries, \&cc.

There are many modes of fortification that have been much esteemed and used; a small specimen of a comparative view of the principal of these is represented in plate 73, viz. those of count Pagan, and Mess. Vauban, Coehorn, Belidor, and Blondel; the explanation of which is as follows:

1. Pagan's System.

A Half bastions.

B Ravelin and counterguard.
C Counterguards before the bastions.
D The ditch.
E The glacis.
G The place of arms.
H Retired tanks.
e Line of defence.

2. Vauban's System.

8 Angle of the bastion, or flanked angle.
c Angle of the shoulder.
d Angle of the flank.
© Saliant angle.
f Pace of the bastion.
8 The flank.
\& The cartain.
i Tenailles.
\boldsymbol{k} Traverses in the covert way.
3. Cochorn's Systew.

1 Concare flanks.
2 The curtains.
3 Redoubts in the re-entering angles.
4 Traverses.
5 Stone lodgments.
6 Round Sanke.
7 Redoubt.

- Cofiers planked on the sides, and above covered overbead with a foot of earth.

4. Belidor's Syutem.

1 Cavaliers.

K Rams-horns, or Tenailles.
L Retrenchments within the detached bastions.
M Circalar curtain.
N The ravelin.
P Lanettes with retired batteries.
8 Redoubt.

R Detached redoubt.
S An arrow.
P Small traverses.

5. Blondel's System.

I Retired battery.
m Luncttes.
n Ravelin, with retired bastion.

- Orillons.

Another, or new method of fortification, has lately been proposed by M. Montalambert, called Fortification Perpendiculaire, because the faces of the works are made by a series of lines running in a zig-zag, perpendicular to one another.

Profile of Fortification, is a representation of a vertical section of a work, serving to shew those dimensions which cannot be represented in plans, and are necessary in the building of a fortification. This profile is constructed in the following manner: provide a scale of equal parts, adapted to the perpendicular height of the work, e. gr. let a, b_{3} PI. 72. fig. 3, be a scale of tirenty toises; and let $A B$ represent the level of the ground plane, so that those parts of the fortification which are above the surface of the ground, or below it, may be above or below this line in the profile. From the point A, in the line $A B$, take $A C=4$ toises three feet, for the interior, talus or slope of the rampart; at C erct a perpendicular $C D$ of three toises eighteen feet for the height of the rampart; through the point D draw an indefinite line $D N$ parallel to $A B$, in which take $D E=5$ toises for the breadth of the terre-plein of the rampart: at the point L erect the perpendicular $\mathrm{EF}=2$ feet for the beight of the banquette, and draw FH parallel to DN, making FG and GH, each equal to three feet. Draw the line EG, which will represent the talus of the banquette, and GH will be the upper part of it : on the point H erect the perpendicular $H I=4 \frac{1}{2}$ feet for the height of the parapet above the banquette. From I draw the indefinite line IK, parallel to $D N$, in which take $I L=1 \frac{1}{2}$ foot, and draw HL, which will be the interior side of the parapet : take $L K=$ toises for the thickness of the parapet, and from the point K let fall the indefinite line KP, perpendicular to the line $A B$, and produce it below $A B$: in this line take $K M=2$ ㅇ․ feet, and draw the line LM for the upper part of the parapet which is a talus, that the soldier on the banquette may be able to discover the covert way and the glacis. On the point N, where DN intersects KP, as a center, with a radius of one foot, describe a small semi-circle, which represents the cordon : take NP=6 toises, and from the point P draw an indefinite line P n parallel to $A B$, which will represent the bottom of the ditch, the depth of which is supposed to be equal to the height of the rampart. Take $\mathrm{NO}=5$ feet for the thickness of the revetement of the cordon, and from the point \mathbf{O} draw the indefinite line $\mathbf{O} \mathbf{Q}$ parallel to NP; this will be the interior side of the revetement of the point P, where the line P_{n} meets the line NP; take $\mathbf{P R}=\mathbf{7}$ feet, or about the fifth part of its height NP, for the talus of the revetement, and draw the line NR, which represents the scarp or exterior side of the revetement; take $\mathbf{R S}=1$ foot for the jutting of the foundation, and draw ST perpendicular to Pn , making it equal to two or three toises for the depth of the foundation, draw TQ parallel to $\mathbf{P n}$, and let it intersect 0 Q in Q; and let $Y \&$ be drawn parallel to $N M$, and at the distance of three fect, for the revetement of the parapet. In order to represent the

FOR

profile of the counterfort or buttress, when there is any, take $O V=0$ feet, and draw VX parallel to OQ; VX, QO, will represent this prolile, by means of which the revetement OR is strengthened. That the terre-plein of the rampart may have a proper declivity, for carrying away the water which falls upon it, let DW be equal to $1 \frac{1}{\text { t }}$ foot, and draw WE, which will represent the upper part of the rampart, and the line $A W$ represents the slope of its interior side. Suppose the breadth of the ditch to be twenty toises, and lay this down from \mathbf{P} to n ; and on the point n erect the perpendicular fim, terininated by the line $A B$ at m, which will be the limit of the counterscarp. At the distance of three feet from this line, and parallel to it, draw zy, which will give the thickness of the revetement of the counterscarp; nu $=3$ feet will be the talus of this revetement, and the line um the exterior side of it. The foundation may be made to terminate at the distance of about six inches from the point u. Let meas 5 toises be the breadth of the covertway, and at the point c erect a perpendicular ed $=2$ fect for the height of the banquette. Draw df parallel to $A B$, and equal to one toise, in which take de and ef, each equal to three feet.
Draw the line ce for the talus of the banquette, and ef will be the upper part of it: from the point f erect a perpendicular $f \mathrm{I}=4 \frac{1}{2}$ feet for the height of the parapet of the covert-way above the banquette. Produce $f 1$ till it cuts AB in r; take $r g=20$ toises for the breadth of the glacis; and draw lg , which will represent the glacis, or the declivity of the rampart of the covert-way: in this line take $\mathrm{l}_{\mathrm{h}}=$ 1 foot, and draw hf, which will be the interior side of the parapet of the covert-way; after which let there be a palisade constructed on the banquette, and the profile is finished.

Other profiles are given in Plate 73, fig. 2.
FO'RTIFIER. s. (from fortify.) 1. One who erects works of defence (Carew). 2. One who supports or secures (Sidney).

To FÓRTIFY. v. a. (fortifier, French.) 1. To strengthen against attacks by walls or works (Shakspeare). 2. To confirm ; to encourage (Sidney). 3. To fix ; to establish in resolution (Locke).

To Fórtipy. v. n. To raise strong places.
FORTILA'GE. s. (from fort.) A litte fort; a blockhouse (Spenser).

FORTIN. s. (French.) A little fort, whose flanked angles are generally 120 fathoms distant from one another.

FORTISSIMO, in music, very loud or strong.

FORTITUDE, a virtue or quality of the mind, generally considered as the same with courage; though in a more accurate view they seem to be distinguishable. Courage may be a virtue or a vice, according to circumstances; fortitude is always a virtue: we speak of desperate courage, but not of desperate fortitude. A contempt or neglect of danger, without regard to consequences, may be called courage; and this some brutes have as well as we: in them it is the effect of natural instinct chiefly; in man it depends parily on habit, partly on strength of nerves, and partly on want of consideration. But fortitude is the virtue of a rational and considerate mind, and is founded in

FOR

a scnse of honour and a regard to duty. There may be courage in fighting a duel, though that folly is more frequently the effect of cowardice: there may be courage in an act of piracy or robbery; but there can be no fortitude in perpetrating a crime. Fortitude implies a love of equity and of public good; for, as Plato and Cicero observe, courage exerted for a selfish purpose, or without a regard to justice, ought to be called audacity rather than fortitude. This virtue takes different names, according as it acts in opposition to different soats of evil; but some of those names are applied with considerable latitude. With respect to danger in general, fortitude may be termed intrepidity; with respect to the dangers of war, valour; with respect to pain of body or distress of mind, patience; with respect to labour, activity; with respect to injury, forbearance; with respect to our condition in general, magnanimity. The motives to fortitude are many and powerful. This virtue tends greatly to the happiness of the individual, by giving composure and presence of mind, and keeping the other passions in due subordination.
FO'RTLET. s. (from fort.) A little fort.
FO'RTNIGHT. s. (contracted from fourteen night.) The space of two weeks (Bacon).

FO'RTRESS. s. (forteresse, French.) A strong hold ; a fortified place (Locke).

FORTROSE, a borough in Ross-shire, situate on the Frith of Murray, nearly opposite Fort George, and nine miles W. of lnverness.
FORTU'ITOUS. a. (fortuit, French, fortuitus, Latin.) Accidental; casual (Ray).

FORTU'ITOUSLY. ad. Accidentally ; casually; by chance (Rogers).
FORTU'ITOUSNESS. s. (from fortaitous.) Accident ; chance; hit.

FORTUNA, daughter of Oceanus, according to Homer, or one of the Parca according to Pindar, was the goddess of fortune, and from her hand were derived riches and poverty, pleasures and misfortunes, hlessings and pains. She was worshipped in different parts of Greece. Bupalus was the first who made a statue of Fortune for the people of Smyrna, and he represented her with the polar star upon her head, and the horn of plenty in her hand. The Romans paid particular attention to the goddess of Fortune, and had no less than eight different temples erected to her honour in their city Tullus Hostilius was the first who built her a temple. Her most famous temple in Italy was at Antium. She was worshipped among the Romans nnder different names, such as Female Fortune, Virile Fortune, Equestrian, Pcaceful, Virgin, \&c. The goddess is generally represented blind-folded, and holds a wheel in her hand as an emblem of her inconstancy. Sometimes she appears with wings.

FORTUNATE. a. (fortunatus, Latin.) Lucky; happy; successful (Dryden).

Fortunate islants, in ancient geography, certain islands concerning the situation of which authors are not agreed. They were famous for the golden apples of the Hesperides.

The common opinion is, that they are the $\mathrm{Ca}-$ narv islands.

HORTUNATELY. ad. (from fortunate.) Happily: successfully (Prior).

FURTUNATENESS. s. (from formate.) Happiness; good luck; success (Sidney).

FORTCNE. s. (firluna, Latin.) 1. The power supposed to distribute the lots of life according to her own humour (Shakspeare). 2. The good or ill that befalls man (Benlley). 3. The cinance of life; means of living (Sicift). 4. Success, good or bad; eveut (Temple). 5. Estate; possessions (Shakspeare). 6. The portion of a man or woman (Otway). 7. Futurity : future events (Curcley).

To Fóricee. \boldsymbol{v}. a. (from the noun.) To befall; to fall out; to happen; to cone casually to pass (Knolles).

FƠRTUNED. a. Supplied by fortune (.) Salspeare).

FORTLNEBOOK. s. (fortune and look.) A brok consulted to know fortune (Crashaiv).
FORTUNEHUNTER. s. (fortune and inunt.) A man whose employment is to inquire after women with great portions, to enrich himself by marrying them (Spectator).

To FÓRTUNETELL. e. n. (fortune and tell.) 1. To pretend to the power of revealing faturity (Walton). 2. To reveal futurity (Cieareland).
FOKTLNETELLER. s. (fortune and teller.). One who cheats common people, by pretending to the knowledge of futurity (Duppa).

By stat. 9 Geo. II. c. 5. fortunetellers are punshable with a year's imprisonment, and standing four times in the pillory.

FORTY. a. (feopenzid, Saxon.) Four times ten.
FORUM, in antiquity, is used in divers acceptations: sometimes for a place of traffic, ansuering to our market-place; in which sense it has usually some adjective added to it, as forum loarium, the beast market. Sometimes for any place, where the governor of a province convenes his people, to give judgment, according to course of law. At others, for a public standing place in the city of Rome, where causes were judicially tried, and orations delivered to the pcople.
Forum, among casuists, is used for jurisdicrion.
To FORW A'NDER. v. a. (for and wander.) To wander wildly and wearily (Spenser).

FORWARD: Fo'rwards. ad. (Fonpeayo, Saxon.) Toward a part or place before; onward; progressively, straight before (Hooh cr).
Fo'mward. a. (from the adverb.) 1. Warm; earnest (Galations). 2. Ardent; eager; hot; violent (Prior). 3. Ready; confident; presumptuous (Dryden). 4. Not reserved; not over modest (Shakspeare). 5. Premature ; carly ripe (Shakspeare). 6. Quick; ready; hasty (Locke). 7. Antecedent; anterior (Shakspeare). 8. Not behindhand; not inferior (Shakspeare).

To Fo'm ward. v. a. (from the adverb.) 1. Tohasten; to quicken ; to accelerate in growth
or improvement (Suift). 2. To patronise; to adrance.

FO'RW ARDER. s. (from forward.) He who promotes any thing.

FO'RWARDLY. ad. (from the adjective.) Eagerly; hastily; quickly (Atterlury).

FO'RWARDNESS. s. (from forward.) 1. Fagerness; ardour; readiness to act (Bacon). 2. Quickness; readiness (Wotton). 3. Earliness; early ripeness. 4. Confidence; assurance; want of inodesty.

FOSS-W AY was anciently one of the four great Roman highways of England : so called, according to Camden, because it was ditehed on both sides, which was the Roman method of making highways. It began at Totness in Devonshire, and ended at Barton upon Humber: being still visible in several parts, though of more than 1400 years standing.

FOSSA. (fossa, from fodio, to dig.) Fovea.
A little depression or sinus.
Fossa ovalis. The depression in the right auricle of the human heart, which in the fetus opens intc the other auricle, forming the foramen ovale.

Fossa, in our ancient customs, was a ditch full of water, where women committing felony were drowned; as men were hanged.

FOSSANO, a strong town of Piedmont, with a bishop's see, seated on the Sture. Lat. 44. 45 N . Ion. 7. 56 E .

FOSSARII, in antiquity, a kind of officers in the Eastern church, whose business was to inter the dead.

FOSSE, in fortification, a ditch or moat. It lies between the scarp and counterscarp below the rampart.

FO'SSIL. a. (fossilis, Lat. fossile, French.) That is dug nut of the earth (Wooduard).

Fossir. (fossilis, from fodio, to dig.) Any thing dug out of the earth.

Native fossils, according to Dr. Hill, substances found either buried in the earth, or lying on its surface, of a plain simple structure, and shewing no signs of having contained vessels or circulating juices. These are subdivided by the same author, 1. Into fossils naturally and essentially simple. Of these, some are neither inflammable, nor soluble in water; as simple earths, talcs, fibrarix, gypsum, selenita, crystals, and spars : others, though uninflammable, are soluble in water; as all the simple salts: and others, on the contrary, are inflammable, but not soluble in water; as sulphur, auripigmentum, zarnich, amber, ambergris, gagates, asphaltum, ampelites, lithanthrax. naphtha, and pisasphalta. 2. The second general subdivision of fossils, comprehends such as are naturally compound, but unmetallic. Of these, some are neither inflammable, nor soluble in water ; as componnd earths, stones, septariæ, siderochita, semi-pellucid gems, \&c.: others are soluble in water, but not inflammable; as all the metallic salts: and lastly, some are inflammable, but not soluble in water; as marcasites, pyrita, and phlogonia. 3. The third and last general division of fossils, comprehends all the metallic ores; which are bo-

FOS

dies naturally hard, remarkably heavy, and fusible in fire. Of these some are perlectly metallic, as being mallcable when pure ; such are gold, lead, silver, copper, iron and tin : others are imperiectly metallic, as not being malleable even in their purest state ; such are antimony, bismuth, cobalt, zinc, \&c. Of all these substances, the reader will find a particular description under their respective heads. See also Geology, and Mineralogy.

Extraneous fossils are bodies of the vegetable or animal kingloms accidentally buried in the earth. Of the vegetable kingdom there are principally three kinds, trees or parts of them, herbaceous plants, and corals; and of the animal kingdom there are four kinds, seashells, the teeth or bony palates and bones of fishes, complete fishes, and the bones of land animals. (See Bones, Trees, Wood, Plant, Shelle, \&c.) These adventitious or extraneous fossils, thus found buried in great abundance in divers parts of the earth, have employed the curiosity of several of our latest naturalists, who have each a different system to account for the surprising appearances of petrified sea-fishes, in places far remote from the sea, and on the tops of mountains; shells in the middle of quarries of stone; and of elephants' teeth, and bones of various animals, peculiar to the southern climates, and plants only growing in the East, found fossil in our northern and western parts. On this subject we would beg leave to refer the reader to Parkinson's Organic Remains of a former World.

Fosill-pitch. See Petroleum.
FOSSOMBRONE, a town of Italy, in the duchy of Urbino, with a bishop's see. Lat. 43. 40 N . Lon. 12.48 E .

FOSTER (Samuel), an English mathematician, born in Northamptonshire, and educated at Cambridge, where he took his degrees in arts. In 1636 he was chosen professor of astronomy; in Gresham college, which, however, he resigned at the close of the same year, but in 1641 he was re-elected. He became one of the first members of that society, which afterwards was incorporated by royal charter, for encouraging experimental philosophy, and died in 1652. He wrote several mathematical treatises ; the chief of which are, The Art of Dialling; Description of sundry Instruments, invented or improved by him ; and Miscellanies. There were two other mathematicians of his name in the same century, viz. William Foster, who was a pupil of Oughtred, and afterwards a teacher in London; and Mark Foster, the author of a treatise on Trigonometry. (Watkins).

Foster (James), an English divine, born in 1697 at Exeter, and educated at the freeschool of that city, from whence he was removed to an academy to perfect his studies. He commenced preacher in 1718, but when the disputes broke out in Exeter respecting the doctrine of the Trinity, he quited that place and went to Melborne in Somersetshire. Afterwards he resided for some time at Trowbridge

FOT

in Wiltshire, and in 1724 he was chosen to sacceed Dr. Gale, at Barbican, having altered his sentiments respecting infant baptism, and been immerset in consequence of reading that writer's treatise on the subject. In 1744 he was chosen pastor of the church of Pinner's hall, and in 1748 the university of Mareschall cullege, Aberdeen, conferred on him the degree of D.1). He died in 1753, leaving a high character behind him for integrity and learning. His writings are; 1. Λ Defence of the Christian Revelation against Mr. Tindal. 2. Tracts on Heresy ag, inst Dr. Stebbing. 3. Several excellent Sermons, in 4 vols. 8 vo. 4. Discourses on natural Religion and social Virtue, 2 vols. 4to. (Wathins).

To Fo'ster. v. a. (forquian, Saxon.) 1. To nurse; to feed; to support (Cleaveland). 2. To pamper (Sidney). 3. To cherish; to forward (Thomson).

FO'STERAGE. s. (from foster.) The charge of nursing; alterage (Raleigh),

FOSTERBRÓTHER.s. (forre» bpoten, Saxon.) One bred at the same pap.
FOSTERCHI'LD. s. (forzen cilo, Sax.) A child nursed by a woman not the mother, or bred by a man not the father (Davies).

FOSTERDA'M. s. (foster and dayn). A nurse; one that performs the office of a mother ($\mathrm{D}_{r y}$ den).
FOSTEREA'RTH. s. (fosler and earth.) Farth by which the plant is nourished, though it did not grow at first in it (Philips).

FO'STERER. s. (from foster.) A nuise; one who gives food in the place of a parent (Davies).

FOSTERFATHER. s. (Foreen paden, Saxon.) One who gives food in the place of the father.
FOSTERLEAN, anciently signified nuptial gifts; much the same with what we now call jointure.

FOSTERMOTHER. s. (foster and mother.) 'A nurse.
FOSTERSO'N. s. (foster and son.) One fed and edicated, though not the son by nature.

FOTHERGILL (John), an eminent English physician, boru in 1712 at Carr End, in Yorkshire, of reputable parents, who were by profession quakers. About 17 ± 8 he was plared apprentice to an apothecary at Bradford, and in 1736 he removed to London, where he studied two years in St. Thomas's hospital. From thence he went to Edinburgh, and took his doctor's degree. He afterwards went to Leyden, and travelled through some parts of France and Germany. About 1740 he commenced practice in London with great success, which continued to the very last. He was also admitted fellow of the college of physicians at Edinburgh, and a member of the royal and antiquarian societies of London. He greatly cultivated natural history and botany, and was a liberal patron of ingenious men. He was at the sole expence of printing Purver's translation of the scriptures into English, and an edition of bishop Percy's Key to the New Testament for a seminary of quakers in Yorkshire. He died in

FOU

1;80, and was buried in the quaker's burying ground at Winchmore-hill. His shells and preces of natural history were sold, by his own appointment, to the late Dr. Hunter, at sool. under the valuation. His library was sold by anction. His Tracts were collected into one volume, b; Dr. Elliott.

FOTHERGILLIA. In botany, a genus of the class polyandria, order monogynia. Calyx uuncate, very entire; corolless; germ cloven; capsule two-celled; seeds solitary, bony. One species: a Caroline tree, resembling the alder; with alternate, wedge-formed leaves, serrate at sop, hoary underneath, flowers in a very close ceraninal spike.

FOTIIERING, a peculiar method of endeavouring to stop a leak in the bottom of a ship while: she is afloat, either under sail or at anchor. It is usually performed in the following manner: A basket is filled with ashes, cincers, and chopped rope-yarns, and looscly covered with a piece of canvas; to this is fasrened a long pole, by which it is plunged repeatedly in the water, as close as possible to the place where the leak is conjectured to lic. The cicum or chopped rope-yarns being thus gradually shatien through the twigs, or over the sop of the basket, are frequently sucked into the hole along with the water, so that the leak beconies immediately choaked; and the ready entrance of the water is thereby prevented.
FOCHERINGAY, a town of Northainptonsbire, nive miles S . of Stamford, near the river Nen. It is chiefly noted for the ruins of the castle, in which Mary queen of Scotland was: exhcaded.
iUU-1CHEOU-FOU, a city of China, in the province of Fo. kein. It carries on a consiceratie trade; but is chiefly remarkable for the inagaticence of its principal bridge, which has nore than 100 arches, constructed of white scone, aud ornamented with a double balustrade chrougauut. This city is the residence of a vieeroy, and has under its jurisdiction nine cises of the third class.

FUUCHIER (Bertram de), a Dutch painter, born at Bergen-op-Zoom in 1609 , and a disciple of Vandyck. He afterwards travelled to Kome, where he studied the manner of Tintorretto. Un his return to his own country he adopted the style of Brouwer, and painted portraits and conversatious with great repute. He died in 1674.

FOVEOLATE, honey-combed; covered superficially with hollows nearly cubical.

FOUGA'DE. s. (French.) In the art of war, a sort of little mine in the manner of a well, dug undersome work of fortification.

FOUGHT. The preterit and participle of fisht.

FOUGHTEN. The passive participle of fight.

FUVILLA, the fine, imperceptible substance discharged by the pollen of the anthers.

FOUL. a. (ful, Saxon.) 1. Not clean ; filthy; dirty; miry (Tillotson). \&. Impure; polluted ; full of filth (Tillotson). 3. Wicked;

FOU

detestable; abominable (Dryden). 4. Not lawful (Shakspeare). 5. Hatetul; ugly; loathsome (Bacon). 6. Disgraceful ; shameful (Miton). 7. Coarse; gross (Felton). 8. Full. of gross humours; wanting purgation or mundification (.Shuhspeare) 9. Nut bright ; not serene (Dryden). 10. With rough force; with unseasonable violence (Clarendon). 11. (Amont seamen.) Entangled: as, a rope is foul of the anchor.

To Foul. v. a. (fulan, Saxon.) To daub; to bemire; to make filthy; to dirty (Fvely").

FOULA, or Foul Island, one of the Shetland isles, lying between six and seven leagues west from the main land. It is about three miles long, narrow, and full of rough, steep, and bare rocks; one of which is solarge, and runs up to such an height, that it may be clcarly scen from Orkney. This, therefore, may be reckoned with the greatest probability to be the Thule of Tacitus.

FOULAHS or Foolahs, a peoplein Africa, inhabiting a country on the confines of the great desert (see Sahara) along the parallel of nine degrees north. They partake much of the negro form and complexion ; but they have neither the jetty colour, thick lips, nor crisped hair of the negroes. They have also a language distinct from the Mandinga, which is the prevailing one in this quarter. The Foulahs occupy, at least as sovereigns, several provinces or kingdoms, interspersed throughout the tract comprehended between the mountainous border of the country Sierra Leona on the West, and that of Tombuctoo on the east ; as also a large tract on the lower part of the Senegal river; and these provincesare insulated from each other in a very remarkable manner. Their religion is Mahometanism ; but with a great mixture of Paganism, and with less intolerance than is practised by the Moors.

The principal of the Foulah states is that within Sierra Leona; and of which Teemboo is the capital. The next in order appears to be that bordering on the south of the Senegal river, and on the Jaloffs; this is properly named Siratik. Others of less note are Bondou, with Foota-Torra adjacent to it, lying between the rivers Gambia and Falemé; Foola-doo and Brooko along the upper part of the Senegal river; Wassela beyond the upper part of the Niger; and Massina lowèr down on the same river, and joining to Tombuctoo on the west.

The kingdom of the Foulahs, situated botween the upper part of the Gambia river and the coast of Sierra Leona, and along the Rio Grande, is governed by a Mahometan sovereign ; but the bulk of the people appear to be Pagans. From the circumstances of their long hair, their lips, and comparatively light colour, Major Rennel is decidedly of opinion, that the Foulahs are the Leucrethiops of Ptolemy and Pliny.

FOULFA'CED. a. (foul and faced.) Having an ugly or hateful visage (Shakspeare). FOULI, or Pholey, a country of Africa,
situate on the sides of the river Senegal, and extending about 500 miles from E . to W .: the boundaries from N. to S . are unknown. It is populos and fertile. The inhabitants are, in general, of a tawny complexion, though many of them are entirely black. They lead a wandering life, and roam about the country with large drores of cows, sheep, goats, and horses. The king of this country is called the Siratick ; and though he seldom appears with the badges of majesty, he has great authority, and is as much respected as any one on the coast. Elephants are extremely numerous in this country : the natives are very dextrous in catching them.

FO'ULLY. ad. (from foul.) 1. Filthily; nastily ; odiously (Hayward). 2. Not lawfully; not fairly (Shatisifeare).

FOULMO'UTHED. a. (foul and mouth.) Scurrilous; hahituated to the use of opprobrious terms and epithets (Addison).

FOU'LNESS. s. (from foul.) 1. The quality of being foul ; filthiness; nastiness ($\mathbf{W i l}$ il kins). 9. Pollution ; impurity (Bacon). 3. Hatefulness; atrociousness (Ben Jonson). 4. Ugliness; deformity (Dryden). 5. Dishonesty ; want of candour (Hammond).

Foulness, an island separated by a narrow channel from the $S . E$. part of the county of Essex, six miles E. of Rochford.

FOULON (William), a Dutch Latin poet, born at the Hague, where he kept a school. He afterwards became a burgomaster at Horden in Friezeland, where he died in 1558, aged 75. He wrote three Latin comedies; 1: Martyrium Johanuis Pistorii; 2. Hypocrysis, 1554; 3. Acolastus, de filio prodigo.

FOULSHAM, a town in Norfolk, with a market on Tuesdays. Lat. 52.51 N. Lon. 1. 7 E

FOUMART, a species of Mustela.
FOUND. The pret. and part. passive of find.

To Found. v. a. (fundare, Latin; fonder, French.) 1. To lay the dasis of any building (Psalms). \&. To build; to raise (Davies). 3. To establish; to erect (Milfon). 4. To give birth or original to: as, he founded an art. 5. To raise upon, as on a priuciple or ground (Decay of Piety). 6. To fix firm (Shakspeare).

To Found. v. a. (fundere, Lat. fondre, French.) To form by melting and pouring into moulds; to cast (Miltor).

FOUNDATION. s. (fondation, French.) 1. The basis or lower paris of an edifice. 2. The act of fixing the basis (Tickel). 3. The principles or grounds on which any notion is raised (Tillotson). 4. Original ; rise (Hooker). 5. A revenue settled and established for any purpose, particularly charity (Swift). 6. Establishment ; setlement.

Foundation, that part of a building which is under-ground: or, that mass of stone, \&c. whiç supports a building; or upon which the walls of the superstructure are raised: or, it is the coffer or bed, dug below the level of the ground, to raise a building upon.

FOU

The foundations of buildings are either natural or artificial. Natural, as when we build on a rock, or a very solid earth; in which case we need not seek for any farther strengthening. Artiticial, where the ground is sandy, or marshy, or has lately been dug. In the former case, the architect must adjust the depth of the foundation by the height, weight, de. of the building: a sixth part of the whole height is looked on as a medium ; and as th thickness, double that of the width of the wall is a gond rule. Architects ought to use the utmost diligence in regard to foundations, since of all errors which may happen in building, an error in this point is most pernicious. See Architecture, part 3, sect. 2.
As to the rules necessary to be observed in constructing the ground-work, they are these: 1. That the bottom of the trench be made exactly level. 2. That the lowest ledge or row be all of stone, laid close together. 3. That the breadth of the ground-work be at least double that of the wall that is to be raised on it. However, art ought always to give way to discretion, for the breadth may be regulated according to the goodness of the ground, and the weight of the intended edifice. 4. That the foundation be made to diminish as it rises, only care must be taken that it do so equally on both sides. 5 . That persons ought never to build upon the ruins of an old foundation, unless well assured of its depth and goodness.

FOUNDATIONS of the piers of bridges, are laid after different manners, according to the nature of the ground, depth and velocity of the water, Sic. The conveniences used are вatterdaux, caissons, \&c.

Alberti, who is reckoned among the first who wrote on bridges, gives us the following directions for laying the foundation of a pier. "First raise an inclosure to keep of the water, by driving a double row of stakes very close and thick set, with their heads above the top of the water like a trench. Then put hurdles within this double row of stakes. Close that side of the row which is next to the intended pier, fill up the hollow between the two rows with rushes and mud, ramming them together so hard that no water can possibly get through. Then whatever you find within ihis inclosure, water, mud, sand, or whatever else is an hindrance to you, throw out, and dig till you come at a solid foundation. or, if you find it necessary, makea foundation of wooden piles burnt at the ends, and driven in as close together as possible. And here I have observed, that the best architects used to make a continued foundation of the whole length of the bridge, and not merely under each pier; and this they did, not by shutting out the whole river at once, by one single inclosure, but by first excluding one part, theu another, and so joining the whole together by degrees: for it would be impossible to withstand and repel the whole force of the water at once. We must therefore, while we are at work in one part, leave another part open for a passage for the stream. You may leave these passages either in the

FOUNDATION.

channel itself, or, if you think it more convenient, you may frame wooden dams or hanging channels, by which the superfluous water may run off: but if you find the expence of a continued foundation for the whole bridge 800 great, you may only make a separate foundation for every particular pier, in the furm of a ship, with one angle in the stern and another in the head, lying directly even with the current of the water, that the force of the water may be broken by the angles. We are to remember that the water is much more dangerous to the stern than to the head of the pier." Palladio, who is the next writer, says, © To lay the foundations of pilasters, if the bed of the river be stone or gravel-stone, you have the foundation without any trouble; but in case the bottom be quicksand or gravel, you must dig therein, till you come to solid or firm ground; or, if that should be found too laborious or impracticable, you must dig moderately deep in the sand or gravel, and then you must thrust in oaken piles, which will reach the solid or firm ground, with the iron by which their points are to be armed. A part only of the bed of the river must be inclosed from the water, and then we are to build there; that the other part being left open, the water may have its free current; and so go on from part to part."

Many other early architects give rules to nearly the same purpose: but instead of inserting them, we shall describe the practice of one or two of the moderns. In the year 1753, the foundation of Fssex-bridge in Dublin was laid in a very deep and rapid stream by Mr. Semple, who adopted the following method. Round the place where the intended pier was to rest, the workmen drove, at about 30 inches distance from each other both ways, Iwo rows of strong piles, which were left at the height of low-water-mark. These piles were lined with planks, within which they rammed a quantity of clay, and thus formed the external wall of the coffer-dam. Within this wall, and at about the same distances, they drove in 2 row of piles dovetailed at their edges, so as to receive each other, and which formed the extremities of the plan of the piers, at the level of the bed of the river. A fter having dag to a fine stratum of sand about four feet lower, within these there were a great number of other piles of oak driven as deep as they possibly could be made to penctrate. They next filled up the voids or intervals of these piles; and in order to produce a solid and petrified foundation, they employed mortar of a peculiar quality, made up of roach lime and sharp gravel; and with this they began to lay the first course, ramming in large flat stones upon it to about a foot thick. On this first course they laid a plentiful coat of dry lime and gravel of the same quality, on which they again laid stones, and then proceeded to lay mortar as at first, and continued to do $s 0$ alternately till they came to a perfect level with the piles. Fastened down to the end of these piles were Lii! three beams stretching the whole length VOI. V.
of the pier from sterling to sterling, the intervals being filled up with masonry. On this platform, which was four feet six inches under low-water-mark, they began to lay the first course of stones, for the pier, cramped together, and jointed with tarras as usual, and went forward till they came to a level with the water at ebb tide.
About the jear 1765, the foundation of a stone bridge across the river Tees, near Stockton, was laid by Mr. Shout, and we shall here mention those few particulars in which his method differed from the preceding. The workmen began with first making very strong coffers of solid fir timber about ten feet square, which they piled, jointed, and secured one upon another, till they had gained a sufficient height to exclude the water at its highest tide. The joints of these timbers they caulked in the same manner as ships are; and launching them without any bottoms, they fixed them down to their respective stations in the river. On the outside and inside they drove a number of piles, which they boarded and rammed with clay, to prevent the water from oozing in at the bottom of the coffers. This indeed was their greatest difficulty, for, owing to quicksands, and other loose strata through which the water sprang in, the labour of digging to the proper kind of foundation was immense. The chain pumps played incessantly, and by a resolute perseverance, the work, which at some periods seemed to bid defiance to human industry and skill, was at length brought above low-water-mark, and the completion of the whole occupied a space of time nearly equal to Westminster bridge. The bridge is neat and plain, and continues to the present time a proof of the solidity of its foundation.

FO'UNDER. s. (from found.) 1. A builder; one who raises an edifice (Dryden). 2. One who establishes a revenue for any purpose (Bentley). 3. One from whom any thing has its original or beginning (Roscommon). 4. A caster; one who forms figures by casting melted matter into moulds (Grev').

To Fo'under. v. a. (fondre, French.) To cause such a soreness and tenderness in a horse's foot, that he is unable .o set it to the ground (Dorset).
To Fóunder. v. n. (from fond, French.) 1. To sink to the bottom (Ralcigh). 2. To fail; to miscarry (Shahspeare).

Fo'under. In the manage, a disease of horses, by which they grow gradually contracted in their hoofs, and narrowed at their heels, putting their feet before each other with as much fear and caution as if they were moving upon a sheet of red-hot iron. This disease is often denominated foot-founder; it appears to be generally connected with what is called chest-founder, and is perhaps only a part of one common malady: the tenderness and rigidity of the forefoot extending through the whole course of the tendons and muscles that surround the leg and chest. The cause is not exactly known : it probably proceeds from ex. cessive exercise froquently repeated on hard

FOUNDERY.

roads, and especially in connection with the form a bnx, but wanting a top and bottom. Thetoo frequent praclice of cooling the horse's burning feet suddenly by immersion in cold water. The inflammatory symptoms should first be subdued, and the stiffiness and debility attempted to be removed by friction and oleaginous stimulants.

FO'UNDERY. s. A place where figures are formed of melted metal; a casting-house.

Foundery, or Focmdry, signifies also the art of cast.ng all sorts of metals into different forms.

This art is exceedingly beneficial, as all metals must be subjected to it betore they become fit for any useful purpose; but notwithstanding its application is so widely extended, its principles are simile, and we propose to explain them by a few examples, from which the reader may, by analogy, form an idea of the manner in which any other article is moulded and cast.

The great part of the fuunder's art consists in forming the moulds to receive the metal while in a state of fusion; the materials of these moulds are varied as the metal they are intended for requires. Sand, and loam or clay, are the materials most generally used for casting, as they are applicable to any metal and any subject; metal moulds are sometimes used, where a great number of the same article is to be cast, so that the duration of the moulds will compensate for the labour of makiner them. Artists who cast the valuable metals use a varicty of compositions for making their moulds; but they are all employed in the same manner as the iron and brass fumuders employ sand and loam.

The sand used by the founders is of a loamy nature, containing a portion of clay sufficient to make it clier as they term it; that is, when the sind, rather damp, is squeezed up in the hand, it shall have sufficient adhesion to preserve any figure given to it. The funders near London procure their sand from the neighbourhood of Woolwich; but it is by no-means a scarce article, almost every part of the country afforing it, or the matcrials, viz. sand and loam; which may be mixed in proper proportions to give the requisite tenacity, at the same time that it is sufficiently dry to avoid the danger of an explosion, when the hot metal is poured in ; an accident which sometimes happens u hen the sand contains too much water, from its sudden expansion when heated by the metal.

For moulding in sand, the founder must be provided with a number of frames, called boxes or thasks; these are made of wood or iron, and in shape corresponding to the article to be moulded in them. For an example we have chosen to explain the manuer of moulding a pipe for the conveyance of water, having a flaunch or projecting ring at each end to connect it by means of screws with other similar pipes. To mutid this the founder must be furnished with a pattern, that is a wouden pipe the same size and fisure with that (1) be cast, except that instead of being bored ont it has two pins aa, tig. 4 plate 74, projecting from its ends, which are of the same diameter as the tore of the pipe is intended to bc. Their use will be explained shortly. This pattern is cut in half at line $b b$, and steady pins are put in to hold thern together. A pair of flasks proper to contain sand for moulding. These are shewn in fig. 1, 2 , and 3 , of the plate. AA BB are two cast-iron fiames open at bottom, and uearly the same shape as the pire; when put together, these two will
founder fil's one of these flasks, BB, with sand, and rams it down moderate:y hard with the rammer K, fig. 6 . he then forms a cavity with the trowel Z in the sand, suffi iently large to receive one of the halves of the pattern, fir. + ; this he places in the cavity, and rams the sand down close round its edges, and makes its surface level with the trowel Y. When the other half is placed upon the pattern, it is brought to the state represented by fig. 2. Dry sand which has been burnt is now strewed over the pattern and the sand in the lower flask BE, the upper flask is placed upon it, their joining being determined by four steady pins at dd, fig. 1 , eutering corresponding holes in the lower flask, fig. 2. The upper flask is now filled with sand through the opening in the top of it, and. rammed in hard with L, fig. 6. Two wooden pins are thrust through the sand to reach the pattern, and being drawn out make two holes to pour the metal into the mould. The upper flask is now lifted up from the other with the sand in it, and as it parts from the other exactly at the place where the burnt sand was strewed, it contains an. exact impression of one half of the pattern : and by lifting the patters out of the sand in the lower flask, 2 print of the other half will be formed; so that whell the two flasks are returned together, a cavity will be left between them the size and shape of the pattern; and the metal may be poured in through the holes before mentioned.

This method would be proper for moulding a solid article the shape of the pipe: but to form the bore or passage through it, a core must be inserted. This is a cylinder of dried clay, the size of the intended passage, and the length of the extreme ends of the pins $a \boldsymbol{a}$; its size is therefore denoted by the dotted lines in fig. 4. The end of the core is inserted into the impressions of the pins aa, which it exactly fits, as is shewn in 6g. 1. By this means, when the two flasks are put together, a cavity is left all round the core, as is shewn by the dark circle in fig. 5 ; which is a cross section of the mould put engether. The core is made upon an iron bar, which is laid in a frame where it can be turned round by a handle. Hay bands are then wound round it till it becomes nearly the required size. Wet clay is next spread upon it, and smoothed at the same time that it is turned round, till it is made a true and straight cylinder; it is next dried in a stove, by making as fire beneath it. Afterwards another coat of very fine loam is spread upon it, to close up the cracks which will most probably be found in the first coat by theshrink:are of the loam in drying: the last covering brings the cylinder to the true diameter, and when dry it is finished. Now it is evident that if the pins aa are in the proper places, and of the true size, the thickness of the metal will be the same all round the pipe.

The moulder must take care, in every case of sand casting, to make a small hole away from alf the highest part of the pattern, to allow a retreat for the air, when the metal is poured in; otherwise the rarefaction of the air would burst the mould in the ppe; for example, these vents must be made from the highest part of each flaunch by a wire pushed through the sand; two holes should be made for the entrance of the metal, and when the mould is cast, the metal must be pourch in from a ladle at one hole; and when it is seen to rise up in the other, the stream is stopped.

The melfing of the metal is performed in various

FOUNDERY.

furances, as the nature of the metal requires more or less heat to fuse it.

Iron is melted either in a blast furnace or cupola, which is a souall cylindric furnace blown by bellows or otherwise: and the metal and fuel are put in mgether at top; and when melted the metal is let out at bottom, and conreyed to the mould by a channel in the sand, if the work is large; or, if smaller, it is received into a ladle called a shank, shewn at X , in fig. 6 . It has three handles, and is carried between two men, the duuble handles k are very cunvenient for inclining the ladle to pour ont the metal. It contains about an hundred weight; but for smaller quantities a single-handed ladle is employed. For very heavy castings the metal is fused in what is called a reverberating furnace acting by the flame of the fuel alone. Brass and the more valuable metals are melted in crucibles, beated either in the blast furnace or in the air furnace, which is described in our article Brass foumdery. As the cupola and reverberating furnaces are used in numerous other processes in the arts, besides foundery, we shall det scribe theirconstructionunderthe article FURNACE.

The sand moulds above described, by having two or more flasks one upon the other, and dividing the pattern into several parts, are applicable to a very large proportion of the articles which come before the founder: but it is here proper to make the distinction between wet and dry sand. The fonner is used where the intricacy of the pattern requires the sand to be wetted to give it sufficient adhesion, and preserve its figure. When a mould of this kind is finished, it must bedried in a stove to evaporate the water, before the casting. Dry sand is used for more simple patterns, and requires no more water than may be suffered to remain in the mould when cast without danger.

Loam is also a material used by founders for making their moulds, when they are required of such dimensions that the weight of so large a body of sand would be too great to support itself if rammed in flasks; also for others which are too complicated to be moulded in sand: the loam is clay well mized up with water, which is moulded while in a soft state and afterwards dried. To explain the art of moulding in loam, we shall describe the manner of making a mould for a large bemispberical boiler; and the reader will easily perceive that a similar method is applicable to large bells, cylinders, cisterns, and many other articles. AA, fig. 8, pl. 74, represents the shape of the boiler which is to be cast, in an inverted state. The founder provides a round iron ring L, fig. 7, somewhat larger than the intended boiler; upon this ring he erects a dome of brick work BB, fig. 9, rather smaller than the inside of the boiler; ven this is completed, an axis DD is erected, torning on pivots at its ends. The socket for the lower pirot is fixed in a stake driven in the ground bereath the dome, and the upper pivot turns in a socker fixed to the beam EE, in the roof of the building. The axis DD has an arm F sliding upon it, which can be fixed at any height by a screw. To this arm a piece of board G is screwed; and its internal edge cut out to the curre the intended boiler is to have, and with a notch in the lower prare proper to fit to the ring a at the bottom. After 2 his preparation the moulder spreads a layer of wet loam upon the dome of brick work; and by tarning the board G, and its axis D round, the loam will be scraped round to its true figure. By this mesns, in a short time, a core is formed the proper suze tu shape the inside oi the vessel; and it is dricd
by making a fire teneath it. Another dome is now constructed in the same manner, but the size and figure of the outside of the vessel : and upon this any rings, ornaments, \&cc. which are required, must be engraved. When dried, this dome must be painted over with a blacking made of charcoal ground up with water, and a gond thickness of loam is spread upon it. Iron wire and old hoops are worked up in it, to give it the necessary strength. After drying this outer coat, the whole is turned over, and the bricks and loam of the first operation are removed; leaving a hollow shell, qs the blacking prevents a connection of the two layers of loam. CCC, fig. 9, is a section of this shell, shewing the manner in which it is placed over the core BB, so as to leave the dark space for the reception of the metal, which is poured in through two or more holes at $d d$. The mould must be buried in a pit, and covered up with sand: long round sticks are set up in the holes dd, to keep the sand out of them : when drawn out they leave passages through the sand, down which the metal is conveyed to the mould. Iron rings R , fig. 6. are laid round the tops of the passages to prevent the metal breaking away the sand by its weight. The metal is always conveyed to such large moulds in channels cut out in the sand from the top hole of the furnace to the orifice of the mould.

A square cistern might be moulded in a similar manner by bricks and loam; and, with a reasonable share of ingenuity, a founder will be able to furm a mould for any article he meets with.

Foundery (Brass). The art of casting brass is a distinct business from iron foundery, though the manner of moulding any article to be cast in brass is the same as for ifon; the difference lies in the manner of treating the metal in the furnace. Under our article Brass will be found an extract from Dr. Rees'Cyclopedia, describing the process of making brass as practised in Flintshire; we are now enabled to lay before our reader drawings of the furnace used for this process at Mr. Bennet's bras* works, Sheffield. The copper which is to be converted into brass is brought to the woiks in a granulated state, called shot copper, made by melting the copper and throwing it into cold water: 52 pounds of copper in this state are mixed with 80 pounds of calamine previously prepared by calcination, which is performed in a reverberating furnace three yards long, two yards wide, and the roof 18 inches bigh; the calamine being thrown into the furnace, and the flame of pit coal reverberated upon it from the roof of the furnace. In this manuer it is exposed to a considerable heat for about four hours, the attendant continually stirring it about with aniron hoe, and turningitover, that every particle may be equally subjected to the action of the fire. By this operation the calamine is deprived of its sulphur, which passes off up the chimney, and is precipitated on the ground around the furnace in such quantities as to bea considerable annoyance to any iuhabitants of its vicinity. The calamine loses in weight by the calcination: the large lumps of calamine are now broken by a hammer, and the whole ground to a fine powder between mill-stones like those used for grinding wheat; in this state the calamine is ready fur making common brass. But for making the best brass which is to be rolled or drawn into wire, the calamine must be washed first before grinding. It is washed in a cistern called a buddle, about six fect square, and 12 iurhes deep. A small stream of clean water is brought on, on oneside, and the waste flows out at the other. The catamine being thrown into this buddle, and well

FOUNDERY.

raked about, the water carnics off a portion of calamine: by which separation. the remaioder is found to be greatly impruved tor the purpose of brass making. One bushel of pit-coal, ground to a tine powder, is now mixed up with 52 pounds of shot copper, and 82 of prepared calamine; the mixture is put in nine crucibles, one of which is shewn at fig. 4, Plate 75. The crucibies are now placed in the furnace, eight of them are ranged in a circle round the inside of the furnace as shewn at aa in plan, tig. 1, and the ninth is placed in the center. The body of the furnace AA, fig. 1, 2, is nearly in the furm of half an egg, that is, semi-spheroidal. The flour BB is an iron plate covered with clay and perforated with 12 small holes, denoted by dots in the plan, to bring up the supply of air. The top of the furnace has a round bule in it to introduce the crucibles and fuel, which is euclosed by a cover D, made of fine clay, with a small bule in the center. EE is the flue forming a communication from the top of the furnace to the chitnney, to convey away the smoke, and cause a draught. The furnace is supplied with fresh air through the holes in the bottom of the furnace from a larse draught arch $Y P$, which communicated with the open air. After the crucibles are placed in the furnace, a small quantity of furzens is thrown down to prevent the 12 holes from being stopped up by the coals with which the furnace, is nuw filled. As it was heated red hot previous to being charged, the coals are quickly fred and the whole burns rapidly; the fire is continued for about twelve hours, the manager regulates its heat from his experience of former processes, and furms his judrment of the actual state of the furnace from the appeirance and colonr of the small stream of fathe which issues from the small Holed in the cover of the firmace mouth, when a damper at K in the llue E is closed so as to stop the current of air going up the chimney. He increases or diminishes the heat at pleasure, by opening or closing this damper, and thus regulating the draught. After the fire has been continued about 12 hours, the crucibles are taken out by the tongs fig. S. which have curved jans $k h$, to embrace enca crucible, and the contents of all the cight crucibles poured into the centre one, from thence, it is run into ingot moulds, tig. 5 , each of the mgoter hus formed will weigh about six pounds, and the whole quantity of brass produced by the operation is about 80 pounds. The boily of the furnace at AA is lined with fire-brirk, and an iron ring is laid round the mouth, and upon which the eover shuts. The crucibles are made of Stouibridge clay, mired up with old ginss melting-pots, first reduced to a poowler. All extensive brass work contains sereral fumaces which are arranged in two rows parallel to each other, and at snch a distance apart, shat the flues of both rows may be carried up in the same stack of chimnies. Sometimes the brass is poured into mondik at once. Fig. 6 shews a pair of flasks, AA the upper, BB the lower; an the pias to put them together, Δb the holes fur the: nectal.

Fuundery of Betis. The metal, it is to be obsewed, is different for bells from what it is for statues, there being no till in the statue-metal: but thicre is a fiflb, and sometimes more, in the bell-metal.

The dimensions of the core and the wax for bells, if a ring of bells especially, are not left to chance, but must be meaured on a scale or diapason, which gives the he ight, aperture, and thieknes:, necessary for the scietal tunes nequired.

It is on the wax that the several mouldings amd other urnaments and iuscriptions, to be represent \rightarrow ed in relicro on the outside of the bell, are formed. The clapper or tongue is not properly a part of the bell, but is furnished from other hands. In Eurupe it is usually of iron, with a large knob at the extremity; and is suspended in the midale of the bell. In China, it is only a huge wooden mallet, struck by force of arm against the bell; whence they can have but little of that consonancy so much admired in some of our rings of bells. The Chinese have an extraordinary way of increasing the sound of their bells; viz. by leaving a hole under the cannon; which our bell-founders ratber reckon a defect.

The proportions of our bells differ very much from thuse of the Chinese. In ours, the modern proportions are, to make the diameter fifteen times the thickness of the brim, and the height twelve times. The parts of a bell are, 1. The sounding bow, termimated by an inferior circle, which growe thinner and thinner. 9. The brim, or that part of a bell whereon the clapper strikes, and which is thicker than the rest. S. The outward sinking of the middle of the bell, of the point under which it grows wider to the brinn. 4. The waist or furniture, and the part that grows wider and thicker quite to the brim. 5. The upper vase, or that part which is above the waist. 6. The pallet which supports the raple of the clapper within. 7. The bent and hollowed branches of metal uniting with the cannous, to receive the iron keys, whereby the bell is hun: up to the beam, which is its support and counterpoise, when rung out.
The business of bell-funndery is reducible to three particulars. 1. The proportion of a bell. 2. The furming of the mould. And, 3. The melting of the metal. There are two kinds of proportions, viz. the simple and the relative; the former are those proportions only that are between the several parts of a bell to render it sonorous; the relative propertions establish a requisite harmony between severad bells.

The muthod of foraning the profile of a bell, prevous to its being ca-t, in which the proportion of tie several parts may be seen, is as follows: The thickness of the brim, Cl in Plate 76, is the foundation of every other ineasure, and is divided into three equal parts. First, draw the line HD, which repesents the diameter of the bell; bisect it in F, and erect the perpendicular Ff; let DF and $H F$ be also bisected in E and G, and two other perpenticulars Ee, Ga, be erceted at E and G: GE will be the diameter of the top or upper vase, i. e. the diameter of the top will be half that of the bell; and it will therefore be the diameter of a bell which will sound an octave to the other. Diside the diameter of the bell, or the line HD, into fitteen - gual parts, and one of these will give C1 the thickuess of the brius; divide again each of these fifteen equal parts into three other equal parts, and then form a scale. From this scale take twelle of the lareer divisions or $\frac{2}{15}$ of the whole scale in the compass, aud, setting one leg in $\mathrm{D}_{\text {, }}$, describe an are to cut the line E_{e} in N ; draw ND, and divide this line into twelve cqual parts; at the puint 1 crect the perpendicular $1 \mathrm{C}=10$, and Cb will be the thickness of the brim $=\frac{1}{15}$ of the diameter: draw the line CD : bisect DN; and at the point of bisection 6 erect the porpendicular $6 \mathrm{~K}=1 \frac{1}{2}$ of the larger divisions on the scale. With an oprening of the compass equal to twice the length of the scale or thirty brims, setting one leg in Ni, describe an arc of circle, and with the

FOUNIDERY.
PL. 74.

BRASS FOUNDERY.
PL. 75.

FOUNDERY.

same leg in K and the same opening describe another are tointersect the former: on this point of intersection as a centre, and with a radius equal to thirty brims, describe the are NK ; in 6 K produced take $C B=f$ of the larger measure of the scale, or $\frac{1}{1}$ of the brim, and on the same centre with the radins 30 brims describe an arc AB parallel to NK. For the arc BC, take twelve dirisinns of the scale, or twelve brims in the compass; find a centre, and from that centre, with this opelling, describe the arc BC , in the same manner as Nik or $\mathbf{A B}$ were described. There are various Tays of describing the are $K p$; some describe it on a centre at the distance of uine brims from the points p and K; others, as it is done in thr figure, on a centre at the distance only of seven brims from those points. But it is necessary first to find the point p, and to determine the rounding of the bell pl. For this purpose, on the point C as a centre, and with the radius Cl , describe the are $1 p_{n}$; bisect the part 12 of the line D_{n}, and, erecting the perpendicular $p m$, this perpendicular will cut the arc $1 p_{n}$ in m, which terminates the ronudiag $1 p$. Sowe founders make the bendings K third of a brim fower than the middle of the line DN ; thers make the part CID more acnte; and, instcad of making C1 perpendicular to DN at 1, draw it th of a brim higher, making it still equal to one brim; so that the line 1D is louger than the brim C1. In order to trace out the top-part Na, take in the compass eight divisions of the scale or eight brims, and on the points N and D as centres, describe ares to int-rsect each other in 8: on this point 8, with a radius of eight brims, describe the arc N 6 , this arc will be the exterior curre of the top or crown : on the same point 8 as a centre, and with a radius equal to $7 \frac{1}{3}$ brims, describe the are Ac, and this will be the interior curre of the crown, and its whole thickness will be one-tind of the brim. As the point 3 dues not fall in the axis of the bell, a centre M may be found in the axis by describing, with the interval of eight brims on the ceatres D and H, arc's which will intersect in M; and this point may be made the centre of the inner aud unter curves of the crown as before. The thi kness of the cap which strengthens the crown at \mathbf{Q} is about one.third of the thickness of the brim; and the hollow branches or ars about one-sixth of the diameter of the bell. The height of the bell is in propirtion to its diameter as twelve to fifteen, or in the pro. portion of the fandamental sound to its third mafor: whence it follows, that the sound of a bell is principally composed of the sound of its extremity or brim, as a fundamental of the sound of the crown which is an octave to it, and of that of the beight which is a third.
The particulars necessary for making the mould of a bell are, 1. The carth : the most cohesive is the best ; it must be well ground and sifted, to prevent any chinks. 2. Brick-stonc, which must be used for the mine, mould, or core, and for the furnace. 3. Horse-dung, hair, and hemp, mixed with the earth, to render the cement more binding. 4. The wax for inscriptions, coats of arms, \&c. 5. The tallow equally mixed with the was, in order to put a slight lay of it upon the oater mould, before any letters are applied to it. 6. The coals to dry the mould.

Por making the mould, the workmen have a ccafold consisting of four boards, ranged upon tressels. Upon this they carry the earth, grossly diluted, to mix it with horse-dung, beating the vate with a large spatula.

The compasses of construction is the chief instrument for making the mould, which cansist of two different legs joined by a third piece. And, last of ail, the founders' shelves, on which are the engravings of the letters, cartridges, coats of arms, \&c.
They first dig a hole of a sufficient depth to contan the monid of the bell, together with the case or camon, under ground; and about six inches lower than the terreplain, where the work is performed. The hole must be wide enough for a free passage between the mould and walls of the hole, or between one mould and another, when several bells are to be cast. At the centre of the hole is a stake erected, that is strongly fastened in the ground. This supports an iron peg, on which tire pivot of the second branch of the compasses turns. The stake is encompassed with a solid brick-work, perfecly round, about half a foot high, and of the proposed bell's diameter. This they call a mill-stone. The parts of the mould are, the core, the model of the bell, and the shell. When the outer surface of the core is formed, they begin to raise the eore, which is made of bricks that are laid in coursess of equal height upon a lay of plain earth. At the laying of each brick, they bring near it the brauch of the compasses, on which the curve of the core is shaped, so as that there may remain between it and the curve the distance of a line, to be afterwards filled up with layers of cement. The work is continued to the top, only leaving an opening for the coals to bake the core. This work is coveted with a layer of cement, made of earth and horse-dung ; on which they move the compasses of coustruction, to make it of an even smoothness every where.
The first layer being finished, they put the fire to the core, by filling it half with coals, through an opening that is kept shut duriug the baking, with a cake of eaith that has been separately baked. The tirst fire consumes the stiake, and the Gie is left in the core half or sometimes a whole day: the first layer being thoroughly dry, they cover it with a second, thind, and fourth; each bring smootred by the board of the compasses, and thoroughiy dried tefire they procced to another.
The core being completed, they take the compasses to pieces, with intent to cut off the thickness of the model; and the compasses are immediately put in their place to begin a second piece of the monld. It consists of a mixture of earth and hair, applied with the hand on the core, in several cakes that close together. This work is finished by several layers of a thinner ccment of the same matter, smoothed by the compasses, and thoroughly dried before another is laid on. The first layer of the model is a mixture of wax and grease spread over the whole. After which are applied the inscriptions, coats of arms, \&c. besmeared with a pencil dipped in a vessel of wax in a chafing-dish: this is done for every letter. Before the shell is begun, the compasses are taken to pieres, to cut off all the wood that fills the place of the thickness to be given to the shell.

The first layer is the same earth with the rest, sifted vers fine; whilst it is tempering in water, it is mixed with cow's hair to make it cohere. The whole being a thin matter is gently poured on the model, that fills exactly all the sinuositics of the figures, \&c.; and this is repeated till the whole is two lines thick over the model. When this layer is thoroushly dried, they cover it with a second of the same satter, but somewhat

FOUNDERY.

thicker; when this second layer becomes of some consistence, they apply the compasses again, and light a fire in the core, so as to meit off the wax of the inscriptions, \&c.

After this, they gu on with other layers of the shell, by means of the compasses. Here they add to the cow's hair a quantity of hemp, spread upon the layers, and afterwards smoothed by the board of the compasses. The thickness of the shell comes to four or five inches lower than the millstone before observed, aid surrounds it quite close, which prevents the extravasation of the metal. The wax should be taken out before the melting of the metal.

The ear of the bell requires a separate work, which is done during the drying of the several incrustations of the cement. It has seven rings: the seventh is called the bridge, and unites the others, being a perpendicular support to strengthen the curves. It has an aperture at the top, to admit a large iron peg bent at the bo tom; and this is introduced into two holes in the beam, fastened with two strong iron keys. There are models made of the riugs, with masses of beaten earth, that are dried in the fire, in order to have the hollow of them. These rings are gently pressed upon a layer of earth and cow's hair, one half of its depth, and then taken out without breaking the mould. This operation is repeated twelve times for twelve half-moulds, that two and two united may make the hollows of the six rings : the same they do for the hollow of the bridge, and bake them all, to unite them together.

Upon the open place left for the coals to be put in, arc placed the rings that constitute the ear. They first put into this open place the iron ring to support the clapper of the bell; then they make a round cake of clay, to fill up the diameter of the thickness of the core. This cake, after baking, is clapped upon the opening, and soldered with a thin mortar spread over it, which binds the cover clisse to the core.

The holluw of the model is filled with an earth, sufficiently inoist to fix on the place, which is strewed at several times upon the cover of the core; and they beat it gently with a pestle, to a proper height; and a workman smooths the earth at top with a wooden trowel dipped in water.

Upon this cover, to be taken off afterwards, they assemble the hollows of the rings. When every thing is in its proper place, they strengthen the outside of the hollows with mortar, in order to bind them with the bridge, and keep them steady at the bottom, by means of a cake of the same mortar, which fills up the whole aperture of the shell. This they let dry, that it may be removed without breaking. To make room for the metal, they pull off the hollows of the rings, through which the metal is to pass before it enters into the vacuity of the mould. The shell being unloaded of its ear, they range under the mill-stone five or six pieces of wood, about two feet long, and thick cuough to reach almost the lower part of the shell: between these and the mould they drive in woorlen wedges with a mallet, to shake the shell of the model whereon it rests, so as to be pulled $\mu \mathrm{p}$ and got out of the pit.

When this and the wax are removed, they break the model and the luyer of carth, through which the metal must run, from the hollow of the rings, between the sliell and the core. They smoke the inside of the shell, by burning straw under it, that helps to smooth the surface of the bell. Then pney put the shell in the place, so as to leaye the
same interval between that and the core; and bee fore the hollows of the rings or the cap are put on again, they add two vents, that are united to the rinss, and to each other, by a mass of baked cement. After which they put on this mass of the cap, the rings, and the vent, over the shell, and solder it with thin coment, which is dried gradually by covering it with burning coals. Then they fill up the pit with carth, beating it strongly all the time round the mould.

The furnace has a place for the fire, and another for the metal. The fire-place has a large chimney with a spacious ash-hole. The furnace which contains the metal is vaulted, and its bottom is made of earth, rammed down; the rest is built with brick. It has four apertures; the first, through which the flame revibrates; the second is closed with a stopple that is opened for the metal to run; the others are to separate the dross or scoris of the metal by wooden rakes: through these last apertures passes the thick smoke. The ground of the furnace is built sloping, for the metal to run down.

Foundery of Great Guns and Morlar-Pieces. The method of casting these pieces is little different from that of bells: they are run massy, without any core, being determined by the hollow of the shell; and they are afterwards bored with a steel tripan, that is worked either by horses, a watermill, or a steam-engine. See farther the article Gunnery.

Letler-Foundery, or Casling of Types for Printing. In the business of cutting, casting, \&c. letters for printing, the letter-cutter must be provided with a vice, hand-vice, hammers, and files of all sorts for watch-makers' use; as also gravers and sculpw ters of all sorts, and an oil-stone, \&c. suitable and sizeable to the several letturs to be cut: a flat gage made of box to hold a rod of steel, or the body of a mould, \&c. exactly perpendicular to the flat of the using file: a sliding-gage, whose use is to measure and set off distances between the shoulder and the tooth, and to mark it off from the end, or from the edge of the work: a facegage, which is a square notch cut with a file into the edge of a thin plate of steel, iron, or brass, of the thickness of a piece of coummon tin, whose use is to proportion the face of each sort of letter, viz. long letters, ascending letters, and short letters. So there must be three gages, and the gage for the long letters is the length of the whole body supposed to be divided into 42 equal parts. The gage for the ascending letters Roman and Italic are $\frac{4}{5}$, or 30 parts of 42 , and 33 parts for the English face. The gage for the short letters is $\frac{3}{3}$, or 18 parts of 42 of the whole body for the Roman and Italic, and 22 parts for the English face.

The Italic and other standing gages are to measure the scope of the Italic stems, by applying the top and bottom of the gage to the top and bottom lines of the letters, and the otber side of the gage to the stem; for when the letter complies with these three sides of that gage, it has its true shape.

The next care of the letter-cutter is to prepare good stecl punches, well tempered, and quite free from all veins of iron; on the face of which he draws or marks the exact shape of the letter with pen and ink, if the letter be large, or with a smooth blunted point of a needle if it be small; and then with sizeable, and proper shaped and pointed gravers and sculpters, digs or sculps out the steel between the strokes or marks so made on the face of the punch, and leaves the marks stand:

MISCELILANIES.
PL. 76.

Abblished by G. Kearsley. Fiect Stroct, Febyziszo.

FOUNDERY.

ing on the face. Having well shaped the inside strokes of bis letter, be deepens the hollows with the same tools; for, if a letter be not deep in proportion to its width, it will, when used at press, print black, and be good for nothing. This work is generally regulated by the depth of the counter punch. Then he works the outside with proper tiles till it be fit for the matrice.

But before we proceed to the sinking and justifying of the matrices, we must provide a mould to justify them by, of which you have dranghts in Plate 70. fig. 2 and 3. Esery muald is composed of an upper and under part. The under part is delineated in fig. 2. The upper part is marked tig. 3, and is in all respects made like the under part, excepting the stool behind, and the bow or spring also behind; and excepting a small roundish wirc between the body and carriage, sear the break, where the under part hath a small rouiding gtuove made in the body. This wire, or rather hali-wire, in the upper part makes the nick in the shank of the letter, when part of it is rectived into the groove in the under part. These tho parts are so exactly fitted and gaged intw one another (viz. the male-gage marked c in fig. 3 . into the female marked g in fig. 2.) that when the upper part of the mould is properly placed on, and in the under part of the mould, boith together make the entire mould, and may be slid backwards for use so far, till the edge of ether of the bodies on the middle of either carriage cumes just to the edge of the female gages cut in each carriage : and they may be slid forward so far, till the bodies on either carriage touch each other: and the sliding of these two parts of the mould backwards makes the shank of the letter thicker, because thre bodics on each part stand wider asunder; and the sliding them forvards makes the shank of the letter thinner, because the bodies on each part of the muuld stand closer together. The parts of the mould are as foilow: viz. a, The carriage. b, The body. c, The male gage. de, The mouth-piece. f, The register. g , The female gage. h h, The hag. asac, The bottom plate. $b b b$, The wood on which the bottom plate lies. ccc, The mouth. $d d$, The throat. edf, The pailat. f, The nick. gg, The stool. hh, The spring or bow.
Then the mould must be justified: and first the founder justifies the body, by casting about 20 proofs or samples of letters; which are set up in a composing stick, with all their nicks towards the right hand; and then, by comparing these with the pattern letters, set up in the same manner, he finds the exact measure of the body to be cast. He also tries if the tue sides of the borly are paraliel, or that the body be no bigger at the bead than at the foot, by takiug half the number of his proofs aud turuing them with their healls to the feet of the other balf; and if then the heads and the feet be found exactly even upon each other, and neither to drive out nor get in, the two sides may be pronounced parallel. He farther tries whether the two sides of the thickness of the letter be parallel, by first setting bis proofs in the composing stick with their nicks upwards, and then turning one half with their heads to the feet of the other half; and if the heads and feet lie exactly upon each other, and neither drive out nor cet in, the two sides of the thickness are parallel.

The mould thas justified, the next business is to prepare the matrices. A matrice is a piece of brass or copper, of about an inch and a half long,
and of a thickness in proportion to the size of the letter it is to contain. In this metal is sunk the face of the letter intended to be cast, by striking the letter-punch about the depth of an n. After this, the sides and face of the matrice must be justified and cieared with files of all bunchings made by sinking the punch.

Every thing thus prepared, it is brought to the furnace; which is built of brick upright, with four square sides, and a stone on the top, in which stone is a wide round hole for the pan to stand in. A fundery of any consequence has several of these furnaces in it.

As to the metal of which the types are to be cast, this, in extensive founderies, is always prepared in large quantities; but cast into small bars of about 20 pounds weight, to be delivered out to the workmen as occasion requires. In the letterfonindery under the direction of Dr. Alex. Wilson and Sons at Glasgow, we are informed, that a stock of metal is made up at two diticicent times of the ycar, sufficient to serve the casters at the furnace for six months each time. For this purpose, a large furnace is built under a shade, furnished with a wheel vent, in order the more equally to heat the sides of a strong pot of cast-iron, which bolds when full 1.5 hundred weight of the metal. The fire being kindled below, the bars of bead are let softly down into the pot, and their fusion promoted by throwing in sume pitch and tallow, which soon inflame. An outer chimney, which is built so as to project about a foot over the farthest lip of the pot, catches hold of the flame by a strong draught, and makes it act very powerfully in melting lead; whilst it serves at the same time to convey away all the fumes, \&c. from the workmen to whom this laborious part of the business is committed. When the lead is thoroughly melted, a due proportion of the requlus of antimony and other ingredients is put in, and some more tallow is inflamed to make the whole incorporate sooner. The workmen now having mixed the contents of the put very thoroughly by stirring long with a large iron ladle, next proced to draw the metal into the small troughs of cantiron, which are ranged to the number of fourscore upon a level platform faced with stone, built towards the right hand. In the course of a day, 15 hundred weight of metal can be easily prepared in this manner; and the operation is continued for as many days as are necessary to prepare a stock of metal of all the various degrees of hardnes.s. After this, the whole is disposed into presses according to its quality, to be delivered out occasionally to the workmen.

The founder must now be provided with a ladle, which differs nothing from ot her iron ladles but in its size; and he is provided always with ladles of screral sizes, wheh he uses according to the size of the letters he is to cast. liefore the castur begins to cast, ire must kindle his fire in the furnace to melt the metal in the pan. Therefore he takes the pan out of the hole in the stone, and there lays in coals and kindles them: and, when they are well kindled, he sets the pan in again, and puts in metal into it to melt: if it be a small-budied letter he casts, or a thin letter of great bodies, his metal must be very hot; uay, sometimes red hot, to make the letter come. Then having chosen a ladic that will hold about so much as the letter and briak is, he lays it at the stoking hole, where the flame bursts out, to heat. Then he ties a thin leather, cut with its narrow end against the face to the leather grouve of the mane.

FOUNDERY.

rice, by whpping a brown thread twice about the leather groove, and fastening the thread with a knot. Then he puts both halves of the mould tosether, and puts the matrice into the matrice. check, and places the foot of the matrice on the stool of the moold, and the broad end of the leather upon the wood of the upper hali of the mould, but not tight up, lest it might hinder the foot of the matrice from sinking close down upon the stool in a train of work. Then laying a little rosin on the upper wood of the mould, and having his cast -ing-dadle hot, he with the boiling side of it melts the rosin: and, while it is yet melted, presses the broal end of the leather hard down on the wood, and so fastens it to the wood: all this is the preparation.

Nuw he comes to casting; in the performance of "hich, placing the under half of the mould in his left hand, with the hook or hag forward, he clutches the rnds of its wood between the lower pait of the ball of his thumb and his three hind fing r; ; then he lays the upper half of the mould upon the under half, so that the male gages may fall into the female gages, and at the same time the foot of the matrice places itself upon the stool; and, clasping his left-hand thumb strong over the upper halt of the mould, he nimbly cateles hold of the bow or spring with his right-hand fingers at the top of it, and his thumb under it, and places the point of it acainst the middle of the notch in the backside of the matrice, pressing it as well forwards towards the mould, as downwards by the shoulder of the notch close upon the stool, while at the same time with his hinder fingers, as atoresaid, he draws the under half of the mould towards the ball of his thumb, and thrusts by the ball of his thumb the upper part towards his fingars, that both the registers of the mould may press against both sides of the matrice, and his thumb and fineers press both halves of the mould close together.

Then he takes the handle of his ladle in his right hand, and with the ball of it gives a stroke, two or three, outwards upon the surface of the melted metal, to scum or clear it from the fiim or dust that may swim upon it; then takes up the laclle full of metal, and having his mould, as aforesaid, in his left haind, he a little twists the left side of his boly from the furnace, and brings the geat of his ladle (full of metal) to the mouth of the mould, and twists the upper part of his rislit hand towards him to turn the metal into it, while at the same moment of time he jilts the mould in his left hand forwards, to receive the metal with a strong shake (as it is called), not only into the body of the mould, but while the metal is yet hot running, swift and strongly, into the very face of the matrice, to receive its perfect form there, as well as in the shank.
Then he takes the upper half of the mould off the under balf, by placing his right-hand thumb on the end of the wood next his left-hand thumb, and histwo mitdle-flugers at the other end of the wood; and finding the letter and break lie in the under half of the mould (as most commonly by reason of its wei:ht it does), he throws or tosses the letter, hreak and all, upon a sheet of white paper laid for that purpose on the bench, just a little beyond his left hand, and is then ready to cast another letter as before; and also, the whole number that is to be cast with that ruatrice. A workman will ordinarily cast about three thousand of these leters in a day.
When the casters at the furuace have got a
sufficient number of types upon the tables, a sort of boys come and nimbly break away the jets from them: the jets are thrown into the pots, and the types are carricd away in parcels to other boys, wio pass them swiftly under their fingers, defended by leather, upousmooth flat stones, in order to polish their broad sides. This is a very dexterouts operation, and is a remarkable instance of what may be effected by the power of habit and long partice: for these boys, in turning up the other side of the type, do it so quickly by a mere tourh of the fingers of the left hand, as not to reguire the least perceptible intermission in the motion of the right-hand upon the stone. The types, thus fincly smoothed and flattened on the broad sides, are next carricd to another set of boys, who sit at a square table, two on each side, and there are ranged up on long rulers or sticks, fitted with a small projection, to hinder them from sliding off backwards. When the sticks are so filled, they are placed, two and two, upon a set of wooden pins fixed into the wall, near the dresser, sometimes to the amount of an hundred, in order to undergo the finishing operations. This workinan, who is always the most expert and skilful in alt the different branches carried on at the foundery, begius by taking one of these sticks, and, with a peculiar address, slides the whole column of types off upon the dressing-stick: this is made of wellseasoned malogany, and furnished with two endpieces of steel, a little lower than the body of the typis, one of which is moveable, so as to approach the other by means of a long screw-pin, inserted in the enll of the stick. The types are put into this stick with their faces next to the back or projection; and after they are adjusted to one another so as to stand even, they are then bound up, by screwing home the moveable end-picce. It is here where the great and requisite accuracy of the moulds comes to be perceived; for in this case the whole rolumn, so bcund up, lies flat and true upon the stick, the two extreme types being quite parallel, and the whole has the appearance of one solid continuous plate of metal. The least iuaccuracy in the cxact parallelism of the individual type, when multiplied so many times, would render it impossible to bind them up in this manner, by dispusing them to rise or spring from the stick by the smallest pressure from the screw. Now, when lying so conveniently with the narrow edges uppermost, which cannot possibly be smoothed in the manner before mentioned by the stones, the workman does this more effectually by scraping the surface of the column with a thick-edged but sharp razor, which at every stroke brings on a very fine smooth skin, like to polished silver; and thus he proceeds till in about half a minute he comes to the farther end of the stick. The other edges of the types are next turned upwards, and polished in the same manner. It is whilst the types thus lie in the dressing-stick, that the operation of bearding or barbing is performed, which is effected by running a plane, faced with steel, along the shoulder of the body next to the face, which takes more or less off the corner, as occasion may require. Whilst in the dressing-stick they are also grooved, which is a very material operation. In order to understand this, it must be remembered, that when the types are first broken off from the jets, some superfluous metal always remains, which would make them bear very unegually against the paper whilst under the printing-press, and effectually mar the impression. That all these inequalities may, therefore, be
taken away, and that the bearings of every type may be regulated by the shoulders imparted to them all alike from the mould, the workman or dresser proceeds in the following manner: The types being screwed up in the stick, as before mentioned, with the jet-end outermost, and projecting beyond the wood about one-eighth of an inch, the stick is put idto an open press, so as to present the ict-end uppermost, and then every thing is made fast by driving a long wedge, which bears upon a slip of wood, which lies close to the types the whole length: then a plough or plane is applied. Which is so constructed as to embrace the projecting part of the types betwixt its long sides, which are made of polished iron. When the plane is thus applied, the steel cutter bearing upon that part between the shoulders of the types, where the iuequalities lie, the dresser dexterously gldes it along, and by this means strips off every urezular part that comes in the way, and so makes an unifurm groove the whole length, and leaves the two shoulders standing; by which means every type becomes precisely like to another, as to the heigbt against paper. The types being now finished, the stick is taken nut of the press, and the whole column replaced upon the other stick; and after the whole are so dressed, he proveeds to pick out the bad letters, previous to putting them up into pages and papeis. In doing this he takes the stick iuto his left band, and turning the faces near to the light, be examines them carefully; and whenever an imperfect or damaged k.tter oceurs, he nimbly plucks it out with a sharp budkin, which he holds in the right haad for that purpose. Those letters which, from their form, project over the budy of the type, and which canpot on this account be rubbed on the stones, are gcraped on the broad sides with a knife or file, and some of the metal next the face pared away with a penknife, in order to allow the type to cone close to any other. This operation is called kerning.

The excellence of priuting types consists not only in the due performance of all the operations above described, but also in the hardness of the metal, form and fine proportion of the character, and in the exact bearing and ranging of the letters in relation to one another.

FOYUNDIING. s. (from found or find.) A child exposed to chance; a child found without any parent or owner (Sidney).

FO'LNDRESS. s. (from founder.) 1. A woman that founds, builds, establishes, or begins any thing. 2. A woman that establishes anv charitable revenue (Dryden).

FOUNT, or Font, among printers, a set or quantity of letters, and all the appendages belonging thereto, as numeral characters, quadrates, points, \&ce. cast by a letter-founder, and sorted. Founts are large or small, according to the demand of the printer, who orders them by the hundred weight, or by sheets. When a printer orders a fount of five hundred, he means that the fount, consisting of letters, points, spaces, quadrates, \&ic. shall weigh soolb. When he demands a fount of ten sheets, it is understood, that with that fount be shall be able to compose ten sheets, or twenty forms, without being obliged to distribite, that is, take them to pieces. The founder proceeds accordingly; he reckons $120 / \mathrm{l}$. for a

FOU

sheet, including the quadrates, \&e. or 60 lb . for a form, which is only half a sheet: not that the sheet always weighs 120 lb . or the form 60 lb . on the contrary, it varies according to the size of the form : besides, it is always supposed that there are letters left in the cases. As therefore every sheet does not comprehend the same number of letters, nor the same sort of letters, we must observe, that, as in every language some sounds recur more frequently than others, some letters will be in much more use, and oftener repeated than others, and consequently their cells or cases should be better stored than those of the letters which do not recur so frequently: thus, a fount does not contain an equal number of a and b, or of b and $c, \& i c$. the letter-founders have, therefore, a list or tariff, or, as the French call it, a police, by which they regulate the proportions between the different sorts of characters that compose a fount ; and it is evident that this tariff will vary in different languages, but will remain the same for all sorts of characters employed in the same language. Suppose a fount of lower case to consist of $100,00 \%$ characters, which is a common fount : here the a should have 5,000, the $c 3,000$, the $e 11,000$, the i 6,000 , the $m 3,000$, the k only 30 , and the x_{0} y, and z not many more. See Printing.

Fount. Fo'untain. s. (fons, Latin. fon!aine, French.) 1. A well; a spring (Milton). 2. A small basin of springing water (Addison). 3. A jet; a spout of water (Bucon). 4. The head or first spring of a river (Dryden). 5. Original ; first principle; first cause (Sprat).

Fo'untain, in philosophy, a spring or source of water rising out of the ground. Sce Sprinc.

Fo'untain, or Artificialfountain, in hydraulics, a machine or contrivance by which water is violently spouted or darted up; called also a jet d'cau.

There are various kinds of artificial fountains, but all formed by a pressure of one sort or another upon the water, \&c. viz. either the pressure or weight of a head of water, or the pressure arising from the spring and elasticity of the air, \&c. When these are formed by the pressure of a head of water, or any other fluid of the same kind with the fountain, or jet, then will this spout up nearly to the same height as that head, abating only a little for the resistance of the air, with that of the adjutage, \&cc. in the fluid's rushing through ; but, when the fountain is produced by any other force than the pressure of a column of the same fluid with itself, it will rise to such a height as may be nearly equal to the altitude of a column of the same fluid whose pressure is equal to the given force that produces the fountain.

Fountain of Hero of Alexandria. so called, because it was contrived by him. Ina this (see PI. 6y. fig. 5.) the air being only compressed by the concealed fall of water, makes a jet, which, after some continuance, is considered by the ignorant as a perpetual motion; be.

FOU

ernse they imazine that the same water which fell from the jet rises argain. The buxes CE and I)YX, being close, we see only the bason ABW, with a hole at W, into which the waecr spouting at B falls; but that water does not come up again; for it rums down through the pipe WX into the box DYX, from whence it drives out the air, through the ascending pipe $\mathrm{I} Z$, into the cavity of the box CE, where, pressing upon the water that is in it, it forces it out througin the spouting pipe OB , as long as there is any water in CE; so that this swhole play is only whilst the water contained in CE, having spoutcd out, falls down through she pipe 11 X into the cavity DYX. The force of the jet is proportional to the height of the pipe WX, or of the boxes CE and DY above one another: the height of the water, measured from the bason ABW to the surface of the water in the lower box DYX, is always equal to the height measured from the top of the jet to the surface of the water in the middle cavity at CE. Now, since the surface CE is always falling, and the water in DY always sising, the height of the jet must continually decrease, till it is shorter by the height of the depth of the carity CE, which is empzying, added to the depth of the cavity 1) . which is always filling; and when the jet is fallen so low, it immediately ceases. The air is represented by the points in this figure. To prepare this fountain for playing, which should be done unobserved, pour in water at W, till the cavity DXY is filled; then invert the fountain, and the water will run from the cavity DXY into the cavity CE, which may be known to be full, when the water suns out at 13 held down. Set the fountain up again, and, in order to make it play, pour in about a pint of water into the bason ABW; and, as sonn as it has filled the pipe $\mathbf{W X}$, it will begin to play, and continue as long as there is any water in CE. You may then pour back the water left in the bason ABW, into any vessel, and invert the fountain, which, being set upright again, will be made to play, by putting back the water poured out into ABW; and so on as often as you please.

Fountain, with regard to architecture, is an assemblige of masonry, sculpture, \&c. connected with an hydranlic fountain, either for convenience or decoration: these acquire various denominations, according to their form and situation, as pyramidal fountain, bason fountain, rustic fountain, covered fountain, 8 c .

Fountain pen. See Pen.
FO'UNTAINLESS. a. (from fountain.) Maving no fountain ; wanting a spring (Milt).

FO'UNTFUL. a. (fount and full.) Full of springs (Chapman).
To FOUPE. v. a. To drive with sudden impetuosity: out of use (Camden).
FOUQUIERES (James), a Flemish painter, born at Antwerp in 1580 . He was the disciple of Velvet 13reughel, and became so excellent in painting landscape as to be rauked with Titian. He died in 105 g .

FO W

FOUR. a. (Feopen, Saxon.) Twice two
Four-cleft leap. In botany, quadrifid. Folium quadrifidum. See Clerty.

Four-cornered stem or peduncemAs in verticillate plants. A four-cornered silique, as in sinapis nigra.

Four corners, in the manage, or to work upon four corners, is to imagine the colt to be divided into four quarters, so that upon each of them the horse may make a round or two in a trot or galiop; which being done he has made the four corners.

Four-fold leaves. Folia quaterna. In botany, quaternate; four together, or by fours, at each joint or whorl; as in sherardiz fruticusa, asperula taurina, cynanchica, \&c. several of the galiums, erica herbacea, \&c.
Four-leaveb tendril. Cifrus tetraphyllus. A tetraphyllous tendril; four leaves to cach tendril ; as in lathyrus sativus.

Four-lobed leaf. Folium quadrilobatum. In botany, quadrilobate. See Lozaтим.
Four-parted leaf. Folium quadripartitum. In botany, quadripartite. See PartED.

FOURBE. s. (French.) A cheat; a tricking fellow : not in use (Denham).

FOURFOLD. a. (four and fold.) Four times told (Samuel).

FOURFO'OLED. a. (four and foot.) Quadruped; having four feet (Dryden).

FOURSCO'RE. a. (four and scorc.) Four times twenty; eighty (Sandys).

FOURSQUA'RE. a. (jour and squarc.) Quadrangular (Ralcigh).

FOCRTE'EN. a. (Feopenryn, Sax.) Four and ten; twice seven.

FOURTEENTH. a. (from fourteen.) The ordinal of fourreen; the fourth after the tenth.

Fourteenth, in music, the octave of the seventh.

Fourti, or Perfect fourth, a musical interval, comprising two tones and a semitone. Its extremes are two sounds in the ratio of $4: 3$. The ancients reckoned this interval as a principal concord: but some, though not a majority, of the moderns, think is cannot be ranked among the concords at afl.

Fourth (Imperfect), contains four semitones, as from \mathbf{G} sharp to C natural.

Fourth (Redundant), is a discord composed of the ratios of $27: 20$, and of $4: 5$.

FO'URTHLY. ad. In the fourth place (Bacun).
FOURWHFIELED. a. (four and wehecl.) Running upon four wheels (Pope).

FO'U'TRA. s. (from foutrc, French.) A fig; a scoff (Shakspeare).

FOWEY, a borough and seaport in Cornwall, with a market on Saturdays, and a considerable share in the pilchard fishery. It is seated at the mouth of the river Fowey, and seuds two members to parliament. Lat. 50. 19 N . Lon. 4. 35 W .
FOWL. s. (fuzel, fuhl, Saxon.) 1 winged animal; a bird. lowl is used collectively : ds. we dincd upon fish and fowl (Bacon).

FO W

To Fowl. v. n. To kill birds for food or game.

FOYWLER. s. (from foul.) A sportsman who pursues birds (Philips. Pope).

Fowler (Edward), an English prelate, was born at Westerleigh in Gloucestershire, in 10.32 , and educated at Corpus Christi college, Oxford. At the restoration he scrupled conformity, having been bred wholly among the puritans; but at length he counplied, and in 1073 he was presented to the rectory of Allhallows, Bread-street. In 1675 he was made prebendary of Gloucester, and in 1681 vicar of St. Giles's, Cripplegate. The same year he took his doctor's degree. He was a very active promoter of the revolution, for which he was promnted to the see of Gloucester in 1691 . He died at Chelsea in 1714. He published several religious books; the best known of which is that intituled, The Design of Christianity; or a plain Demonstration and Improvmeni of this Proposition, viz. that the enduing man with in ward real rightcousness and true holiness was the ultimate end of our Saviour's coming into the world, and is the great intendment of his blessed gospel, 8vo. This excellent book has been frequently printed, and deserves a serious perusal.
FOWLING: a sporting term applied in cifferent counties, and by different sportsmen, to different pursuits. It is equally applicable to land or water birds of certain descriptions, or to the apparatus of net or gun ; or to enticement or decoy by pipe, whistle, or call.

Water fowls are naturally the most subtil and cunning of birds, and most careful of their own safety; whence they have, hy some auihors, been compared to an orderly and well gorerned camp, having scouts on land afar off, courts of guards, centinels, and all kinds of ouber watchful officers, surrounding the body, to give an alarm upon the approach of any seeming danger.

And in fact, you will always find that there are some straggling fowls which lie aloof from the greater number, which will call first.

Now it is the nature of water fowl to fly in great flocks, having always a regard to the gerieral safety; so that if you see a single fowl or a couple fly together, you may imagine they have been affrighted from the rest by some sudden disturbance, or apprehension of danger; but so naturally are they inclined to society, that they seldom leave wing till they meet together again.

And this is occasioned not only by the near approach of man, but also by the beating of hagrards upon the rivers, as well as by the appearance of the bold buzzard and ring-tail.

Of water- fowls there are two kinds, the one such as live off the water, or on it but without swimming in it; wading, and diving alone with their long legs, constituting the grallæ order : the other, the web-footed that are peculiarly formed for swimming, as the swan, goose, palliard, and indeed all the anseres tribe.

As to the manner of fowling, or taking fowls,

FO W

see the articles under each particular hind ia their proper places. See also Shooting.

Fowling-piece, a gun for shonting game of all kinds, whether of course or feather.

On the perfect construction of this depends, in a great degree, the success and even the safety of the sportsman. We shall thercfore enter at some length into its form and requisites, whatever be the sport for which it is immediately designed.

Of the manufu:ture and perfection of a fowlingr-piece. - To form a gun-barrel in the manner generally practised for those denominated common, the workmen begin by heating and hammering, nut a bar of iron into the form of a flat ruler, thinner at the end intended for the muzzie, and thicker at that for the breech; the length, breacth, and thickness, of the whole plate, being regulated by the intended length, diameter, and weight of the barrel. This oblong plate of metal is then, by repeated heating and hammering, turned round a cylindrical rod of tempered iron, called a mandril, whose diameter is considerably less than the intended bore of the barrel. The elges of the plate are made to overlap each other about half an inch, and are welded together by heating the tube in lengths of two or three inches at a time, and hammering it, with very brisk but moderate strokes, upon an anvil which has a number of semicircular furrows in it, adapted to the various sizes of barrels. The heat required for welding is, the bright white heat, which immediately precedes fusion, and at which the particles of the metal unite and blend so intimately with each other, that, when properly managed, not a trace is left of their former separation : this degree of heat is generally known by a number of brilliant sparks flying off from the iron whilst in the fire; although it requires much practice and experience; to ascertain the degree of heat required for welding iron, which possesses various qualities, and is seldom alike. Every time the barrel is withdrawn from the forge, the workman strikes the end of it once or twice gently against the anvil in a horizontal direction: this operation, which the Fnglish artists term jumping, the French, estoguer. serves to consolidate the particles of the metal more perfectly, and to obliterate any appearance of a seam in the barrel. The mandril is then introduced into the bore or cavity; and the barrel, being placed in one of the furrows or moulds of the anvil, is hammered very briskly by two persons besides the forger, who all the time keeps turning the barrel round in the mould, so that every point of the heated portion may come equally under the action of the hammers. These heatings and hammerings are repeated until the whole of the barrel has undergone the same operation, and all its parts are rendered as perfectly continuous as if it had been bored out of a solid piece.

The imperfections to which a gun-barrel is liable in forging are of three kinds, viz. the chink, the crack, and the flaw. The chink is a solution of continuity, running lengthwise of the barrel. The crack is a solution of continuity, more irregular in its form than the chink, and running in a transverse direction, or across the barrel. The flaw differs from both: it is a small plate or scale, which adheres to the barrel by a narrow base, from which it spreads out as the head of a nail does from its shank; and, when separated, leares a pit or hollow in the metal.

With rogard to the soundness of the barrel, the

FOWLING-PIECE.

chink and flaw are of much greater importance than the crack, as the effort of the powder is exerted upon the circumference, and not upon the tength of the barrel. In a sword or bow, the very reverse of this takes place; for if a crack, though but of a slight depth, occur in either, it will break at that place when bent but a very little; because the effort is made upon the fibres disposed longitudinally; whereas, if the fault be a chink. or even a slight flaw, the sword or bow will not give way. The llaw is much more frequent than the chink; the latter scarcely ever occurring but in barrels forged as above, in which the fibres of the metal run longitudinally; and then only when the iron is of an inferior quality. When external and superficial, they are all defects in point of neatness only; but, when situated within the barrel. they are of a material dinadvantage, by affording a lodgment to moisture and foulness that corrode the iron, and thus continually enlarge the excavation until the barrel bursts, or becomes dangerous to use.

The barrel, when forged, is either finished in the common manner, or made to undergo the operation of twisting, which is a pro ess employed on those barrels that are intended to be of a superior quality and price to others. This operapion consists in heating the barrel, in portions of a few inches at a time, to a high degree of red heat; when one end of it is serewedinto a vice, and into the other is introduced a square piece of iron with a handle like an augur; and, by means of these, the fibres of the heated portion are twisted in a spiral direction, that is found to resist the effort of the powder much better than a longitudinal one.
To persons unacquainted with the loss which iron suffers in forging, it will be a matter of surprise that 12 pounds of iron are required to produce a barrel, which, when finished, shall not weigh more than two pounds and a half. But, although a considerable waste is unavoidable, yet the quantity of it depends very much upon the quality of the iron, uponthat of the coal, and upon the knowledge and dexterity of the workmen. In Spain they cannot work but with charcoal; in France they employ pit-coal charred, or coke; in England they use pit-coal without being charsed, but are rery careful to have it of the purest kind, some sorts containing a portion of sulphur and arsenic which render the metal altogether unmatleable, or, in the language of the workmen, poison the iron.

A circumstance of considerable importance to the excellence of a harrel is, the forging it as near as can be to the weight it is intended to be of when finished, so that very little be taken away in the boring and fiing; for, as the outer surface, by having undergone the action of the hammer more immediately than any other part, is rendered the most compact and pure, we should be careful to yemove as little of it as possible: the same thing holds, though in a less degree, with regard to that portion of the inside of the harrel which is to be cut out by the horing instrument.

Pistol barrels are forged in one piece, and are cut asunder at the muzzles after they have been bored; by which there is not only a saving of iron and of labour, but a certainty of the caliber being perfectly the same in hoth.

The next operation consists in giving to the barrel its proper caliber: this is termed boring. :The boring-vit is 2 rod of iron, somewhat longer
than the barrel; one end being made to fit the socket of the crank, and the other being furnished with a cylindrical plug of tempered steel, about an inch and a half in length, and having its surface cut in the manner of a perpetual screw, the threads being flat, about a quarter of an inch in breadth, and running with very little obliquity. This form gives the bit 2 very strong hold of the metal ; and the threads, being sharp at the edges, scoop out and remove every roughness and inequality from the inside of the barrel, and render the cavity smonth and equal throughout. A number of bits, each a little larger than the preceding one, are afterwards successively passed through the barrel in the same way, until it has acquired the intended caliber. The equality of the bore is so essential to the excellence of a piece, that the greatest accuracy in every other particular will not compensate for the want of it. Any person who wishes to know the merit of his piece in this respect, may do it with tolerable accuracy, bs means of a plug of lead, cast on a rod of iron or wood; or even by a musket ball, filed so as to fit the bore exactly, and pushed through the barrel by the ram-rod, care being taken not to use al iron ram-rod, or much force, lest the ball be fiattened, and an artificial difliculty created.

The barrel may be now considered as quite finished with regard to its inside: at least it has nothing more to be done to it by the maker. The gunsmiths, however, generally make it undergo a further operation of polishing; after which it is in a condition to reccive its proper form and proportions externally, by means of the file. To do this with accuracy, four flat sides or faces are tirst formed: then eight, then sixteen, and so on, until it is made quite round; except the reiuforeed part, which in most of the modern work is leit with eight sides. This octagonal form of the reinforced part is certainly nore elegant than the round one formerly in use: but it adds to the weight of the barrel without increasing its strength; for the effort of the powder will always be sustained by the thimest part of the circumference, without any regard to those places that are thicker than the rest.
It is absolutely necessary to the soundness of a barrel, that it should be of an equal thickness on every side; or, in the language of the workmen, a barrel ought to be perfectly upright. In order to arrive, as nearly as possible, to this perfet equality, the guasmiths employ an instrunicut which they call a compass. It consists of an iren rod bent so as to form two parallel branclio about an inch distant from each other. One of these branches is introduced into the barrel, and kept closely applied to the side by means of on: or more springs with which it is furnished: the other branch descends parallel to this, on the ourside, and has several screws passing through it with their points directed to the barrel. By screwing these until their points touch the surface of the barrel, and then turning the iustrument round within the bore, it is seen where the metal is too thick, and how much it must bereduced in order to render every part of the barrel perfectly equal throughout its circumference. To form the screw in the breech-end of the barrel, the first tool employed is a plug of tempered steel, somewhat conical, and having upon its surface the threads of a male screw. This tool, which is termed a screw-tap, being introduced into the barrel, it is turned from left to right, and bach

FOWLING.PIECE.

again, until it has marked out the three or four lirst threads of the screw : another less conical tap is then introduced; and when this has carried on the impression of the screw as far as it is inrended to go, 2 third tap is emploved, which is mearly cylindrical, and scarcely differs from the plug of the breech which is intended to fill the acrew thus formed in the barrel. ' The breechplug has its screw formed by means of a screwplate made of tempered steel, and has several female screws corresponding with the taps employed to form that in the barrel. A plug of seven or eight threads is sufficiently long; and the threads ought to be neat and sharp, so as to fill completely the turns made in the barrel by the tap. The breech-plug is afterwards case-hardenat, or has its surface converted into steel, hy being covered over with shavings of horn, or pairings of horse-hoof, and kept red-hot in the fire for some time, after which it is plunged into water.

The last operation is that of colouring the barsel, previous to which it is polished with fine emery and oil, untilit presents to the eye, throughout its whole length, and in whatever direction we observe it, a perfectly smooth, equal, and splendid surface. Formerly barrels were coloured by exposing them to a degree of heat which prodaced an elegant blue tinge; but, as this effeet arises from a degree of calcination taking place upon the surface of the metal, the inside of the barrel always suffered by undergoing the same change. This, therefore, added to the painful sensation excited in the eye by looking along a barrel $e 0$ coloured, has caused the practice of blueing to be disused for some time past. Instead of it, barrels are now browned, as it is termed. To do this, the barrel is rubbed over with aquafortis, or spirits of salt, diluted with water, and laid by until a complete coat of rust is formed apon it ; a little oil is then applied; and the surEace, being rubbed dry, is polished by means of a hard hrush and bees-wax.

When the barrels intended for a double-barrclled piece are dressed to their proper thickness, which is generally less than for single barrels, each of them is filed flat on the side wbere it is to join the other, so that they may fit close together. Two corresponding notches are then made at the muzzle and breech of each barrel; and into these are fitted two small pieces of iron, to hold them more strongly together. The barrels being united by tinning the parts where they touch, the ribs are fitted in, and made fast by the same means. These ribs are the triangular pieces of iron which are placed between the barrels, running on the opper and under sides their whole length, and serving to hold them more frmly together. The under rib is a late improvement, and is found more effectually to prevent the barrels from warping. When the barret are thus joined, they are polished and coloured in the manner already decribed.

The twisted barrels are deservedly celebrated for their superior elegance and strength, as well 3 for the accuracy with which they throw either ball or show. The iron employed in them is formed of stabe, which are old horse shoe nails procused from country farriers, and from poor people who gaina subsistence by picking them up on the great roads leading to the metropolis. These are originally formed from the softest and toughest iron that can be had; and this is still farther puritied by the numerous heatings and hammerings it has undergoue in being reduccd
from a bar into the size and form of nails. They cost about ten shillings the hundred weight, and twenty-eight pounds are required to make a singlo barrel of the ordinary size. A hoop of iron, about an inch broad, and six or seven inches diameter. is placed perpendicularly; and the stubs, previously freed from dirt by washing, are neatly piled in it, with their heads outermost on each side, uatil the hoop is quite filled and wedged tighty with them; the whole resembling a rough circular cake of iron. This is put into the fire until is has acquired a white heat; when it is hammered, either by the strength of the arm, or by the force of machinery, until it coalesces, and becomes one so!id mass of iron: the hoop is then removed, and the heatings and hammerings repeated, until the iron, by being thus wrought and kneaded, is freed from every impurity, and rendered very tough and close in the grain: the workman then proceeds to draw it out into pieces of about twentyfour inches in length, half an inch or more in breadth, and half an inch in thickness.

These pieces, however, are not all of the same thickness, some being more and others less than what we have mentioned, aecording to the proposed thickness of the barrel, and that part of it which the picce is intended to form. One of these pieces, being heated red-hot for tive or six inches, is turned like a corkscrew, without any other tools than the anvil and hammer. The remaizing portions are successively treated in the same maxner, until the whole piece is turned into a spiral, forming a tube whose diameter corresponds with that of the intended barrel. Four of these are generally sufficient to form a barrel of the ordinary length, which is from thirty-two to thirtyeight inches; and the two which form the bseech. or reinforced part, are considerably thicker than those which constitute the fore-part, or muzzle of the barrel. The workman first welds one of these tubes to a part of an old barrel, which serven as a handle. He then proceeds to unite the turns of the spiral to each other, by heating the tube two or three inches at a time, to a bright white heat, and striking the end of it several times against the anvil in a horizontal direction, and with considerable force: this is termed jumping by the barrel; and the heats given for the purpose are called jun.ping heats. A mandril is thes introduced into the cavity; and the heated portion is hammered lightly, to flatten the ridges or burs raised by the jumping at the place where the spirals are joined. As soon as one piece is jumped its whole lensth, another is welded to it, and treated in the same manner, until the four pieces are united; when the part of the old barrel, being no longer necestary, is cut off. The welding the turns of the spiral is persormed exactly in the same manier as before deecribed, and in repeated three times. The barrel is afterwards finished in the same way $2 s$ a common one. Stub-iron is also wrought into plain barrels; which, as they require a great deal less labour, are only half the price of the twisted ones.

The canons it rukans, or ribbon-barrels, of the French, very much resemble the English twisted barrels. The process pursued in their formations is considerably more operose than that just described, but seems to be far frowa possesing any advantage over it. The acinowledged superiority of twisted and ribbon barrels over plain ones has induced some persons to counterfeit them, by colouring plain barrels so as to shew a spirai line running from one end to the other. This is done by wind:noro a hread or string in a sniral disectiou

FOWLING-PIECE.

round a plain barrel, and then wetting the string with the diluted acquariortis, or spirit of salt, so that a coat of rust may be formed where the string touches: when the acid is applied the second time over the whole barrel, the part over which the string was applied, by being more rusted than the rest, shows a dark line winding round the barrel, and renders it, when finished, scarcely distinguishable from a twisted or ribbon-barrel. Other barrels are, by the same means, clouded in an irregular manner, so as to resemble those formed of stub-iron. To prove whether or not a barrel is really what it appears to be, we need only tix upon any part on the under side that is covered by the stock, and having cleared it, if necessary, with a fine file, apply a feather dipped in aqua-fortis, which in a little time will render the fibres of the metal distinctly visible, in whatever direction they run.

The Spanish barrels have always been held in great esteem, as well on account of the quality of the iron, which is generally considered as the best in Europe, as because they possess the reputation of being forged and bored more perfectly than any others. It should be observed, however, that of the Spanish barrels, those only that are made in the capital are accounted truly valuable; in consequence of which a great many have been made at other places, especially at Catalonia, in Biscay, with the names and marks of the Madrid gunsmiths; they are also counterfeited at Liege, Prague, Munich, \&c. and a person must be a very good judge not to be deceived by these spurious barrels.

Proofs of burrels.-These differ in different countries. The Spanish procf is a very severe one; but, as it is made betore the barrel is filed, it is not satisfactory. At the royal manufactories of St. Etienne and Charleville, in France, there were inspectors appointed to see that no barrcls were sent out of these places, whether for the king's use or for public sale, without being proved. The first proof was made with a ball exactly fitting the caliber, and an ounce of powder. The second was made with the same sized ball and half an ounce of powder. The reason given for the second proof is, that the first may have strained the barrel so much, though the injury be not visible, that it will not bear a second trial with 2 smaller charge; and it is said there really are some of these barrels which stand the first proof, and yet give way in the second.

The usual proof of the Paris barrels is a double charge of powder and shot ; that is, two or two and a half drams of powder, and two or two and a half ounces of shot. The English Tower proof, and that of the Whitechapel company, incerporated by charter for proving of arms, are made with a ball of the caliber and a charge of powder equal in weight to this ball: the proof is the same for every size and specics of barrel, and not repeated.

Some gunsmiths pique themselves upon making their barrels undergo a second proof; but it is proper to observe, that if a barrel bears any assigned proof, it will sustain the same immediately after, with greater safety than it did at first, as the metal, from being warmed by the first fire, expands more readily to the force of the second explosion.

Mlons. de Marolles, speaking of the proofs of barrels, says," A stronger proof than ordinary might be made by raminiag down at top of the powder six or seven inches of dry clay, in place ut a double charge of lead. This is sometimes
employed in proving pieces of ordnance, where, instead of the bullet, two feet of clay is placed over the powder, by which the whole force of the explosion is exerted upon the piece." We entirely agree with the ingenious author of La Chasse au Fusil, in the opinion that the prool he mentions would be much stronger than that which is usually employed; so much stronger, indeed, that we do not believe any barrel could withstand it, unless the clay were put down in the loosest manner possible. The hardest rocks are burst asunder by means of dry clay strongly rammed over the powder that is placed at the bottom of a cylindrical cavity made in them; and we certainly cannot expect that a force sufficient to rend in pieces immense blocks of granite can be resisted by the comparative trifling atrength and thickness of a gun-barrel.

Causes of bursting.-It may be safely asserted, that a good barrel very seldom bursts, unless it be charged too highly, or in an improper manner. Whenever, for example, from the ball not being rammed home, a space is left between it and the powder, there is a great risk of the barrel bursting on being discharged. We say a great risk, because, even under these circumstances, it frequently happens that the barrel does not burst. If the ball stops near to the powder, a very small windage is sufficient to prevent this accident; and it is very rare that the ball touches the barrel in every part of its circumference, unless it has been driven in by force with an iron ram-rod; in which case it moulds itself to the cavity, and blocks it up completely. Should this happen, the barrel, however strong it is, will burst, even when the space hetween the ball and the powder is but very inconsiderable; and the greater the space that intervenes, the more certainly will this event take place. Mr. Robins, when speaking of this matter, says, " A moderate charge of powder, when it has expanded itself through the vacant space and reaches the ball, will, by the velocity each part has acquired, accumulate itself behind the ball, and will thereby be condensed prodigiously; whence, if the barrel be not of an extraordinary strength in that part, it must infallibly burst. The truth of this I have experienced in a very good Tower musquet, forged of very tough iron; for, charging it with twelve pennyweights of powder, and placing the ball (loosely) sixteen inches from the breech; on the firing of it, the part of the barrel just behind the bullet was swelled out to double its diameter, like a blown bladder, and two large pieces of two inches long were blown out of it.
The same accident will often take place from the mouth of the piece being filled with earth or snow, as sometimes happens when we are leaping a ditch, with the muzzle of the piece pointed forwards; and if in such cases the barrel do not burst, it is because these foreign bodies stop it up but very loosely. For the same reason, a barrel will certainly burst, if fired when the muzzie is thrust into water but a very little depth below the surface; the resistance given to the passage of the inflamed powder through the mouth of the piece being, in this case, much greater than that afforded by the sides of the barrel. Except in the circumstances mentioned, or in case of an overcharge, it is very rare that a barrel bursts. Whenever it happens independent of these, it is from a defect in the work, and that either the barrel has been imperfectly welded, or that a deep flaw has taken piace in some part of it; or, lastly, that through want of care in the boring or filing, it is

FOWLING-PIECE.

left of unequal thickness in its sides. The last defect is the most common, especially in low-priced barrels; and, as pieces more frequently burst from it than from the other defects, it ought to be particularly guarded against. The elastic fluid which is set loose by the inflammation of the powder, and which endearours to expand itself equally in every direction, being repelled by the stronger parts, acts with additional force against the weaker ones, and frequently bursts its way chrough them; which would not have been the case, had the sides been of the same rhickness and strength, and not afforded an unequal repercussion. The weakness of any part of the barrel, eccasioned by the inequality of the caliber, will still more certainly be the cause of bursting than that produced by the filing ; because the intlamed luid being suddenly expanded at the wider part, must suffer a compression before it can pass onward, and the whole force is then exerted against she weak place; for gunpowder acts in the radii of a circle, and exerts the same force on every part of the circumference of the circle.

The conclusion to be drawn from all this is, that a thia and light barrel, which is perfectly upright, that is, of equal thickness in every part of its circumference, is much less liable to burst than one which is considerably thicker and heavier, but which, from being badly filed or bored, is left of unequal strength in its sides.

In all that we have hitherto said upon the causer of bursting, the bad quality of the iron has not been taken into account : and we do not know any means of guarding against these defects, whether arising from the badness of metal, or the insufficiency of workmanship, except by purchasing from 2 gunsmith of established reputation, and giving a good price for the piece. But by this we do not mean to sanction the practice of many of the gunsmiths in the fashion of the day; we are confident in our opinion, that most of their barrels are made too thin; and it may fairly be doubted, whether they have at all improved the quality of the metal. In some experiments made with a barrel of the celebrated Lazaro Cominazso, and which was five feet ten inches in length, and extremely thin, particularly towards the muzzle, it was observed, that the barrel vibrated so much after the explosion of this charge, as to produce a whizzing or ringing cound that might be heard to a considerable distance from the barrel. And yet this piece, notwithstanding its extreme thinness, was fired with very high charges. The iron appeared to be of an extraordinary fine quality; which goes to prove that the cohesion of the particless of the metal is the force which resists that of the powder; and hence great advantage might be drawn to the manufacture of barrets, from an accurate knowledge of the force of powder, and the velocity of the ball. For, these points being once determined, it might be known how strong the barrel should be; by which all unnecessary waste of metal might be spared on the one hand, and all danger avoided on the other. For a force equal to that which impels the ball is exerted on the inside of the piece; and if the barrel has not sufficient strength to resist this force, it must of necessity burst.

Of the recail.-The most frequent cause of excess in the recoil is the bore of the piece being wider at one place than another; for although this inequality be so small as to be imperceptible to the eye, the repulse which the expanding flame meets with when passing from the wider to the nar-
rower part, renders the recoil much greater thar: it would have been had the bore been perfectly cylindrical. It is an invariable law in mechanics, that action and re-action are equal; it follows, therefore, that, the weight of the piece being the same, the recoil will be in proportion to the weight of the piece; or, the lighter the piece, the greater the recoil.

In plainer language, the impelling force of the gunpowder is the lirst and most simple cause of the fire-arms recoiling; for this force acts equally on the breech of the piece and on the ball: so that, if the piece and ball were of equal weight, and other circumstances the same, the piece would recoil with the same relocity as that with which the ball issues out of the piece.

For the same reason, whatever retards the exit of the charge operates like an increase of lead, and by contining the force of the explusion the more to the barrel, produces a greater recoil: hence partly it is, that in proportion as the barrel becomes foul within by repeated tiring, the recoil increases. A piece will recoil, if, from the breechplug being made too short, there remain some turns of the screw not filled up, these hollows, wherein 2 part of the powder is lodged, forming an obstacle that confines and retards the explosion. A barrel mounted on a stock that is very straight will recoil more than when mounted on 2 stock that is considerably bent, as the curvature seems to break and deaden the force of the recoil; and sometimes also a fowling-piece will recoil from the shooter applying it iaproperly to his shoulder; for if the but is not applied closely to the shoulder, or is applied so as to be supported only at a single point, the recoil will be much more sensibly felt than when the hollow of the but embraces the shoulder, and is firmly supported by the weight of the body. Guns are observed to recoil more after being fired a number of times than they did at the beginuing. The matter which is left upon the inside of the barrel after the explosion, and which increases on every discharge, attracts moisture very quickly; especially if the saltpetre employed in the powder was not well puritied from the admixtures of common salt, which it contains in its rough state. This moisture becomes considerable atter a few discharges, and, being formed into vapour by the heat during the explosion, adds its expansive effort to that of the inflamed powder, and greatly increases the agitation and recoil. Owing to this cause, probably, rather than to that before-mentioned, arises the recoil from some turns of the breech-screw not being filled up by the breechplug, and thereby affording a lodgrinent to moisture.
Among the variety of causes thich the excessive recoil of pieces has been attributed, there is one which yet remains to be considered; this is, the touch-hole's being placed at some distance from the breech-plug, so that the powder, instead of being fired at its base, is fired near the centre of its charge ; whence, it is said, the reconl is increased, and the force of the discharge weakened, by the effort of the powder being exericd more upon the brecch than upon the ball or shot. With this idea in view, some gunsmiths form a channel or groove in the breech-piug, as deep as the second or third turn of the screw; the touchhole opens into this channel, and the powder is therefore fired at its very lowest part; and this, they assert, increases the inflammation and ti.e force of the powder. 'That the di-ance of the touch-hole from the breceli, however; has very

FOWLING-PIECE.

Fethe if any share in the increase of the recoil, we shall prove in the most satisfactory manner, from experiments made purposely to determine this matter. As to the idea that the force of the discharge is diminished by the increase of the recoil, it is too absurd to require discussion : the force exerted by the powder upon the breech is always equal to that which it exerts upon the ball or shot ${ }_{i}$ ©o that, if there be nothing in the barrel that retards the exit of the ball, an increase in the recoil will be always attended with an increase in the force of the discharge.

The following experiments were made by Mons. Le Clerc, who was gunsmith to the late king of France, and well informed upon every subject that relates to bis profession; they were communicated by him to Mons. De Marolles.

These experiments were made with 2 barrel which was thirty Erench inches in length, (nearly thirty-two English measure,) and weighed, together with the loaded plank upon which it was fixed, twenty-eight pounds. The barrel had four touch-holes which could be stopped with screws. The charge consisted of one drachm and twelve grains of powder from a royal manufactory, and of one ounce eighteen grains of shot called small 4.

This was fired at a sheet of paper measuring twenty inches by sixteen, French measure, placed at the distance of twenty-eight toises, or nearly forty-five ordinary paces. The only difference was, that in the first set of experiments the wadding consisted of card-paper, and in the second of hat, both cut to fit the caliber.

Had these trials been made with no other view than to determine the degree of recoil produced by the different situation of the touch-hole, therg would have been no use in marking the size of the shot, the distance and dimensions of the mark, and the number of grains thrown into it at each discharge. It was, however, intended to try, at the same time, how far the equality of the discharges could be depended upon, with regard to the number of grains that struck a given space: and we shall have occasion hereafter to make remarks upon the result of the trials in this respect.
N. B. The French foot is three quarters of an inch longer than the English foot, and the French inch is divided into twelve lines.

We have thought it better to inform the reader of this, and leave the table as it is, than to make any fractions in the numbers by reducing it to English measure.

First set.-Wadding of card-paper.

	$\begin{gathered} \text { Dis- } \\ \text { charge. } \end{gathered}$		ecoil.	No. of grains thrown into the mark.
Touch-hole close to the breechplug.	$\begin{aligned} & 1 \\ & 2 \\ & \mathbf{3} \end{aligned}$	Fuot. Inch. 1 0 0 10 1 0	Lines. $\left.\begin{array}{l} 9 \\ 3 \\ 3 \end{array}\right\} \begin{array}{ccc} \text { Mean. } \\ 0 & 11 & 6 \frac{2}{3} \end{array}$	$\left.\begin{array}{l} \text { Mean. } \\ 36 \\ 14 \\ 31 \end{array}\right\} 27$
Touch-hole two lines from the breech-plug.	$\begin{aligned} & 1 \\ & 2 \\ & 3 \end{aligned}$	$\begin{array}{ll} 1 & 3 \\ 1 & 2 \\ 1 & 3 \end{array}$	$\left.\begin{array}{l} 9 \\ 0 \\ 3 \end{array}\right\} 1 \begin{array}{lll} 1 & 3 & 0 \end{array}$	$\left.\begin{array}{l}44 \\ 33 \\ 26\end{array}\right\} 34 \quad \begin{gathered}\text { a } \\ \text { ¢ } \\ \text { ¢ } \\ \text { ¢ }\end{gathered}$
Touch-hole six lines distant.	$\begin{aligned} & 1 \\ & \mathbf{2} \\ & 3 \end{aligned}$	$\begin{array}{rr} 1 & 0 \\ 0 & 11 \\ 1 & 0 \end{array}$	$\left.\begin{array}{c} 10 \\ 11 \\ 9 \end{array}\right\} 1 \begin{array}{lll} & 0 & 6 \end{array}$	
Touch-hole 12 lines distant.	2 3	$\begin{array}{ll}1 & 1 \\ 1 & 0 \\ 1 & 1\end{array}$	$\left.\begin{array}{l}7 \\ 3 \\ 4\end{array}\right\} 1 \begin{array}{lll}1 & 1 & 0 \frac{2}{3}\end{array}$	$\left.\begin{array}{l}27 \\ 17 \\ 35\end{array}\right\} 26$

Extremes 0. 10. 3. and 1.3.3.-Meau recoil 1.1.0. Extremes 14 and 45.

Second set.-Wadding of hat.

Touch-hole close to the brecchplug.	$\begin{aligned} & 1 \\ & 2 \\ & 3 \end{aligned}$	1 1	4	$\left.\begin{array}{l}1 \\ 0 \\ 0\end{array}\right\} 1$	$1 \begin{array}{ll}4!\end{array}$	$\left.\begin{array}{l}40 \\ 78 \\ 37\end{array}\right\} 51$
Touch-hole two lines distant.	$\begin{aligned} & 1 \\ & 2 \\ & 3 \end{aligned}$	1	2 3	$\left.\begin{array}{l}7 \\ 3\end{array}\right\} 1$	2 ll	$\left.\begin{array}{l}44 \\ 40 \\ 41\end{array}\right\} 41$
Touch-hole six lines distant.	$\begin{aligned} & 1 \\ & 2 \\ & 3 \end{aligned}$	1	2 3	$\left.\begin{array}{l}3 \\ 9 \\ 2\end{array}\right\} 1$	31	$\left.\begin{array}{l}32 \\ 50 \\ 53\end{array}\right\} 45$
Touch-hole 12 lines distant.	1 8 3	1 1	4 2 2	$\left.\begin{array}{l} 5 \\ 7 \\ 5 \end{array}\right\} 1$	$\begin{array}{ll} 3 & 13 \end{array}$	$\left.\begin{array}{l}60 \\ 21 \\ 31\end{array}\right\} 44$

Extremes 1. 0. 7. and 1.4 5.-Mean recoil 1. 2. 81. Extremes 21 and 78.

FOWLING-PIECE.

From these experimentes it appears, that, with regard to the recoil, the distance of the touchbole from the breech is of little importance. The only circumstance, therefore, to be attended to in its situation, is, that it be not placed quite close to the breech-plug; for, although that part of the barrel where the powder is lodged, dirties much less than a few inches farther forward, yet the rouch-bole, when close to the breech-plug, is Sound to be more frequently stopped up than when situated about a quarter of an inch from it.
Of the range of barrels.-The lightness of fowling pieces of a moderate length, and the ease with which they are mamaged, are advantages so obvious, and at the same time so considerable, as to give them a general preference at this time; but, as the circumstances upon which only this prefereace ought to be rested are little known, it is not sufficient that their use is general, and daily increasing, unless it be determined what are the comparative excellencies and defects of long and short barrels, and it be thence shewn whether oportsmen sacrifice one advantage to gain another.
The generally-received opinion upon this subject is, that to obtain an increase in the range, the barrel must not only be made longer than usual, but that the length and the diameter of the bore ought to bear a certain proportion to each other, and the charge of powder be suited to this proportion; because, as it is said, when the barrel is to0 short, the ball of shot quits it before it has received the whole impulse of the powder; and, on the other hand, when the barrel is too long, that the powder is not only all inflamed, but even parly consumed, before the ball or shot arrives at the mouth of the piece.
The elastic fluid produced by the firing of gunpowder is found, by experiment, to occupy, when cooled to the temperature of the atmosphere, 2 apace two hundred and forty-four times greater than that taken up by the powder from which it was obtained. But from the heat generated during the explosion, this elastic fluid is rarefied to upwards of four times its former bulk. The expansive force of this fluid, therefore, is, at the moment of inflammation, one thousand times greater than that of common air, or, which is the same, than the pressure of the atmosphere; or, oupposing the powder to have occupied the space of ose cubic inch, its expansive force, when fired, equal to that which would be exerted by one thousand cubic inches of common air compressed into the space of one inch. As the velocity with which the flame of gunpowder expands when uncompressed is much greater than that with which the ball, or shot, nooves forward, the flame must contraue to press upon the ball, and adds to its velociry, until it quits the mouth of the piece. This pressure, however, becomes less and less, as the ball proceeds, and ceases entircly when it leaves the murzle, in consequence of the flame being then allowed to expand itseif laterally. Thus, for example, if the charge of powder takes up one inch of the barrel, and the whole length of the barrel be thirty inches, then, whtn the ball arrives at the muzzle of the piece, the inflamed powder (whoce expansive effort in in proportion to the amallness of the space it occupics) extends through thirty times the space it did when the ball began to move, and consequently presees forWard with but one-thirtieth part the force it posmened at first. Moreover, although the velocity Wo the buller is contionally increased by this pres:
sure of the inflamed powder, its acceleration becomes less and less as it proceeds through the barrel ; for, besides that the quantity of the pressure diminishes as the flame expands, the bullet, contiouing to move faster and faster, must receive continually less and less addition of impule from the flame pressing behind it. Hence, if two pieces of the same bore, but of different lengths, are charged with the same quantity of powder, the longer piece will, strictly speaking, communicate the greater velocity and force to its ball, or thot. But as the inflammation of the powder has been shown to be nearly instantaneous, and as the increase of acceleration, which the ball or shot receives after the first impulse of the powder upon it, is not very considerable, it follows that the force with which two barrels of the same bore, and with the same charge, throw the ball or shot, will be nearly the same, unless their lengths be extremely disproportionate.

To prove this, we shall quote what is said by that abie mathematician and engineer, the late Mr. Benjamin Rubins, to whose work we are indelted for much valuable information. "If a muskit barrel, of the common length and bore, be fired with a leaden bullet and half its weight of powder, and if the same barrel be afterwards shortened onc-half, and ficed with the same charge, the velocity of the bullet in this shurtened barrel will be about one-sixth less than what it was wien the barrel was entire; and if, instead of shurtening the bartel, it be increased to twice its usual length (when it will be near eight fret long) the velocity of the bullet will not hereby be augmentell more than one eighth part. And the greater the length of the bariel is in proportion to the diameter of the bullet, and the smaller the quantity of powder, the more inconsiderable will these alterations of velocity be."

When the allowance which Mr. Rubins here takes notice of are made in the proportion requirod for fuwling-pieces, the result will be found to currespond exactly with the experiments which we bave repeatedly made, u ith every possible atten. tion to accuracy. We have, at different times, cumpared barrels of all the intermediate lengths between twenty-eight and forty inches, and of nearly the same caliber; and these trials were made both by firing the piece from the shoulder, and frum a firm bluck, at an equal distance, and with equal weights of the same powder and of the same shot.
To avoid every possibility of error, the quires of paper at which we fircd were fix-d against planks, instead of being placed against a wall. From these trials, frequently repoated, we found that the shot pierced all equal number of sheets, whether it was fired from a barrel of $28,30,32,34,36,38$, or 40 inches in length. Nay more, we have compared two barrels of the same caliber, but one of them thirty-tbree and the other thirty-six inches long, by repeatedly firing them, in the same manner as the others, at difierent distances from forty-five to one hundred paces, and the results have always been the same, i. e. the barrel of thirty-three inches drove its shot through as many s!leets of paper as that of sixty-six did. The conclusion from all this is, that the difference of ten inches in the length of the barrel, which seems to be more than is ever insisted upon among sportsmen, produces no sensible difference in the range of the piece; and therefore, that every one may please hinself in the length of his barrel, without either detriment or advantage to the raoge.

FOWLING.PIECE.

The circumstance of a duck-gun killing at a greater distance than a fowling-piece is not owing so its length, but to its greater weight and thickness, allowing the charge of powder to be doubled, trebled, or even quadrupled; which cannot be done in a fowling-piece, though strongly reinforeed. For a barrel of tive or six feet, such as that of a common duck-gun, weighing five or six pounds, and the whole piece twelve or thirteen pounds, may be fired with a very large charge, without recoiling so much as to hurt the shooter, its weight being sufficient to resist the violent impulse occasioned by the increase of the powder. But in a fowling-piece of three feet barrel, sufficiently strong to withstand such a charge, and whose weight all together does not exceed five or six pounds, the recoil would be insupportable. Besides, they not only double or treble the powder in a thick guin, but they put in a much greater quantity of shot than is ever employed in a fuwling-piece. Durkguns are generally bent a little upwards near the muzzle, which the gunsiniths say makes them throw their shot farther than if they were perfectly straight. To obtain, therefore, from a piece of the ordinary length, the same effects as from a duck-gun, nothing more, perhaps, is necessary than to have the barrel sufficiently strong to admit of the charge being doubled or trebled as required, and the whole piece heavy enoush to render the recoil supportable. We may here observe, however. that an increase of the powder above the charge generally used, does not produce a proportional increase of range in the ball or shot: thus a double charge of powder will not throw the hall or shot twice the distance, nor a treble charge to three times the distance the single charge does. This arises from the great resistance given by the air to the motion of the ball or shot, and which is proved to be fourfold if the velocity be doubled, and ninefuld when it is trebled by an increase of powder; for the resistance of the air is not proportional to the velocity itself, but only to the square of the velocity. Thus Bernoulli, a professor in Basil, discovered from experiment, that a ball, which, being fired, ascended only seven thousand eight hundred and nineteen feet in the air, would ascend fifty-eight thousand seven hundred and fifty feet in vacuo. Still we may safely infer, that, if the action of the powder is not diminished by circumstances of defect in the furmasion of the barrel, the greater the force of the powder, the greater must be the velocity of the ball. So g great is the change in opinion of late, with regard to the proper length for gun-barrels, that many gunemiths will now tell us, that short barrels carry farther than long ones; and the reason they give for this is, thegreater friction of the ball or shot in passing throuxh a long barrel, by which their velocity is retarded and their force diminished. If the barrel be so long that the additional impulse which the ball or shot is continually receiving in its passage becomes less than the friction between them and the sides of the ca!iber, then, indecd, the barrel by being shortened will shoot with more force: but, as the length of barrel required to produce this effect is vastly greater than can ever be empinyed for any purpose, the objection does not hold. And it seems clear, that a piece may be marte so long, that it will not throw a ball with so griata velocity ns one that is considerably shorter; and the reason of this decrease of velocity may be, that in vory lone pieces the increase of the counter pressure of the external air in the cylinder may greatly exceed the force of the powder, and that
the elastic flinid generated by the explosion of the powder is constantly escaping whilst the ball passes along the cylinder, which it not only does at the touch-hole, but also between the ball and the sides of the barrel; and hence may be inferred the necessity of touch-holes which do not prime of themselves, and of wadding that stops the barrel hermetically.

Having thrown every light upon this question that is necessary to determine us in our choice of the length, it will, perhaps, be expected that we give our opinion what length of barrel is best calculated for general use. The barrels which are found to answer best for every purpose, are from thirty-two to thirty-eight inches; and whether we consult the appearance of the piece, its lightness, or the ease with which it is managed, we believe that a barrel not exceeding the one, or below the other, of these numbers, is the most eligible. Wie know that many of the fashionable gunsmiths pique themselves on the proportion they give to the different parts of their fowling-pieces, and thence deduce a superiority over their cotemporaries in favour of their own: to us it appears that the beauty of those proportions is more attended to, than any good reason why they are made so rather than otherwise.

Of the causes of scattering shor-From the prejudices which obtain so generally among sportsmea and gunsmiths, respecting the shot of fowlingpieces, it is very natural to stuppose, that a variety of ineans have been sought after and practised, in order to remedy this real or pretended effect of scattering the charge. Mr. de Marolles mentions several methords employed for this purpose, none of which, however, appear to be practised in England. One of the methods be do scribes is as follows: An iron or wooden mandril, fitted to the caliber, is furnished at une end with small files, which are cut transversely only; this instrument being iutroduced into the barrel is turned round by means of a cross-handle, and forms a great number of superficial scratches in the metal, by which, they pretend, the defect of scattering the shot is remedied. One obvious effect of this operation, is, that of destroying the smoothness of the barrel within, and thereby rear dering it liable to dirty the sooner; but we canuct conceive how the shot should be thrown closer by having the friction increased between it and the sides of the caliber; and that this will be the case. is evident from a rnugh barrel being always found leaded considerably after every discharge. Sume make the barrel wider for three or four inches at the muzzle; and this bell-mouthed form is of very ancient date.

Espinar says he has generally found this succeed in tnaking bartels throw their shot closer. Were this true, we shunld expect to find this form of the barrel more generally used than it is at present, and not hear so many complaints among oportsmen about their pieces.

When we consider that the grains of shot which are in actual contact with the sides of the barrel compose upwards of half the charge, we canuot be surprised if enlarging the surface of the caliber at the muzzle, and thereby increasing the number of grains that touch it, will tend to make the ahot be srattered more widely. Espinar says, that the fault of acattering the shot is not owing to the hand of the workman, the barrels of the best masters being equally subject to it as those of others He is of opinion, that it arises from the different quality of the iron composing the several portione

FOWLIN G-PIECE.

of the barrel. Thus he says, it may happen that the reinforced part is formed of iron which is harder, and closer in the grain, than that forming the fore part of the barrel; in consequence of which, and also from the fore part being so much thinner, the latter is the more shaken by the powder, and by that means produces a dispersion of the shut. He therefore pretends, that widening the muzzle in the manner already spoken of, by facilitating the explosion, diminishes the force of tbe powder upon this part, and causes the shot to be thrown more closely together.

This opinion of Espinar, however, not only appears absurd in itself, but there is not even the cmallest ground for it in the greater number of instances; the barrels which are forged in separate pieces being very few indeed, compared with those that are forged in a single piece, and are consequently of the same quality throughout: nor does it appear that the former are more liable to the fant in question than the latter are.
Some gunsmiths, says Mons. de Marolles, pretend, that a barrel, in order to throw its shot closely, ought to have a caliber narrower in the middle thas at either breech or muzzle; whilst chers, again, insist that the caliber ought to contract gradually from the breech to the muzzle. With respect to these centrivanccs, however, we shall only observe, that they are both admirably calculated to make the piece recoil, if not to burst it.

Of all these contivances, not one appears calt culated to answer the end for which it was proposed. The greater number of gunsmiths are sensible of this, and therefore very seldom practise them, anless to indulge the whim of their customers. As far as our reason and experience are gufisient for enabling us to determine upon the matter, we wuald reject all the experients that have been hitherto proposed, and give a dtcided preference to the barrels as they are usually made, i e. to those whose caliber is very smooth and perfectly cylindrical throughout. Barrels of this kind hare long supported their credit among the best sportomen, whilst the pretended improvesents have all experienced but a very temporary reputation, and are now alinost entirely neylected. Would sportsmen only forbear to determine upon the merits or defects of their pircen, until they had given them a patient and impartial trial, by varying the quantity of powder and shot in different ways, we are inclined to think there would be fewer complaints made of the modern fowlingpieces. The chief source of error appears to be that of orercharging. Every barrel, according to ites caliber and weight, has a certain quantity of lead, and a suitable one of powder, which will be entended with greater certainty and effect than any others; and these inust be detcrmiued by repeated trials. If we increase the quantity of shot above this, we lessen the force of discharge, and at the same time increase the recoil: and if we fincrease the charge of powder, that of the shot remaining the same, we aloo increase the recoil, and disperse the shot much more than befure. In every species of fire-arms, large charges of powder are found to disperse the shot very much, whilst with emaller eharges than are generally employed it is thrown more steadily and closely. If the object, cherefore which we are about to fire at, be at too great a distance for the shot to take effect, and it happens that we cannot approach ncarer to it, we orght not to facrease the quantity of powder with
a view to the shot being thereby thrown farther, as, by so doing, the increase of the range will be very trifling, whilst the dispersion of the shot will be greatly increased. The only expedient in this case, is, to employ shot of a larger size, the quantity of it, and of the powder, being kept the same as has been already fuund best suted to the piece.

We cannot venture to determine what degre of closeness or dispersion in the shot will entitle any piece to the name of a good or a bad one; but would observe, that if a fowling-piece, charged with an ounce of No. 2, patent-shot, and a drachm of powder, throws sixty grains into a sheet of paper eighteen inches by twenty-four, at the distance of fifty paces, we may consider it as very capital, although these are only about one-third of the charge; and that the same piece continuing to be fired at the same mark and distance, will not, in the mean of four or five successive discharges, throw thirty-six grains into the paper; in short, that, when due attention is paid to finding the suitable quantity of powder and of shot, one piece will perform nearly as well as another.

Of rif: barrels.-It has been found that the flight of balls, both from cannon and small arms, is liable to very considerable variations; and that the piece, notwithstanding it was firmly fixed, and fired with the same weight of powder, sometimes threw the ball to the right, sometimes to the left, sometimes above, and at other times below the mark. It has also been observed, that the degree of deflection increases in a much greater propurtion than the distance o the object fircd at: thus, at double the distance the deflection of the ball from the line on which the piece is pointed is considerably nore than double, and at treble the distance mure than treble what it was in the first. Mr. Robins secured a musket barrel upon a block of Wood, and firing it with a ball, at a board of a foot square, sixty yards distant, found that it missed the board only once in sixteen successive discharges; yet when fired with a smaller charge, at the distance of seven hundred and sixty yards, it sometimes threw the ball one hundred yards to the right, and at other times one hundred to the left of the line it was pointed in. The direction upwards and downwards also was found equally uncertain, the ball sometimes bending so much downwards as to fall two hundred vards short of its range at other times. Yet the nicest examination could not discover that the barrel had started in the least from the position in which it was first fixed.

It is impossible to fit a ball so accurately to any plain picce, but that it will rub more against one side of the harrel than another, in its passage through it. Whatever side, therefure, it rubs against on its quitting the muzz e, it will acquire a whirling motion towards that side, and will be found to bend the line of its flight in the same direction, whether it be to the riglit or the left, upwards, downwards, or obliquely. This deflection from a straight line arises from the resistance which the air gives to the fight of the bullet, it being greatest on that side where the whirling motion conspires with the progressive one, and least on that side where it is opposed to it: thus, if the ball, in its pansare out, rubs ayainst the left side of the barrel, it will whirl towards that side; and, as the rizht side of the ball will therefore turn up against the air during ite night, the resistance of the air will becoms greatest un the right side, and

FOWLING-PIECE.

the ball be forced away to the left, which was the direction it whirled in. If the axis round which the ball whirls preserved its position during the whole of the fiisht, the deflection would be in the same direction from the one entof the track to the other. But, from accidents that are unavoidable, the axis of the whirl frequently changes its position several times during the flight; so that the ball, instead of bending its course uniformly in the same direction, often describes a track that is variously contorted. So great, however, is the tendency of the ball to deflect itself towards the side it rubs against, that although, when fired out of a barrel that is bent towards the left hand, it will be thrown from the piece in the direction of the bend, yet as the ball in this case will be forced to rub against the right side of the muzzle, and thus tura its left side up against the air, so it will be found to alter its course Juring the flight, and bend away towards the right band, so as to fall a considerable way to the right of the line in which the piece was pointed.

From what has been said, it will readily appear, that these variations will be more frequent and considerable when the ball runs very loose in the piece; or when, from any roughness on its surface, or on the inside of the barrel, a considerable degree of friction takes place between them. With a view to prevent friction, it has been proposed to grease the ball; but this will be of little service. All that can be done in a plain barrel, is, to have the balls cast very solid and true, and afterwards milled in the same manner as is now practised upon shot: the barrel also should be very smooth on the inside, and the ball fit it very accurately, so as to leave scarcely any windage. And yct, with the help of all these, it will still be very difficult to prevent it altogether; for gravity will constantly act, and friction on the under side will naturally be occasioned by the weight of the ball.

From considering the causes of this aberration in the flight of bullets, it will be pretty evident, that the only means of correcting it is by preventing the ball from rubbing more against one side of the barrel than another in passing through it ; and by giving to the bullet a motion, which will counteract every accidental one, and preserve its direction by making the resistance of the air upon its fore part continue the same in every part of the flight. The contrivance for this purpose is termed rifling, and consists in forming upon the Inside of barrils a number of turrows, either in a utraight or spiral direction; into these the ball is moulded, and any rolling motion along the sides of the barrel, in its passage out, thereby prevented. Barrels of this construction have been in use upon the contineut since the middle of the sixternth century, but were littje known, and still less employed in England, until within these fifty ycars. The spiral riffed barrels, however, have eutirely superseded the straicht rilled ones, because although the latter prevented the rolling motion of the ball that takes place in a plain barrel, yot they do not communicate any other motion, that could serve to correct the variations that may occur during the fight.

The furrows, or channels, which are termed the rifles, vary in number according to the fancy of the workman, or that of the purchaser, but are neser less than six, or morc than twelve, in a common-sized piece. Their depth is equally sub-
ject to variation; but the breadth of the furrows and of the threads is generally the same. In some pieces, the spirals make a half turn, in others three-fourths, and in others, again, an entire revolution in the length of the barrel: an entire revolution, however, is the most common, though, from the great difference in the length of rife barrels, there should be some standard assigned for the obliquity of the spiral. There is, without doubt, a certain ubliquity of the spirals which would communicate a rotary motion to the ball, sufficient to correct any aberration in its fight; and this might be determined by comparing the effects of a number of pieces, that differed only in the obliquity of the riffes. Barrels intended to be rified are previously bored and smoothed within, in the manner already described: they are, however, forged as much thicker than plain barrels as the depth of the rifles; for, although the threads of the spiral add to the weight of the barrel they do not increase its strength in the least, with regard to the force exerted upon it by the powder.

These pieces are charged in various ways. Ia general, the ball, which is somewhat larger than the caliber before it was rifled, is driven down to the powder, by means of an iron rammer, struck with a mallet, whereby that zone of the ball which is in contact with the sides of the barrel becomes indented all round, and is moulded to the form of the rifies. When the piece is fired, the projections of the ball which fill the rifles, being obliged to follow the sweep of the spiral, the ball thereby acquires a rotary motion upon an axis that corresponds with the line of its direction; so that the side of the bullet which lay foremost in the barrel continues foremost during the whole of the dight. By this means the resistance of the air is opposed directly to the bullet's progress, and not exerted more against one part than another of that side which moves foremost; and accordingly the bullet prescries the line of its direction with very great steadiness.
It appears that neither the inventors of spiral rifle barrels, nor the persons who first used them, were at all acquainted with the principles upon which they produced their effects. Some were of opinion, that, owing to the ball not passing out so quickly as out of a plain barrel, the powder was more completely inflamed, and thereby exerted a greater force upon it. Others, and these by far the greater number, thought that the ball, by combining the rotary with the progtessive motion, did, as it were, bore the air; thereby flying nuch farther, and penetrating solid bodies to a greater depth, than when discharged from a plain barrel. But Robins asserts, that as the bullet meets with a greater r sistance in its passage through a ribied barrel than through a plain one; so neither its velocity, nor the distapce to which it is thrown, is so great when fired from the former as when fired from the latter: and this difference will be very remarkable if the rifles be deep, and the ball dills them up completely; the friction, in that case, bearing a considerable proportion to the force of the powder. Fur the same reason, he says that barrels which are newly rifed, and, consequently somewhat rough within, do not thmw their balls so far as they will be found to do after being nsed for some time, and thereby renderel smoother; and, that the mistake of those who supposed that rifle barrels threw their balls to a greater distance than plain barrels did, arose from their

- FOWLING.PIECE.

Inding, that, with the former, they could hit a mark at three or four times the distance they could do with a plain barrel.

Besides the methurl of loading a rife-barrel gun, by driving down the ball with an iron raminer, tbere are sereral others which we shall mentiun. In Germany they sometimes charge them in the following manner: a piece of thin leather or fistian is cut into a circular shape, and so large as to corer a little more than half of the ball; this piece is tik-ll ereased on one side, and, being placed over the muzzle, the ball is laid upon it, and both thrust down together; by this means the leather or fustian enters into the rifles, and the bullet, being firmly embraced by it, acquires the proper rotary motion in its passage thruugh the barrel. If this method be equally effectual, it is certaiuly much more easy and expeditious than that already described. Some of the old pieces of this construction were charged by taking out the breech every time; and we are informed, that the pieces used by the Hessian yagers are charged the same as the common screw-barrel pistols. By far the most expeditious way of charging riffed pieces, however, is, by means of an ingenious cortrivance which now generally goes under the name of Ferguson's rift-barrels, from its having been used by major Ferguson's corps of rife-men during the last American war. In these pieces, there is an opening on the upper part of the barrel, and close to the breech, which is large enough to admit the ball. This opening is filled by a rising screw which passes up from the lower side of the barrel, and has its threads cut with so little obliquity, that, When screwed up close, a half-turn sinks the top of it down to a level with the lower side of the caliber. Por, when the ball is forced through the rifles by the effort of the powder, the friction must be coosiderably more than when it is moulded to them in the ramming down. It appears, however, that in whaterer way the piece is charged, this friction might be much diminished, by making the ciannels or furruwn very broad in proportion to the breadth of the threads, and, instead of leaving the latter flat on the top, to have them terminating in a sharp edge, whereby they would cut easily into the ball. This would also serve tulessen the additional quantity of metal in the barrel, which, as the rifles are unw formed, bears a very considerable proportion to the weight of the whole piece. The depth of the rifles, likewise, need not be great, as a very slight bold of the ball is sufficient to communicate the desired motiun: deep ribes are particularly detrimental when the piece is charged at the breech; for, if the ball be large enough to till tiem up entirely, the resistance, and consequently the recoil, will be very grcat; and, if it does not fill the rifes, there will be so much windage, that a considerable portion of the flame will ercape past it, and the force of the discharge be thereby greatly lessened.

To render rifle barrels as complete as possible, we should endeavour, by every means in our pewer, to diminish the friction betiveen the bullet and the sides of the barrel. We have already mentioned some alterations which we think would conduce to this. The turns of the spiral being exactly parallel to each other, and both the threads and the furruws being made perfectly smooth, are circumatances absolutely essential to perfection; as thereby the bullet, when once put in motion, will pass through the barrel with very little friction. The most accurate method of as-
certaining this is, by pouring meltod lead into the. barrel so as to furm a cylinder of two or three inches in length, and which is exactly fitted to one portion of the caliber: if the cylinder, when moved a little, passes without stop or difficulty from one end of the barrel to the other, by being pushed gently, the rifling may be pronounced very exact. The same thing may be tried with a plug or ball of lead, driven into une end of the barrel so as to fill the riffes, and pushed formard with a ramrod.

From the imperfect mauner in which any instru. ment works in a spiral direction within the bar$r e l$, the furrows are generally left very rough; and hence rifled pieces are fomind to throw their ba!l to a greater distance, though with equal accuracy, after being used for some time, and thereby having the bottom of the furrows, and edges of the threads, worn smooth. These might be rendered smooth at first, by means of a plug of lead or perrter, made to fit the rifles, being fixed to an iron rod, and wrought backwards and forwards in the barrel with fine emery and vil: or the leaden plug might be employed as a pattern to form one of brass or steel by, for the same purpose.

As the pieces which are charged at the breech are considerably dearer than the others, and, excepting the expedition with which they can be charged, are really inferior to those charged at the muzzle; we are of opinion, that the latter might, by a very simple means, be rendered equally serviceable with the former. This is nothing more than having the balls cast with projections that answer to the rifles; which mas be done with great ease and accuracy by making corresponding hotlows round a zone of the bullet-mould: by this the ball may be fitted so accurately to the rifles, as to leave scarccly any windage; whilst the friction will be less than it is either when the ball is put in at the breech, or forced in by the muzzle.

In treating of the causes of aberration in the flight of balls, we have supposed the air to be perfectly still, it being evident, that the force of the wind will affect balls considerably, whether they are fired from a plain, or from a vifled bariel; but, for the reasons already given, will affect the former in a much greater degree than the latter.

Pieces intended for shooting with ball, whether they be plain or rifled, ought to be of much more equal thickness from the breech to the muzzle, than those that are intended for shot only. In every baitel, there is an nudulating vibration communicated to the metal by the explosion. This is most remarkable in a thin barrel, and when the charge is great; and may be rendered very evident by the following easy experiment: Take a piece of fine steel or iron wire, that is tempered so as not to stretch readily; pass it once round the thin part of the barrel, and twist it tight. The piece being then charged and fired, the wire will be fonnd burst asunder, or considerably untwisted. It is evident that such a degree of vibration in the barrel must have an effect upon the ball in its passage through it; and that the only means of preventing it is, by having an additional quantity of metal ip the barrel, and especially in the fore part of it. The same circumstance certainly obtains, though in a much less degree, in fowling-pieces; and, on this account, as well as on that of the recoil, a barrel which is strong enough to withstand any charge that is required, may yet have too small a quantity of metal in it.

Having now fully explained the principles upon

FOX

which riffe barrels produce their effects, our readers will be prepared to consider how far the straight rifling can be useful when employed for shot. These pieces are said to be very common in Germany, aud are used by a few persons in this country; though we understand that the greater number even of these few are now less partial to them than they were at first. If the diveriency of shot arises from the arme cause as that of ball, viz. from acquiring a whirling motion to one side or other by rubbing aptinst the ides of the piece, it is evident that rifing the barrel can haveno tendency to prevent this. For let it be granted, that the chanuels or flutings within are semicircular, and that the shot is exactly adapted to these (two cincumstances said to be necessary to the perfeccion of these pieces) it cannot be imasined that grains will acquire less of the rulling motion in passing along these blutings, than in passing along the sides of a plain barsel; on the contrary, it will secessarily be greater, as the points of contact are considerably more numerous.

FOWLS, in husbandry, are well-known domestic birds, without the assistance of which the farmer's stock cannot be said to be complete; and the advautage of which must appear to every one who keeps them. And so equal is the distribution of their bounties, and so trifling the expense attending them, that the poorest villager may reap the same benefit from their products as tne most substantial farmer. It is singular that there should be no specific name for the bird in the English language; fowl, cock, and hen, being general names applicable to the whole winged creation. For the best methods of breeding fowls see Pourtry, and Husbandry.

Fowls, in the sportsman's dialect, are generally classed under three distinct heads ; domestic fowls, consisting of cocks, hens, geese, and ducks. Wild fowls, limited to birds of flight and passage, as sea-gulls and geese, wild ducks, widgeon, teal, curlews, plovers, woodcocks, and snipes. Game fowls, which, in the earliest acts of parliament, were extended to a very long list, including even the heron, mallard, duck, and teal. All these, however, are discarded from the game-list in modern practice, and the whole recognised under this head are the pheasant, partridge, grouse, or red game, and heath fowl, or black game.

FOX, in mastiology. See Canis.
Fox, a knave, or cunning fellow.
Fox (John), the martyrologist, was born at Boston in Lincolnshire, in the year 1517. At the age of 16 he was entered a student of Brazen-nose college, in Oxford; and in 1543 he became master of arts, and was chosen fellow of Magdalen college. He discovered an early genius for poetry, and wrote several Latin comcdies, the subjects taken from scripture, which his son assures us were written in an elegant style. Forsaking the muses, he now applied himself with uncommon assiduity to the stady of divinity, particularly churchhistory; and discovering a premature propensity to the doctrine of the reformation, he was expelled the college as an heretic. His distress on this occasion was very great ; butit was not

F 0 X

long before he found an asylum in the house of sir Thomas Lucy, of Warwickshire, who employed him as a tutor to his children. Here he married the daughter oi a citizen of Coventry. Sir Thomas's children being now grown up, after residing a short time with his wife's father, he came to London; whese, finding no immediate means of subsistence, he was reduced to the utmost degree of want; but was at length (as his son relates) miraculously relieved in the following manner: As he was one day sitting in St. Paul's church, emaciated with hunger, a stranger accosted him familiarly, and, bidding him be of goonl cheer, put a sun of money into his hand; telling him at the same time, that in a few days new hopes were at hand. He was som after taken into the family of the duchess of Richmond, as tutor to the earl of Surrey's children, who, wlien their father was sent to the Tower, were committed to her care. In this family he lived, at Ryegate, in Surrey, during the latter part of the reign of Henry VIII. the entire reign of Edward VI. and part of that of queen Mary: but at length, persecuted by his implacable enemy bishop Gardiner, he was oblized to seek refuge abroad. Basil in Switzerland was the place of his retreat, where he subsisted hy correcting the press. On the death of queen Mary he returned to England; where he was graciously received by his former pupil the duke of Norfulk, who retained him in his family as long as he lived, and bequeathed him a persion at his death. Mr. secretary Cecil also obtained for him the rectory of Shipton near Salisbury; and we are assured that he might have had cousiderable church-preferment, had it not been for his unwillingness to subscribe to the canons. He died in the year 1587, in the 70th year of his age; and was buried in the chancel of St. Giles's, Cripplegate. He was a man of great inclustry, and considerable learning; a zealous, but not a violent reformer; a nonconformist, but not an enemy to the church of England. He left two sons; one of whom was bred a divine, the other a physician. He wrote many pieces; but his principal work is, the Acts and Monuments of the Church, \&ic. commonly called Fox's Book of Martyrs. His facts are not always to be depended on, and he often loses his temper; which, considering the sulject, is not much to be wondered at.

Fox (George), the founder of the sect of quakers, was born at 1)rajton, in Leicestershire, in 1024. He was at first placed with a shepherd, and afterwards bound apprentice to a shoemaker; but it does not appear that he ever followed either of those professions. In 1643 he became a religious itinerant; and about 1647 commenced public preacher, inveighing, not only against the prevailing vices, but the stated ministers and religions services, affirming that the light of Christ in the heart is alone the means of salvation, and the true qualification for the gospel ministry. He suffered imprisoument in many places, and sometimes experienced very cruel usage. In 16 fig he married the widow of a Welch judge; bus
still he continued his course of itinerant preaching. and visited most parts of the British islands, Holland, Germany, and North America, and even some of the West-India islands. He died in London in Ifigo. His Journal was printed at London in 1694, his Epistles in 16y8, and his Tracts in 1700; all in folio.

Fox (Charles James), an eminent statesman, the third son of Henry Fox, afterwards lond Holland, hy Georgina, eldest daughter of the late luke of Richmond, was born on the 13th of January, ().S. in the year 1748.

As he was intended for public life, so he receired a public aducation, and was sent to Eton, when that school bad attained a high degree of celebrity, under the auspices of ENward Barnard, M.A. who became head master in 1734.

From Eton Mr. Fox remored to Hertford onllege, Oxford, where he also distinguished himself by his talents, and Dr. Newcome, his tuior, was afterwards rewarded with the primacy of Ireland for his services on this occasion. After remaining there some tume, he was immediately sent on his travels, according to the absurd custom of that day, by which an Enzlishman was bound to be better acquainted with the manners, fashions, and productions of erer other country in Europe than his own.

Meanwhile, his father, still keeping the original object in view, determined to inspire him with a taste for public business, and according1r, in the beginning of 1768 , he was returned for Midhurst, in the county of Sussex. Two things are remarkable on this occasion; the first is, that, like the celebrated Waller, he hecame a member of the house of commons before he attained the legal age: the second, that Midhurst was one of those very boroughs which he himself seems afterwards to have considered a nuisance in a free country.

As lord Holland possessed the favour of lord Bute, and enjoyed the confidence of his present majesty, the career of public employments lay open to his son. Accordingly, he had been only two ytars in parliament when, on the 13th of February, 1770, he became a member of the Admiralty board, at the time when the celebrated admiral sir Edward, afterwards lord Hawke, presided there. On May 6, 1772, he resigned that situation, and on the gth of January, 1773, was nominated a commissioner of the treasury.

At this period his political principles appear to bave been strictly in unison with those of his father, and he was often afterwards reminded by his adverearies that the doctrines advanced by him in the case of the printers who had been imprisoned, were rather unfavourable to the principles of liberty, while his assertion, "t that the voice of the people was only to be beard in the house of commons," was controverted by the whole tenar of the latter part of his life.

At length all the predictions of Mr. Fox and his anociates, relative to the American struggle, were fully and fatally verified; for Burgoyne was captured, Cornwallis was oilig-
ed to capitulate, and France and Holland havo . ing become parties in the struggle, the contest itself became unpopular in the extreme. Lord North, confounded, overwhelmed, and almost driven to despair, was now obliged to resign; but he did not, like former ministers, take refuge in the house of peers; on the contrary, he remained in the midst of his partisans, who still formed a numerous band, braved all the clamonrs of his adversaries, defied their threats, and declared hinself ready to meet any inquiry they might wish to institute.

Mr. Fox obtained the office of secretary for foreign aftairs, in the spring of 1782 , while the marquis of Kockingham, the most uniform honest and upright statesman whom we have possessed since the revolution, was nominated first lord of the treasury. Much was expected from, and much, it must be owned, was performed by a ministry, the most respectable of any that has been seen in England during the present reign. But the sudden death of the nobleman just mentioned at once afflicted the nation and divided the friends of liberty, while the ex-minister and his adherents knew how to derive advantage from the storm, and reap benefit from the dismay that unhappily ensued

A dispute, as had been foreseen, immediately took place about who should succeed as first lord of the treasury. The candidates were, lord Shelburne, afterwards marquis of Lansdowne, and the present duke of Portland; the favour of the king made the interest of the former preponderate, and a schism having eusued, Mr. Fox retired in disgust. As the earl of Chatham was accustomed to observe, " that he would never be responsible for actions which he did not direct," so the secretary of state, when he withdrew, remarked, "that he had determined never to connive at plans in private, which he could not publicly avow."

What those plans may have been, we are left to guess. We have reason to believe, that the only ostensible dispute in the cabinet was relative to the independence of America, which Mr. Fox wished to grant as a boon, while lord Shelburne desired to confer it in the manner of a bargain: the secret, and perhaps leading cause, on the present occasion, originated ia friendship to the duke of Portand, then a very popular nobleman, whose exclusion had produced the most fatal jealousies anuong the besk friends of liberty.
Mr. Fox now resumed his old seat, facing the Treasury bench, while his former colleague, the earl of Shelburne, was busien in concluding a peace with France, Spain, Hotland, and the United States of Americn, This nobleman, although possessed of great talents, forgot to adopt the most obvious means for ensuring his own sofety.. In the first place, he did not call a new parliament, and in the next, he omitted to secure the immense advantages resulting from the press, which, in a free country, will always influence, if not, govern, the nation. But even as it was, he would have triumphed, but for a most odious as well a impolitic coalition, supposed to be battomes

F 0 X.

on ambition alone, and destitute of any common principle of union.

The political success of Mr. Fox and lord North was, however, ephemeral. While they agreed in no one great measure for the common goor, the nation scemed to unite as one man against thein; and the king having become jealous of his prerogative, on the introduction of the East India Bill, they were obliged to retire, but not until means had been resorted to, which no friend of the constitution could either advise or practise.

A phenomenon in the political world now took place ; for a stripling, just of age, upborne on the wings of royal and populár favour, succeeded to the post of premiter, and kept it for upwards of twenty years. William Pitt, the younger son of that William Pitt, earl of Chatham, who had been the rival of Henry Fox, lord Hulland, to a greater portion of eloquence than his father, added all his ambition. Such was the opponent with whom the subject of this memoir had now to contend for the government of the empire ; such the man who could only be prevailed upon to relinquish it with his life! Meanwhile the tide of popularity had set in so strongly against Mr. Fox, that at the general election, in 1784, many of his friends lost their seats in the House of Commons, and he himself was obliged to enter into a long and expensive contest for Westininster.

The next public affair in which we find him engaged, was the prosecution of Mr. Hastings; and it must be allowed, while the charges against the governor general of India, on one hand, rejuired, nay demanded investigation, that, on the other, the period of time to which the trial was protracted appears to have been equally impolitic and unjust.

On two great occasions the talents of Mr. Fox proved eminently serviceable to the nation: one, when Mr. Pitt, at the instigation of the court of Berlin, wished to wage an unprofitable war with Russia, relative to the possession of Oczakow; the other, when, in the wantonness of power, he urged a contest with Spain. Experience has since proved that these objects were contemptible, and the finger of posterity will point with scorn to that page of our history, when a minister who derived all his credit fr in his management of the finances, laboured to impoverish the nation by two ridiculous, but bloody conflicts, one of which had fur is objert the preservation of the Turkish frontier, and the other, a participation in the irade of cat-skins and sea-otters!

In 1788, Mr. Fox, worn out, and perhaps disgusted with public business, repaired to the continent, in company with the lady who has since been acknowledyed as his wife, and after spending a few days with Gibbon the historian, at Lausunne, entered the classic regions of Italy. But he was suddenly recatted, in conseqiuence of the alarming itlness of the king, and the bisiness of the Regency Bill was so ably manared by his rival, who now perceived it to be for his interest ta stand on eonatitutional
grounds, that the opposition rather lost tham gained popularity by this measure.

We now approach an awful and memorable epoch, that which gave birth to the Freuch Kevolution! On this occasion Mr. Fox declared hinself strongly, unifurmly, and decisively on the side of liberty. The two great rival chiefs, who ayreed in nothing else, at first cordially united in this cause, and while the one presaged a long peace, the extinction of our national debt, and the prosperity of the empire, the other gloried in beholding a whole people rescued from the most oppressive servitude, and, at the same time, augured the most auspicious results in favour of the humaus race.

It were greatly to be wished that the grand political experiment attempted in France had been left to its own fate. The intervention of the neighbouring states only served to arouse. the warlike genius of a migbty people, to call forth the numerous resources of a rich and exa tensive empire, and finally to establish a military despotism, that, after overturaing every land-mark of civil liberty, has nearly extinguished the independence of Europe.

Mr. Pitt is supposed to have bren at first dragged into the contest with reluctance. No sooner had he'entered on it, however, than, as usual, he did not hesitate at the means by which he was to secure the end in view. Ine corruptible himself, he opened the public purse without scruple to others. The heroic age of profusion seemed to have arrived, and he distributed money, and titles, and offices, with so liberal a hand, that the opposition benches were thinned of their nembers, and his ancient enemy was left to contend with a handful of adherents against a hoat of foes.

Conscious that he could not oppose the golden torrent that issued from the Treasury hench. Mr. Fox withdrew from Parliament for a while, and evinced a wish to retire altogother from public business. It has even beem said, that his Address to the Electors of Westminster was actually penned, and that he had formed the determined resolution of abjuring politics for ever.

But the entreaties of his friends, and the oecurrence of new and singular events, happily prevented this ineasure. We accordingly find him once more at the head of an opposition, feeble in point of numbers, but truly formidable in respect of talents and abilities. Mr. Pitt, then it the zenith of his power, at this period afforded a fair opportunity of animadrersinn as well as censure, and it was eagerly seized upon by his eloquent rival. The minister, confident in his majority, took upon him, during the vacation of Parliament, to advance a sum of money, by way of subsidy, to the cm peror and the French princes, without either the consent or knowledge of the House of Commons. In 1796 this becanse the sulyect of a special charge; and although Mr. Fox's motion was not carried, yet it made an impression an the nation at large, and added not a litule to the odium then prepalent againat the premier

At length, after enjoying, and, in some measure, revelling in power, during eighteen long years, Mr. Pitt voluntarily retired fronal office, and Mr. Addington, since created viscount Sidmouth, concluded the treaty of A miens, on which uccasion he received the support of Mr. Fox and all his friends. The latter may le said to have now experienced that species of triumph which arises out of political anticipation, for as the terms were nut so guod as might have been obtained in 1796, it was obviuus that-all the miseries, calamities, blood, and treasure, wasted to no manner of purpose during the preceding six years, would have been avoided, had his warning voice been but listened to.

When a renewal of the contest was meditated, Mr. Fox expressed himself avowedly hostule to that measure : "I do contend," said he, "that the continuance of peace is infiniteIy desirable. I feel its importance in the strongest manner, and I am not ashamed to avow an opinion for which I have not unfrequentiy been exposed to ridicule. I now again explicitly declare, that I consider the preservation of national honour to be the only legitimate cause of war.
"This docrine I hold," contiuues he, "on the plain principle that honour is inseparably connected with self-defence. If it caun be proved to me that the national honour has been insulted, or the national dignity disgraced, I will, without hesitation, declare my opinion, which is, that it would be a fair l-gitimate cause for, recommencing hosrilitics. I must, however, hear a very strong ease made out before I can give my vote for replunging the country into those disasters, which a calamitous contest had produced, and from which we have been so recently delivered."

It was in strict consistency with this notion, that, when the royal message was brought down, declaratory of hostilities, Mr. Fox expressed his opinion at large, both against the war as unnecessary, and against the crisis at which it took place, as eminently impolitic. This problemalic measure soon proved fatal to Mr. Addington's administration, and the reins of government having dropped from his hands, were immmediately seized by Mr. Pitt.

Meanwhile a union had been effected by the Foxite and Grenville parties, and from that moment the return of both to power was considered as certain. This was in part evinced by the conduct of the House of Commons, in respect to the prosecution of lord Melville; and although the petition of the Irish Catholics was thrown out by a great majority, yet a large partion of the empire was, in some measure, conciliated on this occasion, by the consideration that it was not destitute of powerful pronetion.

In the midst of these discussions, Mr. Pitt, who had beea for some time tottering, sickened and died. A vote of Parliament, public faperal, and the payment of his debts at the expence of the nation, added to his sudden fate and acknowledged talents, all tended to suoder his memory reapected; but what coll-
tributed more than any thing else to shield it from reproach, was the junction of his trienda and relations with his enemies and opponents; so that the latter could not have assalled his character without violding all the decencies of life with respect to the former.

After an opposition of twenty-two years-2 period unexalu, led, in point of duration, in the annals of uis country-Mr. Fox in 1800 resumed his situation as becretary of State for the Foreign Department, which he had surrendered in 1783-4. Soon afier this event, the conduct of the king of Prussia excited general indignation. Not content with seizing on Hanover, he excluded the English commerce not only from his own dominions, but also from every port which he could either terrify or influence. On this the new minister published a very spirited declaration, and, at the same time, adopted measurcs for blochading all the ports and intercepting all the trade of the house of Brandenburg.

But his mind was never for a single instant diverted from what may be considered as the grand object of his life. He had conceived an idea, from the very beginning, that the war was ill-timed, and no sooner had he obtained the seals, than he determined, if possible, to put an honourable termination to it. As he had never made use of any intemperate language, or displayed any personal antipathics, the enemy of course could have no objection to such a mediator; but just at the critical periol, when it was supposed that most of the difficulties had been removed, the man on whose fate the peace of the worid in no small degree depended was snatched away from his friends and the world, by a confirmed dropsy. He died Sept. 13, 1806.

To depict the character of such a man as Mr. Fox, is a most difficult and delicate task: we shall present our readers with a sketch drawn by the able hand of Sir Jannes Macintosh.
" Mr. Fox united, in a most remarkable degree, the seemingly-repugnant characters of the mildest of men and the most vehement of orators. In private life he was gente, modest, placable, kind, of simple manners, and so averse from paraic and dogmatism, as to be not only unostentatious, but even somewhat inactive, in conversation. His superiority was never felt but in the instruction which he im. parted, or in the attention which his gencrous preference usually directed to the more obscure members of the company. The simplicity of his manners was far from excluding that perfect urbanity and amenity which Howed still more from the mildness of his nature than from familiar intercourse with the must polished society of Europe. His converation, when it was not repressed by modesty or indolence, was delightful. The pleasantry, perhans, of no man of wit had so unlaboured an appearance; it seemed rather to escape from his mind, than to be produced by it. He had lived on the most intimate terms with all his contemporaries, distinguished by wit, politewess, or philosophy, or learning, or the talents

F O X.

of public life. In the course of thirty years, he had known almost every man in Europe whose intercourse could strengthen, or enrich, or polish the mind. His own literature was various and elegant. In classical erudition, which, by the custom of England, is more peculiarly called learning, he was inferior to few professed scholars. Like all men of genius, he delighted to take refuge in poetry from the vulgarity and irritation of business. His own verses were easy and pleasing, and might have claimed no low place among those which the French call vers de societe. The poetical character of his mind was displayed in his extraordinary partiality for the poetry of the two most peetical nations, or, at least, languages, of the West,--those of the Greeks and of the Italians. He disliked political conversation, and never willingly took any part in it. To speak of him justly as an orator would require a lonz essay. Every where natural, he carried into public something of that simple and negligent exterior which belonged to him in prirate. When he began to speak, a common observer niight have thought him awkward, and even a consummate judge could only have been struck with the exquisite justness of his ideas, and the transparent simplicity of his manners. But no sooner had he spoken for some time, than he was changed into another being. He forgot himself and every thing around him. He thought only of his subject. His genius warmed and kindled as he went on. He darted fire into the andience. Torrents of impetnous and irresistible eloquence swept along their feelings and conviction. He certainly possessed, above all moderns, that union of reason, simplicity, and vehemence, which formed the prince of orators. He was the most Demosthenean speaker since Demosthenes. 'I knew him;' says Mr. Burke, in a pamphlet written after their unhappy difference, " when he was nineteen; since which time he has risen, by slow degrees, to be the most brilliant and accomplished debater that the world ever saw.' The quict dignity of a mind roused only by great objects, the absence of petty hustle, the contempt of show, the abloorrence of intrigue, the plainness and downrightness, and the thorough good-nature which distinguished Mr. Fox, seemed to render him no very unfit representative of that old English national character, which, if it ever changed, we should be sanguine indeed to expeet to sec succeeded by a hetter. The simplicity of his character inspired confidence, the ardour of his eloquence roused enthusiasm, and the gentleness of his mamers invited friendship. ' 1 admired,' says Mr. Gibbon, 'the powers of a superior man, as they are blended, in his attractive chatacter, with all the sofness and simplicity of a child; no human being was ever more free from any taint of malignity, vanity, or falsehood:' From these qualities of his public and prisate character, it prohably arose, that no English statesman ever preserved, during so long a period of adverse fortune, so many affectionate friends and so many zealous adherente. The union of ardour in putlic
sentiment with mildness in social manvers was in Mr. Fox an hereditary quality. The same fascinating power, over the attachment of all who came within his sphere, is said to have belonged to his father ; and those who know the survirors of another generation will feel that thisdelightfulquality is not yet extinct in the race.
" Perhaps nothing can more strongly prove the deep impression made by this part of Mr. Fox's character than the words of Mr. Burke, who, in 1797, six years after all intercourse between them had ceased, speaking to a person honoured with some degree of Mr. Fox's friendship, said: 'To be sure, he is a man made to be lored!' and these emphatical words were uttered with a fervour of manner which left no donbt of their heartfelt sincerity.
"These few hasty and honest sentences are sketched in a temper too sober und serious for intentional exaggeration, and with $t 00$ pious an affection for the memory of Mr. Fox to profane it by intermixture with the factious brawls and wrangles of the day. His political conduct belongs to his history. The measures which he supported or opposed may divide the opinion of posterity, as they divided those of the present age. But he will most certainly command the unanimous reverence of future generations, by his pure sentiments towards the commonwealth; by his zeal for the civil and religious rights of men; by his liberal principles, tavourable to mild government, to the unfettered exercise of the human faculties, and the progressive civilization of mankind; by his ardent love for a country, of which the wellbeing and greatness were, indeed, inseparable from his own glory; and by his profound reverence for that free constitution, which he was universally admitterl to understand better than anyother man of his age, both in an exactly-lega] and in a comprehensively-philosophical sense."

Since the death of this distinguished statesman, his nephew lord Holland has publisheda work which employed much of the latter part of Mr. Fox's life, entitled " A History of the early Part of the Reign of James the Second, with an introductory Chapter;"a work which is more especially celebrated for its freedon from party bias, and for the perspicuity and simplicity of the style.

Fox-hunting. The hunting of foxes with hounds trained to the sport. This, by sportsmen, is regarded as the zenith of enjoyment. The chace should be short, shary, decisive ;-not less than one hour to be perfect, but never more than two. If it exceed the last period, there must be a fault somewhere: in the day, the huntsmen, or the hounds. Of course, all is bustle and expedition. Yet the hounds should not be suffered to try their full strength, at the commencement of the chace: for they hare then a great chance of out-stripping the scent, which they should be introduced to coolly, till they are perfectly acquainted with it. Afier this they cannot make ton much speed. The scent, however, varies in keenness and pornctuality from a variety of causes: a moist air holds and communicates it better than a dry air, and some soils destroy it more than othess,
by imbibing the odour themsekes, or intermixing other odours with it. When the grasity of the air sufiers the scent to remain buoyani just breast high, it is a most fortunate circuinstance for the pack. The more rapid the animal, again, the less the scent cominunicated. The scent, however, scarcely ever lies with a north or an east wind ; a southerly wind without rain, and a westerly wind that is not rough, are the best.
Un first finding a fox, the huntsman should draw quietly and up the wind; the fox does not, in this case, readily hear till the hounds are all in, noise can then do no hurt, and the hounds are inspirited by it. While the hounds are drawing, the company should so place themselies that a fox cannot go off unseen: upon such occasions, if two gentlemen keep close rogether, instead of assisting in the discovery, it is clear that one of them at least, if not both, knows nothing of the matter. The true sportsman will not draw a cover near the kennel in the commencement of the season, but will keep this as a reserve when the more distant eorers are exliausted; of the first he is sure at any tine.

A perfect knowledge of feeding and drafting hounds is of essential consequence; for good hounds will require but little assistance afterwards. By the first is meant the bringing a bound into the field in his highest vigour, by a foll or sparing feed according to his temperament; by the second, the taking out no unsteany hound, nor any that are not likely to be of service to the pack.
With a high scent hounds cannot be pushed on too much; screams keep the fox forward, the hounds together, or let in the tail hounds: ha'loos are of service when hounds are running up the wind, for then none but the wail hounds can hear them; when running down the wind, on the contrary, there should he no more halloos than are necessary to bring the tail hounds forwards. Halloo forward is a necessary and usefal cry, but is employed too indiscriminately: the hounds should only know it to signify that a fox is found-they will then fly 10 it. Gone away, is a halloo that denotes a fox has broke cover, and should certainly be restrained to that occasion, when it cannot be given too loudly. When a fox is tilled be should first be flung across the branch of a sree to be bayed a few minutes, then with a loud Tally ho, the meaning of which the hounds will thus understand, he should be huried amonget them to be eaten nevenousty. It will make them the more eager. No good country should be hunted after February: no country at all after March.
A fox-hunuing establishment consists, when eomplete, of a first and second huntsman, first and second whipper-in, three horses for each of the first, and two for each of the last: from twenty-five to thirty-five couples of hounds, terriers, helpers, earthzoppers, and dog-feeders.
Fox-chase. Sce Chasz.
Fox-evil, a diseace in which the hair drope off from the head.

FRA

Fox-glove, in botany. See Dicitalis. Fox-glove (False), in botany. Sce Mimulus.
FOXFORD, a town in Ireland, in tho county of Mayo, situate on the river May, o miles N . of Castlebar.

FOX-ISLANDS, a group of islands in the N. Archipelago. They are 16 in number, and are situated between the E . coast of Kauntschatkia and the \mathbf{W}. coast of America, between 52° and $55^{\circ} \mathrm{N}$. lat. Euch island has a peculiar name; but this general name is given to the whole group, on account of the great number of black, grey, and red foxes with which they abound. The dress of the inhabitants consists of a cap, and a far coat, which reaches down to the knee. Some of them wear common caps of a party-coloured birdskin, upon which they leave part of the wings and tail. On the fore part of their hunting and fishing caps they place a small board, like a skreen, adorned with the jawbones of seabears, and ornamented with glass beads, which they receive in barter from the Russians. At their festivals and dancing parties, they use a much more showy sort of caps. They feed upon the flesh of all sorts of sea animals, and generally eat it raw. But when they dress their food, they make use of a hollow stone, in which they place the fish or flesh : they thed cover it with another, and close the interstices with lime or clay. They next lay it horizone tally on two stones, and light a fire under it. The provision intended for keeping is dried without salt in the open air. Their weapons are bows, arrows, and darts; and, for their defence, they use wooden shields. The most perfect equality reigns among them. They have neither chiefs nor superiors, neither laws nor punishments. They live together in families, and eocieties of several families united, which form what they call a race, who, in case of attack or defence, mutually aid each other. The inhabitants of the same island always pretend to be of the same race,

FO'XSHIP. s. (from for.) The character or qualities of a fox ; cunning (Shakspeare).

FOXTRAP. s. (for and erap.) A gin or snare to catch foxes (Tutler).

FOY. s. (foi, French.) Faith ; allegiance (Spenser).

FOY LE (Lough), a lake or bay of Ireland, in Londonderry. it is of an oval form, 14 niles long and eight broad, and communicates with the occan by a short and narrow strait.

To FRACT. v. a. (fractus, Latin.) To break; to violate; to infringe (Shakspeare).

FRA'CTION. s. (fraction, French.) 1. The act of breaking ; the state of being broken (Burnet). 2. A broken part of an integral (Brown).
Fraction, in arithmetic, and algebra, is a part or some parts of another quantity or number considered as a whole but divided into a certaiu number of parts: as 3-4ths of any quantity, a pound, for instance, which denotes 3 parts out of 4 , or 15 shillings.

Fractions are usually divided into vulgar, decimal, duodecimal, sexagesimal. The firat

FRACTIONS.

kind is what we speak of here; for the last three sorts, see Decimal, \&c.
"The definitions of fractions,' says bishop HorsJey, " which we find in the common books of arithmetic, that a fraction is a broken number, or that it is a number less than unity, are absurd and unintelligibie. Number, in its own abstract nature, is composed of unity; and unity, in the abstract, is indivisible: a number, thercfore, cannot otherwise be broken, than into less numbers; or into the units of which it is composed. The ultimate division of number is into units; and below a unit there is no number. But, considering number not in the abstract, but as existing in the things numbered, the unit of these embodied numbers exists in the individuals, of which the multitude is composed; that is, in each individual separately taken. Each individual is no otherwise one, or no otherwise partakes of unity, than as it is a whole. And, as a whole, it must be composed of parts, for to be composed of parts is essential to a whole; for a whole is that from which no part is absent. A whole, therefore, as a whole, is one; but as composed of parts, it is many. The unit, therefore, of embodied numbers, is many in one; and, by dividing the whole into its parts, this concrete one is resolved into its many.. And these many parts among themselves, and with reiation to the whole, are no less the subject of numeration, than the wholes making multitudes. These parts, considered in their relation to the whole, are called tractions, the whole being usually called an integer. And the trithmetic of fractions is the art of numbering them as parts of a whole, and of performing the like operations upon them, for combining or separating them; as are performed by the rules of common arithmetic upon numbers properly so called, that is, upon integral numbers.' (Elementary Treatises on Practical Math.) Nearly to the same purpose speaks Malcolm at pp. 19, 20, of his Arithmetic.

Vulgar Fractions are usually denoted by two numbers, the one set under the other, with a omall line between them: thus $\frac{3}{4}$ denotes the fraction three fourths of some whole quantity considered as divided into four equal parts.

The lower number 4 , is called the denominator of the fraction, shewing into how many parts the whole or integer is divided; and the upper number 3 , is called the numerator, and shews how many of those equal parts are contained in the fraction. Hence it follows, that as the numerator is to the denominator, so is the fraction itself to the whole of which it is a fraction; or as the denominator is to the numerator, so is the whole or integer to the fraction: thus, the integer being denoted by 1 , as $4: 3:: 1: \frac{3}{4}$ the fraction. And hence there may be innumerable fractions all of the same value, as there may be innumerable quantities all in the same ratio, viz. of 4 to 3 ; such as 8 to 6 , or 12 to $9,8 \mathrm{cc}$. So that if the two terms of any fraction, i. e. the numerator and denominator, be either both multiplied or both divided by any number, the resulting fraction will still be of the same value : thus, $\frac{3}{4}$ or ; or ${ }^{\frac{1}{2}}$ or $t^{2}, \& c$ are all of the same value with each other.

Fractional expressions are usually distinguished into proper and improper, simple and compound, and mixt numbers.
A Proper Fraction, is that whose numerator in less than the denominator; and consequently the fraction is less than the whole or integer; as $\frac{4}{4}$.

Improper Eraction, is when the numerator is
either equal to, or greater than, the denominator: and consequently the fraction either equal to, or greater than, the whole integer, as $\frac{4}{}$, which is equal to the whole; or $\{$, which is greater than the whole.

Simple Fractions, or Single Fractions, are such as consist of only one numerator, and one denominator ; as $\frac{3}{4}$, or 事, or $\frac{12}{23}$.

Compound Fractians are fractions of fractions, and consist of several fractions, connected together by the word of: as $\frac{2}{4}$ of $\frac{3}{4}$, or $\frac{1}{\frac{1}{2}}$ of $\frac{2}{1}$ of $\frac{3}{2}$.

A Mixt Number consists of an integer and a fraction joined together: as 13 , or 12$\}$.

The arithmetic of fractions consists in the Reduction, Addition, Subtraction, Multiplecation, and Division of them. See the farious articles; sec also Alcebra and Aritumetic.

Alyebraic Fractions, or Fractions in Species, are exactly similar to vulgar fractions, in numbers, and all the operations are performed exactly in the same way; therefore the rules need not be repeated, and it may be sufficient here to set down a few exainples to the foregoing rulez. Thus,

1. The fraction $\frac{a n b}{b c}$ abbreviates to $\frac{a a}{c}$.
2. $\frac{a^{3}-a^{2} x+a x^{2}-x^{2}}{a^{2}-a x}=\frac{a^{2}+x^{2}}{a}$, by dividing by
a-x. See Common Meabure.
3. $\frac{a}{b}$ and $\frac{c}{d}$ become $\frac{a d}{b d}$ and $\frac{b c}{l \cdot d}$, when reduced to a common denominator.
4. $\frac{a}{b}+\frac{c}{d}=\frac{a d+b c}{b d}$. See ADDITION.
5. $\frac{a}{x}-\frac{b}{z}=\frac{a z-b x}{x z}$. See Subtanction.
6. $\frac{a}{b} \times \frac{c}{d}=\frac{n c}{b d}$. See Multiplication.
7. $\frac{a}{x} \div \frac{b}{z}=\frac{a}{x} \times \frac{z}{b}=\frac{a x}{b x}$. See Division.

Continued Fraction, is a fraction whose denominator is an integer with a fraction, which latter fraction has for its denominator an integer and a fraction, and the same for this last fraction again, and so on, to any extent, whether supposed to be infinitely continued, or broken off after any number of terms. Euler, Analys. Inf. vol. 1. po 295.

$$
\begin{aligned}
& \text { As } \frac{1}{2}+\frac{2}{3}+\frac{1}{d}+\frac{4}{b}+\& c \text {. } \\
& \text { Or using letters instead of numbers, } \\
& \frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{d}+\frac{1}{e}+\& c .
\end{aligned}
$$

These continued fractions may be reduced to those of the common form by an easy application of the usual rules for fractions; for an example we will take that continued fraction which expresses the ratio of the circumference of a circle, to the diameter, namely,

$$
3+\frac{1}{7}+\frac{1}{15}+\frac{1}{1}+\frac{1}{29 \cdot 2}+\frac{1}{1}+\frac{1}{1}+\text { \&c. }
$$

Here, if we stop at $\frac{1}{7}$, we shall have $3+\frac{1}{7}=$ $\frac{21+1}{7}=\frac{22}{7}$. If we stop at $\frac{1}{15}$, we chall have

FRACTIONS.

$3+\frac{1}{7}+\frac{1}{15}=3+\frac{1}{\frac{106}{15}}=3+\frac{15}{106}=\frac{318+15}{100}=\frac{333}{106}$
But if we stop at ${ }^{1}$, which is convenient on account of the amall fraction $1_{2} \lambda_{2}$, added to the last denominator, 1 , wre shall then find,

reductions gives the proportion of Archimedes, and the last that of Adrian Metius.
The doctrine of continued fractions does not appear to have been so much cultivated as it deserves: the best treatises upon it, however, and the best exemplifications of its use; are given in Walis's Arith. Infin.' Euler's Analys. Infin. Hutton's Tracts ; and Lagrange's Additions to Euler's Alzebra.
Vanishing Fractions. Such fractions as have both their numerator and denominator vanish, or equal to 0 , at the same time, may be called vanishing fractions. . We are not hastily to conclude that such fractions are equal to nothing, or have no value; for that they have a certain determiuate value, has been shewn by some very able mathe-
maticions maticians.
Different methods have been adopted for valuing these fractions. One is to divide the fluxion of the numerator by that of the denominator for the value: thus, in the fraction $\frac{x-x^{3}}{1-x}$ when x -1 ; the fluxion of the numerator is $\dot{x}-5 x^{\circ} \dot{x}$, and that of the denominator is $-\dot{x}$: hence,
$\frac{\dot{x}-5 x+\dot{x}}{-\dot{x}}=\frac{1-5 x+}{-1}=\frac{1-5}{-1}=\frac{-4}{-1}=4$, the value of the fraction. A second method is by common division : thus, in the eame example, $\frac{x-x^{3}}{1-x}=x+$ $x^{4}+x^{3}+x^{1}=$ (when $x=1$) $1+1+1+1=4$. A
more general method, however, is that of substituting for the variable quartity its magnitude, when the numerator and denominator vanish, increased by another variable quantity; then supposing this latter to decrease without limit, the value of the proposed fraction will be known: taking again the same example, and putting $1+\mathrm{E}$ for x, we have $\frac{x-x^{5}}{1-x}=\frac{\overline{1+z}-\overline{1+z^{5}}}{-z}=\frac{z-5 z^{4}}{-z}=$ nearly $\frac{1-5}{-1}=4$, as before.

These vanishing fractions have led to some sharp contests among algebraists; as between Varignon and Rolle, between Maseres and Waring, \&c. And in one instance, it is said, a superior knowledge of such fractions was the means of obtaining a professorship : though we trust appointments to professurships seldom depend upon such equivocal proofs of merit.

Mr. Woodhouse, in his Principles of Analytical Calculation, a work in which he has taken great pains to unsettle every thing, but to settle nothing, has revived some of the objections formerly brought against vanishing fractions: he produces the instance $\frac{x^{2}-a^{2}}{x-a}$ among others, and asserts, not, as appears to us, from the most cogent reasons, that this fraction is not $=x+a$, in the particular case when $x=a$. His mistake, we think, lies in this, that he takes the cyphers to which both the numerator and denominator reduce, as like and equal quantities, which cannot be the case; for since $x^{2}-a^{2}$ may be considered as a plane and $x-a$ as a line, the cyphers must be looked upon as cyphers of different orders. For the sake of the young student, we will consider this matter a littie more particularly. Let us examine an instance like that above mentioned, namely, $\frac{a^{2}-x^{2}}{a-x}$, and let us suppose $a=10$, considering x as a varying quantity.

$c=10$	$a^{2}-x^{4}$	+
	$a-x$ -3	10-15
-12	-2	10-12
-11	-1	10-11
- 10	0	10-10
-9		10-9
-8	2	10-8
- 7	3	10-7
- 6	4	10-6
- 5	5	10-5
- 4	6	10-4
- 3	7	10- 3
2	8	10-2
1	9	10-1
0	10	10 ± 0
1	11	$10+1$
2	12	$10+2$
3	13	$10+3$
4	14	$10+4$
5	15	$10+5$
6	16	$10+6$
7	17	$10+7$
8	18	$10+8$
9	19	$10+9$
10		$10+10$
11	21	$10+11$
12	22	$10+12$
13	23	$10+13$
8 cc	Scc.	\& 0.

In the tablet in the margin, we have placed several different values of a, passing on from -13 througt 0 to +13 . The third column contains the several values of the fraction, as they result from supplying the values of x and a, and actually performing the operations. Thus, when $x=-5$, then $\frac{a^{2}-x^{2}}{a-x}=\frac{100-25}{10+5}=5$: again when $x=+5, \frac{a^{2}-x^{2}}{a-x}=\frac{100-25}{10-5}=15$. But when $x=10$, we have not placed the value of the fraction in this third column, because since both numerator and denominator then become $=0$, and the ciphers are of different orders, we must have recourse to some other method of ascertaining the quotient. Here then we go to the fourth column, which contains the several ralues of $a+x$, the universal and accurate algebraic representation of the quotient equivalent to the fraction proposed. We find the value of $a+x$ in this column exactly corresponding with thes different values of the fraction obtained by actual division in the third column, in every instance given both above and below the case when x and a are both $=10$. Now surely we ought not to be accused of adopting any unfair or unwarrantable species of induction, that in this case as well as the others the ralue of the fraction is truly expressed by the alyebraic representation $a+x$. We know not what magical influence may be hid under the symbol $=$, which should when this mark is placed between x and a cause the value of the proposed fraction to be absolutely unassignable, though it mav be roadily assigned in every other conceivable instance. The question, in fact, amounts to this : either we ran perform the fundamental algebraical nperstions (as addition, multiplication, division, \&c.) correctly and safely, without knowing the real numeral values of the characters emploved (a, b, c, x, y, y, \&c.); or we cannot. If we caunot, the boasted universality of algebre

FR

is gone, we mast abandon it altogether, and return to our arithmetic and geometry. But, if we can,-if, for example, we can affirm universally, that $\frac{a^{2}-x^{4}}{a-x}=a+x$, whatever a and x may be, why then the sum of a and x will represent the quotient of $a^{2}-x^{2}$ divided by $a-x$, whatever be the relation subsisting between a and x. There is no alternative between admitting ihis and abandoning all that is useful and valuable in modern analysis.

Should not this manner of considering the subject remove all the scruples of Mr. Woodhouse, and others who have adopted similar notions, we will endeavour to place it in another point of view. Let us conceive $y=\frac{a^{a}-x^{2}}{a-x}$, and let us construct a figure which shall exhibit the different values of y. Since y, or its equal $a+x$, has all its variations in a ratio of equality with those of x, (a being constant) it is manifest that the locus of this equation is a right line making an angle of 45° with the axis of the figure. Let mAMMM, \&c. be such locus, (6g. 12. PI. 68.) and draw the zeveral ordinates $\mathrm{pm}, \mathrm{pm}, \mathrm{PM}, \mathrm{PM}, \& \mathrm{Ec}$. Now at the point P, where $x=0$, we have $y=a+x=10=$ PM ; and $A \mathrm{P}$ being $=10$, the ordinates gradually diminish until at the point $\mathrm{A}, a+x$, being $=10-10$ $=0$, the ordinate vanishes, and the locus crosses the axis: when x becomes $-12,-14, \& \varepsilon$. the ordinate is traly expressed by $-2,-4$, \&c. being found on the contrary side of the axis. But, to proceed with the increasing ordinates on the right hand part of the figure: when $\mathrm{PP}=5,6,7,8$, or 9 respectively, it is manifest that PM, the ordinate, becomes $=15,16,17,18$, or 19 respectively; and when $\mathrm{PP}=11,18,13,14, \& \mathrm{c}$., the ordinate $\mathrm{PM}=$ $21,22,23,24, \& c$. Since then the different values of y, or the proposed fraction, are exhibited, and we trust fairly and accurately exhibited, by this figure, both in the cases when x is less than a, and when it is greater than a, we trust there will be no great impropriety in adopting the species of reasoning which is the foundation of the differential method, (and which is so admirably elucidated in prop. 87 of Hartley on Man) and thus determining the value of y in the particular case of $x=a$. By this nethod then we find the ordinate (which in the figure we have presumed to represent by a dotted line) $=\frac{19+21}{2}=21$, which is equivalent to $a+x$, and furnishes another reason for believing that the value of the vanishing fraction is truly ass:gned.

FRA'CTIONAL. a. (from fraction.) Belonging to a broken number (Cocker).

FRA'CTURE. s. (fructura, Latin.) 1. Breach; separation of continuous parts (Hale). 9. The separation of the continuity of a bone in living bodics (Hervert).
to Fra'cture. v. a. (from the noun.) To break a bone (Wiseman).

Fracture, in surgery. a rupture of a bone, or a solution of continuity in a bone when it is crushed or broken by some external cause. Sec Surgery.

FRTNULUM. The cutaneous fold, under the apex of the tongue, that connects the tongue to the infralingual cavity. It is sometimes, in infancy, so short as to prevent the chidd from sucking, when it is necessary to cut

FRA

it, in order to give more room for the motion of the tongue.
FReNUM, or Frenum, bridle, in anatomy, a name given to divers ligaments, from their office in retaining and curbing the motions of the parts they are fitted to.
Fremum lingue, or Bridee of the tongue; a membranous ligament, which connects the tongue with the muscles about the fauces, and lower parts of the mouth. In some subjects the franum runs the whole length of the tongue to the very tip; in which cases, if it were not cut, it has been erroneously supposed, that there would be no possibility of speech. Sec Tongue-tisd.

Frenum penis, a slender ligament, whereby the prepuce is tied to the lower part of the glans of the penis. Nature varies in the make of this part; it being so short in some, that unless divided it would not admit of perfect erection. There is also a kind of frenum, fastened to the lower part of the clitoris in women.

FRAGA, a town of Spain, in Arragon, with a handsome castle. It is strongly situated among the mountains, having the river Cinca before it. Lat. 41.45 Ni Lon. 0. 28 E

FRAGA'RIA. Strawberry. In botany, a genus of the class icosandria, order polygynia. Calyx ten-cleft, inferior; petals five; seeds sniooth, imbedded in an ovate berry-like fleshy receptacle. Seven species-two of America, one soniewhat shrubby; the rest natives of Europe ; two of which, E. vesca, common strawberry, and E. sterilis, barren of fruit, are common to our own country.
The common strawberry is the only species cultivated for use; and its varieties are very numerous. The following are the chief :
${ }_{a}$ F. sylvestris, woodystrawberry.
6 F. virginiana. Virginian scarlet.
${ }_{\gamma}$ F. moschatta. Hautboy, or musky strawberry.
\& F. Chiloensis. Chili, or Carolina.
F. alpina. Alpine, or monthly.

The mode of cultivation in respect to all the species and varieties docs not differ essentially. They may be transplanted in September or February: the former is the best month; for if the spring be dry, the February transplantation will require great attention and much watering. The proper soil is a light loam, and not peculiarly rich. The ground must be well dug and cleared of all noxious weeds; and when levelled it should be marked out into beds about three feet and a half wide, leaving a pathway between each bed two feet broad. In each of these beds should be planted four rows of plants, so that they may stand about a foot distant from each other in the rows, and at about eight inches plant from plant in each. This is the proper distance for the wood strawberry, which is of the least growth of anys but the scarlet strawberry must be planted at a foot distance every way, and the hautboy sixteen inches: and finally. the large Chili strawberry, which is the largest grower of all, must be set at twenty-two

FRA

inches distant plant from plant. In the spring. when the strawberries begin to flower, if the season be dry, they must be very plentifully watered, and kept cleared from weeds. At Michaelmas the beds should be dressed, the weeds all very carefully taken up, all the strings or runners taken from the roots, and the weak plants, which stand too close, be pullellup; a little fine earth, at the same time, should be thrown near the plants, which will gresuly strengthen their roots. These beds, however, will not continue good above three years; and the bers of the first year bearing but few fruit, it is necessary to new plant some fresh ground every third year, and destroy the old beds; but the new ques must be first of one year's growth. Different palates prefer different sorts of strawberries, but the whitefruited one is, of all others, the best flavoured; though it is but a very bad bearer. The great Chili strawberry is cultivated in the field in that country; it is a much stronger and larger plant than any of our indigenous kinds; and its fruit is as large as a walnut, but not: so well usted as our own strawberries. They grow best in a loamy soil, under the shade of trees.

FRA'GILE. a. (fragile, French; fragilis, Latin.) 1. Britte; easily snapped or broken (Denham). 2. Weak; uncertain; easily destroved (Millon).

FRAGI'II'YY. s. (from fragile.) 1. Brittleness; easiness to be broken (Becon). 2. Weakness; uncertainty (Knolles). 3. Frailty; liableness to fault (Wotton).
FRA'GMENT. s. (fragmentum, Latin.) A part broken from the whole; an imperfect piece (Newton).

FRA'GMENTARY. a. (from fragment.) Composed of fragments: not used (Dunne).

FRA'GOR. s. (latin.) A noise; a creak; a crash: not used (Sandys).

FRa'GRANCE. Fra'grancy s. (fragrantio, Latin.) Sweetness of smell; pleasing scent ; grateful odour (Garth).

FRA'GRAN'T. a. (frugrans, Latin.) Odorcos; sweet of stmell (Prior).

FRA'GRANTLY. ad. With sweet scent.
FRAIL. s. 1. A basket made of rushes. 2. A rush for weaving baskets.

Feail. a. (fragilis, Latin.) 1. Weak; easily decaying; sulject to casualties; easily destroyed (Rogers.) 2. Weak of resolution; hable to errour or seduction (Taylor).

FRAI'LNESS. s. Weakness; instability (Nor.)

FRAI'LTY. s. (from frail.) 1. Weakness of resolution; instability of mind; infirmity (Milton.) 2. Fault proceeding from weakness; sins of infirmity (Dryden).

FRAI'S(HELR. s. (French.) Freshness; coniness (Dryden).
FRAISE. s. (French.) A pancake with hacn, in it.
Fratsi, in fortification, a kind of defence, enssisting of pointed stakes, six or seven feet long. driven parallel to the horizon into the nerenchments of a camp, a half-inoon, or the like, to prevent any approach or scalade.

FRA

Fraises differ from palisades chiefy in this, that the latter stand perpendicular to the horizon, or nearly so, being usually made a litule slnping, or with the points hanging down. Fraises are chiefly used in retrenchuments and other works thrown up of earth; sometimes they are found under the parapet of a rampart, serving instead of the cordon of stone used in stone-works.

FRAMBCESIA, (frambasia, from framboise, French for a raspberry.) The yaws. A genus of disease arranged by Cullen in the class cachexiæ, and order impetigines. It is somewhat similar in its nature to the lues venerea, and is endemial to the Antilla istands. It appears with excrescences, like mulberries, growing out of the skin in various parts of the body, which discharge an ichorous fluid.

Some of our best and most approved writers upon this subject, however, assign it to the family of fevers, with the general syinptoms of which they affirm it is always accompanied; that like the small pox, it has an accession, height and decline, may be propagated by inoculation, and is never known to occur a second time.

To FRAME. v. a. 1. To form or fabricate by orderly construction (Spenser). 2. To fit one to another ($A(b, b t$). 3. To make ; to compose (Shahspeare). 4. To regulaté; to adjust (Tillotson). 5. To form any rule or nethod by study or precept (Shakspeare). 6. To furm and digest by thought (Granville). 7. To contrive; to plan (Clarendon). 8. To setile; to scheme out (Shakspeare). 9. To invent; to fabricate (Bacon).

Frame. s. (from the verb.) 1. A fabric; any thing constructed of various parts or members (Tillotson). 2. Any thing made so as to enclose or admit something else (Nerton). 3. Order; regularitr; adjusted series or disiposition ($S_{w i f t}$). 4. Scheme; order (Clarendon). 5. Contrivance; projection (Sihahispeare). 6. Mechanical construction. 7. Sinape; form; proportion (Hudilrus).

Frame, among painters, a kind of square, $^{\text {ren }}$ consisting of four long slips of wood joined together, whose intermediate space is divided by threads into several little squares like a net; and hence sonetimes called reticula. It serves to reduce figures from great to small; or, on the contrary, to augment their size from small to great.

FRA'MER. s. (from frame; ;femman, S.) Maker; former; contriver; schemer (Arl).

FRAMING OF A HOUSE, all the tim-ber-work therein, viz. the carcase, flooring, partitioning, roofing, cieling, beams, \&c.

FRAMLINGHAM, a large town of Suffolk, with a market on Saturdny. It is seated near the head of a small rivulet, and has the remains of a caste, said to have been built in the time of the Saxon heptarchy. To this castle the princess Mary, afterward Mary I. retired, when lady Jane Grev was proclaimed queen; and here she found that powerful support of the people of Suffolk, which so soon

FRANCE.

seated her on the throne. Here is also a stately church, in which are the monuments of some noble familites. It is 30 miles E of Bury, and 8; N. E. of Londun. Lon. 1. 26 E. Lat $5 \% .25 \mathrm{~N}$.

FRAN(E, a country of Eu:ope, bounded on the N. by the English Cinannel, and the Austrian Netherlands; on the E. te Germany, and the Alp., which separated it from Switzerland, Savoy, and Pledmont; on the S. by the Mediterrancan sea and Spain, from which kingdom it is divided by the Pyrenees; and the W. by the Athantic ocean; extending from 5. 5 W . to 7.47 E. lon. and from 42.30 to 51 N. lat. From the Pyrences in the S. to Dunkirk in the \mathbf{N}. its extent is 625 miles, and something more from the most easterly part of Alsace to the most western part of Brittany; which province, it must be observed, extends above 110 miles farther into the ocean than any other part of the country. The climate is temperate ; the air pure and wholesome; and the snil, which is agreeably diversified, produces all the necessaries of life, aud, anong its luxuries, some of the most excellent wines. The principal rivers are the Seine, Loire, Rhone, and Gironde, with many others, that gire name to the new geographical division of this country into departments. The most considerable mountains, besides the Alps and Pyrenees, are those of the Cevennes and Auvergne. . France was lately an absolute monarchy, and was divided into several military governments, or provinces. These were Alsace, Angoumois, Arijou, Armagnac, Artois, Aunis, Auvergne, Barrnis, Basques, Bearn, Berry, Bigorre, Blasois, Boulonnois, Bourbonnois, Bresse, Brittany, Burgundy, Cambresis, Champagne, Couseraus. Dauphing, Forez, Foix, Franche Comté, French Flanders, Gascony, Gevaudan, Guienne, French Hainault, Isle of France, Languedoc, Limosin, Lorrain, Lyonois, Marche, Maine, Marsan, Navarre, Nivernois, Normandy, Orleanois, Perche, Yerigord, Picardy, Poitou, Provence, Querci, Rouergue, Rousillon, Saintonge, Soissonnois, Touraine, Velay, and Vermandois. These varied much from each other in point of extent and importance, and there were others of still inferior consideration. The population of the \boldsymbol{w}.c. le is estimated by the French at $25,000,000$. The established religion was the Roman Catholic; and the ecclesiastical division of the country was into 18 archbishoprics, and 113 episcopal sees, exclusive of Avignon, Carpentras, Caivaillon, and Vaison, which belonged to the pope.

The kingly government of France had continued from Clovis, who established himself at Soissons, in the year 480 . Others call Pharamoud the first king of France, who began to reign in the year +20. Hugh Capet obtained the crown of France in the year 987, and in the vear 1793, on the 21st of January, Louis XVI. one of his descendants, was executed on a public scaffold at Paris, and with him ended the monarchy of France. All Europe exclaimed agaiust the injustice and
cruelty, not to say the impolicy, of this proceeding. The king's son, a minor, rervained in prison to his death, which haypened in the month of June, 1795. Thus France, aftes continuing a monarchy upwards of twelse hundred years, was by the national assembly declared a republic: with the fall of monarchy, or indeed before, all titles of nobility were abolished; and all ecclesiastical domains, such as abbies, monasteries, convents, \&c. were decreed national property; all tithes were abolished; the revenues of the higher orders of the clergy reduced, and the number lessened; annuities were granted to the professed; and to the parochial clergy a provision was granted, moderate, but perhaps superior to what they had before received as vicars. The ancient division into provinces was also, by a solemn decree of the nation, changed into that of 83 departments; these were subdivided into districts, cantons, and municipalities. The names of the departments are Ain, Aisne. Allier, Alps Upper, Alps Lower, Ardeche, Ardennes, Arriege, Aube, Ande, Areiron, Calvados, Cantal, Charente, Charente Lower, Cher, Correze, Corsica, Côte d'Ur, Cotes du Nord, Creuse, Dordogne, Doubs, Drome, Eure, Eure and Loire, Finisterre, Gard, Garonne Upper, Gers, Gironde, Herault, Indre, Indre and Loire, Isere, Isle and Vilaine, Jura, Landes, Loir and Cher, Loire Upper, Loire Lower, Loiret, Lot, Lot and Garoune, Lozere, Maine, Maine and Loire, Manche, Marne, Marne Upper, Meurthe, Meuse, Morbihan, Moselle Nord, Nievre, Oise, Orve. Paris, Pas de Calais, Puy de Dome, Pyrenee Upper, Pyrenees Lower, Pyrenees Eastern, Rhine Upper, Rhine Lower; Rhone, Bouchea du; Rhone and Loire, Saone Upper, Saone and Loire, Sarte, Seine and Oise, Seine L.ower, Seine and Marne; Sevres, les deux; Somme, Tarn, Var, Vendee, Vienne Upper, Vosges, and Youne. Each of these departarents has an archiepiscopal or episcopal town. In the year 1793, the old calendar, with the observance of Sunclays and holidays, was abolished, and a new calendar formed. (See CalenDAR). It may be remarked, however, that in 1802, under the government of Bonaparte, the observance of Sundays and some holidays was again established; and some alterations were made in the state of the clergy. But as there is no great appearance of permanence in the religious system now adopted by the French, we shall not enter into a detail of their present laws and observances. Suffice it to say, that in 1804 Bonaparte was mace Emperor of France; that since that period ho has restored titles of dignity and honour with which to reward his generals and great men, he has subjugatel greater part of the continent of Europe, and placed his brothers and other relatives upon thrones; and that thus, after a long train of successes, with very litile that can have been called a reverse of fortune, ho has placed himself at the head of the European continent, where he enthrones and dethrones kings, makes and unmakes popes, at his plea-
sure, and has brought the people of France under a more complete despotism than they were previous to the revolution of 1789 . Depradt, in his work on the State of the Cultivation of France, states that one half of the French terriury is arable ; or that, out of $131,000,000$ of acres, $60,000,000$ are cultivated with grain : but then it is to be remarked that more than one half of the grain is rye, or corn even inferior to rye. That which may be pronounced good land does not exceed $28,000,000$ of acres. The same writer informs us that "t the territory of France is perhaps the best in Europe, the richest in puint of soil, the most varied in respect of productions, and equally monoved from the extremes of heat and cold. There is not in all Europe a tract of land of eyul size, which can bear a comparison with that which extends from Calais to the Loire, from the heights of Nantes, Orleans, and Nanci, to Mayence. The part most desirable to inhabit is that which is included between the Lo:re, the Rhone, the Rhine, and the sea. Is onrthern districts are not so cold as Sweden, nor so humid as Holland; and its southern prorinces are not burnt up like those of Spain and Iuly. In short, France has been treated br nature as if she were her eldest daughter." The reader will make some allowance for the eargerations of this author, who seems warmIy atiached to his native soil. It must also be recollected that the French are very defective both in agricultural science and practice: With chese allowances Depradt's account may assist in forming an estimate of the soil and clinate of France. Here are mines of iron, lad, and copper ; there are likewise some of silier and gold, but the last are not rich eriogagh to defray the expences of working. The chief productions of France, for exportaloo, are wines, as Champagne, Burgundy, ciaret. \&e. brandy, vinegar, fruit, such as prunes and prunellises, dried grapes, pears, apiles, oranges, and olives; corn, salt, hemp, tist, silk, resin, oil, soap, cork, kid-skins, perlunur, drups, \&c. The manufactures are sils, such as lustrings, modes, brucades, velles, dec. woollen cloth, linen coarse and fine, lsce, paper, china, of exquisite beally and titernes, soap, \&e. The French have for wome vears past obtained the secret from Spain of foaking Castile soap, as it is called, and have very large manufactures both at Marseilles and Toulon, and have thereby deprived the Spaniards of that valuable branch of trade. Nus is this the only benefit the French receive by bis manufacture; for as one of the chief ingredients of making this soap is Levantive dive oil, their large sale for their soap gives them the adrantage of constant back-freights from the Levant with these oils; which, it mens, has proved one means of the Prench adrancing their Turkey trade upon the ruin of the Engliah. The aris and sciences have always been encournged in Prance; and if there an be any plessare derived from the conteniplation of the melencholy picture which the history of the late 20 years of this uphappy
VOL. V.

FRA

country presents, it'must flow from the consideration that during all this cheerless period the arts and sciences have never been entirely neglected, or forgotten; but that, on the contrary, they have been cultivated with an ardour and success no where exceeded, nor any where equalled except in Britain.
Frayce (1sle of), a late province of France; so called, because it was formerly bounded by the rivers Seine, Marne, Oise, Aisne, and Ourque: It now includes the four departments of Oise, Seine and Oise, Seine and Marne, and Paris.

France (Isle of), or Mauritius, an island in the Indian ocean, 200 leagues \mathbf{E}. of Madagascar. It was early disenvered by the Portuguese. After them, the Dutch setled on the S. E. shore, and gave it the name of Mauritius, in honour of prince Maurice, their stadtholder; but they abandoned it, on their acquisition of the Cape of Good Hope. It then remained uninhabited, till the French landed there in 1720. This island is about 45 leagues in circumference. Indigo is the general ohject of cultivation; of which four or five crops a-year are produced. In 1789 one person only sent to Europe $30,000 \mathrm{lb}$. weight of it, of a very superior quality. Attenipts have been made to rear cochineal, as the island abounds with the plant on which the insects lie; but a small bird destroys the insect. The soil of this island is little superior to that at Port Jackson. The town and harbour are called Port Louis. The number of inhabitants on the island, exclusive of the military, is about 8,000 whites; and 12,000 blacks. Lat. 20.0 S. Lnn. 57. 28 E.

FRANCFORT ON THE MAINE, an

 ancient and free imperial city of Germany, in the circle of Franconia. This is one of the most commercial places in Europe, and has two great fairs every year. The chief structure is the town-house, in which is preserved the golden bull, the origin of the fundamental laws of the empire, and here is the chamber in which the emperor is elected. All religions are tolerated here, under certain restrictions; but Lutheranism is the established faith. The principal church is in the possession of the Roman catholics. The Jews are compelled to live together in a long narrow street, separated from the other citizens by a high wall, and at a certain hour of the night both ends of this street are shut up. Lat. 49.55 N . Lon. 8. 40 E :Francport on the Oder, a town of Germany, in the circle of Upper Saxony, and Middle Mark of Brandenburg, with an university, founded in the year 1506, by the elector Joachim, and his brother Albert; composed of Calvinist professors. It has besides a noble academy, a society for the promoting of arts and sciences, two colleges, two fauxbourgg, and several churches. Lat. 58.23 N . Lon. 14.39 E.

FRANCHE COMTE, a province of France, before the revolution, and anciently e part of the kingriom of Burgundy. It is now divided into the three departments of Mount Jasa, the Doubs, and UPper Saône.

FRA

FRANCHISE, in law. Franchise and liberty some use as synonymous terus; and their definition is, "a royal privilege, or branch of the king's prerorative, sulnisting in the hands of a subject." Being therefore derived from the crown, they mast arise from the king's grant; or, in some cascs, may be held by prescription, which, as thas been frequently said, presupposes a grant. The kinds of them are various, and almost infinite. We shall here briefly touch upon some of the principal; premising only, that they auay be wested in cither natural persons or bodiespolitic; in one man, or in many: but the came identical franchise, that has before been granted to one, cannot be beatowed on another; for that would prejudice the former grant. To be a county-palatine, is a franohise vested in a rumber of permons. It is likewise a franchise for a number of persons to be intorporated and aubsiat as a body-politic; with a power to maintain perpetwal succession, and do other corporate acts: and each individual member of suoh corporation is also said to have a franchise or freedom. Other franchises are, to hold a court-leet: to have a manor or lordship; or, at least, to have a lordship paramount: to have waifs, wrecks, estrays, treasure-trove, royal fish, forfeitures, end deodands: to have a court of one's own, or liberty of holding pleas and trying causes: to have the cognizance of pleas; which is a still greater liberty, boing an exclosive right, so that me other coutt shatl try causes ariaing within that jurisdiction : to have a bailiwick, or liberty exernpt from the sheriff of the county; wherein the grantet only, and his officers, are to execute all process: to have efair or market; with the right of taking toll, either there or at any other public places, as as bridget, wharfs, or the like; which tolls must hove a reasonable cause of conmmencement (as in consideration of repairs, or the like, else the franchise is illegal and void: or lasuly, to have a forest, chase, park, warren, or fishery, endowed with privileges of rogalty, See Chase, Forest, \&c.
Fanncmier is also used for an asylum or zanctuary, where people are secure of their persons, \&se. Churches and monasteries in Spain are franchisea for criminals; oo were they anciently in England, till they were abnsed to such a degree that there was a necessity for aboliohing the custom. One of the moot remarkable capitulars made by Charlemagne in his palace of Heristal, in 779, was that relating to the franchises of churches. The right of franchise was held so sacred, that prea the leen religious tinggs observed in to a degter of ecrupulounness; but to such excess in time was it casried, that Chaslemagne resolved wo reduce is. Aopordingly he forbad ang provioion beipg carried to criminals retired into churches for refuge.

To Prascmise. s.a. (from the nown). To enfranchise, to make free.

FRANSCIA (Erancesco), a celebratted Bolognese paisters born in 1450 . He was firt a goldsmith or jewellor, aferwaude a graver of
coins and melask; but applying at last to paluting, obtained great repulation by hiv works, particularly by a piece of Sir. Sebastian, whum he had drawn hound to a tree with his hands tied over his head. He pined himself into a consumption, ly despairing to equast Raphael, and died in 1518.
FRANCIS (Philip), an ingenious divine. His futher was a dean of the Irish ehurch. The sabjeet of the present notice was rector of Barrow in Suffolk, and chaplain to Chelses hospital. He translated Horaee and Demosthenes into English, aad wrote two tragedies, Eugenia and Constantia. He died at Bath in 1773. His son was one of the soppreme council at Bengal.

Franciscan monks, Frians' Mrnor, or Grey Friams, religious of the order of St. Francis, fouuded by him in the year 1809.

The rule of the Prtanciseans, as established by St. Francis hiinself, io briefly this: they are to live in common, to observe chastity, and in pay obedierice to the pope and their superiors. Before they can be admitted into the order they are obliged to seh all they have, and give it to the poor: they are to perform a year's noviciacte, and when admitied, nerer to quit the order on any account. They are to fast from the feast of AH Saints to the Nativity. This order has produced four popes, forty-two cardinale, and an infinite number of pantiarchs. The Fran: ciscans had sixty-three monasteries in England, one of whioh was in the parish of St. Nicholas in London. It is smid whis order possessed (before the French revolation) 40,000 monasteries, hermitages, of chapeles, in the different quarters of the globe.

PRANCK (Augustus Herman), a pious German divine, born at Lubeek in 1663. He was invited by the elector of Brandenburg into his dominions, and nade at first prafessor of the Orientad languages at Halle, and afterwards of divinity. Here he baid the foundation of an orphan-house, which in 1727 had 2196 childrexer and more than 130 preceptors. He also projected and carried into effect a mission for propagating the goapel in Malabar. This greal and good man died in 17:27. His works are; 1. Sermons and Books of Derotion. \&. Methodus atudii Theologici. 3. Ineroductio ad lectiourem Prophetarona. 4. Commematio de scopo libroram veteris \& novi Téstamenti. 5. Manuductio ad lectionem Scriptorese sacre. 6. Observationes Biblicz. Sonre of his practical bonks have been translated into English.

FRANCKLIN (Thomas), wes born in 1780, and was the son of Richied Francklin, the printer of an anti-ministerial paper called The Craftsman. He was edricated at Westminster school; from whemee be wemt to the university of Cambridge, where he becane fellow of Triaity-college, and was some time Greek professor. In Dee. 1758 be was instituted vicar of Ware and Thumsindge; which, wich she feotwreship of St. Paud, Covent-Garden, and a chapel in Queen-street, were all the peefermentu he held till be obviaced the

FRA

rectory of Brasted in Kent. This gentreman was possessed of to inconsiderable share of learning and poetical abilities, and was long a favourite in the literary world. His translations of Phalaris, Sophocles, and Lucian, equally evince his learning and his genius, as they are not more distinguished for fidelity in the version, than congeniality with the spirit of the admirable originals. Dr: Francklin, like Mr. Foote, suffered a translation from the French to be printed in his name; but the Orestes and Electra are supposed to be all that were really by him. It was a translation of Vottaire's works, to which also Dr. Smollet's name appears. His own dramatic compositions, of which the principal are the tragedies of the Earl of Warwick and Matilda, are universally known, and deservedly esteemed by the public; so that his death, which happened March 15, 1784, may be considered as a real loss to the repnblic of letters.

FRANCOIS (the abbe Laurent), a zealous antagonist of the French philosophers, born in 1698, and died in 1789, His works are ; 1. A Treatise of Geography. 2. Proofs of the Retigion of Jesus Christ, 4 vols. 3. Defence of Religion, 4 vols. 4. Examination of the Catechism of an honest Man. 6. Examination of the Facts on which Christianity is founded, 3 vols. 12 mo . 6. Observations on the Philosuphy of History.

Francois (Cape), a town in the N. part of the island of St. Domingo. Lat. 19. 46 N . Long. 72. 18 W .

FRANCONIA, a circle of Germany; boonded on the north by Meissen and Thuringia, on the east by Bohemia and the Upper Palainate, on the south by Bavaria and Suabia, and on the west by the Lower Palatinate and the efectorate of Mentz. It is situate near the centre of Germany, the form inclined to a circte, whose diameter is about fifty leagues. In the centre the land is fertile in corn, wine, fruit, sic: ; but the frontiers are full of forests and mountairis, and little cultivated. The principal river is the Maine. The inhabitants of many towns are Roman Catholics, though the principal part are Lutherans. The Calvinists bave some churches, and the Jews some synagogues. At the division of 300,000 florins to the ehest of the empire, this circle was rated at 22,098 Bprins, 47 kraitzers.

FRANEKER, a town of the United Provinces, in Friesland, with a castle, and a noted miversity. The public baildings are magnificent, and the town well watered by two camah. Lat. 53. 11 N. Lon. 5. 33 E .

FRA'NGIBLE e. (frango, Latin.) Fragile ; britrie; casily broken (Boyle).
FRANGULA. (frangula, from frango, to berk, wo callert because of the brittieness of its brooches.) Btack alder. This officinal tree is the thamnus frangula; inermis floribus mooogynis hermaphroditis, folis integerrimis of Linnés. The berries and bark are used medicinalty as arong pargatives. The former are often anibutitueal for those of the buckthorn; devemttex, which is the inwrnal back, and of

FRA

2 yellow colour, is mostly employed by the common people in dropsical and other disorders. See Rhamnus.
FRANK. s. (from the adjective.) 1. A place to feed hogs in ; a sty (Shakspeare). 2. A letter which pays no postage ($\boldsymbol{P o p e \text {). }}$

To Fxank.v. a. (from the noun.) 1. To shut up in a frank or sty (Shakspeare). 2. To feed high; to fat; to cram (Ainsworth). 3. To exempt letters from postage (Suc ift).

Frank, or franc, meaning literally free from charges and impositions, or exempt from public taxes, has various significations in the ancient English customs.

Frank almoign, signifies a tenare by spiritual service, where lands or tenements were held by an ecclesiastical corporation, sole or aggregate, to them and their successors, of some lord and his heirs, in free and perpetual alms.
Franx yeg, signifies the same thing as holding lands and tenements in fee simple; that is, to any perion and his heirs, and not by such service as is required by ancient demesne, but is pleaded at common law.

Frank PERM, anciently signified lands charged in the nature of the fee by feofment, \&cc. out of the knight's service for other certain yearly services.

Frank fold, is where the lond has the liberty of folding his tenants' sheep within his manor.

Frani language, or lingua franca, a kind of jargon spoken on the Mediterranean, and particularly throughout the coasts and parts of the Levant, composed of Italian, Spanish, French, vulgar Greek, and other lauguages.

Franklaw, a word applied to the free and common law of the laud, or the benefit a person has by it.

Franz marriage, is where a person, seised in fee of lands or tenements, has given them to another with his daughter, sister, or some woman otherwise of kin to him, in free marriage, by virtue of which the husband and wife have an estate in special tail, and shall hold the land of the donor, discharged of all services, except fealty, to the fifth degree.
Frank pledge, in our law, signifies a pledge or surety for the behaviour of freemen. According to the ancient custom of England, for the preservation of the public peace, every free-born man, at the age of 14, except religious persons, clerks, knights, and their eldest sons, was obliged to give security for his truth and behaviour towards the king and his subjects, or else be imprisoned. Accordingly, a certuin namber of neighbours became interchangeably bound for each other, to see each person of their pledge forthcoming at all times, or to answer for the offence of any one gone away ; so that whenever any person offended, it was presenty inquired in what pledge he was; and there the persons bound either produced the offender in 31 days, or mide satisfaction for his offenca:

FRA

Frank. a (franc, French.) 1. Liberal; generous; not niggardly (Sprat). 2. Open; ingenuous ; sincere; not reserved. 3. Without conditions; without payment. 4. Not restrained; licentious (Spenser).

Frank, also denotes an ancient coin current in France: the frank was either of gold or silver, the first being worth something more than the gold crown, the latter, a third of the former. In the French new money they have retained the term frank or franc. 'Their three denominations are 10 decimes $=1$ centime; 10 centimes $=1$ franc; 1 liure $=3$ deniers tonrnois, of the old French money, or nearly $10{ }_{5} 1$. English money.

FRANKED LETTERS. The privilere of letters coming free of postage to and from members of parlianent was claimed by the House of Commons in 1660, when the first legal settlement of the present post-ofice was male ; but afterwards dropped, upon a private assurance from the crown, that this privilege should be allowed the members. Accordingly a warrant was constantly issued to the post-master-general, directing the allowance thereof to the extent of two ounces in weight : till at length it was expresly confirmed by 4 Geo. III c. $2+$. which added many new regulations, rendered necessary by the great aboses in the practice of franking; whereby the annual amount of franked letters had increased from 2.3,6001. in the year 1715, to 170,7001 . in the ycar 1763. Other regulations afierwards took place; in particular, franks were required to he dated (the month written at length), and put into the office the same day; notwithstanding which, the revenue still lost by this privilege above 80,0001 per aunum. The following are the regulations of frauking required by 35 Geo. JII. and now in force.

No letter directed by or to any member of parliament shall be exempted from postage if it exceeds one ounce in weight. No letter directed by any member shall be exempted unless he shall actually be in the post-town, or within the limits of its delivery of letters, or within ewenty miles of such post-town, on the day or on the day before the day, on which the letter shall be put into the office. No member shall be entitled to send free from postage mose than ten letters in one day, nor to receive more than fifteen.

Whenever the number of letters sent or received by such member in one day shall exceed the number exempted, and the postage upon any of them shall difier, the letters clarzeable with a higher postage shall be included in the number exempted, in preference to any chargeable with a lower postage, and the remainder shall be chargeable with the postage $t 0$ which common letters are chargeable. Persons who may now in right of their offices send and receive letters free may continne so to do. Printed votes or proceedings in parliament, and printed newspapers, may also be sent as vanal.
No single letter sent by the post from any non-commissioned officer, seaman, or private,

FRA.
in the nary, army, militia, fencible regiments, artillery, or marines, shall be charged with more postage than one penny, but the same must be paid at the tume of putting the same into the post-office; and such letter must have written thereon, in the handwriting of and signed by the commanding officer, the name of such commanding officer, and of the ship, vessel, corps, regiment, or detachment. Also no single letter directed to any such uon-commissioned officer, seaman, or private, shall be charged with more postage than one penny, to be paid on the delivery thereoof; but such lt ter must be directed to such persoms, specifying the ship. vessel, regiment, troop, corps, conppany, or detachment to which they belong: and the postmaster must deliver suci letter either to the party to whom it shall be directed, or to sonse person appointed to receive the same by the commandmg otticer, and to no other.
livery cover containing /atterus or samples of goods, not excerding one ounct, shall be charged only as a single letter, if sent open at the sides, and without any letter or writing therewith, other than the thame of the persom sending the same, the place of his abode, and the prices of the articles.

FRANKENDAL, a town of Germany, in the palatinate of the Rhine. Lat. 49. 25 N . Lon. 8. 29 E.

FRANKENHAUSEN, a town of Upper Saxony, with some extensive sult-works. Lat. 50.42 N . Lon. 11.5 E .

FRANKENIA. Sea-heath. In botany, a genus of the class hexandria, order moungynia. Calyx five-cleft, funnel-form; petals five ; stigmas three ; capsule one-celled, three-valved. Four species, one a native of the Cape, one of Siberia, and two common to the satit marshes of our own country: they are not cultivated in our gardens.

FRANLFORT BLACK, is the chief itgredicm in the copper-plate printer's ink; it is made of the lees of wine, burnt, wathed in water, and μ round in mills, together with ivory, or the stones from peaches and other fruit. The best is that made at Fraukfort on the Maine, though a great deal is made at Mentz, 'Strasburgh, and diflerent parts of France.

FRANKINCENise. see Thus.
Frankincensetree. See Pinus.
Frankincense (Jews.) Set Styrax.
FRANKLAND'S ISLANDS, a cluster of islands in the N. E. coast of New Holland, iu the S. Pacific ocean. Lat. 17. 19 S. Lon. $146^{\circ} \mathrm{E}$.

FRANKLIN. s. (from frank.) A stev:ard, or bailift of land : not in use.

Frankin (Benjamin), a celebrated Ame rican philosopher and politician, was born at Boston in New England, in 1700. His father was a soap-boiler and tallow-chandler in that town, and intended him for the same business ; but conceiving a disgust to $i t$, he was bound apprentice to one of his brothers, who was a printer. He did not serve out his time, owing to some quarrels between him and his brother, but withdrew privately to New York in 17R3.

From thence he proceeded to Philadelphia in quest of employmient. Here he was hired by one Keymer ; and in 1724 he sailed for Eugland, encouraged so to do by Sir Wiiliam Keith, the govermor of Pemsylvania, who promised to send le:ters of recommendation, and to furnish him with money sufficient to buy a press and other materials for printing. In this, however, he was disappointed. He continurd in England abuut two year, working both as a pressman and compsitor, and then returned to Philadedphia, where for a short time he served a me:chant as brok-keeper, and on the death of his employer, he returned to his former business under Mr. Keyuler. It was not long, however, before he set up for himself, in partnership with a voung man of the name of Meredith. In $17 \dot{9} 9$ this partnership was dissolved, and Franklin thenceforward carried on the busines, by himself, with great adrantage. The gear following he married a lady, to whom he had paid his addresses before his departure for England. Owing to his having slighted her, she had married avother person, and on becoming a widow, Mr. Franklin renewed his addresses and married her. He now became ${ }^{2}$ public man; his abilities began to be generally known, and in consequence he was appointed successively to the offices of printer to the bouse of assembly, clerk to the general assembly of Philadelphia, and post-master, and at kength he was elected a member of the general essembly of Philadelphia. In 1757 he came to England as agent for the province of Pennsylrania, and while here was honourably entertaned by the most eminent persons in the philosophical world, on account of the improvements which electricity had received from him. He remained in England five years, and returned to America in 1762, where he received public thanks for his faithful services. In 1764 he lost his seat in the askembly of Philadelphia, and the same year returned to England. In 1706 he was examined at the bar of the House of Coinmons, relative to the state of America. Franklin remained in Europe till 1775, and theo retarned to his native land, having first endeavoured in vain to dissuade the ministry from their enercive measures. His fame stood as high in the political, as it had hitherto done in the seientific world. He became an active member of the new legislative assembly, and America is indebted for the formation of its constitution to this virtuous and enlightened philosupher. After this important service, he was sent as ambassadur to Prance, to negociate in alliance with that country, in which he was successoful. He also acted as one of the plenipotentiaries for his country in signing the treaty of peace with England, in 1783. He retarned agnin to America in 1785, and roceiv, od fmm bis grateful countrymen those honoura and distinctions which he had sojustly merited,

His memory was very tenacious to the last; and he seemed to be an exception to the general rule, that at a certain period of life, the organs which are subservient to memory be-
come callous; a remarkable instance of which is, that he learned to speak French after he had attainod the age of 70 . About 16 days before his death, he was seized with a feverish disorder; which, about the third or fourth, was attended with a pain in the left breast. This became at last very acute, and was accompanied with a cough and laborious breathing. Thus he continued for five days, when the painful symptoms ceased at once, and his family began to Hatter themselves with hopes of his recovery. But a new imposthume had now taiken place in the lungs; which suddenly breaking as the others had done, he was unable to expectorate the matter fully. Hence fatal svmptoms arose, and he expired on the 17 th of April, 1790. He left one son, governor William Franklin, a zealous Ioyalist, who afterwards resided in London ; and a danghter, married to Mr. Willam Bache, merchant in Philadelphia. This lady was his greatest favourite, and waited upon him during his last illness.
With regard to the character of Dr. Franklin, he was said to be sententious, but not fluent in society; rather inclined to listen than to talk; an informing rather than a pleasing companion ; very impatient, however, of interruption; so that he would frequently mention the custom of the Indians, who keep silence for some time before they answer a question which they have heard with attention. With regard to religion, he was a firm believer in the scriptures ; and his sentiments on death may be gathered from a letter written about 35 years ago, to Miss Hubbard, on the death of her father-in-law Mr. John Franklin. The doctor was author of many tracts on electricity, and other branches of natural philosophy, as well as on politics and miscellaneous subjects.

Franxlin, a county of Pennsylvania, 30 miles long, and 24 broad. Chaubersberg is the capital.

FRA'NKLY. ad. (from frank.) 1. Liberally; freely; kindlv; readily (Bacon). 2. Without constraint (C'larendon). 3. Without reserve (Clarendon).

FRA'NKNESS. s. (from frunk.) I. Plainness of speech; openness; ingenunusness (Clarendon), 2. Liberality; bointeousness. 3. Frecdon from reserve (Sidney).

Franks, Francs, Frankis, or FranQuis, a name which the Turks, Arabs, Greeks, \&c. give to all the people of the western parts of Europe. The appellation is conımonly supposed to have had its rise in Asia, at the time of the croisales; when the French made the most considerable figure among the croistes: from which time the Turks, Saracens, Groeks, Abyssinians, \&ic. used it as a common term for all the Christians of Europe; and called Eurnpe itself Frankis/an.

FR.ANTIC. a. (corrupted from phrenetic.) 1. Mad ; deprived of understanding by violent madness (Spenser). 9. Transported by violence of passion ; outrageous; turbulent (Ad.).

FRA'NTICLY. ad. Madly; distractedly; outrageously (Shakspearc).

FRA

FRA'NTICNEiS. s. (from frantic.) Madness; fury of passion; distraction.

FRASCA II, wtown of Italy, in the state of the Church and Campagna di Roma, the see of a bishop, who is a cardinal, and depends immediately on the pope; celebrated for the number of palaces and country seats of Italian princes and cardinals, in which are found most beautiful paintings and sculptures. Here are seren convents. It was the ancient Tusculum, destroyed by the Romans in the year 1191 : ten miles S. E. Rome. Lat. 41.46 N. Lon. 13. 56 E.

FRATE'RNAL. a. (fraternel, French. Brotherly ; pertaining to brothers; becoming brothers (Hammond).

FRATE'RNALLY. ad. In a brotherly manner.

FRATE'RNITY. s. (fralernite, French.) 1. The state or quality of a brother. 2. Body of men united ; corporation ; society ; assnciation ; brotherhood (L'Estrange). 3. Men of the same class or character (Soulh).

FRATRICELLI, in ecclesiastical history, an eathusiastic sect of Franciscans, which rose in Italy, and particularly in the marquisate of Ancona, about the year 1294. The word is an Italian diminutive, signifying fraterculi, or little brothers; and was here used as a term of derision, as they were most of them apostate monks, whom the Italians call fratelli, or fratricelli. For this reason the term fratricelli, as a nick-name, was given to many other sects, as the Catharists, the Waldenses, \&c. however different in their opinions and in their conduct. But this denomination applied to the austere part of the Franciscans was considered as honourable. See Franciscans.

Thie founders were P. Maurato, and P. de Fossombroni, who having obtained of pope Celegtin V. a permission to live in solitude, after the manner of hermits, and to observe the rule of St . Francis in all its rigour, several idle vagabond monks joined them, who, living after their own fancies, and making all perfection to consist in poverty, were soon condemned by pope Boniface VIII and his snccessor, and the inquisitors ordered to proceed against them as heretics: which commission they executed with their usual barbarity.
FRA'TRICIDE. s. (fratricide, French.) The murderer of a brother.
FRAUD. s. (fraus, Latin; fraude, Fr.) Deceit ; cheat ; trick ; artifice; subtily; stratagem (Dryden).
FRA'LDFUL. a. (fraud and full.) Treacherous; artful; trickish; subtle (Shakspeare).
FRA'UDFULLY. ad. Deceitfully; artfully; subtilly; by stratagem.
FRA'UDULENCE. Fráudulency. s. (fraudulentia, Latin.) Deceitfulness; trickishness ; proneness to artifice (Hooker).
FRAUJDUIENT. a. (fraudulentus, Lat.) 1. Full of artifice ; trickish; subtle; deceitful (Milton). 2. Performed by artifice ; deceitful ; treacherous (Millon).

FR A

FRA'UDULENTLY. ad. By fraud; by deceit; by artifice; deceitfully (Taylor).
FRAUGHT. part. pass. (from fraight, now written freight.) 1. Laden; charged (Shatspeure). 2. Filled; stored; thronged (Addison).
Fraught. s. A freight; a cargo (Dtyden).
to Fraught. e. a. To load; to crowd (Shakspeare).
FRA'UGHTAGE. s. Lading ; cargo (Shakspeare).

FRAXINELLA. (frarinella, from frarimus, the ash, so called because its leaver resemble those of the ash.) See Dictannus albus.

FRAXIMUS. Ash-tree. In botany, a genus of the class polygamia, order dicecia. Hermaphrodite, calyxless, or four-parted; corolless, or four-petalled; stamens two; pistil one: capsule superior, flat, two-celled, leafy aborr; seeds few, pendulous. Fem. pistil one; lanceolate. Fifteen species: chiefly natires of North America, or the south of Europe; one species ouly common to out own country. This is the lofty ash, F. excelsior of Linnéus, with leaflets slightly petioled, lance-oblong, serrate, tapering; flowers naked; capsules with 20 oblique emarginate tip. There is another voriety with pendulous branches.

This species in our own country is of rapid growth, and may be planted with great adrantage, the underwood, which may be successirely cut every eight or ten years, paying alone be common rent of the land it occupies, while the plants left for timber will be fit for felling successively in twenty-three years, and will proctuce nearly 1201 . sterling per acre. It grows best in society; it grows therefore rather thin when planted singly. The timber is hard and tough, and much used in agricultural tools. It does not commonly reach a large bore; get there are instances of its having atlained a circumference of fifty-eight feet in the trunk. It bears lopping and topping well; and in some parts of the country the lops and toys are given first of all to the cattle to eat off the bark, which supplies them with a nutritious food.
F. ornus is the beautiful flowering ash of our plantations. It is a native of the south of Eurppe; and as well as many other speciss of the fraximus produces the secretion called manna. F. rotundifolia, also a native of the south of Europe, yields the same kind of secretion: and so again does our own F. excelsior in wam climates. The seeds of this species, moreoret, are occasionally employed as a diuretic. See Manna.

FRAY. s. (effrayer, to fright, French.) I. A batule; a fight (Fairfax). 2. A doel; a combat (Denham). 3. A broil; a quarel (Shakspeare).
To FRAy. v. a. (effrayer, French.) 1. To fright ; to terrify. 2. (frayer, French.) To rub.

FRAZERSBURGH, a seaport of Aherdeenshire. It is seated close by a promontory

FIE

alled Einnaind's Hend, on whick is a fighthouse. Lat, 57.35 N , Lon. 1. 37 W.
frea, Fila, er ERigga, the wifo of Odia, was, next to hips, the most revered dirinity among the Heathen Saxons, Danes, and oher northern nations. AsOdian was believed to be the father, Frea was esteemed the mothet of all the other gads. In the masot ancient times, Frea was the same with the goddess Hertha, or Earth, who was so devoully worshipped by the Δ ngli and other German nations.
PREAK. 3. (fnaer, Saxon.) 1. A sudden and cauielomen change of phice. 2. A sudden fancy; a bucoour; a whim; a eapricious prank (Saift).
To Pazak. d. a. To variegate (Thomcon).
FRE'AKISH. a (from freak.) Capricious; hamounome (L E Estrange).
FRE'AKISHLY. ad. (from freatisk) Copicioosly; bumoursomely.
FRE'AKISHNESS. s. (from freakish.) Capricionoes; bumoqursomereso; whimsicat ness
To RREAM. थ n. (fremone, Latip.) To prowl or grunt as a boar (Bailay).
PREATS, or Penits, a teris uned in Seotland for ill upens, and sometiress demoting accidenu supernatmeally unlucky. King James VL. in his Damonologie, MS. pen. Edit. R. I. chap IV. p. 13. «But I pray you forget. Dot likeways to tell what are the devill's rudiments? E. His radipente I call first in generall all that gubith is calied valgairelie the wirtu of woede bebhe, and staine; qubill is used by ualasful charmis, without natural causis. As lyheways all kynd of prationues, freitis, an uther lyk extrardinair actions, quhilk canbot abyde the veew twiehe of naturall raison."
ERECKLE. s. (flech, a spot, German.) ${ }^{1}$ A past ried in the skin by, the gun (Drydan). 2 Ang surall spot of diccoloration (Exelyn).
FRECKLED. a. (from frechle.) Spamod; maccuand (Drayeon).
Perrose of a delicase complexion, and par ticolarly such as have naturally red hair, ase moun euthixes to freckles in the face and other Frath exponed to the air. For dhe gratification ax thore who consider the nemoral of such little blemishes an object worthy of their attention, we thall communicate the following remedies:
Accoeding to Homberge ove of the best applipations for dispersing Seckles, is a mixture of bollock's gall with a solntion of alum, which, afins the latier has subsided, must be digested in the sun for three on four months in a close phial-Anocher preparation is made by taking 4 oz. of lemon-juice, and roixing with it 2 drams of sugar, and one of borax, finely porvdered; and after thase ingredicats have stood a weck or fortaighs in a glam boule, the liquor will be fis for use.
FRE'CKLY. a. Full of freckbeen.
ERED. Thes same with peace So. Fredeick is powerfall or wealthy in peace (Gibsun).
PREDENBURG, a town of Westphalia, in Gempagy. Lat. 51.10 N Lop $\%$ ther

FRE

FREDERICA, a town of Georgia, in Nort America. Lat. 31. 6 N. Lon. 80. 80 W.

FREDERIC I. king of Pruseia. He was the son of Frederic-William tho Great, elector of Brandenburg, and was born in 1657. In 1700 he entered into a negociation with the court of Vienna for the erection of Prusgia into a kingdoms, which, it is said, was obtsined by an odd accident When the affair was in no very prounising train, the elector was advised by his minister, in a letter written in cyphor, to use the interest of a certain prince; but the sense of the letter being muistaken, he, instead of the prince, had recourse to the emporor's father confessor, who was a jesuit, and so much struck was he with the honour done him by a protestant elector, that by his own interest, and that of his ordor, he quickly accomplished the wished-for object. In 1701 he was crowned king of Pruscia, and was acknowledged as such by the emperor Leopold and all bis allies. He augmented his cominions by the county of Tecklenburgh, and the principality of Neufchatel and Valengin. Hedied in 1713. This prince was magnificent and generous. He founded the university of Halle, the Royal Society of Bertin, and the acaderay of the nobles. (Matkint).
Frederic-Williamint. bing of Prusia, born at Berlia in 1688, and commenced his reign in 1713. He finisbed the negociation of peace in which his futher was engaged at the time of his death. Noc long afterwards he was engaged with other prinoes agains Sweden, in which the coofederater bad the greateot suceeso. He concluded a separate peace with that power, through the mediatiou of the bing of Groal Britain, in 1719, in comeequance of which he obtainod a considerable accession of territery. From that time to his death he preserred an unioterrupted peace He died in 1740 . Frede ric married, in 1705, Sophia, danghter of the electer of Hanover, afterwards Geonge I. bing of England. (Watkins).
Frederic ILI. king of Prussia, the son of the preceding, was born in 1712. His father, who had vo taste for polite literature, observed, with disgust, his son's inclination thereto, and in cansequence treated him with severity. The priuse ill brooking this behaviour resolved to escape, and at the age of 18 formed a plan accordingly, which was discovered, and ho was thrown into prison; and his companion, a young officer, executed before his eyes. In 1733 he was married to the princess of Brungwic Wolfenbutte, and some sort of reconciliation took place between him and his father. In 1240 he ascended the throne, andisoon after began his ambicious carecr by dearanding $\mathrm{Si}-$ lesia fooms Maria Thesesa, queen of Kungary, whom he save to be in a dofenceless state. He chuined what he required by the treaty of Zunslaw ; but in 174 he deolared-war against Maria. Theresa, because sho would not ack nown lege the dection of the emposor Charles VII. In this war Rrederic experienoed great success, and torminatod it advantageously to himself, as the andiof 1946. Whea war broke out boo

FRE

Iween England and France, in 1755, each power formed a continental alliance, England with Prussia, and France with Austria. Frederic, without any provocation, at once marched into Saxony, upon which the States of the Empire declared war agaiust him as a disturber of the common peace. In 1757 he was surrounded on all sides by the most powerful enemies. Russia, the German empire, the house of Austria, Saxony, Sweden, and France. His enemies entered iato his dominions, and he experienced some signal defeats. But on the 5th of November, 1757, he obtained a great victory over the Austrians and French at Rosbach, and shortly after another over the Austrians near Breslaw, in consequence of which that city fell into his hands, with 15,000 prisoners. Thus he recovered all his losses, and his ally proving equally successful, an advantageous peace was concluded in 1763, in which the poossension of Silesia was contirmed to him by the emperor. In 1772 he confederated with Russia and Austria in seizing upon the territories of that devoted country Poland. The remainder of his reign was devoted to the arts of peace; and he paid the greatest attention to the laws, commerce, agriculture, and police, of his kingdom. He concluded a long, and it may be said a glorious reign, in 1786. Frederic was not only a warrior, but a writer. The works published in his life-time consist of four volumes in 8 vo. The ist volume contains his Anti-Machiavel; Military Instructions for the generals of his army; and his Correspondence with Foucquet. The 2d, his Memoirs of the House of Brandenburgh. The 3d, his Poems. And the last a Miscellaneous Collection of Pieces. His posthumous works were published at Berlin, in 15 vols. 8 vo . the most considerable piece in which is the History of his own Times. Frederic was a lively writer, and had evidently modelled his style and sentiments upon those of Voltaire. The following account of his manner of life may be acceptable to the reader: His dress was very plain, and always military ; his first employment when he arose, which was usually at five in the morning, was to read the memorials or petitions that were addressed to himm by his subjects, for he permitted the lowest to write to him; he then marked on the back of each with a pencil what answer his secretary was to return. About 11 o'clock he went into the garden, and reviewed his regiment of guards. At 18 he dined, being generally accompanied by some of his officers. After dinner he retired to his study for two or three hours. At seven he attended a concert, in which he pertorined on the flute. The concert was followed by a supper, to which he usually invited some literary persons, and the conversation was suited to the party. His discipline was rigid; hut as a monarch he was indulgent : and though a despotic prince his subjects were happy in his government. (Watkins).

Frederic (Colonel), the unfortunate son of the unfortunate Theodore king of Corsica. According to his own account, he was born in Spain, where his mother, who was of the noble

FRE

family of Lucan, in Ireland, waited upon the queen. He followed his father, as he says himself, to share his misfortunes, and administer to his necessities. His education was very liberal, and with the most ample qualificatinns he entered upon a military life. On his firt arrival in England, about 1754, he undertook to teach the Italian language, by which profession he subsisted for some years. Bya German lady, whom he married abroad, he had two children, a son and a daughter; the son felfiu North America, and the daughter is still living. After an absence of some munths on the continent, he returned with the breet rank of colonel from the late duke of Wuricmberg, also the cross of merit. He acted as the agent of that prince in England, and helped hin to dispose of a regiment of his subjects to the India company. In 1791 he went to Antwerp to negociate for a loan for the prince of Wales, and some other branclies of the royal family. The king, however, being dissatisfied with this measure, it cane to nothing, much to the disadvantage of the negociator. His fiuances growing still more and more decayed, he took the fatal resolution of destroying himself, which he executed with a pistol at the gate of Westminster abbey, in the eveniug of February 1 , 179\%. He was a man of general knowledge, and polite manners; nor were his lierary talents contemptible. He wrote, 1. Memoirs pour servir l'Histoire de Corse, 1768, 8vo. e. The Description of Corsica, with an Accouns of its Union to the Crown of Great Britain, \&c. 1798, 8.0.

FREDERICKSBURG, a castle and pabre belonging to the king of Denmark, in the i.se of Zealand. Lat. 55.22 N . Lon 12.25 E .

Frederickshall, or FredericksT A DT, a strong town of Aggerhuus, in Norway. Charles II. king of Sweden was killed here by a musket-ball in 1718. Lat. 59. 2 N . Lon. 10.45 E .

FREDERICKSTADT, a town of Sywh Jutland, in Denmark. Lat. 54. 30 N. Lon. 9. 53 E .

FREDERICSTOWN, a flourishing town of the United States, in Maryland, seated on the Potomac. Lat. 39. 20 N . Lon. 77. 30 W .

FREE. a. (rneah, Saxon.) 1. At liberty; not enslaved (Prior). 2. Uncompelled; unrestrained (South). 3. Not bound by fate: not necessitated (Milton). 4. Permitted; allowed (Shakspeare). 5. Licentious ; unrestrained (T'emple). 6. Open; ingenuous ($01-$ way). 7. Acquainted; conversing without reserve. 8. Liberal; not parsimonious (Pope). 9. Frank; not gained by importunity; not purchased (Bacon). 10. Clear from distress (Shakspeare). 11. Guiltess; innocent (Dryden). 12. Exempt (Denham). 13. Ivvested with franchises ; possessing any thing without vassalage ($D_{r y d e n}$). 14. Wiihout expence: as a frceschool.

To Free. v. a. 1. To be at liberty; to rescue from slavery; to manumit; to loose (Pope) 2. To rid from; to clear from any thing ill (Clarendon). 3. Tp clear from in-
pediments or obstructrous (Dryden). 4. To banish; to send a way: not used (Shakspeare). 5. To exempt (Romuns).

Free-bench, signifies that estate in copyhold which the wite, ising espoused a virgin, has afier the dectase of her husband for her dower, according to the custom of the manor: In regard to this free-bench, different manors have different custons: and in the manor of East and West Enbourne in the county of Berks, and in other parts of England, there is a custom, that when a copyhold tenant dies, the widow shall have her freebench in all the deceased husband's lands dum sole et cnsta fuerit, "whilst she lives single and chaste;" but if she is fnund to be guilty of incontinency, she shall forfeit her estate. Nevertheless, upon her coming into the court of the manor riding backwards on a black ram, with his tail in her hand, rehearsing a certain form of words, the steward is bound by custom so restore her to her free-bench. The words are,

Here 1 am,
Riding ou a black ram,
Like a whore as I am;
And for my crincum crancum
Have lost my bincum bancum,
And for my tail's gane
Have done this worldly shame:
Therefore, pray, Mr. Steward, let me have my land again.
Free, ofimperial cities, in Germany, are those not subject to any particular prince, but governed, like republics, by their own mayistrates.
FREEBOOTER. s. (free and booly.) A robber; a plunderer; a pillager (Clarendon).
FKEEBOOTING. s. Robbery; plunder (Spenser).
FRE'EBORN. a. Inheriting liberty (Dry. $^{\text {. }}$).
FREECHA'PEL. s. (free and chapel.) A chapel of the king's foundation, and by him exempled from the jurisdiction of the ordinary. The king may also license a suhject to found such chapel (Cowell).
Pree-chaper, is also a name given to cernin places of protestant worship, established of late years with a view to encourage among the poor a regular observation of the sabbath. ln London and Bath these establishments have been found to answer excellent purposes.
Mr. Bernard, of Bath, proposes that a society be formed for promoting the foundation and establishment of free chapels for the poor, and the increase and improvement of their religious habits, within the realm of England: that erery subscriber of fifty guineas in one sum, or of five guineas a-year, shall be a governor of the society ; and that in case of a donation of 100 guineas or more, the donor shall, for every 50 guineas beyond what would constitute his own subscription, have the power of naming one life-governor: the specific appropriation of the funds being for the establishment and support of free-chapels for the poor, in the metropolis, and in any of the populous towns of England; subject, as all other chapels and churches
of the established church must be, to episcopat control and goverument.

Whenever such a society shall be formed, and the directing power placed in unexceptionable hands, we may venture to hope that some addition to its funds may be afforded by goverument. It may also be expected, that, with a proper and economical application of those funds, every thousand pounds intrusted to the direction of it may afford the means of forming and establishing a new free-chapel for the poor, either in London, or in Manchester, Bristol, Norwich, or in some other of our most populous towns. What the effects may eventually and ultimately be, and what strength and stability it may give to the civil and ecclesiastical establishment of the country, and what renovation of vigour and force to the moral and religious habits of the poor, we leave to the reflection and appreciation of the reader. Our earnest wishes are in unison with those of this benevolent gentleman.

FRE'ECOST. a. Without expence ; free from charges (South).

FRE'EDMAN. s. A slave manumitted (Dryden).

FRE'EDOM. s. (from free.) 1. Liberty; exemption from servitude; independence ($D_{r y}$ den). 2. Privilege; franchises; immunitics (Shakspeure). 3. Power of enjoving franchises (Swift). 4. Exemption from fate, necessity, or predetermination (South). 5. Unrestraint (Maccabees). 6. The state of being without any particular inconvenience (Law). 7. Ease or facility in doing any thing.

Freedom of a corporation, the right of enjoying all the privileges and immunities belonging to it. (See Corporation.) The freedom of cities, and other corporations, is regularly obtained by serving an apprenticeship; but it is also purchased with noney, and sometinues conferred by way of compliment.

Freedom of conscience. See Toleration.

Freedom of the will, that power or faculty of the mind, whereby it is capable of acting or not acting, choosing or rejecting whatever it judges proper. Of this every man must be sensible, who finds in himself a power to begin or forbear, continue or end several actions, barely by a thought or preference of the mind.

FREEFO'OTED. a. (free and fool.) Not restrained in the march (Shakspeare).

FREEHE'ARTED. a. (free and heart.) Liberal; unrestrained (Davies).

FREEHOLD, frank tenement, liberum tenementum, is land or tenement which a man holds in fee-simple, fee-tail, or for term of life. (See Fee and Tail.) Frechold is of two kinds, in deed and in law. The first is the real possession of land or tenement in fee, fee-tail, or for life : the other is the right 2 man has to such land or tenement before his entry or seizure. A freehold, by the common law, cannot commence in futuro; but it must take effect presently, either in possession, reversion, or remainder. Whatever is part of the
freehold gaes to the heir; and things fixed thereto may not be taken in distress for rent, or in execution, \&c. No man shall be disseised of his freehold by stat. Magna Charta, cap. 29. but by judgment of his peers, or according to the laws of the land: nor shall any distrain freeholders to answer for their freehold, in any thing concerning the same, without the king's writ. Freehold estates, of certain value, are required by statutes to qualify jurors, electors of the knights of the shire in parliament, \&ec.

Freehold is likewise extended to such offices as a man holds in fee, or for life.

Freehold is also sometimes taken in opposition to villenage. Lambarl observes, that laud, in the Saxon times, was distinguished into bockland, i. e. holden by book or writing; and folkland, held without writing. The former, he says, was held on far better conditions, and by the better sort of tenants, as noblemen and gentlemen; being such as we now call freehold: the latter was mostly in the possession of peasants; being the same with what we now call at the will of the lord. In the ancient laws of Scotland, freeholders are called milites, knights. In Reg. Judicial' it is expressed, that he who holds land upon an execution of a statute merchant, unil be hath satistied the debt, tenet ut liberum tenementum? sibi et assignatis suis; and the same of a tpnant per elugit : the meaning of which seems to be, not that such tenants are freeholders, but as freeholders for the time, till they have receivel profits to the value of their debt.

FREEHO LDER. s. (from freehold.) One whn his a freehold (Davifs).

FRE'ELY. ad. (from free.) 1. At liberty; without vassalage; without slavery; without dependance. 2. Without restraint; heavily (Shakspeare). 3. Plentifully; lavishly (Nhakspeare). 4. Without scruple; without reserve (Pope). 5. Without impediment (Ascham). 6. Withnut necessity; without predetermination (Rugers). 7. Frankly; liberally (South). \&. Spontanenusly ; of its own accord.

FRE'EMAN: s. (free and man.) 1. One not a slave; not a vassal (Locke). 2. One partaking of rights, privileges, or imnuunities (Dryden).

FREEMASON. See Masoy, and Masonry.

FREFM1'NDER. a. (free and mind.) Unperplexed; without load of care (Bacon).

FRE'ENESS. s. (from free.) 1. The state or quality of being free. 2. Opennesss ; unreservedness; ingenuousness ; candour (Dryd.). 3. Generosity; liberality (Sprat).

FREESCHOOL. s. (free aind school.) A school in which learning is given without pay (Davies).

FREESPO'KEN. a. (free and spoken.), Accustomed to speak without reserve (Bacon).

FREFSTONE, a whitish stone, dug up in many parts of Britain, that works like alabaster, but is more hard and durable; being of excellent use in building, \&c. It is a species of the grit stone, but finer sanded and smoother; and is called free, from its being of such a con-

FR

atitution as to allow of being cut freely in any direction.
The qualities of the several kiuds of freer. stones used in the different parts of Europe are very different. They all agree in this general property indeed, that they are softer when in the quarry, than when they have been some time exposed to the air; but even this general property differs greatly in degree. They bave a sort of grey freestone in use at Paris (of which we do not yet ceem to have met with any in this country), which has the abovementioned quality in so great a degree, that the expenge of working it is in a great measure saved.
This stone lies every where on the puth side of the river Seine, and is of a coarse and large grit. It is so soft when newly taken out of the strata, that they fashion it rery conveniently with a sort of broad axe, and form as many stones for building in this, manner in an hour, as an equal number of our people do in a day or two. Though this stone. is as soft as, dry elay when first taken up, it is found to harden so consideratly in the air, that it becomes more than equal to our ordinary freestone.
Our Portland stone of the finest kind, which is white, and of a close grii, is very fit for hewing and carving; but it will neither resist water nor fire, which is a very singular instance in so dense a stone; while the freestone of Kent, which is less beautiful to the ege, and is of a greyish colour, and considerably close, though of a larger grain, resipts the air and water very well. The freestone of Derbyshire, on the other hand, is so brittle as to be unfit for any fine working; and so coarse and open in its texture, that it lets water through; yet it bears the fire extremely wall, aud in fit for ovens, hearths, \&c.
FREETHI'NKER. \& (free and think.) A libertine; a contemner of religion (Apddison).

FREE WARREN, a franchise or placa distinct from forent, chace, park, manor, or warren, derived originally from the crowp! and the person having a grant of snch frapchisa or free, warren possesses a sole right of puriuing, laking, and killing game of every kind within is limits: although not ore acre of land belonging to it may be his awn property through the whole district where manas lande are situate in, and surrounded by, a frea warren, the owner of such, lands mpy kill gaqe within his own manor, but he canpot introduce even a qualified person to kill game them also, without the consent of the owner or pose. sessor of the privilega of froe warren over the whole.

EREEWL'LL. s. (freq and will.) 1. Tha pawer of directing our own actions withont restraint by necessity or fato (Locke). 9. Valuntariness; spontaneity ($E_{\text {zraq }}$).

FREEWOMAN. s. (frea and maman.) A woman not enslaved (Macceloes).

To FREEZE, $v_{0} n_{0}$ prat. froza. (uriasang Dutch.) 1. Ta be congealed with cold (Locke). 2. To be af that degrect of cold bly which water is conqealed (Dryden):

FRE

To Frez2z. y. a 1. To congenl with cold. 2, To kill by cold (Shakspeare). 3. To chill by the loss of power or motion.

Freeze, or Frize, in architecture, that part of the entablature of columns which is between the architrave and corniche. In the Tuscan order it is quite plain; in the Doric, enriched with triglyphs, or channelled figures, with spaces between them, called metopes, which are often plain, and sometimes orna mented; in the lonic, it is sometimes made arched or swelled; in the Corinthian and Composite, it is frequently joined to the architrave, by a little sweep, and sometimes to the corniche: and in these richer orders it is usually adorned with sculpture, figures, compartiments, histories, foliages, festwons, 8 cc .

FREEZING, in natural philosophy, congelation, the transformation of a fluid body into a firm or solid mass, hy the action of cold; in which sense the term is applied to water when it freezes into ice; to metals when they resame their solid form after being melted by heat ; or to glass, wax, pitch, tallow, \&cc. when they barclen again atter having been revdered fluid by heat.
The process of congelation is always attended with the emission of heat, as is found by experiments on the freezing of water, wax, spermaceti, \&ec.; for in such cases it is always found that a thermometer dipt into the flud mass keeps eqntinually desceuding as this cools, till it arrive at a certain point, being the point of freezing, which is peculiar in each tluid, where it is rather stacionary, and then rises for a liute, while the congelation goes on. But by what means it is that fluid bodies should thus be rendered solid by cold, or fluid by heat, or what is introduced into the bodies by either of thome principles, are matters the learned have not yet been able to discover, or to satisfy themselves upon. The following phasenomena however are usually observed.

Water, and some other fluids, suddenly dilate and expand in the act of freezing, so as to occupy a greater space in the form of ice than before, in consequence of which it is that ice in apecifically lighter than the same fluid, and Goats in it. And the degree of expansion of water, in the state of ice, is by some authors computed at about to of its volume. Oil, howerex, is an exception to this property, and quicksilver too, which shrinks and contracts sill more after freezing. Mr. Boyle relates everal experiments of vessels made of metal, very thick and strong; in which, when filled with water, close stopped, and exposed to the cold, the water being expanded in freezing, and not finding either room or vent, burst the veseck. A strong barrel of a gun, with water in it close stopped and frozen, wras rept the whole lepgth. Huygens, to try the force with which it expands, flled a canpop with it, Whooe sides were an inch thick, and then closed up the mouth and rent, so that none could excape; the whole being exposed to a aroong frezzing air, the water froze ip about 12

F R E

houns, and burst the piece in two places. Mathematicians have computed the force of the ice upon this occasion, and they say, that such a force would raise a weight of 27,720 pounds. Lastly, Major Edward Williams, of the royal artillery, made many experiments on the force of it, at Quebec, in the years 1784 and 1785. He filled all sizes of iron bombshells with water, then plugged the fuze-hole close up, and exposed theas to the strong freezing air of the winter in that climate; sometimes driving in the imn plugs as hard as possible with a sledge hammer; and yet they were always thrown out by the sudden expunsion of the water in the act of freezing, like a ball shot by gunpowder, sometimes to the distance of between 400 and 500) feet, though they weighed near three pounds; and when the plugs were screwed in, or furnished widt hooks or barbs to lay hold of the inside of the shell by, so that they could not possibly be forced out, in this case the shell was always split in two, though the thickness of the metal of the shell was about an inch and three quarters. It is farther remarkalile, that through the circular crack, round about the sbells, where they burst, there stood out a thin film, or sheet of ice, like a fin; and in the cases when the plugs were projected by freezing water, there suddenly issued out frous the fure-hole a bolt of ice of the same diameter, and stood over it to the height sometimes of eigbt inches aud a half. And hence we need not be surprised at the effects of ice in destroying the substance of vegetables and trees, and even splitting rocks, when the frost is carried to excess.
It is also observed that water loses of its weight by freezing, being found lighter after thawing again, than before it was frozen. And indeed it evaporates almost as fast when frozen as when it is fluid.

It is said that water does not freeze in vacuo; requiring for that purpose the presence and contiguity of the air. But this circumstance is liable so some doubt, and it max be suspecterl that the degree of cold has not been carried far enough in these instances; as it is found that mercury in the vacuum of thermometers has even been frozen, though it requires a vastly greater degree of cold to freeze mercury than water.
Water which has been boiled freezes more readily than that which has not been boiled; and a slight disturbance of the fluid disposes it to freeze more speedily; having sometines been cooled several degrees below the freezing point, without congealing when kept quive still, but suddenly freczing into ice on the least motion or disturbance.

Water, being covered over with a surface of oil of olives, does nat freeze so readily an without it ; and nut oil absolutely preseryes it under a strong frost, when olive oil would not.

The surface of the water, in freezing, appears all wrinkled: the wrinkles being same-

FREEZING.

times in parallel lines, and sometimes like rays, proceeding from a centre to the circumference.
The prodigious power of expansion evinced by water in the act of freezing is nearly double that of the most powerful steam-engines, and exerted in so suall a mass, seemingly by the force of cold, was thought a very material argument in favour of those who supposed that cold, like heat, is a positive substance. 1)r. Black's discovery of latent heat, however, has now afforded a very easy and natural explication of this phenomenor. He has shewn that, in the act of congelation, water is not cooled more than it was before, but rather grows warmer: that as much heat is discharged, and passes from a latent to a sensible state, as, had it been applied to water in a fluid state, would have heated it to $13 j^{\circ}$. In this process the expansion is occasioned by a great number of ininute bubbles suddenly produced. Formerly these were supposed to be cold in the abstract ; and to be so subtle, that iosinuating themselves into the substance of the fluid, they augmented its bulk, at the same time that by impeding the motion of its particles upog each other, they changed it from a fluid to a solid. But Dr. Black shews, that these are only air extricated during the congelation ; and to the extrication of this air he ascribes the prodigious expansive force exerted by freczing water. The only question, therefore, now remaining is, by what means this air comes to be extricated, and to take up more room than it naturally does in the fluid? To this it may be answerel, that perhaps part of the heat, which is discharged from the freezing water, combines with the air in its unelastic state, and, hy restoring its elasticity, gives it that extraordinary force, as is seen also in the case of air suddenly extricated in the explosion of gunpowder.

Cold also usually tends to make bodies electric, which are not so naturally, and to increase the electric properties of such as are so. And it is farther found, that all substances do not transmit cold equally well; but that the best conductors of electricity, viz. metals, are likewise the best conductors of cold. It may farther be added, that when the cold has been earried to such an extremity as to render any body an electric, it then ceases to conduct the cold so well as before. This is exemplified in the practice of the Laplanders and Siberians; where, to exclude the extreme oold of the winters from their habitations the more effectually, and yet to admit a little light, they cut pieces of ice, which in the winter time must always be clectric in those countries, and put them into their windows: which they find to be much more effectual in keeping out the cold than any other substance.

Cold, or rather the absence of heat, is the destroyer of all vegetable life, when increased to an excessive degree. It is found that many garden plants and flowers, which seem to be very stout and hardy, go off at a little increase
of cold beyond the ordinary standard. And, in severe winters, nature has provided the best natural defence for the cornfields and gardens. namely, a covering of snow, which preserves such parts green and healthy as are under it, while such as are uncorered by it are either killed or greatly injured.

Although the thermoncter in this country hardly ever descends so low as 0 , yet, in the winter of 1780, Mr. Wilson, of Glasgow, observed, that a thermometer laid on the snow sunk to 25° below 0 ; and Mr. Derham, in the year 1708, observed in Engtand that the mercary stood within one tenth of an inch of its station when plunged into a mixture of snow and salt. At Petersburgh, in 1732, the thernometer stood at 28° below 0 ; and when the French academicians wintered near the polar circle, the thermometer sunk to 33 below 0 ; and in the Asiatic and American continents still greater degrees of cold are often observed.
The effects of these extreme degrees of cold are very surprising. Trees are burst, rocks rent, and rivers and lakes frozen several feet deep : metallic substances blister the skin like red hot iron : the air, when drawn in by breathing, hurts the lungs, and excites a cough : even the effects of fire, in a great measure, seem to cease: and it is observed, that thongh metals are kept for a considerable time before a stmong fire, they will still freeze water when thrown upon them. When the French mathematicians wintered at Tornea, in Lapland, the external air, when suddenly admitted into their rooms, converted the moisture of the atmosphere into whirls of snow ; their breasts seemed to be rent when they breathed it, the contact of it was intolerable to their bolies; and the spirit of wine, which had not been highly rectified, burst some of their thermometers by the congelation of the aqueous part.
Extreme cold too often proves fatal to animals in those countries where the winters are very severe : thus 7000 Swedes perished at once in attempting to pass the mountains which divide Norway from Sweden. But it is not necessary that the cold, in order to prove fatal to human life, should be so very intense as has been just mentioned; it is only requisite to be a little below 32° of Pahrenheit, or the freezing point, accompanied with snow or hail, from which shelter cannot be obtained. The snow which falls upon the clothes, or the uncovered parts of the body, then melts, and by a continual evaporation carries of the animal heat to such a degree, that a sufficient quantity is not left for the support of life. In such cases, the person first feels himself extremely chill and uneasy ; he turns listless, unwilling to walk or use exercise to keep himself warm, and at last turns drowsy, sits down to refresh himself with sleep, bat wakes no more.
With regard to the term engelation, it is applied to water when it freezes into ice; io
netals, when they resume their solid form alier being melted by heat; or to glass, wax, pitch, ullow, \&ec. when they harden again alter haring been rendered fluid by heat. But it differs froun crystallization, which is rather a separation of the particles of a solid from a fluid in which it had been dissolved more by the moisture thall the action of heat.
Fabezing-point, denotes the point or degree of cold, shewn by a mercurial thermometer, at which certain fluids begin to frrese, or, when frozen, at which they begin to thaw again. On Fahrenheit's thermometer this point is at +32 for water, and at - 40 for quicksilver, these fluids freezing at those two points respectively. It would also be well if the freezing points for other fluids were ascertained, and the whole arranged in a thle. See Thermometsr.
Freezing-rain, or raining ice, a rety uncommon kind of shower, which fell in the wes of England, in December, 1672, of which we have various accounts in the Philosophical Transactions. This rain, as soon as it touched any thing above ground, as a bough, \&ce. immediately settled into ice; and, by multiplying and enlarging of the icieles, broke all down with its weight. The ran that fell on the snow immediately froze biato ice, without sinking in the snow at all. It made an incredible destruction of trees, beyond any thing in all history. "Had it concluded with some gust of wind (says a genteman on the spot). it might have beell of ternble consequence. I weighed the sprig of 2n ash-tree, of just three-quarters of a pound, the ice on which weighed 16 pounds. Some wert frightened with the noise in the air, till mev discernel it was the clatter of icy boughs, cshed against rach other." This phenometwh, however, is not uncommon in a less de$\mathrm{F} \cdot \mathrm{r}$, and depends wholly on the nice balance or. temperatures in the rain and atmosphere. 1): Heale observes, that there was no considerable frost observed on the ground during the whole; whence he concludes, that a frost may he very intenge and dangerous on the tops of some hills and plains; while in other plices it keeps at two, three, or four feet distance above the ground, rivers, lakes, 8 cc . and miv wander about very furious in some places, and remiss in others not far off. The frost uss followed by glowing heats, and a wonderful forwardness of flowers and fruits.
Freezing mixture. See Cold.
FREIGHT. (fret, French.) The money pid for carriage of goods by sea; or, in a larzer sease, it is taken for the cargo, or burthen of the ship. Ships are freighted either by the too, or by the great; and in respect to time, the freight is agreed for at so much per month, or at a certain sum for the whole vorage. If a ship freighted by the great happens to be cast away, the freight is lost; but ii a merchant agrees by the ton, or at so much for every piece of commorities, and by any accident the ship is cast away, if part of the goods is saved, it is said she ought to be answered her
freight pro rala: and when a ship is insured and such a misfortune happens, the insured commonly transfer those goouls over to the assurers, owards a satisfaction of what they make good. Lex mercat.

Fieight, also denotes a duty of 50 sols per ton formerly paid to the crown of France, by the masters of foreign vessels going in, or out of, the several ports of the kingdom.

To Fkeight. v. a. pret. freighted; part. fraught, freighted. (gretter, French.) 1. To load a ship or vessel of carriage with goond for transportation (Shahspeare). 2. Tu load as the burden; to be the thing with which a vessel is freighted (Shahspeare).

FREIGHTER.s. (fretteur, Fr.) He who freights a vessel.

FREIND (John), a most learned English physician and writer in the 18 th century, was born at Croton, Nurthamptonshire, in 1075. In $16 y 6$ he published, in conjunction with Mr. P. Foulkes, an edition of two Greek orations, one of iEschines against Ctesiphon, and the other of Demosthenes De Corona, with a new Latin version. In 16 yg he wrote a letter to Dr. Sloane concerning an Hydrocephalus, published in the Philosophical Trausactivns; and another letter in Latin to the same genternan, De spasmis rarior. historia, printed in the same Transactions. In 1703 his Emmenalogia appeared, which gained him great reputation. In 170.t he was chosen professor of chemistry in the university of Oxford. In 1705 he attended the earl of Peterborough to Spain, as physician to the army there; and, upon his return in 1707, published an account of the earl's expedition and conduct. In 170) he published his Chemical Lectures. In 1712 he attended the duke of Ormond in Flanders, as his physician. In 1716 he was admitted a fellow of the college of physicians in London. This year he published the first and third books of Hippocrates De norbis popularibus, with a Commentary on Fevers, written by himself. He sat a member for the borough of Launceston in Cornwall in 1722, when he distinguished himself by his opposition to the administration. March 1722 he was committed to the Tower on a charge of high treason : and, while he was under confinement, he wrote a Latin epistle to Dr. Mead, De quibusdam variolarum generibus; and began his History of Physic, the first part of which was published in 1725, and the second in 1726. Upon the accession of George II. to the throne, he was appointed physician in ordinary to the queen, who showed the utmost regard and esteem for him. He died at London in 1728. His works were published together in Latin, at London, 1733, in folio, and dedicated to the queen.
FREJUS, a town of France, in the department of Var. By the Romans, it was called Forum Julii ; and had then a port on the Mediterranean, which is now above a mile from it. It is the birth-place of that great Roman general and philosopher Agricola; and near it some fine remains of antiquity are still visible. It is seated near the river Argens, in a morass,

40 miles N.E of Toulon, Lon. 6. 50 E. Lat. 43.26 N
FREN. s. A stranger (Spenser).
FRENCH, in general, something belonging to France; thus we say, the French language, French customs, polity, \&ec. The French language, as it now stands, is no original or mother language, butt a medley of several. Those that prevail most, and which are, as it were, the basis thereof, are, 1. The Celtic; whether that were a particular language itself, or whether it were only a dialect of the Gothic, as spoken in the west and north. 2. The Latin, which the Romans carried with them into Gaul, when they made the conquest thereof. And, 3. The Teutonic, or that dialect of the 'leutonic used by the Franks, when they passed the Hhine, and established themselves in Gxul. Of these three languages, in the space of about thirteen hundred years, was the present French formed, such as it is now found. Its progress was rery slow; and both the Italian and Spanish were regular languages long before the French.

Pasquier observes, it was under Philip de Valois that the French tongue first began to be polished: and that, in the register of the chamber of accounts of that time, there is a purity seen almost equal to that of the present age. However, the French was still a very imperfect language till the reigu of Francis 1 . The custom of speaking Latin at the bar, and of writing the pablic acts and instruments of the courts of justice in that language, had made them owerlook the French, their own language. Add, that the preceding ages had been remarkable for their ignorance, which was owing, in good measure, to the long and calamiwous wars which France had been engaged in: whence the French noblesse deemed it a kind of merit not to know any thing; and the genetals regarded little whether or no they wrote and talked politely, provided they could but fight valiantly.

But Fraucis I. who was the restorer of learning and the father of the learned, changed the face of things; and, after his time, Henry Stevens printed his book, De la Precellence du Langage François. The change was become very conspicuous at the end of the 16 th cenfury; and under Henry IV. Amyot, Coeffeteau, and Malherbe, contributed towards bringing it to its perfection; which the cardinal de Richelien completed, by the establishment of the French acadeniy.

One of the characters of the French language bs, to be natural and easy. The words are ranged in it much in the same order as the ideas in out minds; in which it differs exceedingly from the Greek and Latin, where the inversion of the natural order of words is contidered a beautv. Indeed the Hebrew surpasses even the French in this point; but then it comes short of it in erpiousness and variety.

It must be added, however, that as to the unalogy of grammar, and the simplicity wherewith the moods of verbs are formed, the Engtish has the adrantaye rot only over the Freath,
but over all the knowa languages in the world; but then the turns, the expressions, and the idioms, of the English, are sometimes so quaint and extraordinary, that it loses a good deal of the advantage which its grammatical simplicity gives it over the rest.
The French has hut few compound words; wherein it differs widely from the Greek, High Dutch, and English. This the French autiors own a great disadvantage in their language; the Greek and Dutch deriving a great part of their force and energy from the composition of words, and frequently expressing that in one sounding word, which the Frenech cannot express but by a periphrasis. The diminutires in the Prench are as few as the compounds, the greatest part of those remaining in ose having lost their diminative signification; but what most distinguish the French language, are its justness, purity, accuracy, and flexibility.
Frenct or xidney bean. See Phaseolvs.

French honeysuckle. See Hedysarum.
French marigold. See Tagetes.
French willow. See Epiloitide.
To FRE'NCHIFY. v. a. (from French.) To infect with the manners of France ; to make a coxcomb (Camden).
FRENETIC. a. (frenetique, French; pi:mertxoc; generally therefore written phrenetick.) Mad; distracted (Daviel).

FRE'NZY. 3. (psowrs ; phrenitis, Latin.) Madness ; distraction of mind; alienation of understanding; any violent passion approaching to madness (Bentley).

FRE'QUENCE. s. (frequence, French.) Crowd; concourse; assembly (Milton)

FRE'QUENCY. s. (frequentia, Latin.) i. Common occurrence; the condition of being often seen or done (Atterlurg). 2. Concourse; full assembly (Ben Jonson).

FRE'QUENT. a. (frequent, French; frequens, Latin.) 1. Often done; often seen; often occurring (Pope). 2. Used often to practise any thing (Swift). 3. Full of concourse (Milion).

Io Fazque'nt. v. a. (frequento, Latin.) To visit oftell; to be much in any place (Bacon).
FREQUE'NTABLE. a. (from frequent.) Conversible; accessible (Sidney).
FREQUE'NTATIVE. a. (frequen/ativus, Latin.) A grammatical term applied to verbs signifying the frequent reperition of an action.

FREQUE'NTER. s. (from frequent.) One who often resorts to any place (Sveif).
FREQUENTLY. ad. (frequenter, Lotin.) Often ; commonly; not rarely (Sibif).

FRESCATL. See Frascati.
FRESCO. s. (lalian.) 1. Cooiness; shade; duskiness (Prior). 2. A picture not drawa in glaring light, bat in dask (Pope).
Fresco, in painting, an Italian wond now umiversally adopted, signifying paintings pert formed on the walls of palaces and churcies. There camner be a doubs, that this the therit

FRESCO.

ginal method, in which all large subjects were atne immetiately after the discovery of the art of expressing forms and salustances; by the judicious disposition of difierent colourod earths diluted with water. Savages found in a coms plete state of natare, who knew nothing more than her immediate dictates, have been found covered with colours, collected, and used on theit persons by instinct; and some have even demonstrated gerrius, in working the beautiful mantes and heimets formed of feathers of the most vivid tints: one step more would have produced painting on walls, but it was reserved for the ancieat Grecians to enlighten and benefat the world by the superior talents they had received and cultivated. It would be rain to enter into an investigation when their atvermpts arrived to that state of comparative perfection, which produced the defineation of Gyures on plaster or similar composition; we must, therefore, be satisfied with describing wave still extant of very great antiquity, and mentioning the modern method of using the colours.
It may remsonably be supposed, that the first pictures printed in this way were extremely race, and probalby did not consist of more ihan two colours, a light one for the ground, and a dort for the ouitines; for blending the tints mast have been the result of experience, and sone dapiee of freedom. This supposition bey be illuatrated by referring to the valuable vase brought from Herculaneum, by the late wis Wilian Hanniton, and now deposited in the British Murewn. Those, and the paintings found in the same city, were in all probability the performances of Itedians: but as-the art was thea evidently in its infancy, the Greeks might not have excetled their iraitaters. Indeed painting imust have been considered by that iogenious peopte as an art inferior to that of scalptore; which accounts for the superior excellence, and earlier improvements, in the latler.

The appendix to the abbe Barthrelemy's travels in Italy coctains several curious remarks on Herculaneum, by count Caylus and others, and Du Theil: che latter supposes that the destuetion of this city happened in the year 471. Caylus, on treating upon the ancient paintings discovered, observes, "As to their designing, it is dry, and hardly ever exceeds the idea of a ane statae. The cotomposition is in general cold, for the same reason that the design is dry. In fact, a figare is not grouped, though it be placed with others; and statues, intended at fint to stand alone, wiff with difficulty enter into composition without some alteration; thoogh the Diana in the Tresus, and the woman with wioss in the Telephos, are mort coatrased, and have an air of motion.
"The general taste of the composition is re: mankable, not aily for its resemblance to stahen, as I have oberved befure, but to bot ntiefs alo. It is clear that the authon had them preant to their inagimation, and that they had amie thatr mimeds a very lively inguentions
"The demi-tints are of an olive grey, or of a yellowish or reddish cast, and the shades of red, mixed with black. The draperies, in generat, are made with little plaits, formed of light and flexible stuffs, after the style of Roman sculpture." The picture of Telephus is, however, an exception, and seems to lead the author to think, that the artist who performed this piece was superior to those who executed the others.

In the aggregate there are no groupes, harmony, or claro obscuro. Each figure stands, as it were, independent, with its own light and shade only, neither receivirg reftected light from the next, nor casting shade on it; not are the shades broken, bat done with the same colour as the half tints, and hare merely lens white. This peculiarity arose from their deficiency in the science of perspective, which reduced the artist to the necessity of making the graduation of distance by the faintness of his colours. "For the rest," adds the count, "the pictures are done with ease, the touch is bold, and the pencil handled freely, the colouring being sometimes laid on patches, and sometimes sofrened down; in a word, the execution is light, and in the saine style nearly at we paint the decorations of our theatres, the whole indicating a great practice in the artists."

Thas much is considered necessary, in otder to show that the adoption of many colours in fresco paintings took place subsequent to 471 ; tike all other arts, it must have been improved by degrees, and it cannot be doubted, that the great masters, whose labnurs still adorn the numerons churches and pataces in ltaly, contributed largely to its perfection; through it is well known that many of their best works have suffered from damps, which it is presumed will prevent their stobility wherever it prevails. This circumstance has operated to so great a degree in St. Peter's at Rome, that most of the old pictures have been replaced by others in mosaic. See Mosaic.

The same cause has prevented the frequent use of fresco painting in England, except in mansinns where a dry air is constantly preserved. The necessity of this precaution is deinonstrated at present in the dome of St. Paul's. The manmer of performing this description of painting, is to work while the plaster is wet which covers the wall to he decorated; cotisequently, in the execution of large subjects, the process of plastering must immediately precede the brush of the artist, and only in the propottion he works, that the colours may incorporate with the composition, and that it may not absorb the water which dilutes them, and prevent the free touches intended for effect.

Vitruvias, who calts fresch painting ndo tectorio, gives an accurate account of the exs treme care which the ancients thought mecessary in preparing the stuccoes for the colours, and it must be admitted that they succeeded admirably, when we consider how very per. fect the remains of their productions now are, after undergoing the sulphareom inhumation

FRE

of ashes, caused by the eruption of Vesuvius, one thousand three hundred and thirty-seven jears past. The moderns, however, conceive that their lime and sand is preferable.

The design intended for a wall should be drawn on paper, or any substance from whence it may be transferred to the wet plaster; the mode of proceeding must afterwards be similar to that practised in painting upon canvas. The colours should be earths, exclusively, diluted with water sufficiently to make them flow freely, but not to decompose the plaster and mix its surface with them; long soft haired brushes should therefore be preferred. (Brit. Ency.).

FRESH. a. (fnerc, Saxon.) 1. Cool; not rapid with heat (Prior). 2. Not salt (Albot). 3. New; not had before (Dryden). 4. New; not impaired by time (Milton). 5. In a state like shat of recentuess (Denham). 6. Recent; newly come (Dryden). 7. Repaired from any loss or diminution (Dryden). 8. Florid; vigorous ; cheerful; unfaded; unimpaired (Ba con). 9. Healthy in countenance; ruddy (Harvey). 10. Brisk; strong; vigorous (Holder). 11. Fasting : opposed to eating or drinking. 12. Sweet : opposed to stale or stinking.

Fresh. s. Water not salt (Shakspeare).
To FRESHEN. v. a. (from fresh.) To make fresh (Thumson).
To Fre'shen. v. n. To grow fresh (Pope).
FRESHES, among sailors, the violence of an ebb-tide, increased by heavy rains, flowing into the sea, which it discolours to a considerable distance from the shore on such occasions, where the line on which the two colours meet may be distinctly observed for a great length along the coast.

FRESHET. s. (from fresh.) A pool of fresh water (Milton).

FRESHLY. ad. (from fresh.) 1. Coolly. 2. Newly; in the former state renewed (Bacon). 3. With a healthy look; ruddily (Shakspeare).

FRESHNESS. s. (from fresh.) 1. Newness; vigour ; spirit ; the contrary to vapidness (Bacon). 2. Freedom from diminution by time; net staleness; not decay (South). 3. Freedom fron fatigue; newness of strength (Huyuard). 4. Coolness (Addisan). 5. Ruddiness; colour of health (Granville). 6. Freedom from saltness.
FRESNE (Charles du Cange du), a learned Frenchman, born at Amiens in 1610. He was bred to the law, and became advocate in the parliament of Paris. He compiled a glossary of low Latin, intitled, Glossarium Medix et infimæ Latinitatis, which has been freguendy printed. The best edition is that of Halle, in 6 vols. Bvo. 1772-1784. His Greek Glossary of the middle Age, in 2 vols. folio, is also an esteemed work. He also published a History of Constantinople, and various other books, and died in 1688 .

FRESNOY (Charles Alphonsus du), a French painter and poet. He was born at $\mathrm{Pa}-$ ris in 1611, and having studied under Perrier Vouet, he went to Rome, where he suffered

FRE

great hardships, owing to his having adopted a profession contrary to the wishes of his parents. However he persevered in his studee, and while he was emplosed in copying the works of the best masters, he planoed a Latin prem, De Arte Graphica, which was afterwards published. This ingenious man died in 1665. His poem was printed after his death, with a prose translation, by de Piles, with notes. It has been rendered into English, first by Dryden, and lastly by Mr. Mason. Fresnoy, as a painter, imitated Titian.
FRET. s. (fretum, Latin.) 1. A frith, or strait of the sea, where the water by confinement is always rough (Brown). 2. An agitation of liquors by fermentation, or other cause (Derham). 3. Work rising in protuberances (Spectator). 4. Agitation of the mind; commotion of temper (Herlert).
Fret, or Frette, in architecture, a kind of knot or ornament, consisting of two lists or small fillets variously interlaced or interworen, and running at parallel distances equal to their breadth. A necessary condition of these frets is, that every return and intersection be at right angles. This is so indispensable, that they have no beauty without it, but become perfectly Gothic.
Fret-work, that aclorned with frets. It is sometimes used to fill up and enrich fast empty spaces; but it is mostly practised in roofs, which are fretted over with plaisces work.
Frets, certain short pieces of wire fixed on the finger-board of quitars, \&cc. at night angles to the strings, and which, as the strings are brought into contact with them by the pressure of the fingers, serve to vary and determine the pitch of the tones.
To Fret. v. a. (from the noun.) 1. To agitate violently by external impulse or action (Shakspeare). 2. To wear away by rubbing (Newton). 3. To hurt by attrition (Milton). 4. To corrode; to eat away (Hakewill). S. To form into raised work (Milton). 6. To variegate; to diversify (Shakspeare). 7. To make angry ; to vex (Ezehiel).
T'o Fret. v. n. 1. To be in commotion; to be agitated (South). 2. To be worn away; to corrode (Pcach.). 3. To make way by $2 i 0$ trition (Moron). 4. To be angry; io be peevish (Pope).

FRETFUL. (from fret.) Angy; peerisb.
FRETFULLY. ad. Peevishly.
FRETFULNESS. s. (from fretful.) Porsion; peevishness.

FRETTY. a. (from fret.) Adorned wilh raised work.

FREUIDENSTADT, a strong town of Suas bia, in the Black Forest, built to defend the passage into this forest. It is 12 niles S.E. of Strasburg. Lon. 8. 21 E. Lat. 48. gy N.

FREYBERG, or Friedserg, a lowno
Upper Saxony, containing above 60,000 inh2bitants. In the environs are mines of copper, tin, kead, and silver, which employ a grat number of workmen, and produce abore 10,000 rix-dollars a-year. Here is the wuwh.
burying-place of the princes of the electoral house of Saxony. It is situate on a branch of the Muldau, 15 miles S.W .of Dresden. Lon. 11. 10 W . Lat. 51.0 N .

FREYSINGEN, a town of Germany, capital of a bishopric of the same name, in the circle of Bavaria. It was taken by the French in $17 \% 6$. It is seated on a mountian, near the $1_{x+5} 40$ miles N. by E. of Munich. Lon. 11. ou E. Lat. 48.26 N .

FREZIERA. In botany, a genus of the class polyandria, order monogynia. Calyx fiveleared; petals five; style trifid; berry juiceless, many-celled, many-seeded. Two species: me a native of Jamaica, the other of the East Ludies.
FRIABI'LITY. s. (from friable.) Capacity of ieing easily reduced to powder (Loche).
FRI'ABLE. a. (frialle, French.) Easily crumbled; casily reduced to powder (Bacon).
friar, or Frier, by the Latins called froter, the Italians fra, and the French frere, that is, lirither: a term common to the monks of all orders; founded on this, that there is a kind of fraternity or brotherhood presumed between the several religious persons of the same convent or monastery.
Friar's cowl. See Arum.
FRI'ARLIKE. a. (from friar.) Monastic; unckiiled in the world (Knolles).
FRI'ARLY. a. (friar and like.) Like a friar, or man untanght in life (Bacon).
FRI'ARSCOW L. s. (friar and concl.) A plant that produces a flower resembling a curl.
FRI'ARY. s. (from friar.) A monastery or convent of friars.
Fríary.a. Like a friat (Camden).
T, FRI'BBLE. v. n. To trifle (Hudilras).
FRIBBLER. s. A trifler (Spectator).
FRIBURG, one of the cantons of Swisser-
1 wid, surrounded on all sides by the canton of Prin. It is fertile in corn, fruits, and pastures. lis length is about 40 miles, and breadth 20.
Friburg, a town of Swisserland, capital of canton of the same name. The public buidings, especially the cathedral, are very turksome. The inhabitants are papists. It i: zuerned in spirituals by the bishop of Lausanne, who resides here, and in temporals, by a council, over which an avoyer presides. Its situation is very extraordinary, for part of it is built on an elevated rock, part of it in a decp vility, and towards the west it occupies a small isii. The strects are irregular, steep, clean, and wlerably wide ; the houses are well built, and oune of them handsome; there are several churches and convents. It is surrounded with walls, towers, and sharp rocks. Friburg con'${ }^{\text {tains some manufactures, but none that are }}$ iuportint. Lat. 46. 48 N. Lon. 6. 53 E.
friburg, a town of Germany, in the cirrit of Swabia, and capital of the Austrian Brisfew, situated at the foot of a stony mountain, .0a the river Traisam, founded in the year 1118 , 'by Berthold III, duke of Zahringen, from Whom it came to the counts of Furstenbery, "with whom it had many disputes on account
of its privileges, and at last purchased its freedom for 20,000 marks of silver. This sum was advanced by the house of Ausiria, by which means the town became sulyject to that family. It was formerly an important fortress, but being taken several times by the Swedes and the French, it was dismantled by the latter, in the year 17+4. The streets are broad and well paved. The principal church is a superb edifice. Here is a university, founded in 1457, by Albert IV. duke of Austria, with an academy and five colleges depending on it. Here are, besides ten convents, a commandery of the Teutonic order, and thirtcen churches. Lat. 48. 10 N. Lon. 7.57 E .

FRICASSE'E. s. (French.) A dish made by cutting chickens or other sunall things in pieces, and dressing them with strong sauce.
FRICA'TION. s. (fricatio, Latin.) The act of rubbing one thing against another (Bacon).
FRICTION. s. (frictio, Latin.) 1. The act of rubbing two bodies together (Newton). 2. The resistance in machines caused by the motion of one body upon another. 3. Mechical rubbing with the fleshbrush or cloths (Bacon).
Friction, when expressive of the act of rubbing or grating the surfices of borlies against or over each other is called also attrition.

The phenomena arising from the friction of divers bodies, under different circumstances, are very numerous and considerable. Mr. Hawhsbee gives a number of experiments of this kimd; particularly of the attrition or friction of glass, under various circumstances; the result of which was, that it yielded light, and became electrical: Indeed all bodies by friction are brought to conceive heat ; many of them to emit light; particularly a cat's back, sugar, beaten sulphur, mercury, sea water, gold, copper, \&c. but, above all, diamonds, which when briskly rubbed against glass, gold, or the like, yield a light equal to that of a live coal when blowed by the bellows.
Friction, in inechanics, denotes the resistance a moving body meets with from the surface on which it moves. Friction arises from the roughness or asperity of the surface of the body noved on, and that of the body moving : for such surfaces consisting alteruately of eminences and cavities, either the eminences of the one must be raised over those of the other, or they must be both broken and worn off: but neither can happen without motion, nor can motion be produced without a furce impressed. Hence the force applied to move the budy is either wholly or partly spent on this effect; and consequently there arises a resistance or friction, which will be greater as the eminences are greater, and the substance the harder; and as the body, by continual friction, becomes more and more polished, the friction diminishes.
M. Amontons was the first philosopher who favoured us with any thing like correct information upon this subject. He found that the resistance opposed to tie motion of a body upon a horizontal surface was exactly proportional to its weight, and was equal to one third of it, or more generally to one third of the force with which it was pressed against the surface over which it moved. He discovered also that this resistance did not increase

FRICTION.

with an increase of the rubbing superficies, nor with the velecity of its motion.
The experiments of M. Bulfinger anthoized conclusions similar to those of Amontons, with this differance only, that the resistance of friction was equal only to one fourth of the force with Which the rubting surfaces were pressed together.

This subject "as also considered by Parent, who supposed that friction is orcasioned by small spherical eminences in one surface being dragged out of corresponding spherical cavities in the othre, and proposed to determine its quantity by finding the force which would move a sphere standing upun three equal spheres. This force was found to be to the weight of the sphere as 7 to 20 , or nearly one third of the sphere's weight. In investigating the phenomena of friction, M. Parcut placed the body upon an inclined plane, and augmented or diminished the angle of inclination till the body had a tendency to more, and the angle at which the motion commenced be called the angle of equilibrium. The weight of the body, therefore, will be to its friction upon the inclined plane as radius to the sine of the angle of equilibrium, and its weight will be to the friction on a horizontal plane as radius to the tangent of the equilibrium.

The celebrated Euler seems to have adopted the hypothesis of Bulfinger respecting the ratio of friction to the force of pression; and in two curious dissertations which he has published upon this subject, has suggested many important observations, to which Mr. Vince seens afterwards to have attended. He obserres, that when a boily is in motion, the effect of friction will be only one half of what it is when the body has begun to move; and he shews that if the angle of an inclined plane be gradually increased till the body which is placed upon it begins to descend, the friction of the body at the very commencement of its motion will be to its weight or pressure upon the plane as the sine of the plane's clevation is to its cosine, or as the tangent of the same angle is to radius, or as the height of the plane is to its length. But when the body is in motion the friction is diminished, and may be found by tbe fol-
lowing equation $\mu=\tan . a \frac{m}{15025 \text { nn cos. } a}$, in which μ is the quantity of friction, the weight or pressure of the borly being $-1, a$ is the angle of the plane's inclination, m is the length of the plane in 1000th parts of a rhinland foot, and n the time of the body's descent. Respecting the cause of friction, Euler is nealy of the same opinion with Parent; the only difference is, that instead of regarding the eminences and corresponding depressions as spherical, he supposes them to be angular, and imagines the friction to arise from the borly's ascending a perpetual succession of inclined planes.

Mr. Ferguson found that the quantity of friction was always proportional to the weight of the rubbing body, and not to the quantity of surface, and that it increased with an increase of velocity, but was not proportional to the augmentation of celerity. He found also that the friction of smooth soft wood, moving upon smooth soft wood, was equal to $\}$ of the weight; of rough wood upon rough wood $\frac{1}{2}$ of the weight; of soft wood upon hard, or hard upon soft, $\frac{1}{5}$ of the weight; of polished stect upon polished steel or pewter $\frac{1}{4}$ of the weight ; of polished steel upon copper $\frac{1}{6}$, and of polished steel upon brass $\frac{1}{6}$ of the weight.

Tte Abbé Sollet an:: Bussut have distinguishe 1 friction intu kinds, that which arises from che sumbe ticheg dagyed orer anotier, and that which is corcasioned by une body ruline egon another. The resitance which is generited by the first of the se hinds of friction is alway, greaier than that which is produced by the eresint; and it appars evidently from the experiment. of Muschenbroek, Schucber, and Meister, that when a body is carried alung with an uniformly acceicrated motion, and ietarded by the tirst kind of friction, the spaces are sti!l proportional to the squares of the times, but when the motion is aficted by the sccord kind of ficiction, this propartionality between the spaces and the times of their description does not obtain.

The subject of friction has more lately occupied the attention of the ingenious Mi. Vince of Cainbridge. He found that the friction of hard bodies in motion is an uniformly retarding furce, and that the quantity of friction considered as cquivalent to a weight drawing the boriy backwards is equal to $M \frac{\overline{M \times W} \times S}{r t^{2}}$, where M is the moving force expressed by its weight, W the weight of the body upon the horizuntal plane, S the space through which the moving force 0.5 weight descended in the time t and $r=16.087$ fect, the force of gravity. Mr. Vince also found that the quantity of friction increases in a less ratio than the quantity of matter or weight of the boly, and that the friction of a body does not cuntince the same when it has different surfaces applied to the plane on which it moves, but that the smallest surfaces will have the least friction.

Notwithstanding these various attempts to utifold the nature and effects of friction, it was reserved for the celebrated Conlomb to surmount the difficulties which are inseparable from such au investigation, and to give an accurate and satisfactory view of this complicated part of merha. nical philusophy. Ey employing large bodie, and ponderous weights, and conducting his exinriments on a large scale, he has corrceted a . . ral errors which necessanily arose from the lita::ed experiments of preceding writers; he har brought to light many new and striking phenomena, and confirmed others which were hitherto but partially established. As it would be forign to the nature of this work to follow munsicur Coulomb through his numerons and varied expe. riments, we shall only present the reader with the new and interesting results which they authorized.

1. The friction of homogeneous bodies, or bodies of the same kind moving upon one another is generally supposed to be greater than that of heterogeneous bodies; but Coulomb has shewn that there are exceptions to this rule. He found, for example, that the friction of oak upon oak was equal to $\frac{1}{2 \cdot 54}$ of the force of pression; the friction of pine against pine was $\frac{1}{1 \cdot 78}$, and of oak against pine $\frac{1}{1 \cdot 5}$. The friction of oak against copper was $\frac{1}{5 \cdot 5}$, and that of oak against iron mearly the same.
2. It was generally supposed, that in the case of wood, the friction is greatest when the bodies

FRICTION.

are dragged contrary to the course of their fibres; but Coulumb has sitewn that the friction is in this case sometimes the smallest. When the bodies moved in the direction of their fibres the friction was $\frac{1}{234}$ of the fibres with which they were presser together; but when the motion was contury to the course of the fibres, the friction was coly $\frac{1}{3 \cdot 76}$.
3. The longer the rubbing surfaces remain in contact, the greater is tbeir friction. - When wrod was moved upon wood, according to the direction of the fibres, the friction was increased by k.eping the surfaces in contact for a few secunds; and uben the time was prolonged to a minute, the friction seemed to have reached its farthest limit. But wheu the motion was performed contrary to the course of the tibres, a greater time was necessary before the friction arrived at its maximum. When wood was mored upon metal, the fricion did not attain its maximum till the sarfaces continued in contact for 5 or 6 days; and it is very remarkable, that when wooden surfaces were anointed with tallow, the time requisite for producinz the greatest quantity of friction is increased. The increase of friction which is geni rated by prolonging the time of contact is so great, that a body weighing 1650 pounds was moved with a furce of 64 puands when first laid upon its corresponding sulface. After haring remained in contact for the space of 3 seconds, it required 100 pouncts to put it in motion, and Wen the time was prol:nged to 6 davs, it could warcely be moved with a forre of 622 pounds. U bea the surfaces of metallic besies were nioved upua one another, the time of producing a maximum of friction was not changed by the interposition of clive oil ; it was increased, however, by emploging swines grcase as an anguent, and was prolunged to 5 or 6 days by besmearing the surfaces with tallow.
4. Friction is in general proportional to the force with which the rubbing surfaces are pressed tugnther ; and is, for the most part, equal to betacen $\frac{1}{2} \mathrm{and} \frac{4}{4}$ of that force. -In order to prove ile bisst part of this proposition, Coulombemplogerl a large pirce of wood, whose suriace curtaibud 3 square fect, and kaded it succcosively WU it pounds, 874 pounds, and 2474 pounds. In these cases the friction was successively $\frac{1}{3 \cdot 46}, \frac{1}{2 \cdot 16}, \frac{1}{2 \cdot 21}$ of the force of pression; and when a less surface and other weights were used, the friction was $\frac{1}{2 \cdot 50^{\circ}}, \frac{1}{2 \cdot 40^{\prime}}, \frac{1}{2 \cdot 40}$. Similar resnits were obtained in all Conlombs experiments, eren wien metallic surfaces were employed. The ec ind part of the proposition has also been estatlistied by Coulomb. He found that the greatest fr.ction is engendered when oak moves upon pise, and that it amounts to $\frac{1}{1 \cdot 78}$ of the force of pression; on the contrary, when iron moves upon brass, the least friction is produced, and it amocunts to $\$$ of the force of pression.
3. Friction is in general not increused by angmo uting the rubbing surfaces._W When a superficies of 3 feet square was employed, the friction,

with difierent weighes was $\frac{1}{2 \cdot 28}$ at a medium; but
when a smaller surface was used, the fiction instead of being greater, as might have been expected, mas only $\frac{1}{2 \cdot 19}$.
6. Friction fur the most part is not augmented by an increase of velocity. In some cases, however, it is diminished by an aluguentation of cele-rity.-M. Cuulomb found, that when word mored upon wood in the direction of the fibre, the friction was a constant quantity, bowever much the velocity was varied; but that when the suriaces were vely small in respect to the force with which they were pressed, the friction was diminished by augmentiug the rapidity: the frictiou, on the contrary, was moreased when the surfaces were very large when compared with the force of pression. When the wood was moved contrary to the direction of its fibres, the friction in cvery case remained the same. If wood is moved upon metals, the friction is grently increased by an increase of velocity; and when metais move upon wood besmeared with tallow, the triction is still auginented by adding to the velocity: When metals move upron metals, the friction is always a constant guantity; but when heterugeneous substances are employed whith are not bedaubed with tallow, the friction is so increased with the velucitr, as to form an arithmetical progression when the velocities form a geometrical one.
7. The friction of loaded cylinders rolling upon a horizintal pane, is in the direct ratio of their weights, and the inverse ratio of their diancters. In Coulomb's exprriments, the friction of evilinders of gualar un wood, which were two inches in diameter, abd were loaded with 1000 pounds, was 18 purdy or $\frac{1}{56}$ of the force of pression. In cylinders of elm, the friction was greater by ${ }_{3}^{2}$, and was scarcely diminished by the interpusition of tallow.

From a varicty of experiments on the friction of the axis of pullies, Coulomb obtained tire following results:-When an iron axie mored in a l:rass bush or bed, the friction was $\frac{1}{6}$ of the pression; but when the bush was besme:ared with very clean tallow, the filition was onty 'f, wien swite's grease was interposed, the friction amonnted to $\frac{1}{8 \cdot 5}$, and when olive oil was employed as an unguent, the friction was never less than for $\frac{1}{7 \cdot 5}$ e
When the axis was of green oak, and the bush of guaiacun wood, the ficetion was $\frac{1}{2,}$ when tal ow was interposed; but when the tallow was re moved so that a sinall quantity of grease on!y covered the surface, the fintion was increacel io $\frac{1}{7}$, When the buvh was made of elm, the friction was in similar circumstances $\frac{1}{3}$ and $\frac{1}{20}$ whi. $!$.s the least of all. If the axis bre made ui bux, and the bush of guaiacum wood, the triction wis $\frac{1}{21}$ and $\frac{1}{1}$, circnmstances being tre same as betore. If tie axle be of boxworn, and the bush of lm, the friction will be $\frac{1}{2}$ aud $\frac{1}{2}$; and if the axpe b. of iron and the bush, "f elm, the friction will be $\frac{1}{20}$ ot the furce of pression.

Having thus conslered the orisin, the natnre, and the efferts of triction, we s'all no. a'tolld to the methud of lessening the masistance wh.rh it opposis to machinery. The most efficacimismorte of accomplishing this. is to convert that species of Iriction which arises trom one body beint drag. nd overanother, into that ehich is orcasioned by one body rolling upunanother. As this will alo

FRICTION.

ways diminish the resistance, it may be easily effected by applying wheels or rullers to the sockets or bushes which sustain the gudgeons of large wheels, and the axles of wheel carriages. Casatus secms to have been the first who recommended this apparatus. It was afterwards mentioned by Sturmius and Wolfius; but was not used in practice till Sully applied it to cocks in the year 1716, and Mondran to cranes in 1725. Notwithstanding these solitary attempts to introduce friction wheels, they scem to have attracted but little attention till the celebrated Euler examined and explained, with his usual accuracy, their nature and adrantages. The diameter of the gudseons and pirots should be made as small as the weight of the wheel and the impelling force will permit. The gudgeons should rest upon two wheels as large as circumstances will allow, having their axis as near each other as possible, but no thicker than what is absolutely necessary to sustain the superincumbent weight. When these precautions are properly atteoded to, the resistance which arises trom the friction of the gudgeons, \&c. will be extremely tritling.

The effects of friction may likewise in some measure be removed by a judicious application of the impelling power, and by proportioning the size of the friction wheels to the pressure which they severally sustain. If we suppose, for example, that the weight of a wheel, whose iron gudgeons move in bushes of brass, is 100 pournds; then the friction arising from buth its gudgeons will be equivalent to 25 pounds. If we suppose also that a force equal to 40 pounds is employed to inpel the wheel, and acts in the direction of gravity, as in the case of overshot wheels, the pressure of the gudgeons upon their supports will thus be 140 pounds and the friction 35 pounds. But if the furce of 40 pounds could be applied in such a manner as to act in direct opposition to the wheel's weight, the pressure of the gudgeons upon their supports would be $100-40$, or 60 pounds, and the friction only 15 pounds. It is impossible indeed to make the moving force act in direct oppusition to the gravity of the wheel, in the case of water-mills; and it is often impracticable for the engineer to apply the impelling power but in a given way; but there are many cases in which the moving force may be so exerted, as at least not to increase the friction which arises from the wheel's weight.

Tlie application of these general principles to particular cases is so simpleas not to require any illustration. To aid the conceptions, however, of the practical mechanic, we may mention two cases in which friction wheels have been successfully emploved.

Mr. Gottlieb, the constructor of a new crane, has received a patent for what he calls an anti-attrition axle-tree, the bencticial effects of which he bas ascertained by a variety of trials. It consists of a steel roller about 4 or 6 inches long, which turus within a groove cut in the inferior part of the axle. When wheel-carriages are at rest, Mr. Gottlieb has given the friction wheel its proper position ; but it is evident that the point of greatest pressure will change when they are put in mution, and will be nearer the front of the carriage. -This point, however, will vary with the weight of the load; but it is sufficiently obvious that the friction roller shoukl be but a little distance from the lowest point of the axle-tree.

Mr. Garuett of Bristol bas applied friction roll-
ers in a different manner, which does not, like the preceding method, weaken the axie-tree. Instead of fixing the rollers in the iron part of the axle, he leaves a space between the uave and the axis to be filled with equal rollers almost touching each other. The axcs of these rollers areinserted in a circular ring at each end of the nave and these rings, and consequently the rollers are kept separate and parallel, by means of small bolts passing between the rollers from one side of the nave to the other.

In whecl-carriages constructed in the common manner with conical rims, there is a great degree of resistance occasioned by the friction of the linch-pins on the external part of the nave, which the ingenious mechanic may easily remove by a judicious application of the preceding principles.

As it appears from the experiments of Ferguson and Coulomb, that the least friction is generated when polished iron moves npon brass, the gudgeons and pivots of wheels, and the axles of friction rollers, should all be made of polished iron, and the bushes in which these gudgeons move, and the friction whecls should be furmed of polished brass.

When every mechanical contrivance has been adopted for diminishing the obstruction which arisey from the attrition of the communicating parts, it may be still farther removed by the judicious application of uncuents. The most proper for this purpose are swine's grease and tallow, when the surfaces are made of wood, and oil when they are of metal. When the force with which the surfaces are pressed together is very great, tallow will diminish the friction more than 6 wine's grease. When the wooden surfaces are very small, unzuents will lessen their friction a little, but it will be greatly diminished if wood moves upon metal greased with tallow. If the velocities, however, are increased, or the unguent not often enough renewed, in both these cases, but particularly in the last, the unguent will be more injuious than useful. The best mode of applying it, is to coser the rubbing surfaces with as thin a stratum as possible, for the friction will then be a constant quantits, and will not be increased by an augmentation of velocity.

In small works of wood, the interposition of the powder of black lead has been found very useful in relieving the motion. The ropes of pulleys should be rubbed with tallow, and whenever the screw is used, the square threads should be preferred. (Brewster's Ferguson, pol. ii.)

A more detailed accuunt of Coulomb's exper:ments may be seen in Gregory's Mechanics, vol. ii. p. $25-44$.

Friction wheels, are small wheels on the circumferences of which the pivots of other wheets or axles turn, in order to lessen the quantity of friction, and give a Ionger duration to any mution. If a cylinder were to more ontwo small pins or gudgeons, the friction would be abated neatiy in the proportion of the diameter of the cylinder to that of the pins: but the friction on these gudgeons is considerably diminished by causing each of them to move on the circumfertaces of two equal wheels; for the velocity of the circumferer.c* of each wheel is the same as that of the gudgeon which turns upon it; but the velocity of eacir wheel's axis (which is now to be considered as the rubbing part) is less than that of the wheel, in propurtion as its diameter is less than that of the wheel, and the friction will be reduced accordingly.

It may be considered also, that in the Exicuve

FRI

Whecis, the pirot of the inner whed does not slide, but roll over the perimeters of the others, and this diminishes the friction considerably; and If the axes of these wheels be laid on the perimeter of other wheels, the friction will be still farther reduced : and thus by applying more and nore whee's it may be diminished ad infinitum.

FRI'DAY.s. (fnize-æァ, Saxon.) The sixth day of the week, so named of Freya, a Saxon actit.

Friday (Cond), a fast of the Christian church, in memorv of the sufferings and death of Jesus Christ. It is obscrued on the Friday in holy or passion recek: and it is called, by wey of eminence, good, because of the blessed efficts of our Saviour's sutferings, which were a propitiatory or expiating sacrifice for the sins of the world. The commemoration of our Saviour's snfferings has been kcpt from the first ages of Christianity, and was always observed as a day of fasting and humiliation.

FRIDBERG, a town of Wetteravia, in Geruany. Lat 50. 10 N. Lon. 8. 46 E.

Fridberg, a town of Bavaria, in Germany. Lat. 48.23 N . Lon. 11. 10 E .
FRIDING, a town of Suabia, in Germany, 20 miles N.E. of Constance. Lat. 48. 11 N. Lon. 2. 31 F .

FRIILLAND, a town of Bohemia, belonging to the house of Austria. Lat. 52. 4 N . Lon. 15. 1.5. E.

FRIDLENGEN, a town of Suabia, in Germany, 4 miles \dot{N}. of Basle. Lat. 47.40 N. Iñ. 7.36 E .

FRIDSTOL, mentioned in our ancient writers among the immunities granted to churches, signifies a seat, chair, or place of peace and security, where crimizals might find siety and protection: of these there were many in England, but the most famous was at Beverley, and that in St. Peter's church at York, granted by charter of king Henry I.

FRIEND. s. (eriend, Dut. freono, Sax.) 1. One joined to another in mutual benevolence and intimacy (Dryden). 2. One without hostile intentions (Shakspeare). 3. One reconciled to another (Shakspeare). 4. An attendant, or companion (Dryden). 5. Farourer; one propitious (Peacham). 6. A familiar compellation (Matthew).

Friends, a religious denomination. See Quakers.

To Friend. v. a. (from the noun.) To favour; to befriend; to countenance; to support (Shahspeare).

FRI'ENDLESS. a. Wanting friends; wanting support ; destitute ; forlorn (South).

FRI'ENDLINESS. s. (froin friendly.) 1. A disposition to friendship (Sidney). 2. Exertion of benevolence (Taylor).

FRIENDLY. a. (from friend.) 1. Having the temper and disposition of a friend; kind; favourable (Milton). 2. Disposed to union; amicable (Pope). 3. Salutary; homogeneal (Milion).

Fri'endly. ad. In the manner of friends; with appearance of kindness; amicably (Shaktpeare).

F R I

Friendiy islands. Under this denomination we must include not only Tongataboo, Eaoo, and Anamooka, which were so named by captain Cook in 1773, on account of the friendship that subsists among the inhabitants, and their courteous behaviour to strangers; but also the group at Hapaee, visited by him in 1777; and all the islands that have heen discovered nearly under the same meridian, from Pilstart, discovered by Tasman, in lat. 22. 26 S. down to Boscawen and Kepple's Isles, discovered by Wallis, in lat. 15. 53, and thence westward to Tasman's Prince William's Is-* lands, in lon. 179. W. as well as some others, that have never heen seen by any European navigator. Within these limits, the Archipelago will be found to be very extensive. Above 150 islands are reckoned up by the natives, who assign its proper name to each; fifteen of them are said to be high; 35 larger than Anamooka ; and the rest small, many of them perhaps mere spots without inhabitants. 61 of these islands are laid down in captain Cook's chart of the Friendly Islands.

FRI'ENDSHIP. s. (vriendschap, Dutch.) 1. The state of minds united by mutual benevolence; amity (Clarendon). 2. Highest degree of intimacy (Dryden). 3. Favour; personal kindness (Spenser). 4. Assistance; help (Shakspare). 3. Conformity; affinity; correspondence; aptuess to unite (Dryden).

Friendship may be defined a mutual attachment subsisting between two persons; and arising, not merely from the general principle of benevolence, from emotions of gratitude for favours received, from views of interest, or from instinctive affection, or animal passion; but from an opinion entertained by each party, that the other is endowed with some amiable, estimable, or valuable qualities.

Voltaire says, "Friendship is a tacit contract between two sensitle and virtuous persons. I say, sensil.le; for a monk, or a hermit, may not be wicked, yet may live a stranger to friendship. I add cirtuous; for the wicked have only accomplices, the voluptuous have comm panions, the designing have associates, the men of business have partners, the politicians form a factious band; the bulk of inle men have connections; princes have courtiers: but virtuous men alone have friends. Cethegus was Catiline's accomplice, and Mecenas was Octavius's courtier; but Cicero was Atticus's friend."

Genuine friendship, then, is founded on virtue, and on that approbation which virtue never fails to comınand: it is a natural consequence of intercourse between virtuous men. Where it is once established, it cannot die, while those virtues to which it owes its origin continue to adorn the persons between whom it subsists.

Circumstances favourable to the formation of friendship are, parity (though not strict equality) of age, likeness of trade or profession, an approximation to equality of rank or fortune, similarity of taste, temper, and viewe,
and especially conformity in religious views. Whether sameness of sex is an essentiul requisite has been sonneumes, though we think foolishly, disputed. Upon even a superficial view of life, we find reason to declare, without hesitation, that acquaintance and intimacy most naturally take place among persons of the same sex : yet there are cases where the warmest and purest friendships have subsisted between persons of difierent sexes. This, however, must always be where both parties are so circumstanced as to be 1 n no danger of cherishing any other fecling.

Friendship ofien exists in the strongest degree among near relatives: and, though to some it may appear paradoxical, between husband and wife. The fears, the jealousies, the timidity, nav even the fondiess of love, are in some measure incompatible with the full exercise of friendship: for, though the lover and lis mistress be dear to each other, yet the free confidence and faithfuluess of friendstio cannot take place between them. They dare not yet venture to trust to each other all the secrets of their hearts, much less to exercise the freedom even of teuder remonstrance, which friendship often demands. But if their mutual wishes be crowned by marriage; then, indeed, as their interests become the same, if the transports of love are uot succeeded by the calm delights and the full confidence which friendship inspires, they cannot be happy. The marriage state, when formed upon right principles and correct views, is peculiarly favourable to the most elevated degree of friendship. Persons whose relations to each other are more remote, will often find circumstances concurring to indnce them to cultivate a friendly intercourse with each other. But here indifference is almost impossible. It is absolutely requisite, in order that they may not render ea h other miserable, that the husband and the wife have that high esteem for each other's character, which stands as the basis of frieudship. This seems even to be one of the great laws of uature, by which provision is made for the happiness and the preservation of society. But, though the wife and the husband be particularly attached to each other by the ties of friendship, no less than by those of love, yet their mutual affiection will not entirely detach them from the rest of the world; their relations to the society around them will still remain; the husband will still cultuate the intimacy of those of his own sex, and the wife will still choose female in preference to male friends: and both may thus derive assistance, comfort, and advice, which they might not be able to supply ω each other. Nor will this canse any unduc separation, or any alienation of affection ; for where husband and wife are united as we suppose, they are more than friend-they are one lone and one flesh.

Frie dship requires sincerity, mutual confidence, thoush certainly not, as many have contended, union of interests. Its principal fruits ure peace in the affections, support in the judgraent, aid and support in conduct.

FRI
Lord Bacon, in his excellent Essay on Friendship (an essay which we warmly recommend to the pernsal of our readers), says, "Men have their time, and die many times in desire of sonie things which they principally take to heart, the bestowing of a child, the finishing, of a work, or the like. If a man have a true friend he may rest almost secure that the care of those things will continue after him; so that a man hath, as it were, two liers in his desircs. A man hath a body, and that tody is confined to a place ; but where friendship is, all offices of life are, as it were, granted to him and his deputy; for he may exercise them by his friend. How many things are there which a man cannot with any face or comeliness say or do himself? A man can scarce allege his own merits with modesty, much less cxtol them; a man caunot sometimes brook wo supplicate or beg; a aid a number of the like: hut all these things are graceliul in a friend's mouth, which are blushing in a man's own. So asain a man's person hath many proper relations which he cannot put off. A man cannot speak to his son but as a father; to his wife but as a husband; to his enemy but upon terms: whereas, a fricnd may speak as the case requires, and not as it sorteth to the person."
Several of our poets have descanted upon the nature, the delights, and adivantages of friendship: we shall terninate this article with an extract or two from one of them, the author of the Night Thoughts.

Friendship's the wine of life; but friendship new

$\mathrm{O}!$ for the bright complexion, cordial warmhth, And elevating spirit of a friend, For twenty summers rip'ning by my side; All feculence of falsehood long thrown down; All social virtues rising in his soul, As crystal clear, and smiling as they rise! Here nectar fows; it sparkles in our sight; Rich to the taste, and genuine from the heart.

Deliberate on all things with thy friend:

But since friends grow not thick on ev'ry bough,
Nor ev'ry friend unrotten at the core;
First, on thy friend, delib'rate with thy self; Pause, ponder, sift; not eager in the choice, Not jealous of the chosen; fixing, fix; Judge before friendship, then confide till doath.

Of friendship's fairest fruits, the fruit most fair

Is virtue kindling at a rival fire, And, emulously, rapid in her race. O the soft enmity: endearing strife !
This carries friendship to her noon-tide point, And gives the rivet of eternity.

FRIESL.AND, one of the united provinces of the Low Countries. It is brounded on the east by the river Lauyers, which parts it frow

FRI

FRI

the lordship of Groningen, on the south by Overysel, on the west by the Zuider-Zee, and on the north by the German ocean. It is 30 miles from north to south, and $\varepsilon 8$ from east to west. The land is very fertile in corn and pisture; the horses are large, and the cows and sheep prolific. It is divided into three parts; Westergo to the west, Ostergo to the east, and Sevenwalden to tine south. The islands of Sheling, Ameland, and other small ones, are dependent on this province. The principal towns are Leuwarden the capital, Francher, Dockun, Hariinsen, and Staveren.

Friesland (East), a province of Germany, in the circle of Westphalia, lying near the German ocean. It is hounded on the south by the bishopric of Munster, on the east by the county of Oidenburg, on the west by the province of Groningen, and on the north by the sea, being about $\dot{50}$ miles in length, and 30 in breadth. It belongs in Pruscia, and was formerly called the county of Embilen. It is a very ferite country, and feeds a great number of cattle; but it was greatly damared by an inundation in 1717, and the repair of the dykes cost an immense sum. The principal towns are Norden, Leeer, Essens, Whitmunde, and Aurick. Einberen was an imperial city, and the principal place in the enuntry; but now bel,nes al:o to the king of Prussia, who bought it of the Dutch.

Friestand (West), another name for that pari of Holland called N. Holland. The states ai Holland hence take the titie of the states of Hediurkl and W. Friesland.
FRIt:ZE. s. (drap de frise, Fr.) A coarse worm cloin, made perhaps first in Friesland (M) M/fon).

Fiffece. Frize. s. (In architecture.) a large flat member which separates the anchitrae smon the cornice; of which there are as ma:ly kinds as there are orders of columns (Hlimi.).
FRI'EZED. a. (from frieze.) Shagged or naiped with frieze (Addison).

FRI'EZELIKE. a (frieze and like.) Resembling a fricze (Adision).
FHIG.ITE, among seamen, a ship of war, light built, and that is a grool sailer. A frigate has commonly two decks, whence that called a light fricite is a frizate with only one deck. These vessels mount from 20 to $4 i$ guns, and make capital cruizers. Merchantmen are said to be frigate-b, inilt, when the disposition of the decks have a descent of four or five steps from the quarter-derk and forecastle into the waist, in contralistinction to those whose decks are ou a comtinued line for the whole length of the ship, which are called galley-built. Formerls the name of frigate was only known in the Mediterranean, and applied to a kind of long vessels navigated in that sea with sails and oars. Our countrymen were the first who appeared in the ocean with those ships, and equipped them for war as well as commerce.
FRIGATOON, a Venetian vessel, commonly meed in the Adriatic. It is built with a
square stern without any fore mast, having only a main-mast, mizen-mast, and bowsprit.

FRIGEFA'CTION. s. (frigus and facio, Lat1.) The act of making cold.

To FRIGHT. r. a. (fnishzan. Saxon.) To terrify; to disturb with fear (1 , y den).
Fitght, or Terfor, a suiden and violent degree of fear. See Fear. Sudden fear is frequently productive of very remarkable effects upon the human system. Of this many instances occur in meedical writings. In general, the efiects of terror are a contraction of the small vessels, and a repulsion of the blood into the large and internal ones; hence proceed gencral oppression, trembling, and irregularity in the motions of the heart, whilst the lungs are also overcharged with bloxd.

Frights often occasion incurable diseaces, as epileviy, stupor, madness, \&ic. In this way they have evidently killed many, by the :pitation into which they have thrown the spirits, already to much disordered. We have also accounts of persons absolutely killed by terrors when in perfect health at the time of receiving the shock. Out of many instances, the following is selected as one of the most singular: "George Grochantzy, a Polander, who had inlisted as a soldier in the service of the king of Prussia, deserted during the last war. A small party was sent in pursuit of him; and, when he least expected it, they surprised him singing and dancing among a company of preasants, who were got together in an inn, and were making merry. This event, so sudden and unforesech, and at the same time so dreadful in its consequences, struck him in such a manner, that, giving a great cry, he became at once altogether stupid and inseusible, and was seized without the least resistance. They carried him away to Glocau, where he was brought before the council of war, and received sentence as a deserter. He suffered himself to be led and disposed of at the will of those about him, withnut uttering a word, or giving the least sign that he knew what had happened or would happen to him. Ile remained immoveable as a statue wherever he was placed, and was wholly passive with respect to all that was done to him or about him. During all the time that he was in custody, he neither ate, nor drank, nor slept, nor had any eracuation. After sone time they knocked off his fetters, and left him at liberty to go whither he would. He received his liberty with the same insensibility that he had showed upon other occasions: he remained fixed and imrooveable; his eyes turned wildly here and there without taking cognizance of any object, and the inuscles of his fice were fallen and fixed like those of a dead body. Being left to himself, he passed 90 days in this condition, without eating, drinking, or any eracuation, and died on the 2oth day."

Yet frights have been known not only to cause, but also to cure, diseases. Mr. Boyle speaks of agues, gout, and sciatica, cured by this means. To turn from the serious to the

F R I

Judicrous effects of fear, the following instance of the latter sort, quoted from a French author by Mr. Andrews, in his volume of Anecdotes, slicws upon what slight occasions this passion may be sometimes excited in a very high degree, even in persons the most unlikely to entertain such a guest. "Charles Gustavns (the successor of Christina of Sweden) was besieging Prague, when a boor of most extraordinary visigge decired admittance to his tent; and, being allowed entrance, offiered, by way of amusing the king, to devour a whole hog of one hundred weight in his presence. The old general Konigemare, who stood by the king's side, and who, soldier as he was, had not got rid of the prejudices of his childhood, hinted to his royal master that the peasant ought to be burnt as a sorcerer. 'Sir,' said the fellow, irritated at the remark, 'if your majesty will but make that old gentleman take off his sword and his spurs, I will eat him immediatly before I begin the hog.' General Konigsmare (who had, at the head of a body of Swedes, performed wonders against the Austrians, and who was looked upon as one of the bravest men of the age) could not stand this proposal, especially as it was accompanied by a most hideous and preternatural expansion of the frightful peasant's jaws. Without uttering a word, the veteran suddenly turned round, ran out of the court, and thought not himself safe until he had arrived at his quarters; where he remained above 2.4 hours locked up securely, before he hard got rid of the panic which had so severely affiected him."

Fear, observes Dr. Beattie in his Elements of Moral Science, should not rise higher than to make us attentive and cautious: when it gains an ascendency in the mind, it becomes an insupportable tyranny, and renders life a burden. The object of fear is evil; and to be exempt from fear, or at least not enslaved by it, gives dignity to our nature, and invigorates all our faculties. Yet there are evils which we ought to fear. Those that arise from ourselves, or which it is in our power to prevent, it would be madness to despise, and audacity not to guard against. External evils, which we cannot prevent, or could not avoid without a breach of duty, it is manly and honourable to bear with fortitude. Insensibility to danger is not fortitude, no more than the feeling pain can be called patience; and to expose ourselves unnecessarily to evil is worse than folly, and very blameable presumption. It is commonly called fool-hardiness; that is, such a degree of hardiness or boldness as none but fonls are capable of. See the article Fortituee.

To FRI'(illTEN. v.a. To terrify; to shock with dradi (Prior).

FRI'GHTFLL. a. (from fright.) Terrible; dreadful; full of terror (Silahespicare).
FRI'(illTFLLI.Y. ad. (from frightful.) Dreadiullv: horribly (Burnet). FRIGHTFULNFDS. s. (from frightful.) The power of impressing terrour. FRI'GID. a. (frigidus, Latin.) 1. Cold;

FRI

wanting warmth (Cheyne). 2. Wanting warmth of atfiection. 3. Impotent; without warmth of body. 4. Dall; without fire of fancy (Surifo).

FRIGl'DITY.s. (frigiditas, Lat.) I. Coldness; want of warmtio. 2. Dulness; want of intellectual fire (Pope). 3. Want of corporeal warmth (Glanville). 4. Coldness of affection.

FRI'GIDLY. ad. (from frigid.) Coldly; dully: withont affection.

FRI'GIDNESS. s. (from frigid.) Coldness; dulness : want of affection.

FRIGORIFIC. s. (frigorificus, frigus, and facio, Latin.) Causing cold (Quincy).

To FRILL. v.a. (frilleur, Fr.) To quake or shiver with cold. Used of a hawk; as, the hawk frills.
FRINGE. s. (frange, French.) Ormamental appendages added to dress or furniture (Wotton).
'o'o Fringe. v. n. (from the noun.) To adorn with fringes; to decorate with ornamental appendages (Fairfar).

Fringe-tref. See Chionanthus.
FRINGED COROL. In botany, fimbriate. The edge surrounded by hairs or bristles not parallel or so regularly disposed as in the ciliate corol. Exemplified in Menyanthes trijoliata.

FRINGILLA. Finch. In zoologv, a yenus of the class aves, order passeres. Bill conir, straight, pointed. A hundred and twelve species; distributed over the globe; of which ten are natives of our own country.

The following are those most worthy of notice.

1. F. Calebs. Chaffinch; of which there are six varieties.
a. Limbs black; quill feathers white on both sides ; the three first without spots; two of the tail feathers obliquely white.
ϵ. Ashy; beneath flesh-colour; wingcoverts white, black in the middie; wings and tail black.
r. Body white.
. Collar and crown white.
i. Fore-part white; hind-part ferruginous.
ζ. Back yellowish, beneath very palc. Fenale wants the red on the breast and other parts. Inhabits Europe and Africa: the females migrate from Sweden to Holland in the autumn, leaving their nates behind, and recurn in the spring; sings early in the vernal months; lavs froin four to five dull white egors spotied with deep purple.
2. F. Montifringilla. Mountain-finch. Brambling. Three varieties.
~. Base of the wings beneath fine yellow.
3. Jye brows and band on the nape black; body beneath and rump white; clin and breast reddish ; wing-coverts with a white band.
\%. Borly paler; head white.
lithabits Europe and Siberia; variety 6 . Asia. Six and a quarter inches long; feds

FRI

on the mast of beech and other trees; egys sellowith, spotted.
3. F. Carduelis Goldfinch. Thistle-finch. Nine rarieties.
a. Quill feathers black, and (except the outmost) marked with fine yellow in the middle; two outmost tall-feathers white in the middle; the rest tipped with white.
\& Rezion of the bill and eyes snowy.
\%. Head streaked with red or yellow.
d. Head and neek black; bill spotted with red at the base.

- Whitish; front, cheeks, and chin red; wings and tail brown-ash.
ヶ. White; quill-feathers tipt with white.
v. Black; middle tail-feathers sulphur.

0. Blackish ; breast greenish ; body beneath achy ; frontlet saffron.
c. Hybrid between the gold and canaryfinch; body yellowish brown, beneath yellow; tail yellow, tipt with white.
Inhatits Europe, Asia, and Africa; sings exquisitely, and is very docile; frequents orchards, and feeds on various seeds; builds frequently in apple or pear-trees, and lays five white egros, with deep purple spots on the opper end. Lives till about the age of twenty years.
1. F. Canaria. Canary-bird. Canary-finch. Tiro varieties.
a. Bill and body straw-colour; quill and tail-feathers greenish.
2. Body above brown ; eye-brows yellow.

Inhabits the Canary Islands; the second variety Africa. Was probably imported into Furnpe for the first time in the thirteenth or fourteenth century. Gesner is the first naturalist who mentions it. In the age of Aldrorannus it was estecmed a great rarity. Is easily tamed, and domesticated every where for its exquisite song; feeds on various seeds; chiefly hemp and Canary-grass; proves prolific with most other species of fringilla, and even with wome which are of a different genus, as, for example, with emberiza citrinella or yellowhammer. But the canary male is more shy than the female, and will associate with no female but of his own species. Its age extends to about fnurteen or fifteen years.
5. F. Spinus. Siskin. Quill-feathers yellow in the middle, the first four without spots; tail-feathers yellow at the base and tipt with black. Three other varieties from difference or different distribution of colours. Inhabits our own country and Europe generally; four and three quarters inches long; feeds on various seeds; is easily tamed, and sings moderately. Called in the bird-shops aberdavine, and is said to have originated in Russia.
6. F. Cannabina. Greater Redpole. Ches-nut-brown, beneath reddish-white; wings with a longitudinal white band; spot on the crown and breast red; bottom of the breast bloodred in the male, but in the female dirtyyellow. Inhabits Europe and America; five and half inches long. Easily tamed and eheerful.

F II

7. F. Linnta. Common Linnet. Chesnutbrown, beneath whitish; wings with a longitudinal white band; tail-feathers each side edged with white; bottom of the breast blondred in the male, but in the female streaked with brown, pointing downwards. Inhabits Europe; five and a half inches long; feeds principally on hemp secds, which it peels before it eats; sings delightiully; lays five whitish eqgs with chesnut spots: breeds among furze and white thorn; the outside of the nest composed of furze and bents, and lined with wool and hair.
8. F. Montium. Twite. Mountain Linnet. Black, varied with reddish, beneath whitish; feathers of the lower part of the neck black in the middle; wings with a white band; rump red. Jnhabits Europe; six and a half inches long. The female is without the red nark on the rump. It has no note, but merely twitters, whence its name.
9. F. Domestica. House-sparrow. Four varieties.
a. Quill and tail-feathers brown; body grey and black; wings with a single white band.
f. White.

Yellow, above clonded with chesnut.
e. Blackish.

Inhabits Furope, Africa, and Asia; five and three quarters inches long; frequents inhabited place, and builds ofteli under the eaves of thatched houses; feeds on seeds and fruits, and infests gardens; is proverbially salacions; eygs pale ash-colour; with thick set brown spots; is crafty, and not easily snared.
10. F. Petronia. Riny-sparrow. Grey; eyebrows white; chin pale vellow. Two other varieties from a trifling difficrence or different disposition in the colours. Inhabits Europe, especially Germany; five and three quarters inches loug; feeds on insects, and builds in hollow trees.

FRI'PPERER. s. (from frippier, French.) Otue who deals in old things vamped up.

FRI'PPPERY. s. (from fripperic, Firench.) 1. Places where old clothes are sold (INowel). 2. Old clothes; cast dresses; tattered rags.

To FRISK. v. n. (frizzare, Italian.) I. To leap; to skip (Locke). 2. To dance in frolic or gayety (L^{\prime} Estrange).

FRISK. s. (from the verb.) A frolic; a fit of wanton gavety.

FRI'SKER. s. (from frisk.) A wanton; one not constant or settled (Camden).

FRI'SKINESS. s. (from frish.) Gayety ; liveliness.

FRI'SKY. a. (frisque, French; from frisi.) Gav: airy.

FRIT, or Fritt, in the glass manufacture, is the matter or ingredients whereof glass is to be made, when they have been calcined or baked in a furnace. A salt drawn from the ashes of the plant kali, or from fern, or other plants, mixed with sand or flint, and baked together, makes an opaque mass called by the glass-men frit; probably, from the Italian fritlare, to fry ; or because the frit when melted

FRI

runs into lumps, like fritters, called by the Italians fritelli. Fiti, by the auc, ants, was called
 under which aume it is described by Pliny thus: Fine sand from the Volturnian sea, mixed with thace times the quantity of nitre, and melted, makes a mass calied ammonitrunn; which benge rebahed makes pure glass. Firit, Neri obsernes, is only the calx of the materiais which make glass; which though they might be melted, and glass be made without thins calcining them, yet it would take up much more time. This calcining, or making of frit, serves to mix and incorporate the materials togetier, and to evaporaie all the superfluous humidity. The trit, once made, is readily fured and turned into glass.
FRITH. s. (jrelum, Latin.) 1. A strait of the sea where the water, being confined, is roush (Dryden). 2. A kind of net (Carew).
likifufforth. Seforth.
Filitillakia. Fritillary. In botany, a genus of the class hexandria, order monogynia; corol inferior, six-petailed, campanulate, with a nectariferons cavity above the claws; stamens as long as the corol; seeds flat. Six species; all oi them bulbous rooted, Howering percminuls, producing annual stalks nearly a yatd high, ornamented with canspanulate liliaceous diowers. Several are European plants, some suppused to have had a Persian origin, and one F. mekagris indigenous to the meadows of our own country. See Botany, plate cxvill.

Fhi'tillary. See Fritillaria.

Fritillary. (Crassa Major.) Sce Stapelja.
Fritillary. (Crassa Minor.) SeeStapelia.
FRI'TINACY. s. (from frilinio, Latin.) The scream of an insect, as the crichet or cicada (Brown).
FRI'TIER. s. (friture, French.) 1. A small piece cut to be fried ('Tusser). 2. A frayment; a small piece (Bacon). 3. A cheesecake; a wig (Ainsworth).
To Fritter. v.a. (from the noun.) To eut meat into small pieces to be fried. 2 . To break into small particles or fragments (Pupe).
FRI'V OLOU 'S. a. (frivolus, Latin.) Slight; trifling; of no moment (Roscommun).
FRI'VOLOUSLY. ad. Trifingly; without weight.
FRI'VOLOUSNESS. s. Want of importance; triflingness.
FRIULI, a province of Italy, bounded on the N. by Carinthia, on the S. by the gulf of Venice, on the \mathbf{E}. by the county of Goritz and the gulf of Trieste, and on the W. by Trevisano and the Belloncsc. It is fertile in wine and fruits, and belongs partly to the Venetians, and partly to the house of Austria. Udina is the capital.

Frize, or Freeze, a kind of woollen eloth for winter wear, being freezed or napped on one side.
Frize, in architecture. Sce Freeze.
FRIZING of cloth, a term in the woollen

FR 0

manufactory, applied to the forming of the nap of a cloth, or stuff, into a number of little hard burrs, or prominences, covering almost the whole ground thereof. Frizing is best performed by a mill, the structure of which is as follows: the three principal parts are the frizer or crisper, the frizing table, and the drawer or beam. The two first are two equal planks or boards, each about 10 feet long, and 15 inches broad; differing only in this, that the frizing-table is lined or covered with a kind of coarse woollen stufti, of a rough sturdy nap; and the frizer is incrusted with a kind of ce-ment-composed of glue, gum arabic, and a yellow sand, with a litle water, or urine. The beam, or drawer, thus called because it draws the stuff from between the frizer and the friz-ing-table, is a wooden roller, beset all over with little, fine, short points or ends of wire, like those of cards used in carding of wool.

The disposition and use of this machine is thus: the table stands immoveable, and bears or sustains the cloth to be frized, which is laid uith that side uppermost on which the nap is to be raised: over the table is placed the frizer, at such a distance from it as to give room for the stuff to be passed between them: so that the frizer, having a very slow semicircular motion, meeting the long hairs or naps of the cloth, twists and rolls them into little knobs or burrs; while, at the same time, the drawer, which is continually turning, draws awray the stuff from under the frizer, and winds it over its own points. All that the workman has to do while the machine is going, is, to stretch the stuti on the table as fast as the drawer takes it off, and from time to time to take off the stuff from the points of the drawer.

To FRI'ZLE. v. a. (friser, French.) To curl in short curls like nap- of frieze (Hakeuill)
FRI'ZLER. s. (from frizle.) One that makes short curls.

FRO. ad. (of ena, Saxon.) Backward ; regressively: to and $f r o$, backward and forward, $t o$ and from (Pope).

FROBBENIUS (Juhn), a learned German printer, who flourished at Basił in the sixteenth century, and was greatly esteemed by Erasmus, whose works he priuted, as he also did chose of St. Augustine and Jerom. This usetul man died in 15?), and left his business to his son Jerom Frobenius, and his son-in-law Nicholas Episcopius.

FROBISHER (sir Martin), an English navigator, was born near Doncaster in Yorkshire, and bred early to the sea. The spirit for nautical discorery being then at a great height, Frobisher was ambitious of gaining a name by finding the north-west passage, and being patronized by the carl of Warwick and other noblemen, he sailed from Depiford, June 8, 1576, and returned without having effected the principal object of his voyage, Octaber 2 following. However he discurered some lands and straits, to one of which he gave his own name, and brought with him a lump of ore, which being found to contain gold, he was sent

FRO

a second time in a ship of the royal nary, attended by two barks, in 1577. Having procured what ore he could, he returned to England, and met with a gracious reception from his emplowers and the queen. Another voyaze was uidertaken, but the high expectations which had been formed respection the gold mines rabished. In 1585 he served under sir Fraicis Drake in the W'cst Indies, and in 1588 he con. .anaded the Triumph, and had a share in the glorions difteat of the Spanish armada. The satue sear the was knighted on board of his owa ship. This gallant officer was killed in asauluty the fort of Croyzon, near Brest, Yor 7. 1.9t. His remains were brought to Plan:outh, and there buried.
Flubisher's Straits, lie a litule to the nuriansurd of Cape Farewell in West Greenland, aud were discoveral by sir Martin Fiobiver. Lat. 63. 0 N. Loin. 42. W.
FROCK. s. (froc, French.) 1. A dress; a cost (Millon). 2. A kind of cluse coat for men (Dry ten)
FRODLINGHAM, a town in the East Riuing of Yurkshire, with a market on Thursdas. Lat. 53.56 N . Lon. 0. 12 E .
FRODSHAM, a town in Cheshire, with a caste at the W. cod, and a market on Wednevars. Lat. 53. 21 N . Lon.2. 48 W .
FRIELICHIA. In botany, a genus of the dlass terandia, order monozvnia. Calyx superinr, four-toothed; corol tubular ; berry onexutud, juiceless; seed arillate. One species; a simab of the island Trinidad, with square branches; terminal panicle.
FiroG. s. (fnozza, Saxon.) In amphibi"gy. See Rana.
Fiog, in the manage, the centrical horny subtance at the bouom of a horse's foot, spreading wide from the heel, having a cleft in the midelf, and terminating in a point toward the toe. To the internal parts is attached the lower extrenity of the tendons, and the frog is the basis by winich their elasticity is supported. The frog is subject to a disease called the frush, or thrush, which, when virulent, is terroed running thrush ; it sometimes arises from imernal heat, by standing too much upon funl hot liter (particularly in the livery stables of the metropolis), and at others from a stagDant or torpid state of the fluids in the extremities, for want of proper exercise, leg-rubbing, and keeping the feet clean.
Frog-pish, in ichthyology. See Lophius.
FROISE. s. (from the French froisser.) A kind of food made by frying bacon enclosed in a pancake.
FROLIC. a. (vrolijck, Dutch.) Gay; full of levity; full of pranks (\boldsymbol{W} aller).
Pro'sic. s. A wild prank; a fight of Whim and levity (Roscommon)
To Fro'sic. v. n. To play wild pranks; to play tricks of levity and gayety (Rowe).
FR'OLICLY. ad. Gayly; wildy.
FROLLCSOME. a. Full of wild gayety.
FROLICSOMELY. ad. With wild prect.

FROLICSOMENESS. s. Wildness of gavety ; pranks.
FROM. prep. (fnain, Saxon.) 1. Away: noting privition: his land was takien from him (Dryden $^{\text {r }}$. 2. Nuting reception ; I learned this from him (Pope). i I Noting procession, descent, or birth the ciume froin kings (Blackgrorc). 4. Noting transmission (Shahspeare). 5. Noting alistraction or vacation : frce from farult (Shakspeare). (6. Noting succession: from murning to night (Burnet). 7. Out of : noting emission (Milion). 8. Notiny progress from premises to inferences: from dignity we infer honrur (South). 9. Noting the place or person from whom a message is brought (Shuksp.). 10. Out of: nuting emission (Milton). 11. Because of; noting th. reason or motive of an act : he is lavish from kindiess (Tillotson). 12. Ont of: noting the ground or cause of any thing: earthquakes ars from fire (Dryden). 13. Not near to : noting distance (S/akspeare). 14. Noting separation or recession (Dryden). 15. Noting exemption or deliverance: he is free from his pain (Prior). 10. Noting absence (Shahspeure). 17. Noting derivation (Dryden). 18. Since: we have leen growing rich from the conquest (Tillatson). 19. Contrary to: not in use (Donuc). 20. Noting removal (Dryden). 21. From is frequently joinerl by an ellipsis with adverbs: as, from aljove, from the parts above (Hooker).

FROME, a river which rises in the S.W. part of Dorsetshire, and empties itself into the bay that forms the harbour of Poole.
Frome, a river in Somersetshire, which flows by the town of Frome, and unites with the Avon at Bristol.

Frome, a cown of Somersetshire, with a market on Wednesdays. The article chiefly made here is second cloths, the principal material of which is fine English wool. This town contaius 1709 houses, and 8748 inhabitants. Lat. 51.10 N. Lon. 2. 16 W .

FRO'MWARD. prep. (fram and peano, Saxon.) A way from ; the contrary to the word tocard: not ill use (Siducy).

FROND, Frons: anciently written fruns (from Bev pullulo, to germinate or bud); and signifying a twig of a tree with its leaves. Linnéus applies this term to the peculiar leafing of palms and ferns. He defines it to be a kind of trunk or stem, which has the branch united with the leaf, and frequently with the fructitication.

FRONDESCENT, in botany, applied to the leafing season. The time of the year when plants unfold their leaves.

FRONDI'FEROUS. a. (frondifer, Latin.)

Bearing leaves.

FRO'NDOUS, or Frondo'se, in botany, applied to the stem, means the stem of a palm, or fern; applied to the flower, it means a leafy proliferous flower. It sometimes happens in the rose, anemone, \&c.

FRONS. (frons.) The forehead. The part between the eyebrows and the hairy scalp.

FRONT. s. (frons, Latin.) 1. The face (Crecch). 2. The face of an enemy (Daniel).

FR 0

3. The part or place opposed to the facc. (Bacon). 4. The van of an army (Milton). 5. The forepart of any thing, as of a building (Brown). 6. The most conspicuous part or particular.
To Front.v.a. (from the noun.) 1. To oppose directly, or face to face; to encounter (Dryden). 2. To stand opposed, or overagainst any place or thing (Addison).

To Front. v.n. To stand foremost (Shakspeare).

FRO'NTAL. s. (frontale, Latin.) Any external form of medicine to be applied to the forehead (Quincy. Broven).

Frontal, in architecture, alittle pediment, sometimes placed over a small door or window.

Frontal bone. Os frontis. The cockle-shell-like bone which forms the forehead, and contains the two anterior lobes of the brain. Its principal processes are the two superciliary arches, and two external and internal orbital apophyses. Its cavities are two orbital cavities, 2 notch for the trochlea of the superior oblique muscle, two large pituitary sinusses, one on each side above the root of the nose, called the frontal sinuses; the ethmoid notch, and superciliary foramen. In the fetus it is composed of two bones. The union of the frontal bone with the parietal bones forms the coronal suture.

Frontal sinus. See Frontal bone.

FRONTA'LIS, in myology. See Occipito

FRONTALIS

frontalis verus. See Corrugator sumercilit.

FRO'NTATED. a. (from frons, Latin.) The frontated leaf of a flower grows broader and broader, and at last, perhaps, terminates in a right line; in opposition to cuspated (Quincy)

FRO'NTBOX. s. (front and lox.). The box in the playhouse from which there is a direct view to the stage (P ope).

FRO'NTEI). a. (from front.) Formed with a front (Millon).

FRO'NTIER. s. (frontiere, French.) The marches ; the limit ; the utmost verge of any territory; the border (Millon).

Fróntier.a. Bordering (Adison).
FRONTIGNIAC, a town of France, in the department of Herault, and late prorince of Languedoc, remarkable for its excellent Muscadine wines. Lat. 43.46 N . Lon. 3.48 E .

FRONTINUS (Sextus Julius), an ancient Roman writer, was of consular dignity, and flourished under the emperors Vespasian, Titus, Domitian, Nerva, and Trajan. He commanded the Roman armies in Britain, was made city-prator when Vespasian and Titus were consuls, and Nerva made him curator of the aqueducts, which oceasioned his writing De aquaductibus urbis Romæ. He wrote four books upon the Greek and Roman art of war; a piece De re agraria, and another De limitibus. These have been often separately re-printed; but were all collected together in a neat edition at Amsterdam, in 1661, with

FR 0

notes, by Robertas Keuchenius. He died under Trajan.
FRO'NTISPIECE. s. (frontispicium, Lat.) That part of any building or other body that directly meets the eye (Milion). Hence, an engraving at the beginning of a book is called a frontispiece.

FRONTLESS. a. (from front.) Not blushing; wanting shame (Dryden).

FRO'NTLET. s. (from frons, Latin.) A bandaze worn upon the forehead (Wiseman).

FRONTON, in architecture, a pediment.
FRO'NTROOM. s. (front and room.) An apartment in the forepart of a house (Moron).

FRORE. a. Frozen : not in use (Milton).
FRORNE. a. Frozen : obsolete (Spenser).
FROS'I. (fnorr.) 1. The last efliect of cold; the power or act of congelation (South). 2. The appearance of plants and tres sparkling with congelation of dew (Pope).

Frost, such a state of the atmosphere as causes the congelation or freczing of water or other fluids into ice. In the more northern parts of the world, even solid bodies are affected by frost, though this is only or chiefly in consequence of the moisture they contain, which being frozen into ice, and so expanding as water is known to do when frozen, it hursts and rends any thing in which it is contained, as plants, trees, stones, and large rocks. Many fluids expand by frost, as water, which expands about toth part, for which reason ice floats in water; but others again contract, as quicksilver, and thence frozen quicksilver siuks in the fluid metal.

Frost, being derived from the atmosphere, naturally proceeds from the upper parts of bodics downwards, as the water and the earth: so, the longer a frost is continued, the thicker the ice becomes upon the water in ponds, and the dceper into the earth the ground is frozen. In about 16 or 17 days frost, Mr. Boyle found it had penetrated 14 inches into the ground. At Moscow, in a hard season, the frost will penetrate two feet deep into the ground: and Captain James found it penetrated 10 feet deep in Charlton Island, and the water in the same island was frozen to the depth of six feet. Sheffer assures us, that in Sweden the frost pierces two cubits, or Swedish ells into the earth, and turns what moisture is found there into a whitish substance, like ice; and standing water to three ells or more. The same author also mentions sudden cracks or rifts in the ice of the lakes of Sweden, nine or ten fet deep, and many leagues long; the rupture teing made with a noise not less loud than if many guns were discharged together. By such means, however, the fishes were furnished with air ; so that they are rarely found dead.

The natural history of frosts furnishes very extraordinary cffects. The trees are often scorched and burnt up, as with the most excessire heat, in consequence of the separation of water from the air, which is therefore very drying. In the great frost in 1683, the trumks of oak, ash, walnut, \&c. were miserably split and clefi,

FROST.

w that they might be seen through, and the cracks ofien attended with dreadful noises like the explosio: of fire-arms. Philos. Trans. Sumber 103.
The close of the year 1708, and the beginning of 1709 , were remarkable throughout the geciest part of Europe, for a severe trost. Dr. Derhan says, it was the greatest in degree, if not the most universal in the memory of man ; extending through most parts of Europe, though scarcely felt in Scotland or Ireland.
In very cold countries, meat may be preservad by the frost six or seven months, and prove twerahly good eating. See captain Middleton's oinerrations made in Hudson's Bay, in the Puilos. Trans. Number 46j, sect. 2.
In that climate the frost seems never out of the ground, it having been found hard frozen in the two summer uonths. Brandy and spirits, set out in the open air, freeze to solid ice is tirree or four hours.
Jikes and standing waters, not above 10 or 12 feet deep, are frozen to the ground in winter, and all their fish perish. But in rivers where the current of the tide is strong, the ice does not reach so deep, and the fish are preserred. Id. ib.
Soure remarkable instances of frosts in Europe, aud chiefly in England, are recorded as beiow : in the year
220. Frost in Britain that lasted five months.
250. The Thames frozen nine weeks.
s91. Most rivers in Britain frozen six weeks.
359. Severe frost in Scotland for 14 weeks.
sur. The rivers in Britain frozen for two m.onths.
558. The Danube quite frozen over.
bys. Thames frozen six weeks; booths built on it.
759. Frost from Oct. 1, till Feb. 26, 760.
827. Frost in England for nine weeks

85y. Carriages used on the Adriatic Sea.
gus. Most rivers in Eugland frozen two months.
923. The Thames frozen 13 weeks.
957. Frost lasted 120 days: began Dec. 22.
998. The Thames frozen five weeks.
1035. Severe frost on June 24 : the corn and fruits destroyed.
106.3. The Thames frozen 14 weeks.
1076. Frost in England from Nov. till April.
1114. Several wooden bridges carried away by ice.
1205. Frost in England from Jan. 14, till March 22 .
1:07. Frost that lasted 15 weeks.
1434. From Nov. 24, till Feb. 10, Thames frozen Jown to Gravesend.
1683. Frost for 13 weeks.

1708-9. Serere frost for many weeks.
1715. The sane for many weeks.
1739. One for nine weeks: began December 24.
1742. Scvere frost for many weeks.
1747. Severe frost in Russia.
1751. Severe one in England.
1760. The same in Germany.
1776. The same in England.
1788. The Thames frozen below bridge; booths on it.
1794. Hard frost of many weeks. Ther. at London, mostly at 20 below 0 of Fahrenheit.
Hoar frost, is the dew frozen or congealed early in cold mornings; chiefly in autumn. Though many Cartesians will have it formed of a cloud; and either congealed in the cloud, and so let fall; or ready to be congealed as soon as it arrives at the earth.

Hoar frost, M. Regius observes, consists of an assemblage of litule parcels of ice crystals, which are of various figures, according to the different disposition of the vapours, when met and condensed by the cold. Sce Freezing, and Congelation.

Frost, as is well known, is particulariy destructive to the blossom of fruit-trets; and the following method of securing such trees from being damaged by early frosts may be acceptable to many of our readers. A rope is to be interwoven among the branches of the tree, and one end of it brought down so as to be immersed in a bucket of water. The rope, it is said, will act as a conductor, and convey the effects of the frost from the tree to the water. This idea is not new : for the following passage may be found in Colerus: "If you dig a trench around the root of a tree, and till it with water, or keep the roots moist till it has bloomed, it will not be injured by the frost. Or, in spring, suspend a vessel filled with water from the tree. If you wish to preserve the bloom from being hurt by the frost, place a vesse! of water below it, and the frost will fall into it." Philosophical Magazine, No. 11.

An anonymous foreign writer suggests the practice of depriving, towards the latter end of autumn, those fruit-trees of their leaves, which are exposed to the injury of winter-frosts; and adds, that some precaution is necessary in this operation, to save the buds which are by nature destined to unfold in the succeeding spring from any external injury. Yet such defoliation ought not to be undertaken with all trees, at the same periorl of time; as those which possess a greater abimdance of sap, should be allowed to keep their leaves to a later scason, than others having a less portion of vegetable juices.

In order to recover and preserve such trees from total decay, as have evidently been injured by severe winter-frost, a correspondent has favoured us with the following easy and expeditious remedy; for the success of which he appeals to his repeated experience: When a tree appears to have suffered from intense cold, he advises to make longitudinal incisions in the bark, extending to the whole length of the trunk, on the north, west, and east sides; but never in a southern direction. As the castwinds are dry and piercing, very few and superficial slits only should be made on that side.

FR 0

This operation ought to be performed in the nonth of March, before the first sap rises; and repeated in June, while the second sap ascends; but always so managed, that only the uppermost bark, or epidermis, be divided; as too deep an incision, though hammless in the spring, might be attended with fatal consequences in the heat of summer. In trees, however, which are thoroughly frozen, it will be useful to make decper cuts ; thus in give vent to the stagnant fluids, and promote their circulation. These cuts should be directed against the centre of the tree, drawn in a straight line downwards; for, in the contrary case, the bark is apt to separate in chinks, afford shelter to vermin, and eventually frustrate the attempt. By a strict adherence to these rules, it will be found that apple-trees, in particular, when slit in every direction (except the south side) retain all their bark; others, which had undergone one-half of the operation, were but partully preserved; and such as had received only two cuts, retained only the intermediate portion of the bark, from which they produced new shoots. This simple method is farther attended with the additional benefit that, while contributing to the growth of the tree thus afficted, it tends to prevent the decay of those which have in the prcceding year been injured by the depredations of caterpiliars, and the subsequent stagnation of their fluids.

Although it has been generally believed, that frost meliorates the soil, and especially claylands, yet as ice contains no nitrous particles, such improvenents can only be of a transitory nature, by enlarging the bulk of some moist soils, and leaving them more porous for some time after the thaw; but, when the water has exhaled, the ground become's as hard as before, being compressed by the incumbent weight of the alr.
Nor is the salutary influence of frosty seasons, on the health of mankind, in the least confirmed by the annual bills of mortality; as many old and debilitated persons, whose vital heat is insulficient to excite into action their vessels, already too unsusceptible of irritation, die in conseguence of Iong frosts, during severe winters. Birds, and other wild animals, as well as tender vegetables, perish benumbed from the same callise. It deserves, however, to be remarked, that a sharp dry frost docs not affect the human skin with that sensation of chilly and piercing cold which we experience when the air is loaded with moisture, the temperature of which is near the freezing point. This remarkable difference arises from the intense degree of cold produced by the evaporation of flads which entinually takes place on the surface of living bodies, where it naturally produces a wore perceptible effect, than the simple contact of dry air would occasion, when it is but a few degrecs below freezing. To the young and robust, therefore, frost is more pleasiug than moist air; as, in the former, they are able to keep thenselves warm by increased exercise; which, in the latter, only tends to promote and render the evaporation

FR 0

more severely felt on the skin. For the same reason, Dr. Darwin observes, severe and continued frosts "destroy the children of the poor, who want both food, fire, and clothing in this harsh clinate."

To preserve vegetable roots, as well as fruit, from the effect of cold, the fnilowing dircetions will be sufficient: Dry sand, and cut straw, are eminently adapted to that purpmse. Potatoes, turnips, onions, \&.c. should be loostly placed on sand, either under or above goound, and slightly covered with cut straw or chaff; but carrots and parsurips, we are informed, may be kept during the whole winter, by placing them in rows or heaps, so that their tops project at the sides, being the reverse of the method followed with turnips when packed in carts.
If, notwithstanding these precautions, regetables shoukd be injured by the frost, it will be advisable, especially with frozen potatres, to immerse them in cold water for a short time, on the approach of a thaw. By this experlient, the frosty particles are gradually extracted, and the vegetating principle is preserved, after the severcst seavon.
On the other hand, an intense degree of enld is also attended with some good effects. Thus, aromatic spirits possess a weaker flarour when newly distilled, than after they have been kept six or seven months, especially during the winter season. Experience has evinced, that this favourable change was produced only by the influence of cold; and M. Baume found, that by immersing quart bottles filled with liquors into a mixture of pounded ice and sea salt, for six or eight hours, the spirit proves as grateful to the palate as that which had been kept for several years.
FRO'STBIT'TEN. a. Nipped or withered by the frost (Mortimer).

FROSTED. a. Laid on in inequalities like those of the hoar-frost from plants (Gay).
FRO'STILY. ad. (irom frosty.) I. With frost; with excessive cold. i. Without warmth of affection (Ben Jonson).
FRO'STINESS. s. (from frosty.) Cold; freezing cold.

FRO'STNAIL. s. (frost and nait.) A nail with a prominent head driven into the horse's shoes, that it mav pierce the ice (Grew).
FRO'STWORK. s. (frost and wort.) Work in which the sabstance is laid on with ine fualitics, like the dew congealed upon shrubs (Blarkmore).
FRO'STY. a. (from frost.) 1. Having the power of congelation; excessive cold (f:Ess trange). z. Chill in affection; without warnth of kindness or courage (Shahspeare). 3. Hoary; gray-haired; resembling frost (Shahspeare).
FROTH. s. (froe, Danish and Scotish.) I. Spume ; foam; the bubhles caused in liquors by agitation (Bacon). 2. Any empty or senseless show of wit or eloquence. 3. Any thing not solid or substantial (Tusser).
Froth, from a horse's mouth when champing upon the bit, either in action upon the road, or in the field with hounds, may be con-
silered a distinguishing, and almost invariable sign of yood spitit and sound bottom; for a dull jatie, or a borse of the sluggish cart-breed, is very rarely io be seen with this appearance. It is aiso no indifierent criterion of health, and maas, in general, be rezarded as truiy indicative of condition: few, if any, hores of this description flyg upon a journey, or tire in the bield.
To Frote. v. n. (from the noun.) To foam; to throw out spume (D, y den).
FROCHILY. ad. (from frothy.) 1. With fram; with spume. 2. In an eupty trifing mamner.
FROTHY. a. (from froth.) 1. Full of foam, fruth, or spume (Bacon). 2. Soft; not solid; wasting (Bacon). 3. Vain; enpty; triting (LEstrange).
FRUL NCE. s. A distemper in which white spittle gathers about the hawk's bill (Nhinner).
To Frounce. v. n. To frizzle or curl the kair about the face (Ascham).
FRO'UZY. a. (A cant word.) 1. Fetid; musiv (Sinift). 2. Dim; cloudy (Swift).
FRO'WARD. a. (Enampeane, Saxon.) Peevish; ungovernable; angry (Temple).
FROW ARDLY. ad. (from froward.) Peerishlr: perversely (1saiah).
FROWARDNESS. s. (from froward.) Peerihness; perverseness (South).
FROWER, a tool used in clearing laths.
To FROWN. o. a. (frogner, old French.) To express displcasure by contracting the face to wrinkles; to look stern (Pope).
Frown. s. A wrinkled look; a look of displeasure (Shatspeare).

FRƠW NINGLY.ad. (from frozn.) SternIy; with a look of displeasure (Shakspeare).
FRO'W'Y. a. Musty; frouzy (Spenser).
FROZEN. part. pass. of freeze. 1. Conkeated with cold (Dryden). 2. Chill in affection (Sidney). 3. Void of heat or appetite (Pnie).

F. H. S. Fellow of the Royal Society.

FRCCTESCENT, in botany, applied to the fruiting season; the time when vegetables scatler their ripe seeds.
FRUCTI'FEROUS. a. (fructifer, Latin.) Bearing fruit.
FRLCTIFICATION, in botany, fruiting, 2 temporary part of vegetables, appropriated to generation, terminating the old and beginning the new vegetable. The essence of it consists in the flower and fruit ; and there is no fructification without anther, stigma, and se:sd. When perfect it consists of seven parts. 1. Calyx. 2. Crorol. 3. Stamen. 4. Pistil. 5. Pericarp. 6. Seed. 7. Receptacle. Of these the Your firse belong to the flower; the two next to the fruit; and the last is common $t o$ both.
Fructifica'tion.s. (fromifructify.) The act of causing or of bearing fruit; fccuncation; ferility (Broyn).
To FRU'CTIFY.v. a. (fruclifier, French.) To make fruitful; to fortilize (Granville).
To Fru'ctiry. v. n. To bear fruit (Hook.).
FRU'CICUOUS. a. (fructueux, French.)

FR U

Fruitful; fertile; impregnating with fertility (Philips).

Fillétus HORAII. SeeFruits (Summer).

FRD'GAL. a. (frugalis, Latin.) Thrifty; sparing ; parsimonious (Dryden).

FRU'GALLY. ad. Parsimoniously; sparingly; thrifuly (Dryden).

FRUGA'LITY. s. (frugalite, Fr.) Thrift; parsimony; good husbandry (Bucon).

FRU(il'FEROLS. a. (frugyic, Latin.) Bearing fruit (Ainsuorth).

FRUIT. s. (fruit, French.) 1. The product of a tree or plant in which the seeds are contained (Shuhspeare). 2. That part of a plant which is taken for food (Davics). 3. Production (Ephesians). 4. The offipring of the womb (Sandys). 5. Advantage gained by any enterprise or conduct (Swift). 6. The efficet or consequence of any action (Prooetss).

Fruir. Fructus. The seed with its pericarp. It is a fruit, however, whether there be a pericarp or not.

Fruitstalk. See Pedunculus.
Fruits (Summer). Fructus horai. Under this term physicians comprehend strawleerries, cherries, currants, mulberries, ra*berries, and the like. They possess a sweet sub-acid taste, and are exhibited as tietetic auxilliaries, as refrigerants, antiseptics, attenuarits, and apericits. Formerly they were exhitited medicinally in the care of putrid affections, and to promote the alvine and urinary excretions. Considering them as an article of diet, they afford litue nourishment, and are liable to produce flatulencies. .To persons of a bilious constitution and rigid fibres, and where the habit is disposed naturally, or from extrinsic causes, to an inflammatory or p:trescent state, their moderate, and even plentiful use, is salubrious; by those of a cold inactive disposition, where the vessels are lax, the circulation languid, and the digestion weak, they should be used very sparingly. The juices extracted from these fruits by expression, contain their active qualities freed from their grosser indigestible matter. On standing, the juice ferments and changes to a vinous or acetous state. By the proper addition of sugar, and by boiling, their fermentive power is suppressed, and their medicinal qualitics preserved. The juices of these fruite, when puritied from their leculencies by setting and straining, may be made into syrups, with a due proportion of sugar in the usual way.

FRU'ITAGE. s. (fruitage, French.) Fruit collectively; various truits (Mure).
FRU'ITBFARER. s. (fruit and learer.) That which problices fruit (M,rtimer).

FRU'I TBE.ARING. a. (fruit and bear.) Having the quality of producing fruit (Mortimer).
FRU'ITERER. s. (fruitier, French.) One who trades in fruit (Siatispeare).

FRU'ITERY. s. (fruiterie, French.) 1. Fruit collectively taken (Philips). 2. A fruitloft; a repwsitory for fruit.

FRU'ITFUL a. (fruit and full.) 1. Fertile; abundantly productive, liberal of vegetable

FRU

product (Sidney). 2. Actually bearing fruit (Shalspeare). 3. Prolific; childbearing; not barren (Shatspeare). 4. Plentcous; abounding (Addison).

FRU'ITFULLY. ud. I. In such a manner as to be prolific (Rosc). 2. Plenteously; a bundantly (Shalispeare).

FRL'ITTFULNESS. s. (from gruitful.) 1. Ferility ; fecundity ; plentiful production (Ralifigh). 2. The quality of being prolific (Dryden). 3. Exnberant abundance (Ben Jonson).

FRUITGRO'VES. s. (fruit and groves.) Shades, or close plantations of fruit-trees (Pope).
FRUI'TION. s. (fruor, Lat.) Enjoyment; possession; pleasure given by possession or use (Rogers).

FRU'ITIVE. a. (from the noun.) Enjoying; possessing: not used (Boyle).

FRU'ITLESLY. ad. (from fruitless.) Vainly ; idly; unprofitably (Dryden).

FRU'ITLESS. a. (from fruit.) 1. Barren of fruit; not bearing fruit (Raleigh). 2. Vain; productive of no advantage; idle; unprofitable (Milton). 3. Having no offispring (Shahsp.).

FRUIT-TIME. s. The autumn; the time for gathering fruit.

FRUIT-TREE. s. A tree of that kind whose principal value arises from the fruit produred by it (Valler).

FRUMENTA'CIOUS. a. (from frumentum, Latin.) Made of grain, or haring the properties or qualities of grain.

FRUMENTARII, soldiers or archers under the western empire, who were also purveyors to the armies.

FRUMENTATION, in Roman antiquity, a largess of corn bestowed on the people.

FRUME'NTY. s. (frumentum, corn, Latin.) Food made of wheat boiled in milk.

To FRUMP. v. a. To mock; to browbeat.
FRUMS'IOL, in our old writers, the man-sion-house.

To FRUSH. v. a. (froisser, Fr.) To break, bruise, or crush (Shakspeare).

Frush, among farriers, the frog of a horse's foot: whence it is also nised to denote a discase in the centrical cleft of the frog, at the hottom of the foot; a discase more generally known, however, under the denomination of Thrush, which see, as also Frog.

FRUS'TRA'NEA. (frustra, in vain.) Polygamia. 'The name of the third order in the class syngenesia of Linnéus's Artificial System; compreliending such of the compound flowers as have perfect forets in the disk, producing seed; but imperfect florets in the ray, which for want of a stigna are barren.

FRUSTRA'NEOUS. a. (frustra, Latin.) Vain: useless; unprofitable (More).
To FRU'STRATE. v. a. (frustror, Latin.) 1. To defeat ; to dissapoint ; to balk (Hooher). 2. To make null; to nullify (Spenser).

Fbu'strate. part. a. (from the ierb.) 1. Vain; inefiectual; unprofitable (Raleigh). a. Null: void (IInkiet).

FRUSTRA"TION. s. (frustratio, Latin.) Disappointment; defeat (South).

FR Y

FRU'STRATIVE. a. (from fruslrate) Fallacious; disappointing (Ainsu'vor/h).

FRU'STRATORY. a. (from frustrate.) That makes any procedure roid (Ayliffe).
FRUSTUM, in geometry, is the part of a solid next the base, left by cutting off the top. or segment, by a plane parallel to the base: as the frustum of a pyramid, of a cone, of a conoid, of a spheroid, or of a sphere, which is any part comprised between two parallel circular sections; and the middle frustum of a sphere, is that whose ends are equal circles, having the centres of the sphere in the middle of it, and equally distant from both ends.
lior the solid content of the frustum of a cone, or of any pyramid, whatever figure the lase may have.-Add into one sum, the areas of the two ends and the mean proportional between them; then f of that sum will be a mean area, or the area of an equal prism, of the same altitude with the frustum; and consequently that mean area being multiplied by the height of the frustum, the product will be the solid content of it. That is, if A denote the area of the greater end, a that of the less, and h the height; then

$\mathrm{A}+a+\sqrt{\mathrm{A}} a \times \frac{1}{} h$ is the solidity.

Other rules for pyramidal or conic frustums may be seen in Hutton's Mensuration, p. 189, ed edit. 1788.

The curve surface of the zone or frustum of a sphere, is had by multiplying the circumference of the sphere by the height of the frustum. Hutton's Mensuration, p. 197.

And the solidity of the same frustum is found, by adding together the squares of the radii of the two ends, and $\frac{1}{3}$ of the square of the height of the frustum, then multiplying the sum by the said height and by the uumber $1: 5708$.
That is, $\overline{\mathrm{R}^{2}+r^{2}+\frac{1}{3} h^{2}} \times \frac{1}{2} p h$ is the solid content of the spheric frustum, whose height is h, and the radii of its ends R and r, p being $=3.1416$. Mensur. p. 209.

For the frustums of spheroids, and conoids, either parabolic or hyperbolic, sec Hutton's Mensuration, p. 396, 328, 332, 382, 435.

FRUTESCENT, in botany, applied to the stem: as a frutescent stem. From herbaceous becoming shrubby.

FRU'TEX, in botany, a shrub.
FRUTINGEN, a town of Swisserland, in the canton of Bern. It gives name to a bailiwic, and is esteemed one of the most beantiful places in Swisserland. It is 30 miles S. E. of Friburg.

FRY. s. (from froe, foam, Danish, Shinner.) 1. The swarm of little fishes just produced from the spawn (Donne). \&. Any swarm of animals; or young people in contempt (Oldham).

Fry. s. A kind of sieve (Mortimer).
To Fry.v.a. (frigo, Latin.) To dress food by roasting it in a pan on the fire.
To Fry. v. n. 1. To be roasted in a pan on the fire. 2. To suffer the action of fire (Dryden). 3. To melt with heat (Waller). 4. To be agitated like liquor in the pan on the fire (Bacon).

FUC.
Fry s. (from the verb.) A dish of things fried.

FRY'INGPAN. s. (fry and pan.) The vessel in which meat is roasted on the fire (Addison).

FRYTH, or Frith, a plain between two woods: it also denotes an arm of the sea, as the Frith of Forth, the Frith of Clyde, \&c.
FUAGE, a tax of 12d. for every fire, levied in the time of Edward III.
To FUB. d. a. To put of. See Fos. (Shakspeare).
Fus. s. A plump chubby boy (Ainssorth).
FU'CATED. a. (fucatus, Latin.) 1. Painted; disguised with paint. 2. Disguised by falce show.
FUCHSIA. In botany, a genus of the class octandria, order monogynia. Calyx fourparted, coloured, bearing the corol; corol Sour petalled, berry inferior, four-celled, manymeded. Five species ; all of South America, except F. exserticata, which is a native of New Zealand, with leaves a little hoary underneath; peduncles solitary; flowers pendulous ; corol with an eight cleft border, every other segnient lanceolate and spread; the rest erect and only a third of the size. The plant most usually cultivated among ourselves is F. coccinea, a native of Chili, and exquisitely beautiful and elegant. It is usually found with perennial malks in our green-houses: but it will bear being planted abroad, only that in this situation \mathfrak{i} parts with its stalks every winter, which nerertheleas are renewed every spring. See Botany, MI. CX.
F. lycioides, or box-thorn fuchsia, is also well deserving of cultivation on account of its great beauty. It is a native of Chili, and reguires with us the protection of a green-house; tor when the stem is destroyed by the frost the poor asually perishes with it. The first specimen of it in this country flowered in the royal garden at Kew in 1796. It is readily propapated by cutings of the young shoots set in a bot-bed in March.
FUCUS, a name given by the ancients to cerain dyes and paints. By this name they called a purple sea-plant used by them to die woollen and linen cloths of that colour. The dye was rery beautiful, but not lasting; for it soon begen to change, and in time went wholly of. This is the account Theophrastus gives orit.
The women of those times also used something called fucus to stain their cheeks red; and many have supposed, from the same word expresing both, that the same substance was ssed on both occasions. But this, on a strict inguiry, proves not to be the case. The Greeks called every thing fucus, that would stain or paint the flesh. But this peculiar subtance, nsed by the women to paint their cheeks, was distinguished from the others by the name of rizion among the more corscet writers, and was indeed a root brought fromi Syria into Greece. The Latins, in imiution of the Greek dame, called this root
VOL. V.

FUC

radicula; and Pliny very ermneously confounds the plant with the radix lunaria, or struthion of the Greeks.
The word fucus was in those times become such an universal name for paint, that the Greeks and Romans had a fucus metallicus, which was the cerus used for painting the necks and arms white; after which they used the purpurissum, or red fucus of the rixium, to give the colour to the cheeks. In after-times they also used a peculiar fucus or paint for the purpose, prepared of the Creta argentaria, or silver-chalk, and some of the rich purple dyes that were in use at that time: and this seems to have been very litte different from our rosepink; a colour commonly sold at the colourshops.

Fucus. Sea-wrack. In botany, a genus of the class cryptogamia, order alga. Seeds produced in clustered tubercles, which burst at their summits. A hundred and forty-six species, of which eighty are common to the coasts of our own couniry. We can enumerate only a few: see Botany, PI. CIX. CXVIII.

1. F. palmatus. Palmated fucus, dilse or dulse. Membranous, glabrous on both sides, palmate; segments oblong, nearly simple, very frequent on the coasts of Scotland and the Hebrides : membranaceous, thin and pellucid; of a red hue or red mixed with green: length from three inches to a foot; gradually dilated from the base upwards in the shape of a fan. It is often eaten as an esculent, both raw and boiled, and contains much alkali, a considerable portion of sugar, and a large quantity of mucus.
2. F. natans. Floating fucus. Filiform, compressed, pinnate; leaves oblong lanceolate serrate; vesicles globular, peduncled, scattered on flat dilated peduncles. Found often on the surface of the sea, spreading to a prodigious extent, and producing tranquillity on its surface, except when agitated by variable winds.
3. F. serratus. Serrated sea-wrack or fucus. Linnear, forked, serrate-toothed, cloven and flat at the tips; barren ones obtuse, fertile and acute. It is infested, as are most of the fucus genus, with a species of coralline. In this case the species is the sertularia pumila of Linnés, which is frequently found creeping along the leaf.
4. F. vesiculosus. Common sea-wrack; bladder sea-wrack; sea-ware. Linear, forked, entire; with globular, innate, and axillary vesicles, cloven at the tips; barren ones flat, fertile ones humid. It produces its fruatifications like the last in July or August ; hues and habits the same. It is used as a manure of most excellent quality on the sea-coasts of Scotland and in the Scottish islands. In the last it also serves as food for catle, who appear fond of it : it is mucous and saccharine. In Sweden it is dried, and serves both for fuel and for thatch. In all parts where it is largely obtained it is of high value from the alkali it contains; and hence when burnt to ashes it affords the best kelp. The price of this in June is 31.10 s . per ton, and about forty os K

F U C

fifty tons are exported from this island annually
5. F. prolifer Proliferouz sea-wrack. Frondescent, green, with ovate, flat, proliferous joints, of a red colour. The length of the plant is about four or five inches, the breadth of the leaf about a quarter of an inch. Its growth is peculiarly worthy of attention. It has no root, and originates leaf from leaf, consisting, like the cactus opuntia, of leaves alone, independently of the fructification. This last is a red spherical rough wart, less than the smallest pin's head, scattered without order on the sur-face of the leaves. They drop off and unfold themselves into primary or parent leaves. This plant is also much infested with coralline worms; of which the chief are the mandrepora vermiaria, and flustra pilosa.
6. F. saccharinus. Sweet fucus; sugar seawrack; sea-belt. Leathery, simple, swordshaped, on a round, rigid stem. It consists therefore of one linear, elliptic leaf, of a tawnygreen colour, from five feet to five yards in length, and about three inches wide. The stalk, from which it springs, from two inches in a foot. The root is composed of branched fibres which adhere to the stones, to which it fixes like claws. This plant is also frequently roubled with the sertula ciliaria. It is less esteemed in our own country than some other species: but in Iceland it is used as an esculent both for man and beast.
7. F. ciliatus. Ciliate, or ligulate fucus. Membranous, tough, pinnate; clothed and fringed with scattered, sabulate, mostly simple processes; bearing the seeds in a globular tubercle. It is found occasionally on our own coasts, and esteemed an esculent by the Scots and Irish: it is found more generally on the Mediterrancan coasts.
8. F. pimnatifidus. Pepper-dilse; jagged sea-wrack. Cartilaginous, branched; branches nearly alternate, doubly pinnatifid; segnents obtuse, callous, with ovate, sessile tubercles. Colour yellow olive, tinged with red. It has a hot peppery taste, which is common to the maritime inhabitants of Scotland where it is used as an esculent: and hence its name.
9. F. esculentus. Eatable sea-wrack; tangle; bladder-locks. The stalk eaten more commonly both by man and beast than any part of any other fucus: the leaf and membranous parts however are rejected uniformly. Simple, undivided, uniform; on a pinnate stalk; divisions two-rowed, oblong, veinless. It is often recommended as a stomachic in medicine, and is said to be sery useful in this character.
10. F. plicatus. Matted, implicated, or Indian-grass fucus. Capillary, uniform, muchbranched, entangled, nearly transparent. From three to six inches long; colour when exposed to the air and light yellowish or auburn; viscid, semipellucid, tough, and horny, resembling the Indian grass, as it is called by anglers, which they obtain from the tendrils issuing from the ovary of the dog-fish.
11. 1. spiralis. Spiral fucus. Frond linear, dichotomous, spiral, entire with a central

FUE
rib; the fructifying extremities cloven, rounded and obtuse. Perhaps a species of F. resiculosus, though ranked separately in vol. iii. of the Transactions of the Linneau Society: found in our own country on stones and planks, growing about high-water mark, and always in such situations as to be exposed to the air after every tide.
12. F. membranaceus. Pellucid fucus. Frond linear, forked, meinbranous, pellucid, greenish-brown. Midrif slightly prominent, here and there proliferous. Fruit in convex superficial dots. Found in our own country on the Devonshire and Scottish coasts.
13. F. articulatus. Jointed fucus. Frond tubular, regularly contracted at intervals as if jointed, much branched; joints elliptical; branches forked and whorled. Common to the coasts of Britain and Ireland.
14. F. confervoides. Warty fucus. Frond thread-shaped, branched, purplish; branches unequal, mosily leaning one way, tapering at each end. Tübercles hemispherical, lateral, sessile, acute. Found on our own coasts, and sometimes confounded with \mathbf{F}. flagelliformis.

To FU'DDLE. v. a. To make drank (Thomson.)
To Fu'dile. v.n. To drink to excess (L'Estrange.)
FUEGO, or Fogo, one of the Cape de Verd islands, in the Atlantic ocean. It is much higher than any of the rest, and seems at sea to be one single mountain though on the sides there are deep valleys. There is 2 volcano at the top of it, which burns continually, and may be seen a great way off at ses. It vomits a great deal of fire and smoke, and throws out huge pieces of rock to a vast height; and sometimes torrents of brimstone rua down the sides. The Portuguese, who first inhabited it, brought negroes with them, and a stock of cows, horses, and hogs; but the chief inhabitants now are blacks, of the Romish religion. Lat. 14. 54 N . Lon. ${ }^{2}+30 \mathrm{~W}$.
Fuego, or Terra del fuego, a large island, scparated from the southern extrenuity of America by a narrow sea, called the Straits of Magellan; so called from the volcanos observed on it. The aspect of the country is represented as dreary and uncomfortable, consisting of a chain of stupendous rocks, and continually covered with snow. Along the coasta are a great number of inlets, or harbours, for the largest ships, with rocks near the shom which, however, may be discovered by sounding. The inhabitants are said to be naturally as fair as Europeans, but that they go naked, and paint their bodies with the most gorgenus colours. Those on the south side are said to be uncivilized, treacherous, and barbarous; while those on the opposite side are simple, affable, and perfectly harmless. The skins of wild animals are sometimes used to cover their bodies, upon occasion of extraordinary pomp, and their tents are made of poles, disposed in a conical form, covered with skins, or the bark or leaves of treses. Sir Joseph B.unks. 1)r. Solander, and some ethers, landed here in the

month of January, 1768, which is the time of summer in that part of the globe, notwithstanding which two of the company fell a sacrifice to the cold only by sleeping one night, and Dr. Solander himself hardly escaped. Lat. 39. 30 to 55.35 S . Lon. 69 to 76 W .

FU'EL. s. (from feu, fire, French.) The matter or aliment of fire (Prior).

To Fuel. v. a. (from the noun.) 1.To feed fire with combustible matter (Donne). 2. To store with fring (\boldsymbol{I}^{-2} alton).
FUEILLEMORTE. (French.) Corruptly pronounced and written philomot. Brown, like a withered leaf in autumn (Locke).
FUEN-HOA, a city of China, in the province of Pe -tcheli, celebrated for its extent and the number of its inhabitants, as well as for the beauty of its streets and triumphal arches. It is situated near the great wall, annidst mountains; and has under its jurisdiction, besides two cities of the second and eight of the third class, a great number of fortresses, which bar the entrance of China against the Tartars.
FUEN-TCHEOU-FOU, a commercial city of China, in the prorince of Chang-si. Its baths and springs, almost as hot as boiling water, attract a great number of strangers. Its district contains one city of the second, and zeren of the third class.
FUGA'CIOUS. a. (fugax, Lat.) Volatile.
FUGA'CIOUSNESS. s. Volatility ; the quality of fying away.
FU'GA'CITY. s. (fugax, Latin). 1. Volatility; quality of flying away (Boyle). 2. Uncertainty; instability.
FUGALIA, a Roman festival, held annually in honour of Fugia, the goddess of joy.
FUGH. interj. An expression of abhorrence. Commonly foh (Dryden).

FU'GITIVE. a. (fugitivus, Latin.) 1. Not tenable; not to be held or detained. 2 . Unsteady; unstable ; not durable. 3. Volatile; apt to fly away (Woodvard). 4. Flying; running from danger (Milton). 5. Flving from duty; falling off (Clarissa). 6. Runagate; ragabond (Wotton).
Fu'gitive. s. (from the adjective.) 1. One who runs from his station or duty ($D_{\text {en. }}$). 2. One who takes shelter under another power from punishment (Dryden). 3. One hard to be canght or detained (Hurte).
FU'GITIVENESS. s. (from fugitive.) 1. Volatility; fugacity (Boylc). 2. Iustability; oncertainty.
FUGUE, in music (from fuga, a chase), a composition in which one part leads off some determined succession of notes, and, after successive short intervals of time, other parts fly after it, as it were, repeating notes in a similar order, but at the distance of a fifth or octave : the whole being rendered consistent with the other acknowledged rules of harmony. This is denominated the simple fugue. When the music begins with two or more different points, and the parts intermix or change alternately, the pirce is called a double fugue. And when the succeeding parts are made to hy in opposite

F U L

directions, some ascending, the others descending, the piece is called a counter fugue.
FUIRE'NA. In botany, a genus of the class triaudria, order monogynia. Ament imbricate with awned scales; calyxless; corol three-ralved; the valves petal-form, inversely heart-shaped, terminated by an awn. One species ; a tall grass of Surinam and Jamaica, with terminal and axtllary panicles.
FULA, or Thule, one of the Shetland islands, W. of Mainland. It is thought by some to be the same which the ancients reckoned the ultimate limit of the habitable globe, and to which, therefore, they gave the appellation of ultima Thule. It is doubtful, however, whether this be really the island so called; because, had the ancients reached it, they must have seen land still further to the N.E.; Mainland, Yell, and Unst, being all further N .
FU'LCIMENT. s. (fulcimentum, Latin.) That on which a body rests, which acts or is acted upon at each eid (Wilhins).
FU'LCRE. In botany : (fultum, from fulcio.) Prop, or support. A help to vegetables for their commodious sustentation.-Fulcra adminicula plantæ sunt, pro commodiore sustentatione.

Fulcres are of seven kinds.-1. Stipula or stipule. 2. Bractea or bracte. 3. Spina or thorn. 4. Aculeus or prickle. 5. Cirrus, clasper or tendril. 6. Glandula, or gland. 7. Pilus, hairs or pubescence, or as Linnéus has arranged them, in Delin. Pl.

1. Petiolus, the petiole, leaf-stalk or footstalk. 2. Stipula. 3. Cirrus. 4. Pubes. 5. Arma, arms or instruments of defence; comprehending prickles, thorns and stings. 6. Bractea. 7. Pedunculus, the peduncle, flow-er-stalk and fruit-stalk. These terms are explained in their several places.
FULCRUM, in mechanics, the prop or support by which a lever is sustained.

FULDE, a considerable town of Germany, in the circle of the Upper Rhine, and in the Buchaw, with a celebrated abbey. Lat. 50. 40 N. Lon. 9.43 E .

To, FULFI'L. v.a. (full and fill.) 1. To fill. tull there is no room for more (Shak.). 2. To answer any prophecy or promise by performance (Acts). 3. To answer any purpose or design (Millon). 4. To answer any desire by compliance or gratification (Dryden). 5. To answer any law by obedience (Milton).
FULFRA'UGHT. a. (full and fraught.) Fullv stored (Shatispeare).
FU'LGINCY. s. (fulgens, Lat.) Splendour ; lus re; glitter.
FU'LGENT. a. (fulgens, Lat.) Shining; dazzling ; exquisitely bright (Milton).

FU'lGID. a: (fulgidus, Latin.) Shining; glittering; dazzling.

FULGI'IITY. s. (from fuigid.) Splendour.
FULGORA, lanthorn-fly. In zoology, a genus of the class insecta, order hemiptera, Head hollow, inflated, extended forwards, antennas short, seated bencath the eves; consisting of two joints, lue outer oise lisger and K 2

F U L

globular ; snout elongated, inflated, four-jointed; lers ambulatory. Twenty-five specieschiefly of India and South America; a few of Africa and Europe, and one of our own counary. The following are the most curious.

1. F. lanternaria. Front extended straight; wing-cases variegated; wings with each a large ocellated spot. This is a very elegant as well as a very extraordinary insect. Its length, from the tip of the front to that of the tail, is nearly three inches and a half; and from wing's end to wing's end, when expanded, nearly five inches and a half. The head is nearly as long as the whole of the rest of the animal ; and is the immediate seat of that light for which this insect is so remarkable. The ground colour is an elegant yellow, with a atrong tinge of green in some parts, and marked with numerous bright red-brown variegations in the form of stripes and spots: while in the beautiful ocellated spot in the lower pair of wings the iris or external circle is scarlet, and the pupil half scarlet and half semi-transparent white.

It inhabits Surinam and other parts of South America; and emits a beautiful and strong phosphoric light from the hollow part of the head. Madame Merian, in her work on the Insects of Surinam, asserts that the light of one of them alone is sufficient to read a. common newspaper by: although she does not pretend, as Dr. Darwin has ascribed to her, in the way of poetic licence, in a note subjoined to his poem on the Loves of the Plants, to have drawn and finished her figure of this extraordinary insect by its own light. See Nat. Hist. Pt. CXIX.
2. F. candelaria. Front extended, ascending; wing-cases green spotied with yellow; winge yellow tipt with black; head and front red; measures nearly two inches in length from the top of the front to the extremity of the tail; and two and a half inches in breadth, with the wings expanded. It is, like the last, a very elegant insect, and like that yields a considerable portion, though, as being smaller, not an equal portion, of intrinsic light. It is a native of China.
3. F. diadema. Front expanded ; muricate, trifid at the tip: wings black edged with red. Inhabits India; and in size and phosphoric powers a rival of the last.
4. F. Europea. Front conic ; body green ; wings hyaline, reticulate: inhabitr Europe; and the only species of the genue that has been found in England. It was the earliest discovered in Europe, and hence its specifie name; but this name is now improper, as many others have since been discovered to possess an European origin.

Several of these spocies are luminous, and especially F. lanternaria, F. candelaria, and F. diadema. The phosphoric splendour, contrary to the physiology of the lampyris, proceeds from its head; and is so strong, that travellers are said to be directed on their journey by fixing one or two of them to the end of a stick. "The Indians," says Mad. Merian,

FUL

"s once brought me, before I knew that they shone by night, a number of these lanthornElies, which I shut up in a large wooden box. In the night they made such a noise that I woke in a fright and ordered a light to be brought, not knowing whence the noise proceeded. As soon as we found that it came from the box, we opened it: but were still much more alarmed, and let is fall to the ground at seeing a flame of five come ous of it; and as many animals as came out, so many flames of fire appeared. When we found this to be the case, we recovered from our fright, and again collected she insects, highly admiring their splendid appearance." See Luminous animals.

FU'LGOUR. : (fulgur, Latin.) Splendour ; dazzling brightness (\mathbf{N} Soore).

FULGURATION. s. (fulguratio, Latin.) The act of lightning

FU'LHAM. s. A cant word for false dice. (Shakspeare).

Fulham, a village in Middlesex, fous miles W. by S. of London. It is seated on the Thames, and has been the demesne of the bishop of London ever since the conquest.
FU'LICA. In zoology, a genus of the class aves, osder grallæ. Bill convex, upper mandible arehed over the lower at the edge ; lower gibbous near the tip; nostrils oblong, front bald; feet four-toed, subpinnate. These frequent waters, and feed on worms, insects, and small fishes; have a body compressed; bill thick and bent in towards the tip, the upper mandible reaching far up the forehead; wings and tail short. The gallinules have the fect cleft, the upper membranaceous at the base, and the wings concare. The coots have the wees surrounded by a scolloped membrane, the mandibles equal, nostrils oval, narrow and short. Twenty-five species, subdivided as below.

A. Feet cleft: gallinule

B. Feet pinnate: coot.

We shall offer a specimen or two of each.

1. F. chloropus. Moor-hen. Common gallimule. Front tawny; bracelets red; body blackish, or sooty mixed with olive; beneath cinereous, irids red. Inhabits Europe and America: fourteen inches long; flies with difficulty, but runs and swims well; builds near the water side on low trees or shrubs; strikes with its bill like a hen; lays seven dirty-white eggs twice or thrice a year, thinly spotted with rusty; flesh delicious.
2. F. purpurea. Crowing gallinule. Purple; bill pale; eyes greenish yellow. Inhabits the marshes of New Spain, and crows like'a cock.
3. F. porphyrio. Purple gallinule. Front red; bracelets many; body green, beneath violet; head and neck above, glossy violet; cheeks and throat violet-blue; back and rump glossy green; wings and rounded tail shining green, within brown. Inhabits most temperate and warm places; fifteen inches long; is docile and easily tamed; stands on one leg, and lifu the

NATURAL History.
Salgoza Lentemazia.

,
. Digitized by COOZle
food to its mouth with the other; feeds on fishes, roots, fruits and seeds. Flesh said to be good.
4. F. atra. Common coot. Five varieteis.

- Front flesh-colour; bracelets greenishyellow ; body blackish.
C Black : wings white.
y Entirely black; breast and belly waved with ferruginous.
d Brown : chin, belly and primary quilfeathers white ; head spotted with white; upper mandible red.
- White : head and wings with a few spots. Inhabits Europe, Asia, and America; filteen inches long; frequents lakes and still rivers; aud forms a floating nest among the rushes; lays numerous dirty-white eggs, sprinkled with minate, deep-rusty spots; the young, when first hatchod, are very deformed; runs along the water, swims and dives dextrously; feeds on mall insects, aquatic fishes, and seeds: in winter time often repairs to the sea.

8. F. aterrima. Greater coot. Front white; bracelets red; body blackish. Inhabits, like the last, our own country and other parts of Europe : scarcely differs from it but in increased magnitude and depth of black colour.
FULJ'GINOUS. a. (fuliginosus, Lat.) Sooty; smoky (Howel).
Fl'LIGO. (fusligo, quasi fumiligo, from fumas, suoke.) soot. Wood soot, fuligo ligni, or the condeused smoke from burning wood, has a pungent, bitter, and nauseous uste, and is resolved by chemical analysis into a rolatile alkaline salt, an empyreumatic oil, a fixed altali, and an insipid earth. The tincture prepared from this substance, tinctura fulginis, is recom mended as a powerful antispasmodic in hysterical affections.
Fu'ligo, in botany, a genus of the class cryptogamia, order fung. Fungus with a cellular fibrous bark ; the fibres penetrating in a reticulate manner through the seminal mass. Three species; one, F. septica, yellow and lanciniate, 2 native of our own country.
FU'LIMART. s. A hind of stinking ferret (Walton).
FLLK (William,) a learned and eminent divine of the church of England, in the 16ih ectury. He was patronised by the carl of Leicester, who in 1571 piesented him to the living of Warley in Essex, and soon after to that of Diddington in Suffolk. He attended his patron when he went ambassador to France; and on his return was made master of Pembroke-hall, and Margaret professor of divinity at Cambridge. His works are very numerous, levelled chiefly at the papists. The most considerable of them is his Comment on the Rhemish Testament. He died in 1589.

FULL a. (fulle, Saxon.) 1. Replete; without vacuity; having no space void (Psalms). 2. Abounding in any quality grod or bad (Sidncy. Tillotson). 3. Stored with any thing; well supplied with any thing (7ickel). 4. Plump; 2aginated; fat (Wisemun). 5. Saturited; sated (Bacon). 6. Crowded with regard to the imagination or memory (Lacke.)

FUL

7. Large ; great in effect (A, luthnot). 8. Complete; such as that nothing further is desired or wanted (Hammond). 9. Complete without abatement (Swift). 10. Containing the whole matter; expressing much (Denham). 11 . Strong; not faint; not attenuated (Pope). 12. Mature ; perfect (Bacon). 13. Spread to view in all dimensions (Addison).

Full plower. (flos plenus.) In boo tany. When the corol is so multiplied as to exclude all the stamens. Polypetalious flowers are generally the object of plenitude. Sce Luxurians.

Full moon (plenilunium), that phasis of the moon, when the whole disk is illuminated; which is in the time of her opposition to the sun.

Full. s. (from the adjective.). 1. Complete measure ; freedom from deficiency (Clarendon). 9. The highest state or degree (Shakspeare). 3. The whole; the total (Shakspcare). 4. The state of being satiated (Jeremiah). 5. (Applied to the moon.) The time in which the moon makes a perfect orb (Bacon).
Fule. ad. 1. Without abatement (Milton). 2. With the whole effect (Dryden). 3. Exactly (Addison). 4. Directly (Dryden).

Full-blown. a. (full and blormn.) 1. Spread to the utmost extent, as a perfect blossom (Denham). 2. Stretched by the wiud to the utmost extent (Dryden).

Fuli-bo'tтomed. a. (full and botiom) Having a large bottom (Guardian).

Full-ea'red.a. (full and ear). Having the heads full of grain (Denham).

Fulleryed. a. (full and eye.) Having large prominent eyes.

Fuli-fe'd. a. (full and fed.) Sated; fat ; saginated (Pope).

Full-la'den. a. (full and laden.) La-' den till there can be no nore added (Tillotson).

Full-spread. a. (full and spread.) Spread to the utmost extent (Dryden)
Full-summed. a. (full and summed) Complete in all its parts (Howel).

To Full. v.a. (fullo, Lat.) To cleanse cloth from its oil or grease.

FC'LLAGE. s. (from full.) The money paid for fulling or cleansing cloth.

FULLAN, a country in the interior part of Africa, W. of the kingdom of Cushna Its boundaries have not been ascertained.

FULLER. s. (fullo, Latin.) One whose trade is to cleanse and scour cloths.

Fuller (Nicholas), prebendary of Salisbury, and a lcarned English critic ; who published in 1617 Miscellanea Theologica, in four books, and afterward two more of Miscellanea Sacra. He died in 1623 ; and there are some MSS. of his remaining in the Bodleian library, that show his great skill in Hebrew and philology.

Fulier (Dr. Thomas), a learned English divine, was born at Aldwinckle, near Oundle, in Northamptonshire, about the year-1608, and studied at Cambridge. He was chosen minister of St. Bennet's there; and, at ahout 23 years of age, his merit was 20 great, that he

F U L

was in consequence of it presented to a prebend in the church of Salisbury. He had also the living of Broad Windsor in Dorsetshire, and about $16+0$ became lecturer at the Savoy. It is said his memory was so tenacious and comprehensive, that he could make use of a sermon verbatim if he once heard it. He once undertook, in passing to and from Temple-bar to the Poultry, to tell at his return every sign as it stood in order on both sides of the way, repeating them either backwards or forwards; and this task he actually performed. He wrote, 1. A History of the Holy War. 2. The Church-history of Britain, in folio. 3. Andronicus, or the Unfortunate Politician, in 8vo. 4. A Pissran-sight of Palestine. 5. A History of English Worthies; and other works. He died in August 1001, and was interred in the chancel of Cranford church in Middlesex, whither his brody was attended by at least 200 of his brethren of the ministry. He was a learned, industrious, pious, moderate, and lively writer. His style however is exceedingly quaint, and he was too fond of punning. The doctor was a very corpulent man, and once as he was riding with a gentleman of the name of Sparrowhawk, he could not heip cracking a joke upon his companion. "What is the difference (said he) between an owl and a sparrowhawk ?" "It is (answered the other) filler in the head, fuller in the body, and fuller all over."

FULLER'S EARTH. See Argilia

pullonica.

The greatest quantity and the finest quality of this earth is dug in the pits at Wavedion, near Woburn, Bedfordshire.

Fuller's weed. See Dipsacus.
FULLERY, the place where cloths, \&c. undergo the operation of fulling.

FULLING, the art or act of cleansing, scouring, and pressing cloths, stuffs, and stockings, to render them stronger, closer, ald firmer: called also milling. Pliny (lib. vii. cap. 56.) asserts, that one Nicias, the son of Hermias, was the first inventor of the art of fulling: and it appears by an inscription, quoted by Sir G. Wheeler in his Travels through Greece, that this same Nicias was a governor in Greece in the time of the Romans. The fulling of cloths and other stuffs is performed by a kind of water-mill, thence called a fulling or scouring mill. These mills, except in what relates to the mill-stones and hopper, are much the same with corn-mills: and there are even some which serve indifferently for either use; corn being ground, and cloths fulled, by the motion of the same wheel. Whence in some places, particularly in France, the fullers are called millers; grinding corn and milling stuffs at the same time.

The principal parts of the fulling-mill are : the wheel, with its trundle, which gives motion to the tree or spindle, whose teeth communicate it to the pestles or stampers, which are hereby raised and made to fall alternately, according as its teeth catch on or quit a kind of latch in the middle of each pestle. The

F U L

pestles and troughs are of wood; each trough having at least two, sometimes three pestles, at the discretion of the master, or according to the force of the stream of water. In these troughs are laid the cloths, stuffs, \&c. intended to be fulled: then, letting the current of water fall on the wheel, the pestles are successively let fall thereon, and by their weight and velocity stamp and press the stuffis very strongly, which by this means become thickened and condensed. In the course of the operation, they sometimes make use of urine, sometimes of fuller's earth, and sometimes of soap. To prepare the stuffs to receive the first impressions of the pestle, they are usually laid in urine; then in fuller's earih and water; and, lastly, in soap dissolved in hot water. Soap alone would do very well; but this is expensive: though fuller's earth, in the way of our dressing, is scarce inferior thereto; but then it must be well cleared of all stones and grittinesses, which are apt to make holes in the stuff. As to urine, many say it is prejudicial, and ought to be entirely discarded; not so much on account of its ill smell, as of its sharpness and saltuess, which qualities are apt to render the stuffs dry and harsh. The true method of fulling with soap is delivered by Mons. Colinet, in an authentic memoir on that subject, supported by experiments made by order of the marquis de Louvois, then superintendant of the arts and nanufactories of France; the substance of which we shall here subjoin.

The method of fulling cloths and woollen stuffs with soap is this:-A coloured cloth, of about 45 ells, is to be laid in the usual manner in the trough of a fulling-mill; without first soaking it in water, as is commonly practised in many places. To full this trough of cloth, 15 pounds of soap are required; one half of which is to be melted in two pails of river or spring water, made as hot as the hand can well bear it. This solution is to be poured by little and little upon the cloth, in proportion as it is laid in the trough: and thus it is to be fulled for at least two hours; after which, it is to be taken out and stretched. This done, the cloth is immediately returned into the same trough, without any new soap, and there fulled two hours more. Then taking it out, they wring it well, to express all the grease and filth. After the second fulling, the remainder of the soap is dissolved as in the former, and cast four different times on the cloth; remembering to take out the cloth every two hours, to stretch it, and undo the plaits and wrinkles it has acquired in the trough. When they perceive it sufficiently fulled, and brought to the quality and thickness required, they scour it for good in hot water, keeping it in the trough till it bo quite clean. As to white cloths, since they full more casily and in less time than coloured ones, a third part of the soap may be spared.

The fulling of stockings, caps, \&c. should be performed somewhat differently, viz. either with the feet or the hands, or a kind of wooden rack, either armed with tecth of the same matter, or else horses or bulluct's teeth. The,

F U L

ingredients made use of are, urine, green soap, white soap, and fuller's earth. But the urine also is reckoned prejudicial here. Woven stockings, \&c. should be fulled with the soap alone : for those that are knit, earth may be used with the soap. Indeed it is common to full these kinds of works with the mill, after the usual inanner of cloth, \&c.; but that is too coarse and violent a manner, aud apt to damage the work, unless it is very strong.

FU'LLINGMILL. s. (full and mill.) A mill where the water raises hanmers which beat the cloth till it be clcansed (Martimer).

FU'LLY. ad. (from full.) 1. Without vacuity. 2. Completely; without lack (Hook.).

FULMAR, in ornithology. See Procel.

RARIA.

Fulmar, in zoology. See Mustela.
FU'LMINANT. a. (fulminars, Latin.) Thundering; making a noise like thunder.

To FU'LAIINATE. v. n. (fulmino; Lat.) 1. To thunder (Randolph). 2. To make a loud noise or crack (Boyle). 3. To issue out ecclesiastical censures.

To Fu'lminate. v.a. To throw out as an object of terrour (Ayliffe).

FULMINATION. In chemistry, explosiou or detonation, accompanied with a very considerable degre e of sound. All these equally impiy rapid decumposition with or without flame, and the intensity of sound alone distinguishes the idea of fulmination from those of detonation and extlosion.
fllminatimg powder; a powder that explodes upon the application of certain degrees of hrat with instantaneous combustion, and prodixious sound. These are sometimes made with metals, and somtimes without.

Simple fulminating powder without any metallic substance is thus prepared: Take three parts of nitre, two of purified pearl-ash, and one of flowers of sulphur, mix the whole very accurattly in an earthen mortar, and place it on a tile or plate befure the fire till it is perfectly dry : then transfer it while hot into a ground stopper bottle, and it may be kept without injury for any length of time. In order to experience its effects, pour from teu to forty grains into an iron lader, and place it over a slow fire: in a short time the powder becomes brown and acquires a pasty consistence; a bluc lambent flame then appears on the sarface, and in an instant after the whole explodes with a stunniug noise and a slight momentary Bash. If the mass be remored from the fire as soon as it is fused, and kept in a dry wellciosed vial, it may at any titne be exploded by a spark, in which case it burns like gunpowder, but more rapidly and n ith greater detonation; but this effect cannot be produced on the unmelted powder how accurately suever the ingredients of it are mixed together. When fulminating powder is in fusion, bat not heated to the degree necessary to produce the blue flame, a particle of ignited charcoal thrown upon it will occasion immediately a remarkably loud explosion.

It appears that the ingredients of this powder do not acquire their fulminating property till crmbined by fusion; in other words, till the potach of sulphur form sulphuret of potash: whence fulminating powder may also be made by mixing
sulphuret of potash with nitre, instead of by add. ing the sulphur and alkali separate.
In all these the cause of the detonation, or fulmination, is nut accurately understuod. In simple fulminating powder, there is a very large portion of clastic gass evolved; in fulminating gold or silver a mueh smaller; yet the explosion in the latter case is intinitely greater than that in the former.
Fulminating gold.-Dissolve pure anld in nitromurnatic acid to saturation, and dilute the solution with three times its bulk of distilled water, and add to it gradually some pure ammonia, a yellow precipitate will be obtained, which must be repeatedly washed with distilled water, and dried on a chalk-stone or in a filter. When perfectly dry, it is called fulminating gold, and detonates by heat, as may be shewn by heating a few grains of it on the point of a kuife over the candle.

Fulminating silver-Dissolve fine silver in pale nitric acid, and precipitate the solution by lime water; decant the fluid, mix the precipitate with liquid ammonia, and stir it till it assumes a black colour; then decant the fluid, and leave it in the open air to dry. This product is fulminating silver, which when once obtained cannot be touched without producing a violent explosion. It is the most dangerous preparation known, for the contact of fire is not necessary to cause it to detonate. It explodes by the mere touch. Its preparation is so hazardous, that it ought not to be attempted without a mask, with strong glass eyes, upon the face. No more than a single grain ought at any time to be tried as an experiment. This was invented by M. Berthollet. See Argentum nativum.
M. Chenevix has invented a fulminating silver not so dangerous as that just mentioned. It explodes only by a slight friction in contact with combustible bodies. It is thus prepared: diffuse a quantity of alumina through water, and let a current of oxygenated muriatic acid yass pass through it for some timc. Then digest some phusphate of silver on the solution of the oxygenated muriate of alumina, and eraporate it slowly. The product obtained will be a hyper-oxygenated murinte of silver, a single grain of which, in contact with two or three of sulphur, will explode violently with the slightest fiction.
Fulminuting meicury-The mercurial preparations which fulminate, when mixed with sulphur, and gradually exposed to a gentle heat, are well known to chemists: they were discovered, and have been fully described, by Mr. Bayen.
"MM. Brignatelli and Van Monis have likewise produced fulminations by concussion, as well by nitrat of mercury and phosphurus as with phosphorus and most other nitrats. Cimuabar likewise is amongst the substances which, aceording to MM. Fourcroy and Vautuclin, detonate by concussion with oxymuriat of potash.
" M. Ameilon had, according to M. Berthollet, observed, that the precipitate obtained from nitrat of mercury, by oxalic acid, fuses with a hissing noise.
" But mercurs, and most if not all its oxyds, may, by treatment with nitric acid and alcohol, be conserted iuto a whitish crystallized powder, possessing all the intlammable propeties of exunpowder, as well as many peculiar to itself.
" I was led to this discovery (says Mr. Howard, the inventor) by a late asscrtion, that hydresen

FULMINATING POWDER.~

is the basis of the muriatic acid : it induced me to attempt to combine different substances with hydrogen and oxygen. With this view 1 mixed such substances with alcohol and nitric acid as might (by piedisposing affinity) favour as well as attract an acid combination of the hydrogen of the one, and the oxygen of the other. The pure red oxyd of mercury appeared not unfit for this purpose; it was therefore intermixed with alcohol, and upon both uitric acid was affused. The acid did not act upon the alcohol so immediately as when these fluids are alone mixed together, but first gradually disiolved the oxide: however, after some minutes had elapsed, a smell of ether was perceptible, and a white dense smoke, much resembling that from the liquor fumans of Libavius, was emitted with ebullition. The mixture then threw down a dark-coloured precipitate, which by degrees became nearly white. This precipitate I separated by filtration; and observing it to be crystallized in smaller acicular crystals, of a saline taste, and also finding a part of the mercury volatilized in the white fumes, I must acknowledge 1 was not altogether without hopes that muriatic acid bad been formed, and united to the mercurial oxide; I therefore, for obvious reasons, poured sulphuric acid upon the dried crystalline mass, when a violent effervescence ensued, and, to my great astonishment, an explosion took place. The singularity of this explosion induced me to repeat the process several times; and finding that I always obtained the same kind of powder, 1 prepared a quantity of it, and was led to make the series of experiments which I shall have the honour to relate in this paper.
" I first attempted to make the mercurial powder fulminate by concussion; and for that purpose laid about a grain of it upon a cold anvil, and struck it with a hammer, likewise cold. It detonated slightly, not being, as I suppose, struck with a flat blow; for upon using three or four grains, a very stunning disagreeable noise was produced, and the faces both of the hammer and the anvil wert mach indented.
" Half a grain, or a grain, if quite dry, is as much as ought to be used on such an occasion.
"The shock of an electrical battery, sent through five or six grains of the powder, produces a very similar effect. It secins, iudeed, that a strong electrical shock generally acts on fulmimating substances like the hlow of a hammer. Messrs. Pourcroy and Vauquelin fuund this to be the case with all their mixtures of oxymuriate of potass.
" To ascertain at what temperature the mercuvial powder explodes, two or three grains of it were floated on oil, in a capsule of leaf tin; the bulb of a Fahrenheit's thern:ometer was made just to touch the surface of the oil, which was then gradually heated till the power exploded, as the mercury of the thermometer reached the 368th degree.
"Desirous of comparing the strength of the mercurial compound with that of gunpowder, I made the following experiment in the presence of my friend Mr. Abernthy.
" Finding that the powder could be fired by fint and steel, without a disagreeable noise, a common gunpowder proof, capable of containing eleven grains of fine gunpowder, was filled with it, and fired in the usual way: the report was sharp, but not loud. The person who beld the instrument in his hand felt no recoil; but the explosion
laid open the opper part of the barrol, nearly from the touch-hole to the muzzle, and strock off the hand of the register, the surface of which was evenly indented, to the depth of 0.1 of an inch, as if it had received the impression of a punch.
" The instrument used in this experiment being familiarly known, it is therefore scarcely neces. sary to describe it : suffice it to say, that it was of brass, mounted with a spring register, the moveable hand of which closed up the muzzle, to receive and graduate the violence of the explosion. The barrel was half an.inch in caliber, and nearly half an inch thick, except where a spring of the lock impaired half its thickness.
"A gun belonging to Mr. Keir, an ingenious artist of Camden-Town, was next charged with seventeen grains of the mercurial powder, and a leaden bullet. A block of wood was placed at about eight yards from the muzsle to receive the ball, and the gun was fired by a fuse. No recoil seemed to have taken place, as the berrel was not moved from its position, although it was in no ways confined. The report was feeble: the bollet, Mr. Keir conceived, from the impression made upon the woud, had been projected with about balf the force it would have been by an ordinary charge, or sixty-eight grains, of the best gunpowder. We therefore re-charged the gun with thirty-four grains of the mercarial powder; and as the great strength of tise piece removed any apprehension of danger, Mr. Keir fired it from his shoulder, aiming at the same block of wood. The report was like the first, sharp, but not louder than might have been expected from a charge of gunpowder. Fortunately Mr. Keirawas not hurt; but the gun was burst in an extraordinary manser. The breech was what is called a patent one:, of the best forged iron, consisting of a chamber 0.4 of an inch thick all round, and 0.4 of an inch in caliber; it was torn open and flawed in many diiections, and the gold touch-hole drisen out. The barrel into which the breech was screwed was 0.5 of an inch thick; it was split by a single crack three inches long, but this did not appear to me to be the immediate effect of the explosion. 1 think the screw of the breech, being suddenly enlarged, acted as a wedge upon the barrel. The ball missed the block of wood, and struck against a wall, which had already been the receptacle of so many bullets, that we could not satisfy ourselves about the impression made by this last.
"As it was pretty plain that no gun could confine a quantity of the mercurial powder sufficient to project a bullet with a greater force than an ordinary charge of gunpowder, I determined to try its comparative strength in another way. I procured two blocks of wood, very nearly of the same size and strength, and bored them with the same instrumient to the same depth. The one was charged with half an ounce of the best Dartford gunpowder, and the other with half an ounce of the mercurial powder; both were alike buried in sand, and fired by a train communicating with the powders by a small touch-hole. The block containing the gunpowder was simply split into three pieces: that charged with the mercurial powder was burst in every direction, and the parts immediately contiguous to the powder were absoluteiy pounded, yet the whole huag together, whereas the block split by the gunpowder had its parts fairly separated. The sand surrounding the gunpowder was undoubtedly most disturbed: in short, the mercurial powder appeared to hart

FULMINATING POWDER.

acted with the greatest exergy, bat oaly within certain limits
a The effects of the mercurial powder, in the last experimentis, made me believe that it might be confined, during its explosion, in the centre of a bollow glase globe. Having therefore provided such a vessel, seven incbes in diameter, and nearly half an inch thick, mounted with brass caps, and a stopcock, 1 placed ten grains of mercurial powder on thin paper, laid on iron wire, 149th of an inch thick, across the paper, through the midat of the pouder, and, closing the paper, tied it fast at both extremities with silk to the vire As the inclosed powder was now attached to the middle of the wire, each end of which was coonected with the brass caps, the packet of ponder became, by this disposition, fixed in the ceatre of the globe. Such a charge of an electrical battery was then sent along the wire, as a preliminary experiment (with Mr. Cuthbertson's efectrometer) had shewn me would, by making the wire red hot, inflame the powder. The glass globe withstood the explosion, and of course retained whatever gasses were generated; its interior was thinly coated with quicksilver, in a very divided state. A bent glass tube was now screwed to the stop-cock of the brass cap, which being introduced under a glass jar standing in the mercurial bath, the stop-cork was opened. Three cubical inches of air iushed out, and a fourth was set at liberty when the apparatus was removed to the rater tab. The explosion being repeated, and the air all received over water, the quantity did bot vary. To aroid an error from change of temperature, the glass globe was, both before and after the explosion, immersed in water of the same temperature. It appears, therefore, that the ten grains of powder produced four cubical inches only of air.
«To contince the comparison between the mercurial powder and gunpowder, ten grains of the best Dartford gunpowder were in a similar manner set fire to in the glass globe: it remained entire. The whole of the powder did not explide, for sume complete grains were to be obsorved adhering to the interior surface of the glass. Little need be said of the nature of the gacses generated during the combustion of the funpowder: they must have been carbonic acid giss, salphureous acid gass, nitrogen gass, and (acarr.jug to La roisier) perhaps hydrogen gass. As to the quantity of these, it is obvious that it could cot be ascertained : because the two first were, at least in part, speedily absorbed by the alkali of the nitre, left pure after the decomposition of its antric acid."
The following description will give the experimental philosopher a clear idea of the instrument used in this business.
The ball or globe of glass is nearly half an inch thick, and seven inches in diameter. It has two necks, on which are cemented two brass caps, each being perforated with a female screw, to receire the male oncs; through the former a small bole is drilled; the latter is fupnished with a perforated stud or shank. By means of a leather collar the neck can he air-tightly closed. When a portion of the powder is to be exploded, it must be placed on a piece of paper, and a small wire laid across the paper, through the midst of the ponder: the paper being then closed, is to be sied at each end to the wire with a silken thread. Ose end of this wire is to be fastened to the end © the chank, asd the screw inserted to half its
length iuto the brass cap; the other end of the wire, by means of a needle, is to be drawn through the hole. The screw being now fixed in its place, and the wire drawn tight, is to be secured by pushing the irregular wooden plug into the aperture of the screw, taking care to leave a passage for the air. The stop-cock is now to be screwed on. The glass tube is bent, that it may more conveniently be introduced under the reo ceiver of a pneumatic apparatus.
"From some of the experiments in which the gunpowder proof and the gun were burst, it might be inferred, that the astonishing force of the mercurial powder is to be attributed to the rapidity of its combustion; and a train of several inches in length being consumed in a single flash, it is evident that its combustion must be rapid. But from other experiments it is plain that this fore is restrained to a narrow limit, both because the block of wood charged with the mercurial powder was more shattered than that charged with the gunpowder, whilst the sand surrounding it was least disturbed, and likewise because the glase globe withstood the explosion of ten grains of the powder fixed in its centre; a charge 1 have twice fonnd sufficient to destroy old pistol barrels. which were not injured by being fired when full of the best gunporder. It also appears from the last experiment, that 10 grains of the powder prov duced by ignition four cubical inches only of air: and it is not tu be supposed that the generation. bowever rapid, of four cubical inches of air, will alone account for the described force; neither caa it be accounted for by the formation of a little water, which, as will hereafter be shewn, happens at the same moment; the quantity formed from ten grains must be so trifing, that I cannot ascribe much force to the expansion of its vapour. The sudden vaporition of a part of the mercury seems to me a principal cause of this immense yet limited force; because its limitation may then be explained, as it is well known that mercury easily part; with caloric, and requires a temperature of 600 degrees of Fahrenheit, to be maintained in the vaporous state. That the mercury is really converted into vapour, by ignition of the powder may be inferred from the thin coat of divided quicksilver, which, after the explosion in the glass globe, covered its interior surface; and likewise from the quicksilver with which a tallow candle, or a piece of gold, may be evenly coated, by being held at a small distance from the inflamed powder. These facts certainly render it more than probable, although they do not demonstrate that the mercury is volatilized; because it is not unlikely that many mercurial particles are mechanically impelled against the surface of the glass, the gold, and the tallow.
" As to the force of the dilated mercury, Mr. Baunsé relates a remarkable instance of it, as follows:

- Un alchymiste se présenta ì Mr. Geoffruy, et l'assura qu'il avoit trouvé le moyen de fixerle mercure par une opération fort simple. Il fit construire six boites rondes en fer fort épais, qui entroient les unes dans les autres: la dernière étoit assujettie per deux cercles de fer qui se croisoient en angles droits. On aroit mis quelques livres de mercure dans la capacité de la premiere: on mit cel appareil dans un fuurneau assez rempli de charbon pour faire rougir à blanc les hoftes de fer: mais, lorsque la chaleur eut péndéré suffisamment le mercure, les boites crevèrent, avee une telle explosion qu'il se fit un bruit épouran-

FULMINATING POWDER.

table: des morccaux de boîtes furent lancés avec tant de rapidité qu'il y en tut qui passèrent all travers de deux planchers; d'autres firent sur la muraille des effiets semblaintes a ceux des éclats de bombes.'-Chymie Expérimentale et Raisonuée tom. ii. p. 393.
" Had the alchemist proposed to fix water by the same apparatus, the nest of boxes must, I suppose, have likewise been ruptured; yet it dues not follow that the explosion would have been so tremendous : indeed, it is probable that it would not, for if (as Mr. Kirwau remarked to me) substances which have the greatest specilic gravity have likewise the greatest attraction of cohesion, the supposition that the vapour of water, would agiee with a position of Sir Israc Nev: 0 , that those particles recede from one ansther n, th the greatest force, and are most difficulty orought together, which upon contact cohicre most stronely.
"Before I attempt to investigate thic con aituent principles of this powder, it will be ;roper to describe the process and manipulations which, from frequent trials, seem to be best calcula'ed to produce it. 100 grains, or a gieater proportional quantity of quicksilver, (not exceeding 500 grains), are to be dissolved, with heat, in a measured ornce and a half of nitric acid. This solution being poured cold upon two measured ounces of alcohol, previously introduced into any convenient glass vessel, a muderate heat is to be applied until an effervescence is excited. A white fume then begius to undulate on the surface of the liquor; and the powder will be gradually precipitated, upon the cessation of action and re-action. The precipitate is to be immediately collected on a filter, well washed with distilled water, and carefully dried in a heat not much excreding that of a water bath. The immediate edulcoration of the powder is material, because it is liable to the reaction of nitric acid; and, whilst any of that acid adheres to it, it is very subject to the influence of light. Let it also be cautiously remembered, that the mercurial solution is to be poured upon the alcohol.
"I have recommended quicksilver to be used in preference to an oxyd, because it seems to answer equally, and is less expensive; otherwise, not only the pure red oxyd, but the red nitrous oxide, and turpeth, may be substituted; neither docs it secm escential to attend to the precise specific aravity of the acid, or the alcohol. The rectified spirit of wine, and the nitrous acid of commerce, never failed with me, to pruduce a fulminating mercury. It is indeed true, that the powder prepared without attention is produced in different quantities, varieties in colour, and probably in strength. From analogy, I am disposed to thiuk the whitest is the strongest; for it is well knowa that the black precipitates of mercury approach the nearest to the metallic state. The variation in quantity is remarkable; the smallest quantity 1 ever obtained from 100 grains of quicksilver being 120 grains, and the largest 182 grains. Much depends on very minute circumstances. The greatest product seems to be obtained when a vessel is used which condenses and causes mostether to return into the mother liquor; besides which, care is to be had in applying the requisite heat, that a speedy and not a violent action be effected. 100 grains of an oxide are not so productive as 100 grains of quicksilver.
"As to the colour, it seems to incline to black when the action of the acid of the alcohol is most violent, and vice versa.
" I need not observe. that the gasses which were generated during the combustion of the powder in the glass globe, were necessarily mixed with atmospheric air; the facility with wbich the electric fluid passes through a vacuum, made such a mixture nnavoidable.
"The cubical inch of gass received over water was not readily absorbed by it; and, as it soon extinguished a taper without becoming red, or or being itself infl med, barytes water was let up to the three - abical inches received over mercury, when a carbonate of bargtes was immediately precipitated.
" The residue of several explosions, after the carbonic acid had been scparated, was found, by the test of nitros: gas, to contain nitrogen or azotic cas; which twes not proceed from any deromposition of aumospheric air, because the prowder may be made to explode under the exhausted receive:" of an air pump. It is therefore manifest that the gasses generated during the combustion of the fuiminating mercury, consist of carbonic acid and nit:ogen gasses
" The prineipal re-agents which decompose the mercurial powder are the nitric, the sulpharic, and the muiatic acids. The nitric chanyes the whole into nitrous gass, carbonic acid gass, acetous acid, and nitrate of mercury. I resolred it into these dillerent principles, by distilling it pneumatically with nitric acid: this acid upon the application of heat soon dissolved the porder, and extricated a quantity of gass, which was found, by well-known tests, to be nitrous gass mixed with carbonic acid gass. The distillation was carried on until gass no longer came over. The liquor of the retort was then mixed with the liquor collected in the receiver, and the whole saturated with potass; which precipitated the mercury in a yellowish brown powder, nearly as it would have done from a solution of nitrate of mercury. This precipitate was separated by a filter, and the filtrated liquor cevaporated to a dry salt, which was washed with alcohol. A portion of the salt beivs refused by this menstruum, it was separated by filtration, and recognized, by all its properties, to be nitrate of potass. The alcoholic hquor was likewise evaporated to a dry salt, which, upon the effusion of a little concentrate sulphuric acid, emitted acetous acid, contanninated with a feeble smell of nitious acid, owing to the solubility of a small portion of the nitre in the alcohol.
"The sulphuric acid acts upon the powder in a remarkable manner, as has already been noticed. A very conceutrate acid produced an explosiva nearly at the instant of contact, on account, 1 presume, of the sudden and copious disengagement of caloric from a portion of powder which is decomposed by the acid. An acid somewhat less concentrate likewise extricates a considerable quantity of caloric, with a good deal of gass; but, as it effects a complete decomposition, it couses no explosion. An acid diluted with an equal quantity of water, by the aid of a little heat, separates the gass so much less rapidly, that it may with safety be collected in a pneumatic apparatus. But, whatever be the density of the acid (provided no explosion be produced), there remains in the sulphuric liquor, after the separation of the gass, a white inflammable and uncrystallized powder inixed with some minute globules of quicksilver.
"To estimate the quantity, and observe the nature, of this uninflammable substance, 1 treated 100 grains of the fulminating mercury with sulphuric acid a little diluted. The gass being sepas-

FULMINATINGPOWDER.

rated, I decanted off the liquor as it became clear, aud freed the insoluble powder from acid by edulcoration with distilled water; after which I dried it, and found it weighed only 84 grains; consequently had lost 16 grains of its original weight. Suspecting, from the operation of the nitric acid in the former experiment, that these 84 grains (with the exception of the quicksilver globules) were oxalate of mercury, I digested them in nitrate of lime, and found my suspicion just. The mercury of the oxalate united to the nitric acid, and the oxalic acid to the lime. A new insoluble compound was formed; it weighed, when washed atd dry, $\mathbf{4 8 . 5}$ grains. Carbonate of potass separated the lime, and formed oxalate of potass, capable of precipitating lime-water and muriate of lime; although it bad been depurated from excess of alkali, and from carbonate acid, by a previous addition of acctous acid. That the mercury of the oxalate in the 84 grains had united to the nitric aed of the nitrate of lime was proved, by dropping muriatic acid into liquor from which the substance demonstrated to be oxalate of lime had separated; for a copious precipitation of calomel instantly ensued.
"The sulphuric liquor, decanted from the oxalate of mercury, was now added to that with which it was edulcorated, and the whole saturated with carbonate of potass. As effervescence ceased, a cloudiness and precipitation followed; and the precipitate being collected, washed and dried, veighed 3.4 grains: it appeared to be a carbunate of mercury. Upon eraporating a portion of the saturated sulphuric liquor, I found nothing but sulphate of potass : nor had it any metallic taste. There then remains, without allowing for the weizht of the carbonic united to the 3.4 grains, a deficit from the 100 grains of mercurial powder of 12.6 grains, which I ascribe to the saso separated by the action of the sulphuric acid. To ascertain the quantity, and examine the nature of the gass so separated, I introduced into a very small tubulated retort 30 grains of the mercurial powder, and poured upon it three drachms, by measure, of sulphuric acid, with the assistance of a gentle beat. I first received it over quicksilIte; the surface of which, during the operation, partially covered itself with a little black powder.
"The gass, by different trials, amounted to from 28 to 31 cubical inches: it first appeared to be nothing but carbonic acid, as it precipitated barytes water, and extinguished a taper, without being itself inflamed, or becoming red. But upon letting up to it liquid caustic ammonia, there was a residue of from 3 to 7 inches of a peculiar inflammable gass, which burnt with a greenish-blue flame. When I made use of the water-tub, I obtained from the same materials from 25 to 27 inches only of gass, although the arerage quantity of the peculiar intammable gass was likewise from 5 to 7 inches: therefore, the difference of the aggregate product, over the two fluids, must have arisen from the absorption, by the water, of a part of the carbonic acid in its uascent state. The variation of the quantity of the inflammable gass, when powder from the same parcel is used, seems to depend upon the acid being a little more or less dilute.
" With respect to the nature of the peculiar infiammable gase, it is plain to me, from the reasons 1 shall immediately adduce, that-it is no other than the gass (in a pure state) into which the nitrous etherized gass can be resolved, by treatment -ith dilute sulpharic acid.
" The Dutch chemists have shewn, that the nirous etherized gass can be resolved into nitrous gass, by exposure to concentrate sulphuric acid, and that, by using a dilute instead of a concentrate acid, a gass is obtained which enlarges the flame of a burning taper, so much like the gasseous oxide of azote, that they mistook it for that substance, until they discovered that it was permanent over water, refused to detonate with hydrogen, and that the fallacious appearance was owing to a mixture of nitrous gass with inflammable gass.
" The inflammable gass separated from the powder, answers to the description of the gass which at first deceived the Dutch chemists : 1 st, in being permanent over water; 2dly, refusing to detonate with hydrozen ; and, 3dly, having the appearance of the gasseous oxide of azote, when mixed with nitrons gass.
" The gass separable by the same acid, from nitrous etherized gass, and from the mercurial powder, have therefore the same properties. Every chemist would thence conclude, that the nitrous etherized gass is a constituent part of the powder, and the inflammable aud nitrous gass, instead of the inflammable and carbonic acid gass, had heen the mixed product extricated from it by dilute sulphuric acid.
" It however appears to me, that nitrous gass was really produced by the action of the dilute sulphuric acid; and that, when produced, it united to an excess of oxygen present in the oxalate of mercury.
"Tu explain how this change might happen, I must premise, that my experiments have shewn me that oxalate of mercury can exist in two, if not in three states. Ist. By the discovery of Mr. Ameilon, the precipitate obtained by oxalic acid, from nit rate of mercury, fuses with a hissing noise. The precipitate is an oxalate of mercury, seemingly with excess of oxyzen. Mifrcury dissolved in sulphuric acid and precipitated by exalic acid, and also the pure red oxide of mercury digested with oxalic acin, give oxalates in the same state. 2dly. Acetate of mercury, precipitated by oxalic acid, although a true oxalate is forined, has no kind of inflammability. I consider it as an oxalate with less oxygen than those abovi-mentioned. 3dly. A solution of nitrate of mcrcury, boiled with dulcified spirit of nitre, gives an oxalate mome inflammable than any other; perbaps it contaills most oxygen.
"The oxalate of mercury remaining from the powder in the sulphuric liquor is not only always in the same state as that precipitated from acetate of mercury, entirely devoid of inflammability, but contains globules of quicksitver, consequently it must have parted with even more than its excess of oxygen; and if nitrous gass was present, it would of course seize at least a portion of that oxygen. It is true, that globules of quicksilver may seem incompatible with nitrous acid; but the quantity of the one may not correspond with that of the other, or the dilution of the acid may destroy its action.
"As to the presence of the carbonic acid, it must have arisen either from a complete decomposition of a part of the oxalate; or admitting the nitrous etherized gass to be a constituent principle of the powder, from a portion of the oxyren, not taken up by the nitrous gass, being umted with tire carbon of the etherized gass.
"The muriatic acid, digested with the merce-

FULMINATING POWDER.

rial powder, dise, lves a portion of it, without ex. tricating any nutable quantity of gass. The dissolation evaporated to a dry salt tastes like the corzosive sablimate; and the portion which the acid dox's not take up is left in a state of an inflammeble oxalate.
" These effects all tend to establish the existonce of the mitruas etherized gas, as a constituent part of the powder; and likewise corroborate the explanation 1 have ventured to give of the action of the sulpharic acid. Moreovel, a measured ounce and a half of nitrous acid, bolding 100 grains of mercury in solution and two measured ounces of alcohol, yield 90 cubical inches only of gass : whereas, without the intervention of mercury, trey yield 210 inches. Upon the whole, I trust it will be thought reasonable to conclude, that the mercurial powder is composed of the nitrous therized fass, and of oxalate of mercury with excess of oxyen. 1st. Because the nitric converts the mercurial powder entirely into nitrous ass, carbonic acid gass, acetous acid, and nitrate of mercury. 9dly. Because the dilute sulphuric acid resolves it into an unintammable oxalate of merenry, and separates from it a gass resembling that into which the same acid resolves the nitrous etherized gass. 3dly. Because an uninllammable uxalate is likewise left, after the muriatic acid has cooverted a part of it into sublimate. sthly. Becanse it cannot be formed by boiling nitrate of mercury in dulcified epirits of nitre; although a very inflammable oxalate is by this means prudus ced. Sthly. Because the difference of the product of gass, from the same measures of alcohol and nitrous acid, with and without mercury in solution, is met trifling; and, 6 thly. Because nitrogen gass was gemerated during its combustion in the glass glole.
" Should my conclusions be thought warranted by the reasons I have adduced, the theory of the combustion of the mercurial powder will be obvious to every chemist. The hydrogen of the oxalic acid, and of the ctherized gass, is first united to the oxygen of the oxalate, forming water; the carbon is saturated with oxygen, forming carbonic acid gass; and a part, if not the whole of the nitrogen of the etherized gass, is separated in the state of mitrogen gass; both which last gasses, it may be reesllected, were after the explosion present in the glass globe. The molcury is revived, and, I presume, thrown into vapour; as mav well be imagined, from the immense quantity of caloric extricated, by adiling concentrate sulphuric acid to the mercurial powder.
" 1 will not venture to state with accuracy in what proportions its constituent principles are combined. The affinities I have brought into play are compliented, and the constitution of the subsiances I have to deal with not fully known. But to make round numbers, I will resume the statement, that 100 grains of the mercurial powder lost 16 grains of its original weight, by treatment with dilute sulphuric acid: 84 grains of the mercurial oxalate, mixed with a few minute globules of quicksilver, remained nodissolved in the acid. The sulphuric liquor was saturated with carbonic of putass, and yieldad 3.4 giains of carbonate of mercury. If 1.4 grains should be thought a proper allowance for the weight of carbonic acid in the 3.4 grains, I will make that deduction, and add the remaining twagrains to the 84 grains of mercurial oxalate and quickeilver; I shall then have,

Of oxalate and mercury
86 graiss And a deficit, to be ascribed to the nitrous etherized gass and excess of oxygen,

100

"It may perhaps be proper to proceed still further, and recur to the 48.5 graing, separated by nitrate of lime from the 84 grains of mercurial oxalate and globules of quicksilver. These 48.5 grains w, re proved to be ozalate of lime; but they contained a minutc inseparable quantity of mercary, almost in the state of quicksilver, formerly part of the 84 grains from which they were seperated. Had the 48.5 grains been pure calcareous oxalate, the quantity of pare oxalic acid in them would, according to Bergmann, be 23.25 grains. Hence, by omitting the two grains of mercury, in the 3.4 grains of carbonate, 100 grains of the mercurial powder might have been said to contain of pure oxalic acid 93.28 grains; of mercury 68.72 grains; and of nitrous etherized gass and excess of oxygen 14 grains. But as the 48.5 grains were not pure oxalate, inasmuch as they contained the mercury they received from the 84 grains, from which they were generated by the mitrate of lime, some allowance must be made for the mercury successively intermixed with the \&4 grains and the 48.5 grains. In order to make corresponding numbers, and allow for unavoidable errors, I shall estimate the quantity of that mercury to have amounted to two grains, which 1 must of course deduct frum the 33.28 grains of oxalic acid. I shall then have the following statement : That 100 grains of fulminating mercury ought to contain of pure oxalic acid, - 21.28 grains. Of mercury formerly united to the oxalic acid, 60.72

Of mercury dissolved in the sulphuric liquor, And of mercury lef in the sulphuric liquor, after the separation of the gasses,

$$
\text { Total of mercury, } \quad 64.72
$$

Of nitrous etherized gass, and
excess of oxygen, - 14

100

"S Since 100 grains of the powder seem to cons tain 64.72 grains of mercury, it will be immediately enquired, what becomes of 100 grains of quicksilver, when treated as directed, in the description of the process for preparing the fulminating mercury.
'It has been stated that 100 grains of quicksilver produce, under different circumstances, from 120 to 132 yrains of mercurial powder; and, if 100 grains of this powder contain 64.78 grains, 120 grains, or 132 grains, must, by parity of reasoning, contain 78.06 grains, or 85.47 grains; therefore 13.34 grains, or 20.75 grains, more of the 100 grains are immediately accounted for ; because 63.78 grains +13.34 grains $=78.06$, and 04.72 graias +20.75 grains $=85.47$ graias. The remaining deficiency of 21.94 grains, or 14.53 grains, which, with the 78.06 grains, or 85.47 grains, would complete the original lino of quicksilver, remains partly in the liquor from which the pourder is separated, and is partly volatilized in the white dense fumes, which in the beginning of this paper I compared to the liquor furians of Liba-

FULMINATING POWDER.

vics. The mercury cannot, in either instance, be obeained in a form immediately indicative of its quantity; and a series of experimeuts, to ascerlann the quantities in which many different substances can combine with mercury, is mot my present object. After observing that the mercury left in the residuary liquor can be precipitated in a very subtle dark powder, by carbonate of potass, I shall content myself with examining the mature of the white fumes.
" It is clear that these white fames contain mercary : they may be wholly cundensed in a range of Wolfe's apparatus, charged with a solution of muriate of ammonia. When the operation is over, a white powder is seen floating with ether on the saline liquor, which, if the bottles are agitated, is entirely dissolved. After the mixture has been boiled, or for some time exposed to the at mospbere, it yields to caustic ammonia a precipitute, in all respects similar to that which is sepan rated by caustic ammonia from corrosive sublitate.
" 1 would infer frean these facts, that the white dease fumes consist of mercury, or perhaps oxide of mercury, united to the nitrous etherized gass; aod that, when the muriate of ammonia containtog them is exposed to the atmosphere, or is boiled, the gass stparates from the mereury; and the excess of nitrous acid, which always comes over with nitroes ether, decomposes the ammoniacal mariate of snblimate, and forms corrosive mercusial muriate or sablimate. This theory is corroborated by comparing the quantity of gass estimatad to becontained in the fulminating mercury with the quantities of gass yielded from alcohol and nitrous acid, with and without mercury in solution; men to mention that more ether, as well as more gmes, is prodeced without the intervention of mercary ; and that, according to the Dutch chemists, the product of ether is always in the inverse ratio to the product of nitrous etherized gass. 8hould a further proof be thought necessary to the existence of the nitroas etherized gass in the fulminating mercury, as well as in the white dense fumes, it eny be added, that if a mixture of alcohol and nitrous acid holding mercury in solution be so dilute, and exposed of a temperature so low that neither aber nor nitrous etberized gass are produced, the fodarimating mercory, or the white fumes, will never be generated; for, under snch circumstances, the mercury is precipitated chiefly in the state of as inflammable oxalate. Further, when we consider the different sobstadces formed by an union of nitrons acid and alcobol, we are so far acquainted vith all, except the ether and the nitrous etherizω^{ω} gass, as to create a presumption, that no otbers we capable of volatilizing mercury, at the very bor temperature in which the white fumes exist, rince, during some minutes, they are permanent orer water of 41° Fahrenheit.

* Hitherto, as much only has been said of the nss which is separated from the mercurial powder Hy dilute sulphuric acid, as was necessary to identify it with that iato which the same acid can rewife the aitwous etherized gass: 1 have fnrther to speat of its peculiarity.
co The characteristic properties of the inflammaUe gass acem to meto be the following: 1 st . It does eot diminish in vulume, either with oxygen or sitrous gass. sdly. It will not explode withoxygen by the edectric shock, in a close vessel. 3dly. It burns like hy drucarbonate, hut with a blueish-green thase ; and, thbly. It is permanent over water.
" It is of course either not formed, or is comvertible into nitrous gas by the concentrate nitric and muriatic acids; because by those acids, no inflammable gass was extricated from the powder.
"Should this inflammable gass prove not to be bydrocarbonate, I shall be disposed to conclade that it has nitrogen for its basis; indeed, I am at this moment inclined to that opinion, because I find that Dr. Priestley, during his experiments os his dephlogistigated nitrous air, once produced a gass which seems to have resembled thisinfammanble gass, both in the mode of burning and in the colour of the flame.
"After the termination of the common solation of iron in spirit of nitre, he used heat, and got, says he, 'such a kind of air as I had brought nitrous air to be, by exposing it to iron, or liver of sulphur; for, on the first trial, a candle burued is it with a much enlaryed flame. At another times the application of a candle to air produced in this manner was attended with a real, thoush not loud explosion; and immediately after this -greenish-coloured flame descended from the top to the buttom of the vessel in which the air was come tained. In the next produce of air, from the same process, the flame descended blue, and very rapidIy from the top to the bottom of the vessel.'
" These greenish and blue-colvared Hames, descending from the top to the bottom of the vessel. are precisely descriptive of the inflammable gase separated from the powder. Ii it can be produced with certainty by the repetition of Dr. Priestley's experiments, or should it by any neans be got pure from the nitrous etherized gass, my curiosity will excite me to make it the object of future research; otherwise, 1 must confiss, I shall feel more disposed to prosecute other chemical subjects: for having reason to think that the deusity of the acid made a variation in the product of this gassp and having never found that any acid, however dense, produced an immediate explosion, I once poured six drachms of concentrate acid upon 50 grains of the powder. An explosion, nearly at the instant of contact, was effected: I was wounded severely, and most of my apparatus destroyed. A quantity moreover of the gass I had previously prepared was lost by the inadvertency of a person who went into my laboratory, whilst I was confined by the consequences of this discouraging accident. But should any one be desirous of giving the gass a further examination, I again repeat, that as far as I am enabled to judge, it may with safoty be prepared by putiring three drachms of satphuric acid, diluted with the same quantity of water, upon 50 grains of the powder, and then applying the fame of a candie until gass begins to be extricated. The only attempt I have made to decompose it, was by exposing it to copper and ame monia ; which during several weeks did nut effect the least alteration.
" I will now conclude (siys Mr. Howard), by observing, that the fulminating inercury seems to be characterised by the folluwing pruperties :
"It takes fire at the temperature of 365 Fahrenheit; it explodes by friction, by timt and stecl, and by being thrown into concentrate sulphuric acide It is equally inflammable undre the exhausted receiver of an air-pump, as surrounded by atinospheric air; and it detonates loudly, buth by the blow of a hammer, and by a strong electrical shock.
"Notwithstanding the compositions of fulminating silver and uf fuiounating god ditier essenually
from that of fulminating mercury, all three have similar qualities. In tremendous effects, silver ndoubtedly stands first, and gold perhaps the last. The effects of the mercurial powder and of gunpowder admit of little comparison. The one exerts, within certain limits, an almost inconceivable force : its agents seem to be gass and caloric, very suddenly set at liberty, aud both mercury and water thrown into vapour. The other displays a more extended but inferior power : gass and caloric are, comparatively speaking, liberated by degrees; and water, according to count Rumford, is thrown into vapour.
" Hence it seems that the fulminating mercury, from the limitation of its sphere of action, can seldom, if ever, be applied to mining; aud, from the immensity of its initial force, cannot be used in fire-arms, unless in cases where it becomes an object to destroy them ; and where it is the practice to spike cannon, it may be of service, because I apprehend it may be used in such a manner as to burst cannon without dispersing any splinters.
" The inflammation of fulminating mercury by concussion offers nothing more novel or remarkaBe than the inflammation, by concussion, of many other substances. The theory of such inflammations has been long since exposed by the celebrated Mr. Berthollet, and confirined by Messieurs Fourcroy and Vauquelin : yet, I must confess, I am at a loss to understand why a sunall quantity of mercurial powder made to detonate by the hammer or the electric shock, should produce a report so unuch louder than when it is inflamed by a match, or by flint and steel. It might at first be imagined, that the loudness of the report could be accounted for, by supposing the instant of the inflammation, and that of the powder's confinement between the hammer and anvil, to be precisely the same; but, when the electrical shock is sent through or over a few grains of the powder, merely laid on ivory, and a loud report in consequence, I can form no idea of what causes such a report.
* The operation by which the powder is prepared, is perhaps one of the most beautiful aud surprising in' chemistry; and it is not a little interesting to consider the affinities which are brought into play. The superabundant nitrous acid of the mercurial solution must first act on the alcohol, and generate ether, nitrous etherized gas, and oxalic acid. The mercury unites to the two last in their nascent state, and relinquishes fresh nitrous acid, to act upon unaltered alcohol. The oxalic acid, a predisposing affinity seems exerted in favour of its quantity, is evidently not formed fast enough to retain all the mercury; otherwise, no white fumes during a considerable period of the operation, but fulminating mercury alone will be produced.
"Should any doubt still be entertained of the existence of the affinities which have been called predisposing or conspiring, a proof that such affinities really exist will, I think, be afforded, by comparing the quantity of oxalic acid which can be generated from given measures of nitrous acid and alcohol, with the intervention of mercury, and the intervention of other metals. For instance, when two measured ounces of alcohol are treated with a solution of 100 grains of nickel in a measured ounce and a half of nitrous acid, little or no precipitate is produced; yet, by the addition of oxalic acid to the residuary liquor, a quantity of "ralate of nickel, after some repose, is deposited. Cupper affiorla another illustration ; 100 grains of
copper dissolved in a measured ounce and a half of nitrous acid, and treated with alcobol, yielded me about 18 grains of oxalate, although cuprenus oxalate was plentifully generated by dropping oxalic acid into the residuary liquor. About 21 grains of pure oxalic acid seem to be produced from the same materials, when 100 grains of mercury are interposed. Besides, according to the Dutch paper, more than once referred to, acetous acid is the principal residue after the preparation of nitrous ether. How can we explain the formation of a greater quantity of oxalic acid from the same materials, with the intervention of 100 grains of mercury, than with the intervention of 100 grains of copper, otherwise than by the notion of conspiring affinities, so analagous to what we see in other phænomena of nature?
" I have attempted, without success, to communicate fulminating properties, by means of alcohol, to gold, platina, antimony, tin, copper, iron, lead, zinc, nickel, bismuth, cobalt, arsenic, and manganese; but I have not yet sufficiently varied my experiments to enable me to speak with absolute certainty. Silver, when 20 grains of it were treated with neary the same proportions of nitrous acid and alcobol as 100 grains of mercury, yielded, at the end of the operation, about three grains of a srey precipitate, which fulminated with extreme violence. Mr. Cruickshankhad the goodness to repeat the experiment : he dissolved 40 grains of silver in two ounces of the strongest nitrous acid, diluted with an equal quantity of water, and obtained (by means of two ounces of alcohol) 60 grains of a very white powder, which fulninated like the grey precipitate above described. It probably combines with the same principles as the mercury, and of course differs from Mr. Berthollet's fulminating silver, before alluded to. I observe, that a white precipitate is always produced in the first instance; and that it may be preserved by adding water as soon as it is formed; otherwise, when the mother liquor is abundant, it often becomes grey, and is re-dissolsed."

Several trials of the mercurial powder were afterwards made at Woolwich in conjunction with colonel Bloomfield and Mr. Cruickshank, upon heavy guns, carronades, \&cc. from which Mr. Howard generally infers, that any piece of ordnance might be destroyed, by employing a quantity of the mercurial powder equal in weight to one half of the service-charge of gunpowder; and, from the seventh and last experiment, we may also conclude that it would be possible so to proportion the charge of mercurial powder to the size of different cannons, as to burst them without dispersing auy splinters. But the great danger attending the use of fulminating mercury, on account of the facility with which it explodes, will probably prevent its being employed for that purpose.
" In addition to the other singular properties of the fulminating mercury (says Mr. Howand), it may be observed, that two ounces inflamed in the open air seem to produce a report much louder than when the same quantity is exploded in a gun capable of resisting its action. Mr. Cruickshank, who mode some of the powder by my process, remarked that it would not inflame gunpowder. In consequence of which, we spread a mixture of coarse and fine-grained gunpowder upon a parcel of the mercurial powder; and after the inflammation of the latter, we collected most, if not all, of the grains of gunpowder. Can this extraordinary fact be explained by the rapidits \propto

FU M

The combustion of fulminating mercury? or is it we be supposed (as gunpowder will not explode at the temperature at which mercury is thrown into rapour) that sufficient caloric is mot extricated during this combustion? From the late opportunity 1 have had of conversing with Mr. Cruick shank, I find that he has made many accurate experiments on gunpowder; and he has permitted me to state, that the matter which remains after the explosion of gunpowder consists of potass united with a small proportion of carbonic acid. sulphate of potass, and a very small quantity of sulphuret of potass, and unconsumed charcoal. That 100 grains of good gunpowder vielded about 53 grains of this residuum, of which three are charcoal. That it is extremely deliquisent, and when exposed to the air, soon abserbs moisture sufficient to dissolve a part of the aikal; in consequence of which the charcoal beromes exposed, and the whole assumes a black or rery dark colour. Mr. Cruickshank likewise informs me, that after the combustion of good gunpasder under mercury, no water is ever perceptible."
FL'LMINATORY. a. (fulmineus, Latin.) Thundering; striking horrour.
FU'LNESS. s. (from full.) 1. The state of being filled so as to have no part vacant (King Charles). 2. The state of abounding in any quality good or bad. 3. Completeness; such as leaves nothing to be desired (South). 4. Completeness from the coalition of many parts (Bacon). 5. Completeness; freedom from defriency (Shakspeare). 6. Repletion; satiety (Taylor). 7. Plenty; wealth (Shakspeare). 8. Struggling perturbation; swelling in the mind (Bacox). 9. Largeness ; extent (Dryden). 10 Force of sound, such as fills the ear ; vigour of sound (Pope).
FU'LSOME. a. (from fulle, Saxon, foul.) 1. Nauseous; offensive (Otway). 2. Of a rank odious smell (Becon). 3. Lustful (Shakapeare). 4. Tencling to obscenity (Dryden).
FU'LSOMELY. ad. Nauseously; rankly; obscenely.
FU'LSOMENESS. s. (from fulsome.) 1. Namscousness. 2. Rank smell. 3. Obscenity (Dryden).
FULVIA, an ambitious woman who married the tribune Clodius, and afterwarls Curio, and at last M. Antong. She shewed herself crued as well as revengeful. When Cicero's head had been cut off by order of Antony, Fulvia ordered it to be brought to her, and with the greatest barbarity bored the orator's tongue with her golden bodkin. Antony divorced her to marry Cleopatra, upon which she attempted to persuade Augnstus to take up arms against her husband. When this scheme did not succeed, she retired into the east, where her husband received her with great coldness. This toallly broke her heart, and she soon after died, aboint 40 years before the Christian era.

FUMADO. s. (fumus, Latin.) A smoked fish (Careor).
FU'MAGE. s. (from fumus, Lat.) Hearthmoney.
FÚMARIA. Fumitory. In botany, a genus of the class diadelphia, oriler hexandria. Calyx two-leared, corol ringent; filaments two,

F U M

membranacenus; each with three anthers. Thirty species; chiefly European plants, and five indigenous to the tields, woods, or walls of our own country. Generally speaking, low, shrubby, deciduous evergreens: yet some herbaceous; with small simple leaves, and papilionaceous flowers. The only species that we need particularize is \mathbf{F}. officinalis, found in our own fields and over Europe generally, with branched, difiuse stem : siliques globular emarginate, one-seeded: leaves more than decompound, with wedge-lanceolate, cut sermentsIt has long been employed medicinally, as 2 cardiac, and alterative; and the leaves still form an article in the Materia Medica of the Edinburgh Pharmacopœia.
To FU'MBLE. v.n. (fommelen, Dutch.) 1 . To attempt any thing awkwardly or ungainly (Cudworth). 2. To puzzle; to strain in perplexity (Dryden). 3. To play childishly (Shukspeare).
To Fu'mble. v.a. To manage awkwardly (Dryden).

FU'MBLER. s. One who acts awk wardly.
FC'MBLINGLY. ad. (from fumble.) In an awkward manner.
FUME. s. (juméd, French ; fumus, Lat.) 1. Smoke (Dryden). 2. Vapour; any volatilo parts fying away (Shalispcare). 3. Exhalation from the stomach (Dry/den). 4. Rage; heat of mind ; passion (So:ath). 5. Any thing unsubstantial (Shakspeare). G. Idle concett ; vain imagination (Bucon).
To Fume. v. n. (fumet, Fr. fumo, Latin.) 1. To smoke (Milton). 2. To vapour; to yield exhalations (Shahspeure). 3. To pass away in vapours (Ben Jonson). 4. To be in a rage (Dryden).
To Fume. n. a. 1. To smoke; to dry in the smoke (Careve). 2. To perfume with odours in the fire (Dryden). 3. To disperse in vapours (Martinier).
FUME"ITE. s. (French.) The stink of meat (Swift).

FU'MHD. a. (fumidus, Latin.) Smoky; vaporous (Brown).
FUMI'DI'TY. s. (from fumid.) Smokiness; tendency to smoke.

To FU'MIGATE.v.n. (fumiger, French.) 1. To smoke; to perfume by smoke or vapour (Dryden). 2. To medicate or heal by vapours.

FUMIGATION. s. (fumigation, French.) 1. Scents raised by fire (Arcuthnot). 2. The application of medicines to the body in fumes.

Fumigation, in medicine, a process by means of which the nitrous and other mineral acids, in a state of vapour, is dispersed through the apartments of those who lie sick of inficetious fevers. This method of destroying contagion, in crowded places, was first brought into practice by Dr. Carmichael Suyth, who having given some striking proofs of its efficacy received a reward from parliament. When this fumigation is undertaken on board ships, the ports and scuttles are closed, a nimuber of pipkins, containiog hot sand, are procured, and mote each is plung ida small tea-cup, comam-

FUN

ing half an ounce of sulphuric acid. As soon as the acid is properly heated an equal quantity of pulverised nitre is added, and the mixture otirred with a glass rod. . The vapour resulting from the decomposition of nitre ascends, and is by the nurses conducted to every part of the apartment, which not only abates the malignity of the fever, but effectually stops the progress of infection. In a late volume of the Annales de Chemie, we have some striking facts of the efficacy of fumigation, according to the method of M. Guyton de Morveau, who makes use of sulphuric acid, sea-salt, and manganese. It has been tried, and completely succeeded in stopping the progress of the rot among sheep: it has destroyed the putrid odours arising from meat in the worst possible state, as well as having been eminently successful in the cure of the most alarming fevers, and preventing the effects of infection. See Septon.

FU'MINGLY. ad. (from fume.) Angrily; in a rage.

FUMITORY, in botany. See Fumaria.
FU'MOUS. Fu'my. a. (fumeux, French.) Producing fumes (Dryden).

FUN. s. Sport; high merriment (More).
FUNAMBULUS, among the Romans, was what we call a rope-dancer, and the Greeks schernobates. See Rope-dancer.
FUNARIA, in botany, a genus of the class cryptogamia, order musci. Capsule obovate; fringe double; outer of sixteen oblique wedge-form-teeth, cohering at their lips; inner, a membrane divided into sixteen flat teeth; veil square. Three species; two common to our own country.
FUNCHAL, the capital of Madeira, situate round a bay on the gentle ascent of the first hills, in form of an amphitheatre. It is defencled by several forts and batteries. The streets are narrow and dirty; the houses are built of freestone or brick: there are about 15,000 inhabitants. Lat. 32.28 N . Lon. 17.6 E .

FU'NCTION. s. (functio, Latin.) 1. Discharge; performance (Swifl). 2. Employment; office (W hilgift). 3. Single act of any office (Hooker). 4. Trade; occupation (Shakspeare). 5. Office of any particular part of the body (Bentley). 6. Power; faculty (Pope).

Function. (functio.) Action. The power or faculty by which any action of an animated body is performed. The functions of the human body are divided into vital, by which life is immerliately supported, as the action of the heart and arteries, respiration and animal heat; animal, which are effected through the operation of the mind, as the external and internal senses, the voluntary action of the muscles, voice, watching, and sleep; natural, by which the body is preserved, as hunger, thirst, mastication, deglutition, digestion, chylification, sanguification, nutrition of the body, and the various secretions and excretions; and, lastly, into sexual funcions, such as menstruation, conception, formation of the fetus, and parturition.

FUN

Function, a term used in analytics, for an algebraical expression ans how compounded of a certain letter or quantity with other quantities or numbers: and the expression is said to be a function of that letter or quantity. Or, a function is the analytical expression of the result which certain operations produce on a given quantity, or on any number of given quantities. Thus $a-4 x$, or $a x+3 x^{2}$,
or $2 x-a \sqrt{a^{2}-a^{4}}$, or x^{6}, or c^{x}, or $\log . x$, is each of them a function of the quantity x.
On the subject of functions, their divisions, transformations, explication by infinite series, \&c. see Euler's Analys. Infinitorum, c. 1. and Lagrange, Theorie des Fonctions Analytiques.

FUND, in general, signifies any sum of money appropriated for a particular purpose. Thus, that part of the national revenue which is set aside for the payment of the national debt is called the sinking fund. But, when we speak of the funds, we generally mean the large suma which have been lent to government, and constitute the national debt; and for which the kenders, or their assignees, receive interest from revenues allotted for that purpose. The term stock is used in the same sense, and is also applied to the sume which form the capital of the Bank of England, the East India and south-Sen companies, the proo prietors of which are entitled to a share of the profits of the respective companies.
The establishment of the funds was iptrodaced in Britain at the Revolution, and has since been gradually enlarged, and carried to an amazing ertent. Various methods have been used in their turns, but perpetual annuities have been graated for the greatest part; and, evee when the money was originally adranced on other conditions, the lenders have been sometimes induced, by subsequent offers, to accept of perpetual annuities, instead of the former terms. The debt for which perpetual annuities are granted is called the redeemable debt, and the other is called the irredeemable debt. Altbough the debts thus contracted by government are seldom paid for a long term of years, yet any creditor of the public may obtain money for what is due to bim when he pleases, by transferring his property in the funds to another; and regular methods are appointed for transacting these transfers in an easy manner. By means of this, the stocks become a kiad of circulating capital: and have the same effoct, in some respects, as the circulating money in the nation. When a stockbolder tranafers his share, he may sometimes be able to obtain a greater price than the original value, and at other times be obliged to accept of a less one. The value of the funds depends on the proportion betwoen the interest they bear, and the benefit which may be obtained by applying the money to other purposes, It is influenced by the plenty or scarcity of mo ney, and by the quantity of the public debt; and it is impaired by any event which threatens the safety, or weakens the credit, of the government
The business of stock-jobbing is founded on the variation of the prices of stock. Persons possessed of real property may buy or sell stock, acconding to their notion that the value is likely to rise or fall, in expectation of making profit by the difference of price: and a practice has taken place amnng persons who often possess no property in the funds, to contract for the sale of stoch araiost a future day, at a price now agreed ou. for in-

F U N D.

rance: A agrees to sell B 1000L of bank-stock, to be transferred, in 20 days, for 12001 . A has, in fact, no such stock; but if the price of bankstici, on the day appointed for the transfer, should be ouly 118 per cent., A may purchase as much as wiil easble him to fulfil his bargain for $1180 /$. and thus gains 810 . by the transaction : on the contrary, if the price of bank-stock be 105 per cent. he wil! lose 50l. The business is generaily settled without any actual purchase or transfer of stock, by A paying to B, or receiving from him, the difference between the current price of the stack on the day appointed and the price bargained 'or.
This practice, which is really nothing else than 2 wager concerning the price of stock, is contrary to law; yet it is carried on to a great extent. In the ianguage of Exchange alley, where matters of this kind are transacted, the buyer is called a bull, and the seller a bear. As neither party can be compelled by law to make goud those bargains, their sense of bonour, and the disgrace and loss of fature credit which attend a breach of contract, are the principies by which the business is supported. When a person deciines to pay his loss, be is called a lame duck, and dare never afterwards appear in the alley. This opprobnous appelation, however, is nut bestou ed un those whose failure is owing to want of ability, provided they make the same surrender of their property volantarily, which the law would have exacted if the debt had been entitied to its sanction.
The interest or dividend on the stock is paid balf-yearly; and the purchaser has the benefit of the interest due on the stock he buys, from the last term to the time of purchase. Therefore the prices of the stocks rise gradually, cateris paribus, from term to term, and fall at the term when the interest is paid. In comparing the prices of the different stocks, it is necessary to advert to the term when she last interest was paid; and, allowance being made for this circumstance, the prices of all the government stocks, which bear interest at the same rate, must be nearly the came, as they all-depend on the same security.
When a loan is proposed, such terms must be ofiered to the lenders as may render the transaction beneficial; and this is now re: ulated by the prices of the old stocks. If the stocks, which bear interest at 4 per cent. sell at par, or rather above, the government may expect to borrow money at that rate; but, if these stocks are under par, the goveroment must either grant a higher interest, or some other advantage to the lenders, in compensation for the difference. For this parpose, besides the perpetual annuity, ansther anuuity bas sometimes been granted for life, or for a term of years. Lotterics hare frequently been employed to facilitate the loan; by entitling the subscribers to a certain number of tickets, for which no higher price is charged than th- exact value distributed in prizes, though their market-price is seaerally 21 . or 31 . higher. Sometimes an abate-
ment of a certain proportion of the capital has been grauted, and a lender intitled to hold 1001. stuck though in reality be advanced no more perbaps than 95/.
It belongs to the Chancellor of the Exchequer to propose the terms of the loan in parliament; and he generally makes a previous agreement with some wealthy bankers or merchants, who are willing to advance the money on the terms proposed. The subscribers to the loan deposit a certain part of the sum subscribed, and are bound to pay the rest by instalments or stated proportions, on appointed days, under pain of forfeiting: what they have deposited. For this they are entitled, perhaps, not only to hold their share in the capital, but to an annuity for 10 years, and to the right of receiving a certain number of lotterytickets on advantageous terms. They may sell their capital to one person, their annuity to a second, and their right to the tickets to a third. The value of all these intertsts together is called omnium; and, in order to obtain a ready subscription, it ought to amount to $102 l$. or upwards on 100). of capital. This difference is called the bonus to the subscribers.

The capital adanced to the public, in the form of transferable stocks, and bearing interest from taxes appropriated for that purpose, is called the funder debt. Besides, there is generally a considerable sum due by government, which is not disposed of in that manner, and therefore is distinguished by the appellation of the unfunded debt. This may arise from any sort of national expence, for which no provision has been made, or for which the: provision has proved insufficient. The chief branches are:

1 st, Erehequer Bills.-These are issued from the exchequer generally by appointment of parliament, and sometimes without such appointment, when exigencies require. They bear interest from the time when issued, and are taken in by the Bank of Eogland, which prumotes their circulation.

2d, Nacy-Bills. - The sums annually granted for the navy have always fallen short of what that service required. To supply that deficiency, the Admiralty issues bills in payment of victuals, stores, and the like, which bear interest six months after the time issued. The debt of the navy thus contracted is discharged, from time to time, by pariameut.

The interest on all the public debts was formerly paid at the exchequer: but the Bank being found a much more convenient place for this purpose, nearly the whole is now payable there, the company receiving a certain alluwance from government for managine all business relative to the public funds. The different denominations of the funds transferable at the Bank of England, with the days on which the transfers are made, and the times when the interest or dividend becomes due, are at present as fullows:

F U N D.

Transfer dare
Dividends due.

Transferable at the South Sea House.

In these several funds, but particularly in the consolidated 3 per cents, which is by far the greatest in amount, much business is transacted daily both at the Bank and at the Stock Exchange, a building erected expressly for the buyers and sellers of the public funds to assemble in. Persons having occasion to invest money in the funds nsually employ a broker, who finds a seller of the stock wanted, and having agreed upon the price, delivers the particulars of the transfer to be made to a clerk in the proper office at the Bank, and fills up a receipt to be signed by the seller for the money paid. The tranaction is completed in a short time, with very little trouble to the parties, and this facility of buying into or selling out of the funds induces many persons to lay out their
money therein in preference to all other securities. The transfer frum the seller to the buyer is made free of all expence to the parties, on all the government funds; but transfers of the funds of any company or society are liable to a dutr. Transfers are made at the Bank between the hours of eleven and one o'clock; but may be made till three u'clock on payment of a small fee to the clerks.
The fullowing table will shew, at one view, the intrinsic value per cent. of the several public funds, in proportion to the different rates of interest they bear, by which any person may know in what fund it will be most advantageous to porchase.

3	31 $\frac{1}{2}$	4	41 $\frac{1}{2}$	5	52	8	$\begin{gathered} \text { Years } \\ \text { Purcbase. } \end{gathered}$	Annual Interest.
57	66 $\frac{1}{2}$	76	844	95	10; ${ }^{\frac{1}{2}}$	152	19	$\begin{array}{cccc}\text { l } & \text { s. } & \text { d } \\ 5 & 5 & 3\end{array}$
$\begin{aligned} & 58 \frac{1}{2} \\ & 60 \end{aligned}$	$\begin{aligned} & 65! \\ & 70 \end{aligned}$	73	$\begin{aligned} & 864 \\ & 90 \end{aligned}$	$\begin{gathered} 97 \frac{1}{2} \\ 100^{2} \end{gathered}$	$\begin{aligned} & 1074 \\ & 110 \end{aligned}$	$\begin{aligned} & 156 \\ & 160 \end{aligned}$	192	$\begin{array}{lll}5 & 2 & 8 \\ 5 & 0 & 0\end{array}$
$\begin{aligned} & 61 \frac{1}{2} \\ & 63 \end{aligned}$	$\begin{aligned} & 71 \frac{3}{4} \\ & 73 \frac{1}{2} \end{aligned}$	$\begin{aligned} & 82 \\ & 84 \end{aligned}$	$\begin{aligned} & 92! \\ & 94 \frac{1}{4} \end{aligned}$	$\begin{aligned} & 102 \frac{1}{2} \\ & 105 \end{aligned}$	$\begin{aligned} & 112 \frac{3}{4} \\ & 115 \frac{1}{2} \end{aligned}$	$\begin{aligned} & 164 \\ & 168 \end{aligned}$	$\begin{aligned} & 20 \frac{1}{2} \\ & 21 \end{aligned}$	$\begin{array}{lll}4 & 17 & 6 \\ 4 & 15 & 2\end{array}$
$\begin{aligned} & 64 \frac{1}{2} \\ & 66 \end{aligned}$	$75 \frac{1}{4}$ 77	$\begin{aligned} & 86 \\ & 88 \end{aligned}$	967 99	1051 110	1184	$\begin{aligned} & 172 \\ & 176 \end{aligned}$	$212{ }^{2}$	$\begin{array}{ccc}4 & 13 & 0 \\ 4 & 10 & 10\end{array}$
$\begin{aligned} & 67 \frac{1}{2} \\ & 69 \end{aligned}$	$\begin{aligned} & 784 \\ & 80 \frac{1}{2} \end{aligned}$	$\begin{aligned} & 90 \\ & 92 \end{aligned}$	$\begin{aligned} & 101 \frac{1}{4} \\ & 103 \frac{1}{2} \end{aligned}$	$\begin{aligned} & 112 \\ & 115 \end{aligned}$	$\begin{aligned} & 123 \frac{3}{2} \\ & 1268 \end{aligned}$	$\begin{aligned} & 180 \\ & 184 \end{aligned}$	$22 \frac{1}{2}$ 23	$\begin{array}{llll}4 & 8 & 10 \\ 4 & 6 & 11\end{array}$
$\begin{aligned} & 70 \frac{1}{2} \\ & 78 \end{aligned}$	823 84	94 96	10.54 108	$\begin{aligned} & 117 \frac{1}{2} \\ & 120 \end{aligned}$	$\begin{aligned} & 1294 \\ & 132 \end{aligned}$	$\begin{aligned} & 188 \\ & 192 \end{aligned}$	$\begin{aligned} & 23 \frac{1}{2} \\ & 24 \end{aligned}$	$\begin{array}{lll}4 & 5 & 1 \\ 4 & 3 & 4\end{array}$
$\begin{aligned} & 73 \frac{1}{8} \\ & 75 \end{aligned}$	853	98 100	1104	1221 125	1343 1374	196 200	$24 \frac{1}{2}$ 25	$\begin{array}{lll}4 & 1 & 7 \\ 4 & 0 & 0\end{array}$
$\begin{aligned} & 76 \frac{1}{2} \\ & 78 \end{aligned}$	$\begin{aligned} & 899_{4}^{4} \\ & 91^{2} \end{aligned}$	$\begin{aligned} & 102 \\ & 104 \end{aligned}$	$\begin{aligned} & 114 \frac{3}{4} \\ & 117 \end{aligned}$	$\begin{aligned} & 127 \frac{1}{2} \\ & 130 \end{aligned}$	$\begin{aligned} & 1404 \\ & 143 \end{aligned}$	$\begin{aligned} & 204 \\ & 208 \end{aligned}$	$25 \frac{1}{2}$ 20	$\begin{array}{llll} 3 & 18 & 5 \\ 3 & 16 & 11 \end{array}$
$79 \frac{1}{2}$ 81	924	106 108	1191	$132 \frac{1}{2}$ 135	$145 \frac{1}{4}$ $148 \frac{1}{2}$	$\begin{aligned} & 212 \\ & 216 \end{aligned}$	$26 \frac{1}{2}$	$\left.\begin{array}{lll} 3 & 15 & 5 \\ 3 & 14 & 0 \end{array} \right\rvert\,$
$\begin{aligned} & 82 \frac{1}{2} \\ & 84 \end{aligned}$	$\begin{aligned} & 96 \frac{1}{4} \\ & 98 \end{aligned}$	$\begin{aligned} & 110 \\ & 112 \end{aligned}$	$\begin{aligned} & 19: 3 \\ & 126 \end{aligned}$	1371 140	$151 \frac{1}{4}$	220 224	278 28	$\begin{array}{cccc}3 & 12 & 8 \\ 3 & 11 & 4\end{array}$
$\begin{aligned} & 85 \frac{1}{2} \\ & 87 \end{aligned}$	$\begin{array}{r} 99 \frac{3}{4} \\ 101 \frac{1}{2} \end{array}$	$\begin{aligned} & 114 \\ & 116 \end{aligned}$	$\begin{aligned} & 128 \frac{3}{3} \\ & 100 \frac{1}{2} \end{aligned}$	$\begin{aligned} & 142 \frac{1}{4} \\ & 145 \end{aligned}$	$\begin{aligned} & 156 \frac{1}{2} \\ & 159 \frac{1}{2} \end{aligned}$	228 232	$\begin{aligned} & 28 \frac{1}{2} \\ & 29 \end{aligned}$	3 10 2 3 9 0
$83 \frac{1}{2}$ 90	1084 105	118 120	${ }_{132}^{135}$	$147 \frac{1}{4}$ 150	$162{ }^{16}$	236 240		$\begin{array}{lll}3 & 7 & 9 \\ 3 & 6 & 8\end{array}$

Fiplanation. The first column towards the left fiand contains the three per cents. Now 1001. in the 3 per cent, annuities purchased for 57l. will
bring the purchaser the same annual interest, (5l. 5 s .3 d .) for his money, as 1001 . in any of the other funds, purchased at the respective prices in

He came parallel line with 57. Again. Suppose 1 find in the newspapers that 3 per cent. annuities sell fur $9\left(\frac{1}{2}\right.$, and bank stock ($5 \frac{1}{2}$ per cont.) sell, for 140, which of these will bring me a greater aunual interest, nud what interest will tach of them produce?.... In the eleventh line of the first column, containing the 3 per cents, I find 70_{2}^{\prime}, and in the last culumn of the same line 1 tind that the 3 per cents purcbased at $70 v_{2}^{2}$, prodace 4l. 5s. 1d. per annum. Then, in the sixth column of the same line, containing the bankstock, I find 1894, which shews, that when the 3 per cents are at $7 i_{2}^{1}$, bauk stock, which pays g_{i} per annum, is worth only $129 \frac{1}{4}$, consequanty the price of that stuck in the papers is $11 /$. too dear: and as against $140 \frac{1}{4} l$. in the $5!$ per cent. column, we find 36. 18s. 5d.annual interist of 100 .. laid out in bank stock at that rate, while the 3 per cents at the same time would produce 4'. 3s. 1 d .
Sinking Funt.-The surplusses of the three great national funds, 'the agyregate, geueral, and South sea funds, over and abore the interest and anmuities charged upon them, are directed by shatute 3 Geo. 1. c. 7. to be carried together, and to attend the disposition of parlianemt; and are asually denominated the sinking fund, because unginally destined to siuk and lower the national debl. To this have been since added many other entire duties, granted in subsequent years; and the annual interest of the sums borrowed on their respective credits is charged on, and payable out of, the produce of the sinking fand. However, the nett surplasses and savings, after all deductions paid, amount annually to a very considerable sum. For, as the interest on the national debt has been at several times reduced (by the consent of the proplitiors, who had their option eitier to luwer their interest or be paid their principal), the savings fiom the appropriated revenues must needs be extremely large.
But, before any part of the aggregate fund (the surplusses wherof are one of the chief ingredients that form the sinking fund) can be applied to diminish the principal of the public debt, it stands mortgazed by parliament to raise an annual sum for the maintenance of the king's houschold and the civil list. For this purpose, in the late reigns, the produce of certain branclies of the excise and customs, the post-office, the duty on wine-licences, the revenues of the remaining crownhands, the profits arising from courts of justice, (which articles include all the hereditary revenues of the crown), and also a clear annuity of $120,000 \mathrm{l}$ in money, were settled on the king for life, for the support of his majesty's household, aod the honour and dignity of the crown. And, as the amount of these several branches was uncertain, (though in the last reign they were compoted to have sometimes raised almost a million,) if they did not arise anunally to 800,0001 ., the parliament engaged to make up the deficiency. But bis present majesty having, soon after bis acceasion, spontancuusly signified his consent that his own hereditary revenues might be so disposed of as might best conduce to the utility and satisfaction of the public, and having graciously accepted a limited sum, the said hereditary and other revenues are now carricd into, and made a part of, the aggregate fund; and the uggresate fum is cbariced with the payment of the whole anauity to the crown. The limited annuity accepted by his present majecty was at first 800,0001 . but it has been since allincnied to 900,000 . The

N \mathbf{D}.

cxpenses themsclies, leing put under the same care and manacement as the othre branches of the pullic patrimony, proluce more, and are better collected than heretolore; and the public i, a ganer of upwards of $100,0 \% 0 \%$. per annum by this dininterested hounty of his majesty.

Tue simking fund, thu:gh ling talhed of as the last resource of the nation, proved very inadequate to the purpose for which it was established. Ministers fuund pretences for diverting it into other channels; and the diminution of the mational debt proceded soovly duri:g the intervals of peace, whilst cach suce eding war increased it with great rapidity. To remedy this evil, and restore the pubiac credit, to which the American war had givea a considerable shock, Mr. Pitt conceivet a plan for diminishing the debt by a fund, which s!ould be rendered un. alienable to any other parpos.. In the session 17S6, he moved that the ammal surpius of the revenue above the expeoditure should be raised, ly additiumal taxes, fium yon, ouel. to one millon steling, and that certain commissioners should be vesied with the full power of disposing of this sum in the purchase of stock for the public, in their own names. These commissioners should receive the annual million by quarterly payments of $250.000!$., to be issued out of the exchequer befure any other money, except the interest of the uational debt itself; by these provisions, the fuad would be secured, an 1 no deficiancies in the mational revonues could affect it, but such must be separately provided for by parliament.

The accumulated compound interest on a million yeally, tost ther with the annuities that would fall inti, that fund, would, he said, in twen-ty-eight years amount to such a sum as would leave a surplas of fiour millions annualty, to be applied, if necessary, to the exigencies of the state. In appointing the commissioners, he should, he said, endeavour to choose persuns of such wright and character as corresponded with the importance of the commission they were to execute. The speaker of the house of commons, the chancellor of the exchequer, the master of the rolls, the governor and deputy guvernor of the Bank of England, and the accuuntant-general of the high court of chancery, were persons who, from their several situations, he should think highly proper to be of the uumber.

To the principle of this bill no objection was made, though several specious but ill-fuunded ones were urged asainst the sufficiency of the mode which the chancellor of the exchequer had adopted for the accumplishenent of so great and so desirable an end. He had made it a clause in his bill, that the accumulating million should never be applied but to the purchase of stock. To this clanse Mr. Fox obiected, and moved that the commissioners therein named should be impowered to accept so much of any future loan as they should have casb belongiug to the public to pay for. This, be said, wuuld relieve that distress the country would otherwise be under, when, on account of a war, it might be necessary to raise a new loan: whencrer that should be the case, his opinion was, that the minister should not only raise taxes sufficiently productive to pay the interest of the loan, but also sufficient to make good to the sinking fund whatsoever had been taken from it.

If, therefore, for instance, at any future period a loan of six millions was proposed, and there

F U N

was at that time one million in the hands of the commissioners, ill such case they should take a million of the loan, and the bonus or doureur thereupon should be received by them for the public. Thus government would only have tive millions to borrow instead of six, and from such a mode of proceeding, he said, it was evident great benefit would arise to the public.

This clause was received by Mr. Pitt with the strongest marks of approbation, as was likewise another, moved by Mi. Pulteney, enabling the commissioners named in the bill to continue purchasing stork for the public when it is above par, anless otherwise directed by parlianment. With these additional clauses the bill was read a third time on the 15 th of May, and carried up to the lords, where it also passed without meeting with any material opposition, and afterwards received the royal assent.

The operation of this bill surpassed perhaps the minister's most sanguine expectation. The func was ably managed, and judiciously applied; and in 1793 the commissioners had extinguished some millions of the public debt. The war, however, into which the nation was that year involved, has made it necessary to borrow additional sums, so large, that many years of peace must elapse before the operation of the fund can contribute sensibly to the relief of the people.

The income of the whole sinking fund, on the 1 st of February, 1802, was $5,809,330 l$. Tbe whole sum which had been paid for the purchase of stock, up to that period, was $38,110,7951$.

It has been said, that when money is wanted for defraying public expences, it makes no difference whether it is obtained by diverting the sinking fund, or by a new loan. There cannot be a worse fallacy than this. Money in a sinking fund, if never alienated, is improved at compound interest; but, when procured by a loan, bears only simple interest. A nation, therefore, whenever it applies the income of such a fund to current expences rather than the redemption of its debts, chooses to lose the benefit of compound interest in order to avoid paying simple interest; and the loss in this casc is equal to the difference between the increase of money at compound and simple interest. The following calculation will shew what this difference is.

One peuny put out at our Saviour's birth to five per cent. compound interest, would, before the year 1779, have increased to a greater sum than would be contained in a hundred and fifty millions of earths, all solid gold. But, if put out to simple interest, it would, in the same time, have amounted to no more than seven shillings and six-pence. All governments that alienate funds destined for reimbursements, choose to improve money in the last rather than the first of these ways.

FUNDANENT, in anatomy, the lowest part of the intestinum rectum, called by anatomists the anus.

FUNDAME'NTAL. a. Serving for the foundation; that upon which the rest is built; essential ; important (Raleigh).

Fundamental bass. (See Bass.) To what is there mentioned, we now add a few practical rules for the procedure of the fundamental bass. It ought never to sound any other notes than those of the series or tone in which the composer finds himself, or at least

F U N

those of the series or tone to which he chooses to make a transition. This of all the rules for the fundamental bass is the most indispensable. By the second, its procedure ought to be so implicitly subjected to the laws of modulation, as never to suffer the idea of a former mode to be lost till that of a subsequent one can be legitimately assumed; that is to say, that the fundamental bass ought never to suffer us to be one moment at a loss in what mode we are. By the third, it is subjected the connection of chords and the preparation of dissonances: a manœuvre which is nothing else but a method of producing this connection, and which of consequence is only necessary when the connection cannot subsist without it. By the fourth, it is necessitated, after every dissonance, to pursue that career which the resolution of the dissonance indispensably prescribes. (See Resolution.) By the fifth, which is nothing but a consequence of the former, the fundamental bass ought only to move by consonant intervals; except alone in the operation of a broken cadence, or after a chord of the seventh diminished, where it rises diatonically. By the sixth, in short, the fundamental bass or harmony ought not to be syncopated; but to distinguish the bars and the times which they contain, by changes of chords properly marked with cadences; in such a manner, for instance, that the dissonances which ought to be prepared may find their preparation in the imperfect time, but cliefly that all the reposes may hap. pen in the perfect time. The sixth rule is liable to exceptions: nevertheless it is alwayskeps in view by every judicious composer.

Fundimental note, in music. See Key.

FUNDAME'NTALLY. ad. Essentally; originally.
FUNDY (Bay of), is seated between Ner Hampshire and Nova Scotia, celebrated on account of its fishery.
FUNEN, an island of Denmark, seated on the Baltic sea. It is fercile in wheat and barley.

FU'NERAL. s. (funcrailles, French.) 1. The solemnization of a burial ; the payment of the last honours to the dead; obsequies (Sandys). 玉. The pomp or procession with which the dead are carried (Swif). 3. Burial; interment (Denham).
Fu'neral. a. Used at the ceremony of interring the dead (Denham).
Funeral rites, ceremonies accompanying the interment or burial of any person. The word is formed of the Latin $f u n u s$, and that of funalia, on account of the torches (which were funes cera circumdati) used in the funerals of the Romans; though others derive funus from the Greek pors, death or slaughter. These rites differed among the ancients according to the different genius and religion of each country. The first people who seem to have paid any particular respect to their dead were the Egyptians, the posterity of Ham. The first cultivators of idolatrous worship and The first cultivators of idolatrous worship ibe
superstition after the flood; they were also
first who asserted the immortality of the soul, its migration into all kinds of animals in earth, air, and sea, and its return to the human body; which they supposed to be within the term of 3000 years. fence proceeded their very great care in embalming of their dead bodies, and their being at such vast expence, as they were, in building proper repositories for them; for they were more solicitous about their graves than their houses. This gave birth to those wonders of the world, the pyramids, which were built for the burial of their kings, with such vast charges, and almost incredible magnificence. See Pyramid.
The funeral rites among the Hebrews were solemn and magnificent. When any person was diad, his relations and friends rent their clothes; which custom is but faintly imitated by the modern Jews, who onlv cut off a bit of their garment, in token of affliction. It was usual to bend the dead person's thumb into the hand, and fasten it in that posture with a string; bresure the thumb then having the figure of the name of God, they thought the devil would not dure to approach it., When they came to the burying-place, they made a speech to the dead in the following terms: "Blessed be Gid, who has formed thee, fed thee, maintaines thee, and taken away thy life !-O dead! he knows your numbers, and shall one day restore your life, \&c." Then they spoke the elogium, or funeral oration, of the deceased; after which they repeated a prayer, called the Righteriusness of Judginent; then turning the face of the deceased towards heaven, they called out, " G_{0} in peace."
The ancient Christians abhorred the pagan custom of burning their dead, and always deposited the body entire in the ground: and it was usual to bestow the honour of einbalming upon the martyrs at least, if not upon others. They prepared the body for burial, by washing it with water, and dressing it in a fumeral attire. The exportation or carrying forth of the body was performed by near relations, or persons of such dignity as the circumstances of the deceased required. Psalmody, or singing of psalms, was the great ceremony used in all funeral processions among the ancient Christians.
In the Romish church, when a person is dead, they wash the body, and put a crucifix in its hand. At its feet stands a vessel full of holy water, and a sprinkler, that they who come in may sprinkle both themselves and the decesed. In the mean time some priest stands by the corpse, and prays for the deceased till it is laid in the earth. In the funeral procession, the exorcist walks first, carrying the holy water; next the cross-bearer, afterwards the rest of the clergy, and last of all the officiating priest. They all sing the miserere, and some other palms; and at the end of each psalm a requiem. We learn from Alet's ritual, that the laces of deceased laymen must be turned towards the altar, when they are placed in the charch; and those of the clergy towards the people. The corpse is placed in the church sorrounded with lighted lapers: after the office
for the dead, mass is said; then the officiating priest sprinkles the corpse thrice with holy water, and as often throws incense on it. The body being laid in the grave, the friends and relstions of the deceased spriukle the grave with holy water.
The funcral ceremonies of the ancient Greeks and Romans were very numerous: for a description of them we must refer to the wellknown books of Putter, Kennett, and Adams; and shall conclude this article with pointing out an abuse in the modern practice of burying in our metropolis, which loudly claims the attention of the legislature. In many populous parishes, within the bills of mortality, a dangerous practice prevails, of excavating pits (graves they cannot he called) for the reception of the deceased poor, who being packed in four deal boards loosely nailed together, are there deposited till the hole is sufficiently filled. During the interval planks are laid over this common receptacle; and when the uppermost coffin arrives, a minister is employed to mutter, at once, the usual pravers, over the hapless victinss of poverty. Such mal-practice demands an immediate remedy; as the mephitic vapours arising through the planks, especially during summer, have the most noxious properties; and have probably caused the prenature death of many. Facts like these, we agree with Dr. Willich (Domes. Encyclo.) in thinking it our duty to state, on account of their immediate influence on the health of every inhabitant of London.
Funeral-column,a column crowned with an urn, wherein the ashes of some deceased person are supposed to be enclosed; the shaft being beset with tears and flames, the symbols of grief and immortality.
Funeral-games, a part of the ceremony. of the ancient funerals. It was customary for persons of quality among the ancient Greeks and Romans to institute games, with all sorts of exercises, to render the death of their friends more remarkable. This practice was generally received, and is frequently mentioned by ancient writers. Patroclus's funeral games take up the greater part of one of Homer's Iliads; and Agamemnon's ghost is introduced by the same poet, telling the ghost of Achilles that he had been a spectator at a great number of such solemnities.
Funeral oration, ot sermon, a discourse pronounced in praise of a person deceased, at the ceremony of his funeral.
The custom of making funeral orations is very ancient. The Romans had it of a long standing; and it was always one of the nearegt relations that made the harangue. Augustus did the office to his grandmother Julia, when only twelve years of age. Suet. Aug. cap. 8. And we have divers parallel instances.

Funeral sermons and orations among Christians. In all compositions of this sort from the pulpit, there is one thing in which we should take care to follow the ancients; and that is, not to make sermons or orations indiscriminately, but for those only whose charac-

F U N

ters are distinguished, and who have been eminently useful in the world. The old heathens homoured those alone with this part of the funeral solemity who were men of probity and justice, renowned f.r their wiodom and knowledge, or famous for warlike exploits: this, as Ciceroinforms us, being part of $t e$ law for burials, which direets that the pruises only of honourable persons shall te mentioned in the oration. It would be much more asresthle, therefore, if our funeral discourses were not so common, and if the characters given of the deceased were strictly just, and devoid of that fulbome flattery with which they are too often interlarded. The most eloquent funcral orations yet kunwn are those of B ossuet.

FUNE:'REAL.. a. (funerea, Latin.) Suiting a funeral; dark; dismal (Pope).

FLNGI, funguses, or mushrooms. The first of the great families; and the ninth of the nations, tribes, or casts, into which Limnéus has distributad the whole vegetable world. Also the sixty-seventh order in his Fragments of a Natural Method: the fiftyeighth of his Natural Orders; and the fourih order of the class cryptogamia, in his Artiticial Sytem.
FUNOCOSITTY.s. (from fungus.) Unsolid escrectence.
FU'NGOUS. a. (from fungus.) Excreseent; siongy; wanting firmness (Shari).

FUNGUS. (fiungus.) Proud flesh. A term in surgery to express any luxuriant formation of flesth.
Fungusigniarius. Sec Agaricus.
fungus laricis. Sce Agaricusalbus.
lungus melitensis. This is improperly cated a fungus, it being the cinomonium coccincum of Linnéns. A drachm of the powder is given for a dose in dysenteries and hannorrhagies, and with remariable success.
liungus rosaceus. Sec Bedcuar.
Fungus salicis. The willow fungus. The species of fungus ordered in some pharmacopocias by this name is the boletus suaveolens; acaulis superne lievis, salicibus, of Limnéns, and the boletus albus of Hudson. When fresh, it has a suburinous smell, and at first an acid tate, foilowed by a bitter. It is seldom used at precent, but was formerly given in phthisical complaints.

Fungus sambucinus. See Auricula JUDR.

Fungus vinosus. The dark cobweblike fungus, which veretates in dry cellars, where wine, ale, and the like, are kept.

FUNICULUS UMBILICALIS. (funirulus, dim. of funis, a cord.) See Umbilical cord.

FU'N1CLE. s. (funiculus, Latin.) A small cord.

FUNI'CULAR.a. (funiculaire, French.) Consisting of a sinall cord or fibre.

FUNK. s. A stink.
FU'NNEL. s. (infundilulum, Latin.) 1. An inverted hollow cone with a pipe decending from it, through which liquors are poured

F U R

into vessels (Ben Jonson). 2 A pipe or prs: sage of communication (Addison).

FUR. s. (fourrure, French.) 1. Skin with soft hair, with which garments are lined for warmeth (Siwift). 2. Soft hair of beasts found in cold countries; hair in general (Ray). 3 Any moisture exhaled to such a derree as that the remainder sticks on the part (D ryden).

To lur.v.a. (from the noun.) 1. To line or cover with skins that hare soft hair (Sid.). 2. To cover with soft matter (Philips).

Fur-wrought.a. Made of fur (Gay).
With respect to its influence on health, we shall brietly remark, that fur deserves no commendation as an article of ordinary dress. Its alkaline and oily particles stimulate the skin, when in contact with it ; thus partially increase perpiration, and lay the foundation of colds and catarrhs. A fur dress readily attracts infection, and acquires an intolerable smell. Hence whole nations that wear such garments are exposed to obstinate cutaneous diseases, and, perthaps, to the propagation of the plague iteelf; which is said to be spread among the Thurks, chiefly ly their absyrd cumbersone dreses lined with animal hair. See Ferr.

FURA'CIOUS. a. (firax, Lat.) Thievish. FURI'CITY. s. (from furur, Latin.) Disposition to theft; thievishness.

FL'RBELLOW. s. A piece of stuff plaited and puckered together, either below or above, on the garments of women (Pope).

To F'ukbelow. v. a. (from the noun.) To adorn with ornamental appendiges of dress.

To FU'RBISH. v.a. (jourlir, French.) To burnish; to polish (South).

I'L'RBLSHER. s. (fourlisseur, Fr.) One who polishes any thing.

FLRCA, FORK, in antiquity, an instrument of punishment, among the Romans. The form of the Roman furca is very obscurely described by the ancicnts, and much controverted by the moderns. All we know for certain is, that it was of wood, and resembled a fork.

FURCA'TION. s. (furca, Lat.) Forkiness; the state of shooting two ways like the blades of a fork (Brown).
FURETIERE (Anthony), a learned Frenchman, born at Paris in 1620. After practising with reputation as an advocate, he entered into orders, and became abbot of Chalivoy and prior of Chuines. He was expelled from the French academy for publishing his universal dictionary of the French tongue, which that society pretended was meant to supersede their own. He died in 1688.

FURINI (Francesco), an eminent historical painter, born at Florence in 1604, and died in 1646. He excelled in painting naked figures, as nymphs bathing, \&c. which he executed with greater elegance than decency.

FURIUS, surnamed Bibaculus, an old Latin poet, born at Cremona about 100 B.C. He wrote annals and satires, but only some fragments are now extant, to be found in Macrobius.
FURFUR. (furfur, meal.) Bran. A dis-

F U R

ease of the skin, in which the cuticle keeps falling off in small scales like bran.
FURFLRACEOUS. (furfuraceus, from furfur, bran.) A term applied to branny scales on the skin: also to the sediment deposited in the urine of persons afflicted with fever, of a reddish or whitish matter, which generally appears within an hour or two after the urine is passed, and only falls in part to the bottom, the urine remaining turbid.
FURIA, in 200logy, a genus of the class vermes, order intestina. Body linear, equal, filiform, and ciliate on each side with a single row of reflected prickles pressed close to the body. One species only; F. infernalis : inhabits the vast marshy plains of Bothnia and Finland; where it craw/s up shrubs and sedgegrass, and being carried forwards by the wind, penetrates suddenly into such exposed parts of men and horses as are not perpendicularly situated. It quickly buries itself under the skin, leaving a black point where it had entered; which is soon succeeded by the most excruciatior pains, informmation and ganyrene of the $i^{\text {pratt }}$, swooning and death. This all occars in the course of a day or two, frequently within a few hours, unless the animal be imimmediately extracted; which is effected with great caution and difficulty, by applying a poultice of curds or cheese; or by carefully dissecting between the muscle in the course it entered.
FURIES, in pagan antiquity. See Eumemides.
FCRINA, the gaddess of robbers, worshipped at Pagan Rome. Her festivals were called Furinalia or Furineia.
FLRIOSO, a musical term, applied to movements which are intended to be played with a degree of energy bordering upon fury.

FU'RIOUS. a. (furieux, French; furiosus, Latin.) 1. Mad; phrenetic (Hooker). 2. Raging; violent; transported by passion beyond reason (Shakspeare). 3. Violent; impetuously agitated (Milion).

FU'RIOUSLY. ad. Madly; violently (Spenser).
FC'RIOUSNESS. s. (from furivus.) Phrensy; maduess ; transport of passion.

To FURL. v. a. (fresler, French.) To draw up; to contract (Creech).
FU'RLONG. s. (fanlang. Saxon.) A meacure of length ; the eighth part of a mile.
FU'RLOUGH. s. (verloef, Dutch.) A temporary dismission from military service (D ry.).
FU'RMENTY. s. See Frumenty. (Tusser).
FURNACE. An apparatus for the purpose of exciting and maintaining vehement combustion, whether by coal, charcoal, wood, turf, coak, or cinders.
As heat is one of the great agents in chemical processes, the peculiar mode of constructing such an apparatus is a question of the utmost consequence; and, accordingly, a vast quantity of pains and ingenuity has been bestowed on this subject. In all furnaces, however, the chief points to be attended to are the

F U R

following: 1. To confine the heat as unuch as possible to the matter to be operated upon. 2. To prevent its beng dissipated. 3. To produce as much heat with as litile fuel as possible: and, 4. To have it in our power to regulate the degree of heat according to our pleasure.
To answer the first intention, the fire is usually confined in a chamber or cavity built on purpose for it, and furnished with a door for putting in the fuel; a grate for supporting it, and allowing air to pass through, as well as the ashes to drop down into a cavity provided on purpose, and called the ash-pit. Thus the heat produced by the inflamed fuel is confined by the sides of the furnace, and oblized to spend great part of its force upon the suibject inclosed.
The second intention, viz. that of preventing a dissipation of the heat, is obtained by shatting the door of the furnace, taking care that the chimney be not too wide, and that the matter to be acted upon be placed in such a mamner that the fire may have its full effect upon it as it goes up the chimney.
The third intention, which is the most important, is at the same time the most difficult to answer, and is altogether regulated by the proportion between the spaces betwixt the furnace bars and the wideness and hcight of the chimney. This will appear from a consideration of the principles on which the degrees of inflammation are produced. These dcpend entirely on the current of air which passes through the inflamed fuel. As sonn as the furl is set on fire, a certain degree of heat is produced; but unless a constant influx of air be admitted through the burning fuel, the fire is instantly extinguished; nor is it possible by any means to renew the inflammation until we admit a stream of fresh air among the fuel. When this is done, a rarefaction commences in the air of the fire-place of the furnace; so that it is no longer a counterpoise to the external air, and is therefore driven up the chimney by that which enters at the ash-pit. This again passing through the fuel is rarefied in its turn; and giving place to fresh quantities, there is a constant flow of air up the chimuey. In proportion to the rarefaction of the air in the fire-place, the greater is the heat. But by a certain construction of the furnace, the under part of the chimney will become alnost as strongly heated as the fire-place; by which means, though a very strong current of air be forced through the fuel, yet as great part of the heat is spent on the chimney, where it can be of no use, the fuel is wasted in a very considerable degree. To avoid this, we have no other method than to coutract the throat of the chimney occasionally by a sliding plate; which when put quite in shuts up the whole vent, and, by being drawn out more or less, leaves a larger or smaller vent at pleasure. This plate ought to be quite drawn out till the fuel is thoroughly kindled, and the furnace well heated, so that a current of air may flow strongly through the fuel. After this the plate is to be put in a certain length, so as just to prevent the

F URNACE.

smoke from coming out at the door of the furnace. The rarefaction of the air in the fireplace will solicit a very cousiderable draught of air, which will keep the fuel inflamed to a great degree; at the same time that the heat, being reflected from every part of the furnace excepting that narrow pasage where the smoke poes up, becomes very intense. A large quantity of fuel may be put in at once, which will consume slowly, and thus require but little attention in comparison witi those furnaces where no such precaution is used. The slid-ing-plate invy be made of cast-iron in those furnaces where no great heat is excited; but in others fire-clay will be more convenient. The contrivance, however, is scarce applicable to those furnaces where great quantities of inetal are to be melted; and accordingly the waste of fuel here is immense. It is computed, that the iron-works of Carron in Stirlingshire consume annually as many coals as would be sufficient for a city containing 700,000 inhabitants. The sliding-plate is now introduced into the chimneys of our sugar-haking houses.

The fourth intention, viz. that of regulating the heat, is accomplisthed by allowing only a certain quantity of air to pass through the fuel. For this purpose, accordiug to Dr. Black, it is necessary to have the command of the furnace bclow; the parts above being frequently filled with small quantities of soot. The best method of managing this is to shut up the door of the ash-hole perfectly close, and to have a set of round holes bearing a certain proportion to one another; and their areas being as $1,2,4$, $8,16, \& \mathrm{c}$. Seven or eight of these ought to be made in the door of the ash-pit, which will give a sufficient command over the fire. When the fire is to be increased to the utmost, all the passages both above and below are to be thrown open, and the height of the vent augmented; which, by increasing the height of the column of rarefied air, increases also the motion of that through the fucl, and of consequence atso the heat of the furmace. Macquer recommends another tube applicd to the ash-pit, widest at the end farthest from the furnace, and tapering gradually towards it. The intention of this is to augment the current and velocity of the air by its being made to pass from a wider into a narrower vent; but though this is no douht true, the air will not ultimately move with greater velocity than if the tube were not there. It can only be useful, therefore, in cases where the furnace is placed in a sinall room, and the tube itself has a communication with the external air.

The fuels employed in furnaces are of different kinds, according to the nature of the furnace, or the material to be operated upon: hence we have wond, charcoal, coal, coak, coal-cinders, culm or Welsh coal, Kilkenny coal, and turf.
$\dot{W}_{\text {ood }}$ faygots give a strong, clear flame, unmixed with sulphur and with but little smoke, and burn to a clean ash, which also is valuable for the alkali it contains. Its chief disadvantage is its extreme bulkiness, and the labour
of conreying a constant supply of it, as also the larger size of the furnace that is to contuin it.

Charcoal is a most valuable fuel. It kindles readily, burns with a strong, clear heat, and requires a much less draught of air for combustion than coak or charred coal; it contains no sulphur nor any earthy or metalic matter, and hence never runs into a hard vitreous slag as coak does, nor choaks up the draight of air, nor melts down the clay walls of the furnace when constructed of this material. Its chief disadrantages are that it is expensive, burns ont very rapidly, so as to require an alnost constaut supply, and is so light as not to bear a strong blast of air excepting in very large masses that are inconvenient.

Coal is the substance most generally used in our own country for all manufacturing purposes where a moderate heat is wanted, and where the smoke, by means of a chimuey, can be put out of contact with the substance operated upon, as in brewers and distillers coppers, or where the smoke is of no consequence. It gives a large, strong, and lasting flame; but for any intensity of heat, it requires a large and high chimncy, and a wide ash-hole.

Coak gives a very strong heat without flame, and is the material generally employed for strong wind and blast furnaces, where an intense and durable heat is requirerl. Its combustion is very much improved by adding an equal bulk of charcoal to it.

Coal-cinders, picked from a common fire, by removing the coal just when it ceases to blaze and before it beoins to burn to ashes, is often preferable to coak for laboratory experiments; it gives forth less sulphur and burns more readily. The best Newcastle coal, which is highly bituminous, yields the most valuable. cinder for this purponse.

Culm, or Wclsh coal, in burning gives neither flame nor smoke, and makes but little residue. It answers very well, therefore, in most cases in which charcoal succeeds, and is not so readily dispersed by blasts of air.
Kilhenny coal is nearly of the same nature, but not quite so pure.

Turf is seldom used ; yet it may be usefully employed for long digestions with a very gentlic warmih, as being attended with a very small expence. At present, these operations are performed by the lamp, which is preferable on many accounts, and especially in consequence of the pungent smoke which turf is so apt to give forth.

Among the furnaces which have been most approved we may mention the following.

Dr. Black's Portalle Furnace. In its improved state this consists of an oval iron case twenty-two inches high, twenty in its largest diameter, and fifteen in its shortest, lined with fire-bricks for about three-fourths of its height from the top, which forms the body of the furnace, and the first elbow of the chimney, whilst the lower part which is not lined forms a vcry spacious ash-pit. Being very heavy, it is put upon castors, by which, with the assistance

Abbishod by G. Kearskey Finct Sireet. Jan'zaito.
Digitized by sOO OTe

FURNACE.

of the ring-handles on the sides, it may be moved along a floor without difficulty. A great variety of operations, and on a tolerably large scale, may be performed in this useful furnace, which is very durable, and from its weight and soiddity not liable to be damaged by external blows, or easily displaced.

The Purtalle Chanter Furnace is of a much stnaller size, and generally employed in lecture roums; it is usualiy fitted for a great variety of purpmes. Its upper part often consists of a rounded dome terminated by a perpendicular iron flue.

The best Muffle Furnace for a very intense heat is that first employed by Pott, and afterwards by Darcet in experiments on the habitudes of earths and stonesin long continued and violent hear. The constructon is simple; the body is the form of an oblong coffer bulging out in the middle, the hole for the muffic is also in the middle; and the drnught is raised by a long perpendicular chimncy.
The Reverlernting Fiarnace is used for roasting and smeltug ores: and in this the substance to be heated is not in actual contict with the fuel, but strewed on a sejarate floor or hearth placed between the fuel and the chimney, and is heated by the flame in its passige through.
The reverberating furnace is shewn in fig. 2 and 3, Plate 80 . The fuel, which is raw pit coal, is pheed upon the fire-grate AA, sirusied over an arch, having free communicati, n win the open air. The coals are introduced through the hole BB: this has no fire inor, but in lieu, the aperture is closed up with fresh coals; and when the fire requires a supply of coals, the stoker shoves some of the coals into the fire, and stops up the hole with fresh coals. This forms an effectual stoppage to the air, and obliges it to pass through the grate and the Glameng fuel laid upon it. The grate is covered over with a dome of fire-brick, DD; and upon one side of the grate a wall EE of fire-brick is raiced, which is called the bridge. Behind this is the floor of the furnace FF, an inclined plaive leading from the top of the brilge to the botion of the chimney HH, which is lined with fire-brick, and carried up about 30 feet abose the fire-grate. \mathbf{K}, is the doon to introduce the iron or mater to be heated, which is placed upon the inclined floor of the furnace, opposite, or rather a little higher up, than the door, which is now closed, and the fire lighted, upon the grate AA. The smoke and heated air from the fire proceeds along the body of the furnace up the chimney, and heating the air contained therein, the draught takes place by a column 30 feet high of rarefied air in the chimney; which being lighter than the cold air, the flame is forced up the chimney by the weight of the atmosphere pressing upwards through the fire-grate in a rapid stream, which parts with its oxygen to the fire, while the remainder passes up the chimney in a rarefied state. When the fire burns fieccely, its flame rises up against the dome D , and is thereby reflected down upon the floor with exceeding great force, and quickly beats any matter placed
there. A furnace of this kind will fuse 30 cwt . of pig iron in about three hours; the furnace beits previously heated red before the charge of metal is introduced. The fluid metal runs down the Hoor \mathbf{F}, and accumilates below, when it is laded out through the door L , which is then opened; or it is suffered to run out through a hole at K, which was before stopped with sand. The floor of the furnace is composed of sand, which in some degree vitrifies without running; and every time before the furnace is used, the stoker rakes the sand into such a form as will suit best for the quantity of nictal to be fused. When the reverberating furnace is used for heating iron or other matter withont melting, its floor is made level; but its operation is exactly the same. The brick-work of the furnace is surrounded with iron plates, and kept together by long bolts, as shewn in the plan. An air or wind furnace for crucibles is described in Brass pounDERY; but the shape of its body is adapted to the rumber of crucibles it is to contain.

Refining liurnace. This consists of the following parts. 1. Masonry of the pillars and walls surrounding the furnace. 2. Channels for carrying off the moisture. 3. Other small channels which join in the middle of the bason. 4. Bason made of bricks. 5. Bed of ashes. 6. A hollow or bason in which the metal is melted and refined. 7. Great flamehole. 8. Two nuenings for the entry of the turces of the belliows. n. Vault or dome of the furnace. 10. Fire-place. 11. Grate. 12. Draught-hole. 13. A hole in the vault, which, being opened, serves to cool the furnace.

The Blast Furnace, or, as it is sometimes termed, Cupola, is constructed within a castiron cylinder AA, fig. 1, Plate 80, by lining it with glass-grinder's sand; which being intermixed with small particles of glass, vitrifies with the first heating, and forms an excellent lining. The internal cavity is of a cylindric shape, and has a tap-hole B at the botiom, to let out the melted matter; at \mathbf{D} is the blowing hole, or tuire, through which the blast of air is introduced by the nose F, of the bellows FGH, which are double. The lower part GH is moved up and down by the lever IK, which a labourer works and forces the air into the upper part FG; from whence it is expressed by the weight a into the furnace. By means of the double bellows the streain of air is constantly supplied without any material intermission. For the fusion of iron, the fuel is coke or charcoal, which is put in at the top, and the iron in fragments at the same time: the coke is lighted by first putting down a few hot coals, and blowing the bellows. In the course of half an hour the metal begins to drop down through the cokes, and accumulates in the bottom of the furnace until the whole quantity follows. It is then let out by removing the sand with which the tap-hole B was rammed up. For experiments, or for melting nore valuable metals, a crucible is let down into the furnace with tongs, as described in Brass poundery.

F U R

Many of our practical chemists of the present day have their laboratorics stocked with a variety of furnares, communicating very ingeniously where it is necessary with one common chinncy, and are thus competent to make any experiments with the greatest case and least expence. One of the best of this kind is that belonging to Mr. Pepys, which exhibits elegance as well as comvenience. The set of furnaces in this laboratory consists of a still with its worm-tub; a furge-hcarth; a muthe-furnace; a strong dranght-finmace for melting; a lurnace for naked distillatuon; a square samibath for digestions; and a round sand-bath for distillations.

Machines for llowing Air into Furnaces. The carliest method of animating large fires in the furnaces where ores were sinelted secms to have been by exposing them to the wind. Such was the practice of the Peruvians before the arrival of the Spaniards among them. Alonso liarba retares, that their furnaces, called guairas, were baiit on eminences, where the air was freest; that they were perforated on all sides with holes, through which the air was driven in when the wind blew, which was the only time when the work could be carried on; that under each hole was made a projection of the stone work, on which were laid burning coals, to heat the air before it entered the furnace. Sonic autiors speak of several thousands of these guairas burning at once on the sides and tops of the hills of Potosi; and several remains of this practice are to be found in different parts of Great Britain.

This method of supplying air being found generally ineffectual and precarions, the instruments called bellows succeeded. These were at first worked by the strength of men; but as this was found to be very laborious and expensive, the force of running water was tmployed to give motion to these machines. Thus a much greater quantity of metal could be procured than formerly, and the separation was likewise more complete; insomuch, that in many places the slags or cinders from which the iron had formerly been extracted were again used as fresh ore, and yiclded plenty of metal.

But though this method was found to be preferable to the others, yet great improvements were still wanted. In order to inelt very large quantities of ore at a time, it was necessary to use bellows of an immense size ; and in proportion to their size they stood in need of the more frequent and expensive repairs. The oil also, which the belloivs required in large quantity, becoming rancid, was found to generate a kind of inflammable vapour, which sometimes burst the bellows with explosion, and thus rendered them totally useless. A new method, therefore, of blowing up fires, altogether free from the abovementioned inconveniences, was fallen upon by means of water. It depends on the following principle, viz. That a stream of water, running through a pipe, if by any means it is mixed with air at its entrance into the
pije, will carry that air along with it, and part with it again as soon as it comes out of the pipe; and if the air is then collected by a proper apparatus, it may with success be uned for exciting the most violent degrees of he:t.
Thus, with very little expence, where there is a sufficient quantity of water, as strong a blast of air as can be desired may be readily obtained ; for several machines may be constructed, and joined together in a manner somewhat similar to that above-mentioned, until all the quantity of water is employed. It is proper to observe, however, that as by this method the air is loaded with moisture, it is proper to make the condensing vessel as high as conveniently may be, that the air may arrive at the furnace in as dry a state as possible. The long slender pipes in the left-hand machines represent a gare filled with mercury or water, by which the strength of the blast may be determined.
In tive large iron founderies another method is used for blowing up the fires by means of a kind of air-pumps.s. These consist of cast-iron cylinders of about three feet diameter, exactly fitted with a piston moved up and down by means of a water-wheel. In the bottom of the cylinder is a large valve like that of a bellows, which rises as the piston is lifted up, and thus admits the air into the cavity of the cylinder from below. Immediately above the bottom is a lube which goes to the furnace; and as it proceeds from the cylinder is furnished wihh a vaive opening outward. Thus, when the piston is drawn up, the valve in the bottom rises and admits the air that way into the cylinder; while the lateral valve shuts, and presents any air from getting into it through the pipe. When the piston is thrust down, the valve iu the botton shats, while the air being compressed in the cavity of the cylinder is violently forced out through the lateral tube into the furnace. In the great foundery at Carron, four of these large cylinders were a few years ago employed at their principal furnace, and so contrived that the strokes of the pistons, being made alternately, produced an almost uninterrupted blast. Some little intermission might indeed be perceived by the air, but it was too trifling to produce any sensible effect on the heat of the furnace. Even this could have been prevented by means of a large reservoir into which all the four cylinders might discharge their blast. This should be furnished with a heavy piston; whose weight, being supported by the air of the cylinder alone, would force it out through its lateral tube in a manner perfectly equable, without any of that puffing or interruption in the blast, perceptible though but in a small degree in the other,

To Fu'rnace. v.a. To throw out as sparks from a furnace : not used (Shakspeare).

FURNES, a town of Flanders, seated near the German Occan, on the canal from Bruges to Dunkirk. Lat. 51. 4 N. Lon. 8. 45 E.

To FU'RNISH. v. a. (fournir, French.) 1. To supply with what is decessary (Knolles).
2. To give; to supply (Addison). s. To fit up; to fit with appendages (Bucon). 4. To equip; to fit out for any undertaking (Wat/s). 5. To decorate; to supply with ornamental househotd stuff (IIalifar).
FL'RNISHER. s. (fournisseur, French.) One who supplies or fits out.
FU'RNITURE. s. (fourniture, French.) 1. Moveables; grools put in a house for use or oriament (South). 2. Appendages (Tillotsnh). 3. Equipage; embellishments; deco-rations-in this sense the word is chicfly apphied to the extra lines and curres drawn upon a dial ; as the ecliptic, parallels of declination, \&c.

FUROR UTERINUS. (furor.) See Nymphomania.
FCRR, in commerce, signifies the skin of sereral wild beasts, dressed in alum with the hair on, and used as part of dress, by magistrates and others. The kinds mostly made use of are those of the ermine, cable, castor, hare, robibit, Sic. It was not till the l.ter ages that the furrs of beasts became an article of luxury. The more refined nations of ancient times never used them; those alone who were stigmatised as barbarians were clothed in the skins of animals. During captain Cook's last voyage to the Pacific Ocean, besides various adrantages derived from it as enlarging the boundaries of ssience, a new source of wealth was laid open Iu the exchange of European eommodities for furrs of the most valuable and important kind on the north-west of America. Previously to this, a similar trade had been carried on, though on a much narrower scale, in Canada. It was begun by the French almost two centuries back, and in time Montreal was the grand mart of this species of commerce. The number of $\mathbf{I n}-$ dians who resorted thither increased as the name of the Europeans was more known. Whenever the natives returned with a new supply of furrs, they usually brought with them a new and more distant tribe; thus a kind of market or fair was ofrened, to which the several Indian mations of the new continent resorted. Our own countrymen were not long easy without sharing in this trade, and the colony at New York soon found means to divert the stream of this great circulation. The Hudson's bay trade, carried on by a company designated as the Hudson's Bay Company, was at one time almost the ondy trade in this article from Great Britain ; there have, however, been other persons of late years engaged in it. A bout twenty years ago a commercial establishment of this kind was formed under the title of the NorthWest Company. It was an association of about twenty persons, agreeing among themselves to carry on the furr trade. Their capital was divided into twenty shares; of these a certain proportion was held by the people who managed the basiness in Canada, who were ssiled agents, and paid as sneh independently of the profits of the trade. The articles mantifactured here that are used in this traffic, are coarse woollen cloths of different kinds, blankets, arms and anmuwition, Manchester

F U R

goods, all kinds of the coarser hardware, cotton, hats, and stockings.

Furks, in heraldry, a bearing which represents the skins of certain beasts, used as well in the doublings of the mantles belonging to the coat-armours, as in the coat-armour themselves.

FU'RRIER. s. (from fur.) A dealer in furs.
FU'RKOW. s. (fuph, Saxon.) 1. A small trench made by the plough for the reception of seed (Dryden). 2. Any long trench or hollow (Drydeni).

Fu'rrow-ween. s. A weed that grows in furrowed land (Shakspeare).

T'O Fu'riow. v. a. (from the noun.) To cult in furrows (Milton). 2. To divide in lourg hollows (Suckling). 3. To make by cutting (Wotton).

FU'RROWED, in botany, fluted or groxver stem. Caulis sulcatus. Marked with deep broad channels longitudinally. Applied sometimes to the leaf.
FURRUCKABAD, a district of Hindustan Proper, contiguous to the W. bank of the Ganges, and surrounded by Oude. The chief town is of the same name. Lat. 27. 28 N. Lou. 79. 30 W.

FU'RRY. a. (from fur.) I. Covered with fur ; dressed in fur (Felton). 2. Consisting of fur ($\boldsymbol{D}_{r y} d \in n$).

FURSIENFIELD, a town of Lower Sti. : $\ddagger 2$, in Germany, 50 miles S. of Vienna. Lat. 47. 93 N. Lon. 16.5 E.

FURSTENWAL1), a town of the midklle Marche of Brandenburg, in Germany. It is 20 mikes W . of Frankiort. Lat. 52.23 N . Lon. 14.8 E.
FU'RTHER. a. (from forth; forth, further, furthest. See Forth and Farther.) is At a great distance. 2. Beyoud this (Matthew). 3. Further has the force of a substantive in the phrase no further, for nothing further.

Fu'rther. ad. (from forth.) To a greater distance (Numbers).

To Fu'rther. v. a. (fonťıan, Saxon.) To pat onward; to forward; to promote; to countenance ; to assist ; to help (Hooker).

FU'RTHERANCE. s. (from further.) Promotion ; advancement ; help (Tillotson).

FU'R'THERER. s. (from further.) Promoter; advancer (Ascham).

FU'RTHERMORE. ad. (further and mure.) Moreover ; besides (Shakspeare).

FU'RTIVE. a. (furtive, French.) Stolen; gotten by theft ($P_{\text {rior }}$.

FU'RUNCLE. (furunculis, from firo, to rage; so named from its heat and inflammation before it suppurates.) A boil. An inflammation of a subcutaneous gland, known by an inflammatory tumour that does not exceed the size of a pigeon's egg.

FU`RY. s. (filror, Latin.) 1. Madness. 2. Rage ; passion of anger ; tumult of mind approaching to madness (Shakspeare). 3. Enthusiasm; exaltation of fancy (Dryden). 4. A stormy, turbulent, raging woman ($A d$ dison).

FURZE. s. (finr, Saxon.) Gorse ; goss. See Ulex.

FU'RZY. a. (from furze.) Overgrown with furze ; full of gorse (Gay).

FUSA, in the Italian music, a quarer.
FUSA'NUS, in botany, a genus of the class polygamia moncecia. Herm. : calvx five-cleft ; corolless; stamens fnur ; germinferior; stigmas four; drupe. One species only; a Cape tree, with two-edged branches and axillary racemes.

FU.CATION. s. (fuscus, Latin.) The act of darkening or obscuring.
FUSE, or Fuze, in artillery. See Fusee.
To Fuse. v. a. (fusum, Latin.) To melt; to put into fusion ; to liquify by heat.

To Fuse. v. n. To be melted.
FU'SEE. s. (fuscau, French.) In clockwork, is the conoidal part which is drawn by the spring, and about which the chain or string is wound. see Clock and Watch.
Fusee, or Firelock. See Musquet.
Fusee, or Fuse, of a bomb or grenadn, is that which communicates fire to the whole powder or composition in the shell, to do the designed execution.
Fises are chiefly made of very dry beech wood, and sometimes of horn-beam taken near the root. They are turned rough and bored at first, and then kept for several years in a dry place. The diameter of the hole is about \ddagger of an inch; the hole does not go quite through, having about 4 of an inch at the bottom ; and the head is made hollow in the form of a bowl.
The composition for fuses is, salt-petre 3, sulphur 1 , and mealed pourder 3 or 4 , and sometimes 5 . This composition is driven in with an iron driver whose ends are capped with copper, to preyent the composition from taking fire, and to keep it equally hard; the last shovel-full being all mealed powder, and 2 strands of quick match laid across cach other, being driven in with it, the ends of which are folded up into the hollow top, and a cap of parchment tied over it until it is used.
FU'SIBLE. a. (from fuse.) Capable of being melted, or made liquid by heat (B oyle).

FU'SIBILITY. s. (from fusible.) Capacity of being melted ; quality of growing liquid by heat (Wotton).

FUSIFORM ROOT. (fusus, a spiurlle.) In botany, spindle-shaped root. Simple or generally so, tapering downwards to a point ; as in radish, carrot, parsnip. Applied aso to the leaf, as in crassula rubens.

FU'SIL. a. (fusile, French.) 1. Capable of being melted ; liquifiable by heat (Milion). 2. Running by the force of heat (Philips).

Fu'sil. s. (fusil, French.) 1. A firelock; 2 small neat musket. 2. (In heraldry; from fusus, Latin.) Something like 2 spindle (Peachant).

FUSILI'ER.s. (from fusil.) A soldier armed witha fusil; a musketeer.

FUSION. s. (fusio, Latin.) 1. The act of melting. 2. The state of being melted (Newton).

FUT

Fu'sion. A chemical process, by which bodies are made to pass from the solid to the fluid state, in consequence of the application of heat. . The chief objects susceptible of this operation are salts, sulphur, and metals. Salts are liable to two kinds of fusion; the one, which is peculiar to saline matters, is owing to water, and is called aqueous fusion; the other, which arises from the application of fire, is known by the name of igneous fusion.

FUSS. s. (a low cant word.) A tumult; a bustle (S wift).

FUS'T. s. (fuste, French.) 1. The trunk or body of a column. 2. A strong smell, as that of a mouldy barrel.

To Fust.v. n. To grow mouldy; to smell ill.

Fust, or Faust (John), a goldsmith of Mentz, and one of the tirree to whom the invention of printing has been ascribed. It appears, however, that he only supported Guttemburg in his attempts to make moveable metal types at Strasburg. This was in $14+4$. Fust is supposed to have died of the plazue at Paris about 1466. The story told of has being accused of magic on account of the exactiness of his bibles at Paris is a fable.

FU'sTlaN. s. (futaine, French.) 1. A kind of cloth made of linen and cotton, or of motton only (Shakspeare). 2. A high swelling kind of writing made up of heterogeneous parts; bombast (Smilh).
Fu'stian. a. (from the noun.) 1. Made of fustian. e. Swelling; unnaturally pompous; ridiculously tumid (Dryder).
FUSTIC, a kind of wood used in dying. Sec Mor us.
FUSTIGATE. v. a. (fustigo, Latin.) To beat with a stick; to cane.

FUSTIGATIO, in the Roman customs, a punishment inflicted by beating witha cudgel: it was peculiar to freemen; for the slaves were scourged or lashed with whips.

FU'STILA'RIAN. s. A low fellow; a stinkard; a scoundrel: not used (Shakspeare).
FU'STINESS. s. (from fusty.) Mouldiness; stink.
FU'STY. a. (from fust.) Ill smelling; mouldy.
FUTILE. a. (futilc, French.) 1. Talkative ; loquacious (Bacon). 2. Trifing; worthless; of no weight.

FUTI'IITY. s. (futilite, French.) 1. Talkativeness; loquacity (L^{\prime} Estrange). ${ }^{2}$. Trifingness : want of weight; want of solidity (Bentley).

FU'T'OCKS. s. (from foot hooks. Skinner). The lower timbers that hold the ship together.
FUTTYPOUR, SICRI, a considerable town of Hindustan Proper, in the province of Agra. It is seated under a range of hills, the southern boundary of an immense plain, in which, for the greatest part, not a shrub is to be seen, and the soil is almost as fine as hair powder ; a circumstance productive of the most disagreeable effects. Lat. $27^{\circ} \mathrm{N}$. Lon. 77. 45 E .

FUTURE. e. (futurus, Latin) That will

F U Z

be hereafter; to come: as, the future state (Milton).

Futuretense, among grammarians. See Grammar and Tense.

Fu'ture. s. Time to come; somewhat to happen hereatter (Locke).

FCTURELY.ad. In time to come (Ral.).
FUTURITION. s. The state of being to be; the condition of being come to pass bereafter (Soulh).

FUTU'RITY. s. (from future.) 1. Time to come (Sucift). 2. Erent to come. 3. Futurition (Giancille).

FUZEE. Sec Fusez.
Fuzee. A name given by farriers to two onnsiderable splints in a horse, joining from above downwards Commonly a fuzee rises to the knes, and lames the horse. Fuzees differ from screws or thorough splints in this, that the latter are placed on the opposite sides of the

FY Z

leg. A fuzee is accounted, moreover, more dangerous than a simple splint.

To FUZZ. v. n. To fly out in small particles.

FU'ZZBALL. s. A kind of fungus, which, when pressed, bursts and scatters dust in the eyes.

FY. interj. ($f y$, French; $\phi r v$, Greek.) A word of blame and disapprobation (Spenser).

FYAL, one of the Azores, or Western islands. It is well cultivated ; and has abundance of chesnuts, beeches, myrtles, and aspentrees. The cottages of the common people are built of clay, thatched with straw; and are small, but cleanly and cool. The most considerable place is called Villa de Horta. Lon. 28. 36 W . Lat. 38. 32 N .

FYZABAD, a city of Hindustan Proper, in the territory of Oude. This city is very 100 pulous. Lat. 26. 34 N. Lon. 82. 30 E.

G

G,THE seventh letter and fifih consonant , of our alphabet; though, in the alphabets of ali the oriental languages, the Hebrew, Phœnician, Chaldee, Syriac, Samaritan, Arabic, and even Greek, G is the third letter. The Hebrews call it glimel or gimel, q. d. camel; because it resembles the neck of that animal ; and the same apprellation it bears in the Samaritan, Phœnician, and Chaldee: in the Syriac it is called gamel, in Arabic giim, and in Greek gamma.

From the Greeks the Latins borrowed their form of this letter; the Latin G being certainly a corruption of the Greek gammar, as might easily be shown, had our printers all the characters and forms of this letter which we meet with in the Greek and Latin MSS. through which the letter passed from r to G. Diomed, lib. ii. cap. De litera, calls G a new letter. His reason is, that the Romans had not introduced it before the first Punic war; as appears from the rostral column erected by C. Duilius, on which we every where find a C in lieu of G . It was Sp. Carvilius who first distinguished between those two letters, and invented the figure of the \mathbf{G}.; as we are assured by Terentius Scaurus. The C served very well for \mathbf{G}; it being the third letter of the Latin alphabet, as the r or γ was of the Greek.

Ainsworth remarks, that the Romans, when they wrote pucna and Carthaco, read pugna and Carthago; and to remedy the ambiguity and inconvenience this led to, they took in the letter G, which they had not, to make their tongue nore easy; whereas we have laid aside p and $\%$ which we had, to make ours more difficult, which is very unaccountable.

It has been much controverted whether the Romans pronounced the G before the N , as the French do in these words, Agne2, Magnifique, Espagnol, \$c.

But in all probability the Romans pronounced the G not as the Firench do in the above words, and the G in Agnus was prononnced by them, as it is in Agger ; for the oher pronunciation is so particular and different from the common pronunciation of G, the ancient writers had otherwise never made use of it.

And it is to be observed, that the \mathbf{G} is so little pronounced in these words Agnez and the like, that it does but denote a liquid \mathbf{N}; as the same letter \mathbf{G} shews in the Italian tongue the liquid L, figlliola, daughter: wherefore the Spaniards write Segnor without a G, drawing only a litule stroke upon the N , to show that it is a liquid letter, and that it receives that pronunciation, writing thus, Señor, and
pronouncing $S_{\text {cgnor. And Ramus in his }}$ French grammar marks this liquid N in French only with a little comma over it, instead of joining the G to it.

Here arises still another difficulty, namely, to know if the letter N is changed by the Greeks into r in some words, as "A「yenos and $a \int_{x \nu f a, ~ d e . ~} \quad \Gamma$ is then pronounced like an N. For it seems, says Henricus Stephanus, that it is an error of the copyists, who have made the, a little too broad in joining the small letters, and bave made a γ of it. From whence comes that in the MS. written in capital letters, like those he has made use of to make his Thesaurus, these whole words are found with an N, antenos, anktpa, and the like. For, says he, it seems absurd to say, that \mathbf{N} was changed into r, to the end that r might be pronounced like an N. Wherefore Scaliger tells us, that if we read sometimes these words with an N , then we must be sure that it is a fault of the copyists, who thought to express this pronunciation the better by that character; which pronunciation, as Vossius says, should roquire rather some new and particular character

The Latins had something like that in their tongue, which Nigidius in Aulus Gallius calls a false N, as in the words Anguis, Ancora and others. Wherefore Varro, as is related by Priscian, affirms that Attius and the ancient authors wrote these words with a double GG, like the Greeks, Aggulus, Aggens, and the like.

The letter \mathbf{G} is of the mute kind, and canunt be any way sounded without the help of a vowel. It is formed by the reflexion of the air against the palate, maile by the tongue as the air pases nut of the throat; which Martianus Copello expresses thus, G spiritus cum paluto; so that \mathbf{G} is a palatal letter.
The modern G takes its form from that of the Latins. In English it has two sounds, one from the Greek r, and the Latin, which is called that of the hard G, because it is formed by a pressure somewhat hard on the fore-part of the tongue against the upper gum ; which sound it retaius before a, o, u, l, r; as gale, yo, gull. At the end of a word it is always hard, as ring, sing, \&ic. The other sound, called that of the soft G, resembles that of j; and is comunonly found before e and i, as in gesture, giant, \&e. To this rule, however, there are many exceptions; G is often hard lefore i, as give, \&c. and sometimes before e, as get, \&c. It is also hard in derivatives from words ending in g, as singing, stronger, \&ce. and gencraliy before er, at thic end of words, as finger. G is

GAB

mute before n, as gnash, sign. Gh has the sound of the hard G in the beginning of a word, as ghostly; in the middle, and sometimes at the end, it is quite silent, as right, ehough. At the end of a word, $G h$ has often the sound of f. as laugh, rough, tough.

As a numeral, G was anciently used to denote 400; and with a dash over it thus \bar{G}, 40,000.

As an all-reviature, G stands for Gaius, Gcllius, gens, genius, \&c. G. G. for gemina, grssit, gesserunt, \&c. G. C. for genio civitatis or Cresaris. G. L. for Gaius libertus, or genio loci. G. V. S. for genio urlis sucrum. G. B. for genio bono. And G.T. for genio tu!elari.

In music, \mathbf{G} is the character or mark of the treble cleff; and from its beinz placed at the head, or marking the first sound in Guido's scale, the whole scale took the name gamut.

GAbARA, or Gabbara, in antiquity, the dead bodies which the Egyptians embalmed, and kept in their houses.

GA'BARDINE. s. (gavardina, Italian.) A cmarse frock; any mean dress (Shak.).

GABBIANI (Antonio Domenico), an hisinrical and portrait painter of Florence, born in 1652, and died in 1726. He was patronized by the grand duke Cosmo III. who sent him to the Florentine academy, at Rome, where he studied three years, and on his return to his native city was emploved by his highness and the principal nobility of his court. He was killed by a fall from a scaffold as he was at work.
To GA'BBLE. v. n. (gulbare, Italian.) 1. To make an inarticulate noise (Dryden). 2. To prate loudly without meaning (Hudibras).

Ga'biele. s. (from the verb.) I. Inarticulate noise, like that of brute animals (Shakspeare). 2. Loud talking without meaning (Milton).

GA'BBLER. s. (from galle.) A prater ; a chattering fellow

Gabel, Gabelia, Gablum, Gablaciun, in French gavelle, i.e. vectigal, hath the same signification among the ancient English writers that gabelle till lately had in France. It is a tax ; but hath been variously used, as for a rent, custom, service, \&c. And where it was a payment of rent, those who paid it were termed gablatores. When the word gabel was formerlv mentioned without anv addition in it, it signified the tax on salt, though afterwards it was applied to all other taxes.
Gabianum Oleum. See Petroleum gobrum.
GABIN, a town of Poland, in the palatinate of Rava. Lat. 52. 26 N. Lon. 19. 45 E .
GabINIAN LAWS, in Roman antiquity, laws instituted upon several occasions, by perwons of the name of Gabinius. The first was the Gabinia lex de Comitiis, by A. Gabinıus the tribune, in the year of Rome 614: it reqoired, that in the public assemblies for electing magistrates, the votes should be given by ablets, and not viva voce.

G A D

GABIONS, in fortification, baskets made of ozier twi.gs, of a cylindrical form, six feet high, and four wide: which being filled with earth, serve as a shelter from the enemy's fire. Sce Fortipication.

GA'BLE. s. (garal, Welsh.) The sloping roof of a building (Murlimer).
Gable-endofahouse, is the upright triangular end from the cornice or eares to the top of the house.
GABRES, or Gavres, a religious sect in Persia and India, called also Geltes, Guelres, Gevres, Gaurs, \&c.. (See Magi.) The Turks call the Christians Galires, q. d. infidels, or people of a false relizion ; or rather, as Leunclavius observes, heathens or gentiles: the word Galve among the Turks having the same siguification as paran or infidel among the Christians, and denoting any thing not Mahometan. In Persia the word has a more peculiar signification ; wherein it is applied to a sect dispersed through the country, and said to be the remains of the ancient Persians or followers of Zoroaster, being worshippers of fire. They have a suburb at Ispahan, which is called Gaurabad, or the town of the Gaurs, where they are employed in the meanest and vilest drudgery: some of them are dispersed through other parts of Persia; but they principally abound in Kerman, the most barren province in the whole country, where the Mahometans allow them liberty and the exercise of their religion. Several of them fled many ages ago into India, and settled about Surat, where their posterity remain to this day. There is also a colony of them at Bombay. They are a poor, ignorant, inoffensive people, extremely superstitious and zealous for their rites, rigorous in their morals, and honest in their dealings.

GABRIEL (a man of God, strength of God), one of the principal angels in heaven; who was sent to the prophet Daniel (Dan. viii. 16. ix. 21.); who announced the birth of John the baptist (Luke i. 11), and of Jesus Christ (Lukei.36.).

GAD. s. (даг, Saxon.) 1. A wedge or ingot of steel (Moxon). 2. A style or graver (Shahspearc).

To Gad. v. n. (gadan', Welsh, to forsake.) To ramble about without any settled purpose ; to rove loosely and idly (Fairfar).

GADDER. s. (from gad.) A rambler; one that runs much abroad without business (Eccles.).

GA'DDINGLY. ad. (from gad.) In a rambling manner.

GAD-FLY, in entomology. Sce Cestrus.

GADUS. Cod-fish. In 2nolozv, a genus of the class pisces, order jugulares. Head smooth; gill-membrane with seven slender rays; body oblong, covered with deciduous scales; fins all covered with the common skin ; dorsal and anal generally more than one; the rays unarmed; ventral fins slender, ending in a point. Twenty-three species. Chicfly inhabitants of the European seas, and especially towards the

GADUS

north; a few of the seas of America, and one or two of the Pacific ocean. They may be thus subdivided.

A Dorsal fins three; mouth bearded.
B Dorsal fins three; mouth beardless, or without cirri.

C Dorsal fins two.
D Dorsal fin one.
The following are the most remarkable of this genus.

1. G. xglesinus. Haddock. Whitish ; tail forked, upper jaws longer; eyes large, pupil black, iris silvery; scales minute, rounded, and striking firmer. than in the other species; very minute teeth in the jaws. Inhabits the northern seas, and migrates in vast shoals, that appear on the Yorkshire coast about Christmas; feeds in summer on young herrings and other small fishes; in winter chiefly on serpulx; is eagerly hunted after by seals and other rapacions marine animals; flesh white and tolerably good.
2. G. callarius. Zorsk. Colour various; equal; upper jaw longer; head less than the last, cinereous, spotted in the summer with brown, in the winter with black. Inlabits the Baltic and Northern European seas in general; sometimes enters the mouths of rivers; feeds on smaller fishes, worms, and marine insects; flesh white, firm, and finely flavoured; seldom exceeds two pounds in weight.
3. G. morpua. Common cod. Tail subequal; first anal ray spinous; mouth large, jaws equal, bearded with a cirrous body, cinereous, spotted with yellowish, beneath white; the younger fishes sometimes reddish, spotted with orange; scales larger than in any other of its tribe ; flesh white, and excellent when in season.
The stated migration of the common cod, which is by far the most important species of the entire genus, is a very remarkable circumstance in its history; although in this respect it only assimilates with the habits of many other species of the same tribe. All these in their annual voyages, in the immensity of their numbers, and in their social habite, bear a strong analogy to birds of passage. The cod, the haddock, and the whiting, issue forth in immense shoals from the arctic seas, very early in the spring, and after having dispersed over the temperate latitudes, again regularly return to their northera retreats about the same time of the year. The necessity of procuring food has been assigned as the cause of their annual migrations from the arctic seas; and their retreat thither has been ascribed to the security that these unfrequented tracts are supposed to afford them, while they deposit their spawn.
But although the cod undertakes annual excursions of considerable length, it still may be regarded as a local fish; for it never ventures into the warmer tracts of the ocean. None are found in the Mediterranean; and few in those parts of the Atlantic of the same latitude. They are in greatest perfection, and seem to prefer that space lying between the fiftieth and
sixtieth degrees; such as are caught beyond ie being always inferior both in quantity and quality. Their grand resort for centuries past has been on the banks of Newfoundland, and other sand banks off Cape Breton. This extensive flat seems to be the broad top of a subaqueous mountain, every where surroundert with a deeper sea. Hither the cod annually repair, in numbers beyond the power of calculation, to feed upon the worms that swarm upon the sandy bottom. Here they are taken in such quantities, that they supply all Europe with a considerable stock of provision. The English have stages erected all along the shore, for salting and dryiug them; and the fishermen, who take them with the hook and line, draw them as fast as they can throw them out.
This immense capture makes no sensible diminution of their numbers; for after their food is consumed in these parts, or when the season of propagation approaches, they take their departure for the polar seas, where they deposit their roes in full security, and repair the waste which has been occasioned by death, or the depredations of their enemies. They annually make their appearance on the coasts of Iceland, Norway, and Britain, gradually diminishing in their numbers, as they proceed to the south, and ceasing altogether on this side the straits of Gibraltar.

Before the discovery of Newfoundland, the largest cod-fisheries were on the coasts of Iceland, and the Hebrides, where the English resorted in quest of them as early as the beginning of the fifteenth century. On the banks of Newfoundland the English, who for a considerable period of time, and especially in the middle of the sixteenth century, were only rivals of the French, Spaniards, and Portuguese, have long possessed almost a monopoly of the trade, and draw from it not merely a valuable accession to the wealth of individuals, but a very considerable augmentation of the naval power of the empire.

This immense fishery is conducted in a tract of the sea agitated by a perpetual swell, and involved in continual fogs and darkness. The bait used is herring, a small fish called capelin. a shell fish, and bits of sea fowl. The natural food of the cod is sniall fishes, testaceous animals, such as crabs and whelks; and their digestive powers are so strong, that they dissolve cvery substance, which, from an insatiable voracity, they swallow. Their sight is probably very imperfect; for almost every small boly that is agitated by the water attracts their rapacious jaw, stones and pebbles not excepted, for these are often found in their stomachs.

The sounds of the cod-fish are reckoned a great delicacy, and frequently brought from Newfoundland, salted up by themselves: they are employed by the fishermen of Iceland in making isinglass; and are obtained by care fully separating them from the back-bone, to which they adhere after the fish is cut ups

The general weight of the cod-ish on the
-
-

Digitized by COOgle

NATURAL HISTORX。
 PL. CKIX.

CRatörartese Shinuilica
ơ'Fitteon Spined Jackilebuck.

> Goticu_Pancodatuen
> ar Lance-tuiled Goky.

SESMede. dd!

G A D

British coasts is from fourteen to forty pounds ; some have indeed been caught near eighty, but those of the mit!lle size are most esteemed for the table. Their time of spawaing is from Janury to April, when the females deposit their orules in rough, rocky ground. After lazing been exonerated of a load containing thee milions of young, the parent recovers its phunpuess sooner than almost any other fish; and is caught in grod condition, during almost the whole summer.
4. G. Fuscus. Bib. First ray of the ventral fins setaceous: borly above pale olive, sides finely tinged with gold; belly white; scales larger than the last, and extrimely deciduous: Hish excellent. Inhabits European seas; grows to a foot long.
5. G. Barbalus. Whiting-pout. Fach side the lower jaw seven puncuures: body white, more dusky on the back, and tinged with yellow. lihabits the northern European seas: from fifteen to eighteen inches long: deposits it a spawn annong rock, on a southerly shore; feeds on saaller fishes and crabs.
o. G. Minutus. Ponr. On each side the lover jaw nine punctures; vent in the middle of the body: body silvery, spotted with black; back brownish-yellow, covered with small thin scales. Inhabits European and Mediterranean seas: seven inches long; feeds on teshaceous amimals and worms, and is the prey of the la:ger fishes of its own tribe.
7. G. Merlangus. Whiting. Back dusky, rest of the body white: upper jaw longer; tail cven : budy long, rounded, covered with small, mund, tender, silvery scales. Inhabits the European seas; appears on our own coasts in rast shoals in the spring; generally about a frot lonz; and esteemed by many epicures the most delicate of all its tribe.
8. G. Carbonarius. Coal-fish. Lower jaw fonger; lateral line straight. Inhabits the Furopean and Pacific seas; grows to two and ahalf feet long; appears about the beginning of Jely in large shoals about the Yorkshire cont; varies much in colour, but grows blacher with its age. See Nat. Hist. Pl. CXXVI.
9. G. Pollachius. Pullack. Lower jaw linger; lateral lime curved: luxdy above dusliybrown, gradually whitening towards the belly, tenesth spotter with brown. Inhabits the rorive ceasts of Europe; usually about cighteen inenes long; migrates in great shoals: feeds on knialler fishes; and often frolichs near the surface of the water.
10. G. Merluccins. Hake. Mouth with cirrus; lower jaw longer : body long, covered with small scales, whitisl, above hoary; flesh white, flaky, but not much estecmed. Inhabits Une Northern and Mediterranean seas: from one and a half to two feet long; is extremely voracious; and migrates in vast shoals.
11. G. Molra. Ling. Mouth bearded; upper jaw longer: body very narrow and long, above brown, beneath whitish, and yellowish as the sides. Inhabits the dorthern seas: grows

VOL. V.

G A G

to seven feet long; feeds on fishes and crabs, approaches the shores about June to deposit its spawn : is in perfection from Februarg to May.

GADWELL, in ornithology. Sce Anas.
GAELEN (Alesander van), a Dutch painter, born in 1670, and died in 1728. He came to I ondon, and was employed by a nobleman to paint three pieces, representing engagements between Charles I. and Oliver (romwell, and a laree one of the battle of the Boyne, in which subjects he excelled.

GaliLic LaNGUaGE. See High.

lands.

GERTNIERA. In botany, a genus of the class decandria, order monogynia. Calyx fiveparted; petals five, unequal, fringed; filaments slightly united at the base; one of them much longer than the rest; capsules from one to three, with four unequal wings. An East Indian shrmb, described by Gxertner himself, under the name of hiptage madablota : by Sonnerat called madabluta banisteria.

GAFF.s. A harpoon or large hook (Ainsworth).

Ga'FFER. s. (zefene, companion, Saxon.) A word of respect, now obsolete, or applied only in contempt to a mean person (Gay).

GAFFARELI. (James), a French writer, was born at Mannes, in Provence, about 1601, and educated at the university of Apt in the same country. He zealously adopted the mysterious doctrines of the Ciabala, in defence of which he wrote a quarto volume in Latin at the age of twenty-two. He was appointed librarian to cardinal Richelieu; and sent by him into Italy to collect books. He is said to have been employed by the same cardinal in a project to reconcile the protestants to the Roman catholic religion. He survived his patron many years; and died at Sigonce, at the age of 80 . He was abbot of Sigonce ; dean of canon law in the university of Paris; prior of le Revest de Bronse; and commandant of St. Omeil. He was the author of several works; the most celebrated of which is, Unheard of Curiosities, concerning the Talismanic Sculpture of the Persians: the Horoscope of the Patriarchs; and the Reading of the Stars.

GA'FlliLS. s. (zapelucar, spears, Saxon.) 1. Arificial spurs put upon cocks. 2. A steel lever to bend conssbows (Ainsworth).

To GAG. v. n. (from gaglial, Dutch.) To stop the mouth with something that may allow to breathe, but hinder to speak (P opie).

Gag. s. (from the verb) Something put into the mouth to hinder speech or eating (Drudrn).

GaGaS, or Gagat. See Bitumpn.
GAGE. s. (gazc, French.) 1. A pledge: a pawn; a caution (Sioufliern). 2. A measure; a rule of measuring (J'iung.).

To Gage. v. a. (gaget, Irench.). 1. To wager; to depone as a wager; 10 inppawn; to give as a caution (Knolle). 2. To bind by some caution or surety; to engage (Shakspeare). 3. To measure; to take the contents
of any ressel. More properly gauge (Shak. spara).

Gage, in our ancient customs, signifies a pledge or pawn, given by way of securty. The word is only properly used in speaking of moveables; for inmoveables, hypotheca is used. If the gage perish, the person who received it is not to answer for it, but only for extreme neglicence, \&ic.

Gage is also used for a challenge to combat. Sue Caritel. In that sense, it was a pledge which the accuser or challenger cast on the ground, and the other took up as accepting the challenge: it was nsually a glove, gaunter, chaperoon, or the like. See Combat and Duel.

Gage is only now retained as a substantive. As a verb, the g is changed into w, and of gage is formed wage : as, to wage law, to wage deliverance, q. d. to give security that a thing shall be delivered. See Wage. If a person who has distrained be sued for not having delivered what he had taken by distress, he should wage, or gage, or gager deliverance; that is, put in surety that he will deliver them.
Gage (Mort), is that which is left in the hands of the proprictor, so that he reaps the fruits thereof: in opposition to the vif-gare, where the fruits or revenues are reaped by the creditor, and reckoned on the foot of the debt, which diminishes in proportion thereto. The second acquits or discharges itself; the first does not.

Gage, in the sea langrage. When one ship is to windward of another, she is said to have the weather-gage of her. They likewise call the number of feet that a vessel sinks in the water, the ship's gage : this they find by driving a nail into a pike near the end, and putting it down beside the rudder till the nail catch hold under it; then as many feet as the pike is under water is the ship's gage.

Gage, among letter-founders, a piece of box or other hard wood, variously notched, the use of which is to adjust the dimensions, slopes, \&c. of the different sorts of letters. See Foundery.

Gage, in joinery, is an instrument made to strike a line truly parallel to the straight side of any board or piece of stuff. Its chief use is for gaging of tenons true, to fit into mortises; and for gaging stuff of an equal thickness. It is made of an oval piece of wood, fitted upon a square stick, to slide up and down stiffy thereon, and with a tooth at the end of a staff of score, to strike a line upon the stuff at any distance, according to the distance of the oval from it.

GAGE (Sliding), a tool used by mathematical instrument-makers for measuring and setting off distances.

Gage (Pear). See Air pump.
Gage (Sea), an instrument invented by Dr. Hales and Dr. Desaguliers, for finding the depth of the sea, the description of which is this. AB, (Plate 68, fig. 14.) is the gageboule, in which is cemented the gage-tube

F f, in the brass-cap at \mathbf{G}. The upper end of the tube E , is hermetically sealed, and the open lower end f, is immersed in mercury, marked C, on which swims a small thickness or surface of treacle. On the top of the botte is screwed a tube of brass HG, pierced with several holes, to admit the water into the bottle AB. The body K, is a weight, hanging by its shank L, in a socket N, with a notch on one side at m, in which is fixed the catch l of the spring s, and passing through the hole L, in the shank of the weight K , prevents its falling out, when once hing on. On the top, in the upper part of the briss-tube at H , is fixed a large empty bail, or full-blown bladder I, which must not be so large, but that the weight K may be able to sink the whole under water.
The instrument, thus constructed, is used in the following manner. The weight K being hung on, the gage is let fall into deep water, and sinks to the bottom; the socket N , is somewhat louger than the shank L, and therefore, after the weight K comes to the botom, the gage will continue to deacend, till the lower part of the socket strikes against the weight; this gives liberty to the catch to fly off the hole L , and let go the weight K ; when this is done, the ball or bladder I, instandy bnoys up the gage to the top of the water. While the gage is under water, the water haring free access to the treacle and mercury in the bottle, will by its pressure force it up into the tube $\mathrm{E} f$, and the height to which it has been forced by the greatest pressure, viz. that at the bottom, will be shewn by the mark in the tube which the treacle leaves behind it, and which is the only use of the treacle. This shews into what space the whole air in the tube $\mathrm{E} f$ is compressed; and consequently the height or depth of the water, which by its weight produced that compression, which is the thing required.
If the gage-tube $\mathrm{E} f$, is of glass, a scale might be drawn on it with the point of a diamond, shewing by inspection, what height the water stands above the bottom. But the length of 10 inches is not sufficient for fathoming dephs at sea, since that, when all the air in such a length of tube is compressed into half an inch, the depth of water is not more than 634 feet, which is not half a quarter of a mile.

If to remedy this, we make use of a tube 50 inches long, which for strength may be a musquet-barrel, and suppose the air compresed into an hundredth part of half an inch; then by saying as $1: 99:: 400: 39600$ inches, or 3300 feet; even this is but little more than half a mile, or 2640 . But since it is reasonable to suppose the cavities of the sea bear some proportion to the mountainous parts of the land, some of which are more than three miles above the earth's surface, therefree, to explore such great depths, the Dr. contrived a new form for his sea-gage, or rather for the gage-tube in it, as follows: BCDP (fig. 13.) is a hollow metallic globe, comınunicating on the top with a long tube AB, whose capacity is a ninth part of that globe. On the lower part
at D , it has also a short tube DE, to stand in the mercury and treacle. The air contained in the compound gage-tube is compressed by the water as before; but the degree of compression, or height to which the treacle has been forced, cannot here be seen through the tube; therefore, to answer that end, a slender rod of metal or wood, with a knob on the top of the tube AB , will receive the mark of the treacle, and shew it, when taken out.
If the tube AB be 50 inches long, and of such a bore that every inch in length shall be a cubic inch of air, and the contents of the globe and tabe together 500 cubic inches; then, when the air is compressed within an hundredth part of the whole, it is evident the treacle will not approach nearer than five inches of the top of the tube, which will agree to the depth of 3300 feet of water as above. Twice thins depth will compress the air into half that space nearly, riz. 2t $\frac{1}{2}$ inches, which correspond to 0 (6ino, which is a mile and a quarter. Again, half that space, or $1 f$ inch, will shew double the former depth, viz. 13200 feet, or $2 \frac{1}{2}$ miles, which is probably very nearly the greatest depth of the sea.
GAGE (Bucket-sea), an instrument contrived by Dr. Hales, to find the different degrees of coolness and saltness of the sea, at different depths; consisting of a common household pail or bucket, with two heads to it. These heads have each a round hole in the middle, near four inches diameter, and covered with valves opening upwards; and that they might both open and shut together, there is a small imn-rod fixed to the upper part of the lower valve, and at the other end to the under part of the upper ralve; so that as the bucket descends wih its sinking weight into the sea, both the valies open by the force of the water, which by that means has a free passage through the bucket. But when the bucket is drawn up, then both the valves shut by the force of the water at the upper part of the bucket; so that the bocket is brought up full of the lowest sea-water to which it had descended.
When the bucket is drawn up, the mercurial thermometer, fixed in it, is examined ; but great care nuust be taken to observe the degree at which the mercu:y stands, before the lower part of the thermometer is taken out of the water in the bucket, else it would be altered by the different temperature of the air.
In order to keep the bucket in a right position, there are four cords fixed to it, reaching about four feet below it, to which the sinking weight is fixed.
GAGE (Tide), an instrument used for determining the height of the tides by Mr. Bayley, in the course of a voyage towards the sonth pole, \&cc. in the Resolution and Adventure, in the years 1778, 1773, 1774, and 1775. This instrument consists of a glass tube, whose internal diameter was $7-10$ ths of an inch, lashed fast to a 10 foot fir rod, divided into feet, inches, and parts; the rod being fastened to a strong pors fixed firm and upright in the water. At the lower end of the tube was an exceedingly
small aperture, through which the water was admitted. In consequence of this construction, the surface of the water in the tube was so little afiected by the agitation of the sea, that its height was not altered the 10th part of an inch when the swell of the sea was two feet; and Mr. Bayley was certain, that with this instrument he could discern a difference of the 10th of an inch in the height of the tide.
GAGE (Wind), an instrument for measuring the force of the wind upon any given surface. See Anemometer.
To GA'GGLE. v. n. (gagen, Dutch.) To make a noise like a gonse (K Img).

GAGUIN (Robert), a French historian, was born at Colines near Aimiens, and educated at Paris, where he took the degree of LL.D. Charles VIII. and Louis XII. employed him in several embassies to England, Germany, and Italy. He was keeper of the mal library, and general of the order of the trinitarians, and died in 1501. His principal work is, De gestis Francorum, from Pharamond to the year 1500, folio, published at Lyons, in 1594.

GA'HNIA. In botany, a genus of the class hexandria, order monogynia. Calyx uncertain; glume one-valved, from two to fiveflowered: corol; glume two-valved; style forked; seed one. Two species: Polynesiau herbs with purple flowers.

GAIETA, an ancient town of Naples, in Italy. It is 70 miles S . W. of Rome. Lat. 41. 30 N . Lon. 13. 47 F .

Gaillac, a town of France, in the departunent of Tarn; remarkable for its wines. Lat. 43. 54 N. Lon. 2. 5 E.
GAILY. See Gayly.
GAIN. s. (gain, French.) 1. Proft; advantage (Raleigh). 2. Interest; lucrative views (Shakspeare). 3. Unlawful advantage (Corinthians). 4. Orerplus in a comparative computation; any thing opposed to loss.
To Gain. v. a. (gagner, French.) 1. To obtain as profit or adrantage (Milton). 2. To have the overplus in comparative computation (Burnet). 3. To obtain; to procure (Tillntson). 4. To obtain increase of any thing alloted (Danicl). 5. To obtain whatever, good or bad (Acls). 6. To win against opposition (Clurendon). 7. To draw imo any interest or party (Philips). 8. To reach; to attain (Waller).
To Gais over. To draw to another party or interest (Suift).
To Gain. v. n. 1. To grow rich; to have advantage; to be advanced in interest or happiness (Ezekiel). 2. To encroach; to come forward by degrees (Dryden). 3. To get ground; to prevail against (Addison). 4. To obtain influence with (Swift).

Gain. a. (an old word.) Handy; ready.
GA'INER. s. (from gain.) One who receives profit or advantage (D enham).
GÁINFUL. a. (gain and full.) 1. Advantageous; profitable (South). 2. Lucrative; productive of money (Dryden).
GA'INFULLY. ad. (from gainful.) Profitably; advantageously.

G A L

GA'INFILNESS. s. Profit ; advantage.
GA'INGIVING. s. (rainst and give.) The same us migeving; a giving agailut (Sïuhspecto.
G.J'NLESS. a. (from gain.) Luproâtable; prolaciugno adrantage.
(iAlNiLSSDish s. (from gainless.) Unprotia.thaness (Decuy of Pidy).

GA1NLY. aai. (frow gain.) Handily; readily ; dexterming.
To GA'NLSAY. v. a. (gainst and say.) 1. To contradict; to njpuse (Milton). 2. To dens any thing (Shahspeare).
GATNSAlER. s. (from gainsay.) Opponent ; iderssary ($I_{\text {ewit }}$).
GANSBOROCGH, a town in Lincolnshire, with a market on 'wesdays. It is seated on the Trent, near the sea; is a well-built town, and has a brisk trade. Lat. 53.28 N. Lon. 0.36 E .
(Gansborough (Thomas), an English painter, was born at Sudbury, in 1727. He was entirely self- taweht, and used to entertain hinself by drawing landscapes from nature in the woods of his native comity. Here he was accustomed to pass lits mornings in sketcling an antiquated tree, a marshy brook, a few cattle, a shepherd and his flock, or other casual objects. From Sudiary he went to London, whicre he became a poitrait painter, in which line he also acquired great eminence. His greatest excelience, however, was as a landscape paiuter, in which he united the brilliancy of Claude with the simplicity of Rycdael. This great artist was no less distinguished by his virtues than his talents: he imposerished himself to assist the needy. He died in 1788. (Wathins).
'(GAINST. prep. (for against.)
To GA'INSTAND. v. a. ('gainst and stand.) To withstand; to oppose; to resist (Sidncy).

Gid'MRISH. a. (zeannian, to dross fine, Saxon.) 1. Gaudy; show:; splendid; fine (Milton). 2. Extravaganily gay ; Highty (South).
GA'IRISHNESS. s. (from gairish.) 1. Finery; flamting gaudiness. 2. Fighty or extravaqant joy (Taylor).

GAIT.s. (gat, Dutch.) 1. A way; as, gang your gait (Shakspeare). 2. March; walk (Spenser). 3. The manner and air of walking (Clarendon).

GALACTITES, in the history of fossils, a substance much resembling the morochthus, or French chalk, in many respects, but different from it in colour. The ancients found it in the Nile and in some rivers of Greece, and used it in medicine as an astringent, and for deffuxions and ulcers of the eyes. At present it is common in Germany, Italy, and some parts of France, and is wholly overlooked, being coteemed a worse kind of morochihus. See Monochtrus.
Galactophagi, and Galactopoт \boldsymbol{E}, in antiquity, persons who lived wholly on milk, without corn or the use of any other food.

G A L

GALAETOSPONDA, in antiquity, a libation mate with milk.
GALACTOPHOROUS DCCTS. (ductus galactophori, from yaia, milk, and $\varphi_{i ; i,}$, 10 carry, because they bring the milk to the uipple.) The excretory ducts of the glands of the breasts of women, which terminate in the papilla or nipple.
GaLaC L, or Galasi, a town of Bulgeria, seated near the Danube. Lat. 45. $2+\mathrm{N}$. Lon 28.2 E .
(iALAGE. s. A shepherd's clog (Spenser).
GALA'NGA. (galanga, perhaps its Indan name.) Galaneal. The roots of this plant are used medicinally: two kinds are mentioned in the pharmacoporias, which differ only in size, bosth being the produce of one plant. The dried root is brought from China, iil pieces from an inch to two in length, scarce half so thick, branched, full of knots and joints, with several circular rings, of a reddish browa culour on the outside, and brownish within. It has an aromatic smell, not very grateful, and an unpleasant, bitterish, hot, biting taste. It was formerly much used as a warm stomachic bitter, and generally ordered in bitter iufusions. It is now, however, seldom employed.
Galanga (Major.) See Galanga.
Galanga Minor.) See Galanga.
GALANGAL. See Galanga and Alpinia.

Galangal (English). See Cyprus.
GALA'NTHUS. Snow-drop. In botany, a genus of the class hexandria, order monogynia. Corol superior, six-petalled; the three inner petals shorter and emarginate; stigna simple. One species only, G. nivalis, growiug wild in the orchards of our own conutry. This species, however, affords three varieties, the common snow-drop, the half-double, and the double. The first is the earliest in flowering, then progressively the second and third. They are elegant ornaments to the borders of our gardens, and especially from their appearing 20 early as January, when no other flower has opened itself. They will succeed in alnost every soil and situation, and abundantly propagate themselves by offsets from the roois.

GALA'RDIA. In botany, a genus of the class syngenesia, order :nly gamia frustranea. Receplacle chatly, hemispharical; sceds crowned with a many-leaved chaff; calyx imbricate, many-leaved, flat ; florets of the ray threeparted. Two species, natives of America.

GALATEA and Galathea, in fabulons history, a sea-nymph, daughter of Ncreus and Doris. She was passionately loved by the cyclops Polyphemus, whom she treated with coldness and disdain; while Acis, a shepherd of Sicily, enjoyed her unbounded affection. The happiness of these two lovers was disturbed by the jealousy of the cyclops, who crushed his rival to pieces with a piece of a broken rock while he reposed on the hosom of Galatea. The nymph was inconsolable for the luss of Acis; and, as she could not restore him to life, she changed him into a fountain.
GALATLA, the ancient name of a proviace

G A L

G A L

of Asia Minor, now called Amasia. It was bounded on the east by Cop:arlocia, on the west by Bithynia, on the south by Pamphylia, and oa the north by the Euxine sea. It was the north part of Pingzia Magna; but, upon being occupied by the Gauls, was called Galatia; and because situated amidst Greck colonies, and itself mixed with Greeks, Gallok'acia. Strabo call, it (Galatia and Gallogracta: bence a two-foid name of the people, (islata and Gallowraci.
GALATLANS (Epistle to), in the sctipture caron, was writen, according to sone critics, in A.D. دl; according to others, alwout the year 54 , or very beginning of 53 .
The churcties oi Gailatia were first converud to the Christian faith by St. Paul, about the later ead of the year 50 . From the conunto of this episile it appears, that anter he hand preached the gospel to the Galatians, some jedaiving zealots had endeavoured to degrade the aprotle's character among them, as one not immediately commissioned by Christ like the otier apmostles : and to subvert hio doctrine with requect to jusification, by insisting on the obsarvation of the Jewish ceremonies, and so attempting to incorporate the law with Christi. rity.

The principal designs, therefore, of St. Paul in this ipistle, were to assert and vindicate his afontolical authority and doctrine: to shew the sincerity and consistency of his behaviour: to establish and eontirm the churches of Galatia in the true faith of Carist, and to prove that the Jewish ceremonies were not necessary to justitication: to expose the erors that were introduced among them by the judaizing teachers: and to resive those principles of Christianity which he had inculcated when he first preached the gnopel among them.

The subject of this is much the sime with that of the epistle to the Romans, and the same points of contronersy are handled ia them both: only the following question is more particulariv examined here, viz.: "Whether circumciamand the full observation of the eremonial law of Moses were necessary to the salvation of a Christian convert?"
The lust two chapters contain some practical exhortations levalled against the animosities and great partialities which this dispute had prodiced and ripened among the Gaiatians.

GA'LAX. In botany, a genus of the class pentandria, order monozynia. Corol salvershoped; calyx ten-leared; capsule one-celled, two-valved, elastic. One species; a native of Virginia.
GALAXIA. In botany, a genus of the class monadelphia, order triandria. Spathe one or two-leaved; calyxless; corol one-petal, six-cleft, with a long libe; style oue; capsule tinrec-celled, inferior. Three species; two of the Cape; one of the straits of Mugellan.
Galaiy, or Miley-way, orVialactea, in astronomy, that long, whitish, luminous track, which seems to encompas; the heavens like a swath, scarf, or girdle; and which is easily seen in a clear night, especiaily
when the moon is not up. It is of a considerable, though unequal beeadth; being also in sonee parts doubje, but in others single.
T:ue mais:y pasees tirouyh many of the constellations in its circuit ronad the heavens, and keeps its exact phace or position with reppect to them.
There have been varinues strange and falulous storics and opinions concerning the galasy. The ancient poets, and even some of the philosophers, spe.k of it ats the road or way by which the heroes went to heaven. But the Eevptians called it the Way of Straw, from the story of its rimy from burning straw, thrown behind the goduess Isis in her fight from the sime Typhon. White the Grechs, who affect to derise every thing in the heavens from some of their own fables, have two origins ior it: the one, that Jumo, witiout percei:ing it, accidentally gave such to Mercury when an infant; but that as soon as she tirned her eyes upon him, she threw him from her, and as ihe mpple was drawn from his month, the milk ran about for a moment: and the other, that the infant Hercules being laid by the side of Juno when asleep, on waking she gave him the breast; but soon perceiving who he was, she threw him from her, and the heavens were maticed by the wasted milk.
But the moderas, and indeed some few ancients, look upon :he galaxy as an assemblage of an infinite number of nitinute stars. Dr. Herschel, on examining the milky way, has seen the astonishing number of 116,000 stars pass through the field of view of a telescope only $1: 5^{\prime}$ aperture, in the space of a quarter of an hour. How extremely applicable and beautiful then is the language of Milton, when he speaks thus:
Λ broad and ample road, whose dust is gold, And pavement stars, as stars to thee appear, Seen in the galaxy, that milly way, Which nighty as a circling zone thou secst Powderd with stars.

There are other such marks in the heavens; as the nebule, or, nebulous stars, and certan whitish parts about the south pole, called Magellanic clouds, which are all of the same nat ture, appearing when viewed through a telescope, to be vast clusters of small stars which are ton faint in affect the eve singlv.

GALBA (Servius Sulpicius), a Roman who, by muremitted diligence, rose aradually to the greatest offices of the state. He dedicated the greatest part of his time to solitiry pursnits, chiefly to avoid the suspicions of Nero. His dia approbation of the empror's commands was the cause of new diturbances. Nero ordered him to be put to death, but he cscaped the executioner, and was publicly saluted eniperor. When stated on the throne, he sulf-red himself to be governed by favourites, who exposed the yoods of the citizens to sile, in sratify their avarice. The crime of murder was blitied out, and unpuaity purciaised with a large sum of money. Sucth condact greatly displeased the

G A L

people; and when Galba refused to pay the yoldiers the money which he had promised them, when raised to the throne, they assassinated him in the 73d year of his age, and in the eishth month of his reign, and proclaimed Otho emperor in his room, January 10 th, A. 1). 69. The virtues which had slone so brig! t in Galba, when a private man, totally disapieared when he ascended the throne.

GALBANUM. (gallanum, Hebrew.) A gummi-sesinous juce, obtained partly by its spobtaneous exudation from the joints of the stem of the bubon galbanum; foliis rhombeis dentatis striatis glabris, unbellis paucis, of Linnéu-; a genus of the class pentandria; order digynia; but more generally, and in greater abundance, by making an incision in the stalk, a few inches above the root, from which it immediately issues, and soon becomes suliciently concrete to be gathered. It is imported into England from Turkey and the East Indies, in large, softish, ductile, pale-coloured masses, which, by age, acquire a brownish ycllow appearance : these are intermixed with distinct whitish tears, that are the most pure part of the mass. Galbanum holds a middle rank between assafoetida and ammoniacum, but its foetor is very inconsiderable, especially when compared with the former; it is therefore accounted less antispasmodic, nor are its expectorant qualities equal to those of the latter; it however is esteemed more efficacious than either in hysterical disorders. Externally it is often applied by surgeons to expedite the suppuration of indolent tumours, and by physicians as a warm stimulating plaster. It is an ingredient in the pilulæ galbani composita, the emplastrum galbani compositum of the London Pharmacopoia, and in the emplastrom ad clavos pedum of the Edinburgh. Sce Bubon.

Galbanuin forms, with water, by trituration, a milky liguor, but does not perfectly dissolve in water, vinegar, or wine. Rectified spirit takes up more than either of those menstrua, but not the whole; and forms a tincture of a bright golden colour. A mixture of two parts of alcohol and one of water is capable of dissolving it entirely.

GALBULA. Jacamar. In zoology, a genus of the class aves, order picæ. Bill straight, very long, quadrangular, point red, nostrils oval at the base of the bill; tongue short, sharp-pointed; thighs downy on the fore-part; feet scansile. Four species; all of which inhabit South America; generally about the size of a lark; feed on insects, and some of them fly in pairs.

GALDA GUMMI. This is a gum-resin mentioned by old writers, but totally forgotten in the present day. Externally, it is of a brown colour, but white within, of a hard lamellated structure, and smells and tastes somewhat like cleni. When burnt, it gives out an agreeable odour. It was formerly used as a warm stimulating medicine, and applied in plasters as a corroborant.

GALE. s. (galing, hasty, Ger.) A wind

G A L

not tempestuous, yet stronger than a brecze (Millon).

Gale, or Sweet willow, in botaiy. See Myrica.

Gale (Dr. John), an eminent and learned minister among the baptists, was born at London in 11 jono. He studied at Leyden, where he distinguished hinself very early, and afterwards at Amsterdan under Dr. Limborch. He was chosen minister of the baptist congregation at Barbican; where his preaching, being chiefly practical, was greatly resorted to by people of all persuasions. Four volumes of his sermons were published after his death, which happened in 1721. His Reflections on Dr. Wall's History of Infant-baptisin is esteemed the best defence of the baptists ever published; and the reading of that performance induced the learned Mr. William Whiston, Dr. Foster, and some say sir Isaac Newton, to become baptists.

Gale (Theophilus), an eminent divine among the non-conformists, was born in 1628 at King's-Teignton, in Devonshire. He received his academical education at Magdalen college, Oxford, where he took his degree in arts, and was chosen fellow. He was invited to Winchester in 1657 , where he preached till 1661, when refusing to comply with the act of uniformity, he was silenced, and deprived of his fellowship. He was then appointad tutor to the two sons of Philip lord Wharton, whom he accompanied to Caen, in Normandy. In 1665 he returned to England, and became pastor to a dissenting congregation, and also master of a scminary at Newington. He died in 1678 , bequeathing his estate to trustees for the support of students of his own persuasion, and his excellent library toward promoting useful learning in New-England. He wrote many works, the principal of which is his Court of the Gentiles, a very learned production, in which the author undertakes to prove, that the theology and philosophy of the ancient pagans were borrowed from the scriptures. (Watkins).

Gale ('Thomas), a learned English divine, borm in 1636, at Scruton, in Yorkshire. He was educated at Westminster school, from whence he was elected to Trinity college, Cambridge, of which he was chosen fellow. He was celebrated for his acquaintance with the Greek language and antiquities. His knowledge of the former procured him the regius professorship. In 1671 he published an edition of the ancient mythologic writers, physical and moral, in Greek and Latin. In 1672 he was chosen master of St. Paul's school. In 1675 he received the degree of B. and D.D. and in 1676 was collated to a prebend in the cathedral of St. Paul. He was elected a member of the Royal Society, to which he presented many curiosities, particularly a Roman urn, with the ashes, found near Beckenham, in Surrey. In 1697 he was promoted to the deanery of York. He died at his dcanery in 1702, and was interred in the choir of his cathedral. Dean Gale wrote many learned works. (Wathins).

GALEA, in antiquity, a light casque, or
head-piece, commonly of brass. Hence the helmet -bearers were called galearii.

Galea. (in bolany, from galea, Lat. an helmet.) The upper lip of a ringent corol. Linnéus uses the words labium superius or upper lip.

GA LEATED. a. (galeatus, Latin.) 1. Covered as with a helmet (Woodward). 8. (In botang.) Such plants as bear a flower resembling a helmet, as the monkshond.

GALEGA, in botany, a genus of the class diadelphia, order decandria. Calyx with subulaie teeth, nearly equal; legume with oblique streaks between the seeds. Thirty-six species; some few with tennate, the greater part with pinnate leaves. Chiefly of the Cape, South Ancrica, and India; some few natives of the south of Europe; and among these G. officinalis with pinnate, lanceolate, mucronate, glabrous leaves; lanceolate, arrow-shaped stipules, erect, stiff legumes, known very generally by the name of goats-rue, and formerly an article in various pharmacopoeias.
GALEN. See Galents.
GALENA. (from yaגe, , to shine.) An ore of lead in which that metal is combined with sulphur; and hence, when separated from impurities, it is termed, chemically, sulphuret of lear ; it is the most usual form in which lead is obtained from the mine. (See Lend.) There are several varieties of galena, distinguished principally by the difference of their external appearance, whether occurring in grains, with facets, or in crystals. They generally contain a small proportion of silver. Galena is of a blue-ish-grey colour, like lead, but brighter, and of a metallic lustre. Before the blow-pipe it decrepitates, and melts with a sulphureous smell. When first taken from the mine it contains from $\cdot 45$ to 83 lead, and from $\cdot 086$ to $\cdot 10$ sulphur. Its specific gravity varies from 7.22 to 7.857.

Galera (Antimoniated), a species of lead ore in which antimony is found in combination with the sulphuret above mentioned.

Galena (Compact), of a closer texture than the preceding, is sometimes, but not frequently, found in Derbyshire, Germany, and Italy. It is so much like plumbago, that it is often mistaken for i.

Galena (False, Mock-lead), or Blende, 2 substance thus called, because, though it appears to resemble an ore of lead, it contains none of that metal. Since the former name was imposed, the substance has proved to be an ore of zinc, containing that metal in union with sulphur; and hence termed sulphuret of zinc.

Galena ofiron, is sometimes applied to a crystallized ore of that metal.

Galena, in botany, a genus of the class octandria, order digynia. Calyx four-cleft; corolless; capsule roindish, two seeded. Two species; natives of Africa and the Cape.

GALENIC, in medicine, is that manner of considering and treating diseases founded on the principles of, or introduced by Galen. This author, collecting and digesting what the phy-
sicians before him had done, and explaining every thing according to the strictest doctrine of the Peripatetics, put physic on a new froting: he introduced the doctrine of the four elements; the cardinal qualities and their degrees; and the four humours or temperaments.

Galenic is more frequently used as contradistinguished from chemical.
GALENISTS, a denomination given to such physicians as prictise, prescribe, or write, on the galenical principles, and stand opposed to the chemists. At present the galenists and chemists are pretty well accommodated; and most of our physicians use the preparations and remedies of both.
Galenists, or Galenites, in churchhistory, a branch of Mennonites or Baptists, who take in several of the opinions of the Socinians, or rather Arians, touching the divinity of our Saviour. In 1664 the W^{2} aterlandians were divided into two parties, of which the one were called Galenists, and the other Apostolians. They are thus called from their leader Abraham Galenus, a learned and eloquent physician of Amsterdam, who considered the Christian religion as a system that laid much less stress on fuith than practice, and who was for taking into the communion of the Mennonites all those who acknowledge the divine origin of the books of the Old and New Testament, and led holy and virtuous lives.
GALENUS (Claudius), a celebrated physician in the age of M. Antoninus and his successors, born at Pergamus. He visited the most learned seminaries of Greece and Egypt; and at last came to Rome, where he soon rendered himself famous by his profession. Many, astonished at his cures, attributed then to magic. He was very intimate with Marcus Aurelius, the emperor, after whose death he returned to Pergamus, where he died, in his 90th year, A.D. 193. He wrote no less than 300 volumes, the greater part of which were burnt in the temple of Peace at Rome, where they had been deposited. To Galen and Hippocrates the moderns are indebted for many useful discoveries. The best editions of Galen's remaining works are, the Basil edition of 1538, in 5 vols., and that of Venice in 1625, in 7 vols.

GALEOBDOLON. Yellow dead-nettle. In botany, a genus of the class didyuamia, order gymniospermia. Calyx five cleft, unequal awned ; upper tip of the corol very entire and vaulted; lower lip three-cleft, with all the divisions acute. One species; common to the moist shades of our own country.

Galeon. See Galieon.
GALEOPSIS. (galeopsis, xanmpts; from xados, grod, and oris, vision, so called, because it was thought good for the sight; or from $\gamma^{\text {cinna, a cat, and oqus, aspect, the flowers gap- }}$ ing like the open mouth of an animal.) Hempnettle. In botany, a genus of the class didynamia, order gymniospermia. Calyx five-cleft, awned; upper lip of the corol vaulted, and crenate, lowes lip with two teeth on its

G A L

upper side. Four species; all indigenous to our own com-fieds. See Lamium album. GALERI'CULATE. a. (from galerus, Latin.) (owered as with a hat.

GALERICULUM, a cap of skin worn both by men and women amongst the Romans.

Galericulum aponeuroticum. The tendinous expansion which lies over the pericranium.
Galfall.Y, a town of Ircland, in the county of Tipperary. Lat. 52.15 N. Lon. 8.20 W .

GALICIA, a large country in the S. of Poland, which was furcibly seized by the Austrians ia ioiz. It coniots of that part of Litite Poland which is on the S. site of the river Vistula, almost the whole of Red Russia, and a slip of Podolia; and it is incorporate 1 into the Austrian dominions, under the appellation of the kingdoms of Galicia and Lo:lomeria; which kingdoms, as the conrt of Viemsa alleged, some ancient diplomas represent as situated in Poland, and subject to the kings of Hungary; but their most p.owerful and convincing argument was the ullima rotio regum, derived trom an army of 200 , 000 inen.

Galicla, a province of Spain, having the Atantic ocean on the N. and W. Portugal on the S . and Asturias and Leon on the E . It is but thinly peopled, and its produce is wine, Hax, and citrons.

GALILEANs, a sect of the Jews. Their founder was one Judas, a native of Galilee, from which place they derived their name. Their chief, estecming it an indigniny for the Jews to pay tribute to straigers, excited his countrymen agninst the edect of the emperor Augustus, which had ordered a taxation or enrolment of all the suljects of the Roman empire. They pretended that God alone should be owned as master and lord; and in other respects were of the opinion of the pharisecs: but, as they judged it unlawful to pray for intidel princes, they separated themselves from the rest of the Jews, and performed their sacrifices apart.

GALILEE, anciently a province of Judea, but now of Turkey in Asia. Its bounds are not now certainly known.

GALILEO (Galiei), the famous mathematicion and astronomer, was the son of a Florentine nobleman, and horn in the year 1564. He had from his infancy a strong inclination to philosophy and the mathematics, and made prodigious progress in these sciences. In 1592 he was chosen professor of mathematics at Padua, and during his abode there he invented, it is said, the telescope; or, according to uthers, improved that instrument, so as to make it fit for astronomical observations. (See Astronomy.) In 16il, Cosmo II. grand duke of Tuscany, sent for him to Pisa, where he made him professor of mathematics, with a handsome salary; and soon after, inviting him to Florence, gave him the office and title of principal philosopher and mathematician to his highness.

He had been but a few years at Florence be-

GAL

fore he was convinced by sad experience, that
 hedd too sacred to be called in quesion. Having observed some solar spots in 1619, he printed that discovery the following yar at Rone ; in which, and in some other pieces, he ventured to assert the truth of the Copernican system, and brought several new arguments to contirm it. For these he was cited before the inquisition : and, after some months imprisonnent, was released upon a simple promise, that he would renounce his herctical opinions, and not defend them by word or writing. But having afierwards, in 1632 , published at Florence his Dialogues of the two greatest Systems of the World, the Ptolemaic and Copiernican; he was aqain cited benote the imquistion, and commitued to the pision of that ecelesiastical conet at Kome. In June, in the same year, the congregation convend, and in his presence pronounced sentence against him and his books, obliging him to abjure his efrors in the most solcmin mamer; committed him to the prison of their oflice during pleasure; and enjoined him, as a saving penance, for three years to come, to repeat once a week the seven penitential psalms: reserving to themselves, howerer, the power of moderating, changing, or taking away altogether or in part, the said punishment or penance. On this sentence, he was detained in prison till 1634; and his Dialogucs of the System of the World were burnt at Rome.

Galileo lived ten years after this; seven of which were employed in making still further discoverics with his telescope. But by the continual application to that instrument, added to the damage his sight received from the nocturnal air, his eyes grew gradually weaker, till he became tomally blind in 1639. He bore this calamity with patience and resignation, worthy of a great philusopher. The loss neither broke his spirit, ner stopped the course of his studies. He supplied the defect by constant meditation ; by which means he prepared a large quantity of materials, and began to arrange them by dictating his ideas; when by a distemper of three months continuance, wasting away by degrees, he expired at A rcetri near Florence, in January 1642, being the 78th year of his age.

Galilen was in his person of sinall stature, though of a veperable aspect, and vigorous constitution. His conversation was affiable and free, and full of pleasantry. He took great delight in architecture and painting, and designed extremely well. He played exquisitely on the lute; and whenever he spent any time in the country, he took great pleasure in husbandry. His learning was very extensive: and he possessed in a high degree a clearness and acuteness of wit. From the time of Archimedes, nothinghad been done in mechanical geometry, till Galileo, who being possessed of an excellent julginent, and great skill in the most absiruse poiuts of geometry, first extended the boundaries of that science, and began to reduce the resistance of solid bodies to its laws. Besides applying geometry to the docurine of motion, by
which philosophy became established on a sure foundation, he made surprising discoveries in the hewens by means of his telescope; and thas made the evidence of the Copernican systen more sensibie. He was the first who demonstrated that the spaces described by heavy failitg bodies are as the squares of their times of motion; and that a body projected in an obiriquedirection describes a paratrola. He invented the cycloid; likewise the simple pendutum: and thought of applying it to clocks. but did not execuie that design. He discovered that air had gravity, and endeavoured to comfare it with water. In short, he will ever be admired by true philosophers, as the great man wion opened vast fields for their enquiries, and at ly asosted them therein by hisinventions and ci-coseries.
(ralifer wrote a number of treatises, many c? which were published :n his life-time. Nost of the:n were also collected ater his death, and publshed by Mendessi in 2 vols. 4 to., under iace title of LOpere di Galike Galilei Lynceo, in $1 \mathrm{ij}, \mathrm{t}$. Some of these, with others of his pieces, were translated into English and pubJished by 'Thomas Salisbury, in his Mathematical Collections, in 2 vols. folio. A volane aloo of his letters to several learned men, aid solutions of several problems, was printed at Bolorria in 4to.

A correct translation of the sentence passed non Gaitieo, and of his abjuration of the erors and heresies which he held respecting the earth and sun, is given in the Monthly Marizine, for Feb. 1802.

GaLlNACELS LAPIS. See Gallisaceus.

GiALINSO'GEA, in botany, a genus of the class syugenevia, order polygamia superfua. R. cephacle chatly; down many-leaved, chaffy; colyx imbricate. Two species; natives of Peru.

GALIOT. s. (galiotte, Fr.) A little galley or sort of brivastine, built very slight and fit f.r chase (Kholles).
(i.tLI'PEA, in botany, a genus of the class dia:airia, oder monogynia. Calyx four, or five-sided; four, or five-toothed; corol salversudued, deeply four or five-parted; stamens four, two of them barren; pericarp. One species: a Guiana shrub about six feet high, with small flowers in a terminal, few-flowered cyuse.

GALIPOT, or Barras, a white brittle substance, which, in the winter, is found to incrust the wounds of fir-trees, from which turpentine has been extracted; it consists of rosin united to a small portion of oil.

GALIUM. Bed-straw. In botany, a genus of the class tetrandria, order monogynia. Corol one-petalled, flat, superior; seeds two, roundish. Fitty-three species; chiefly European plants; and thirteen common to the mountains, mealows, hedges, or walls of our own country. Those chietiy of notice are:

1. G. verum. Yellow lady's bed-straw ; with leaves in eights, linear, grooved, very eotire, rough; flowers in close panicles. These
flowers will coagulate boiling milk; and they are said to be employed for this purpose in making Cheshire cheeses. The plant is found wild in our fields.
2. G. mollugo : found wild in our hedges, with leaves in eights, elliptic, rather than obtuse, mucronate, rough at the margin; flowers in spreading panicles. There is another variety with the stem and leaves rough. The expressed juice of this and several other species was formerly in high repute for the cure of epilepsy: but it has long lost its character.
3. G. asparine. Clivers; Goose-grass. Found in our hedges with leaves in eights, lanceolate, carinate, rough, prickly backwards; stem flaccid. The expressed juice was formerly used in cataplasms for discussing glandular tumours; but is now no longer known in the pharmacopocias. Rabbits and some other quadrupeds are fond of the leaves.
GALL. s. (дeala, Saxon.) 1. The bile, or animal juice remarkable for its supposed bitterness. (See Bile). 2. The part which contains the bile (ISrown). 3. Any thing extremely bitter (Shatspeare). 4. Rancour; malignity (Spenser). 5. A sore or hurt occasioned by rubbing off the skin (South).

To Gall. v.a. (galer, French.) 1. To hurt or make sore by rubbing off the skin. 2. Figuratively, to impair, to wear away. 3. To vex; to fret; to teaze; to harass; to disturb.

Gall (St.), or St. Gallen, a town of Swisserland, in Thurgau, with a rich abbey. To the valuable library belonging to this abbey, which contains several MSS. of the classics, we are indebted for Petronius Arbiter, Silius Italicus, Valcrius Flaccus, and Quintilian, copies of which were found here in $1+13$. At this town are good manufactures of linen, muslin, and embroidery. Lat. 47. 26 N. Lon. 9. 20 E .

Gall-bladder. Vesicula fellis. An oblong membranous receptacle, situated under the liver, to which it is attached in the right hypochondrium. It is composed of three membranes : a common, fibrous, and villous. Its use is to retain the gall, which regurgitates from the hepatic duct, there to become thicker, more acrid, and bitter, and to send it through the cystic duct, which proceeds from its neck into the ductus communis choledochus, to be sent on to the duodenum. It is deficient in some animals, as for example the horse, ass, and antelope.

Gall-fly, in entomology. Sce Cynips.
Gal.l-nut. (noix de galle, French; gallapfel, German.) An excrescence on various species of the oak-tree, produced, as naturalists affirm, by a luncture made on the leaves, bark, or buds, by various species of the cynips, or gall-fly. The puncture is affirmed to be made by the female insect, which deposits at the same time an egg, that progressively becomes hatched into 2 larve or grub; and in the situation to which it is entrusted, tinds abundance of food as well as a nest duly prepared for it. The perpetual stimulus, which, as a foreign body, it excites from the first, and continues to excite in a still greater degree after it has acquired sensation and mution,
gradually increases the gall-nut to the size in which it generally reaches us, and accounts for its being hollow.

The two species of the oak that afford the most useful gall-nuts, and consequently those most generally sought for in commerce, are, the quercus cegilope, and quercus cerris; both which trees are natives of the Levant. The former kind of gall is principally employed by tanners, though by no means so extensively ether in our own country or abroad as it deserves to be: the latter is the officinal gall-nut, and is used for a great variety of purposes: it is found adhering to the soft annual shoots of the tree, and in short, in its original situation and general appearance, is considered by naturalists as precisely similar to those excrescences on our English oaks, vulgarly called oak apples. There are two kinds of gall-nuts distinguished in commerce; the inferior is of a pale brown colour, and about the size of a nutmeg, and is procured from Spain, France, and the northern Mediterranean countries; the superior sort is of a deep olive colour, approaching to black, is smaller than the other, and its specific gravity is considerably greater: it is produced in Asia Minor, but more especially in Syria, and is hence called the Aleppo gall, this town being the principal seat of the foreign Syrian commerce.

Notwithstanding, however, the concurrent testimony of naturalists, as to the original of the gallnut, any person who will give himself the trouble to break half a dozen sound unperforated Alcppo galls, may readily convince himself that this is one of those vulgar errors which are repeated and believed from generation to gencration, because in philosophy and natural history, it is casier to believe than to examine. Gall-nut consists of four parts. The external or cortical covering is of a dense fibrous texture, a pale yellowish white colour, is very thin, and separable without much difficulty from the part which it encloses: to the taste it is highly astringent, with a slight, and sometimes a scarcely perceptible bitterness: when laid on a red hot iron it smokes and blackens, and finaliy becomes ignited, but without any flame: the smoke is slightly pungent, accompanied by a peculiar and ind-scribable odour, which, however, chiefly characterises the resinous part of the gall-nut. Immediately beneath the cortical part lies that which, merely from its external appearance, we shall call the resinous part, and which constitutes by far the greater portion of the gall-nut : the colour of this is dark yellowish brown, it has a fibrous texture, and shows a great tendency to a conchoidal fracture: it has a glimmering resinous lustre, and is very brittle: it is not only astringent to the taste, but nauseously bitter, and appears almost entirely soluble in saliva: when laid on red hot iron it becomes black, and in a state of semifusion, and exhales very copiously that peculiar odour which we have al. ready mentioned; in a short time it is ignited and reduced to ashes, but without producing any flame. The central cavity of the gall-nut is lined with a very pale yellowish brown shell, adhering pretty firmly to the resinous part; it is of a fibrous texture, without lustre; to the taste it is alinost wholly insipid like common ligneous fibre, and, like this, when laid on 2 red hot iron it burns with a yellowish flame, and a copious production of very p netrating pyroligneous acid. Within the shell is contained the kernel, which is a small egg-shaped body, sometimes consider-
ably flattened, and a quarter of an inch or more in length: it is of a brown cream colour, and an even very minutely granular fracture like a common hatel-nut; it breaks down between the teeth like all the oily farinaccous seeds when dried: it is insipid, but, after being chewed, leaves 2 faint sweetish flavour like that of a bad almond; it is often found mouldy, and then is of a bright chocolate colour. When laid on a hot iron it becomes somewhat moist, and gives a pungent empyreumatic acid in great quancity, but without flaining, and is probably little else than an amylaceous fecula. This kernel no doubt it is which invites the depredation of insects; and in all those gall-nuts, the kernels of which have been devoured, may be perceived a small tubular passage from the outside to the centre, and in the place of the kernel is generally left 2 little web, and some minute black grains which probably are the excrements of the insect. Gall-nuts that are unperforated are sometimes, however, found hollow ; but this may be inferred to be owing to the destruction of the kernel by spontaneous decomposition, on account of the mouldy and discoloured state of the remaining shell.

No chemical analysis has been made of any one of the four parts of the gall-nut separated from the rest, although what we have called the resinous portion seems to be particularly interesting: the gall-nut in general, however, has been subjected to several curious enquiries by Scheele, Deyeux, Proust, Davy and others, of which the following are the principal results.

When bruised galls are infused in distilled water at the temperature of about 60° Fahr. 2 dark brown fluid is obtained in the space of a few hours, this being poured off, and another portion of water being added, a second infusion is procured of a somewhat lighter colour than the former; after baving thus employed four or five separate parcels of water, the succeeding infusion exhibits a yellowish green tinge, which by degrees becomes more and more faint, till all that portion of gall-nut soluble in this menstruum at the above temperature is taken up. According to Deyeux, it requires 96 quarts of water divided into 20 different macerations, to exhaust all the soluble matter of a single pound of galls. The brown infusion acquires a deep black colour by red sulphat of iron, indicating the presence of gallic acid; a solution of isinglass in water occasions in it a copious precipitate, indicating tan, and muriat of alumine throws down a precipitate denoting the presence of extract. This brown infusion seems to be furnished almost entirely by the resinous part of the nut. The light green infusion gives a deep blue precipitate with red sulphat of iron, but is hardly at all affectid by the other two reagents; it appears to contain litte else than gallat of lime, and is probably furnished by the cortical covering of the gall-nut. A few drops of moderately strong suiphuric or muriatic acid change the green tinge of this infusion to red, after which the original colour may be restored by the addition of an al. kali, and deepened if it is added to exces. The concentrated nitric and oxygenated muriatic acids destroy the colour of the infusion. nor can it be restored by any alkali. By long continued slow evaporation, the green colour is changed into a dir'y yellow, and then neither acids nor alkalies act on it in the same manner as before. the strongest brown infusion that can be made by macerating pounded galls with distilled water at

G A L L-N U T.

55° Fahr. is of the specific gravity of 1.068 , and yields by evaporation a little more than $\frac{1}{6}$ of solid matter. The solution is nearly transparent, of a yellowish brown colour, and a sour and highly astringent taste; it strongly reddens litmus, and shows other proofs of a disengaged acid. When sulphuric acid is poured into the infusion, dense white precipitate is thrown down, and the supernatant liquor becomes of a deeper colour than before : it is not, however, by this process, freed entiruly from any of its ingredients, since it still continues to give a deep black with the oxygenated salts of in on, and to afford a precipitate with gelatin. The sulphuric precipitate, when sepasated by the filter, alighty reddens vegetable blues, tields gallic acid by distillation, and when dissolved in warm water, gives a copious precipitate with isinglass. Muriatic acid produces a siuitar effect on the infusion to that of sulphuric acid. Strong nitric acid, when first added to the infusion, renders it turbid, but the separating matter is soon dissolved with effervescence, and the liquor becomes clear and of an orange colour: the excess of acid being saturated by an alkali, both the tan and gallic acid of the infusion are found to be destroyed, for no precipitate is occasioned by a solution of gelatin, nor any change of colour by red sulphat of iron. By evaporation, a su't yellowish brown substance is procured, which from its decouposing nitro muriat of tin and nitrat of alumine, appear to be a kind of extract. If a very diluted nitric acid is employed, its effats on the infusion are similar to those of the sulpharic and muriatic acids.

A solution of either of the fixed alkalies, in a perfectly caustic state, occasions a temporary turbidness in the infusion, and chauges its colour to brown red; in this state it gives no precipitate with gelatiu till the addition of an acid, when a copious sediment is prucured. Caustic ammonia, at a moderate temperature, has the same effect as fixed alkali; but when the mixture is exposed to the heat of boiling water, part of the ammonia is volatilized, and the remainder reacts on the tan and gallic acid of the infusion, converting them alnost entirely into a substarce precipitable by mariat of tin and aluminous salts.
If instrad of a perfectly caustic fixed alkali, one that is only partially so be employed, a precipitate is thrown down from the infusiou, the quantity of which varies in proportion to that of the carbonic acid united with the alkali. That the formation of this precipitate depends on the presence of carbonic acid is manifest from this circumstance, that if carbonic acid gas is passed through the residual clear liquor, consisting of caustic alkali and infusion of galls, an inımediate precipitate is occasioned, which exhibits the same properties as that produced by carbonated alkali in the infusion. The following are the characters of the precipitate : it has not the astringent taste of uncombined tan; it is but imperfectly soluble in cold water or alcohol; when digested in a large quantity of hot water it is separated into an insoluble and a soiuble part; the former of these is not acted ou by alcohol, it is partially soluble in muriatic acid, and the solution precipitares gelatin and the cal's of iron; when incinerated it affords a considerable proportion of lime, but no altali; hence it appears to be a compound of lime, gallic acid, tan, and perhaps a little extract: the part soluble in hot water is incapable of precipitating gelatin, till the alkali is saturated by an
acid, and when incinerated it yields carbonated alkali.

The alkaline earths, when added in substance or in solution to the brown infusion of galls, combine with the whole of the tan, and throw down a green precipitate : the supernatant liquor is also of a green colour, which becomes more intense by exposure to the air: it is made turbid by sulphuric acid, and gives a black precipitate with the salts of iron, and consists of gallic acid, and probably some extract, combined with part of the alkaline earth. The green precipitate, by repeated washing with water, gives out nearly the whole of its gallic acid, and the residue is little else than tan with the alkaline earth. The artificial carbonats of these earths produce the same effect as the pure earths.

If alumine is boiled with the infusion it becomes of a yellowish grey ting t, and combines with the whole of the tan and extract, and nearly the whole of the gallic acid; the supernatant liquor being clear and colonrless, and giving a vcry faint purple with red sulphat of iron: if only a very small proportion of alumine be employed, the liquor consists of gallat of alumine with excess of acid.

The perfect oxyds of tin and zinc prepared with nitric acid, when boiled with the infusion, become of a dull yellow colour, and reduce the supernatant fuid to mere water; the yellow oxyds are soluble in muriatic acid, and then give a copious precipitate with gelatin, and a dense black with salts of iron.
The compound earthy and alkaline salts also decompose the infusion of galls, but the precipitate is not pure \tan as has been supposed, for it contains besides some gallic acid, extract, and the precipitant salt. The same may be observed of most of the metallic salts.

When the brown infusion is exposed to gentle evaporation, it first becomes turbid by the deposition of part of its extractive matter, and at length acquires the consistence and appearance of a tough brown extract, which, while it is warm, may be moulded like Chio turpentine, but, when it becomes cold, is dry and hard, and very easily pulverizable. By exposure in close vessels to a heat superior to that of boiling water, the mass first softens, then swells and gives out a prodigious quantity of carbonic acid; there sublimes at the same time a white salt in needies and scales, which is pure gallic acid; soon after a fluid arises in which the gallic acid disolves, and this is succeeded by a thick black oil; at this period the gas, which hitherto has been carbonic acid, becomes inflammable, and so continues till nothing but a dry coal is left in the retort.

An exact aualysis of galls is fur the present at least impracticable, since we are not acquainted with any reagents that will separate any of its component parts unnixed with the others: upon the whole, perhaps, the best mode of proceeding is as follows: Take any quantity of galls and reduce them to powder, then by means of repeated infusions with water at a temperature less than that of ebullition, extract every thing that is soluble. The residue being thoroughly dried will indicate with considerable exactness, by means of its loss of weight, the amount of soluble matter. All the different infusions being mixed together are to be evaporated at a very gentle heat to a small bulk, during which some reddish brown extract will be deposited, and must be carefully
separated and dried; the residual fluid, by subseguent cvaporation, is to be brought to a solid state, and then digested in pure alcohol, by which the tan, gallic acid, and extract, will be taken up, while the mucilage mixed with some impurities will romain insoluble, and may thus be separated. The alcoholic solution being again evaporated, the residue is to be dissolved in water, and a strong solution of isinglass is to be poured in as long as any precipitation takes place: this precipitate when well washed consists of tan, and gelatin, with a very little extract and gallic acid, and contains about 46 per cent. of tan. The rest of the solution is gallat of lime with excess of acid, and a little extract. According to Davy, 500 grains of good Aleppo galls contain 185 grains of matter soluble in water, and this consists of

Grains.
Tan.. 130
Mucilage and extract deposited during evaporation 12
Gallic acid with a little extract 31
Lime and saliwe matter 12
For further particulars concerning gall-nut, see Gatidic acid, Ink, and Tanning.
The uses of this substance are very important. It is employed la gely in dyeing not only blacks and various kindred colours, but is also an essential ingredient in the composition of the finest madder reds: it is a necessary part of all the black writing inks : it is employed in the laboratory as a useful test for the salts of iron, and is occasionally used in medicine.

Gall-stones. Biliary concretions. Hard concrete bodies, of which there are great varieties, formed in the gall-bladder of animal bodies.

In general, they proceed from a superabundance of the resinous oil of the secreted bile in comparison with its water and coagulable lymph, in consequence of which it crystallizes; and hence chemical analysis has generally found these calculi to consist of nothing more than an oily concrescible resinous matter, yet, when lodged in the pores or parenchymatous substance of the liver and gallstones, are often productive of various and violent diseases.

GALLA, an Abyssinian nation, originally dwelling, as Mr. Bruce supposes, under the line, and exercising the profession of shepherds, which they still continue to do. For a number of years, our author tells us, they have been constantly migrating northwards, though the cause of this migration is not known. At first they had no horses; the reason of which was, that the country they came from did not allow these animals to breed : but, as they proceeded northward and conquered some of the Abyssinian provinces, they soon furnished themselves with such numbers, that they are now almost entirely cavalry, making little account of infantry in their armies. On advancing to the frontiers of Abyssinia, the multitude divided; and part directed their course towarls the Indian Ucean; after which, having made a settlement in the eastern part of the continent, they turned southward into the countries of Bali and Dawaw, which they en-

G A L

tirely conquered, and settled there in the year 1537. Another division, having taken a westerly course, spread themselves in a semicircle along the banks of the Nile; surrounding the country of Gojam, and passing eastward behind the country of the Agows, extended their pussessions as far as the territories of the Gongas and Gafats. Since that time, the Nile has been the boundary of their possessions; though they have very frequently plundered, and sometimes conquered, the Abyssinian provinces on the other side of the river, but have never inade any permanent setilement in these parts. A third division has settled to the southward of the low country of Shoa, which the governor of that province has permitted, in order to form a barrier betwixt him and the territories of the emperor, on whom he scarcely acknowledges any dependence.

The Galla are below the middle size, of a brown complexion, and have lonis black hair; but some of them who live in the valleys are entirely black. At first their common food was miik and butter; but, since their intercourse with the Abyssinians, they have learred to plough and sow their land, and to make bread. They secm to have a predilection for the number seven, and each of the three divisions already mentioned are subdivided into seven tribes. In their behaviour they are extremely barbarous, and live in continual war with the Abyssinians, whom they murder without mercy as often as they fall into their hands. They cut off the privities of the men, and hang them up in their houses by way of trophies; and are so cruel as to rip up women with child, in hopes of thus destroying a male. Yet, notwithstanding their excessive crnelty abroad, they live under the strictest disciplime at home; and every broil or quarrel is instantly punished according to the nature of the offence. Each of the three divisions of the Galla above mentioned has a king of its own; and they have also a kind of nobility, from among whom the sovereigns can only be chosen : however, the commonalty are not excluded from rising to the rank of nobles, if they distinguish themselves very much in battle.

GALLEA. (from Gallus, the river in $\mathrm{By}_{5}-$ thinia from whose banks they were first brought.) Galls. The nut-gall of the oak, is an excrescence produced on different parts of the tree, the young branches, leaves and buds, in consequence, as is said by naturalists, of the deposit of the egz of the insect called Cynips (which see); many varieties of which make for this purpose a puncture into the tree with their pointed snout, and then deposit the egg, whose acrimony, by exciting a new action in the vegetable vessels, produces the excrescence of the nut-gall.

GALLAM, the capital of a kingdom of the same name, in Africa, on the river Senegal. Lat. 14. 25 N. Lon. 9. 55 W .

GA'LLANT. a. (gc!unt, French.) 1. Gay; well dressed; shuwy; splendid; mag-

G A L

nificent (Isaial). 2. Brave; high spirited; daring; magnanimous (Digly). 3. Fine; noble: spacious (Ciurendou). 4. Inclined to courthip (Thomsun).
Gailiant. s. (from the adjective.) 1. A gay, sprighty, airy, spiendid man (Dryden). 2. A whoremaver, who caresses women to debanch them (Addison). 3. A wooer; one who courts a wownan foe marriage.

GA LLANTLY. ad. (irom gallant.) 1. Gayly; splendidy. 2. Bravely; nobly; geaeruiu!! (Sarifo).

GA'LLANTRY. s. (galunterie, French.) 1. Splentour of appearance; show : magnificence (Waller). 2. Bravery; nobleness; generixity (Glunville). 3. Λ number of gallants (Shahspare). 4. Courtship; refined address to women. 5. Vitious love; lewdness; debanchery (Sicift).

GALLATS, a genus of salts formed by the unton of gallic acid with different substances. A small number only has been noticed, and these are but imperfectly known.

Gallat of alumine, is formed by mixing a small portion of alumine with the infusion of nut-galls, and suffering the water to escape by evaporation. This is the only gallat that has vet been obtained in the state of crystals. The quantity of alumine is too small completely to disguise the properties of the acid.

Gallat of iron is produced in the making of ink, and other similar processes, When the acid unites with and precipitates the metal.

Galeats (Alkaline and Farthy). If an alkali or an alkaline earth be dropped into a solution of gallic acid in water, or into a solution containing that acid, the compound assumes a green colour, and the acid enters into combination with the earth employed. But it is impossible to procure any one of these gallats in a separate state; for during the process of evaporation the green colour disappears, and the acid is decomposed.

GA'LLEASS. s: (galeas, French.) A heavy low-built ressel, with both sails and oars (Addison).
G.'LLEON. s. (galion, French.) A large ship with four and sometimes five decks (RaLetgh).

Galleon, in naval affairs, a sort of ships employed in the commerce of the West Indies. The Spaniards send annually two fleets; the one fur Mexico, which they call the flota; and the other for Peru, which they call the galleons. By a general regulation made in Spain, it has been established, that there should be 18 men of war and five tenders annually fitted out for the armada or galleons. They are appointed to sail from Cadiz in January, that they may arrive at Porto Bello about the middle of April; where, the fair being over, they may take almard the plate, and be at Havannah with it about the middle of June; where they are joined by the flota, that they may return to Spain with the greater safety. Galleons have generally four, and sometimes five, decks.

GAL

GAlleot. See Galeot.
GALLERY, in architecture. 1. A kind of walk along the floor of a house into which the doors of the apartments open (Sidney). 9. The seats in the playhouse above the pit, in which the meaner people sit (Pope).

Savot, in his Architecture, 'derives the word gallery from Gaul, as supposing the ancient Gauls to have been the first who used them. Nichod fetches it from the French aller, to go; alleric: others bring it from galere, galley; because it bears sone resemblance thereto in respect of length. In the corrupt Latin we meet with galilaa, for the gallery of a monastery.

The galleries of the Louvre are magnificent; a gallery of painting; a complete apartment is to consist of a hall, anti-chamber, chamber, cabinet, and gallery.

Galeery, in fortification, a covered walk across the ditch of a town, made of strong beams, covered over head with planks, and loaded with earth; sometimes it is covered with raw hides to defend it from the artificial fires of the besieged. Its sides should be musquet proof.

Galeriy of a mine, is a narrow passage, or branch of a mine carried on underground to a work designed to be blown up. Both the besiegers and the besieged also carry on galleries in search of each other's mines; and these sometimes meet and destroy each other.

Galerry, in ship-building, a balcony, projecting from the stern or quarter of a ship of war, or of a large merchantman : the sterngallery is wholly at the stern of the ship, and is usually decorated with a balustrade extending from one side of the ship to the other; the fore-part is limited by a partition, in which are framed the cabin windows, and the roof of it is formed by a sort of vault termed the cove, which is frequently ornamented with sculpture. Quarter-gallery is that part which projects on each quarter, and is generally fitted up as a water closet. Ships of twenty guns and upwards, on one deck, have quarter galleries, but no stern gallery; two and three deckers have quarter galleries, with their proper conveniences, and one or two stern galleries.
GALLEY, a kind of low Hat-built vessel, furnished with one deck, and navigated with sails and nars, particularly in the Mediterrranean. By the Greek authors under the eastern empire this kind of vessel was called ra入ata and ranea, and by the Latin authors of the same time, galea; whence, according to some, the modern denomination. Some say it was called galea, on account of a casque or helinet which it carried on its prow, as Ovid attests, de Tristibus. The French call it galere; by reason, they sar, that the top of the mast is usually cut in the form of a hat, which the Italians call galero. Others derive both galea and galere from a fish, by the Greaks called $y^{\text {adincms }}$ or ξ ipass, and by us the sword-fish, which this vessel resembles. Lastly, others derive the galleo, galea, zalere, galeasse, \&c. from the

Syriac and Chaldee gaul and gallin, a man exposed on the water in a vessel of wood.

The larger sort of these vessels is employed only by the Venctians. They are commonly 162 feet long above, and 133 feet by the keel, 32 feet wide, and 23 feet length of stern-post. They are furnished with three masts, and 32 banks of oars; every bank containing two oars, and every oar being managed by six or seven slaves, who are usually chained thereto. In the forepart they have three little batteries of cannon, of which the lowest is of two 36 -pounders, the second of two 24 -pounders, and the uppermenst of two 2-pounders: three 18 -pounders are also planted on each quarter. The complement of men for one of these galleys is 1000 or 1200 . They are esteemed extremely convenient for bomibarding or making a descent upon an enemy's coast, as drawing but little water; and having by their oars frequently the advantage of a ship of war, in lisht winds or calms, by cannonading the latter near the surface of the water; by scouring her whole length with their shot, and at the same time keeping on her quarter or bow, so as to be out of the direction of her cannon.

The galleys next in size to these, which are also called half-galleys, are from 120 to 130 feet long, 18 feet broid, and 9 or 10 feet deep.

Galeey, in chemi-try, a particular kind of reverberatory furnace, in which several retorts may be placed at the sides of each other. It is of an oblong shape, and has lateral openinge, and derives its name from its supposed resenblance to a naval galley.

Galeey-slave. A man condemned for some crime to row in the galleys.

Galley-worm, in zoology. See Julus.
GALLI, in antiquity, a name given to the ennuch-priests of Cybele.

Galif, the Gauls. See Galife and Gauls.

Galli, five small desolate isles on the coast of the Principato Citra of Naples.

GALLIA, a large country of Europe, called Galatia by the Grecks. The inhabitants were called Galli, Celtæ, Celtiberi, and Celtoscythe. Ancient Gaul was divided into four different parts by the Romans, called Gallia Belgica, Narbonensis, Aquitania, and Celtica. Gallia Belgica was the largest province, bounded by Germany, Gallia Narbonensis, and the German Ocean ; and contained the modern country of Alsace, Lorraine, Picardy, with part of the Low Countries, and of Champagne, and of the isle of France. Gallia Narbonensis, which contained the provinces lately called Languedoc, Provence, Dauphiné, Savoy, was bounded by the Alps and Pyrenean mountains, by Aquitania Belgium, and the Mediterranean. Aquitania Gallica, afterwards the provinces of Poitou, Santonge, Guienne, Berry, Limosin, Gascony, Auvergne, \&c. was situated between the Garumna, the Pyrenean mountains, and the ocean. Gallia Celtica, or Lugdunensis, was bounded by Belgium, Gallia Narbonensis, the Alps, and the ceean. It contained the country heretofore
known by the name of Lyonnois, Touraine, Franche Comté, Senenois, Switzerland, and part of Normandy. Besides these grand divisions, there is often mention made of Gallia Cisalpina, or Citerior, Transalpina or Ulterior, which refers to that part of Italy which was conquered by some of the Gauls who crossed the Alps. By Gallia Cisalpina, the Romans understood that part of Gaul which lies in Italy, and by Transalpina, that which lies beyond the Alps in regard only to the inhabitants of Rome. Gallia Cispadana and Transpadana is applied to a part of Italy conquered by some of the Gauls; and then it means the country on this side of the Pu, or beyond the Po with respect to Rome. By Gallia Togata, the Romans understord Cisalpine Gaul, where the Roman gowns togre were usually worn. Gallia Narbonensis was called Braccata, on acconnt of the peculiar covering of the inhabitants for their thighs. The epithet of Comata is applied to Gallia Celtica, because the people suffered their hair to grow to an uncommon length. The inhabitants were great warriors, and their valour overcaine the Roman armies, took the city of Rome, and invaded Greece in different ages. They spread themselves over the greatest part of the world. They were very superstitious in their religious ceremonies, and revered the sacerdotal order as if they had been gods. They long maintained a bloody war against the Romans, and Cresar resided ten years in their country before he could totally subdue them. See Gaul.

Galliard, or Gagliarda, in music and dancing, a sort of dance, anciently in great request ; consisting of very different motions and actions, sometimes proceeding terra a tcrra, or smoothly along; sometimes capering; sometimes along the room, and sometimes across. The word itself, which is derived from the French, who had it from Italy, signifies gay, merry, \&c. The music of the galliard is in triple time.

GA'LLIARDISE. s. (French.) Merriment; exuberant gayety: not in use (Brown).

GALLIC ACID an acid found to exist plentifully in nut-galls, whence its name is derived; but which may also be extracted from most astringent vegetables, particularly the husks of nuts, the barks of oak, chesnut, ash, hazel, sumach, poplar, elder, elm, sycamore, cherry tree, \&zc. and various parts of other plants. It is usually found accompanied with the ASTRINGENT PRINCIPLE, and was formerly confounded with that substance: (see that article), also TANNEN. Many of the properties of this acid were discovered by the commissioners of Dijon, in France, who published their account in 1777, in their Elements of Chemistry; but they examined only the infusion of galls, in which the acid is combined with other substances, particularly the tanning principle. Scheele was the first who obtained it in a separate state. Various methods have since been employed for obtaining it, by Bartholdi, Richter, Fiedler, Schnaabert, and others. The following is adopted by Mr. Davy : Boil for some time a

G A L

mixture of carbonat of barytes and infusion of nut-galis; the bluish green liquor which results is a solution of gallic acid and barytes. Let this be filtered, and saturated with diluted suiphuric acid. Sulphat of barytes is deposited in the forin of an insoluble powder, and a colourless solution of gallic acid remains behind. Deyeux has procured the acid by sublimation from pounded galls in a large glass retort; by cantiously and slowly raising the heat, a number of brilliant white crystalline plates of gallic acid were sublimed. Althongh this is a very speedy methor, much care is necessary in the operation; for if the heat be too great, or the process be not stopped tefore any oil begins to come over, the experiment will fail.
This acid, when well prepared, crystallizes in the form of brilliant colourless plates, or octahedrons; it is of an acid and somewhat austere taste; and when heated gives out a peculiar and rather unpleasant aromatic odour. It is soluble in $1 \frac{1}{2}$ parts of boiling, or 12 parts of cold, water; in this state the acid is very speedily decomposable by beat. It is soluble aloo in four times its weight of alcohol, at the ordinary temperature ; when boiling hot it dissolves a quantity equal to its own weight. It is insoluble in ether; partly decomposable by a strong heat, though a careful sublimation does not alter its properties; and may be encirely decomposed by repeated distillations. Exposure to the air does not alter it, neither do the simple combustibles, or oxygen, or azot, appear to exert any particular action on it. With alkalies, earths, and metallic oxyds, it is capable of uniting and forming gallats.

Gallic acid, or even the simple infusion of galls, from its power of precipitating the greater number of the metals from their solutions, is frequently employed by chemists to detect the presence of these bodies. These precipitates are of different colours, which rary according to the metal held in solution, or its state of oxydizement; those of gold, silver, copper, and chromium, are brown, or some of its shades; of mercury, bismuth, and columbium, orange; of lead, and antimony, white; of nickel, grey; of tellarium, yellow; of uranium, chocolate colour; of titanium, reddish brown; and of iron, with which, of all the metallic oxvds, it has the greatest affinity, black. From solutions of platinum, tin, zinc, cobalt, manganese, and arsenic, it does not appear to throw down any precipitate at all.

Gallic acid occasions a precipitate when poured into acid solutions of glucine, yttria, and zirconia; but it has not that effect on the acid solution of any other earth. It gives to barytes, strontian, and lime-water, a bluish red colour, and throws down a flaky precipitate: upon the aqueous solutions of alkaline salis it produces no effect.

Bouillon Lagrange, who has examined this acid with great attention, is of opinion that neither of the preceding methods, nor any other yet devised, will succeed in obtaining the acid in a state of absolute purity; that the sublimed acid is composed of acetic acid united
with a peculiar aromatic volatile oit; that, when otherwise prepared, a portion of tannin. and frequently extractive matter, is combined with it; that the excellent properties of this acid, in the art of dyeing, are owing to the presence of the tannin; and that no process is yet known for depriving it of the whole of its tannin, without reducing it to the state of acetic acid. These particulars, and many others which he has communicated, deserve attention, and may possibly lead to a more accurate determination of the nature of this acid. See Nicholson's Journal, 8vo. vol. 17. p. 58. Also vol. 7. p. 74. Richter's process is detailed in Phil. Mag. xxiii. p. 74.

GA'LLICISM. s. (gallicisme, French.) A mode of speech peculiar to the French language: such as, he figured in contooversy (Felton).

GA'LLIGASKINS. s. (Calige Gallo-Vasconum. Skinner.) Large open hose (Philips).

GALLIMATIA. s. (galimatheas, Fr.) Nonsense; talk without meaning.
GALLIMAU'FRY. s. (galimufrée, Fr.) 1. A hotch-potch, or hash of several sorts of broken meat; a medley (Spenser). 2. Any inenusistent or ridiculous medley (Shaks).

GALLINACEUS LAPIS, a glossy substance produced by volcanic fires, the same with the lapis obsidianus of the ancients. A kind of it is brought from Faris, of a beautiful black, resembling the colour of a large crow, in that country named gallinaço.
GALLINAE. In zoology, the fifth order of the ornothologic class in the Liun<in system, thus ordinally characterized: bill convex, the upper mandible arched, and dilated at the edge over the lower; nostrils half covered with a convex cartilaginous membrane; tail-feathers more than twelve; feet cleft, but connected at the innermost joint. See Zoology.

GALLINULE, in ornithology. See Fubica.

GALLIO, the proconsul of Achaia, mentioned in Acts xviil. 12. was elder brother to the famous L. Annæus Seneca, the moral philosopher. We know little of the history of his life; but that he was a very amiable man is evident, as well from the portion of scripture history just mentioned, as from the testimony of Seneca himself, who said of him, Nemo omnium mortalium uni tam dulcis est, quan hic, omnil'us. "No mortal is so agreeable to one person, as this man is to every body."

GA'LLIOT. s. (galiotte, French.) A small swift galley (Knolles),

GALLIPAGA ISLANDS, a number of islands, in the Pacific Ocean, discovered by the Spaniards, to whom they belong. They lie on both sides the equator, the centre island in Lon. 85. 30 W .
GALLIPOLI, a maritime town of Naples, in Italy, 45 miles S.E. of Taranto. Lat. 40. 20 N. Lon. 18. 5 E .

Galifoli, a sea-port town of Romania, in European Turkey. It is 100 miles S.W. of Constantinople. Lat, 40. 26 N . Lon. 26. 59 E.

G A L

Galifoli, is also a name given to the strait between European and Asiatic Turkey, otherwise called the Hellespont.
GA'LLII'()T'. s. (gala, Spanish, finery.) A pot painted and glazed, commonly used for medicines ($\mathrm{F}^{2} \mathrm{mton}$).
Gallileni. Sec Galium.
(iAlLL), an island of the Pacific Occan, near the coast of Pern, the first place poscessed by the Spaniards when they attempted the conquest of Pern. Lat. 2. 30 N . Lon. 80.0 W.
GalloIS (John), a learned Frenchman, was born at Paris in 1632. He was the coadjutor of M. de Sallo, in the celebrated Journal des Sçavans. Lle was patronised by Colbert, who took him into his house to be taught Latin by him. He was abbe of St. Martin-desCores, nember of the academy of sciences, and of the French academy; the king's librarian, and Greek professor of the royal college. He died at Paris in 1707.

GALLON, a measure of capacity both for dry and liquid things, containing four quarts; but these quarts, and consequently the gallon itself, are different, according to the quality of the thing measured : for instance, the wine gallon contains 231 cubic inches, and holds eight pounds averdupois of pure water: the beer and ale gallons contain 282 solid inches, and hold ten pounds three ounces and a quarter averdupois of water: and the gallon for corn, meal, $8 . \mathrm{c} .272 \ddagger$ cubic inches, and holds nine pounds thirteen ounces of pure water.

GALLOON, in commerce, a thick, narrow kind of ferret, ribband, or lace, used to edge or border clothes.
To GA'LLOP. v. n. (galoper, French.) 1. To move forward by leaps, so that all the feet are off the ground at once (Donne). 2. To ride at the pace which is performed by leaps (Sidney). 3. To move very fast (Shahipieare).

Gailop, a well known pace to which the horse is trained, and of which many kinds are enumerated, but two only worthy of regard, to wit, the hand gallop, and the full gallop. Even these distinctions, however, are founded on the different dexrees of velocity in which the animal is impelled, rather than on any peculiarity in the pace itself. In the galloping, the horse leads with one fore-leg somewhat advanced, but not so much beyond the other as happens in the canter (sce Canter); and, when he is urged to his utmost speed, his legs are almost equally placed. The fleetest horses, when galloping, carry their bodies perfectly in a horizontal posture, and the fewer curves or successive arches are described, the more rapid of course is their progress.

In every instance of progression, all bodies are retarded in proportion as they depart from a right line, whether this be horizontally or perpendicularly. " None but horses of great powers," says an excellent veterinarian "are able to gallop in this form; for, to supply the want of undulation in the body, they must bend their limbs in a greater degree; and hence the necessity of their standing perfectly on the centre of gravity. The action of the gallop

G A L

being more extended than the canter, it is necessary that the horse should have his head more at liberty; for a horse cannot gallop out with his head reined up. Thus, in the swift gallop, he carries his head and neck nearly horizontal."

We are no less ready to agree with that writer on the common practice of grooms and jockeys, who teach horses to puil against them in performing the gallop. To this they are led by the support it affords then when they stand upright in the stirreps; but the bad efficets of constant pressure, in deadening the horse's mouth, by rendering it callous, are sufficient to demonstrate the pernicious tendency of this custom. "When the horse thus bears on the hand," says the same writer, " a considerable portion of the power which should be concentred in his body, for the purpose of maintaming his equilibrium, is directed forwards; and hence he becowes much more liable to fall, in case of meeting with any casual obstacle." The power which the rider has, in this case, must be exactly in proportion to the degree of sensibility with which the horse's mouth is endued ; and when this is rendered inconsiderable by the hardness of the parts, it is not surprising if accidents happen, and the animal is unruly.

In his account of the proportions of Eclipse, Mr. St. Bel has exhibited six complete actions of the gallop of that celebrated racer, each action covering twenty-five feet. The six, taken together, offer a scale of one hundred and fifty feet.

The same writer describes the gallop as consisting of " a repetition of bounds or leaps, more or less high, and more or less extended, in proportion to the strength and lightuess of the animal."
" The common gallop," he says, "contains three times. If the horse, for example, begin his gallop on the right, the left hind-foot beats the first time; the right hind-foot and left forefoot beat the second time together; and the right fore-foot beats the third.
" In the gallop of four times, the feet strike the ground in the same order as in walking. Supposing the horse galloping on the right, the left hind-foot beats the first time, the right hind-foot beats the second, the leff forefoot beats the third, and the right fore foos beats the fourth. This gallop is regular, but confined, and but little adapted for speed.
"The gallop at two times is faster than at three or at four; the legs follow in the same order as in the trot, so that the two sounds are given by the left hind-foot and right fore-foot striking the ground together, and by the right hind-foot and left fore-foot also striking the ground together."

In galloping, the horse may lead with which fore-leg he pleases ; the most usual way is that with the right: but, whichsoever it be, the hind-leg of the same side must follow next; otherwise the legs are said to be disunited, and the gallop to be false. To remedy this disorder, the rider must stay the horse a little on the

G AL

hand, and help him with the spur a little on the contrary sode to tiat on which he is disunited. As, for example, if he be disunited on the right side, he should help him with the left spur, by staying him as before on the hand a little, and abo helping hin at the same time with the calves of the lezs.

In a circle, the horse is confined always to lead with his fore leg within the turn, otherwise he is said to gallop false; but here too the hind leg of the same side must follow.

Those who make trial of the gallop should observe if the honse performs it equally, and should push him on somewhat hard, that they may know by bis stop whether he has strengith and vigout, and if he also be sensible of the spur.

In the manage many varieties of this pace were formerly enumerated, but these are not worth detaiing.
GALLUPADE, in the manage, a handgallop, in which a horse galloping upon one or iwo treads is well united. The difference between working with oue haunch in, galloping upon volts, and managing upon terra a lerra, is, that, in the latter, the two haunches are kept suhject, and also are within the volt; but, in kalloping a haunch in, only one is kept subjert.

To gallop united, upon the right foot, is, when a horse that gallops out, having led with either of his fore-legs, continues tolift that same leg always first; so that the hinder leg on the side of the leading fore-leg must likewise be raised soner thaa the other hind-leg. For instance, if the right fore-leg leads before the left, then the right hind-leg must likewise move sooner than the left hind-leg; and in this order mast the horse continue to go on.

To gallop false, to disunite, to gallop on the false foot, is, when the horse, having led with one of the fore-legs, whether the right or left. does not continue to make that leg always set out first, nor to make the hind-leg of the same sile with the learling leg to more before its opposise hised ley; that is to say, the orderly going is interruptel.
A horse that gallops false, gailops with an unbecoming air, and incommodes the rider. If the borse gallop false, put him upon keeping the right foot aud uniting, by bringing him to with the calves of your legs, and then with the spur that is oppusite to the side on which he disunites. If he disunite to the right, prick him with the left heel.

GA'LLOPER. s. (from gallop.) 1. A horse that gallops (Mortimer). \&. A man that rides fast, or makes great haste.

To GA'LLOW. v.a. (azzolpan, to fright, Saxon.) 1. To serrify; to fright (Shakspeare).

GA'LLOWAY. 3. A thorse not more than foorteen hands high, much nsed in the north. Galloway (New), a borough of Kirkcurdbrightshire, situate on the river Ken, 14 miles N. of Kirkcudhright.

Galloway (Upper). See Wigtonshire.

Galyoway (Mull of), ode of the westors VOL. V,
VL.
islands of Scotland, about 24 Scotch miles long, and as much in breadth. It is in general rocky and barren, not producing a sufficient quantity of corn for the inhabitants; but about 1800 head of cattle are annually exported.

GALLOW'S, an instrument of pemishment; whereon persons convicted capitally of felony; \&c. are executed by hanging. Among our ancestors it was called furca, fork; a name by which it is still denominated abroad, particularly in France and Italy. In this latier country; the reason of the name still subsists; the gallows being a real fork driven into the ground, across the legs whereof is laid a beam, to which the rope is tied.

GALLUS (Cornelins), an aneient Roman poet, was born at Frejus, then called Forum Julium. Augustus gave him the government of ligypt, after the death of Antony and Cleopatra; but afterwards deprived hinr of his estate; and banished him for mal-admittistration. He felt his disgrace so sensibly that he put an end to his life A.D. 26. Virgil's 10th eclogue is written wholly on the love of Gallus for Lycoris, which was the poetical name of his mistress, who was unfaithful to him.
Gallus (Vibius), a Koman emperof, was born about the year 206. He had been consul; and had a command in the army of the enplyeror Decius, whom he is said to have betrayed to the Goths that he might succeed him. His reign was inglorious; and he was slain in 253 by his soldicry, together with his son Volusianus, whom he had associated in the empire.

Gallus (Flavius Claudius Constantius), brother of the emperor Julian, was created Cexsar in 331, by the emperor Constantius, his consin. He acquired reputation in war; but afterwards abandoned hrmeelf to the counsels of his wife, who was cruel and avaricious. He was arrested by the orders of Constantius; and belreaded in 354 .
Gallus, in fabulous tristory, 2 youth who was a great favourite of Mars, who atways took him along with him when he went to visit Venus in private, in order that he might keep watch to prevent their being surprised; but Gallus falling asteep, and they being discovered by Vulcan, who entangled thein in a net, Mars was so greatly enraged, that he metamorphosed Gallus into a cock; and therefore, to atone for this neglect, he gives constant notice of the sun's approach by his crowing.
Galeus, or Cock, ir ornithology. Seo Phasianus.
GALLY, in printing, a frame into which the compositor empties the lines out ot his com-posing-stick, and in which he ties up the page when it is completed. The gatly is formed of an oblong square board, with a ledge on three sides, and a groove to adinit a false bottom called a gally-slice.

GALOPINA, in botany, a genus of the class tetrandria, order disynia. Catyxless; corol four-cleft, superior; herry two-celled, seeds solitary. One species; a Cape plant; with red, herbaceous stem, ant terminal panicled flowers.

GALVANI (Lewis), a modern physiologist, who has had the honour of giving his name to a supposed new principle in nature, was born in 1737 , at Bologna, where several of his relations had distinguished themselves in jurisprudence and theology. From his early youth he was much disposed to the greatest austerities of the Catholic religion, and particularly frequented a convent, the mouks of which attached themselves to the solemn duty of visiting the dying. He shewed an inclination to enter into this order, but was diverted from it by one of the fraternity. Thenceforth he devored himself to the study of medicine in its difierent branches. His masters were the doctors Beccari, Jacconi, Galli, and especially the professor Galeazzi, who received him into his house, and gave him his daughter in marriage. In if $i 2$, he sustained with reputation an inaugural thesis De Ossibus, and was then created public lecturer in the university of Belogua, and appointed reader in anatomy to the institute in that city. His excellent method of lecturing drew a crowd of auditors; and he employed his leisure in experiments and in the study of comparative anatony. He made a number of curious observations on the urinary organs, and on the organ of hearing in birids, which were published in the Memoirs of the lustitute. His reputation, as an anatomist and physiologist, was established in the schools of Italy, when accident gave birth to the diseovery which has immortalised his name. His heloved wife, with whom he lived many years in the tenderest union, was at this time in a declining state of health. As a restorative, she made use of a soup of frogs: and some of these aninuals, skinned for the purpose, happened to lie upon a table in her husband's laboratory, upon which was placed an electrical machine. One of the assistants in his experiments chanced carelessly to bring the point of a scalpel near the crural nerves of a frog, lying not far from the conductor. Instantly the muscles of the limb were agitated with strong convulsious. Madame Galvani, a woman of quick understanding, and a scientific turn, was present, and,struck with the phanomenon, she immediately went to inform her husband of it. He came and repeated the experiment; and soon found that the convulsion only took place when a spark was drawn from the conductor, at the fime the scalpel was in contact with the nerve.

In conjunction with these enquirics, his Auties as a professor, and his employment as a surgeon and accoucheur, in which branches he was very eminent, gave full occupation to his industry. He drew up various memoirs upon professional topics, which have remained inedited; and regularly held learned conversations with a few literary friends, in which new works were read and commented upon. He was a man of an amiable character in private life, and possessed of great sensibility, which he had the misfortune of being called to display on the death of his wife in 1790; an event which threw him into a profound melancholy. He rarely suffered a day to pass without visiung her

G A M

tomb in the nunnery of St. Catherine, and pouring out his prayers and lamentations over her remains. He was always, indeed, punctual in practising the minutest rites of his religion, the early strong impressions of which never left him, and his attachment to religion was probably the cause of steadily refusing to take the civic nath exacted by the new constitution of the Cisalpine Republic, in consequence of which he incurred the deprivation of his posts and dignities. A prey to melancholy and reduced nearly to indigence, he retired to the house of his brother Jamec, a man of very respectable character, and there fell into a state of languor and almost imbecility. The republican governors, probably ashamed of their conduct towards such a man, passed a decree for his restoration to his professional chair and ity emholuments; but it was then too late. He died on November 5th, 1798, at the age of 61. (British Encyclo.)
GALVANISM, the name by which a particular department of physical science has been till lately called; see Voltaism, under which name this branch of science is now more generally described in the philosophical societies of Europe.

GAMA (Vasco de), a Portuguese admiral, celebrated for his discovery of the East Indies by the Cape of Good Hope, was born at Synes, and in 1497 was sent to the Indies by king Emanuel: he returned in 1502, and sailed thither again with 13 vessels richly laden. He was made viceroy of the Indies by king John III.; and died at Cochin on the 24th of December, 15:5. Don Stephen and Don Christopher de Gama, his sons, were also viceroys of the ladies, and celebrated in history.
GAMANDRA. See Gamboge.
GAMBADE, or Gambado. (from gamla, Italian.) A sort of leather brot fixed to a saddle, instead of stirrups to put the legs in.
GAMBET, in ornithology. See Tringa.
GAMBIA, a great river of Negroland, in Africa. It is navigable for sloops above 6ow miles; and, after rumning from E. to W. is falls into the Atlantic ocean. This river overflows auntally, like the Nile in Egypt, at the same time, and from the same cause, viz. the heary raius which fall periodically in the inland parts of Africa.
GAMBIENSE GUMMI. See Thino.
GAMBIST, a musical performer on the viol di gamba.
GA'MBLER. s. (A cant worl, perhaps from game.) A person who draws in the unweary to game, in order to cheat them.

GAMBOGE. Gambogium. Gummi guta, Cambogia gutta. Gamandra. The resinous gum produced by wounding the bark of an East Indian tree, which by some writers is described under the name of stalagmitis, but is more generally regarded as a species of garcinia. (SeeGarcinia cambogia.) Whell pure its colour is a deep rather dull orange; its fracture is conchoidal, and somewhat shining. It has no smell, and very little taste; but when kept in the mouth for some time gives a slight

G A M

impression of acrimony. If applied to the flame of a candle, it melts and blazes, throwing out sparks, and emitting a dense black snooke.

Gamboge is not soluble, though extremely diffusible in water, with which it forms an opake yellow-coloured infusion; by passing the liquor through a filter some resin is detained, but the fluid still continues coloured and urbid. Alkohol proves a more effectual solvent, taking up the gamboge in large quantities, and forming a clear gold-colourel fluid. Both the fixed alkalies and ammonia effect almost a total solution of gamboge, producing a clear liquor of a deep and rich red brown colour, and the residuum, being pure gum, is entirely soluble in water. The addition of an acid to the alkaline solution throws down a copious yellow precipitate, which, when dried, presents an earthy fracture, is difficulty combustible, and does not smell like the pure resin.

In medicine gamboge is generally employed as a drastic purgative, and, after having been long obsolete in practice, is again bronght forwards in the new pharmacopreia of the London college, in the form of pills. (SeePharmacy.) It may he found useful in obstinate constipations of the bowels, hydropical affections, and worm cases produced by the tania visceralis or tape-worm.
Besides its medical application, gamboge is extensively used as a water colour; and its uncture in alkohol is one of the ingredients of the goid-coloured lacquer with which most of the smaller articles that are made of brass are overlaid: it is also employed by the inlayer and cabinet-maker to stain white woods in imitation of box, \&c.

GA'MBOL. s. (from the verb.) 1. A skip; a hop; a leap for joy (L 'Estrange). 2. A frolic ; a wild prank (Hudil-ras).

GA'MBREL.s. (fromgamla, Italian.) The leg of a horse (Grew).
GAME. s. (gaman, a jest, Islandick.) 1. Sport of any kind (Shakspeare). 2. Jest; opposed to carnest or seriousneess (Spenser). 3. Insolent merriment; sportive insnlt (Milton). 4. A single match at play. 5. Advantage in play (Dryden). 6. Scheme pursued; measures planned (Temple). 7. Field sports: as, the chase (Fa aller). 8. Animals pursued in the field (Prior). 9. Solemn contests, exhibited as spectacles to the people ($D_{e n h a r n)}$).

To Game. v.n. (zaman, Saxon.) 1. To play at any sport. 2. To play wantonly aud exiraragantly for money (Locke).
Game, in general, signifies any diversion or sport that is performed with regularity and restrained to certain rules. (See Gaming.) Games are usually distinguished into those of exercise and address, and those of hazard. To the first belong chess, tennis, billiards, \&cc. and to the latter those performed with cards or dice, as back-gammon, ombre, piequet, whist, \&ic. See Back-gammon, \&c.

GAMEs, in antiquity, were public diversions exhibited on solemn occasions. Such, among she Greeks, were the Olympic, Pythian, Isth-

G A M

mian, Nemean, \&c. games; and, among the Romans, the Apollinarian, Circensian, Capitoline, sce. games. See Olympic, Pythiang. Funeral, sic.

Game, for the preservation of which such. a succession of laws have been enacted, were, in many of the preambles to former acts of parliament, extended ammong birds to the heron, pigeon, mallard, duch,teal, widgeon, and various cther fi,wls; but in the present coutemplation of law and practice, game is generally limited to the hare, phrasant, partridge, heath-fowl, and moor-game, which are the whole eubraced by the game laws; and that persons possessed of due qualifications, as well as of annual certificates, are empowered to kill. Deer of every description are also denominated game; but they are protectcd by appropri-1 ate laws. Rabbits were also included in many of the earliest acts relating to game, but are now regarded of no consequence, except in warrens, where, being private property, and productive of annual profit, they are protected by laws for the security of the owner, with very heavy penalties annexed to their destruction. Proprietors of doves house pigeons have likewise legal means of redress, upon their pigeons being wintunly shot at or destruyed. The mallard, wild duck, widgeon, teal ${ }_{p}$ \&c. are not without laws for their increase and proportional preservation; but they do not, in the technical lansuage of the day, cume under the designation of game. For these last, see the article Decoy.
Game cock, a variety of the phasianus gallus, almost peculiar to this cuuntry, whose natural and instinctive courage will never permit him to yield to an opponent, however superior in weight aud strength; continuing, even under those disadvantages, to fight till literally cut to pieces. After. the loss of eyes, with the body wounded in every part, when even the use of his legs are gone, and he is no longer able to stand, but lies extended upon the sod, with his victorious opponent exultingly crowiug over his mangled framo, be will continue to show figlt with his beak to the last remains of life.
Game cocks are bred of various colours, according to the fancy or opinion of different amateurs: of these colours, the chief are the following: The black or pheasant-breasted red; the black-breasted ginger; the speckle-breasted ginger dun; the black-breasted y ellow duckwing; the turkey-breasted duckwing; the smutty dun; the brass-winged black; and the smock, which is a milk-white, having the appearance of a common barn-door fowl; in consequence of which there are generally odds. offered against this last whenever brought to pit, which is now but seldom, the breed being nearly or quite destroyed.
It is an upinion nearly unanimous, that if you breed entirely for the pit, no cock selected for this purpose should be younger than two, or ulder than six years; and although it is right to breed from a strong, bony, close-made, majestic, high-standing cock, it is by no means prudent so to du from cocks much above match weight; that is to say, uever to exceed four poypds, twelve ounces, at the utmost; fur should, the heens prove large also, the progeny might run still urore into size and bone, and never fall into any match whatever.

In breeding game chickens, to attain success, the following gencral rales should be strictly attended to. No brood-cock should walk with inore than four hens; three being, inf fact, fully sufficie

G A M E.

tut. Gane liens should never be permitted to bring furth a clutch of chickens before the last week in February, nor after the tirst week in Miny ; those alone which are hatehed in March and April should be chosen for the pit, as being preferable, In size and growth, to thuse hatched at any other season of the year, Hens after hatching should be cooped asunder, where the chickens cannot intermix; as the hens will not only kill the young of each other, but fight themselves with the same inveteracy as the cocks. If a game hen, with chicken, retrcats when attacked by another in the eame state her produce nay be suspected to prore defective in contage; but perhaps this oprinion is thot founded on fact; for the young r will always yield to the older whatever her matire conrage.

During the frrst year after being hat hed the brood are called chickens; from twelve months to two years old stans, and at that period cocks, being then judged in their prime; but they are probiably more so at three, if properly walked. Cuck chickens shonld never be permitted to run too lung together, but may be separated ary soon as they begin to fyht with each other; and this orthit to be the more strictly attended to, because it frequently happens, that out of a whole clutch, by neglect or mattention, in consequence of scahord heads, loss of eyes, broken beaks, of deformed feet, not one will remain capable of being boought to the scale.

Cock chickens, when first removed, at three ot four thonths old, are placed where they continue to walk under an old cock, and will remain submissive till nine and ten, or sometimes twelve months old; the experiment is nevertheliss too hazardons; and they had much better be taken to a master-walk at an carlier period, to aroid the probability of being spuiled. The most emment oreeders, as well as the most euthorsiastic betters, have orre mode of endertouring to tix a criterion, how far they can deperid upon the heel, the frisht, and the btood; of any particular breed or cross they mat hare heen indaced to adnpt. This experiment (Ireadfolly crucl as it is) is termed cutting out, and consists in pitting such chichen of seven, eight, and nine months old, unarmed, against their own brothers, or others of superior age, weight, and strength, having silver spurs; if the chicken, so nuarmed, and rithout the least chance of saccess, continues the cumbat till completely deprived of life, without displaying the least tendency to cowardice, or consciousness of defeat; more of his brochers have the tame severe and fiery ordeal to undergo, whe n, if the result is just the same, the cross is admitted to be good, and the breed is persevered in, tilt, from othet circumstances, the blood is suspected to degenerate, when new erneses are adopted, and hew experiments made See Cocxiti, Соек Hatch, and Cocerit.

Gamereepers, are persons delegated to provide game for those by whom they are appointed, $t o$ preserve and protect it agairist poachers by night, and unqualified sportstinen by day, and also against any unfair or improper destruction of it. Rery lord or lady of a manor is athorised, by writing ander theip hands and seals, upon a 30 s . stamp, to empower a game-keepur to kill withir the said manor any hare, pheasant, partridge, or other game; and if such game-keeper shall sell or dispose of the gatme tre strall so kill, without the kavwledge or conseat of the said lord or lady, and shall be convicted, upon the ouch of one witness, cofore a justice of prase, be choll bis commiuted to
the house of correctiur, and kept to hard labony for three months; or be may be tined in a penalty of 51 . in like manner as histers and others who sell same
By 48 Geo. 3. c. 93. The lord or lady of any manur may appoint any person whatel er, whether acting as a gantheeper to anve other persom or not, or whether retained and paidf for is the male servant of any other permon or not, on whether a qualifred persion or not, to be a gamekecper to such manor, withauthority to kill ganne within the same fur his own tise, or fur the usic of any other person whatever, to the specifed in sirh appointinent, whether qualified or not; and no person so appointed gamekeeper shall be deemised or taken to Le, or entered or paid for as the yamckeeper, of male servant of the lord or lady making such appointireit.

And any person appointed gamekeeper under this act to kill game for his owil use, or the ase of any other persun, shall have the same power as if he had been legally qualitied to act as gannekeeper, to hill game for the ure of the lord or lady of the manor.

Onc gamekecper only can be appointed to kilt gane within ore manor; and by virtue of his utire or deputation, he is empowered to take and seize all gurss, bows, greybounds, setting-dags, lurchers and ferrets; all tramucls, Tow-bells, hay's,or other nets, hare-pipes, snares, or other eligines, for the taking and killins of hates, pheasants, partridses, or other game, within the precincts of such manor, in the possession of any person not qualified to kecp the same. But it does not appcar by the act (83d Charles 11. c. 25. s. 2.) that a gameheeper is empowered to seize the gaine, although he is authorised to take all instruments in use for the deseriction of ix.

A gamekieper having no other qualification than his deputation and certuicate, is not entitled to kill came out of the precincts of the manor fur which le is appointed. Nor is he empowered to demand the name, or a sight, of the certificate of any qualified preson out of his own distict, unless lie is qualifid to kill gamie in his own right, (exchasire of his deputation,) and is possessed of his three-guinea certificate obtained in virtue of his own right to hill, as well as his guinea-certificate in accourit of his deputation; in which case he may do eillier or both. But although he is quad lified to kill game iu his own right, and acts under a deputativa fur a certain specified manor, be is liable to the penalty prescribed by the act, if he be informed against for, and convicted of, killing gaune out of that manor, without being previousty possessed of the three-guinea certificalt.

Gamb-Laws: laws framerl for the preservation of game, by different acts of the legislature and in different periols of its history, and now become, in no small degree, ruluminous and perplext. The following is a smmmary of the chicf.

Persons held legrally qualified to kill game, must be in the full airl undisputed possession of a freehold landed estate, producing a elear 1001. per annum; or possessed of a lease, or leases, for nitety-nine years, or any longer term, of the clear yearly value of 1501 . or else the heir apparent of an esquire, or other person of higher degree, 28 and 23 Car. 2.c. 25 . But crquires, as definedby law, are the younger sons of nutlemen, and their heirs male for ever: the four esquires of the king's body : the eldcst sons of baronets, of knights of the bath, of knights bachelors, and their heirs male in the right ling A justice of the peace is also aw.

G A M E.

eoquire for the time he is in th:e commission, but us icnger.

Petoms of hicher degrec than esquires are ctinets, serjants at law, anddortors in the thres learned protessions : but neither esquires, nor any of these, are qualitid to kill qame, unless they bave the req:inte cotate menticned; though their suns are qualitiod withont any estate. This, however unreas mable it may sec.m, has been fuily decided to be the true construction of the act. But in addition to crery necessary qualitication either by deputation or estate, accordiag to the construc. t on of all former acts, certain duties are charyeabie under the last assessed tax act ($+B$ Gco. 3. c. 55. sched. L) upon every perion who shall use any dog, gun, int, or other engine, for the purpose - kilung any gamic a fatever, or any woodcock, on pr, quail, or lan:Irail, or any conies, in any part of Great Britain, that is to saye

If such person shall be a servant to any person duly charged in respet of such servant to the dulies granted on servants, and shall use any dog, gull, det, or other engine, for any of the pirpomis before mentiond, upon any manor or royalty, by siriue of any depatation or appiintment, as gameLee per thercto, there shall be cherged the annual sume of
C. 110

And if such person ahall not be a servant for Whom the said duties on servants shall be charged, ti:cre shall be charged the anumal sum of 330

Upon every otike person who shall use any dog, gun, net, or other cugine, for any of the purposes befure mentioned, theie shall be charged the anqual suin of -

330
The taking of woodrocke and snipes with nets or springs ; or, the taking of conies in warrens, or inclused ground, or by any person on lands in his osn occupation, deex not inake the party liable to either of the above dutics. The party is to pay the duty anntially to the collectors of the parish, tugether with one stialling over and above the duty, and ubtail a certificate thereof, which certificate shall continue in force till April 5 folluwing.

The parochial collector is to give to the party a rece-ipt for the duty on unstamped paper; \mathbf{n} hich, being deifiered to tise cleik of the commissioners for the dix:rict, shall be exchanged fur a certificate frum the saill clerk, pratis.

Deither the payment of this duty, nor the certificate deliverdd, siall authorise any person to use any doe, gan, net, or other enxine, at any times or in any manner prohibited by law, nor unless surh persion sha! be duly qualitied so to do. Nur shall auy ascesiment or ceruficate under a deputation be received in evidence, where proof shall be given of the party's having acted out of the limits of the manor.

If any persin shall be found using any dor, gun, pet, or uther engine, by an assessur or collector, or by any commisioucr of assessed taves, or by any lord, or gamekceper of the manor, or by any inspector, or surveyor of taxes, or by any pirson duly assessed to the duties, or by the owner, landlord, lessee, or occupier of the land, they may demand the proluetion of his certificate; and if such person shall, after such demand, refuse to produce a certifieate, or, in default tbereof, to give in to the person demanding the same his chrisjian and surname, and place of residence, and the parish (if any) in which be shall have been assessed, or shall produce any false certificate, or give any fa'se name, place of residence, or place of pesiessment, such person shall forfeit 201.
'The commission ers of taxes shall once, or often
er, in every year, canse the names and resdences of the persuns certificated, to be inserted in sume new spaper circulating in each county.

And if any person shall use any dog, gun, net, oz other engine, without having obtained such certificate, such person shall be liable to the duty of 31.3 s . and also shall forfeit 201, over and above the duty; the said duty to be assessed by way of surcharge.

Restrictions as to the time of killing game are as follow : no partringr to be killed between the list of February and ist of Scptember, under a penalty of tive pounds. No pheasant between the 1 st of February and 1st of October, under the like penalty. No grouse, or red game, between December 10th and August 19th. No heath fowl, or black game, between December 10th and August 90 th. No bustards between March 1 st and September 1st. No time is limited for the killing hares, provided they be legally taken. No game whatever is to be killed or taken between seven at night and six in the morning, from 12th February to 12th October, and between nine at night and four in the morning the rest of the year, nor on a Sunday or Christmas-day, upon pain for the first offence to forfeit not less than 101. nor more than SOI. and for the secund offence not less than 201. nor inore than 301. for any other offence to be committed till the next gencral quarter sessions, or bound over as well as the informer; and if conricted to pay 501 . and be committed till payment, but not forless than six months nor more than twelve, and to be whipped at the end of imprisonment: but not to be proccetied ayainst without information on oath within a month.

And persons to the number of two or more fourd in any furest, chose, parl, wood, plantation, paddock, fie'd, meadow, or other upen or inclosed ground, in the night between eight and six, from 1st October to 1st February, or between ten and four, froun 1st February to : st October, having one gun or engine, with intent to kill or take game, or persons aiding with offensive weapuns, may be app prehended, and, on cqnsiction before a justice, shall he deemed rogues and raz̧abonds.

Any unqualified person exposing a liare, pheasant, partridse, or other game to sale, is liable to a penaity of 51 . For selling a have, pheasant, partridec, or other game, qualifed or unqualitied, 5!. If either be found in the shup, houst, or posscssinn of any poultcrer, salesinun, fislimonger, cook or pasiry-cook, or of any person not qualified in his own right to kill game, or nut entitled thereto under some person so qualiged, it shall be decmed an exposing of the same to sale.

The words of the stat. 5 Ann. c. 14. whereby unqualified persons using any engine to kill or destroy hares, pheusants, partridges, or other game, are liable to a penalty of 51 . as we.l as fur keeping and using grey hounds or setting-digs, are in the disjunctive, viz. keep or use any greyhounds, set-ting-doas, hays, lurchers, or any other engines to kill and lestruy the game: the offences are therefore distinct and several, and a conviction either for the kecping or for the using any of the dogs of the kinds enumerated will be good. The penaltics against the game-laws may be recovered either by a summary conviction before one justice, or by action in any court of record at Westminster, brought within six lunar months. The whole penalty to be given to the informer, with double costs. Informations b' re justices of the peace must likewise be laid within six months, and on a summary conviction, thence half the penalty is to the informer, and half to the poor.

G A M

G A M

A qualified person cannot enter upon another man's ground to kill game, without being liable to an action for trespass; but if the party be qualified to kill game, and an action be brought for the trespass, if the damages recovered be under 40s. he shall in such case pay no more costs. However, if the owner or occupier of the land expressly forewarns another not to come or hunt thereon, and, notwithstanding such warning, he does, this is a wilful trispass: and if an action be brought for the same, he will be liable, whether qualified or not, to pay full costs, although the damages recovered may be under 40 s . However, any unqualified person may go out to beat herlges, bushes, and mark birds, in company with a qualified person, or to sec the game pursued and taken, without being liable to any penalty, provided he have no dog, gun, or engine, of his own, to assist in its destruction.

GAMELIA, a sacrifice held in the ancient Greek families, on the day before a marriage.

GAMELION, in ancient chronology, the 8th month of the Atherian year. It contained 29 days. and answered to part of our January and February.

GA'MESOME. a. (from game.) Frolicsome; gav; sportive (Sidney).

GA'MESOMELY. ad. merrily.
GA'MESOMENESS s. (from gamesome.) Sporticeness; merriment.

GA'MESTER. s. (from game.) 1. One who is vitiously addicted to play (Shakspeare). 2. One who is engaged at play (Bucon). 3. A merry frolicksome person (Shatispeare). 4. A prostitute: not in use (Shak.).

GAMING, the art of playing or practising any game, particularly those of hazard, as cards, dice, tables, \&c.

It appears that by the ancient common law, all games were lawful. But so early as the reign of Richard II. the legislature found it necessary to interfere, and to make several games illegal. This was levelled at labourers and artificers. The next statute wats the 2d Hen. IV. which inflicted six days imprisonment on those who offended against the act of Rich. II. The 17th Edw. IV. imposes a penalty of two years imprisonment on those who offended against the act of Richard II. The 17th Edw. IV. imposes a penalty of two years imprisonment and a fine against various games there enumerated; and by the 11th Hen. VII. labourers and artificers are prohibited from playing at unlawful games, but in Christmas only. The principal object of these early statutes was, to encoulage archery, and to make that the only lawful sport for the lower ranks of the people. But the earliest act against gaming now in force is the 33d Henry VIII. which gives justices of peace and head officers in corporations a power to enter all houses suspected of unlawful games, and to arrest the gamesters till they give security not to play for the future. Persons kecping any unlawful gaming-house are fined 40s. and the gamesters 6 s .8 d . a time. If any person by fraud, deceit, or unlawful device, in playing either at cards or dice, tables, bowls, cock-fighting, horseraces, foot-races, \&c. or bearing a share in the stakes or betting, shall win any money or valuable thing of another, he siall forfeit treble the value thereof : likewise if any person shall play at any of the said games upon tick, and not for ready
money, and lose the sum of 1001 . on eredit, at one meeting, if the money is not paid down, his security taken for it shall be void, and the winner becomes liable to a forfeiture of treble value of such money won. 16 Car. II.c. 7. Not only all notes, bills, bonds, mortgages, or other securitics given for money won at gaming, are declared void ; but also where lands are granted, they shall go to the next person entitled, after the decease of the person so encumbering the same. Persons losing by gaming at one time 101 . may recover the money lost from the winner, by an action of debt brought within three months ; and on the loser's not prosecuting, any other may lawfully do it, and recover treble the value, with costs. 9 Anne, c. 14. Those who cheat at cards, dice, \&c. besides their forfeitures, have inflicted on them such infamy and corporal punishment, as in cases of perjury; and beating, or challenging any other person to fight, on account of money won by gaming, shall forfeit all their goods, and be imprisoned two years: and where persons play that have no visible estates, and do not make it appear that the principal part of their maintenance is got by other means than gaming, they may be bound to their good behaviour by two justices of the peace, \&c. Stat. ibid. See 8 Geo. II. c. 28. The ace of hearts, pharaoh, basset, \&c. are judged to be lotteries by cards or dice; and persons who set up those games are subject to 2001. penalty. And every adventurer, who shall play, stake, or punt at them, forfeits 501 . Also any sales of houses, goods, plate, \&c. in such a way, are void, and the things forfcited to any who will sue for the same. 12 Geo . II. c. 28 . See Disney's Laws of Gaming, Wagers, \&c.

Gaming (Mathematical laws of). The business of chance or hazard, on which the laws of gaming depend, is of mathematical consideration ; inasmuch as it admits of more and less. It is, or is supposed to be, an equality of chance, upon which the gamesters set out : this equality is to be broken in upon in the course of the game, by the greater good fortune or address of one of the parties, upon which he comes to have a better chance; so that his share in the deposit, or stakes, is now proportionably more or better than at first; this more and less is continually varying, and runs through all the ratios between equality and infinite difference; or from an intinitely little difference till it arrives at an infinitely grear one, upon which the game is ended. The whole game, therefore, with respect to the event or issue thereof, is only a change of the quantity of each person's share, or chance, or of the proportion their two shares bear to each other; which mathematics alone can measure.

Hence several authors have computed the variety of chance in several cases and circumstances that occur in gaming ; particularly M. de Moivre, in a Treatise entitled The Doctrine of Chances, the best edition being published in 1756; of which we shall here give the reader an abstract. See also Chance.

1. To find the probability of throving an ace in treo throwes of one dic. The first part of the probability required is that of throwing an ace at the firat throw, which is $\frac{1}{6}$; but, as the probability of missing it in this throw is $\frac{5}{6}$, and that of throw. ing it in the second is $\frac{1}{6}$, the second part of the

GAMING.

-probability required, being the product of both these, will be $\frac{5}{6} \times \frac{1}{6}=\frac{5}{36}$; and therefore the whole probability is $\frac{1}{6}+\frac{5}{36}=\frac{11}{36}$.
2. To find the probatitity of throviving an ace in three throus. The probability of throwing it in the first throw is $\frac{1}{6}$; and the probability of missing it is $\frac{5}{6}$, which being multiplied by $\frac{11}{36}$, the probability of throwing it in the two remaining times by Case 1 , will give $\frac{5}{6} \times \frac{11}{36}=\frac{55}{216}$ for the second part of the probability required; and therefore the whole probability will be $\frac{1}{6}+\frac{55}{216}=$ $\frac{91}{2 i 6}$.
3. To fund the probatility of throzuing an ace in four thres. This is evidently, by the preceding caes, $\frac{1}{6}+\left(\frac{5}{6} \times \frac{91}{216}=\right) \frac{455}{1296}=\frac{6.71}{1!96}$; and the probalility of the contrary is $\frac{6.5}{1206}$, because $\frac{671}{1296}+$ $\frac{625}{1250}=\frac{1990}{1290}=1$, which denotes certainty.
4. To frad tbe probatility of throzeing tzvo aces in true urous. The probability required is $\frac{1}{6} \times \frac{1}{6}=$ $\frac{1}{36}$, the events in this case being independent. See Explctation.
5. To find the probabiitity of throuring treo aces in three turstrs. The probability of throwing an ace in the first throw, is $\frac{1}{6}$, and the probability of throwing it once in the two remaining throws is $\frac{11}{36}$ by case 1: consequently the first part of the probability required is $\frac{1}{6} \times \frac{11}{36}=\frac{11}{216}$. But if the ace be missed the first time, the probability of which is $\frac{5}{6}$, there remains the probability of thoowing it twice together, which is $=\frac{1}{30}$ by case 4 ; therefore the probability of both events is $\frac{5}{6} \times \frac{1}{36}=\frac{5}{216}$; and the whole probability required is $\frac{11+5}{216}=\frac{16}{211^{\circ}}$.
6. To find tbe probability of throwing two aces in four throus. The probability of throwing an ace the firs time is $\frac{1}{6}$, and the probability of throwing it in three times is $\frac{91}{216}$ by Case 2: and the probability of both happening is $\frac{1}{6} \times \frac{91}{216}=$ $\frac{91}{1296}$, the first part of the probability required. But the probability of missing the ace for the first time is $\frac{5}{6}$, and the remaining probability of
throwing it twice in three throws is $\frac{16}{210}$ by case 5; therefore the probability of both together is $\frac{5}{6}$ $\times \frac{16}{216}=\frac{80}{3296}$, the second part of the probability required; and, therefore, the whole probability is $=\frac{91}{1296}+\frac{80}{1290^{\circ}}=\frac{171}{1296^{\circ}}$.

In the same manner we may find the probability of throwing an ace as often as shall be demanded in any given number of throws.

From these familiar and more restricted cases, We may deduce a more general and comprehensive theorem. Let a be the number of chances for the happening of an event, and b the number of chances for its failing; then the probability of its happening once in any number of trials will be expressed by the series $\frac{a}{a+b}+\frac{a b}{(a+b)^{2}}+\frac{a b b}{(a+b)^{3}}$ $+\frac{a l \cdot 3}{(a+b)^{4}}+\frac{a l 4}{(a+b)^{s}}$, \&c. continued till the number of terms be equal to the number of trials given: e. gr. let a be $=1, b=5$ and the number of trials given be $=4$, the probability required will be expressed by $\frac{1}{6}+\frac{5}{36}+\frac{25}{216}+\frac{125}{1296}$ $=\frac{671}{1296}$.

Again, the probability of the event's happening swice in any given number of trials will be expressed by the series $\frac{a a}{(a+b)^{2}}+\frac{2 a a b}{(a+b)^{3}}+\frac{3 a a b b}{(a+b)^{4}}$ $+\frac{4 a a b 3}{(a+b)^{5}}+\frac{5 a a l 4}{(a+b)^{a}}$, \&c. continued, till the number of terms, wanting one, be equal to the number of trials given: e. gr. let a be $=1, b=5$, and the number of trials $b e=8$, the probability required will be expressed by $\frac{1}{36}+\frac{10}{216}+\frac{7.5}{1296}+$ $\frac{500}{7776}+\frac{3125}{46056}+\frac{18750}{279936}+\frac{109375}{1679616}=\frac{663091}{1679016}$.

And the probability of the event's happening thrice in any given number of trials will be expressed by the series $\frac{a^{3}}{(a+b)^{3}}+\frac{3 a^{3} b}{(a+b)^{4}}+\frac{6 c^{3} b^{2}}{(a+b)^{3}}$ $+\frac{10 a^{3} l^{3}}{(a+b)^{6}}+\frac{15 a^{3} b^{4}}{(a+b)^{7}}$, \&c. continued, till the number of terms, wanting two, be equal to the number of terms given. These particular series may he comprehended under a general one in the following manner: let a and b he as before, and their sum $=a+b=s$; the number of times which the event is required to happen in any given numter of trials represented by n; then the probalility of the event's happening l times in n triale wiil be expressed by the series $\frac{a l}{s l}+\left(1+\frac{l b}{s}+\frac{l \cdot l+1.6 b}{1 \cdot 2.6 s}\right.$

$$
\left.\times \frac{l \cdot l+1 \cdot l+2 \cdot b^{3}}{1 \cdot 2 \cdot 3 \cdot s^{3}}+\frac{l \cdot l+1 \cdot l+2 \cdot l+3 \cdot b^{4}}{1 \cdot 2 \cdot 3 \cdot 4 s^{4}}, 8 c\right)
$$

continued to as many terms, exclusive of the common multiplier $\frac{a^{l}}{s^{6}}$, as are denoted by the minber
$a-l+1$. On the other hand, the probability of the event's not happening so often as l times, making $n-l+1=p$, will bc expressed by the series $\frac{b p}{s p}$ $\times\left(1+\frac{p a}{s}+\frac{p \cdot p+1 \cdot a a}{1 \cdot 2 \cdot s s}+\frac{p \cdot p+1 \cdot p+2 a^{3}}{1 \cdot 2 \cdot 3 \cdot s^{3}}+\right.$ $\frac{p \cdot p+1 \cdot p+2 \cdot p+3 . a^{4}}{1 \cdot 2 \cdot 3 \cdot 4 . s^{4}} \& c$.) continued to as many terms, exclusive of the common multiplier, as are denoted by the number l. The sum of these two probabilities is always equal to unity; and, therefore, the first scries may be uscd when $n-l+1$ is less than l, and the second when l is less than $n-+1$: in other words, the first or second may be used as l is less or greater than $\frac{n+1}{2}$. E. gr. let a be $=1, b=5 . j, n=24$, and $t=1$: in this case twenty-four terms of the first series would be necessary to answer the question, but one term of the second will be sufficient; and the probability of an event's not happening once in twenty-four trials, which has one chance to happen, and thirty-five to fail, will be expressed by $\frac{35^{24}}{86^{24}} \times 1$: this quantify, by the help of logarithms, will be found nearly equal to the decimal 0.50871 , which, subtracted from unity, leaves a remainder 0.49129 , expressing the probability required ; and, therefore, the odds against the happening of the event will le fifty to forty-nine nearly. Again, if $l=2, n=60$, and $n-l+i=59$, in this case fifty-nine terms of the first series will be necessary, and only two of the second; and, therefore, hy the second serics, the probability of an event's not happening twice in sixty trials will be $\frac{35^{59}}{3 i 5^{50}} \times\left(1+\frac{59}{36}\right)=0,5007$, which subtracted from 1 , leaves the remainder 0.4993 , expressing the probability required; consequently, the odds against the event's happening truise in sixty times will be little more than 500 to 499 .
7. To find the probatility of thruzuing one ace, and no more, in ficur throws. From the unlimited probability of the ace's being thrown in four throws, subtract the probability of its being thrown twice in that number of throws: i. e. from $\frac{671}{1296}$ by case 3 . subtract $\frac{171}{1296}$ by ease 6 , and the remainder $\frac{500}{1296}$ gives the probability required, and $1-\frac{500}{1296}=$ $\frac{796}{1296}$ the probability of the contrary; and the odds against throwing one ace, and no more, in four
throws, are 796 to 500 , or 8 to 5 nearly throws, are 796 to 500 , or 8 to 5 nearly.
8. If A and B play together, and A ruants one gave of being up, and B wants twoo, what are their respective probabilities of winning the set? It is plain that A wants only to win once in two games, and B wants to win twice together: and if both have en equal chance, the probability which B has of winning the first game will be $\frac{1}{2}$, and the probability of his winning twice together will be $\frac{1}{2}$ $\times \frac{1}{2}=\frac{1}{4} ;$ and, therefore, the probability which

A has of winning once in two games will be 1 $\frac{1}{4}=\frac{3}{4}$; consequently the odds of A 's winning are three to one.
9. If A and B play logether, and A wants one rame, and B wants trio of being up; but the dhances whercby B may win a game are double to those of A; to find the respartive probabilities of winning. In this case, the probability which B has of winning a game is $\frac{2}{3}$, and the probability of his winning twice together is $\frac{2}{3} \times \frac{2}{3}=\frac{4}{9}$; and, therefore, the probability of A's winning the set is $1-\frac{4}{y}=\frac{5}{9}$; and the odds of A 's winning one before B wins twice, which the question requires, are as five to four.

In general, whatever be the number of games which A and B respectively want of being up, the set will be concluded at the most in 50 many game, wanting one, as is the suin of the games wanted between them. For if A wants three games, and B wants five of being up, the greatest number of games which A can win of B, before the determination of the play, will be two, and the greatest number which B can win of A will be four, and the who!e number six: but, supposing they have played six games, the next game will terminate the play; and, therefore, the utmost number of games that can be played between them will be $r=5+3-1$.
10. If A zoants three games, and B wants seoen of being μp, and their respective chances of winning a gave are as three to froe; to find the respective probabilities of winning the set. The sum of the games is ten, and the set will be concluded in nine games, and, therefore, A undertakes to win three out of nine games, and B to win seven ; then, by the second series of the preceding theorem, n being $=9, l=3$, $a=3, b=5$, and $n-1+1$, or $p=7$, the probability which B has of winning the set will be expressed by $\frac{5^{7}}{8^{7}} \times\left(1+\frac{21}{8}+\frac{\cdot 152}{64}\right)=\frac{5^{7}}{8^{9}} \times 484=0.28172$ nearly. which, subtracted from unity, leaves a remainder $=0.71828$, expressing the probability which A has of winning; consequently, the odds of A 's winning the set will be 71828 to 28192 , or nearly as 23 to 9 .
Mr. de Moivre has also illustrated the principles of gaming. applied in the preceding cases, in a different and more general way, by supposing two dice, having the same or a different number of equal faces: it is ohvious, that the number of all the variations which the t tro dice can underge willbe obtained by multiplying the number of faces of the one by the number of faces of the other. From hence it follows, that if the faces of each die are distinguiahed into white and black, and the number of white faces on the first is A, and that of the black faces B, and also the number of white and black faces on the second a and 6 respectively, the product of $A+B$ multiplied by $a+b$, i. e. $A a+A b+B a+B b$ will exhibit all the variations of the two dice: $A \subset$ will represent the number of al! the chances whereby the two dice may exhibit two white faces; A 6 the number at all the chances whereby a white face of the first may be joined with a black face of the second 3 a B the number of all the chances whereby a white face of the second may be joined with a black face of the first; and $A \delta$ the number of

G A M I N G.

Ill the chances whereby 2 black face of the first may be joined with a black face of the second. Moreover, as these several quantities may be connected together several ways, the sum of two or mure of any of them will answer some question of chance: e. gr. the number of chances for throwing, a white face with the two dice abovementioned, will be represented by the three parts $A a+A b+B a$, because every one of these comprehends a case wherein a white face is concerned : hut if the question were restricted by a presious stipulation, that, if a person threw two white faces togeiher, the wager would be lost. the two terms $A b+B a$ would represent all his chances. Farther, if a third die be added, whose white faces are a, and black faces β, the preseding product. vig. $A a+A b+B a+B b$, multiphed by the whole number of faces of the third die, viz $a+\beta$, or $A a a+\mathrm{A} \alpha a+\mathrm{B} a \boldsymbol{a}+\mathrm{B}$ a a $+\mathrm{A} a \beta+\mathrm{A} b \beta+\mathrm{Ba} a+\mathrm{B} b \beta$, will exhibit the number of all the variations which the three dice can undergo: in this case A an represents the number of chances for throwing three white faces, A ba the number of cbances whercby both the first and third die may exhibit a white face, and the second a black one, \&c. and by joining two or more of these terms, some question of chance will be answered; e. gr. the number of chances for throwing two white faces and a black one will be represented by Aba+Baa+ A a \mathcal{S}, and the odds in favour of him who undertakes to throw them will be $A b_{a}+R_{a n}+A=\beta$ $20 \mathrm{~A} a r+\mathrm{B} b n+\mathrm{A} b \xi+\mathrm{Ba} \beta+\mathrm{B} b \beta$; and the probability of the event will be expressed by a fraction, whose numerator is the number of chances required, and the denominator the whole number of variations which all the dice can underga. E. gr. the probability of throwing three white faces with the three dice above-mentioned will be expressed by

Aan

$A a a+A b a+B a a \times A a \beta+B b a+A b \beta+B a \beta+B b \beta$, or, separating the factors in the denominator,
$\frac{A a r}{(A+B) \times(a+b) \times(\alpha+\beta)}=\frac{A}{A+B} \times \frac{a}{a+b} \times \frac{a}{\alpha+\beta}:$ $s 0$ that the probability of the happening of several events independently, is the product of all the particular probabilities whereby each particular exent may be produced.
In the preceding case of two dice, if A be $=a$, and $\mathrm{B}=b, \mathrm{~A} a+\lambda b+a \mathrm{~B}+\mathrm{B} b$ will become $=a a$ $42 a b+b b$; and $2 a b=\Lambda b+a B$ will express the number of variations, whereby with two dice of the same respective number of whise and black faces, a white face and a black one may be thrown. And in the case of three dice, Aba+ Baa +Aa β will become $=3 a a b ;$ or, one term of the binomial $a+b$, raised to its cube, will express the number of variations, whereby three dice of the same kind would exhibit two white faces and a black one.
11. From the above reasoning the following general rule may be deduced: viz. in a number of dice $=n$, each of which is distinguished into white and black faces, represented respectively by and b, if $a+b$ be raised to the power n, the first term of that power will express the number of chances whereby n white faces may be thrown; the second term will express the number of chances whereby $n-1$ white face and 1 black face may be thrown; the third term will express the number of chances whereby $n-2$ white faces and 2 black faces may be thrown, \&c. and the
respective numbers of white and black faces are represented by the indices of a and b in any given term.

To find the probability of throzving an ace in four throws with a common die of six fuces. Since the throwing of one die four times successively is the same thing as throwing fuur dice at once, the chance of throwing an ace is the same in one case as in the other. Let the ace, then, in each of the four dice, answer to one white face, and the rest of the points to tive black faces, or a be $=1_{0}$ and $b=5$; raise $a+b$ to its fourth power, and every one of the terms in $a 4+4 a^{3} b+6 a^{2} b^{2}+4 a^{3}$ $+l^{4}$, that has an a, will be a part of the number of chances whereby an ace may be thrown : consequently, $a^{4}+4 a^{3} b+6 a^{2} b^{2}+4 a b^{3}$, i. e. $1+9()+$ $15: 1+500=671$, will express the namber of chances whereby an ace may be thrown with four dice, or in four successive throws of a single dies but the number of all the chances is the fourth power of $a+b$ or $64=1296$; and, therefore, the probability required is measured by the fraction $\frac{671}{1296}$. See Case 3. It is evident, that b, or the lat term of the above power, expresses the number of chances whereby the ace may fail in every one of the dice; and the probability of that failing is $\frac{b 4}{(a+b, b}$ $=\frac{62.5}{1296}$; and, therefore, the probability of not failing, or of throwing an ace in four throws, is $1-\frac{605}{1290}=\frac{671}{1296}$, as before. When the number of dice is n, b^{7}, the last term of the power $(a+b)^{n}$, will always represent the number of chances whereby the ace may fail in n times; and, therefore, $\frac{b^{n}}{(a+b)^{n}}$-is the probability of its failing; and the probability of throwing an ace, in a number of throws expressed by n, will be $1-\frac{b^{n}}{(a+b)^{n}}=$ $\frac{(a+b)^{n}-b^{n}}{(e+b)^{n}}$.

To find the prohability of throwing with one single die twoo aces in four throwes, or of throwing at once trow aces with four dicr. The three terms, $a^{4}+4 a^{3} b+$ $6 a^{2} / l^{2}$ of the fourth power of the binomial $a+b_{0}$ in which the indices of a equal or excced the number of times thet the ace is to be thrown, will denote the number of chances whereby two aces may be thrown; so that a being $=1$, and b $=5, a^{4}++a^{3} b+6 a^{2} b^{2}$, will be $=1+20+150=$ 171, and the whole number of chances, viz. ($a \dot{\boldsymbol{i}})^{\prime} 4=1290$; consequently the probability required will be expressed by $\frac{171}{1296}$. See Case 6. The probability of the contrary will be $\frac{1125}{1296}$; for in the two terms of the fourth power of $a+l, 4 a$ $b^{3}+14, a$ is found only once in the first, and not at all in the eecond; therefore, these will express the number of chances against throwing two aces, which is $=500+025=1125$. And the probability of succeeding will be $1-\frac{1125}{1296}=\frac{171}{1296}$. as before. And universally, the last term of any power $\left(a+l^{\prime}\right)^{n}$ being b^{n}, and the last but one $n a b^{n}$ $\boldsymbol{-}^{1}$, in neither of which a^{2} entern, it follows that the tho last terms of that power express the number of chances that are contrary to the throw-

G A M I N G.

ing of two aces, in any number of throws denominated by n; and that the probability of throwing two aces will be $1-\frac{n a b^{n}-1+b^{n}}{(u+l)^{n}}=$ $\frac{(a+b)^{n}-n a b^{7}-1-b^{7}}{(a+b)^{2}}$. And likewise, in the three last terms of the power $(a+b)^{n}$, every one of the indices of a will be less than three, and consequently those last terms will shew the number of chances that are contrary to the throwing of an ace three times in any number of trials n; and the same rule will hold perpetually. If the chances for happening and failing in any particular trial be respectively represented by a and l, the preceding rules niay be applied to the happening or failing of auy other kind of event in any number of times.
12. If A lays a wager that a certain event will happen l times in n trials, and B lays to the coutrary, and the number of chances of happening and failing in one trial be respectively a and l, the number of chances whereby B may win his wager will be determined by as many of the last terms of the power $(a+b)^{n}$ expanded, as are represented by l. And the number of chances whereby A may be a winner, will be expressed by as many of the first terms of the same power as are equal to $p ; \phi$ being assumed equal to $n-l$ +1 ; because B, by laying against A^{\prime} s winning l times, does in effect lay that he will not win above l-1 times; but the whole number of winnings and losings being $n,(n-l)-1$, or $n-l+1$, will be the number of times which B himself undertakes to win.
13. If A and B being at play, respectively want l and p games of being up, and their respective chances for winning any one game be as a to b; raise the binomial $a+b$ to a power whose index is $l+$ $p-1$, and the number of chances, whereby they may respectively win the set, will be in the same proportion as the sum of so many of the first terms as are expressed by p, to the sum of so many of the last terms as are expressed by l; for when A and B respectively undertook to win l games and ρ games, and n represented the whole number of games, in the preceding case, p was $=n-l+1$, and, therefore, $l+p=n+1$, and $n=l+p-1$, which will, consequently, represent the power to which $a+b$ must be raised. E. gr. Let $l=3, p=$ 7, $a=3$, and $b=5$; then raise $a+b$ to the power represented by $l+p-1, i$. e. to the ninth power, and the sum of the first seven terms will be to the sum of the three last, in the proportion of the respective chances whereby A and B may win the set. The chances of B, or the three last terms, are $b^{9}+9 a b^{8}+36 a a b^{7}=37812500$, which, divided by $(a+b)^{\prime}=134217728$, gives the fraction $\frac{37812.500}{134217728}=\frac{945.3125}{33554452}$,
lity of B's winning; and this fraction, subtracted from unity, or $1-\frac{9453215}{33554+32}=\frac{24101307}{33554+32}$, will express the probability of A's winning; and the odds in favour of A are in the proportion of 24101307 to 9453125 , or nearly as 23 to 9 . See Case 10. Examples often occur, as in this case, in which it is required to sum up several terms of a high power of the binomial $a+b$, and to divide their sum by that power : the most convenient method of doing this is to write 1 and q for a and b, having taken $q: 1:: b: a$, and to use a table of logarithme. Thue, in the preceding example, $a=$
$3, b=5$, therefore $q=\frac{5}{3}$; and the quantity $\frac{l^{9}+3 a l^{x}+35 a^{2} b^{9}}{(a+b)^{9}}$ becomes $=\frac{n^{9}+9 q^{2}+36 \eta^{2}}{(1+q)^{9}}=$ $\frac{q^{7} \times\left(y^{2}+9 q+36\right)}{(1+q)^{2}}$: but the factor $q^{2}+9 q+36$ is $=$ $\frac{25}{9}+\frac{45}{3}+36=\frac{484}{9}$, and its logarithm is the logarithm of $484-\log 9 .=1.7506029$ To which add the log. of q ',
or $7 \times \log .5-\log .3 .=1.5596409$ And from the sum - 3.253543 s Subtract the log. of $(1+4)^{9}$ or $9 \times(\log .8 .-\log .3)=$. And the remainder - $-\quad 1.4+182.55$ will be the logarithm of B's chance, viz. 0.281725 , and the complement of this to unity, or 0.718975 , will be the chance of A. See another method of reducing ratios in larger numbers to their least exact terms, under Ratio.

The following Table shews the odds of winning, when the number of games wanting dces not exceed six, and the skill of the contenders is equal.

Games Odds ofwathling, wiuning.		$\left\lvert\, \begin{gathered} \text { Games Gdds of } \\ \text { wanthig. winning. } \end{gathered}\right.$		Gampes Olds ofwanting. winnug.		
1,2	3,1	2,3	11,5	3,5	-	99.29
1,3	7,1	2.4	26,6	3,6		215,37
1,4	- 15,1	2,5	57,7	4,5	-	163,43
1,5	- 31,1	2,6	- 120,8	4,6	-	382,150
1,6	63.1	3,4	42,22	5,6	-	638,38ri

14. To assign the probability of throving one ace, and no more, with four dice at oue thiruzv. From the number of chances whereby one ace or more may be thrown, subtract the number of chances whereby two aces or more may be thrown, and the remainder will be the number of chances for throwing one ace, and no more. Having raised the binomial $a+l$ to its fourth power, which is $a^{+}+4 a^{3}$ $b+6 a^{2} b^{2}+4 a b^{3}+l-1$, it is evident, that the four first terms express the number of chances for throwing one ace or more; and the three first terms express the number of chances for throwing two aces or more; and, therefore, the single term $4 a b 3$ expresses the number of chances for throwing one ace and no more; and the probability required will be $\frac{4 a l 3}{(a+b)^{4}}=\frac{500}{1296}=\frac{125}{1.24}$. See Case 7.

When it is required to assign the chances for throwingany number of aces, and no more thanthat number, one single term of the power $(a+b)^{2}$ will always answer the question; and this term may be expeditiously found, supposing n to be the number of dice, and l the precise number of aces to be thrown, when l is less than $\frac{1}{2} n$, by writing as many terms of the series $\frac{n}{1}, \frac{n-1}{9}, \frac{n-3_{3}}{5}$ $\frac{n-3}{4}, \& c$, as there are units in $l ;$ and when l is greater than $\frac{1}{\frac{1}{n}} n$, by writing as many of them as there are units in $\frac{1}{2} n-l$; then multiplying all those terms together, and multiplying the product by $a^{l} b^{n}-i$; and this last product will exhibit the term expressing the number of chances required. E. gr. Let l be $=3$, and $n=10$; since l is less than $\frac{1}{2} n$, take three terms of the series, which will be

GAMING.

$\frac{10}{1}, \frac{9}{2}, \frac{8}{3}$; their product will be $120: a^{\prime} b^{a}-1$, a being $=1, k=9$, \&cc. will be $=6042969$; and $60: 2469 \times 120=72.5156: 50$, which expresses the rumber of chances required. Divide this by $(a+b)^{10}=100$ (4)0(v)\%, and the quotient 0.079 .5150250 , will express the probability of throwing precisely three aces with ten dice : subtract this quotient from unity, and the remainder 0.9274843720 will express the probability of the contrary; and the odds against throwing precisely three aces with ten dice, are $92748+3720$ to 725156880 , or nearly 64 to 5.

Having thus given as compendious 2 view as possible of the principles and rules of gaming, from Mr. De Moivre's Introduction, we shall sebeet a few problems, for the farther illustration and exercise of these principles and rules.

Prob. I. If A and B play with single boruls, and A ean give B troo games out of three; what is the proportion of their skill, or what are the odds, that A may get eqy ane game assigned? Let the proportion of odds be as 2 to 1 ; now since A can give B two games out of three, A may, upon an equality of play, undertake to win three games together; but the probability of his winning the first time is $\frac{z}{x+1}$ and the probability of his winning three times together is $\frac{z}{z+1} \times \frac{z}{z+1} \times \frac{z}{z+1}=\frac{z^{3}}{(z+1)^{3}}$. But, as A and B are supposed to play on equal terms, the probability which A has of winning three games together ought to be expressed by $\frac{1}{2}$; and, therefore, $\frac{z^{3}}{(s+1)^{3}}=\frac{1}{2}$, or $2 z^{3}=(z+1)^{3}$; and, extracting the cube root on both sides, $s \sqrt[3]{2}$ $-2+1$; and $s \sqrt[3]{2-s}=1$; therefore $:=\frac{1}{\sqrt[3]{2}-1}$; and the odds in favour of A's getting any game assigned, are as $\frac{1}{\sqrt[3]{2}-1}$ to 1 , or as 1 to $\sqrt[3]{2}-1$, i. e. as 50 to 13 very nearly.

Prob. II. To find in how many trials any event will probably bappen, so that A and B may lay a wager on cven terme. Let the number of chances for its happening in any one trial be a, and the number of chances for its failing be b; and the number of trials \approx. By Case 12. bx will represent the number of chances of the event's failing x times successively, and $(a+b)$ the whole number of chances for happening or failing; and, therefore, $\frac{b x}{(a+b)^{x}}$ represents the probability of the event's failing 5 times together, which is equal to the probability of its happening once at least in that number of trials; and either of these may be expressed by the fraction $\frac{1}{2}$; consequently $\frac{b^{x}}{(a+b)^{x}}$ $=\frac{1}{6}$, or $(a+b) x=2 b^{x}$; therefore x, \times logarithm $\left({ }^{2}+6\right)=\$ \times \operatorname{logar} . q+\log a r .2$. and $x=$ $\log .2$.
log. $(a+b)-\log . b^{6}$ Again, suppose $a: b: 1: q$, then the equation $(a+b)^{x}=2 b x$, will be changed into $(1+q)^{x}=2 q^{x}$, or $\left(\frac{1+q}{q}\right)^{x}=2$, or $\left(1+\frac{1}{q}\right)^{x}$ 72. Therefore, $x \times \log \cdot\left(1+\frac{1}{q}\right)=\log$ 2. If, in this equation, $y=1, x$ will also be $=1$; but if
q differs from unity, substitute in the room of log. $\left(1+\frac{1}{g}\right)$ its value expressed in a series, viz.
$\frac{1}{q}-\frac{1}{2 q^{2}}+\frac{1}{3 q^{3}}-\frac{1}{4 q^{4}}+\frac{1}{3 q^{3}}-\frac{1}{6 q^{6}}$ \&c. and we shall bave the equation $\frac{x}{q}-\frac{x}{2 q^{2}}, \& c_{0}=\log .2$ If q be infinite, or large in respect to unitys the first term of the series will be sufficient; and we shall have the equation $\frac{x}{q}=\log 2$, or $x=g x$ log. 2. Then taking the hyperbolic logarithm of 2, which is 0.693 , \&c. or 0.7 nearly, x will be equal to $0.7 q$ nearly. Thus the limits of the ratio of x to g are assigned; for it begins with unity, and terminates at last in the ratio of 7 to 10 very nearly. This value of x may be assumed in all cases, whatever be the value of q.

Ex. 1. To find in howv many throws one may undertake reith an equality of chance to throw tzoo aces with two dice. The number of chances upon two dice being 36, of which there is but one chance for two aces, the number of chances against it is 35 ; multiply, therefore, 35 by 0.7 , and the product 24.5 will shew that the number of required throws will be between 24 and 25.

Ex. 2. \dot{T}_{0} find in howv many throws of three dice ons may wadertake to throse three aces. The number of all the chances on three dice being 216 , of which there is but one chance for three aces, and 215 against it, multiply 215 by 0.7 , and the product 150.5, will shew that the number of required throws will be 150 nearly.

Prob. III. To find how many cbances there are upone any number of dice, each of them having the same number of faces, to thrown any given nuraber of points. Let $p+$ 1 be the given number of points, n the number of dice, and f the number of faces in each dice : let $p-f=q, q-f=r, r-f=s, s-f=t$, \& c. The number of chances requircd will be,

$$
\begin{aligned}
& +\frac{p}{1} \times \frac{p-1}{2} \times \frac{p-2}{3}, \& c . \\
& -\frac{q}{1} \times \frac{q-1}{2} \times \frac{q-2}{3}, \& c . \times \frac{n}{1} \\
& +\frac{r}{1} \times \frac{r-1}{2} \times \frac{r-2}{3}, \& c . \times \frac{n}{1} \times \frac{n-1}{2} \\
& -\frac{s}{1} \times \frac{s-1}{2} \times \frac{s-2}{3} \text { \&c. } \times \frac{n}{1} \times \frac{n-1}{2} \\
& \times \frac{n-2}{3}+, \& c .
\end{aligned}
$$

And these serieses ought to be continued till some of the factors in each product become either $=0$, or negative : and so many factors are to be taken in each of the products $\frac{p}{1} \times \frac{p-1}{2}, \& c \cdot \frac{q}{1}$ $\times \frac{q-1}{2}, \& c$. as there are units in $n-1$. See the demonstration of this rule in De Moirre's Doctrine of Chances, P. 41.

Ex. 1. To find how many clances there are for thrown ing sisteen points with four dice. Here $p+i=16$ and $\beta=15$; and the foregoing series will be,

$$
+\frac{15}{2} \times \frac{14}{2} \times \frac{13}{3}=+455^{\circ}
$$

G A MING.

$$
\begin{aligned}
& -\frac{3}{1} \times \frac{8}{2} \times \frac{7}{3} \times \frac{4}{1}=-336 \\
& +\frac{3}{1} \times \frac{2}{2} \times \frac{1}{3} \times \frac{4}{1} \times \frac{3}{2}=+6 . \text { And } 455
\end{aligned}
$$

$-336+6=125$ is the number of chances re. quired.

Ex. 2. To find the number of chances for throwing Afteen points quith six dice. The series will be,

$$
\begin{aligned}
& +\frac{14}{1} \times \frac{13}{2} \times \frac{12}{3} \times \frac{11}{4} \times \frac{10}{5}=+2002 \\
& -\frac{8}{1} \times \frac{7}{2} \times \frac{6}{3} \times \frac{5}{4} \times \frac{4}{5} \times \frac{6}{1}=-336
\end{aligned}
$$

And 2008-3.36 $=1666$ the number required. In like manner it may be found that the number of chances for throwing twenty-seven points with gix dice is also 1606 . We may observe in general, that all the points equally distant from the extremes, i. e. from the least and greatest points that are upon the dice, have the same number of chances by which they may be produced: thus, in finding the number of chances for throwing twenty-seven points with six dice, let 27 be subtracted from $4^{\prime 2}$, the sum of the extremes 6 and 36 , and the remainder being 1.5 , we may infer that the number of chances for throwing twentyerven points is the same as for throwing fifteen points.

Ex. 3. To find in hozv many throws of six dice one may undertake to throw fifieen foints pracisely. The number of chances for throwing fifteen points being 1866 , and the whole number of chances upon six dice being 46656 , it follows that the number of chances for failing is 44990 ; therefore, dividing 44990 by 1666, and the quotient is 27 nearly; multiply 27 by 0,7 , and the product 18.9 will shew that the number of throws required will be very near 19.

Prob. IV. To find bowe many trials are necessary to srake it equally probable that an cvent ubill happen trice. Let a, b, and x, be as in Prob. II. Then by Case 12. $b x+x a b x-1$ is the number of chances whereby the event may fail, and $(a+b)^{x}$ the whole number of chances whereby it may happen or fail, and, therefore, the probability of its failing is $\frac{b x+x a b x-1}{(a+b)^{x}}$; but as the probabilities of happening and failing are equal, we shall have the equation $\frac{b^{x}+x a b^{x}-1}{(a+b)^{x}}=\frac{b}{b}$, or $(a+b)^{x}$ $=2 b x+2 x a b x-1$; or making $a: b: 1: q$, $\left(1+\frac{1}{q}\right)^{x}=2+\frac{2 x}{g}$. Let $g=1$, and x will be $=3$, But if q be infinite, and $\frac{x}{q}=s$; and $\pi=$ $\log .2+\log .(1+s)$, and the value of s will be found $=1.678$ nearly; therefore the value of x will always be between the limits $3 q$ and $1.678 q$, but will soon converge to the last of these limits; and if q be not very small, x may in all cases be supposed $=1.678 q$: but if κ be suspected to be 800 little, substitute this value in the original equation $\left(1+\frac{1}{9}\right)^{x}=2+\frac{2 x}{9}$, and note the error; if it be worth regarding, increase a little the value of x, and substitute this new value in the dforesaid equation, and noting the new error, the value of x may be sufficiently corrected by the jule of double false position.

Ex. I. To find in how many throws of three dice ane
may undertuke to tircue tivere aces taice. The numpber of ath the chances on three dice being 216 , of which there are 215 against throwing three aces; multiply, therefore, 215 by 1.67%, and the product 560.8 will give the number of required throws.
E.x. 2. To find in howe many throwes of six dice are may undertake to throwv fifteen points truice. The number of chances for throwing tifteen points is 1666, and the number of chances for missing 4499() , sce Proh. Ill. Divide 44990 by 1606 , and the quotient will be 27 nearly; therefore, the chances for throwing and missing titicen points are as 1 to 27 respectively: multuply 27 by 1.678. and the product 45.3 will be the number of required throws.

Prob. 5. To find hore many trials are necessary to make it equal!y probuble that an cvent ruill hapten 3, 4 , 5 , Ecc. times. Let a, b, and x, be as befure; and $a: b:: 1: q$; then $\left(1+\frac{1}{9}\right)^{x}=2 \times\left(1+\frac{5}{9}\right.$ $\left.+\frac{x}{1}+\frac{x-1}{2 q^{2}}\right)$ in the case of the triple event; and $\left(1+\frac{1}{q}\right)^{r}=2 \times\left(1+\frac{s}{q}+\frac{x}{1} \times \frac{s-1}{2 q^{2}}+\right.$ $\left.\frac{x}{1} \times \frac{x-1}{2} \times \frac{x-2}{3 q 3}\right)$ in case of the quadruple event, \&c. Then if q in the first equation be supposed $=1, x$ will be $=5$; if q be infiuite, or very large in respect to unity, the aforesaid equation, making $\frac{x}{q}=s$, will become $z=\log .2+\log$. $\left(1+z+\frac{1}{2} z z\right)$; and z will be found nearly $=2.675$, and x will always be between $5 q$ and 2.675 g . In the second equation, if q be $=1, x$ will be $=7 q$, but if q be infinite, or very large in respect to unity, s will be $=\log \cdot 2+\log \cdot\left(1+=+\frac{1}{2} x x+\right.$ $\left.\frac{1}{9} \varepsilon^{3}\right)$; and z will be found nearly $=3.6719$, and x will be between $7 q$ and $3.6719 q$.

A Table of the Limile.

The value of x will always be
For a single event, between 19 and 0.693
For a double event, be:ween $\quad 3 q-1.678 q$ For a triple event, between $\quad 5 y-2.675 q$
For a quadruple event, between iq - $3.672 q$
For a quintuple event, between $9 q-4.670 q$
For a sextuple event, between $11 \mathrm{q}-5.60 \mathrm{q} \mathrm{q}$ $\& c$.
And if the number of events contended for, $\mathbf{a s}$ well as the number q, be pretty large in respect to unity; the number of trials required for thove events to happen n times will be $\frac{2 n-1}{q} q$.or bare ly aq.

Prob. VI. Treco gamesters A and B, each hating suelve counters, play with three dice, on condition that if eleven points come np, B shall give one convter to A; if fourteen points comere $u p$, A shall give ane comenter to B : and that he shall be the winner who shall scomest ges all the counters of his adversary; what is the probability that each of them has of winning? Let p be the number of counters of each, and a and 6 the number of chances they have respectively for getting, a eounter at each cast of the dice ; their probabilities of winning are respectively as ap to 60 : and p being $=12$, and $a=27$, and $b=15$, by Prob. III. the probabjlities of winning are respectivelf
 to $2441+7 x_{2}$. See the demonsiration of this rule in Doctrinc of Chances, p. j\%.

Prol. Vil. Tios gamesters A and B tuy by taentyfour rumtert, sad haty woith tirce dice on this con.ittion, st it if lleven soints cowe ν !, A shatl take one counier out of the he, is; if foirrteen; B shall tike one; and he shilll be repist.d the rainner aube shali soonest get turive cocriers.

This problcin differs from the preceding, in that the game muit necessarily end in twenty-three throws, whereas in the former, the play may be un!!mited, on account of the reciprocations of loss and gain, which destroy one another. Iet a and 6 repreenent the proportion of the chance for throwing 11 and 14 ; and raise $a+\ell$ to the twentychird power, or to a power whuse index is the number of all the counters wanting onc, and the 12 lirst terms of that power will be to the 12 last in the same prupiortion as the probabilities of winning.
Proi. VIII. Three gamesters A, B, and C, ont of a deap of tective counters, of which four are white and aigit buck, drase birefould one counter at a time, in this mesuer : A begins to drawe, B fullowe A, C follozes B; than A begins agguin: and thicy cuntinue to drace in the same arder, till one of them, who is to be repilted the winner, drazes the frist white: what are their respective proisuidities of winning? Let n be the number of counters, a the number of white, and b the numter of black, and 1 the stake or sum played for.

1. A hass a chances for a white counter, and b chances for a black one; and, therefore, the probability of bis wiuning is $\frac{a}{a+b}=\frac{a}{n}$; and his expectation on the stake 1, when be begins to draw, is $\frac{a}{n} \times 1=\frac{a}{a}:$ now $\frac{a}{a}$ being taken out of the seake, there will remain, $1-\frac{a}{n}=\frac{n-a}{n}=\frac{b}{n}$.
2. B has achantes for a white counter, and the mamber of remaiuing counters is $n-1$; therefore his probability of winning will be $\frac{a}{n-1}$, and his expectation on the remaining stake $\frac{b}{n}$ will be $\frac{a b}{\times(n-1)}:$ subtract $\frac{a b}{n \times(n-1)}$ from $\frac{b}{n}$, and she remaining stake will be $\frac{h}{n}-\frac{a b}{n \times(n-1)}=$ $\frac{a b-b-a b}{\times(n-1)}$; but $n b-a b=b b$; therefore it will $b=\frac{6 \times(b-1)}{5 \times(a-1)}$.
S. C has a chances for a white counter, and the number of remaining counters is $n-2$; therefore his prolability of wioning will be $\frac{a}{n-2}$; and his expectation in the remaining stake will be $6 \times(t-1) \times a$

$$
\times(n-1) \times(n-2)
$$

4. A may have out of the remainder the sum
$b \times(b-1) \times(b-2) \times a$ $\frac{a}{n \times(n-1) \times} \times \frac{(n-2) \times(n-3)}{(n)}$
\&c. till the whole
stake be exhausted.
Wherefore, write down the series $\frac{a}{n}+\frac{b}{n-1} \mathbf{P}$ $4 \frac{b-1}{n-4} 9+\frac{b-2}{b-3} R+\frac{b-3}{n-\frac{3}{4}} s$, \&c, in whish P,
Q. R, S, \&c. denote the preiceding terths, and take as m iny terms of this series as there are units in $6+1$, (for b representing the number of black ccun:ers, the number of drawings cannot exceed $b+1$), then the sums of the first, fourth, seventh, sic. terms, of the second, fifth, eighth, \&c. terms, and of the third, sixth, \&c. terms will be the resppective expectations of $\mathrm{A}, \mathrm{B}, \mathrm{C}$; or, as the stake is tixed, these sums will be proportional to their respective probabilities of winning. Let n, then, in the case of this problem, $=1 y, a=4$, and $b=8$; and the general series will become $\frac{4}{12}+\frac{8}{11}$ + $\frac{9}{10} Q+\frac{6}{9} R+\frac{5}{8} s+\frac{4}{7} T+\frac{3}{6} U+\frac{2}{5} x+$ $\frac{1}{4} \mathrm{Y}$; or, multiplying the whole by 495 in ordee to take away the fractions, the series will be $165+$ $120+84+56+35+20+10+4+1$; and A will have $16.5+56+10=231, B, 120+35+4=159$, aed $C, 84+20+1=105$; therefore their respect: ive probabilities of winning will be proportional to the numbers 231,159 , and 105 , or 77,53 . and 35.
Prob. IX. A and B having tzoeloe counter, four of them white, and eight blach; A tvagers with B , thes taking out seven counters, blindfold, three of them shall bs whitt: what i, the ratio of their expectanties? 1. Seek how many cases there are for seven counters to be taken out of twelve ; they will be found from the doctrine of combinatious to be 79\%

$$
\frac{12}{1} \times \frac{11}{2} \times \frac{10}{3} \times \frac{9}{4} \times \frac{8}{5} \times \frac{7}{6} \times \frac{6}{7}=792 .
$$

2. Set aside three white ones, and find all the cases wherein four of the eight black ones may be combined therewith; they will be found to be 70 .

$$
\frac{8}{1} \times \frac{7}{2} \times \frac{6}{3} \times \frac{5}{4}=70
$$

And since there are four cases, in which three white may be taken out of four ; multiply 70 by 4 : thus the cases, wherein three whites may come out with four blacks, are found to be 280 .
3. By the common rules of gaming, he is reputed conqueror, who produces an effect oftener than he undertook to do, unless the contrary be expressly agreed on; and therefore, if A take out four whites with three blacks, he wins. Set aside four whites, and then find all the cases wherein three of the eight blacks may be conbined with four whites : these cases will appear to be 56 .

$$
\frac{8}{1} \times \frac{7}{2} \times \frac{6}{3}=56
$$

4. A therefore has $280+56=336$ chances, whereby he may win; which, suburacted from the whule number of chances 792, leaves 456, the number of chances wherein he may lose. Divide 536 by 798, and the quotient $\frac{336}{792}=\frac{14}{33}$ will express the probability of A's winning; and 1$\frac{14}{83}=\frac{19}{33}$ the probability of his losing; and therefore the odds against taking three white counters: are 19 to 14.
From the solution of this problem it appears, that, if $a \mathrm{BE}=$ the number of white counters, σ the number of black, n the whole number $=a+b$, c the number of counters to be taken out of n, and p the number of white counters to be found precisely in c, then the number of chances for taking none of the white, or one single white, or two white and no more, or three white and ne.

G A MING.

more, or four white and no more, \&c. will be expressed by $1 \times \frac{a}{1} \times \frac{a-1}{2} \times \frac{a-2}{3} \times \frac{a-3}{4}, \& c$. $\times \frac{b}{1} \times \frac{b-1}{2} \times \frac{b-2}{3}, \& c$. continued till the number of terms in which there is a be equal to p, and the number of terins in which there is b be equal to $c-p$. And the number of all the chances for taking a certain number c of counters out of the number n is expressed by the series. $\frac{n}{11} \times \frac{n-1}{2} \times \frac{n-2}{3}$. \&c. continued to ns many terms as there are units in c, for a denominator. E. gr. Resume the supposition of the problem, only that of the seven counters drawn, there shall not be one white ; and let $p=0$, and $c-p=7=61$; then taking 1 of the first series and 7 terms of the se-. cond, the number of chances will be 1×8; the ratio of which to all the 7 's that can be taken out of 12 is $\frac{8}{799}=\frac{1}{99}$: therefore the odds that there shall be one or more white counters among the 7 which are drawn are 98 to 1. The probability of drawing one white counter and no more will be $\frac{112}{992}=\frac{14}{99}$, or the odds 85 to 14 : the probability of drawing all the 4 white among the 7 will be $-\frac{56}{792}=\frac{7}{99}$; or the odds 92 to 7. If n and c were large, the foregoing method would be impracticable; and, therefore, the following theorem may be used. Iet n, c, and p be as before; and make $x-c=d$. The probability of taking precisely the number p of white counters will be
$c \times c-1 \times c-2, \& c . \times d \times d-1 \times d-2, \& c . \times$ $\frac{a}{1} \times \frac{a-1}{2} \times \frac{a-2}{3}, \& c$,
$n \times n-1 \times n-2 \times n-3 \times n-4 \times n-5 \times n-6 \times n$ $-7 \times n-8, \& c$.
Note, The first series of the numerator contains as many terms as there are units in p; the second as many as there are units in $a-p$; and the third as many as there are units in p; and the denomipator as many as there are units in a.
Tu avoid tiresome prolixity in this article, we must desist from farther investigations; which, in the following problems, grow very long, and more perplexed. In the rest, therefure, we shall content ourselves to give the answer, or result, without the process of arriving at it; which may be of use, as it furnisbes so many data, frum whence, as standards, we may be enabled occasionally to judge of the probability of erents of the like kinds; though without letting the mind into the precise manner and reason thereof.

Prob. X. A and B play with troo dice on this candition, that A shall win, if he throws six: and B, if he throwe seven: A to have the first throw, in liew of which B to have two throws; and both to continue witb two throzus each turn, till one of them wins: What is the ratio of the chance of A. to that of B ? Ans. As 10355 to 12276.
Prob. X1. If any number of gamesters, A, B, C, D, E, 敢. equal in point of dexterity, deposit eacb one piece of money; and engagr, on these conditions, that two of them, A and B , beginning the game, whichever of them chall be overcome, shall give place to the third C , who is to play witb the conquerer; and the conqueror here to be taken ap by the fourth man D; and thus on, till some one, having amquerad thew all round, draws the stakes what is the
ratio of their expectancies? This problem M. Bernoulli solves analytically. Here, calling the number of gamesters $n+1$, he finds that the probabilities of any two immediately following each other in the course of playing, are in the ratio $1+9^{n}$ to 2^{n}; and therefore the expectancies of the several gamesters, A, B, C, D, E, se. are in a geometrical progression $1+2 n: 2^{n}:: a: c$ $:: c: d:: d: e, \& c$. Hence it is easy to determine the state of the probabilities of any two gamesters, either before the game, or in the course thereof. If, e. gr. there be three gamesters, A, B, C, then $n=2$ and $1+2^{n}: 2^{n}:: 5: 4:: a: c$; that is, their several probabilities of winning, before A have overcome B, or B, C, are as the numbers $5,5,4$; and therefure their expectancies are $\frac{5}{14}, \frac{5}{14}, \frac{4}{14}$: for all of them taken together must make 1 , or absolute certainty. After A has overcome B, the probabilities for A, B, and C, will be $\frac{1}{7}, \frac{2}{7}, \frac{4}{7}$, as in the answer abore. If there be four gamesters, A, B, C, D, their probabilities from the beginning will be as $31,81,72,64$. After A has beat B, the ser eral probabilities of B, D, C, A, will be as $25,32,36,36$, respectively. After \mathbf{A} has beat \mathbf{B} and C , the probabilities of C, B, D, A, will be as $16,18,23,87$.

Prob. XII. Tbree gamesters, A, B, and C, whore dexterities are equal, deposit each one piece, and engage apon these terms: that two of them shall begin to play, and that the vanquished party shall give place to the third, who is to take up the conqueror; and the same condition to go round: each person when vanguished, forfeiting a certain sum to the main stake; which shail be all swept by the person who first beats the other troo successively. How much, now, is the chance of A, and B , better or worse than that of C ? 1. If the forfeiture be to the sum each person first deposited, as 7 to 6, the gamesters are upon an equal footing. 9 . If the forfeiture be in a less ratio to the depapit, A and B are on a better footing than C; if in a greater ratio, the advantage is on the side of C. 3. If there were no fines, the probabilities of winning would be proportional to the expectations; and the expectations, after the first game, would be $\frac{12}{7}, \frac{6}{7}, \frac{2}{7}$, the first belonging to B, the second to C, and the third to A; and, therefore, dividing the sum of the probabilities belonging to A and B into two equal parts, the probabilities of winning would be proportional to the numbers 5 , 4,5; and it is 5 to 2 before the play begins that either A or B win the set, or 5 to 4 that one of them who shall be fixed upon win it. 4. If three gamesters, A, B, and C are engaged in a posie, and have not time to play it out, but agree to divide (s) the sum of the stake and fines, in proportion to their respective chances; $\frac{4}{7}$ will be the share of B, who has got one game : $\frac{9}{7}$ that of C, Who should next come in, and $\frac{1}{7}$ the share of A, who was last beat.
M. Bernoulli gires an analytical solution of the same problem, only made more general; as not being confined to three gamesters, but extcnding to any number at pleasure.

Prob. XIII. A and B, two gamesters of equal dexterity, play with a given number of balls; aftor onas
tiste, A wents 1 of being rp, and B Se rohat is ths raio of their chances? A's expectancy is worth $\frac{7}{8}$ of the stake, and L's only $\frac{1}{8}$; so that their chances are as 7 to 1 .

Prob. XIV. T-00 gamesters, A and B , of equal -xterity, are engaged in play, on this condition, that as oftem as \mathbf{A} =xicets B, br sbal! gice him one piece of mency; and that B shall do the like, as eft as A exceods him; and that they shall not leave off till one bas won ail the other's money: and now b.bving four pieses, teeo by-stenders, R and S , lay a wager on the rancober of turns in whick the garne shall be finisbed; viz. R, that is sball be ooer in ten turns: vohat is she alle of ithe expectancy of S ? $\frac{560}{1024}$, or $\frac{35}{64}$ of the wager; or it is to that of R as 560 to 464 : and subtracting $\frac{35}{6 t}$ from 1 , the remainder $\frac{99}{64}$ will express the probability of the play ending in ten gaines; and it is 35 to 29 , if two equal gamesters phay together, that there will not be four stakes lust on either side in ten games.

If each player has five pieces, and the wager were, that the game shall end in ten turns, and the dexterity of a were dutible that of B, the expectamey of S would be $\frac{38 \times 10}{65 \% 1}$.

If each gamester have four pieces, and the ratio of the dexterities be required to make it an even raret, that the game shall end in four turns, it will be found that the one must be to the other as 5.274 to 1. And if the skill of either be to thit of the oiher as $13 \operatorname{sot}$ to 1 , it is a wager of 3 to 1 , that the play will be euded in four gaincs.

If each gamester have four picces, and the ratio of their dexterities be required to make it an even lay, that the game shall be ended in six turns, the answer will te found to be as 2.576 to 1 .

Prob. XV. Two gamesters, A and B , of equal cexterisy, heving agreed not to leave off playing till sen games are ever: a spectator, R, lays a roager veith enother, S, that by that sime, or before, A stall have beat B by three gazses: what is the value of the expectancy of $R ? \frac{350}{1024}$, or $\frac{11}{32}$ of the same vager: or it is to that of S, as 352 to 672. Sce Basset, Hazard, LotTERy, Prquet, QuaDMILLE, RATPLING, WHISK, \&c.

GAMMARUS, in the Fabrician system of entomology, a tribe of the cancer genus. See Cancer.

GA'MMER. s. The compellation of a woman corresponding to gaffer.

GAMMON. s. (gamlione, Italian.) 1. The buttock of a hog salted and dried; the lower ead of the firch (Dryden). 2. A kind of play with dice (Thomson).

GaMMUT, Gamut, or Gam-ut, in music, the name given to the table or scale laid down by Guido Aretinus, to the notes of which he applied the syllables, $x \ell, r e, m i, f a$, 2ol. (a. Sce Guido.

The gammut is also called the harmminal bland, because Guicto first arranged his motes upon the figure of a hand.

This seale is an improvement upon the diagram of the ancients, which was indeed confined within too narrow limits. Guido added Sour notes above the note hyperbolaon, and

G A N

one below the proslambanomenos: the latter he called hypo-proslambanomenos, and denot-: ed it by the letter G or the Greek r gamma, which, being at the foot of the scale, imparted a name to the whole. The gainmut was divided into three columns, the first called molle (Hat), the second natural, and the third durum (sharp). It consisted of twenty notes, viz. two octaves and a major sisth. The first octave was distinguished by capital letters, as G, A, B, \&ic. The second by sinall letters, $\mathrm{g}, \mathrm{a}, \mathrm{b}, 8 \mathrm{\&}$. and the supernumerary sixth by double letters, as gg, aa, bb, \&c. By the word gammut we now generally understand the whole present existing scale; and to learn the names and situations of its different notes is to learn the gammut.
'GAN, for began, from 'gin, for begia (Spenser).

GANACHES, in the manage, the two bones on each side of the hinder part of a horse's head, opposite its onset, of neck, which form the lower jaw, and give it motion. Here it is that those glands are placed which are chiefly affected in the strangles or glanders.

To GANCH. v. a. (ganciare, Italian.) To drop from a high place upon hooks, by way of punishment; a practice in Turkey.

GA'NDER. s. (zanojia, Saxon.) The male of the goose. See Anas.

GANDERSHEFM, a town of Lower Saxony, in Germany. Lat. 51. 54 N. Lon. 18. $20^{\circ} \mathrm{E}$.

To GANG. v. a. (ganger, Dutch.) To go; to walk: an old word not now used, except ludicrously (Spenser. Arlıuthnot).

Gang. s. (from the verb.) A number herding together; a troop; a company; a : tribe ($\boldsymbol{P}_{\text {rior }}$).

GANGESS, a river of Asia, which rises by two branches from the mountains of Kentaisse, in the country of Thibet; these two branches take a westerly direction, inclining to the north, for a course of about 300 miles in direct distance, when meeting the great chain or ridge of mount Himmaleh, which extends from Cabul along the north of Hindustan, and through Thibet, the rivers are compelled to turn to the south, in which course they unite their waters, and form what is properly termed the river Ganges. This body of water now forces a passage through the ridge of mount Himmaleh, at the distance, possibly, of 100 miles below the place of its first approach to it, and sapping its foundation, rushes through a cavern, and precipitates itself into a vast bason, which it has worn in the rock, at the hither foot of the mountains. From this second source (as it may be termed) of the Ganges, its course bccomes more eastwardly than before, through the rugged country of Sirinagur, until, at Hundwar, it finally escapes from the mountainous tract, in which it has wandered for about 800 Uritish miles. At Hurdwar it opens itself a passage through mount Sewallick; which is the chain of mountains that borders on the level country, on the north of the province of Dellic. After entering Hindustan, it passes

G A N

By Anopsheer, Furruckabad, Canoga, Cawnpour, Allahabad, where it is joined by the Juma, Merzapour, Chunar, Benares, Patna, thitty-six miles above which it is joined by we Dewah, and sixteen uiles above the same zown by the Soane, and opposite to it by the Gunduck. After leaving Patna, it pasise by Bar, Monghir, forty miles east of which it is joined by the Cosa, it then passes by Rajemal, forty miles below which it is joined by a branch of the Sappoo, or 'Teesta, and cighty miles below that by another branch of the same river. Soon after which it divides into a multitude of branches, called the Mouths of the Ganges, which eupty themselves into the Bay oi Bengal, in Lat. 21.4U. to 22 N. See BurramPOOTER.
The Hindus regard this river as a kind of deity; hold its waters in high vencration, and visit it ammually from all parts of Hindustan, in order to perform certain superstitious rites.

GANGLION. (ganglion, $\gamma^{c e r} \gamma^{2} s$, a knot.) In anatony, is applied to a knot in the course of a nerve. In surgery it is an encysted tumour, formed in the sheath of a tendon, and concaining a fluid like the white of an egg. It most frequently occurs on the back of the hand or foot.

GANGRENE. (gangrana, yqyrfave; from zerru, to feed upon.) A mortification of any part of the body, before endowed with vitality. It is known by the insensibility, coldness, lividness, and flaccidity of the part, and by the foetor it exhales.

To Ga'sgrene. v.a. (gungrencr, French.) To corrupt to inortification ($D_{r y d e n}$).
To Ga'ngrene. v. o. To become mortified (Wiseman).

GA'NGRENOUS. a. (from gangrene.) Hlorified; producing or betobening mortification (Arlulhnot).

GANGUE, or Matrix, is a general term u) express the earthy and stony substances in which metallic ores are gencrally enveloped. These substances are various ; frequently spar, quartz, Auors, hornblend, or sulphat of barytes. By German mineralogists, the word gang is used in a different sense, to denote the metallic vein itself.

GA'NGWAY. s. In a ship, the several wrays or passages from one part of it to the other. GA'NGWLEEK. s. (gang and week.) Rogasion week.

GANJAM, a town of the peninsula of Hindustan, in one of the northern Circars, subject to the English. Lat. 19. 22 N. Lon. 85. 20 E.

GanNeT, in ornithology. See Pelicanus.

Ga'NTELOPE. Ga'ntlet. s. (gantelope, Dutch.). A military punishment, in which the criminal running between the ranks receives a lash from each man (Drydcn).

GANAMEDE, in fabulous history, son of Tros, king of Troy, was the most beautiful youth that ever was scen. Jupiter was so charnied with him, that he carried him away, and made bim his cup-bearar in the room of

Hebe. He deified this youth, and to comfrre his father, made hin a present of some very swift horses. The abbe le Pluche observes, that Ganymede was the name of the horse or innage exposed by the ancient Fgyptians, to warn the people before their annual mundations, to raise their terraces in a just and proper height.

GANZA, a kind of wild goose (IIudilras).
GAOL (gaola, Fr. geole, i. e. caveala, a cage for birds), is ured metaphorically for \mathbf{a} prison. It is a strong place or liouse for keeping of debtors, \&c. and wherein a man is restrained of his liberty to answer an ofience done against the laws: and every county hath two gaols; one for deblors, which may be any house where the sheriff pleases; the other for the peace and matters of the crown, which is the county gaol. If a gaol be out of repair, or insufficient, \&c. justices of peace, in their quarter sessions, may contract with workmen for the rebuilding or remaining it; and by their warrant order the sum agreed on for thast purpose to be levied on the several hundreds and other divisious in the county by a just rate, $11 \& 12$ Willian III. c. 19. Sie Prison.
Gaol-delivery. The administration of justice being originally in the crown, in former times our kings in person rode through the realm once in seren years, to judge of aud determine crimes and offences; afterwards justices in eyre were appointed; and since, justices of assise and gaol-delivery, \&ic. A commission of gaol-delivery is a patent in nature of a letter from the king to certain persons, appointing them his justiccs, or two or three of them, and authorising them to deliver his graol at such a place of the prisoners in it: for which purpose it commands then to meet at such a place, at the time they themselves shall appoint; and informs theun, that, for the same purpose, the king hath coummanded his sherif: of the same county to bring all the prisoners of the gaol and their attachments before then at the day appointed. The justices of gaoldelivery are empowered by the conrmon law to procced upon indictments of felony, trespass, \&c., and to order to execution or reprieve: they may likewise discharge such prisoners as on their trials are acquitted, and those against ${ }^{\text {. }}$ whom, on proclamation being made, no evidence has appeared: they have authority to try offencers for treason, and to punish many particular ofiences, by statute 2 Hawk. 24. 2 Hale's Hist. Placit. Cor. 35.

GAOLER, the keeper of a gaol or prison. Sheriffs are to make such gaolers for whom they will be answerable: but if there be any default in the gaoler, an action liez against him for an escaje, \&c., yet the sheriff is most usually charged.-2. Inst. 592. Where a gaoler kills a prisoner by hard usage, it is felony.-3. Inst. 52. No fee shall be taken by gaolers, but what is allowed by law and settled by the jindges, who may determine petitions against their extortions, \&c. 2 Geo. II. c. 22.

GAP. s. (from gape.) 1. An opeaing in a

G AR

broken fence (T usser). 2. A breach ($\boldsymbol{K}_{\text {nolles }}$). 3. Any passage (Dtyden). 4. An avenue; an open way (Spenser). 5. A hole; a deficiency (Mure). 6 Any interstice; a vacuity (Swift). 7. An opening of the mouth in speech during the pronunciation of two successive vowels (Pope). 8. To stop a Gap. To escape by some mean shift (Sicift) 9. To stand in the Gap. To make defence.
Gap, an ancient town of France, in the department of the $\mathrm{L}_{\text {pper }}$ Alps, and lately a bishop's sec. It is seated on the small river Bene. Lat. 44. 34 N. Lon. 6. 10 E.
Gip-toothed. a. (gap and tooth.) Having interstices between the teeth (D ryden).

To GAPE. v. n. (zeapan, Saxon.) 1. To open the mouth wide; to yawn ($S_{w i f t)}$. 2. To open the month for food, as a young bird (Dryden). 3. To desire earnestly; to crave (Denhame). 4. To open in fissures or holes (Shakspeare). 5. To open with a breach , Dryden). 6. To open; to have an hiatus (Dryden). 7. To make a noise with open throat (Roscommon). 8. To stare with hope or expectation (Hudiliras). 9. To stare with wonder (Dryden). 10. To stare irreverently (J, O).

GA'PER. s. (from gape.) 1. One who opers his mouth. 2. One who stares foolishly. 3. One who loness or craves (Carcw).
G.AR, in Saxon, signifies a weapon: so Eadgar is a happy weapon (Gil-son).

To Gar.v.a. (giera, Islandick.) To cause; to make: obsolete (Spenser).

Gar-fish, in ichthyology. See Esox.
GARAMOND (Claude), a very eminent French engraver and letter-founder, was a native of Paris, where he died in 1561. He was the first who banished the Gothic, or black letter. from printing ; for which he substituted the Roman letter. His types were very good, and particularly the small Roman, which was called by way of eninence Garamond's smali Roman. By the command of Francis I., he cast the three Greek types employed in Robert Stephens's beautiful editions of the New Testament, and various Greek authors.

GARASSE (Francis), a French Jesuit, born a: Anzoulame, in 1585 . He was a man of considerable imagination, but of a bad taste, and scurrilous in his style of writing. In 1625 he published a book entitled, A Summary of the principal Truths of the Christian Religion : this was attacked by the abbot of St . Cyran, and was the principal cause of the controversy between the Jesulits and Jansenists. It was censured by the Sorbonne; and the Jesuits prudently banished Garasse to one of their hooses at a distance from Paris. He died of the plague, which he caught at Poictiers, while he was attending persons afflicted with that dreadful disorder; this happened in 1631 .

GARB. s. (garle, French.) 1. Dress; clothes; habit (Milton). 2. Fashion of dress (Denham). 3. Exteriour appearance (Shakspeare).

GA'RBAGE. s. (garlear, Spanish.) The bowel:; the offial (Roscommon).
vOL. V.

G A R

GA'RBEL. s. A plank next the keel of a ship.

GA'RBIDGE. GA'rbise. s. Corrupted from garlaye (Mortimer).

To GA'RBLE. v. a igarleflare, Italian.) To sift; to part; to separate the good from the bad (Lochr).
GA'RBLER. s. (from garble.) He who separates one part from another (Swift).
Garcilasso, or Garcias layso de la Vega, an eminent Spanish poet, was descended from a noble family, and born at Tolerlo in 1500. He was elucated under the eye of the emperor Charles V . who had a par-ticular estcem for him. Having accompanied that prince in his expelitions, he received a wound of which he died, at Nice, in his 36 th year. Garcilasso is one of those to whom the Spanish poetry owes the greatest obligations: he extended its bounds, and introduced many beauties. His works were printed at Naples in 1664, by the learned Sanctius.

GARCINIA, in botany, a genus of the class dodecandria, order monogynia. Calyz four-leaved, inferior ; petals four ; berry eightseeded, crowned with the stigma. Four species ; all East Indian trees. The two following are the species chiefly worthy of notice.

1. G. mangostana. Mangostan. A Jara tree, about the size of a crab-apple, with ovate leaves, and one-flowered peduncles. The Hower like that of a single rose; the fruit round, about the size of an orange, and very delicious. The Japanese stippose it the most elegant tree indigenous to their island, and hence it is largely cultivated in all their plea-sure-gardens.
2. G. cambogia. Gamboge-tree. With elliptic leaves; solitary, terminal, and nearly sessile flowers. It is a native of India; and the gum-resin known among ourselves by the name of gamboge is obtained by wounding the bark.

Gargon, or Garsoon, a French term, literally signifying a boy or male child any time before his marriage. It is also applied to certain inferior officers, among us called grooms.

GARD. s. (garde, French.) Wardship; care; custody.

Gard, a department of France, including part of the late province of Languedoc. Nismes is the episcopal town.

Gard (Yont du), a Roman aqueduct in France, uine miles N. E. of Nismes, erected, it is supposed, by Agrippa, in the time of Augustus. It is $i 60$ feet in height, and consists of three bridges rising ahove each other, and uniting two craggy mountains. The highest of these bridjes has six arches, of great blocks of stone, without cement; the centre one has eleven; and the lowest (under which flows the Gardon, an inconsiderable, but rapid river) has 3 (i. Lewis XIV. when he repaired, in 1609, the dannages which this stupeudous work had sustained by time, caused a real bridge, over which pascerigers now pass, to be constructed by the side of the lower range of

G $\mathbf{A} \mathbf{R}$

arehes. This aqueduct was built in order to convey to Nismes the water of the spring of Eure, which rises near Uzes.

GA'RDEN. s. (garda, Welsh; jardin, French.) 1. A piece of ground enclosed and cultivated, planted with herbs or fruits (Bucont. 2. A place particularly fruifful or delightful (Shakspeare). 3. GARDEN is often used in composition for hortensis, or belonging to a garden: as garden-mould, garden-illage, garden-ware (Mortimer).

Garden. The general expanse or plot of ground throughout which the art or science of gardening is called into exertion, whether for the purpose of landscape, flowers or esculents. See the article Gardening.
TuGa'rden. v. n. (from the noun.) To cultivate a garden (Ben Jonsun).
GA'RDENER. s. He that attends or cultivates gardens.

GARDENIA, in botany, a genus of the class pentandria, order monogynia. Corol twisted, berry inferior, two-celled, many-seeded; style elevated; two-lober; ; segments of the calyx vertical. Nincteen species; chicfly Fast Indian plants, some spinous, others unarmed. From the bark of some species exudes a gum like gum elemi : the fruit of one species, G. dumetorum, thrown into the water intoxicates fishes.

GARDENING, the art or science of laying out a plot of ground for the purpose of landscape, esculents, or Howers.

Gardening (Landscape), is justly entitled to be considered in the first place, as demanding very considerably more genius than either of the other divisions. It is now denominated orer Earo: e, English or picturesque gardening; the former epithet being bestowed in conseqneuce of the modera method of laying out pleasure-grounds having originated in our own country; and the latter in consequence of the principle upon which this method is founded, namely that of copying the style and character of the best painters of landscape, so as to transfer to nature and swell with actual life the well sclected beantics which the taste of a correct artist introduces into a picture. General roughness of surface is the grand object in both; for it is hence chiefly that force and impression are derived. The painter indeed carries this principle even into his fore-ground, for he has no other means of exciting the idea of life and motion : but here the gardencr has an advantage over the painter, for while the furmer sinooths and pulishes the lawn, by introducing into it his flocks and his berls he gives by their actual presence and motion that idea of life whicb the paint. er can only attain through the medium of roughness and abrupt contrasts of light and shade. In every other respect, however, they coincide most minutely: each equally disdains the liue and the pluinmet, pursues an easy variety through all the countless shapes it assumes, and gives an actual existence to whatever ideal forms and combinations the artist may have derired from a survey of nature in remote aud uncounected features of wildness or grandeur.

It is truly extraorlinary that the Chinese, atthough they are utterly destitute of taste in paintfing, and have never studied the effect of sudiden masses of light and shadow, appear to have evinced

G AR

a true pictaresque genius in their style of gardening. It is thus lurd Macartuey describes the enperor's palaces that lie scattered in the route frum Pekin to Gebol. "They are constructed upon nearly the same plan and in the same taste. They front the south, and are usually situated on irregular ground near the basis of gentle hills, which, together with their adjoining vallcys, are enc cosed by high walls and laid out in parks and pleasure grounds with every possible attention to picturesque beauty. Whenever water can be brought into view it is not neglected; the distant bills are planted, cultivated, or left naked according to their accompaniments in the prospect. The wall is often concealed in a sunk fence, in order to give an idca of greater extent. A Chinese gardener is the painter of nature, and though totally ignorart of perspective as a science, produces the happiest effects by the management, or rather pencilling of distances, if I may use the expression, by relieving or keeping down the features of the scene; by contrasting trees of a bright with those of a dusky foliage, by bringing them forward, or throwing them back according to their bulk and their figure, and by introducing buildings of different dimensions, either heightened by strong colouring, or softened by simplicity and omission of ornament There is no beauty of distribution, no feature of amenity, no reach of fancy which embellishes our pleasure grounds in England, which is not to be found here. Had China been accessible to Mr. Brown or Mr. Hamilton, I should have sworn they had drawn their happiest ideas from the rich sources which I have tasted this day; for in the course of a few hours I have enjoyed such vicissitudes of raral delight as I did not conceive coald be felt out of England, being at different moments enchanted by scenes perfectly similar to those I had known there, to the magnificence of Stowe, the softer beauties of Woburn, and the fairy-land of Paine's-Hill."
In feww words, modern picturesque or landscape gardening imparts to rural scenery what a noble aud graceful deportment confers upon the humad frame. It is sumething more than an imitative art; it is an endeavour to bestow on each individual reality, those beauties which judicious imitation would select from many, and combine in one fictitious representation.

Landicape-gardening, however, under the old Fuglish school was of a very different character. Its three grand divisions eonsisted of visto, parterre, and heath or wilderness, and they are well described by sir William Temple in hiy account of MoorPark: the first was usually composed of a very broad gravel-walk garnished with rows of laurels for want of orange-trees, and was terminated at cach end by a sunmer-house. The parterre or principal garden to which the visto led was equally devoid of simplicity. "This garden (nays his lordship) is best to be square, encompassed with a stately arched-hedge, the arches to be upon carpenters work, over cvery arch a litte belly enough to receive a cage of birds, and over every space, betiveen the arches, some other little figure with broad plates of round coloured glass, gilt for the sun to play upon." The wilderness with which the garden (properly so called) terminated, was, apon the whole, as formal, costy and unnatural. Yet the common sense of our owo countrymen serms frequently to have opposed this absurd and graceless fiction even when most prevalent. Lord Bacon does not appear to have yielded to it with his whole beart; and in his description of the

GARDENING.

heath as be denominates it, he has almost anticipated the ornamental scenery in general use in the present day. The genius of Milton soared equally above the trammels of fashion and corrupt taste : and what his masterly hand delineated as the garden of Paradise, was the basis upon which the fathers of the new system of English gardening, Kent and Brown, erected the whule of their principles.
The chief object at present pursued, and which erer ought to be pursued, in the construction of picturesque garden-scenery, is to follow nature and not to force her : to catch her own local view's and intentions, and to perfect them: but by no means to banish or exchange them for views and intentions sbe may exhibit in other situations, even though these last may be more magnificent or imposing, in every respect endeavouring to intermix unity with utility, and utility with proportion or harmony of parts to the whole.
In doing this our chief attention is of course to be paid to the fore-ground; which is in general mot merely of the highest importance, but the part which is usually most at the disposal of a proprictor. Wherever a man stands, the contiguous objects immediately before him furm a fore-ground to the scene he is looking at; and by the foreground how much is the general prospect affected : there are few who delight in lands"ape who have not perceived that the general harmiony of a scene resuits from a due pruportion of its parts; but the greater distances, and especially the back-ground, are seldom within the power of art. How then may art, thus limited in the extent of her dominion, attempt to harmonize the whole scene? The answer is, by a judicious adaptation and disposition of the objects through which the eye beholds it. A path is a series of fore-grounds; and to adapt each part of this to the various combinations of the distant objects which always result from change of place or aspect is the proper business of art: to produce a selection of well adapted greens which shall contrast, or mix their colouring into it: such interruptions as may frequently give the charm of renewal to what we have been for a time deprived of; the absolutely unintervening foliage of shrubbery bencath the eye, and the shade of forest foliage above it; in which jarter case the best portions of the distant scene may be selected and beheld from between the stems of the treer, which should be so situated as sometimes by affordins lateral limits to reduce the view eren to the strictest rules of composition; and, thus, from the varicties of the fore-ground the general, scene is also perpetually varied.

Distant scenery, however, can never be riewed in parts, but only altogether; and hence nothing can be more absurd than attempts which we often meet with, of counteracting the uniform operation of aerial perspective, by spotting the remote hills with little circumscribed clumps of dark foliage, and to intersect by regular fences what is formed to please only by the singleness and majesty of the whole.
These principles are general, and they apply to all the subjects of picturesque gardening, and their due employment and appropriation: to paths and roads, to wood and water, to fences and buildings: the chief theatre of which is still the fore-ground, the pi cot, indeed, on which the life and motion of the entire scenery seem to turn.
There are some features in the garden scene that are lost if intermixed with its general range,
and hence can only be seen to full adrantage by being contemplated alone. The more strictly ORNAmental, or Flower-garden, is of this character: which should, consequently, stand apart from the general scene, and be confined to some glade or other sheltered seclusion. The form and disposition of its beds, though very irregular, should not appear broken into too many round and disjointed patches, but only seem to interrupt the green sward walks, which, like the mazy herbage, that in forest scenes usually surrounds the underwood tufts of thorn, wind carclessly among them, and running from side to side through every part of the scene, frequently meet the gravel path that leads mund the whole. Here architectural forms, emblematic of the virtues or the arts, the busts of the good and the wise, the votive tablets of frieudship or gratitude, may often be gracefully and successfully introduced.

Still more remote should be the Esculent or Kitchen-garden. This should generally be situated on one side of the house, and near the stables, that dung may be easily conveyed into it; having under the wall borders which ought to be eight or ten feet broad. Upon those borders exposed to the south many sorts of early plants may be sown; while upon those exposed to the north we may have late crops; taking care, however, not to plant any sort of deep-rooting plants, especially beans and peas, too near the fruit-trees. We should next proceed to divide the sround into sections: the best Ggures for these is a square or an oblong, if the ground will adonit of it; otherwise they may be of that shape which will be most advantageous to the ground: their size should be propurtioned to the garden; if they be too small, your ground will be lost in walks, and the beds being enclosed by espaliers of fruit-trees, the plants will draw up slender, for want of a more open exposure. The walks should also be determined on the same scale: these in a small garden should be six feet broad, but in a larger one ten; and on each side of the walk there should be allowed a border three or four feet wide between it and the espalier, in which may be sown some small salads, or other herbs that do not take deep root, or continue long: but the larger divisions should not be sown or planted with the same crop two years together. In one of these divisions, situated nearest to the stables, and best defended from the cold winds, should be the hot-beds for early cucumbers, melons, \&cc. and to these there should be a passage from the stables, and a gate throurh which a small cart may enter. The most important points of general culture consist in well digging and manuring the soil, giving a proper distance to each plant, according to their different growths, as also in keeping them clear from weeds; for which last purpose we should alwass observe to keep our dung-hills clear from them; since if this is not done, their sceds will be constantly brought in, and spread with the dung about the garden.

Those who garden on a large scale ought to be provided with every convenience and facility. A proper spot should be appropriated tor a range of hot-beds; and another fur hot-houses and greenhouses. In gardens of this magnitude we expect also to meet with such out-buildings, as a toolhouse, and a room for the preservation of bulbs, seeds, and herbs. In the tool-house we expect to meet with gardening implements of evory kind. Even in gardening upon a small scale, a choice of implements is equally idesirable and profitable: it is the best mode of economizing time and labour,

G A R D E N I G

and almost ensures to us that we shall have our work well dune. If water can be introduced and kept clean, with verdant banks around it, we should certainly avail ourselves of such an advantage: the most central situation will always be fuund the most convenient. It should be fed from a pond rather than from a spring.

Plants are propagated by sceds, suckers, slips, offeets, divisions, cuttings, layers and grafts. Some are propagable by only one or two of these methods, and others by alnost all of them. Under the separate articles allotted to the various plants that constitute the province of gardening, we have endeavoured to point out the best mode of management and propagation for each ; and to these articles we shall refer the reader, without adding to the bulk of our work by a long and unnecessary recapitulation.

The following tables however will be found highly useful, as comprising the whole scope, and principles and practise of horticulture, in a bird's eye view, and we insert them accordingly :-

Table of the number of crops required of each sort of vegetable, in order to have a regular succession through the year; and also of the time of sowing and planting them.

Kitchen-garden plants, seeds, and roods. No. of crops. Time of sowing, Evc.

No. of crops. Time of sowing, *'c.

Dill	Mar. or Apr.
Endive	- Apr. May, June, July.
Fiscalions	Jall. or Feb.
Eschalot	Feb. Sept.
Fenuel	2 Feb. Aug.
Finochio	4 A pr. May, Jane, July
Garlic	2 Feb. Sept.
Horse-radish	Feb. or Mar.
Hyssop - -	1 Mar. or Apr.
Jerusalem artichokes 1	1 Feh. or Mar.
Kidney-beans	5 Mar. Apr.May,June,Juls
- Runners	2 Apr. May
Laveuder	1 May or June
Leeks	1. Feb, or Mar.
Lettuces	7 Feb. to Aug.
Marjoram	2 Mar. Apr.
Marygolds	1 Feb. or Apr.
Melons -	3 Feb. Mar. Apr.
for autumn	May
Mint	1 Mar. or Apr.
Mushrooms	2 Mar. Sept.
Mustard, for seed	1 Mar. or Apr.
- for sallad	Mar. to Sept.
- on hotbeds	Oct. to Mar.
Nasturtiums	1 Mar. or Apr.
Onions,todraw young	4 Jan. Apr. May, July
- principal crop	1 Feb. or Mar.
- for sced	1 Feb. or Mar.
- Welsh	2 July, Aug.
Parsley	3 Feb. Mar. July
- large-rooted	2 Feb. Apr
Parsneps -	2 Feb. Mar. or Apr.
Peas, hotspurs	5 Oct. Jan. Feb. July, Aug.
- Marrowfats	5 Feb. Mar. Apr. May, June
Pennyroyal	1 Mar. or Apr.
Potatoes	3 Feb. Mar. Apr.
- on hotbeds.	Jan. or Feb.
Purslane	3 Mar. Apr. May
Padishes	9 Jan. to Aug. and Nov.
- on hotbeds	2 Jan. Feb.
- for sallad	Mar. to Sept.
- for seed	1 May
Rampion	1 Mar. or Apr.
Rape	1 June or July
- for sallad	Mar. to Sept.
Rocambole	2 Feb. Sept.
Rusemary	1 May, or June
Rue	1 Mar. or Apr.
Sage	1 Mar. or Apr.
Salsafy	1 Mar. or Apr.
Savory -	1 Mar. or Apr.
Savoy cablage	3 Mar. May, June
Ecorzonera	1 Mar. or Apr.
Scotch kale	3 Mar. Apr. June.
Sca kale	1 Mar. or Apr.
Skirrets	1 Mar. or Apr.
Sorrel	2 Mar. Aug.
Spinach	6 Feb. to July
- Winter	2 July, Aug. or Sept
Tansey	1 Mar. or Sept.
Tarragon	1 Mar. or Sept.
Thyme	1 Mar. or Apr.
Tomatoes	1 Mar. or Apr.
Turneps -	6 Mar. to Aug.
- for seed	1 Feb.
Turnep-cabbage	2 May, June
Turnep-radish	2 June, July
Water-cress	2 Mar. Sept.

Table of the flowers, shrubs, and trees osially cultivated, and of the time and mode of their propagation.

GARDENING.

1. Tender annual flozeers,

To be sown on a strong hot-bed the last week in February, or first in March, transplanted after--ards upon another at four inches distance, then planted in small pots in May, afterwards in larger, and at the end of June placed in the open air.

1. Amaranths
2. Ealsams
3. Coeksconbs
4. Erg-plants
5. Gio. amaranthus

§ 2. Ansual fiozers,

To be sown on a moderate ho:-bed in March or April, transplanted afterwards before they are too thick, in rich light earth, and covered with mats, and in a month or six weeks into pots, or borders of the flower-garden.

1. African marygolds
2. Marrel of Peru
3. Blue browallia
4. Capsicums
5. Cape marygolds
6. Chiuese asters 6. Chinese or Ind. pinks
7. Chrysanthemums
8. French marygolds

As you sow them, fix numbers to them corresponding with these, and you will readily know each sort when they appear.

§ 3. Hardy annual flowers,

To he sown in March or April on the borders of the flower-garden. Hollow the earth out in form of a little bason, about a fout uver, and two inches deep; draw a circle near the cdge half an inch dorp, and drop a few seeds in it; thin them soon after they appear, and leave them at six inches distance, but the large sorts wider. In dry weather they will want frequent watering. Gather the seeds as they ripen, and you may save the expence of buying anuther seasou.

1. Adonis flower*	23. Mallows
2. Alkckengi	24. Mienonette
3. Alysson	Q5. Nasturtinms*
4. Amaranths	\&ic. Nigella, or devil in
5. Amethystea	a bush ${ }^{\text {- }}$
6. Balm (Muldavian)	27. Panscys, or bearts-
7. B.Jvidere	
8. Candy tuft ${ }^{\circ}$ 9. Catchfly (Lo	28. Peas (sweet-scent-
10. Caterpillar-trefoil	29. Pırsicaria*
11. Clary (red \& white)	30. Poppies ${ }^{-}$
12. Coniolvulus	31. Sattlower, or bastard
13. Curnbottes*	saffrud
14. Cucumber (spurting)	32. Suail-trefoil
15. Fumatory (yellow)	33 Snap-dragon
16. Hedgehog-trefuil	34. Stuck-July flowers*
17. Honeywort	35. Sun-fowers
18. Iudian corn	36. Sweet sultans
19. Ketmia	37. Tobacco
20. Larkspurs*	58. Venus'slooking-glass*
91. Lavateras	39. Venus's navelwort
22. Lupines	40. Xeranthemums.

Those marked thus * being very hardy may be sown the beginning of February, to flower early.
In July sow ayain annual stock, candy tuft, convolvalus minor, cornbottles, Lobel's catchfy, and yellow lupines, and they will flower until the frost kills them.

S 4. Biemial fioverers,

To be sown in March or April in beds very thin;
as soon as the plants touch one another, thin them, and leave thern at four or six inches asunder; those you draw out, plant at the same distance. In July transplant them all upon beds, at eight inches asunder; there they must remain till the end of September, when they must be planted upon the borders of the flower-garden, and they will produce their flowers the next summer, after which they will perfect their seeds and die.

1. Canterbury bell
2. Poppy(yellow horned)
3. Colutca (Ethiopian)
4. Rocket
5. French honessuckles
6. Scabious
7. Globe thistle
8. Stock-Julyflower
9. Honesty, or moon
10. Sweet Williams wort
11. Tree-primrose
12. Mallow (tree) 13. Wall-flowers.

§ 5. Perennial-rooted fowers,

Which if sown in the same manner as the biennials, and transplanted into the borders of the flower-sarden, will continue for several years.

1. Alysson
2. Auriculas
3. Ox-eye daisy
4. Bee larkspurs
5. Campanulas
6. Peas (cverlasting)
7. Pinks
8. Carnations
9. Polyanthuses
10. Columbines
11. Rhubarb
12. Flax
13. Rose-campion
14. Snap-dragons
15. Valerian
16. Greek valerian.
17. Hawkweeds
18. Hollyhucks

§ 6. Perennial-rosted fowwers,

Which are propazated by dividing their roots in spring, in March or April; or in the autumn, in September.

1. Adunis flower
2. Anemones
3. Asphodel
4. Asters
5. Bachelors-button
6. Bean-caper
7. Bears-breech
8. Burage
9. Buglows
10. Campanulas
11. Campion
12. Cardinal flower
13. Christmas rose
14. Cows!ip
15. Cranesbill
16. Crowfuot
17. Daisies
18. Dog-tooth violet
19. Dragons
20. Dropwort
21. Eternal flower
22. Fenuel-giant
23. Feverfew
24. Flag
25. Foxglove
26. Fraxinellas
27. Fumatory
28. Garlic
29. Gentianella
30. Golden locks
31. Golden rod
32. Greek valerian
33. Hellibore
34. Hepatica
35. Herb-bennet
36. Houseleek
37. Ladies-ibantle
38. Ladies-slipper
39. Ladies-smock
40. Lily of the valley
41. Lion's tail
42. London-pride
43. Loosestrife
44. Lupine
45. Lychnis
46. Lychnidea
47. Madwort
48. Marsh-Marygold
49. Meadow sweet
50. Milfoil
51. Milk-vetch
52. Mint
53. Mouth-mullen
54. Navelwort
55. Peony
56. Pilewort
57. Plantain
58. Primrose
59. Ragyed-Robin
60. Raunnculuses
61. Reed
62. Rhubarb
63. Saxifrage
64. Skullcap
65. Sneezewort
66. Side \rightarrow saddle flower
67. Soapwort
68. Solomon's seal
69. Spiderwort
70. Spurge
71. Stonecrop
72. Sunflower
73. Swallow-wort

74, Thrift

G ARDENING.

75. Throatwort
76. Toadnax
77. True love
78. Valerian
79. Vervaina
80. Veronica
81. Violet
82. Viper's-bugloss

§ 7. Bulbous and tuberous-rooted fowers.

1. Aconites
2. Irises
3. Amaryllises
4. Anemones
5. Bulbucodiums
6. Cornflags
7. Crucuses
8. Cown-inperials
9. Cyclanens
10. Daffodils
11. Garlic Moly
12. Hyacinths
13. Junquils
14. Wake rubin
15. Willow-herb
16. Wolfsbane
17. Wormwood and some others, but with very little beauty to recommend them.

To be taken up in April, May, and June, as soon as their leaves are withered, and planted again in September or Octuber, but their offsets in August.

The ranunculuses and anemones not to be planted till February.

The seed to be sown in February in boxes.
§8. Bulbous-rooted flowers.

1. Amaryllises	5. Daffodit (sea)
2. Culchicuins	6. Lily (Bellaflunna)
3. Crocuses	7. (Guernsey)
4. Cyclamens	8. Saffion.

These flower in autumn. They require to be planted in August, and to be taken up in April or May, as soon as their leaves are decayed, but their offsets in July.
§ 9. Decidwous fiowering-shrubs and ornamental trees,
To be planted in March, April, September and October.

1. Acacia (rose-flowering)	27. Gingo, or maiden-hair-tree
2. Almond trees	28. Gueldres rose
3. Allspice	29. Halešia
4. Althzas	30. Hamamelis
5. Astrotree (mountain)	31. Hawthorn
6. Annona, or papawtree	32. Hickery-nut 33. Honeysuckles
7. Azalcas	34. Honeysuckle (up-
8. Berberry-trees	right)
9. Bi \because nonia, or Trum-pet-flower	35. Hypericums 36. Jasmin
10. Bladder sena	37. Jesuit's bark tree
11. Eramble	(false)
12. Buckthorn	28. Endigo (bastard)
13. Caragana	99. Ironwood-tree
14. Cassioberry bush	40. Judas-tree
15. Catalpa, or Trumpet flower	41. Kidney-bean-tree 42. Laburnums
16. Ceanothus	43. Lac, or varnish-tree
17. Cephalanthus	44. Leatherwood
18. Cherry-trees	45. Lilacs
19. Cinquefoil (shrubby)	46. Mezereons
20. Clethre	47. Nightshades
21. Correl-tree	48. Olive-tree (wild)
22. Crab tree	49. Pastion-flower
23. Cytisus	50. Peach-trees
24. Diervilla	51. Periploca,orVirginian
25. Dogwood	silk
26. Fothergilla	52. Plum-trees

53. Poison-trees
54. Pomegranate-tree
55. Privet
56. Raspberry
57. Restharrow
58. Tamarisk
59. Ruse-tree, 80 varieties68. Tea-tree
60. St. Peter's wort 69. Twoth-ach-tree
61. Sassafras-tree
62. Traveller's joy
63. Service-tree
64. Tupelo-tree
65. Snow-drop, or Fringe-72. Viburnums tree
66. Weeping willow-tree.

§ 10. Decidyous forest-trees,

To be planted from the midille of February till the beginning of April, and from September till December.

1. Acacias	13. Horse chesnuts
2. Alders	14. Lurch trees
3. Ash trees	15. Lime trees
4. Beech trees	16. Magnolias
5. Rirch trees	17. Maple trees
6. Chesnut trees	18. Nettle trees
7. Crab trees	19. Oak trees
8. Cypress	20. Plane trees
9. Fider trees	21. Poplar trees
10. Elm trees	22. Tulip trees
11. Hickery nut	23. Walnut trees
12. Hornbeams	24. Willow trees.

1. Acacias
2. Alders
3. Ash trees
4. Beech trees
5. Birch trees
6. Chesnut trees
tree
7. Cypress
8. Elm trees
9. Hickery nut
10. Hornbeams
§ 11. Evergreen flowering shrwbs and ormamemal trees,
To be planted in March, April, September and October.
11. Alaternus
12. Andromeda
13. Arbor vite
14. Arbutus
15. Bay tree
16. Bignonia
17. Box
18. Broom
19. Cassine, or South sea tea tree
20. Cistus, or rock rose
21. Crab tree
22. Cytisus (hairy evergreen)
23. Groundsel tree
24. Holly trees
25. Honeysuckles
26. Juniper
27. Ivy
§ 12. Evergreen forest trees,
To be planted from the middle of Febraary till the end of April, atd from September till December.
28. Cedar trees
29. Oak trees
30. Cork trees
31. Pine trees
32. Cypress trees
33. Yew trees.
34. Fir trees
§ 13. Fruit trees and fruits,
To be planted in February, March, October and November.
35. Almonds
36. Apples
37. Apricots
38. Berberries
39. Cherries
40. Crab trees
41. Currants

8, Figs
9. Filberts
10. Gooseberries
11. Medlars
12. Nectarines
19. Nut trees
14. Peaches
15. Pears
16. Plums
17. 2uinces
13. Raspberries
19. Services

The following method may be taken for preserring the bluscoms of fruit trees in spring. Procure sume sheep hurdles, made of hazel or willow brancbes, about two or three feet higher than the walls. At spring, just before the blossom of the fruit-trees begin to open, place these before the trees, and fasten them in windy weather with stakes, and by their being taller than the walls are high, they may be set sluping about two feet from the bottom of the walls, which will keep them steary.

When the fruit is set, and entirely out of danger, take them quite away, and by beeping them in a dry place they will last many years, and will be always worth one third of the first cost, for lighting of Gires, when unfit for any other use. In an experiment that was made, the hurdles were placed before the trees in December; they also defended a crop of peas. It is possible that vine might also be thus defeuded in the spring, and come forwarder; at least it is worth tiying where the walls are not two high.

§14. Herdy greenhouse plants,

To be planted against a south wall, in the open eround, the roots corered with tan or long litter. These will nut be killed except in very severe frost, and then they generally shoot up afiesh from their roots.

By this method, many curions plants, formerly only kept in greenhouses, will now ornament the walls, where they will appear in greater vigour ard beauty, and many may produce both flowers aud fruit, which they will not do when conlined in pots in a greenhouse.

1. Bay tree
Myrtle (Portural)

- Blue berried Carolinian

2. Boxthorn

- (African)

3. Broum

- (Sturry)
- (Muntpelier)

4. Cedar tree

- Bermudian)
- (Goa)

5. Fig (Indian)
6. Heath

- (Many flowered)
- (M.diterranean)
- (Thr e towered)

7. Jasmine (Catalonian)
8. Laucl (Alexandrian)
9. Myrtle

- (Broad leaved Roman)

19. Strawberry tree

- (Double flowered)

Por the particular operations in esculent and fiower gardening, gee the articles Planting, Pruning, Grafting, Inarching, Inoculatmg. See also Husbandry, Green-house, Hor-house, and the respective names of the difArent plants referred to, in their systamatic arrangement.
GARDINER (Stephen), bishop of Winchester, and lord chancellor of England, born at Bury St. Edmunds in Suffolk, natural son to Richard Woodrille, brother to queen Elizabeth wife to Edward IV. wa learned in the

G AR

canon and civil laws, and in divinity. He signed the divorce of Henry VIII. from Katharine of Spain, abjured the pope's supremacy, and wrote De rera et falsa obrdientia, in behalf of the king : yet in Edward's reign he opposed the reformation, and was punished with imprisonment; but queen Mary coming to the throne, she enlarged him. He drew up the articles of marriage between the queen and Philip of Spain, which were very advantageous to England. He was violent ayainst the reformers; but on his death-bed was dissatisfied with his life, and often repeated these words: Erravi cum Petro, sed non flevi cum Petro. He died in 1555.

GARE. s Coarse wool on the legs of sheep.
GARGA'REY, in ornithology. Siee ANas.
GA'RGARISM. s. (yap’aif($\sigma \mu \circ \rho_{\text {. }}$) A liquid medicine to wash the mouth with (Bacon).
 wash the mouth with medicated liquors (Hol.).

GARGET. In the manage, a tumour and inflammation in the head of horses and other quadrupeds, commencing in the eves and lips, and extending to the gums and tongue. It is sometimes contagious: but generally yields without difficulty to topical bleedings, especially of the sublingual vein, and cathartics in conjunction.

To G A'RGLE. v. a. (gargouiller, French.) 1. To wash the throat with some liquor not suffered immediately to descend (Harvey). 2. To warble; to play in the throat (Waller).

Gargle, in medicine. (gargarismum, gargarisma.) A fluid preparation to wash the throat with.

Gargle, among horned cattle, a disease proceeding from an indurated tumour of the dew-lap, progressively extending to the breast and throat. It appears to be of a scrophulous, indolent nature, and yields to rowels and other local stimulants.

GA'RLAND. s. (garlande, French.) 1. A wreath of branches or flowers (Sidney). 2. The top; the principal (Shahispeare). 3. A collar of ropes wound about the head of the mainmast of a ship, to keep the shrouds from galling (Chamlers).

GARLICK, in botany. See Allium.
Garlick pear. See Cratqua.
Ga'rlickeater.s. (garlic and eat.) A mean fellow (Shakspeare).

GA'RMENT. s. (guarniment, old French.) Any thing by which the body is covered.

GA'RNER. s. (grenier, French.) A place in which thrashed grain is stored up (Dr.).

To Gárner.n. a. (from the noun.) To store as in garners (Shakspeare).

GA'RNET. s. (garnato, Italian.) A gem of a middle degree of hardness, between the sapphire and the common crystal, whose colour is ever of a strong red. See GEMNA.

GARNETT (Thomas, M D.). an ingenious physician and philosopher, was born in a village in Westmorland, aud like most men who have become eminent by their talents, he sprang from the middle class of society, His.
father is the proprietor and cultivator of a small estate near Kirkby-Lonsdale. Prompted by his son's evident superiority over his little playmates, he resolved to spare no expence in his education, and accordingly, when he had paised tine usual time at a country grammarschool, he was placed under the care of Mr. Dawson, of Sedberg, in Yorkshire, a gentleman of well-known mathematical abilities. Four years were here spent in the closest stuly, at the expiration of which period, determining on the pursuit of medicine, he proceeded to Edinburgh, and became a pupil of 1)r. Brown, whose system he ever after defended and acted upon. A residence of several years procured him a degree. He then visited London, and studied surgery with considerable attention. Conceiving himself qualified to enter into the practice of nis profession, and an opportunity offering by the death of Dr. Wilson, he began his pablic carcer at Harrogate, in York, thire. To those who have observed the means which the medical men of this place find themselves under the necessity of asing, to obtain employment, it will not appear surprising, that the delicate mind of Dr. Garnett jeceivid severe aad frequent shocks, until, the jrksomencss of his situation becoming insupportable, al hough lucrative, he was compelled to abanown it. He now formed a desiga of emigrating to America, but the perstasion of his friends prevailed upen him to relinquish this neheme. It being stargented in Liverpool, that a course of lectures on chemistry and experimental phibosphy wouki, itu all protability, be well receised, he enbraced the idea, and was gratified by a success exceeding his most sanguine expectations. The neighbouring town of Manchester was the next theare for the display of his knowledge, and he there repeated, with the highest approbation, the course he had given at Liverpool. Encouraged by the flatering reception he met with, he became a candidate, and a successfui one, for the lecturesinip of Anderson's Institution, in Glacgow. The reputation which he acquired, while in this situation, induced the mamagers of the Royal Iustitution to offier him the place of lecturer in physics and philosophy, a selection which was the more honourable to Dr. Garnett, as it was entirely unsolicited, and unexpected by him. The temptation was too strons to be resisted. He acceded to the proposed terms, a:d, coming immediately to London, delivered his lectures during two seasons, to a crowded and brilliant audience. The publicity he had thus gained, added to other circumstances, influenced him to resign his scat in the Institution; and the lease of a house in Great Marlborough-street heing on sale, he bought it, built a large and convenient Jecture-romm, purchased a quantity of philosophical apparatus, and had the pleasure to see his forms tilled with pupils. In the spring of 1802, he began a new course, and was adrancing towards its close, when ill-health, for a time, suspended his labours. Resolutely strug¢ling with disease, in a few dags he resumed
his chair, and gave several lectures, when suffering under the severest indisposition; but, at length, his, feeble limbs refused to obey the dictates of his vigorous mind, and he was obliged to remain in his own apartment. His disorder every instant assumed a more serious aspect. The medical gentlemen, who attended him, declared it to be a typhus fever, caught in the gratuitous exercise of his profession, and increased by anxicty and over-exertion; and, in spite of every efiort of skill, and every care of affection, on the 28th of June 1802, this amiable man expired, in his 35th ycar.

As an author, Dr. Garnett is known to the world by his Tour through Scotland; by his Analysis of the Mineral Waters at Harrogate, Moffit, Horley Green, \&c. by his Lecture on Health; his Annals of Philosophy; and by a number of papers inserted in the Memoirs of the Medical Society of London, the Royal lrish Academy, and the Literary and Philosophical Society of Manchester, of which bodies he was a meinber. The Monthly Magazine also is indebted to him for several valuable communications.

As a lecturer, he was entit!ed to every praise for complete knowledge of his subject, although, in explaining it, he did not use the rhetorical action and declamation, which so frequently impose upon the world, and which, in matters of science, are perhaps worse than useless. What he said was easily apprehended, and he never allowed an opportunity to escape of illustrating and confirming by experiment what he had advanced in theory.
As a man, he was generally admired and beloved. Active and energetic, yet mild and unassuming, the superiority of his mind was disguised by the simplicity and suavity of his manners. His countenance was open and intelligent, sometimes highly animated, but too often overcast with an expression of melancholy, which those who were so happy as to be his friends must ever lament should have a cause for existence.

Before he quitted llarrogate, he married a Miss Cleveland, a charming woman, who was so iondly attached to him, as to participate in his studies. Firom the day of their union, it was her endeavour to assimilate her mind to his. She attended all his lectures, paid particular attention to thase subjects ou which she found he was most interested, and even qualified herself to assist him in the correction of his manuscripts. He returned her affection with equal ardour, and they seemed made for each other, when in giving him a second daughter, she expired in his arms. After this a wish to provide for his childrep roused him to great exertion, and this, together with much anxiety of mind, soon produced the fatal disora der which terminated his useful labours, and left his infant daughters orphans to be provided for by the knowp generosity of the Bri? tish public.

GARNIER (Rnbert), a French tragic poet ${ }_{\text {a }}$ was born at Ferté Bernard, in the province of

Maine, in 1534; and died in 1590. His dranatic works were primted at Lyons in 1 vol. 12mo. 1597.

GANNisH. v. a. (garnir, French.) 1. To decorate with ornamental appendages (Sidney). 2. To embellish a dish with something lail round it (Dryden). 3. To fit with fetters. A cant term.

Gin'rishes. (from the verb.) 1. Ornament; decoration; embellishment (Shahsp.). 2. Things strewed round a dish. 3. (lin gaols.) Feters.

GA RNISIMAENT. s. (from garnish.) Ornament ; embelinhument (II olton).

GA'RNITCRE s. (from garnish.) Furniture; ormament (Granville).

GARONNE, a river of France, which rises in the Pyrences, on the borders of Arragon, in Spain, and joining with the Dordogne about 12 miles below Bourdeaux, changes its name to Gironde.

Garonne (Epper), a department of France, which takes its name from the river that runs through it. It contains part of the late province of Languedoc. Toulouse is the capital.

Garou bark. See Thymalea.
GA'ROUS. a. (from garum, Latin.) Resembling pickle made of tish (Brown).

Ga'RliaN. s. (Frse.) a small horse; a hobby; a galloway (T cmple).

GA'RRET. s. (garite, the tower of a citadel, French.) A roou on the highest floor of the house.

GARRETTE'ER. s. (from garret.) An inhabitant of a garret.

GARRICK (David), a celebrated English actor, was descended from a French fainily, who, being protestants, fled to England on the revocation of the edict of Nantes. His father, Peter Garrick, was a captain in the army, and generally resided at Litchtield; but being on a reconnoitring party at Hereford, David was born there in 1716 . He received his education, partly at the grammar-school at Litchfield, and partly under the celebrated Dr. Johnson, with whom he came to London in 1735. He was for some time under Mr. Colsoli, an eminent mathematician, and afterwards went into partnership with his brother in the wine trade. This business he soon quitted for the stage. His first attempt was made at I $\mathrm{I}_{\mathrm{s} w i c h \text {, in the }}$ summer of 1741 , under the assumed name of Lyddal; and having been received there with great applause, he rentured soon after to make his appearance at the theatre in Goodman's fields, in the character of Richard. The theatres of Covent-garden and Drury-lane were quickly deserted, and Goodman's fields became the resort of people of fashion, till that theatre was shut up. Garrick then made an engagement with Fleetwood, the patentee of Drurylane. In the summer of 1748 he performed at Dublin to such full houses, that the heat of the weather and the crowds occasioned a fever, which was fatal to many, and was called Garpick's ferer. In 1747 he became joint-patentee

G AR

of Drury-lane with Mr. Lacey. In 1749 be married mademoiselle Viletti. In 1763 he and Mrs. Garrick made a visit to Italy, both of them being in an indifferent state of health. Visiting Paris on his road, he saw the celebrated mademoiselle Clairoin. At this time madermoiselle Dumesnil was the favourite actress in that city; but Mr. Garrick ventured to foretel that Clairon would excel all her competitors, and the result verified the prediction. He returned to England in 1765, and in 1706 quilted the stage. He died at his house in the Adelphi in 1979. He wrote several dramatic pieces, and a great number of prologues and epilogues, besides reviving several old plays. A monnment was lately erected. to his memory in Westminster-abbey.

Mr. Garrick continued in the unmolested enjoyment of his fame and unrivalled excellence to the moment of his retirement. His universality of excellence was never once attacked by competition. Tragedy, comedy, and farce; the lover and the hero, the jealous husband who suspects his wife without cause, and the thoughtess lively rake who attacks without design, were all alike his own. Rage and ridicule, doubt and despair, transport and tenderness, compassion and contempt; love. jealousy, fear, fury, and simplicity; all took in turn possession of his features, while each of them in turn appeared to be the whole possessor of his heart. In short, Nature, the mistress from whom alone this great performer borrowed all his lessons, being in herself inexhaustible, this her darling son, marked out for her truest representative, found an unlimited scope for change and diversity in his manner of copying from her various productions. There is one part of theatrical conduct which ought unquestionably to be recorded to Mr. Garricl's honour, since the cause of virtue and morality, and the formation of public manners, are considerably dependent upon it; and that is, the zeal with which he aimed to banish from the stage all those plays which carry with them an immoral tendency, and to prune from those which do not absolutely, on the whole, promote the interests of vice, such scenes of licentiousness and liberty, as a redundancy of wit and too great liveliness of imagination have induced some of our comic writers to indulge themselves in, and which the sympathetic disposition of our age of gallantry and intrigue has given sanction to. In this respect we should be happy to see the conduct of Mr. Garrick universally imitated.

GA'RLISON. s. (garrison, French.) 1. Soldiers placed in a fortified town or castle to defend it (Sidncy). 2. Furtitied place stored with soldiers ($l i$ aller). 3. The state of being placed in a fortification for its defence (Spen.).

To Ga'rrison. e. a. (from the noun.) To secure by fortresses (Dryden).

GARRU'LITY. s. (garrulitas, Latin.) I. Loquacity ; incontinence of tongue (Mi/lon). 2. The quality of talking tou much; talkativeness (Ray).

G A R

GARRULOUS. a. (garrulus, Latin.) Pratthine: talkative (Thomsom).

GARSTANG, a wwin in Lancashire, seated ou the river Wyre, with a market on Thursdare L.at. 5356 N . Lon. 2. 53 W .

GARTER, π estaxieses, a ligature to keep up the stockings; it is :lso particularly used for the badge or soguizance of a noble order of knights, hence denominated the

Order of the Gurter, a military order, next in diguity after the nobility, instituted by king Edward 1II. in 1344, under the title of the sovereign and knights-companions of the most noble order of the garter.

This order consists of twenty-six knights, or companions, generally peers or princes; whereof the king of England is the sovereign, or chief.

Tiney wear a garter, set with pearls and preeious stones, on the left leg, between the knee and calf, with this motto ; honi suit qui mal y pense, q. d. shame to him that thinks evil hereof: and they bear this motto surrounding their arms. The meaning of which motto is said to be that king Edward having laid claim to the kingdom of France, retorted shame and defiance upon him that should dare to think amiss of the just enterprize he had undertaken for recovering his lawful right to that crown; and that the bravery of those knights whom he had elected into this order was such as would enable him to maintain the quarrel against those who thought ill of it.

They are a college or corporation, having a great and little seal : their officers are, a prelate, chancellor, register, king at arms, and usher.

Besides which, they have a dean, and twelve canons, with petty canons, vergers, and twen-ey-six pensioners, or poor knights.

- The prelate is the head; and the office is rested in the bishop of Winchester : next to him is the chancellor, which office is vested in the bishop of Salisbury, who keeps the seals. All these officers, except the prelate, have fees and pensions.

The order is under the patronage or protection of St . George of Cappadocia, the tutelar saint of this kingdom. Their college is held at the castle of Windsor, within the chapel of St. George, and the chapter-house, erected by the founder for that purpose. Their robes, \&c. are the garter, decked with gold and gems, and a buckle of goll, to be worn daily; and, at feasts and solemnities, a sur-coat, mantle, high velvet cap, collar of SS's composed of roses enamelled, \&c.

The mantle is the chief of those vestments made use of on solemn occasions. Its colour is by the statutes appointed to be blue. The length of the train of the mantle only distinguishes the sovereign from the knights-companions: to the collar of the mantle is fixed a pair of long strings, anciently wove with blue silk only, but now twisted round, and made of Venice gold and silk, of the colour of the robe, with knobs or buttons, and tassels at the end. The left shoulder of the mantle has from the
institution been adorned with a large garter, with the device homt soit, \&c. within this is the cross of the order, which was ordained to be worn at all times by king Charles I. At length the star wos iniroduced, which is a sort of cross irradiated with beaus of silver. The collar is appointed to he coniposed of pieces of gold in fashioned garters, with the ground enamelled bluc, and the moten gold.

When they wear not their robes, they are to have a silver star on the left side; and they commonly bear the picture of St. George, enamelled on gold, and beset with diamonds, at the end of a hlue ribbun, crossing the booly from the left shoulder. They are not to appear abroad without the garter, on the penalty of $6 s .8 d$. paid to the register.

The manner of electing a knight companion into this most noble order, and ihe ceremonies of investiture, are as follow :-W When the sovereign designs to elect a companion of the garter, the chancellor of the order draws up the letters, which, passing both under the sovereign's sigu manual and signet of the order, are sent to the person by Garter principal king at arms, and are to this ϵ fect: " We, with the companions of our most noble order of the garter, assembled in chapter, holden this present day at our castle at Windsor, considering the virtuous fidelity you have shewn, and the honourable exploits you have done in our service; by vindicating and maintaining our rights, \&c. have clected and chosen you one of the companions of our order. Therefore, we require you to make your speedy repair unto us, to receive the ensigns thereof, and be ready for your installation upon the day of this present month," \&c. The garter, which is of blue velvet bordercd with fine gold wire, having commonly the letters of the motto of the same, is, at the time of election, buckled on the left leg by two of the senior companions, who receive it from the sovereign, to whom it was presented on a velvet cushion by Garter king at arms, with the usual reverence, whilst the chancellor reads the following admonition enjoined by the statutes: "To the honour of God omnipotent, and in memorial of the blessed martyr St. George, tie about thy leg, for thy renown, this noble garter; wear it as the symbol of the most illustrious order, never to be forgotten or laid aside ; that thereby thou mayest be admonished to be courageous, and having undertaken a just war in which thou shalt be engayed, thou mayest stand firm, valiantly fight, and successively conquer." The princely garter being thus buckled on, and the words of its signification pronounced, the knight electis brought before the sovereign, who puts about his neck, kneeling, a sky-coloured ribband, to which is appendant, wrought in gold within the garter, the image of St. George on horseback, with his sword drawn, encountering with the dragon. In the mean time, the chancellor reads the following admonition: is Wear this ribband about thy neck, adoined

G A R

with the image of the blessed martyr and soldier of Christ St. George, by whose imitation provoked, thou mayest so overpass both prosperous and adverse adventures, that having stoutly vanquished thine enemies both of body and soul, thou mayest not only receive the praise of this transient conbat, but be crowned with the palm of eternal g'ory." Then the knizint elected kisses his sovereign's hand, thanks his majesty for the great honour done him, rises up, and salutes all the companions severally, whon return their congratulations.
Since the institution of this order, there have been eight emperors, and twenty-eight kings, besides aumerous sorereign princes, enrolled as companions. lts origin is somewhat differently related : the common account is, that it was erected in honour of a garter of the countess of Salisbury, which she dropped dancing with king Elward, and which that prince picked up: bot our best antiquaries think it was instituted on account of the victory over the French at Cressy, where the king ordered his garter to be displaved as a sigual of the batte.

Garter, primipal King at Arms. This office was instituted by Henry V. Garter and principal king at arms are two distinct offices united in one person: Garter's employment is to attend the service of the order of the garter; for which he is allowed a mantle and badge, a house in Wintisor-castle, and pensions both from the sovereign and knights, and, lastly, fees. He also carrics the rod and sceptre at every feast of St. George, when the sovereign is present, and notifies the election of such as are newly chosen; attends the solemnity of their installations, \&ce.
Garters, in ornithology, coloured rings in some birds, round the naked part of the thi; hhs just above the knees.

To Gi'rter. v. a. (from the noun.) To bind with a garter.

GARTH. s. The bulk of the body measured by the girille. In some parts of England this name is given to a little back jard, or close.

Garth-nen, is used in our statutes for those who catch fish by means of fish-garths, or wears.
Garth (Sir Samuel), an English poet and physician, was born in Yorkshire, and educated at Cambridge, where he took the degree of M.D. in 1691 . He greatly contributed to the carrying into execution the project of establishing dispensaries, in which the college was engaged, and which was opposed by the apothecaries. He lashed the apothecaries for their renal spirit, in his poem of the Dispensary, which had uncommon success. In 1697 he spoke the annual speech in Latin before the college on St. Luke's-day, which gained him the reputation of a distinguished orator. His practice in his profession was now great, and hie was universally beloved for his humanity and aniable manners. On the accestion of George I. he was knighted, and appointed the king's physician in ordinary, and physiciangeneral to the army. He died in 1718-19.

G A S

GARCM, a word in very common use among the old writers on medicine, who expressed by it a pickle, in which fishes had been preserved. The principal kind of fishes they preserved in this manner was the mackarel. The way in which this garun was prepared is unknown to us. The moderns mean no more by this word, than the pickle in which herrings, or anchovies, are preserved.

GARUMNA, a celebrated river, now known thy the name of Garonne.

GAR'II (Lewis), a painter, the disciple of Andrea Sacchi, and the rival of Carlo Maratti, was born at Pistois in Tuscany. His paintings are greatly admired in Italy. At the age of 80 he painted the dome of the church Stizmatie, in Rome, by order of Clement XI. which is deemed his finest work. He died in 1721, at the age of 83 .

GAS, in chemistry. See Gass.
GASCOIGNE (Sir William), lord chief justice of the king's bench, was born at Gawthorp, in Yorkshire, in 1350, and being bred to the law, was in 1398, on the accession of Henry IV. raised to the rank of chief justice of the king's bench. He distinguished himself by his integrity, loyalty, and inflexible justice, and particularly by a memorable transaction in the latter end of that reign. A servant of the prince of Wales, afterwards Henry V. being arraigned for felony, at the king's bench bar, the prince, his master, hasted to the court, and not only ordered sir William to release him, but attempted his rescue. When being opposed by the lord chief justice, who ordered hisn to leave the prisoner and depart, he rushed with fury up to the bench, and struck that judge, white he was sitting in the execution of his office. Upon which sir Wila liam, after some grave expostulations on this outrage and unwarrantable interruption of the course of justice, committed that young prince to the king's bench prison, there to wait his father's pleasure; and the royal youth was so struck with the reproof, that he submitted to that disgraceful punishment with a calmness as sulden and surprising as the offence which occasioned it. The king, on hearing the affair, said, he thanked God for having given bim both a judge who knew how to administer, and a son who could obey justice. This action had a happy effect on the prince, who had for some time led a dissolute life; but he now became reformed, and being soon after raised to the throne, by the title of Henry V. was far from shewing the least resentment against sir William, who died on the 17th of December, 1413.

GASCOIN, or Gaskin, of a horse, is that part of the hind quarter extending from the stifle (or inferior point of the thigh approaching the belly) to the bend of the hock behind; upon the shape, strength, and uniformity of which, the property, action. and excellence of the horse very much depends. If the gasking be wide, and divide below the tail in an extensive arch on the inside, with a bold swell of the muscle on the ourside, these not only indi-
cate great strength, but add considerably to the syunuctry of the horse, when viewed from behind. A horse well formed in the gaskins, is seidom badly shaped in the fore quaters; nor are such, in general, horses of inferior action ; exclusive of which, they are necessarily free from the very awkward defect of cutting: an inconventence of no small magnitude to a traveller with a weary horse upon a long journey.

GASCONAI)f, a boast or vaunt of something very improbable. The term has its rise from the people of Gascony in France. Sce Gasconr:

CiASCUNY, a late province of France, bound. d on the W. by the bay of Biscay, on the N. by Guienne, on the E.. by Languedoc, and oa the S . by the Pyrenees. The character of the inhabitants has been long that of a lively people, tamous for boasting of their valour, which has occasioned the name of gasconade to be given to all bragging stories. This province, with Armarnac, now forms the departpent of Gers.

To GASH. v. a. (from hacher, French, to cut.) To cut deep so as to make a gaping wound.

Gash. s. (from the verb.) 1. A deep and wide wound (Spenser). 2. The mark of a wound (Arluthunt).

GASHED LEAF. In botany. Foliun incisum dissectum. Having the sections or divisions usually determinate in their number; or at least more so than in the laciniate leaf. The gashed differs from the cleit leaf (fissum), in having the sections extending but little beyond the edge (though deeper than in the crenate leaf); while in the cleft leaf they reach almost to the middle. See Dissect and Laciniate.

GA'SKINS. s. Wide hose; wide breeches (Shakspeare).

GASOLITRO, an instrument contrived by M. Goldschmidt, of Paris, to examine and measure the gasseous contents of mineral waters. This apparatus was designed, not only to expedite the process, but also to get rid of the trouble of using lime-water to detect the carbonic acid gass, and the inaccuracy resulting from its use, and from the variations of pressure in the common mercurial apparatus. In PI. LXXVIII. A is a glass funnel to pour in the mercury into the glass cylinder C, which is graduated, shut by the cock B, and cemented on the plate D , made of delft-ware; E , wooden stand; F, stand to support the apparatus; G, glass tube, the cavity of which is about $\frac{15}{}$ of an inch in diameter, and which communicates with the cylinder C ; H , tube of the same diameter, communicating also with the cylinder \mathbf{C}, and returning by an iron cock into the bottle J, intended to receive the mercury ; K, cock for a double current of air ; L, a matrass containing about four ounces of water, secured to the cock by a screw ; M, sandbath ; N, furnace; \mathbf{O}, punp, the cylinder of which is glass, secured by two screws to the stand F; the use of this pump is to graduate the cylinder $C ; P$, glass measure, to
contain a known quantity; Ω, cock for a dousble current of air; R , bladder to contain the gass; S, cock; T, cock for a double current of air; U , class pipe, coming from the cock \mathbf{T} to K ; Z , index of the second curre.it of air. To know the quantity of gass which any gasseous water contains, we thus dispose the apparatis. Having shut the cock H, we fill the cylinder with mercury; we shut the cocks B and K, and open the cock A, to know the state of the apparatus; if it be in proper order, it will not make a vacuum in the cylinder \mathbf{C}, further than the first mark; we fill the matrass up to the neck with the water we intend to analyse, and carefully fit the matrass to the cock K, by a screw provided with a little shield of leather: the whole being well secured, we open the cocks K and H, and heat the water to the boiling point. (Med. and Phys. Journal. English Encyclopedia).

To GASP. v. n. (from gape, Skinner.) 1. To open the mouth wide; to catch breath with labour (Addison). 2. To emit breath by opening the mouth convalsively (Dryden). 3. To long for (Spectator).

Gasp.s. (from the verb.) 1. The act of opening the mouth to catch breath. 2. The short catch of breath in the last agonies (Addison).

GASS. (from the German, gheist; or the common Teutunic gare; from which root we obtain the terms ghosl, ghostly, egha,l.) An elastic aërifurm fluid. It is written by the Freuch, gas, but improperly : it is also written by most Ellglish writers, gas, yet, we think, improperly also, as an Euglish word, since our established orthography duplicates in almost all monotyllables the terminating consonant, as in ass, pass, lass, gloss, in all, ball, call, in butf, cuff; stuff, and formerly, in winn, supp, \&ce.: In lack, sack, crack, \&ce. the double consonant is in like manner retained, the final k, having the power of a c : while in the term gars itself, every one spells it with a double s in the plural, and writes, not gas-es, but gass-es.
This term was first used in chemistry by Van Helinont, who denoted by it the vipour of charcoal, (gass sylvestre) now known to be carbonic acid sass: he also applied it to other aërial fluids produced in his experiments; as gass fingue, extricated from inflammable substances during their their analysis by heat; gass flammeum, produced by the deflagration of nitre; gass vitiale, the spirit of life, \&ce. The air of the atmosphere be called gass ventosum. At present, gass is employed as a general term, to express all those aërial fluids, whether produced by chemical experiments or cvolved in natural processes, which are not condensible by the cold of our atmosphere, and which differ from the air of the atmosphere: indeed, atmospheric air is a compound of three of the gasses, as will appear on referring to the articles Air and AtMosphere. The terin gass does not includefthose aërial substances which arise from water, ether, and other fluids, on the application of heat, although Lavoisier, and others, speak of aqueous gass, etherial gass, \&c.: these are now distinguished by the name of steam, or vapour, because they are easily condensed into their respective fluids again, merely by a certaia reduction of temperature; whereas the gasses retain their elasticity in every variation of the temperature and pressure of the atmosphere.

G A S S.

Of these gasses there are now a considerable number kno: n : the principal of them are enumerated at the end of the articles AIr and Chrmistry ; and will be found particularly described under their specific names.

1. Hiseory of disccocries relating to gasses-As these aerial Aoids are so curious in themselves, and of so mach importance in the economy of nature, and as the knowledge of them has contributed more, perting, than any thing else to the advancement of chemical science, we trust we shall be justified, in the opinion of our readers, for pursuing the history of gasses to a greater extent than is usual in the introduction of our articles. In one sense, inleed, there will be an advantage in this measure; for we shall thus be enabled ω bring together int, one view a number of connected observations which must otherwise have been scattered in different parts of our work, and which, in such a state of dispersion, would have failed to present a distinct and comprehensive idea of the progress of discovery, relating to one of the most interesting branches of natural philosophy. In tracing the outlines of this history, we shall avail ourselves of many observations in an excellent paper in Tilloch's Philosophical Magazine, vol. 9. on the Chemical Knowledge which the Philosophers of the 16 th and 17 th Centuries had of the different Gasses.

If we pass over the remotest traces which occur bere and there in the works of the ancient writers, Van Helmont seems to stand at the head of those more acute philosophers, who distinguished these subtile fluids from the air of the atmosphere. For, though it cannot be denied, that he disfigured his valuable discoveries by numerous fictions, and concealed them under new and commonly barbarous names, which were for the most part improper, yet he first informed physicians and naturalists, and proved clearly by observations and experiments, that other fluids existed, which, though they approach very near to the air in subtilty, transparency, and particularly in elasticity, yet differ from it very much; and, as they differ also from vapours, he distinguished them by the particular name of gass, as above related. He was acquainted with the air of the celebrated Grotto dei Cane, near Naples, (see Carbonic ACID), as well as with the exhalations in mines, against the pernicious effects of which cautions had been given long before his time by Andrew Libavius and George Agricola; and he knew also, that they killed animals which had purposely oraccidentally been exposed to them, as well as imprudent persons, and particularly miners. He was in particular acquainted with that gass which some, because it inflames when it comes in contact with a borning body, call inflammable gass, and which others, because they consider it as an essential component part of water, name hydrogen gass; and he knew also that it had been observed before him in mines by Libavius : be convinced himself that even eructations were of the same nature, and that this gass formed a principal component part of smoke: be likewise considered flame to be ouly inflatned smoke His knowledge, however, was not confined to this gass alone, for under the name of gass sylvestre he was acquainted with nitrous gass, produced by the action of aqua-fortis when silver is dissolved in it; and he knew also that when it came in contact with the atuosphere it formed fiery red vapours.

He appears to have been acquainted also with
the muriatic acid gass, and the sulphuric acid gacs.

He had hecome acquainted also, different ways, with that gass which shows itself in air in which various borlies, and particularly coals, have bern burnt; and on that account he had given it the name of coal gass; though he had seen abundance of it in various places, and accompanying other phopnumena, both in living human bodics, as for example in belching, and on a larger scale, as in wine and beer cellars, and during the efferresrence of different substances when acids were poured upon them, in the Grotto del Cane and other subterraneous places; particularly in acid waters, from which it rises in bubhles, and they are indebted to it, he says, for all their healing qualities. He remarks also of this gass, that, as it extinguishes the flame of a lamp or taper, it extinguishes also the flame of life. He proved, that the volume as well as the goodness of air is lessened by bodies burning in it; for, having placed a burning taper under a glass in such a manner that it stood three inches above the water in the vessel, he saw the water rise, assume the place of the decreasing air, and at length extinguish the taper.

He had observed also, that an air could be produced from nitre, which he called flame gass, and which was disengaged ou coal being added to it; and he thence conjectured the presence of vital air in that salt: He entertained also the opinion, which modern chemistry has supported by \%o many conclusive proofs, that all these air-like fluids are indebted for their form to the effects of fire, or, as we commonly say at present, to caloric.

It cannot, however, be denied, that Van Helmont considered as different gasses those which differ only by accidental corruption, as the carbonic acid gass, accorling as it is drawn from this or that bods, and in this or that manner; and that he confounded others, or did not make a proper distinction between them. Yet before Priestley, most of the philosophers who paid attention to this subject made no other difference between these kinds of gass, than that some of them inflame when brought into contact with a burning body, while others instantly extinguish a flame.

Van Helmont suspected also the great similarity which, in regard to air, is found between flame and animal life. This was more clearly perceived by Thomas Willis and Francis Sylvius de la Boè, a man whom few have equalled in genius or eloquence.

This Sylvius proved nothing by experiments; but he marle it probable, according to his manner, that sourish particles of nitre floated about in the common atmosphere, and approached so near to the prevailing principles of the present day, that he supposed fire (or caloric) was continually diffused through the air.

The celebrated Spanish mineralogist Alphonso Barba was acquainted with those pernicious damps which arise so often in mines, and which, though they resemble air in other respects, have however an offensive smell, extinguish lights, and deprive men, birds, and even snakes, of their life.

Boyle, to whom natural phitosophy in general is under so many oblizations, though he erred in ascribing the increase of weight which metals acquire by calcination, rather from the fire than to particles from the atmos \cdot here, was neveriheless acquainted with the carbouic acid gass as it rises

G A S S.

from coral, when it efferverces with vinegar, from bread, cherries, grapes, pears, apricots, plums, goveberries, peas, \&cc. when they furment, and its highly pernicious effects on animals; as also with the inflammable, as it partly occurs in abundance in many mines, for example, those of Hungary, partly as it arises by a solution of iron in diluted sulphuric acid or muriatic acid, and its property of inflaming when brought into contact with flame.

The latter-as a hizhly pernicious kind of gass, abundant in coal-pits, is mentioned by Martin Lister, Jessop, and P. R. Moslyn; and a fire which took place in a coal-pit by the inflammasion of such vapour is mentioned by Hudgson, in the Philosophical Transactions for 1676.; a like vapour was found about the same time by Beaumont in other subterranean holes; by T. Shirley above a spring, and Wolfstriegel and Vollgnad in a spring. Pope, in the first volume of the Philosophical Transactions, gave a very lively picture of that corrupted kind of gass in a hole near the lake of Agnano; and L. A. Purtius and Leonhard à Capna, that of Grotto del Cane, and otiner caverns in the neighbourhood of Naples; E. Hagendorn and F. Hoflimann, the dangerous quality of air in which coals have been burnt; and T. Birch, in 1668 , that of air which has bcen corrupted by the breath of animals. S. Ledelius nientions the death of a person which took place in a cellar filled with wine in a state of fermentation. This gass, as it rises both from fermenting liquids as well as from lixivious salts and earths, when they efferresce with acids, and in which, cren in his time, Bernoulli sought for the cause of this effervescing, was perfectly well known to sir Christopher Wren, in 1675 . He relates a method by which such fluids can be collected and prescrued in vessels; and he knew that the above gass is absorbed by water, and he distinguishes it very clearly from nitrous gass. Even the nitrous gass of the moderns seems to have bcen known to Huygens and Papin, for they relate, that they obtained such a fluid from the mixture of spirit of wine and spirit of nitre under the receiver of an air-pump.

At the same period, F. Slare and T. Willis ascribell the dark red colour of the blood to the air; and J. Máyow, another Englishman, with whom another Oxford physician, Henry Mand, and also Willis, L. M. Barbieri, and J. B. Giovanni, concurred, made the whole use of breathing to consist of this-that the lungs of animals inhale from the atmosphere nitrous particies, which are diffused over the animal spirits and communicate warmth to the blood. J. N. Peclilin, also, attributes the faculty of some divers being able to remain longer under water to a greater quantity of nitre. From all this, it appears, that the physicians of that period had a kind of idea of vital air, and its influence on the animal conomy.

Stephen Hales, who made further progress by bis numerous experiments in discovering the secrets of nature, placed beyond all doubt, by a long series of experiments, the elasticity of these fluids as they are expelled from bodies by heat, fermentation, corruption, and effervescence, a power which was before observed by Newton, and at the same thae show ded seval and ingenious methoxls how diey could be observed, preserved, measured, weighed, and evin handled. He remarked the inflammability of those which the inflammable bodies of every kingdom of nature yield by exposure to a strong beat, the propertics of
others which arise from effervescing mixtares, and which suddenly extinguish fame. He observed likewisc, exceeding:y well, the great difference of the nitrous gass which he obtained when he poured upon antimony aqua regia, or spirit of nitre; or the latter diluted with water (aqua-fortis) upon iron filings or quicksilver, and its property of forming red clonds with common air as soon as it comes in contact with it; and, by reprated experiments, that it absorbed a great portion of air; and also, that the oftener the rxperiment was repeater, the gass always absorbed the less air; that several of these gasses were aboorbed by water; how much the best air is corrupted by the bieathing of even the soundest men, so that at last it is totally unfit for respiration. He knew also the ammoniacal as well as the moriatic acid gass, and the sulphuric acid gasis, and had learned, frum his own experience, that the latter can be as strongly compressed as common air. He knew also that metals increase in weight by calcination, and again decrease on being revived; for he fuoud that red lead in the preparation bad moreased in weight about a twentieth part, and by a strong heat gave a great deal of air; his own expertence had taught him also that phosphorus, sulplur, and a tallow candle, absorb some of the air in which they burn, as animals absorb some of the air in which they breathe; though he ascribed the pernicious change which the air thereby experiences, not to the loss it sustains, but rather to the corrupt evaporation with which it is filed. He had observed, though less perfectly, that phosphorus after combustion increased in weight oy imbibing something from the atmosphere. He had discovered that an aériform substance was contained in acidulous waters, and that air was continually absorbed by plants in a healihy state. See his Statical Essays, passim.

In this difficult doctrine, however, be left a great deal to be explained by his followers; for he did not define and was not acqua nted with the difference of many of the gasses, and some of them escaped his notice altogether. The further illustration of them was reservid for the modern chemists. Thus, in particular, the following authore have very much contributed to enlarge our knowledge of the carbonic acid:-Dr. Black, in 1764; T. Henry, in 1773; the Dutch naturalist, D. De Smedt, in the same year; T. A. Emmer, in 1784. Among the Germana, N. C. Jacquin, in 1769; and J. J. Well, in 1772 . Among the lialians, Fontana, in 1774. In Switzerland, Sol. Schintz, in 1778, and in Sweden, sir Tobias Bergman. The last mentioned chemist shewed also, as did Brownrigg in England, and Venel in France, that acid waters are principally indebted to this sulstance for their properties; so that several chemical authors, such as Bersman, Rouelle, Duchanoy, Lalgier, Meyer, and Kostlin, have described the prociss by which they can be exceedingly well imitated.

With the like care and ingenuity, the following writers have examined the nature of the inflammable kinds of gass: Lassone, in 1766 ; Volta, in 1777; Senebier, of Geneva, in 1784; Minkelers, of Lovain, in 1784; Kirwan, in 1786; Moscheni, of Lucca, in 1753; Gengembre, and Raymond, in 1791; Nipuwland, Deiman, Froostwyk, and Bondt, in 1792. The three last, together with lauremburg, examined the different kinds of inflammable gass.
The dephlugisticated nitrous air of Dr. Priestley, now calied nitrous gan, has becp also examined
by Fontan3, Bochante, Deiman, Bondt, Nieuwlund, foutsnrk, \&ice. \&e. Azotic gass was noticed by professor J chanidt in the first volume of Gren's Juurual; Wieglib in Creli's Aunals, in 1796; and a multitude of writers since. The inflammable aruriatic acid gass was treated by Westrumb in Ciell's Annals for 1790, \&c.

But this new field in the province of natural knowledge has been cultivated in a more extensive manner, by a variety of anthors, wire have not conGined their attention to one or tro gasses, but have investigated with more or leas precision and adrantage all that they had an opportunity of examining. in Italy, Barbarigo, Fontana, Bucci, and Volta; in France, Berthollet, Bucquet, Corrinus de la Metherie, Rouland, Sigaud de la Fond, Thouvenel, Iavoisier, Fourcroy, \&cc.; in England, Keir, Planket, Cavalio, Cavendish, Higgins, \&ce. Ec.i; in the Netherlands, Froostryk and Deiman; io Germany, Achard, Herbert, Leonardi, Weber, \&c. But among the philosophers who have explained and illustrated the nature of these gasses by numerous experiments, made with great care and accurately described, none have distinguished themselves mure than Scherle and Dr. Priestiey. The former a native of Germany, but settled in Sweden, invented very simple processes, yet well calculated to aoswer the proposed end, of examining these gasses, by which means he discovered mew kinds, and proved the existence of those already known in a much clearer method than had been dune before in his Abbaudlung von der Laft and dem Feuer nebst einem Vorbericht von 1 . Rergronan, Upsal and Leipsic, 1777, 8vo.; and in Kongl. Svensk. Vetenskap. Acadein. Handling, 17i4, p. 84. The latter, being furnished with a amore extensive apparatus, placed in a clearer point of view not only the nature and differences of the gasses before discovered, but discovered mew ones also. An account of his experiments may be seen in Experiments and Observations on the different Kinds of Air, London, 8ro. vol. i. 1774, vol. ii. 177.5, vol. iii. 1777; Experiments and (Dbservations relating to various Brapches of Nataral Pıilosophy, with a Continuation of Obgervations on Air, 8vo. vol. i. London, 1779, vol. ii. Birmingham, 1782, vol. iii. 1790; Directions Eor inpregnating Water with fixed Air, isc. London, 17 i2, $8 v 0$.; Puilosophical Transactions of the American Society, 1796; and rarious other works within this period may be consulted with advantage.

In consequence of these researches, the nature of zasses in general became better understood, and their characteristic properties were asceltained vith sufficient accuracy to point out and establish a clear distinction between the individual gasses. H:nce, therefure, it is unnecessary to pursue our bistory farther in this place; for, though these interesting fluids have recently engaged, more universally than ever, the attention of philosophers, tbe discoveries which have been made respecting each will admit of a more convenient arrangement under the name of the particular gass to which they relate.

The gass arising from the distillation of coal has lately been applied, on a large scale, to the illumisation of boures, manufactories, streets, \&c.
2. Formotion of gasses.-Erery individual gass is supposed to be formed of two elements; the particular substance which gives name to the gass, and is called its basic-and caloric, by the expansive power of whioh it is made to assume the
gassenus form, and of which different proportions are required to combine with different substances. We are not able to set a limit to the number of borlies which may be made to assume this form, or to that of the various processes and combinations during which gasses are invulved.

In order to reduce any substance to the state of gass, the application of caloric may be made in different ways. The most simple method consists in placing the body in contact with another body that is heated: in this situation, the caloric on one hand diminishes the affinity of aggregation or composition, by separating the constituent primciples to a greater distance from each other; and on the other haud, the caloric unites with the principles to which it bas the strongest ambity, and volatilizes them. This process is according to the method of simple affinities; for, in fact, it consists of the exhibition of a third body, which, presented to a compound, combines with. one of its principles, and carries it off. The mothod of double affinity may also be used for the same purpose; as when we cause one body to act upon another to produce a combination, in which a disengagement of some gasseous principle takee place. If, for example, sulphuric acid be poured upon oxyd of manganese, the acid combines with the metal, while its caloric seizes the oxygen, and rises with it. This takes place, not only in the instance we have quoted, but on all other occasions wherein an operation heing performed without the application of heat, there is a production of vapour or gass. The various states under which budies present themselves to our eyes, depend almost entirely upon the different degrees of comsbination of caloric with these bodies: Huids do not differ from solids, nor gasses from fluids, but because they possess such a quantity of caloric as is requisite to maintain them in one or the other state respectively. For the methods cmployed in preparing the different kinds of gass, we refer to their names.
3. Mades of collecting and transferring the garses.It was not loug after the discuvery of the gasses, and the proof of their diversity, that methods were devised to manage them at pleasure. Dr. Priestley, the unost successful, though not the earliest cultivator of this department of chemistry, the extension of which forms a most important era in the history of the science, was the first who effected a contrivance by which these singular fluids may be collected, retained, transferred from one vessel to another, and subjected to every variety of experiment at the will of the operator. The principal article in the pneumatic apparatus is the trough, resorvoir, or cistern, which has been much improved in point of convenience since it was first invented; though the principle of its construction is retained. The present form of this vessel is represented in fig. 1. PI. 77. It may be madeeither of wood lined with leather, or of sheet iron, tinned, japanned, or painted : wood alone is not so proper, because if not kept full of water it will become leaky. A little below its brim a shelf AB is placed, about a half or third part as wide as the trough; in this shelf are several holes, each terminating a funnellike excaration, the widest part of which is on the under side of the shelf. The use of the shelf is to support receiners, jars, bell-glasses, or other vessels intended to contain the gass. To use the troush, so much water must be poured into it as is sufficient to cover the shelfto the depth of about an inch; and the receiver being tilled with water

In the deep part, must be placed invertedly on the shelf, its open end turned down upon one of the holes; the gass then being conveyed to the under part of the excavation by means of a curved or other tube, or suffered to escape from its former ressel, will ascend through the hole into the receiver, displacing the water as the quantity of gass increases. This trough may be made of various sizes, according to the purpose for whien it is intended: one of about two fet long, 16 inches wide, and 15 high , will be found sufficient for most experiments. Sometimes, however, a much larger one is necessary; and in laboratories, where a considerable namber of experiments are performed, it is also requisite to have several smaller ones, which may be moved when necessary near a furnace, or wherever they may be wanted. Fig. 2. represents a jar, being filled with gass, standing in a dish containing water, and having two handles to transport the vessels from one cistern to another, or for keeping them in reserve when the cistern is too full.

A more commodious method of constructing the pnenmatic trough is shewn in fic. 3.; where aa, is the well to contain the water for filling the vessels, \&c.; bb, a small shelf with holes; and on a level with it the surface cc, covered also with water; and not more than two or three inches dise tant from the brim; dd, dupressions, or hollows, to receive the curred necks of bottles, or the curved ends of tubes; ece, vessels invented on the surface of the trough; f, a large shelf underneath to contain vessels for use. Iustead of a rectangular, some persons preier a curvular, and others an oval sliape for their troughs.

Some of the gasses are capable of being absorbed by water, and therefore cannot be collected by means of the above apparatus. Wheu that is the case, mercury must be used; and on account of its gravity and dearness, a sualler trough, formed sonewhat differently, must be employed; as represented in tigs. 4. and 5., of which the first is a perspective view of the spherical cavity and groove to be filled, and something higher with mercury; the receiving vessel is likewise to be filled with that metal and inverted. Fig. 5. a section of the same, shewing the manner of placing the receiver, and the neek of the retort, or other vessel, from which the gass is to be supplied. The receiver ought to be of smaller diameter, and much stronger than when water is employed. A mercurial trough may be cut out of marble freestone, or a solid block of wood; but the first is preferable. A trough of about twelve inches long, three wide, and four deep, besides the gutter or groove, is sufficient for all private experiments.

In order to acquire expertness in transferring the gasses, it would be advisable for the chemical atudent to begin his operations with common air, by collecting and transferring which he would soon be qualified to manage any of the other gasses. The bell-glass, or other receiver, being filled with water, and placed with its mouth downwards over one of the holes in the shelf of the trough, let a glass or otber vessel be plunged into the water with its mouth downwards; the air within the vessel will prevent the entrance of the water; but if it be turned up, the water rushes in, and the air rises in bubbles to the surface: if this be done under the receiver, the air will descend through the hole, and rising to the upper part of the jar, a ill there be detained, and expel part of the water it contains. If the air is to be transferred from a
vessel that is stopped like a bottle, it mast be urn stopped with its orifice downwards in the water, and then inclined in such a manner that its neek may come under the excavation of the shelf. The gass will escape from the bittle, and passing through the hole into the vessel intended to receive it, will abcend into the form of bubbles as beiore. Sumetimes a bent slass tute, such as appears connected with the fask in fix. 7 , is employed to conduct the gass under the water or mercury into the recciver. Some other methods occasionaily resorted to, particularly in collecting gasses for distillations, will be noticed in the article PNEUMATIC apparatus.
4. Dilation or expansion of gasses.-The influence of caloric, in dilating or expanding bodies, has been long known as a fact; thuugh the laws by which this influence is regulated are not even now perfectly ascertained. In general it is observed that the expansion of bories is preatest in their gasseous form, less in their fluid, and least in their solid state; as an exampie, it is known that the expansion of air is more than eight times greater than that of water, and that of water is about 45 times greater than that of iron. Many experiments have been made to ascertain the rate of expansion in gasses accorving to the elevation of temperature; but the results obtained were so various, on account chietly of the waint of sufficicut care to exclude water from the vessels in which the expansion was measured, that for a long time no settled opinion could be formed on the subject. At length, however, the problem engaged the attention of two very ingenious and precise philosophers, whose experiments agree in furuishing a conclusion as curious as it was nnexpected; namely, that the progress of dilatation is absolutcly equal in all the different kinds of gass; or that all the different clastic fluids, taken at the same temperature, expand equally by heat: that all the different gasses, from the lightest to the heaviest, taken at temperature, are equally expanded by caloric. Tlie experiments of Mr. Dalton were read to the philosophical society at Manchester, in October, 1801, and published in 1802 : the dissertation of Gay Lassac did not appear in the Ann. de Chim. (vol. 43) till more than six months after: our own countryman must therefore be regarded as the original discoverer of this important law. Mr. Dalton's experiments are distinguished by a simplicity of apparatus which adds greatiy to their value, as it puts it in the power of others to repeat them without difficulty. It consists merely of a glass tube, open at one ead, and divided into equal parts; the gass to be examined was introduced into it, after being properly dried, and the tube is filled with mercury at the open end to a given point; heat is then applied, and the dilatation is ubserved by the quantity of mercury which is pushed out. See Mauchenter Memoirs, vol. r. Mr. Gay Lussac's apparatus is more complicated, but equally precise; and as his experiments were made on larger bulks of air, their coincidence with those of Mr. Dalton adds considerably to the confidence which may be placed in the results. These experiments are detailed, and the apparatus described in Annal. de Chim. xliii. 187; they may also be seen in Nicholson's Journal, N. S. vol. iii. Still, however, thouph Gay Lussac fume the dilatation to be frum 100 to 137.5 between 32° and 212' of Fahreubeit, the precise expausion for increments of single degrees was by no means determincd, nur dues it appear yet to be attained

Fig. 1.

5ig. 4.

Sag. 6.
】

Fig. 2.
TR.g. 5.
Tig. 7.

Nurz: $\operatorname{Si} \cdot A y_{-}$, $/$

-
-
-

-N!: 'Mepoyos's e rififucerutuas.

with very desirable accuracy. An ingenious and simpte method of dong this bas been suggested by Mr. Davy. See Nich. Juur. N. S. iv. 32. Comp. with Thomson's Chemistry, i. 341. second adition. Ste also Expansion.
5. Methods of separuting the diferent gasses from each other.-As experiments often produce two, three, or more species of gass, it is necessary to be able to separate these from each other, that we may ascertain the quantity and species of each. Suppose that under the jar, standing on the shelf of a pneumatic trough, is contained a quantitiont different gasses mixed together, and standing uver mercury: we begin with marking with slips of paper the height at which the mercury stands within the glass; and then introduce about a cu. bical inch of water into the jar, which will swim over the surface of the neercury. If the mixture of gass contains any moriatic or sulphuric acid gas3, a rapid and considerable absorption will instantly take place, from the strong tendency these two gasies have, eapecially the former, to cumbine with or be absorbed by water. If the water produces ouly a slight absorption of gass, hardiy equal to its own bulk, we conclude that the misture coutains neither muriatic acid, sulphuric acid, nor ammoniacal gass; but that it contains carbonic acid gass, of which water absorbs only athout its own bulk. To ascertain this conjecture, introduce some solution of caustic alkali, and the cirbonic acid will be gradually absorbed in the course of a few hours: it combines with the alkali, and the remaining gass is left almost perfectly free from any sensible residuum of carbonic acid gas. After each experiment of this kind, we mast carefully mark the height at which the merciry stands within the jar, by slips of paper pasted on, and varnished over when dry, that they may not be rubbed off when placed in the water apparatus. It is likewise necessary to register the differance between the surface of the mercury in the jar, and the beight of the barometer and therinometer.

When all the gass or gasses absorbable by water are absorbed, water is admitted into the jar to dinplace the mercury; and the mercury in the cistern is covered with water to the depth of an iach or two. After this, the jar is to be trans. proed by the fat dish before-mentioned, into the water a!p:azatus; and the quantity of eas remaining is to be ascertained by changing it into a graduated jar. Small trials of it are then to be miade by experiments in little jars, to ascertain nearly tive nature of the gass in question. For instance, into a small jar full of the gass, a lighted taper is introdiced; if the taper is not inmediately ensinguished, we conclude the gass to contain oxygen gass; and in proportion to the brightness of the flame we may judge if it contain less or more of oxygen gass than atmospheric air contains. If, on the contrary, the taper be instantly extinguished, we have strong reason to presume that the residuum is chiefly composed of azotic gass. If, upon the approach of the taper, the gass takes fire and burns quickly at the surface with a white flame, we conclude it to be pure hydrogen gass; if his flame is blue, we judge it consists of carbonated or carburetted hydrogen gass; and if it takes fire with a sudden deffagration, that it is a mixture of oxygen and hydrogen gass. If, again, upon mixing a portion of the residuum with oxygen gass red fumes are produced, we conclude that it contains nitrous gas. These preliminary srials give some general knowledge of the properVOL. V.
ties of the gas3, and the nature of the mixture, but are not sudicient to determine the proportions and quantities of the several gasses of which it is composed. For this purpose all the methods of analysis must be employed; and to direct these properly, it is of great use to have a previous approximation by the above methods. Suppose, for instance, we know that the residuum consists of oxygen and azotic gass mixed together, put a deter:ninate quantity, as 100 parts, into a graduated cube, introduce a solution of sulphuret of potash, and leave it in contact with the gass; in a tew days the oxygen will be abrorbed, and the azotic gass left pure. A more espeditious method is pointed out in the articie Eudiumetry.
If hydrogen gass be present, a quantity of the gasoeous mixture is introduced into Volta's Fv diometer (see that word), along with a known proportion of oxygen gass; these are deflagrated together by means of the electrical spark; fresh portions of oxygen gass are successively added till deflagration ceases, and till the greatest possible diminution is produced. By this process water is formed, and is immediately united to the water of the apparatus; but if the hydrogen gass contain carbon, carbonic acid is formed at the same time, which is no: absorbed sc quickly; the quantity of this is readily ascertained by assisting its absorption by agitation. If the mixture contain nitrous gass, by the addition of oxygen gass, with which it combines into nitric acid, we can very nearly ascertain its quantity from the diminution produced by this union.
These general remarks are made to convey an idea of this kind of investigation, and to shew the leading principles and rationale of the mode of operation : it is not pretended that they will explain every possible case, which would require a work of large and indefinite extent. A long experience is necessary to become familiar with the analysis of gasses. In many cases, from the difficulty of overcoming the strong affinities by which several of the gasses are combined with each other, and of determining when the separation is complece, we must vary our experinenta in every pussible point of view; adding new agents to the combination, and keeping out oihers; and thus continuing our trials, till we are certain of the truth aud exactitude of our conclusion.

To the foregoing obieryations on the means of separating the gases, for which we are principally indebted to Lavoisier, we must add, that since the publication of that chenist's valuable ole. mentary treatise, various instruments have been contrived for attaining more readily and completely the object of which we are treating, and for receiving and retaining the gasses produced. The carlie: of these, which indeed was known to Lavoisier, though he lived not to obtain a perfect set, was the celebrated apparatus of Woulfe. a description of which may be seen under his name. An improved apparatus for preserving separate the gasseous products evolved in many processes was ivvented by Mr. Pepys, jan. and is represented in Pl. 78. Fig. 1. A, the retort joined to a tubulated receiver B. C. the adapter ground into the neck of the receiver, and furnished with a glays valve made in the same manner as those used in the improved Nooth's apparatus. D. Woulfe's joined to the adapter to receive the unabsorbed gass; and E, a bent tube to carry the gassthat may still pass unabsorbed either into a pncumatic apparat:ls, or into a chimpey.

P

Fir. a, the valve on a larger scale, and inserted in the neek of the adapter. It consists of an internal tube of small calibre, but pretty stout in substance, and ground into an exterior tube closed at the upper end, but perforated with severat small holes to allow the gass to pas.i- After the internal tube is ground to tit the external, a portion of it is cut out (as at a) sufficient to receive a small bemisphere of glass, and to allow the hemisphere to rise a little in its small chamber, but not to turn over in it. The upper piece of the interual tube is then thrust home to the place in which it is to remain, and the glass hemisphere introduced, with its plane incumbent on the upper end of the lower piece of the internal tube, which is ground perfectly flat, as is also the plane of the hemisphere. From the construction, it is obvious that by the upward pressure of any gass, the glass hemisphere may be raised so as to allow the aeriform fluid to pass into the adapter, but that there can be no return of any thing into the receiver, even when a partial vacuum takes place in it ; and the greater the excess of the expansive furce or pressure excrted at any time in the adapter over that maintained in the retort and receiver, the closer does the valve become.

Fig. 3, two adapters, A and B, ground to fit into each other, and also to fit into C of fig. 1. Any number may be fitted to each other in the same manner. By this apparatus liquids may be highly impregnated with the gasseous products evolved during distillatione. The bent tube \mathbf{T}, is for the purpose of conveging the superabundant gress to a chimney or to a pneumatic apparatus. Phil. Mag. xi. 250.
6. Meahods of measuring the volumes of gasse.--For this purpose we ought to be provided with several graduated glasses o: jar3, of different sizes, and even several of each size, in case of accidents. the ranneer of graduating them, as recommended by Iavoisier and others, is very easy ; care being taken to secure accuracy, which is indispensable. Take a tall narrow glass jar, and having filled it with water, place it upon the shelf of the pueumatic cistern: we ought always to use the same place throughout this operation, that the level of the shelf may always be exactly similar, by which almost the only error to which this process is lia-ble will be avoided. Then take a narrow mouthed phial, holding exactly 5 ounces, 2 drams, 12 grains of water, which quantity corresponds to 10 cubical inches. If you have not one exactly of this capacity, choose one a little larger, and reduce it by dropping in a little melted wax and resia. This phial serves the parpose of a standard for gauging the jars. Make the air contained in this bottle pass into the jar, and mark exactly the place to which the water has descended; add another measure of air, and again mark the place of water, and so on, till all the water be displaced. It is of great consequence, that, during the course of this operation, the bottle and jar be kept at the name temperature with the water in the cistern; and for this reason, we must refrain as much as poomble from keeping the hands upon either, or, if we suspect they have been heated, we munt cool them again by means of the water. The height of the barometer and thermometer during this experiment is of no consequence. When the sarkes have been thus ascertained upon the jar for every ten cubical inches, we engrave a scale upon one of i is sides, with a diamond pencil. In the same manner, glans tubes are graduated for tring in the mercurim apparatur, only they muns.
be divided into cubical inches and renths. be bottle used for gauging these must hotd seven oz. one dr. 15 grains of mercury, which exactly corresponds to a cubical inch of that metal.

Thus prepared, let us suppose that, after an experiment, there is a residuum of gass contained in the upper part of the jar standing on the shelf of a pncumatic apparatus, of which we wish to as. certain the quautity; we must frst mark the heighe to which the mercury or the water rises in the jar, with great exactness, by means of slipe of paper pasted round the jar. If we have been operating in mercury, we hegin by displacing the mercury from the jar, by introducing water in its stead. This is readily done by filling a botte quite full of water, stopping it with the finger, turning it up, and introducing its mouth below the edge of the jar, then, turning down its body again, the mercury by its gravity falls into the bottle, and the water, rising in the jar, takes the place occupied by the mercury. When this io accomplished, pour so much water into the cistern as will stand about $2 n$ inch over the surface of the mercury ; then pass the dish BC (Fig. 2. PI.77) under the jar, and carry it to the water!cistern alrcady described. Here let the gass be trankferred into another jar graduated as above doscrihed, which will immediately shew its volume. Another method is to turn up the mouth into the marked jar, fiom which the gass has been liberated, as above, and then to pour in as mucb water as will reach exactly to the mark made for the gass; by weighing the water carefully, the volume of gas it contained before may easily he determined, allowing at the rate of 1798 cubical inches for each 75.34 pounds troy of water. In experiments where great accuracy is required, the results obtained by these methods will need correction; in the first, with respect to the height of the barometer and thermonieter; and in the second, beside the former correction, for the difference between the surface of the water in the cirern, and the height to which it rises in the jar. For the more expeditious and accurate admcasurement of the volumes of gasses, various instruments have been contrived, some of the principal of which are degcribed under the word Gasometrr, which is the general terna applied to the apparatus.
7. To deermine the absolute gravity of tbe differve gasser.-Take a large balloon A, Pl.79, fig. 4, capable of holding 17 or 18 pints, or about half a cubical foot, having the brass cap bede, strongly cemented to its neck. and to which the tube and stop-cock $f g$, is fixed by a tight screw. This apparatus is connected by the double screw represented separately at fig. 6 , to the jar B C D, fig. 4, which must be some pints larger is dimension: than the balloon. This jar is open at top, and ie furnished with a brass cap $b i$, and the stop-cock $\ell \mathrm{m}$. One of these stop-cocks is represented separately at fig. 5. We first determine the exact capacity of the balloon, by filling it with water, and weighing it both full and empry. When emptied of water it is dried with a cloth introduced through its neck de, and the last remains of moisture are removed by exhausting it once or twice in an air-pump. When the weight of any gass is to be ascertained, this apparatus is used as follows : Fix the balloon A to the plate of an airpump, by means of the screw of the stop-cock $f g$, which is left open; the balloon is to be exhausted as completely as posible, obvorving care-. fulty the degree of exhaustion by mease of tha
barometer attached to the air-pump. When the vacuum is formed, the stop-cock $f g$ is shut, and the weight of the balloon determined, with the most scrupulous exactitude. It is then fixed to the jar I: CDD, which we suppose placed in the shelf of the pneumatic apparatus; the jar is to be filled with the gass we mcan to weigh, and then by opening the stop-cocks f_{5} and $l m$, the gass ascends into the balloon, whilst the water of the cistern rises at the same time into the jar. To avoid very troublesome corrections, it is necessary, during this first part of the operation, to sink the jar in the cistern, till the surfaces of the water within and without the jar exactly correspond. The stop-cocks are again shut, and the balloon, being unscrewed from its connection with the jar, is to be carefully weigheds the difference between this weight and that of the exhausted balloon, is the weiglit of the gass contained in the balloon. Multiply this weight by 172 s , and divide the product by the number of cubical inches contained in the balloon, the quotient is the weight of a cubical foot of the gass submitted to experiment. Exact account must be kept of the height of the barometer, and of the thermometer; and from these the resulting weight of a cubical foot is easily corrected to the standard pressure and temperature; the small portion of air remaining in the balloon after forming the vacuum, and which is readily indicated by the air-pump barometer, must alsobe taken into the account : thus, if that barometer remain at fieth part of the height it stood at before the vacuum was formed, we conclude that only 9 gio of the gass was transferred from the jar into the balloon. See Iavoisier's Elements of Chemistry: a work as remarkable for the accuracy of its descriptions, as for the excellence of its philosophy.

Perolle, Pricstev, and Chladni, have made some very curious experiments and observations on the eones produced by an organ pipe, and other sonorous budies, in different kinds of gass. For the influence of gasses in promoting or retarding the growth of seeds, \&c. see Grumination and Puysioligy Vegelable.

Gass-molder, a vessel for receiving, retaining, and transporting gass. Severdl contrivances for this purpose have been made by different chemists. Fig. 1. Pl. 79, represents the gassholder invented by Mr. Pepys, jun. from a suggestion of Mr. Watt's: it may contain from two to ten gallons. G refers to that part of the vessel which is to contain the gass. R the register tube; the ends of which are cemented into two tin suckets by cocks at the top and the bottom of the gass-holder, into which it opens at both ends : of course the level of the water in the apparatus will always be seen in the tube, and consequently that of the gase. C, the circuiar cistern, with its two cocks and pipes. marked 1 and 2. C 1 , a brase cock on the side, with a screw, to which bladdert or a blowpipe may be attached. O, an opening into the gass-holder, in which a pipe is soldered. at such an angle, that, when all the uppermost cocks are shut, no water can possibly escape. Enot, when a conducting-pipe, from a retort or other apparatus generating gass, is introctuced into this opening, then, as the gass passes up into the gaes-holder, an equal quantity of water will be discharged at O, into any vessel fit to receive it. $S p$, a spout on the side of the cistern to enable the operator to add water, even when the receiver filln its whole area. H H, handles to lift the gais-holder by. R f, a glass deflagrating re-
ceiver standing in the cistern. A, its adopting cork and cock. To make use of this apparatus, first fill the gass-holder with water, by closing the opening O with a cork, and also the cock C k, and keeping the circular cistern full of water, while the cocks 1 and 2 are both open. The air is driven out of the gass-holder through the cock 1 , by the water descending into it by the cock 2. When full, the water in the register will be on a level with the top of the gass-holder. Then shut the cocks 1 and 2. You may now remore the cork from the opening O, which is then prepared to receive the conducting-pipe from any apparatus from which the gass is generating. As the gas is delivered the water escapes, and should be caught in any convenient vessel. The register will then show the quantity received: when full, close the opening O with a cork wrapped in leather, which prevents the communication with the atmosphere. It may now be easily removed or conveyed where it is wanted.

When it is required to fill a glass receiver, as c, with the gass, having previously filled the circular cistern with water, place it in the cistern, put in the adopting cork A, and with the mouth applied to the cock, exhanst the receiver, in which the water will rise till fuil. Then close the cock A, and open the two cocks 1, and 2, and the gass will ascend into the receiver, while the water will take its place in the gass-holder. Bladders mounted with cocks may be filled with gass, by first emptying them of air, then screwing them to the cock $C k$, filling the cistern with water, and opening the cock 2. In all these cases the quantity used may be ascertained, which has a scale of pints or cubic inches, attached to it, and thus far answers the purpose of a gassometer. Mr. P's apparatus is also adapted for combustion, deflagration, and other experiments with the gasses, as well as for the use of the blow-pipe. In these cases, the following additions to the original instrument are highly useful. S, a watch-spring in a slit wire, prepared for combustion. D, a ded flagrating dish of iron, for sulphur, phosphorus, sugar, \&c. \&c. 13, a blow-pipe, with a gam-elastic tube E, capable of joining the cock $\mathbf{C} k$.

For simply retaining and conveying the gasses, When it is not necessary to ascertain their quantity, Dr. Warwick, of Rotheram, contrived ant apparatus which is much cheaper than the preceding one, and is shewn in fig. \varkappa, Pl.79. A stopcock, soldered to the shorter tube in the top of the vessel, and a rim sufficiently deep to permit the water to rise an inch above the cock, will enable any one to transfer any gass with the utmose readiness to any other vessel. The stop-cock has no screw, the blow-pipe having a socket to fit the tube with sufficient accuracy to prevent the escape of air. Phil. Mag. xiii. 256.

Mr. Cavallo's is represented at 6g. S, PI. 79 wher A is a section of the vessel, made of glass or tin; B, a funnel, into which is fastened a bent glasy tube, C; D, is a tube soldered to the funnel, and which with it passes through the cork a; E, represents a tube of tin, wood, or other matcrials, to one end of which a bladder or viled silk bag is fastened; the otber is inserted in the tube D. The vessel A being filled with the required gass by taking out the funnel, \&e. filling the vessel with water, inverting it, and applying the tube leating from the apparatiss where the gass is protuced), whenever it may be neeessary to transfer any quantity to a botlle, bladder, \&cc. an equal quantity of water is to be puoted through the funnel B, which

P8

Will dis;lace the gass, and force it thrungh 1 , into E. The bent part of the tube C , by always coulltaining some water, prevents the gass from escapfing through the funnel; but when the apparatus is to be set by, both the funucl and the tube D unust be stopped with corks.

Gasses, their effects on sounds. Dr. Chladni, the ingenious inventor of the Euphon, engaged protessor Jacquin of Vienna to make some experiments on those gasses which constitute our atmosphere, and serve to produce rocal scounds. Comparative experiments were made with atmospheric gass, oxygen, hydrogen, carbonic acid, and nitrous gass. The intensity of the sounds did not vary; but when compared with that produced by atmospheric air, the oxygen gass gave a sound half a tone lower; azotic gass, prepared by difierent methods, constantly gave a sound half a tone lower; hydrogen gass gave nine or eleven tones higher; carbonic acid gass one third lower; and nitrous gass very nearly a third lower. A mixture of oxygen gass and azote, in the proportions of the atmospheric air, afforded the same tone as atmospheric air; that is, it was half a tone higher than either of the component parts alone. When the two gasses wire not uniformly mixed, the sound was abouinably harsh. Maunolr, and Paul of Geneva, after having inspired a large quantity of pure hydrogen gass attempted to speak, but found that the sound of their voices had become shockingly hoarse and shrill. Nicholson's Journal, rol. iii.

GASSENDI (Peter), an cminent lirench philosopher, was born in 1592 at Charstersier, a village in Provence. Betore he was 10 , he was made professor of rhetoric at Digne, and soon after professor of philosophy at Aix. Tiise celebrated Nicholas Picresc having scen his Paradoxical Exercitations, resolved to aftiord him leisure to pursue his studies, and in conjunction with Joseph Walter, prior of Valette, got him ordained, and procured him a benefice in the church of Digne, which he held wenty years, during which time many of his works were written. In 1645 he was appointed royal professor of mathematics at Paris. He now dedicated bimself so intensely to study and astronomical observations, that his health visibly decayed. He was at first relieved by bleeding, but afterwards, when he found himself exceedingly reduced by the repetition for the ninth time of that operation, he modestly remonstrated against it. Two of three physicians that attended him yielded to his opinions but the third arrogantly insisting on the contrary opinion, Gassendi submitted, and he was bled four times afterwards. He died in 1655 , in the 63 d year of his age. A short time before his death he took the hand of Antony Poller, his amanuensis, and placing it on his heart, Poller observed that its motion was very faint and fluttering; Gassendi replied, "You see what is man's life;" and these were the last words he uttered. He left his manuscripts to M. de Monmor, his friend and executor.

Gassendi wrote against the metaphysical meditations of Des Cartes; and divided with that
great inan the philosop;hers of his time, almost all of whom were tither Cartenians or Gasselldists. To his knowledge in philosophy and mathematics, he jomed profonnd erudtion and deep skill in the lansumges. He wrote, 1. Three volumes on Ejicums's philosophy; and six others, which contain his own phitosophy.2. Astronomical Works. - 3. The lives of Ni cholas de Pieresc, Epicurus, Copernicus, Tycho Brahe, Purbach, and Regiomontanus. - 4. Epistles, and other treatises. All his worky were collected together, and printed at Lyons in 1658 , in 6 volumes fotio.

To GAST. v. a. (from jarz, Saxon.) To make aghast; to fright; to shock; to terrify ; to fear; 10 affray (S/akspeare).

GASTERUSTELiS. Stickle-back. In zoology, a genus of the class pisces, order thoracia. Head oblon, s, smooth; jaws armed with minute teeth ; tongue short, obtuse; palate sunooth : cye 3 moderate, hardly prominent, lateral ; gill wembrane with three, six, or seven rays; gill-cover of two pieces, rounded, striate; body carinate on each side, and covered with bony plates; dorsal fin single, with distinet spines between it and the head; lateral line straight ; ventral fins behind the pectoral, but above the sternum. Thirteen species, scattered through the seas of Europe, Acia, and Africa. The following are the chicf:

1. G. aculeatus. Three-spined stickleback. Dorsal spines three. Inhabits the fresh waters of Europe, is very short-lived, hardly crer reaching to the third year: about three inches lonk: spawns in April and June; is infested with internal worms; feeds on the fry and spawn of fishes, worms, and insects; appears sometines in vast shoals, and is chiefly used for manure, or to fatten ducks and pige.
2. G. ductor. Pilot-fish. Dorsal spines four; gill membrane, seven-rayed. Inhabits the ocean; is a constant attendant on the shark, and alivays precedes $1 t$.
3. G. saltatrix. Skip-jack. Dorsal spires cight, connected by a nembrane; pill membrane with seven ravs. Inhabits Carotina: is less spinous than others of its tribe, and resenibles a perch.
4. G. spinachia. Fifteen-spined strickleback. lorsal spines fitieen. Inhabits the seas of Europe, and is never found in sivers: fron six to seven inches loas; body long, above brown or olive, beneath silvery: is said to follo: a light; fueds on worms, insects, and the young fry and spawn of fishes; is seldom eatern but used chicfly for manure or lamp-oil. See Nat. Hist. PI. CXIX.

GASTRELL (Francis), bishop of Chester, was born in 1662 , appointed preacher to the society of Lincoln's. Inn in 1 (o) 4 , and made bishop of Chester in 1714. He preached a course of sermons for Boyle's lectures; engaged in the Trinitarian controversy with Mr. Collins and Dr. Cdarke ; and published two excellent pieces, the one entitled Christian Institutes, and the other, a Moral Proof of a Future State. He vindicated the rights of the university of Oxford against the archbishop of

Aublished by GiACearsley. Flect Streat. Decrix. 18 og.

Canterbure, in the appointment of the warden of Manchester college ; and opposed the violent proceedangs against bishop Atterbury in the house of lords, though he disliked the bishop as a man of arbitrary principles. He died in 1725.

GASTRIC. a ('r,mi ja $\sigma \div n \rho$.) Belonging to the belly or stomach.

Giastric artery. Arteria gastrica. The right, or greater gatiric artery, is a branch of the hepatic; the left, or lesser, a branch of the splenic.

Gistric juice. Suceus gastricus. In medicine, a fluid separated by the capillary exhaling arteries of the stomach, which open upon its internal tunic. The cesophagus also aftiords a small quantity, especially in the inferior part. Modern philosophers have paid great attention to this fllid, and from their s weral experiments it is known to possess the fllowing properties. It is the principal agent of digestion, and chanzes the aliments into a kind of uniform soft priste : it acts on the stomach after the death of the animal. Its effects show that it is a solvent, but of that peculiar nature that it disolves animal and regetable substances uniformly, and without exhibiting a stronger aflinity for the one than for the other. It is far froin being of the nature of a ferment, as many suppmie, for it is one of the most powerful antiseptics with which we are acquainted; and, from the experiments of Spallanzani, Scopoli, Carminati, and others, its nature appears to be escentially different in the several classes of animals, as they have jroved by anaiysis. It has hence been differently elassified by different chemists: Moreau regarding it as an acid, some other French physinlogists as an alkali, and Spalanzani as a neutral. Upon the whole we may take it for granted, that in the carnivorons, igranivornus, and graminirorous tribes (or at least those which possess bat one stomach) it is acid; in man, and all other omnirorous animals, it is neutral, the meutrality probably procecting from the mixture of aniinal and vegetable fonds in the stomach. The gastric juice of the human subject, when healihy, is inodorons, of a saltish taste, and limpid, like water, unless it be a little tinged with the yellow colour of some bile that has regurgitated into the stomach. In quantity it is rery ennsiderable, as must be evident from the extent of the surface of the stomach, and its continual secre. tion ; but it is the most enpinua when solicited by the stimulus of fond. Besides the properties of this fluid hefore mentioned, it has others which have induced physicians and surgeons to exhibit it medicinally. It cures dyspepsia and intermittent fever. Applied externally, in form of fomentation or poultice, it cures putrid and scrofulous ulcers in a wonderful manner; and it is to be regretted that its utility is not tnore generally known.

Its antiseptic powers are strongly shown in those animals (the vulture and the weasel, for example) that devour their food in the most disgusting state of putrefaction; the food being found to have lost mopt of its putresency after

GAS

having remained a short time in their sto mach.

This liquid is also remarkable on account of its power of coagulating all coagulable fluids: a power, however, which it seems to derive iminediately from the stomach itself, since we find this viscus, when taken out of the calf, or almost any other anima!, capab!e of producing the very same result when digested in salted water. It is the stomach of the calf thus digested that forms the well-known substance denominated rennet, and which is so familiarly employed in separating the curd from milk in cheese-making.
GASTRITIS. (gastritis, yaoriolts; from ynsvf, the stomach.) Inflammation of the stomach. A genus of disease in the class pyrexire and order phlegmasix of Cullen. It is known by pyrexy, anxiety, heat, and pain in the epigastrium, increased when any thing is taken into the stomach, vomiting, hiccup, pulse small and hard, and prostration of strength. There are two species: 1. Gastritis phlegmonoidea, with an inflammatory tumour. \%. Gastritis erysipelatosa, when the inflammation is of a creeping or erysipelatous nature.

GASTROBRANCHUS. Hag-fish. Glutinous hag. In zoology, a genus of the class pisces, order chondropterigia. Mouth terminal, furnished with cirri ; teeth in a double pectinate row on each side; upper tooth single, sharp in the roof of the mouth; body eelshaped, carinate, beneath by a soft fin; spirals two ventral. One species; \mathbf{G}. crecus, so denominated from its being totally destitute of eyes. It inhabits the ocean; is about eight inches long, and is said to enter the mouth of fishes when taken by the hook, and to devour the whole except the skin and bonc. When placed in a vessel of sea-water it soon renders the whole gelatinous, being of an uncommonly glutinous nature. This animal has been judiciously removed by later naturalists from the class of worms, where, from the circumstance we have just mentioned, it was placed by Linnéns in the order intestine, under the name of myxine glatinosa. Some naturalists have made two, or two species of this genus, but incorrectly.
GASTROCFLE. (gastrocele, yaorfoxn λ_{n}; from yayaf, the stomach, and $\times \eta \lambda \eta$, a tumour.) A hernia of the stomach, occasioned by a protrusion of that viscus through the abdominal parietes.
GASTROCNEMIUS. (gastrocnemius, y-
 the leg.) The muscles of the foot which from the calf or belly of the leg.

Gastrocnemiusexternus. Gemellus. This muscle, which is situated immediately under the integuments at the back part of the leg, is sometimes called gemellus: this latter name is adopted by Albinus. Winslow describes it as two muscles, which he calls gastrocnemii; and Douglas considers this and the following as a quadriceps, or muscle with four heads, to which he gives the name of extensor tarsi suralis. The gastrocnemiusoxternus arises by two distinct heads. The first, which is the

G AT

thickest and longest of the two, springs by a strong thick tendon from the upper and back part of the inner condyle of the os femoris, adhering strongly to the capsular ligament of the joint, between which and the tendon is a considerable bursa mucosa. The second head arises by a thinner and shorter tendon from the back part of the outer condyle of the os femoris. A little below the joint their fleshy bellies unite in a middle tendon, and below the midalle of the tibia they cease to be fleshy, and terminate in a broad tendon, which, a little above the lower extremity of the tibia, unites with that of the gastrocnemius internus, to form one great round teadon, sometimes called chorda magna, but more commonly tendo Achillis.

Gastrocnemius internus. This, which is situated immediately under the last slescribed muscle, is sometimes named soleus, on account of its shape, which resembles that of the sole-fish. It arises by two heads. The first springs by tendinous and fleshy fibres from the posterior part of the head of the fibula, and for some way below it. The second arises from an oblique ridge at the upper and posterior part of the tibia, which affords origin to the inferior edge of the popliteus, continuing to receive fleshy fibres from the inner edge of the sibia for some way down. This muscle, which is narrow at its origin, spreads wider as it deacends, as far as its middle; after which it becomes narrower again, and begins to grow tendinous, but its fleshy fibres do not entirely disappear till it has almost reached the extrenity of the tibia, a little above which it unites with the last described muscle, to form the tendo Achillis, This thick round chord is inscuted into the lower and posterior part of the os calcis, after sliding over a cartilaginous surface on that bone, to which it is connected by a tendinous sheath that is furnished with a large bursa mucosa.

Both the gastrocnemii have the same use, viz. that of extending the foot, by drawing it backwards and downwards.

GASTRODYNIA. (gastrodynia, mov;odyzac, from racnp, the stomach, and odern, pain.) Pain in the slomach.

GASTRO-EPIPLOIC ARTERY. Arteria gastrico-epiploica. The branch of the greater gastric artery that runs in the epiploon.
FGASTRORAPHY. (gastroraphia, yavzioFapia; fromi raonf, the stomach, and paqn, a suture.) The sewing of wounds of the abdomen.
 The act of cutting open the belly.

GAT. The preterit of get.
GATAKER (Thomas), a learned critic and divine, was born at London in 1574, and studied at St. John's college, Canibridge. He was afterwards chosen preacher at Lincoln's Inn; which he quitted in 1611 for the rectory of Rotherhithe, in Surry. In 1620 he made a tour through the Low Countries, and in 1634 published at London a book, entitied, Transubstantiation declared by the Confession of

G AT

the Popish Writers to have no necessary Foundation in Gnd's Word. He wrote likewise a defence of this discourse. In $16+2$ be was appointed one of the assembly of divines, and was engaged with them in writing annotations upon the Bible. He died in July, 10jot, in the 8uth year of his age. Besides the above works, he published, 1. A Dissertation upon the Sigle of the New Teatament. 2. De nomine tetragrammata. 3. 1)i diphthongis, sire bivocalibus. 4. An Fdition and 'Translation of the Enyperor Marcus Antoninus's Meditations. 5. Λ Collection of Sermons, in folio; and many other works.

GATE, in a chitecture, a large door, leading or giving entrance into a city, town, casile, palace, or other considerable building. Thebes in Egypt was anciently known by the a;pellation with a huadred gates. In ancient lioure there was a triumphal gate, jorrta triumphalis. In modern Rome there is the jubilee gate, which is only opened in the year of a grand jubilee. The gates which were once very numerous in London, after having been converted into gaols or prisons, as Ludgate, Newgate, 8 c . were at lengti removed. The lesser or by-gates for foot passengers are called prosterns. Gates through which coaches, \&e. are to pass should not be less than seven feet broad, nor more than twelve; the height to be 1 the breadlh.

Giate, (zear, Sax.), signifies also, a frame of timber upon hinges to give a passage into enclosed fields.

Gate, denotes farther, an avenue or opening.

Gate-net, a net employed by poachers for ensnaring hares in the night. It is at this time applied where hares are suspected to be at fced, to the third bar of the gate through which they are supposed to have entered into the green-wheat, or young clover field in which they are banqueting, or from observation in the clay are believed to be so. Being fastened to the ground under the lower bar by aseans of wooden forked pegs, a lurcher is turned oret the gate, who having been trained to the business, and running mate, scours the field in a circuitous direction ; when the victims, thus suddenly and unexpectedly alarmed, unake immodiately for the gate, and the dog being close at their heels, or at least not far belind them, they have no alternative but to rush into the net and become entangled. In this way three or four brace are taken in a plentiful country at one adventure.

Gates of hell, a phrase used in Scripture to denote figuratively, eicher the grave or the powers of darkness. The Mabometana use the expression literally, and suppose that hell has seven gates.

GATESHEAD, in the county of Derham, is as it were the suburbs of Newcarte, though it lies in another county, being divided by the river Tyne; over which chere is a fine stone bridge, with an iron gate in the middle, haring the arms of Durham on one cide, and thow of Newcastle on the oflier, which is the boundary between the bishopric and Niorlimambern

G $\mathbf{A} \mathbf{V}$

land. The church is a fire building, with a very high tower.
gathelein. See Vena porta.
GATELVAY. s. (from gute and way.) A way through pates of enclosed grouaits.

GATH, a celebrated cily of the Pinilistines, famous for having given birth to Goliath. It stood about 14 tuiles south of Joppa, and 32 west of Jerusalem.

To GA"THER. v. a. (zarenan, Saxon.) 1. To coliect; to bring into one place (Genesis). 2. To pick up; to glean (${ }^{2}$ ottion). 3. To crop; to pluck (Dryden). 4. To assemble (Bacont). 5. To heap up; to accumulate
 7. To sweep tugether (Mutthew). 8. To collect charitable contributions. 9. To bring into oue body or interest (Isaiak). 10. To draw together from a state of diffirsion; to compress; to contract (Pope). 11. To gain (Dryden). 12. To pucker needlework. 13. To collect logically (Hooker). 14. To Gather Breath. To lave respite from any calamity (Spenser).

To Ga'ther.v.x. 1. To be condensed; ω thicken (Dryden). 2. To g:ow larger by the accretion of similar matter (Bacon). 3. To assemble (Ecclus). 4. To gencrate pus or matter (Decay of Piety).
Ga'ther. s. (from the verb.) Pucker; cloth drawn together in wrinkles (Iludileras).

GATHERER. s. (from gather.) 1. One that gathers; a collector ($\mathrm{H}_{\text {otton). 2. One }}$ that ge's in a crop of any kind (May).

GATHERING. s. (from gather.) Collection of charitable contributions (Corinthians).
GATTON, a borough in Surrey, which ends two members to parliament, but has neither market nor fair. 1at. 51. 18 N. Lon. 0. 10 W .

GACDE. s. (from gnudiun, Latin, joy.) Anornament; a fine thing; any thing worn as a sign of joy (Shakspeare).

To Giaude.v. n. (gaudeo, Latin.) To exalt: to rejoice in any thing (Shakspcare).

GA'UDEKY. s. (irmn gaide.) Fincry; ostentatious luxury of dress (Southi).
GA'UDILY. ad. (from gaiady.) Showily.
GA-UDINESS. s. (from gaudy.) Showiness; tinsel appearance.

Gd'LDY. a. (from gaudc.) Showy; splendid; pompous; ostentatiously fine (Mitton).

GA'Udy.s. (grudium, latin.) A feast; a festival; a day of plenty (Cheyne).

GAVE. The preterit of gice.
GA'VEI. s. A proviacial word for ground.
GAVELKIND, a tenure nr custom belonging to lands in the county of Kent, and a few places elsewhere. The distinguishing properties of this tenure are various; the principal are these. The tenant is of age sufficient to alienate this estate by feoffment at the age of 15.2. The estate does not eachreat in case of an attainder and execution for felony, their maxim being, "the fathor to the bough, the son to the plongh." 3. In most places he had a power of devising lands by will, before the statute for shat purpose wess rasade. 4. The lands descend, mot to the eldest, youngest, or any one eon adly,
but to all the sons together; which was indeed anciently the most usual course of descent all over England, though in particular places particular customs prevailed.

GAVELMEi), the duty or work of mowing grass, or cutting of meadow land, required by the lord from his customary tenants.

To GAUGE. v. a. (gauge, a measuring rod, French.) 1. To measure with regard to the contents of a vessel. 2. To measure with regard to any proportion (Pope).

Giuge. s. (from the verb.) A measure; a standard (Mozon).

GAUGE-Point, of a solid nreasure, the diameter of a circle, whose area is equal to the colid content of the same measure. Thus the solidity of a wine-gallon being 231 cubic inches, if you conceive a circle to comain so many inches, the diameter of it will be 17.15 ; and that will be the gauge-print of wine-mensure. And of an ale-gallon, containing 288 cubic inches, by the same rule, the gauge-print for ale-measure will be found to be 19.15 . After the same manner may the gauge-point of any foreign measure be oblained; and hunce may be drawn this consequence, that when the diameter of a cylinder in inches is equal to the gauge-point of any measure, given likewise in inches, every inch in length thereof will contain an integer of the same measure, e. gr. in a cylinder whose diameter is $\mathbf{1 7 . 1 5}$ inches, every inch in height contaius one entire galion in wine-measure ; and in another, whose diameter is 18.95 inches, every inch in length contains one ale-gallon.
GAUGIER, a King's officer, who is appointed to examine all tuns, pipes, hogsheads, and barrels of wine, beer, ale, oil, honey, \&ic. and give them a mark of allowance, before they are sold in any place within the extent of his oflice.
There are divers statutes that mention this officer and his office; as by $27 \mathrm{Ed}$. III. c. 8. all wines, \&c. imported are to be gauged by the king's gangers, or their deputies, otherwise they shall be forfeited, or ther value; and on default of the ganger, that he be not ready to do his oftice when required, or that he defrauds in doiug hivs office to the damage of the bryer or seller, he shall pay the party grieved his treble damage, lose his office, be punished by inprisonment, and ne ransomed at the king's will; and in case less is found in the tun or pipe than ought to be, the value of as much as shall lack shall be deducied in the payucent.

Every gauger shall truly, within the limits of his ofiice, galye all tums, butts, pipes, tierces, puncheons, tertians, hogsheads, barrels, and runlets; and mark on the head of every vessel the contents, upon pain of forfeiting to the party to whose use the wine, \&c. shall be sold, four times the value of that which the vessel marked shall lack of its content : the same forfeiture shall be recovered by an orizinal writ, \&c. and every person selling the wine, \&ic. in the vessel marked, shall allow of the price, the value of gange, os default of filling, upon pain

GAUGING.

of forfeiture to the buyer of double the value, to be recovered with costs as before. No brewer shall put to sale any beer or ale in ressels brought from beyond the sea, within the city of London, or suburbs of the same, or within two miles compass without the suburbs, before the same is ganged, and the true content of every such vessel set upon the same, by the gallon appointed for beer and ale, according to the standard, ly the master and wardens of the conpers of London.

GAUGING, the art or act of measuring the capacities or contents of all kinds of vessels, and determining the quantities of fluids or other matters contained therein.

As to the solid contents of all prismatical vessels, such as cubes, parallelopipedons, cylinders, \&c. they are found by multiplying the area of the base by their alcitude. And the contents of all pyramidal bodies, and cones, are equal to $1-3 \mathrm{~d}$ of the same.

In gauging, it has been usual to divide casks into four varieties or forms, denominated as follows, from the supposed resemblance they bear to the frustums of solids of the same names: viz.

1. The middle frustum of a spheroid.
2. The middle frustum of a parabolic spindle.
3. The two equal frustums of a paraboloid.
4. The two equal frustums of a cone.

And particular rules adapted to each of these forms may be found in most books of Gauging, and in Dr. Hutton's Mensuration, p. 575, \&c. But, as the form is imaginary and merely guessed at, it scarcely ever happens that a true solution is obtained in this way ; besides which it is very troublesome and inconvenient to have so many rules to put in practice. We shall therefore give here one rule only, from p. 592 of that book, which is not only general for all casks that are commonly met with, but quite easy, and very accurate, as having been often yerified and proved by filling the casks with a \ddagger true gallon measure.

General Rule. Add into one sum, 39 times the square of the bung diameter, 25 times the square of the head diameter, and 26 times the product of those diameters; multiply the sum by the length of the cask, and the product by the number 000334 ; then this last product divided by 9 will give the wine gallons, and divided by 11 will give the ale gallons.
$\mathrm{Or}, \overline{39 \mathrm{~B}^{2}+25 \mathrm{H}^{2}+26 \mathrm{BH}} \times \frac{\mathrm{L}}{114}$ is the con-
tent in inches; which being divided by 231 for wine gallons, or by 282 for ale gallons, will be the content.

For Ex. If the length of a cask be 40 inches, the bung diameter 32, and the head diameter 24.

Here	-	$32^{2} \times 39=$	39936
'and	-	$94^{8} \times 25$	14400
and	;	$32 \times 24 \times 26=$	19968

the sum
multiplied by
---:
40

and divid. by 114) 2972100 gives - - 26071 cub.inc. this divided by 231 gives 112 wine gallons, or divided by 882 gives 92 ale gallons.

But the common practice of gausing is performed mechanically, by means of the gauging or diagonal rod, or the ganging sliding rule, the description and use of which here follow.

Gauging, or Diagonal, Rod, is a rod or rule arlapted for determining the contents of casks, by measuring the diagonal only, viz. the diagonal from the bung to the extremity of the opposite stave next the head. It is a square rule, having four sides or faces, being usually four feet long, and folding together by means of joints.

Upon one face of the rule is a scale of inches, for taking the measure of the diagonal; to these are adapted the areas, in ale gatlons, of circles to the corresponding diameters, like the lines on the under sides of the three slides in the sliding rule, describel below. And upon the opposite face are two scales, of ale and wine gallons, expressing the contents of casks havirig the corresponding diagonals; and these are the lines which chiefly constitute the difference between this instrument and the sliding rule; for all the other lines upon it are the same with those in that instrument, and are to be used in the same manner.

To use the Diagonal Rod. Unfold the rod straight out, and put it in at the bung-hole of the cask to be gauged, till its end arrive at the intersection of the head and opposite stave, or to the farthest possible distance from the bunghole, and note the inches and parts cut by the middle of the bung; then draw out the rod, and look for the same inches and parts on the opposite face of it, and annexed to them are found the contents of the cask, both in ale and wine gallons.

For $E x$. Let it be required to find, by this rod, the content of a cask whose diagonal measures $34 \cdot 4$ inches; which answers to the cask in the foregoing example, whose head and bung diameters are 32 and 24 , and length 40 inches: for if to the square of 20 , half the length, be added the square of 28 , half the suin of the diameters. the square root of the sum will be $3+4$ nearly.

Now, to this diagonal $34 \cdot 4$ corresponds, upon the rule, the content 91 ale gallons, or 111 wine gallous; which are but one less than the content brought out by the former general rule above given.

To gauge malt.-1. If the malt lies on the floor in a rectangular form, multiply the length by the breadih, and the product by the depth, all taken in inches; the product is the number of cubic inches in the quantity; which being divided by 2150.42, the quotient is the number of bushels.

The same rule serves for finding the quantity of malt contained in any vessel in form of a parallelopipedon.

G A U

Examp. Suppose a quantity of malt on the Amor, 288 inches long, 144 inches broad, and nt inches deep; required the number of bushels ?

Ans 183.21.
2. When malt is in a cistern, or anv vessel, the content of the vesset is $t 0$ be found in cubic inches, by some of the former rules, and then divided by 2150.42, the quotient is the number of bushels.
3. To find the solidity of any irregular solid.

Put the irregular body into any vessel, and fill it with water; take cut the boly, and the water will fall lower, and leave a part of the versel empty, equal to the solidity of the body to be measured; then measure so much water by a vessel of a known capacity as shall fill up thie empty space, and the number of cubic inches in that space, and consequently in the irregular hody, will be known.

Gauging Rule, or Sliding Rule, is a sliding rule particularly adapted to the purposes of Rauging. It is a square rule, of frur faces or sides, three of which are furnished with sliding pieces runaing in grooves. The lines upon them are mostly logarithinic ones, or distances which are proportional to the logarithins of the numbers placed at the ends of them; which kind of lines was placed upon rulers, by Mr. Edinund Gunter, for expeditiously performing arithmetical operations, using a pair of compasses for taking off and applying the several logarithmic distances: but instead of the compasses, sliding pieces were alded, by Mr. Thomas Everard, as more certain and convenient in practice, from whom this sliding rule is often called Everard's dule. For the more particular description and usez of this rule, see Hutton's Mensuration, p. 564, 2d edition.

The writers on gauging are, Beyer, Kepler, Dechales, Hunt, Everard, 1 ougherty, Shettleworth, Shirtcliffe, Leadbetter, Moss, Symons, \&c.

GAUL, the name given by the Romans to the country that now forms the kingdom of France. The original inhabitants were descended from the Celtes or Gomerians, by whom the greatest part of Europe was peropled; the name of Galli or Gauls being probably given them long after their settlement in that country. See Gallia.

The Gauls were anciently divided into a great number of different nations, which were continually at war with one another, and at variance among themselves. Cæsar tells us, that not only all their cities, cantons, and districts, but even almost all families were divided and torn by factions, and thus undoubtedly facilitated the conquest of the whole. The general character of all these people was an excessive ferocity and love of liberty. They carried this to such an extreme, that either on the appearance of servitude, or incopacity of action through old age, wounds, or chronic diseases, they put an end to their own lives, or prevailed upon their friends to kill them. In cities, when they found themselves so straitly besieged that thoy could hold out no longer,

GAU

instead of thinking how to obtain honourable terms of capitulation, their chief care rery often was to put their wives and children to death, and then to kill one another, to avoid being led into slavery. Their excessive tove of liberty and contempt of death, according to Strabo, very much facilitated their conquest by Julins Cæsar; for, pouring their numerous forcta upon such an experienced enemy as Casart their want of conduct very soon proved the ruin of the whole.

The chief diversion of the Gauls was hunting; and indeed, considering the vast forests with which their country abounded, and the mulitude of wild beasts which lodged in them, they were under an absolute necessity to hunt and destroy them, to prevent the country from being rendered totally uninhabitable. Besides this, however, they had also their hippodromes, horse and chariot races, tilts and tournaments; at all of which the bards assisted with their poems, songs, and musical instruments.
The Gauls were excessively fond of feasting in which they were rery profuse; as, like all other northern nations, they were great lovers of good eating and drinking. Their chief liquors were heer and wine. Their tables were very low. They ate but little bread, which was baked flat and hard, and easily broken in pieces ; but devoured a great deal of flesh, boiled, roasted, or broiled; and this they did in a very slovenly manner, holding the piece in their hands, and tearing it with their teeth. What they could not part by this way, they cut with a little knife which hung at their girdle. When the company was numerous, the Coryphee, or chief of the feast, who was either one of the richest, or noblest, or brarest, sat in the middle, with the master of the house by his side; the rest took their places next according to their rank, having their servants holding their shields belind them These feasts seldom ended without blondshed; but, if by chance the feast proved a peaceable one, it was generally accompanied not only with music and songs, but tikewise with dances, in which the dancers were armed cap-a-pee, and beat time with their swords upon their shields. On certain frostivals they were wont to dress themselves in the skins of beasts, and in that attire accompany the processions in honour of their deities or hemes. Others dressed themselves in masquerade habits, some of them very indecent. and played several antic and immodest tricks. This last custom continued Ionz after their supposed conversion to Christianity.
The ancient history of the Gauls is entirely wrapped in obscurity and darkness; all we know concerning them for a long time is, that they multiplied so fast, that, their country being unable to contain them, they poured forth in vast multitudes into other countries, which they generally subdued, and setted themselves in. It often happened, however, that these colonies were so molested by theip neighbours, that they were obliged to send for.
gssistance to their native country. This was always very easily ohtained. The Gauls were, upon every occasion, ready to send forth great numbers of new adventurers; and, as tiocse spread decolation wherever they came, the wery name of Gauls proved terrible to most of thic neighbouring nations. The carliest excurtion of these people of which we have any distinct account was into Italy under a famed leador named Betloresus, about 6o2 years before Christ. He crossed the Rhone and the $A \mid p s$, till shen unatempted; defeated the Iletrurians, and seized upon that part of their country, since known by the names of Lombardy and Picdunont. The second grand expedition was made by the Comomani, a people dwelling between the rivers Seine aud Loire, under a general named Elitonis. They settled in those parts of Italy now known by the names of Bresciano, Cremonese, Mantuan, Carniola, and Venetian. In a third excursion, two other Gaulish nations settled on both sides of the river Po; and in a fourth, the Boii and Lingones settled in the country between Ravenna and l3ologna. The time of these three last experlitions is uncertain.

The fifth expedition of the Gauls was more xemarkable than any of the former, and happencd about 200 hundred years after that of Bellovesus. The Senones, settled between Pa ris and Meux, were invited into Italy by an Hetrurian lord, and scuted themselves in Uinbria. Bremnus their king laid siege to Clusium, a city in alliance with Rone; and this produced a war with the Romaus, in which the latter were at first defeater, and their city taken and burnt;-but at length the whole army was cut of by Camillus, insomuch that not a gingle person escaped.

The Gauls undertook some other expeditions against the Romans; in which, though they always proved unsuccessful, by reason of their want of military discipline, yet their fierceness and courage made them so formidable to the zepublic, that, on the first news of their march, extraordinary levies of troops were made, sacrifices and public supplications offered to the gods, and the law which granted an immunity from military service to priests and old men was, for the tume, abolished.

The Romans, having often felt the effects of the Gaulish ferocity and courage, thought proper at last, in order to humble them, to invade their country. Their first successfint at tempt was about 118 years before Christ, under the command of Quintus Marcius, surnamed Rex. He opened a way betwixt the Alps and the Pyrenees, which laid the foundation for conquering the whole country. This was a work of inmense labour of itself, aud renderel still more difficult by the opposition of the Gauls, especially those called the Stoeni, who lived at the foot of the Alps. These people, finding themselves overpowered by the cospular army, set fire to their houses, killed their wives and children, and then thresv themtelyes into the flames. After thic Marcius built the city of Narbonne, which became the
capital of a province. Ilis successor Scaurrs' also conquered some Gaulish nations; and, in order to focilitate the sending troops from lialy into that country, he nade sevcral excelient roads between them, which before were amost impassable. These successes fave rixe to the invasion of the Cimbri and Teutones. From this tine the Gauls ceased to be formidabie to the Ronnans; and soon after their country was totally suljected unto the victorious armies of Julins Cæsar.

Gaule: Sec Myrtus Brabantica.
GAULTHERIA, a genas of the class decandria, order noonogynia. Cidys: outer, twoleaved, inner five-cleft; corol crate; nectary with ten dagger-points; capsule five-celled, covered with ihe inner calyx, now become a berry. There is one species, a suall but beautiful shrub of Canada.

GAULUS, in antiquity, a kind of cup.
GAUNT. u. (Asif gewant, from zepanan, to lessen, Saxon.) Thin ; slender ; lean; meagre (Shatispeare).

GA'UNTLY. ad. Leanly ; slenderly ; meagerly.

GA'UNTLET. s. (gantebet, French.) An iron glove used for defence, and thrown down in challenges (Cleaveland).

GAVOT. A dance consisting of two light, lively strains in common time of two crotchets; the first of which rontains four or eight bars, and the second eight or twelve, and sometimes sixteen, each beginning and ending with two crotchets, or the half of a bar.

GAVOTTA (Tempi di), an imitation of the time and movement of a gavot, without regard to the measure.

GAURA. llu botany, a genus of the class octandria, order monogyinia. Caly x four-cleft, tubular ; corol four-petalled; the petals inclining towards the upper side; nut inferior, oneseeded, four-angled. Three species; natires of North or South Amcrica, with flowers resembling those of the cerethera or tree-priunrose: two of them shrubby, or herbaceous.
GAURS, an ancient sect of the magiciaps in Persia. They have a suburb at lspahans, which is called Gaurabad, or the town of the gaurs, where they are employed only in the meanest and vilest druigery; but they chiefly abound in Kerman, the barrenest province in all Persia, where the Mahomedans suffer them to live with some freedom, and in the full exercise of their religion. Some years azo many of them fled into India, where their posterity remnin. They are a poor harmless sort of people, zealous in their superstition, rigorous in their morals, and exact in their dealings; they profess the worship of one God alone, the belief of a resurrection and a future judgreent, and utterly detest all idolatry, though the Mar homedans believe them to be the most guily. of it. It is true they perform their worship: before fire, for which they have an extraordi-- nary veneration, as believing it to be the mest perfect emhlem of the Deity. They have the same veneration for Zoroaster that the Jews have for Moses, ksterming trim a prophet soos from God,

GAUTS, mountains of Hindustan, which extend from Surat to Cape Comorin, at the distance generally of atoout forty miles from the sea, sometimes not more than six, and very seldom sixty. The he ight is not well known, but supposed to be between अ十00 and 4000 feet; which will prevent the great body of clouds from passing over them; and, accordingly, the alternate north-east and south-west winds occasion a rainy season on one side of the mountains only, that is, on the windward side.

GAUZE, in commerce, a thin transparent stuff, sometimes woven with silk, and somecimes only of thread. In preparing the silk for making gauze it is wound round a wouden machine six feet high, in the middle of w hich an axis is placed perpendicularly, with six large wings : on these the silk is wound on bobbius by the revolution of the axis; and, when it is thus placed round the mill it is taken off by means of another instrument, and wound on two beams. This is then passed through as many small beods as it has tirreads, and is thus roiled on another beam in order to snpply the loom. Gauzes are either plain or figured; the latter are worked with flowers of silver or gold, on a silk ground, and are chiefly imported from China. Gauzes of excellent quality have, of late years, been manufactured as Paisley.

GAWK. s. (seac, Saxon.) 1. A cuckow. 2. A foolish follow.

GAWN. s. (corrupted for gallon.) A small sub, or lading vessel.

GA'WNTREE. s. (Scottish.) A woorlen frame on which beer casks are set when tunned.

GAY (John), an English poet, was born near Barnstaple in Devoushire. His family being poor, although ancient, he received no other education than what was to be had at the free-school at Barnstaple; which, howerer, gave him such a taste for literature, that, being arterwards put apprentice to a silk-mercer in Iondon, he was aliogether unfit for the busineas of the counter, and in a few years gave his master a sum of money to be released from his indentures. He now assiduously cultivated poetry, in which he chiefly delighted, and his penius and amiable manners recommended him to the friendship of several eminent persons, and among others, Swift and Pope. His first poem, entitled, Rural Sports, a Georgic, printed in 1711, and dedicated to Pope, gained him new friends; but soon after he was in a desponding state of mind, from the low condition of his finances, and he was incapable of effort when threatened by poverty. The dochers of Monmouth appoiating him her sopretary in 1712, this spirits revived, and he wrote, Trivia, or the Art of Walking the Streets; and the year following his Pastorale. He was now taken to Hanower by the earl of Elarendon, as the secretary of his embassy. On the death of queen Anne he retarned is Pongland, and paid his respects to the new coort, where he was graciously received, but tot nothing. In 1720 his finagces wore pat in
a tolerably good condition by a subscription to his poems, published in two volumes, quartos but he lost the whole in the fatal South Sea scheme, which threw him into a violent fit of illness. On his recovery he wrote his tragedy of the Captives, which he had the honour of reading in manuscript to the princess of Wales; at whose desire he wrote his Fables for the use of the duke of Cumberlansl. His I3eggar's Opera had a run unparalleted in the history of the stage ; and though the sequel to it, called Polly, was not permitted to appear on the stage, wet as it was published by subscription, it added considerably to his finances: but the moral tendency of both these pieces was extremely bed. He, died Dec. 11th, 1732, and his body was interred in Westminster-abbey, and a anonument erected to his memory by his gencrous patrons the duke and duchess of Quecusberry.

Gay. a. (gay, French.) 1. Airy; cheert ful; merry; frulic (Pope). \&. line; shows (Buruch).

Gay. s. (from the adjective.) An omament ; an embellishment ($L \cdot E s t r a n g e$).

GA'YETY. s. (gayett, French.) 1. Cheerfulness; airiness; merriment. 8. Acts of juvonile pleasure (Derham). 3. Finery; show (Shalispearr).

GA'YLY. ad. (from gay.) 1. Merily; cheerfully; airily. 2. Splendidly; pompondy (Pope).

G A'YNESS. s. (from gay.) Gayety; finery.
GAZA, an ancient and celebrated town of Palestine, three miles from the sea, with a harbour called New Gaza. It is at present very small; bott we may jukge by the ruine that it was formerly a considerahle place. There is a castle near it, where a bashaw resirles. It is 50 miles $S . W$. of Jerusalem. Lon. 34. 45 E. Lat. 31.28 N.

To GAZE. v. n. (zerean, to see, Saxon I To look intently and eainestly; to look with eagerness (Fairfax).

To Gaze. v. a. To view stedfastly (haif ton).
(inize. s. (from the verb.) 1. Intent regard; look of eagerness or wouder; fixed took (Spenser). 2. The object gazed on (Alilion).

GA'ZER. s. (from gaze.) He that gazes; one that looks intendy with eagerness or miration (Spenser).

GA'ZEFUL. a. (gase and fulh) Looking intently (Sperser).

GAZ̈E-HOUND, an obsolete name fot the grep-hound, but far more appropriate: the grey-wound pursuing try gaze, or sight, alone, and not by soent.

GAZELLL, in mastiology. See Axy:LOPR.

GAZETTE, a newspaper or priabed aocount of the transactions of all the countries in the known world, in a loose sheet, or thats sheet. This name is with us confined to etras paper of news published by authovity.

The first gazetre in England was publiohed Oxford, the court being there, Dov. $7,1065$. On the remeval of the coust to London the gazette was pobliahod there the this work
are recorded all commissions and promotions in the army ; all state appointments of consequence, with a variety of matters interesting to men of business and others.

GAZEITE'ER. s. (from gazette.) A writer of news.
The term has been frequently applied as the title of an alphabetical account of the principal countries, seas, counties, lakes, towns, rivers, \&c. upon the earth. Thus, we have Brooks's Gazetteer, Walker's Gazetteer, Crutwell's Gazetteer, \$zc.
GAZING-STOCK. s. (gaze and stock.) A person gazed at with scorn or abhorrence.

GAZNA, a city of Asia, once much celebrated, and the capital of a very extensive empire, but which is now either entirely ruined, or become of so little consideration that it is not taken notice of in our books of gengraphy. This city was anciently an empory and fortress of Sablestan, not far from the confines of \ln dia.

GAZONS, in fortification, turfs, or pieces of fresh earth covered with grass, cut in form of a wedge, about a foot long, and half a foot thick, to line or face the outside of works made of earth, to keep them up, and prevent their mouldering.

GAZOPHYLACIUM, in the Jewish antiquities, according to the Greek etymology of paja, treasure and qu treasury chamber. Mark xii. 41. 43. Luke xxi. 1 .

GAZOPHYLAX, ra\}opuna , in antiquity, an officer who had the care and management of the treasure belonging to the kings of Persia.

G DOUBLE, in music, the octave below G gammut.

GEAR. s. (¿ẏnıan, Saxon, to clothe.) 1. Furniture : accoutrements ; dress; habit; ornaments (Fairfax). 2. The traces by which horses or oxen draw (Chapman). 3. Stuff (Shakspeare).

GE'ASON. a. Wonderful (Spenser).
GEAT. s. (corrupted from jett.) The hole through which the metal runs into the mold (Moxon).

GEBER (John), an Arabian physician and astronomer, who lived in the ninth century. He wrote a Commentary on the Syntaxis Magna of Ptolemy, in nine books, in which he professed to correct the astronomy of that noted author; but Copernicus called him the calumniator of Ptolemy. He was the author of other works, and Boerhaave speaks of him as a learned chemist. His works are written in a strange jargon, insomuch that Dr. Johnson thinks the word gillerish is probably derived from the cant of Geber.

GECK. 8. (zeac, Saxon, a cuckow.) A bubble easily imposed upon : obsolete (Shakspeare).

To Geck. v. a. To cheat ; to trick.
GECHO. See Lacerta.
GED (William), an iugenious artist and goldsmith in Edinburgh, who in 1795 endeacoured so introduce a method of printing with

G E D

blocks or plates, containing letters for a whole page or sheet. The Chinese and Japanese practised this method with blocks of wood, and Coster, the European inventor of the ninde now usually prarlised, first followed their method. Ged, with others, entered into an engagement with the university of Cambridize, to print bibles and common-prayer-books in the new manner; but a large sum of money was sunk, and the project abandoned. Ged imputed the failure principally to the dishonesty and opposition of the pressmen. Having returned to Scotland, he primed an edition of Sallust, with his plates. He died in 1749, in reduced circumstances.

GEIDDES (Alexander), a noted Roman catholic priest, was born at Arradowl in the county of Banff, in Sept. 1737. Afier receiving some private tuition, he was removed to Scalan, an obscure place of education in the Highlands; and from thence, in 1758, to the Scotch college, in Paris. During his stay here he was very attentive to his difficrent studies, and particularly to that of the Hebrew language. He returned to Scotland in 1764, and ofliciated as priest to the catholics in the county of Angus: in 1765 he removed to Traquaire; and in 1769 undertook the charge of a considerable Roman catholic congregation at Auchinhalrig, in Bantfshire: this charge he resigned in 1779. His great learning, which began now to be universally known anong the literati of the north, obtained for him in the year 1780 a diploma; creating him Doctor of Laws, from the university of Aberdeen. This was an honour that had never, since the reformation, been conferred by that body on a Roman catholic. About this period Dr. Geddes came to London, and preached occasionally at the chapel in Duke-street, Lin-coln's-inn-fields, till Easter 1782, when, we believe, he totally declined the exercise of all clerical functions. It was much carlier than this that he formed a design of giving a new Translation of the whole Bible: about the year 1700 he began to read with this view, and paid a close attention to the subject for many years. The first volume of his Translation was published in 1792, and derlicated to his patron lord Petre : it contained the first six books of the Old Testament. The 2d volume did not appear till 1797. In the preface to this volume, Dr. Geddes distinctly relinquishes, and boldly controverts, the doctrine of the absolute and plenary inspiration of the Scriptures: he places the Hebrew historians, in the scale of merit and of accuracy, much lower than the historians of Greece and Rome; and gives up as fabulous such divine commands, precepts, and injunctions, as seemed to kis mind unworthy even of human authority. In this view of the subject he denied that the command given to destroy the Canaanites could be of divine origin; and supported his opinion by a curious species of argumentation : among other reasons equally as singular and nearly as ridiculous, he says he cannot believe the story of the divine command for the deatruction of the Canaanites, because

G E L

GEL

If he had been one of that nation, he would not have subanitted to the panishnent! Risum tenestis amici? On this subject, we tanst, the scepaical reader may pertise with advantage our a ucle Canasites.- Pesides the translation of the cart books of the Lible, atd the critical Remaris, he publisited some small tracts in defence of his opiaiors. He also wrote a Moxlest A pology for the Lioman Catholics of Great Britain, which was publisited in 1860. Many lighter works, pretical, satirical, and political, are attributed to Dr. Geddes; but as they are not identified by his name, we think it unuecessary to give a list of them here. Dt. Geddes died Feb. \&6, 18u2. He was a man of profuund and extensive erudition, of deep research, and indefatigable application: he was an enthusiastic propa gator of his particular opinions respecting the scripture historians; but as these are reckoned not only erruneous but even dargerous, by the majority of Christians, it is no wonder that his publications on these subjects diminished that respect which all men of learning would otherwise bave entertained for him. An interesting account of the life and writings of this erudte anil extraordinary man was published by Mr. Joina Masm Grod, F.R.S. in one vol. 8vo.

GEESE. The plural of goose.
GEFLE, the capital of the province of Gestrike, in Sweden. It is not far from the Baltic, aud is the most commercial town in the northca part of Sweden. Lat. 63 N. Lon. 17 E .
GEGENES, Fismus, a name which the ancicats commonlv appropriated to theuselves, sisnifying sins of the earth.

GLEHENNA, a scripture term, which has given some pain to the critics. It occurs in St. Matuhew v. 2\%. 89. 30. x. 28. xviii. 9. x xiii. 15. 33. Mark ix. 43. 45. 47. Luke xii. 5 James iii. (i. The word is formed from the Hebrew gehinnow, i.e. valley of Hinnom. In that valley, which was near Jerusalein, was a pisee nansed Tophet, where children were sacriticed alive to Moloch. It was afterwards wase a receptacle for the filth of the city, where fircs were continually burning to coilsume it. In most of the above passages the word ntanifestly refers to future punishment; and is properly used to denote an unextinguishable fire.

GELATIN. In the new chemical nomenclature, a name appropriated to that extractive matter, which, on builing animal substances in water, appears in the form of a solid but tremulous jelly. It contains much saccharine substance, and hence, contrary to what occurs in albumen, undergoes the acetous fermentation, and especially in graminivorous animals, after which it enters progressively into the putrid fermentation. From its sugar it gives out when combined with nitric acid the oxalic acid; and when distilled and dried it resembles born.

Gelatin, according to its degree of mnisture, is mucus, or mucilagc; size, or gluc ; or isinglass: the first containing the greatest propotition of water, the last the smallest; and while in all
these various forms resembling vegetable matter; it aositly re embles it in its mucilaginous state; it combines with albumen in the production of the membranes of the viscera, anuscle, skin, hair, feather, scale, hoof, and nail; the softest of all which, or those possest of the largest portion of gelatia, are the sulstances most easily disposed wo putrefaction.

The component parts of gelatin, when chemically analyzed, are carbon, hydrugen, azot, sacciarme matter, phosphoric acid, muriatic acid, and lime of soda. It exists in the blood, in coujunction with albumen and fibria, and is one of the chief elementary substances of the animal frame.

Animul mucus, or mucilage, is a somewhat clammy, insipid, whicish, or colourless fluid; uncoagulable by heat, but leaving, after a gentle evaporation to dryness, a small proportion of sling tenacious matter, much resemblinggelatin. in appearancerand in being equally resoluble is water. The saliva is perhaps the best exanuple of simpleanimal inucilage in thehuman body, but is is found more copiously in other animals, as, for example, in the suail, and the oyster. In some respects animal mucus diffiers from gelatin; for it is readily soluble in cold water, atid has no proper gelatinizing posver, or, in other words, a hot solution dues uot stiffen it, nor does it approach apparently nore to the solid state by cooling; its degree of viscidity seecning to depend simply on the proportion of water in the solution, without regard to temperature. Mr. Hatchett, however, considers mucus as a species of gelatin, though at the opposite extreme of tenacity from the stiflest glue obtained from condensed skin.
One of the most singular combinations of gelatin, and that which is most useful as a chemical test, is with tan. If a solution of gelatin, of glue, for example, or isinglass, he adde:l to an infusion of oak bark, galls, catechu, or any other vegetable that contains the tanning principle, a copious white precipitate separates, which, when the respective liquors are concentrated, may be collected by the fingers with great ease, and forms a singular grey ductile mass, smelling like tanned leather, and which dries into a dark, brown britule mass, of the appearance of resin, insoluble in water, and incapable of putrefaction.
The species of gelatin called ghe, is supposed to be made with greater perfiction in this country than in any other, and hence, is in great repute as an article of commerce. It is manufactured from the parings of hides or horns of any kind, the pelts obtained from furriers, the hoofs and ears of horses, oxen, calves, sheep. These are first cleaned by being digested in lime-water: they are then boiled in a cauldron with water, the filth that remains being skimmed off as it rises, and a litthe alun or lime teing added to asist the cleansing still farther. 'The waiss is then strained through bashets and suffered to settle, to be still further exonerated of its impurities. It is then returned to the kettle, and farther evaposated by boiling, thll it becomes of a clear

GEL

darkish-brown colour. When it is jwidged sufficiently strong, it is poured into frames or moulds, where it gralually hardens as it cools, and is cut out when cool by a spade into square oakes; each of which is afterwards cut into slices by an instrument like a bow, with a brays wire for ite string. Theslices are dried on nets in the open air, placed in rows in the glue-maker's field. To know good from bad glue, the purchaser should hold it between his ege and the light ; when, if it appear of a strong dark colour and free from eloudy or black spots, it is well prepared.
Size, is a gelatinous cement of less firmness than glue, and made for the use of paper-hangers, gilders, book-binders, house-painters in distemper, and many other trades, by boiling down in water the clippings of parchments, glove-leather, fish-skin, and many other kinds of animal membrane. These are used either alone or mixed with vegetable macious substances, such as flour-paste, gum-arabic, or tragacanth. The preparation of these gellies is perfectly simple, the substances used (parchment shreds for example) being simply dissolved in water by boiling, strained and evaporated to a due consistence. Eel-skins, and ekins of other fishes, make a cement, which is much valued for its transparency and tenacity.

Isinglass, among the kind of cements referred toin the close of the preceding paragraph, is most walued and in most general use. It is a thin, tough, whitish membrane, in the form of irregular shreds or elippings, loosely coiled up, and of different degrees of fineness and fexibility, procured from several parts of the entrails of various fishes, with scarcely any other artificial preparation than that of extracting, - deansing, and drying.

The fishes that chiefly afford isinglass are those of the northern seas and rivers. The Volga, Lyak, Don, and Danube, and especially the Caspian, yield very large quantities of these : many of them are to be found even in Siberia, known by the name of kle or kla, from being filled with gluey inatter. In Muscovy, therefore, isinglass is chiefly prepared: the best sorts from the air-blalders of the oturgeon and the sterled (both species of the Acipenser, which sec). After these a fish called serrijonga gives the next in quality, and lastly the beleuga, the delphinus leucas, as we conjecture. See Delphinus.

In making isinglass, after the air-bladder has been extracted, it is washed with water, to clean it of the blood if any remains, but not otherwise. It is then cut lengthways, and the exterior membrane taken off, which is of a brown colour, whilst the other membrane already mentioned is so fine and white, as to be taken from the fish with difficulty. They are first formed into rolls of the thickness of the finger, placing the fine membrane in the middle, and are then suspended in the air to dry. The substance, however, is often converted into various shapes at the fancy of the manufacturer.

A coasser kind of isinglass is obtained by

G E L

Inoiling the head, tail, benes, cartilages, or fing of such fishes as sea-wolves, porpoises, seacows, shaths, cuttle thin, whales, and indeed almost any kind of fishes, in water after the manner of preparing glue ; which, like glue, is afterwards cleared, and poured out to dry in cakee. This sort is very asefu! for the purpose of clarifying wines and other liquors; for stiffening silks and gauzes; for joining pieces of glass or porcelain; for making artificial pearls; and forming English sticking-plaister. According to Hatchett, 500 graitis of isinglass perfectly exsiceated yielded 56 graing of coal, from which a grain and a half of phosphat of sola was extracted, mixed with a very minate proportion of phosphat of lime.
GE'LABLE. a. (from gela, Latin.) What may be congealed, or concreted into a pelly.
GE'LA'TINE. Gela'tinous. a. (gelafus, Lat.) Formed into a gelly ; viscous; stiff and cohesive (Derham. Woodurard).
GELD, in our old customs, a Saxon word, signifying money, tribute, or mulet.
To Geid. v. a. preter. gelded or gelt; part. pass. gelded or gelt. (gelien, German.) 1. To castrate ; to deprive of the power of generation (Shalispeare). 2. To deprive of my essential part (Shahispeare). 3. To deprive of any thing inmodest, or liable to objection (Drydert).
GE'LDER. s. (from geld.) One that performs the act of castuation (Hudilitas).
Gelder rose, in botany. See Viburnum.
GE’LDING. s. (from geld.) Any animal castrated, particularly a horse.
Gelding, a term used to denote the operation of castrating horses; and used also for a horse so castrated, or whose testicles have been extirpated. See Castration.

GELHAUSEN, an imperial town of Wetterevia, in Germany. Lat, 50.7 N. Lon. 9 . 15 E.
GELENIUS (Sigismund), a learned man, born at Prague in 1498 . He was the intimate friend of Erasmus, who recommended him to Frobenius as corrector of his press. He died at Basil about 1555. He translated several valuable authors from the Griek into Latin.
GE'LID. a. (gelidus, Latin.) Extremely cold (Thomson).

GELI'LITYY. Ge'lidness. s. (from gelid.) Extreme cold.

GELLERT (Christian Furchtegnt), a celebrated German poet, was born at Hayinchen. a village in Misnia, in 1715, and died in 1769. He supported himself for many years as tutor in private families; but was afterwards professor of philosophy at Lripsic. He is best known for his Fables and Tales.

GELLI (John Baptist), an Italian writer, remarkable for uniting one of the lowest occupations of life with great literary attainments, was born at Florence in 1498, where he died in the 65 th year of his age. His occupation was that of a taylor, which he continued to follow till his death, although he was the author of several works, was a member of the

G E M

araitemy at Fiorence, and adnitted to the ficudstipo of all the inen of qemins and learning jn that city. He wrote bialogues. in the mather of Lucian, which were tramshated inan Latin, Frencli, and Finglish; he also wrote some comedica, and Dissertations on the poems of Dante and Pettarcl:.
(iFl.L.1BRAND) (Henry), a labopious astronomer of the last century, was born in 15097. Though he was not without gool views in the chureh, yet he became so enamouned with mathernatical studies, that on the death of his father he became a strikent at Oxford, contented himgelf with his private patrimony, and devoted hiussetf solely to them. On the death of Mr. Gunter, te was recommended by Mr. Briggs to the trustees of Gresham college, for the astronomical professorshing there; to which he was elected in 1697. His friend Mr. Brizos dying in 1630, before he had finisherl his 'Trigononvetrica Brizannica, it was finishel by Gellibrand at his request. He wrote several orher things, chiefly rending to the improvement of navigation, and died in 1636 .

GELLIUS (Aulus), a celebrated ancient grammarian. He was bern in the reign of Trajan, and died in the beginning of that of Marcus Aurelius. After sthidying grammar aud rhetoricat Rome, he went to Athens; and on his returs to Rome was made a judge. Itis Noctes Attice, Attic Nights, is a curious and vatuable work. It has gone through a varicty of chtions, and been translated into English by Mr. Beioe.

GE'LLY. s. (gelatus, Lat.) Any viscous body; viscidity; glue; gluy substance (Dryden).

GELT. s. (from geld.) A castrated aniunal; gel:ing: not used (Mortimer).

Gelt. 'The part. pass. of feld.
Gret. s. Tinsel; gilt surface (Npenser).
GEM. s. (gemma, Latin.) I. A jewel; a precious stone of whatever kind (Shakspeare). \%. The first bud (Denham).

To Gem. v. a. (gemana, Latin.) To adorn, as with jewels or buds.

To Gem. v. n. (gemmo, Lat.) To put forth the first buds (Milton).

Gem, in mineralogy. (See Gemma), under which article we shall notice the greater number of those which are most esteenied, or of greatest notoriety, and which, in a classical arrangement, helong to this genus.

In common laaguage, however, the term is used more loosely; so loosely indeed that it is difficult to give a definition of its meaning. "S Nature," says Boetius de Boot, in his treatise De Gernmis, "forms some stones large and others small; of the small, some are of rare occurrence, others are common; of the rare, some are hard, others are soft; of the hard, some are beantiful and pleasant to the sight, others are mean. The beautiful merit the meme of gems. Hence the word gem signifies a natural stone of small size, rare, hard, and benutiful."

Between precious stones and gems the an-

GEM

cients appear to have made a difference; comprehending under the former term such hard and beautiful, but imperfectly crystallised stones, as agnte, comelian, onix, and other species of chalcedony, as well as various species of jasper; restricting the word getn to those stones which, on account of their minuteness, extreme bardness, and brilliant lustre, wero worn in rings, as the preceding were as seals, either in the state in which nature presents them, or after being eut and polishect. Some stones, however, as the topaz and amethyst, being eommoner and in larger pieces than most of the other gems, held a bind of midille rank between these and the precious stones, being sometimes enployed as materials to engrave upon, and sometimes used plain for necklaces, rings, and sinilar ornaments.

All these we hare separately described is their proper places : it only remains for us, therefore, under the present article, to give a list of those which are denominated gems by miorlern lapidaries : which list we shall arrange in forr clases according to their relative estimation ; premising, howerer, that this order is sulject to soure variations, from the casual plenty or scarcity of any particular kind, and front the caprice of fashion.
The diamond and the oriental ruby constitute the first class. Of these a very small diamond is more valuable than a ruby of equal weight: but rubies of ten carats or more being much rarer than diamonds of equal weight, bear a somewhat higher price in the market. The second class of genns contains the emerath, star-stoue, oriental girasol, sapphire, spinal, aud balais rubics, oriental topaz, oriental amethyst; and noble opal. In the third rank are foumd the jargon, cat's-eye, oricntal chrysolite, hyacinth, and peridot. Those in the fourth and lowest class are often engraved upon, and form the most valuable seal-stones : they are the beryl, or aqua marina, Brazilian topaz, Snxon iopaz, Syrian garnet, Bohemian garnet, and European amethyst.

Gems (Artificial). See the article Geass (Coloured).
GEMARA, or Ghemara, the second part of the Talmud. The word ina, gemara, is commonly supposed to denote a supplement; but in strictness it rather signifies complement, perfection: being formed of the Chaldee va;, gemar or ghemar, to finish, perfect, or complete any thing. The rabbins call the Pentateuch simply the law : the first part of the Talmud, which is only an explication of that law, or an application thereof to particular cases, with the decisions of the ancient rabbins thereon, they call the Mischna, i. e. second law : and the second part, which is a more extensive and ample explication of the same lav, and a collection of decisions of the rabhins posterior to the Mischan, they call Gemara, q. d. perfection, completion, finishing; because they esteem it the finishing of the law, or an explication beyond which there is nothing farther to be desired.
The Gemara is usually called sintrly Tak
moud, the common name of the whole work. In this sense we say, there are two Gemaras or 'Calinuds, that of Jcrusilem and that of Babylon, though in strictness the Gemara is only an explicatiou of the Mischna, given by the Jewish doctors in their schools; much as the commentaries of our school-divines on St. Thomas, or the master of the sentences, are an explication of the writings of those authors. A conmentary, Mons. Tillemont objerves, was written on the Mischna by one Jochanan, whom the Jews place about the end of the second century: but Fa. Morin proves, from the work itself, wherein mention is made of the Turks, that it was not written till the time of Heraclius, or about the year 620 ; and this is what is called the Gernara or Talmud of Jerusalem, which the Jews do not use or esteem suach because of its obscurity. They set a much greater value on the Geinara or Talmud of Babylon, bezun by one Asa; discontinued for seventy-three yeari, on occasion of the wars with the Saraceus and Persians; and finished by one Josa about the close of the seventh cencury. See Talmud.
GEMatria, or Gametria, the first kind of artificial cabbala used by the Jews. The word is formed from the rabbinical Hebrew xา0ny, by corruption of the Greek. Gcmatria is a geometricalur arithmetical method of explaining these words, whereof there are two kinds; the first bearing a inore immediate relation to arithmetic, and the latter to geonetry. The rules of the gematrin are too frivolous to justify our enlarging upon them.

GEMBLOWES, is town of Brabant, in the Austrian Netherlands, 22 miles S.E. of Brussels. Lat. 50.37 N. Lon. 4.51 E.

GEME'LLIPAROUS. a. (gemelli and purio, Latin.) Bearing twins.
Tu GE'MINATE. v. a. (gemino, Lat.) To double.
GEMELLUS. (gumellus, from geminxus, double, having a fellow.) In myology. See Gastrocnemius and Gemini.

GEMINATE, in botany, double. Applied to leaves, stipules, and peduncles. See Double.

GEMINATION. s. (from geminale.) Repétition; reduplication (Boyle).

GEMINI, in astronomy, the twins; a constellation, or sign of the zodiac, the third in order, representing Castor and Pollux: it is marked thus, II. The more ancient Esyptians, and Eastern natiruns, depicted this sign by a couple of young kids, which were afterwards chauged to two children. The constellation is now reckoned to contain 84 stars of the first six naagnitudes, i.e. I. 2.4. 8. 13. 56.
Gr'mini. In anatomy. Gemelli of Winslow. This muscle hasbeen a sulject of dispute among anatomists since the days of Vesalius. Some describe it as two distinct muscles, and hence the name it has gotten of gemini. Others contend that it ought to be considered as a single inuscle. The truth is, that it consists of two portions, which are united torether by a tendinous and fleshy membraue, and afford a
passage between them to the tendon of the obturatur internus, which they inclose as is were in a purse. These two portions are placed under the glutwus maximus, between the ischium and the great trochanter.
The superior portion, which is the shortest and thickest of the two, arises fleshy from the exterial surface of the spine of the ischium; and the iuferior, from the tuberosity of that bone, and likewise from the posterior sacroischiatic ligament. They are inserted, tendinous, and fleshy, into the cavity at the root of the great trochanter. Between the two portions of this muscle, and the termination of the obturator iuterums, there is a small bursa mucosa, counected with both, and with that part of the capsula of the joint which lies under the gemini.
This muscle assists in rolling the os femoris ontwards, and prevents the tendou of the obturator internus from slipping out of its place while that muscle is in action.
GEMINIANI (Francesco), a celebrated performer on the violin, and musical composer, was born at Lucca in Italy, about 1680. He cane to England in 1714, where he was iutroduced w George I. at whose court he met with friends. Bus he was a man of most independent mind, and refused several offers of services from the great. He was, however, capricious, and passed his life in various countries; sometimes in distressed circumstances. He died in 1762. The following list comprises the whole of his publications, except two or three articles of sinall account. Twelve solos for a violin, opera prima; six concertos in seven parts, upera sccuntia; six concertos in seven parts, opera tersa; twelve solos for a violin, ojera guarica; six solos for a viotincello, opera quinta; the same made into solos for a violin; six concertos from his upera quarta; six concertos in eight parts, opera setlima; rulcs for playing in taste; a treatise on good tate; the art of playing the violin; twelve sonatas from his first solos, opera andecima; $\mathbf{R i}$ pieno parts to ditto; lessons for the harpsichord; Guida Armonica; supplement to ditto, the art of accompaniment, two books; his first tivo operas of concertos in score; and the Enchanted Forest. Of his solos the opera prime is esteemed the best. Of his concertos some are excellent, others of them scarce pass the hounds of mediocrity. The sixth of the third opera not only surpasses all the rest, but, in the opinion of the best judges of harmony, is the finest instrumental composition extant.
GE'MINOUS. a. (geminus, Lat.) Double ($B r$.)
GEMMA (Reiuier), frequently named Gemma Frisius, was a Dutch physician, a native of Friscland, who practised at Louvain. He was well versed in astronong, on which he wrote several works, as well as on other branches of mathenatics. He died in 1555, at the ase of 47. His son, Cornelius Gemma, was famous for his knowledge of mathematics. He died in 1579, at the age of 44.

G E M M A.

Gemana, in botany, a gem or bud, Sef Bud.

Gemma, in oryctology, a genus of the class earths, order siliceous: conaisting of sjlex, and 2 larger proportion of alumine, with sometimes a litue carbonat of lime and oxyd of iron ; meagre to the uuch, of a high internal lustre, very rarely opaque or subopaque, never hardish or soft, breaking into indeterminate fragments, parasitic, shining in the dark, attracting light bodies when heated by friction: not melting with alkalies. Serenteen species; found in different parts of the globe.

1. G. rubinus. True or orfental ruby; perfect corundum. Very harl, pondervus, red, of a foliated texture, which in a contrary direction is conchowal, not melting or losing its lustre in the fire. Found in Brazil and the East Indies, principally in the kingdoms of Peru and Ceylon, and is, except the diamond, the most precious of all the gems: the colour varies a litte, being carmine red, sometimes verging to violet, mixt carmine, and hyacinth red, red and white, red and blue, or orange red; is found in angular pieces in small pebbles, or in regular six-sided pyramids, joined 10 and opposed base to base: seldom exceeding an inch in size : when finely powdered, melting with borax, though with difficulty into a green glass.
ء. G. sapphirus. Sapphire; oriental sapphire. Perfect corundum, Very hard, somewhat ponderous, blue, making a white streak, of a slightly incurved lamellar texture, not fusible, but losing its colour in a strong heat. Found in Brazil, the Indies, Persia, Bohemia, and near Puys in Yelay, sometimes erystallized, sometimes in rounded masses, the anglea being worn of by friction; and is neat in value to the ruby: colour sliy-blue, or the shades of Prussian and indigo-blue, with sometimes white specks; the crystals are grong, shining, and exhibit a foliated texture zransversely striate: they become colourless when heated with microcosomic salt, and emit a great light while burning.
2. G. topazius. Topaz. Imperfect corundum. Nearly very haid, ponderous, yellow, of a foliated texture, which is conchoidal when broken transversely, not fusible per se, but losing all its colour in a strong heat. Found in India, Brazil, Russia, Saxony, Bohemia, \&ec. ge:nerally adhering to otber substances, though sometiples detached with the angles worn off; colour a higher of deeper yellow, mostsompionly boney-coloured, somerzimes serging to while or greenish; its fragments sometimes irregidur, somecimes granular or prisゅatic ; the prisus longitudinally striate, solitary, in pairs, of is threes, disporsed in a eruciats manner; often clustered; rarely foursided, rectangulas or objique-angular ; lines its colour only in a sery lig! degree of heat; Duels with borax into slezr glase.
3. G. hyacinthus, Hyacinth. Zirenan. Jargoo. Hard; la e ellar; of a peculiar yel: powish-red, io four-sided prisms, terminated oo both sides by a four-sided pyranuid, not fir

VOL. Y,
sible per se, but losing its colour in a strong heat. Found in the East, and in Bohemia, if the form of pebbles, in obtuse angular pieces; colour yellowish-red, with a mixture of browns the crystals are small, have a smooth surface, and fopated texture : they are imitated by heatr ing rock crystals, and putting them into a solution of dragon's bload:
5. G. alanbandica. Found in the river Goetch near Lengefeld, in the form of rounded granulations, from the size of a pea to that of a bean. When exposed in a strong heat surrounded with wood ashes, loses its red colour, and is ofien sold for the diamond.
0. G. aquamarina. Aquamarine. Hard, pellucid, lamellar, pale sca-green, not fusible per se, breakiny into trapezoidal fragnents. Found in Brazii, India, Síberia, Saxony, Bos hemia, sometimes aniorphous, sometimes crystullized in equiangular six-sided prisms, longitudiually striated : its iongitudinal fracture ra: ther conchoidal, its transverse fracture foliated; colour rarcly a blucish-green: it decrepirates when heated, and is generally a little discoloured, but does not melt; becomes electric by friction, when one of its poles is attractive, the other repulsive.
7. G. spinallus. Spinell and balass puby. Hard, of a pale red colour, inclining to orange: not fusible, but losing its colour in a strong heat. Found in Ceylon in six-sided crystals.
8. G. euclasius. Euclase. Hard, pellucid, lamellar, green, in four-sided oblique prisms, whose edges are varionsly truncate, and whosp faces are oblique. Found in Peru: very brittle, and sufficiently hand to scratch quartz.
9. G. schorlites, Schorlite. Hardish, somewhat ponderons, diaphonous, of a greens ish or vellowish-white colnur, which is not altered by the fire; not fusible per se. Found in Brazif and Saxons, with mica or quarta.
10. G. Leryllus. Berst. Hard, of a bluer green colour, not altering its colour or fusible hy heat, of a sonichacequs texture, which is foliated when broken srausversely, in six sided prisms, which are usually lingitudinally striate, Found iq the inountains of Saxony, Siberia, \&c. in quartz, granite, wolfran, and other matrices ; its crystals of various mamitude and pellucidity, sometimes with a greenish, thueish, or yellowist tinge.
11. G. cirrysolithus. Chuysotite. Hardish, pellucid, lightish, of a green collour, which sanishes in a strong heat, fusitile to the binwpipe, and sparkling when metted; of a conclinidal texture. found in Brazil, Cey!?n, Siterik, Tfunsylvania, and Buntremia, in anggut lar fragments, graíns, and cristo'tized.
12. © chrysoteryllus. Chryenteryt. Hard, pethicid, green, thighly shining internatly, of a conchaceous textute. Pound in Brazil and Cendun, in round masses, about the size of 4 pea ur crystallized.
13. G smaragdus, Fimerald. Hard, pelo lucid, lightish, grasegren; when heated is 120° of wedgrwoad, hermes thee, but recewers ite grece colour when cidd : melte before ahe blow-pipe ; of a fopchoidal texture. Fuppd

G E N

in the mountains of Egypt and Ethiopia, in Peru, Russia, and on the confines of Persia.
14. G. granatus. Garnet. Hard, ponderous, red, ot unequal texture, preserving its colour in a low heat; melting, in a stronger heat, into a brown, opaque, spumid uass. There are many varietics of this species, which differ in colour, or pellucidity, or angularity. Found in Britain, and various other parts of Europe, Madagascar, Ethinpia, India, Syria, sometimes in mass, sonetimes crystallized. The other three species, which are scarcely worth particularizing, are,
15. G. granadillus. Red schorl.
16. G. Poranus. Gem granite.
17. G. ruhicellus. Brazilian ruby.

GE'MMARY. a. (from gem.) Pertaining to gens or jewels (Brown).

GEMMATION, in botany, budding. The construction of the bud; of leaves, stipules, petioles, or scales.

GE'MMEOUS. a. (gemmeus, Latin.) 1. Tending to gems (Wood). 2. Resembling gems. GEMMEUM, in Roman antiquity, properly signifies a vase or cup, cut out of a single stone.

GEMMINGEN, a town of the palatinate of the Rhine, in Germany. Lat. 49. 6 N . Lon. 9. ${ }^{13} \mathrm{E}$.

GEMMI'PAROUS, in botany, producing gems or buds.

GEMONIX SCALE, or, Gradus grmonir, among the Romans, was much the same as a gallows, or gibbet, in England.

GEMOTE, a Saxon word, denoting a meeting or assembly.

GENDARMES, or Gens d'Armes, q.d. . men of arms, a term used among the French for a select body of horse-guards; because they succeeded the ancient men of arms, who were armed at all points, and thence were called gendarmes.

Gendarmss (Scots), were originally instituted by Charles VHI. of France about the middle of the fifth century, and formed a part of his guard; in which station also they acted under other princes. It was their prerogative to take precedence of all the companies of the gendarmerie of France, and on particular occasions they even preceded the two companies of the king's mousquetaires. The sons of the Scottish monarchs were the usual captains of this company; and, after Mary's accession to the throne, its command belonged to them as a right.

GE'NDER. s. (genus, Latin.) 1. A kind; a sort: not in use (Shahspeare.) 2. A sex.

Gender, among grammarians, a division of nouns or names to distinguish the two sexes. This was the original intention of geader: but afterwards other words, which had no proper relation either to the one sex or the other, had genders assigned them, rather out of caprice than reason; which is at length established by custom. Hence genders vary according to the languages, or even according to the words introduced from one language into', another Thus arbor in Latin is feminiue, but arlire in

French is masculine; and dens in Latin is masculine, but dent in French is feminine.
The oriental languages frequently neglect the use of genders, and the Persian language has none at all. The Latins, Greeks, \&c. generally content themselves to express the different genders by diffierent terminations; as lonus equus, a good horse; lona equa, a good mare, \&c. But in English we frequently go further, and express the difference of sex by different words: as boar, sow; boy, girl; buck, doe; bull, cow ; cock, hen; dog, birch, \&c. We have only about twenty-four feminines, distinguished from the males by the rariation of the termination of the mate into ess; of which number are abbot, abbess; count, countess; actor, actress; hcir, heiress; prince, princess, \&c. which is all that our language knows of any thing like genders. The Greek and Latin, besides the masculine and feminine, have the neuter, common, and the doubtrul gender; and likewise the epicene, or promiscuous, which, under one single gender and termination, includes both the kinds.

To Ge'nder. v. a. (engendret, Prench.) 1. To beget. 2. To produce; to cause (Tim.). To GE'NDER. v. n. To copulate; to breed. GENDRE (Louis le), a Irench historian, who was descended from an obscure family at Rouen, was born in 1659, and died in 1738. His principal works are, a History of France, in 3 vols. folio; the Life of Harley; an Eseay on the Reign of Louis the Great; and a Life of Cardinal d'Amboise.

GENDRE (Gelbert Charles le), marguis of St. Aubin, a French writer of considerable merit, was counsellor of the parliament of Paris, and master of requests. He died in 1746, at the age of fifty-nine. His principal work is, a Treatise on Upinion, 12mo.
GENEALÓGICAL. a. (genealogy.) Pertaining to descents or families.
GENEA'LOGIST. s. (ymateriw; genealogist, French.) He who traces descents.
 tory of the succession of familics (Burnet).
GENERA, in Botany and Zoology. See those articles.

Genbra, in music, the different scales by which the Greeks regulated their division of the tetrachord: these, as agreed by Aristoxenus, Bacchius, Enclid, Boetius, and other ancient witers, were principally threc; the Enharmonic, Chromatic, and Diatonic. (See those words.) A ristides Quintilian, howerer, mentions many other genera, and enumerates six as very ancient, viz. the Lydian, Dorian, Phrygian, Ionian, Mixolydian, and Syntonolydian. These six genera, which we must not confound with the tones or modes of the same names, differed no less in their degrees than in their compass. The one did not extend to the octave, while others reached, and some exceeded it. Independent of the various subdivisions of the three principal genera, there was a common genus, consisting only of the stable sounds of the genera; as also a mixed genus, partaking of two, of of all the three genera.

It is worthy of notice, that in this collection or combination of genera, which was rarely used, not more than four chords or strings were employed, which were tightened or relaxed during performance: a practice of great apparent difficulty, and of which we can nave no true idea. Indeed, the whole musical system of the ancients being only conveyed to us by speculative authors, and not by any continuance of its practice, we are necessarily left in great uncertainty respecting its execution, nor will the varying accounts of the different writers on the subject afford us a permanent resting place for our opinions concerning the nicetic's of its theory. (Busly's Dict. Mus.).

GE'NERABLE. a. (froin genero, Latin.) That map be produced or begoten.

GE'NERAL. u. (general, Fr.) 1. Comprehending many species or individuals; not spe-. cial; not particular (Broome). 2. Lax in signitication; not restrained to any special or parcicular import (Watts). 3. Not restrained by narrow or distinctive limitations (Lucke). 4. Relating to a whole class or body of men, or a whole Eind of any being (Whitgifi). 5. Public; comprising the whole (Milton). 6. Not directed to any single object (Sprat). 7. Extensive, though not universal. 8. Common; usual (Shakspeare).

Gexemal. s. 1. The whole; the totality (.Vorris). 2. The public; the interest of use whole. 3. The vulgar (Shakspeare).

General, in a military scuse, is an officer in chief, to whom the prince or semate of a country have judged proper to intrust the coms, mand of their toops. He holds this important trust under various titles: as captain-general in England and Spain; feldt-mareschal in Germany, or mareschal in France.

In the British service the king is, constitutionally, and is his own proper right, captaingemeral. He has ten aide-de-camps; every one of whom enjoys the brevet rank of full colonel in the army. Next to his majesty is the commander in chief, whom he somelimes bonours with the title of captain-general.
The natural qualities of a general are a martial genius, a solid judgment, a healthy robust constitution, intrepidity and presence of mind on critical occasions, indefatigability in business, goodness of heart, liberality, a seasonable age; if too young, he may want experience and prudence; if too old, he may not have rivacity enough. His conduct must be niform, his temper affable, but inflexible in maintaining the police and discipline of an army.

The acquired qualities of a general should bo seerecy, justice, sobriety, temperance, knowledge of the art of war from theory and practice, the art of commanding and speaking with precision and exactuess, great attention to preserve the lives and supply the wants of the soldiers; and a constant study of the characters of the officers of his army, that he may employ them according to their talents. His conduct appears in establishing his magazines in the most convenient places; in eramining the
country, that he may not engage his troops too far, while he is ignorant of the means of bringing them off; in subsisting them, and in kuowing how to take the must advantageous posts, either for fighting, retreating, or shmuming a battle. His experience inspires lais aray with confidence, and an assurance of victory; and his quality, by creating respect, auginents his authority. By his liberality he gets intelligence of the strength and designs of the enerny, and by this means is enablect to take the most successful measures. He ought to be fond of. glory, to have an aversion to Hattery, to render himself beloved, and to keep a strict discipline and regular subordination.
The office of a general is to regulate the march and encampinent of the army; in the day of battle to chuse out the most advantageous ground; to make the disposition of the army; to post the artillery, and where there is occasion, to send his orders by his aide-decamps. At a siege he is to cause the place to he invested, to regulate the approaches and attacks, to visit the works, and to send out detachunents to secure the convoy and foraging. parties.
Gencral of Horse, and General of Foot, are posts next under the general of the army, andthese have upon all occasions an absolute authority over all the horse and foot in the armp.

General of the Artillery, or Master General of the Orduance. See Uridance.

General, is also used for a particular march, or beat of drum, being the first which gives notice, comnonly in the morning early, for the infantry to be in readiness to inarch.

General, is also used for the chief of anorder of monks; or of all the houses and congregations, established under the same rule. Thus we say, the general of the Franciscans, Cistercians, \&c.

GENERA LISSIMO, a supreme and absolute comarander in the feld. This word is generally used in most foreign languages. It was first iuvented by the absolute autherity of cardinal Richelieu, when he went to command the French army in Italy.

GENERA'LITY. s. (generalite, French.) 1. The state of being general (Hooker). 2. The main.body; the bulk (Tillotson):

GE'NERALLY. ad. (from general.) i. In general; without specification or exact limitation (Bacon). 2. Extensively, thongh not universally. 3. Commonly; frequently. 4. In the main ; without ininuse delaii (Siciff).

GE'NERAL.NESS. s. (from gencral.) Wide extent, though short of universatity; frequency; commonuess (Sidney).

GE'NERALTY. s. (from general.) The whole: the totality (Hale).

GE'NERAN'T. s. (generans, Latin.) The begetting or productive power (G/anrille).

To GE'NERATE. v. a. (genero, Latin.) 1. To beget; to propagate (Bacon). 8. To produce to life; to procreate (Milton). 3. To cause; to produce (Arlustlinul).

GENERA'TION. s. (generation, French.) 1. The ast of begetting or producing (Bapon).

GENERATION.

2. A family; a race (Shat.). 3. Progeny; oftipring (Shak.). 4. A single succession (Raleigh). 5. An age; about 33 vears (Hooker).

Generation, a sexual action for the purpose of propagating life, performed in different ways among different anmals; some of which thave the powers of both sexes in the same inthividual, others, and by far the larger part, the powers divided between male and female indiiduals.
The females of quadrinpeds have a matrix, separated into two cavities, uterus bicornis, and a considerable number of teats : excepting a few species of simia they have no menstrual flux; most of them bear sereral young at a time, and the period of their gestation is generally short. The generation of birds is very different. The males have a arong genital organ, which is often double. The vulva in females is placed within and behind the anus; the ovaries have no matrices, and there is a duct for the purpose of convering the egg from the ovarium into the intestines: this passage is called the oviduct. The eggs of pullets have exhibited unexpected facts to physiologists who have examined the phænomena of incubation. The most inportant discoveries are those of the immortal Haller, who persuaded himself that he had found the chicken perfectly formed in eggs which were not fecundated: a fact however that wants much confirmation. There is no determinate conjunction hetween fishes, excepting the squalus or shark; the female deposits ber eggs on the sand, over which the male passes, and emits its seminal fluid, doubtless for the purpose of fecundating them; these eggs are hatched after a certain time. The males of several oviparous quadrupeds have a double or forked organ. Insects oxhibit all the varieties which are observed in other animals. The organ of the male is usually arined with two hooks to seize the female: the place of these organs is greatly varied; with some, it is at the upper part of the belly near the chest, as in the female dragon fly; in others, it is at the extremity of the antenna, as in the male opider. Most worms are hermaphrodite ; each individual has both sexes. Polypes, with respect to generation, are singalar animals: they produce by buds or offsets: a bud is separated from each vigomus polype, which is fixed to some neigh. bouring body and grows.
The polypules, or young polypes, are likewise found on the surface of the parent worm, germinating in the same manner as branches issue from plants.
Such is a glance at the difference of the sexual organs in different classes of animals. To give even an equal glince at the different meorics which have endeavoured to account for the production of life upon the prolific conjunction or mere action of these orgaus, would carry us far beyond our limits.
The following, howerer, which is equally bricf and comprehensive, we shall beg leave to s.ifet from Mr. Good's notes on his translation of Lucretius, vol. ii. p. duti. "Omitting an
infinite varicty of offsets and abortive systems which have been generated and have existed for a short time, from this fertile sulject, there are three that deserve our particular attention; that which contends that the animal, or rather the human fetus, for we are now priticipally bending our attention to our own species, is the conjoint production of seminal matter afforded in coition by both sexes, which has been termed the theory of epigenesis; that which asserts that the female alone affords the basis of the embryon; and that which affirms it to be the total production of the male; both which latter have been denominated theories of coulution.
" The second hypothesis in the present arrangement, or that contending for the production of the fetus from female rodiments alone, was originally adranced by Josephus de Ammatariis; but it was principally brought into notice by Swammerdam and Harvey. Observing a vast cluster of vesicles in the female ovarium, an organ situated on each side of the uterus or womb, and in its immediate vicinity, though only mediately connected with it by means of the Fallopian tube and vasa deferentia, and perceiving that these vesicles appeared to diminish in number in some kind of proportion to the number of partaritions a woman had sustainel, they suiccessively determined that these vesicles must be inert eggs, or ovula, containing in extreme embryo a perfect miniature of the form assumed afterwards; which, by the pleasurable shock sustained throughout the whole body in the immediate act of coition, but more directly by themselves from proximity of situation, are instantaneously thrown into a state of vital activity, are detached from the common cluaster of which they constitute a part, and in a short time pass inio the uterus through the canal of the Pallopian tube, which spontaneously enlarges for the purpose; where. by the genial powers of the uterus itself, the incipient embryon is gradually erotred and augmeltied into a perfect fetus, and partakes of the common form and properties of the parent stock. The little animal, it was maintained by Harvey, might be occasionally impressed with an organic resemblance to the father from the electric impulse communicated in copulation to every portion of the fuids and solids of the body, and, of consequence, to the essential humour of the ova themselves : but, reasoning from the length of the ragina in cows, and many other animals, end his own eecasional dissections of the human subject shortly after coition, he contended that the emitted fluid of the male never could enter the uiterms, and, of course, could not mechanically assist in the crolution of the contained embro.
" Leewenhoek and Hartsoeker, howrever, upon a more accurate anutoms of the uterus inmediately after copulation, discovered not only that the projected male fluid could enter into its cavity, but that it actually did thus enter; and in sone instances which fell beneath their notice, had obvicusly ascended into the Fallopian tuben. And now a new doctrine was

GENERATION.

sterted, and one altogether opposite to the theory gestation. The system of generation al aniof Harvey. Upon the principle of the former malculo maris was still triumphantly maintaintheory the father had no immediate connection with his own child : he could not bestow upon it a particle of his corporeal frame, and the entire production was the operation of the mother. In consequence, then, of this discovery, we were instrncted that the whole creation was the property of the father, and that the mother, in her turn, had nothing to do with it: that every particle of the projected fluid was a true and perfect semen, containing in itself, like the ovim of the fernale upon the theory of Harvey, the miniature of all the organs and members of the future fetus, which in due time were gradually evolved and augmented; and that the uterus and ovum, into which some one of these semina was almost sure of being protruded in the act of coition, conjointly offered nothing more than a mere nest, in which the homnnculus, or radimental fetus, was deposited for warmth and nutriment. And as the former appealed to the phenomena of oviparous animals during the period of incubation, the phenomena of worms and poruigles were appealed to by the latter; and a very considerable degree of life and motion were supposed to be incontrovertibly discovered, by the aid of good magnifying glasses, in the seninal fluid itself, and not less than many millions of these homunculi, or little unborn men, frisking about in a diameter of the smallest grain of sand, and all of them of the exact shape of a tadpole. But Delappius, a pupil of Leewenhock, advanced farther, for he not only saw these tadpoles but traced one of them bursting through its tunic and exhibiting two arass, twa legs, the human head and heart. Imagination, we see, is not confined to poetry : it often extends as largely to the profoundest branches of science; and the investigator of philosophical systems meets with his occasional pleasantries, as well as the hunter after hiscorical anecdotes. It is truly astonishing, however, to reflect on the universality with which chis latter opinion has, till within a very few years, been aceredited; and how decisively erery anatomists and indeed erery man who pretended to the smallest portion of nuedical science, was convinced that his children were no more related, in point of actual generation, to his own wife than they were to his neighbonrs!. It was in vain that Verheyen denied the existence of animalcules in the seminal Guid, and demonstrated that the motion supposed to be traced there was a mere microscopic delusion: it was in vain that the impossibility was urged of the descent of a pulpy and vesieular ovulum through the almost imperceptible canal of the Fallopian tube, with which, in reality, it is never immediately connected; it was in vain to adduce the existrnce of an equal quantity of maternal and patemal fea--tares in almost every family in the world, the underiating intermixfure of features in mules and otber hybrid aumals, and the casual transfer of enstemal impressions to the child when suddealy frightened during the carlier period of
ed, and the feeble exertions of the few who had sense enought to oppose it was drowned in the multitudiuous vociteration of their opponents.
" At last arose the accurate and indefatigable Buffon, and undecoyed by opinion, as well as. undismayed by clamour, he resolved to deviate from the beaten path of absurdity, to think for himself, and to publish his thoughts to the world. And what do they at hast amount to? -A resuscitation of the Epicurcan theory of Lucretius, illustrated and explained from inodern science and the experience of additional ages. All animals and vegetables, according to the ingenious theory of this admirable naturalist, contain an infínite number of organic molecules in every part of their frames; but in the sexual fluid and the seed-ressels of plants they are more numerous than in any other parts. These organic elements afiord nutrition and growth to the animal and vegetable system; and when either becomes adult, the surplus is secreted and strained off for the formation of their respective seeds. The existence of vesicular ova detached at distinct periouls of time from the female ovarium is, upon this hypothesis, a mere chimera, and their passage through the Fallopian tube into the uterus is declared to be totally unfounded on any proof whatsoever, and a mere assumption for the purpose of systematizing. The ovaria are, in reality, testes, receiving, like those of the male. the surplus of the organic molecules of the boxly, and secreting them for the purpose of generation. 'The seminal liquor thus secerned in the male and female frames are, in the act of coition, protruded at the same time into the uterus; and becoming intimately blended together, produce by a kind of new fermentation the first filaments of the fetus, which grow and expand like the filaments of plants; for nature, it appears, commences all her operations by a similar kind of motion; and the fetus, in its state of incipient existence, possesses nothing more than this. To render such combination of seminal fluids productive, it is cuntended that their quantities niust be duly proportioned, their powers of action definite, and their solidity, tenacity, or rarefaction symphoneous and accordant; and that the fetus is cither male or female as the animal fluid of the man or woman abounds most with organic molecules, and resembles the father or the mother according to the different combinations of these elements.
" This ingenious theory has since been strenuously supported by Maupertius in his Venus Physique, and Needham in his admirable paper inserted in the Philosophical Transactions, vol. xiv. In each of these last publications, indeed, we find souse degree of change, and for the minst part some degree af improvernent; but the variations are neither mumerous nor very exsential. The system of Durwin differs but little from that of Button, and obviously took its rise from it. Professor Blunenbach, of

Gottingen, has also of late brought forwards a theory not essentially different from this of Dr. Darwin."

We have only to add that the theory of epigenesis, first started by the Epicureans, and since re-scarted by Bufion, has also reccived complete or nearly complete confirmation both in zoology and phytology by the experiments of Spalanzani and Koelreuter, and the result of such experimenits as applied by Werner.

Generation (Female organs of). The parts subservient to generation in a woman are divided into external and internal. The exterual parts are the mons veneris, the labia, the perinxum, the clitoris, and the nymphas. To these may be added the neeatus urinarius, or orifice of the urethra. The hymen may be esteemed the barrier between the external and internal parts. That soft fatty prominence which is situated upon the ossa pubis, extending towards the groins and abdomen, is called the mons veneris; its use seems to be chiefly that of preventing inconvenience or injury in the act of coition. If a line be drawn across the anterior angle of the pudendum, all that part above it which is covered with hair may be called mons veneris, below it the labia commence, which being of a similar though looser testure, appear like a continuance of the mons veneris passing on each side of the pudendum, which they chicfly compose. Proceeding downwards and backwards the labia again unite, and the perinæum is formed. All that space between the posterior angle of the pudendum and the anus is called the perinæum ; the external covering of which is the skin, as the vagina is the internal; including between them cellular and adipose membrane and the lower part of the sphincter ani. The extent of the perinaum is generally about an inch and a half, though in some subjects it is not more than one, and in others is equal to three inches. The thin anterior edge is called the frannum labiorum. Below the anterior angle of the pudendum the clitoris is placed, which arises by two crura or branches from the upper part of the rami of the ischia. The external part or extremity of the clitoris is called the glands, which has a prepuce or thin covering to which the nymphe are joined. The clitoris is supposed to be the principal seat of pleasure, and to be capable of some degree of erection in the act of coition. The nymphe are two small spongy bodies or doublings of the skit, rising from the extremities of the prepuce of the clitoris, less in size, but resembling in their form the labia. They pass on each side of the pudendun within the labia to half its length, when they are gradually diminished till they disappear. Immediately below the inferior edge of the symphysis of the ossa pubis, between the nyinpha, is the meatus urinarius or termination of the urethra, whieh is about one inch and a half in length, and suns to the bladder in a straight direction along the internal surface of symphysis, to which, and to the vagina, it is connected by cellular membrana. Oin each side of the meatua are stuall orifices which discharge a

GEN

mueus for the purpose of preserving the external part from any injury, to which they might be liable from ihe acrimony of the urine. There is a very great difference in the appearance of all these parts in diffierent women, especially in those who hare had many children, and at various periods of life. In young women they are firm and vegete, but in the old, these. together with the internal, become flaccid and withered. The labia and nymphe are liable toelongation, to excrescences, and to the production of schirrous tumours, which in some instances have grown to an enprmous size. especially in hot climates. It is not unusual for one of the labia or of the nymphar to be larger or more pendulous than the other: but the enlargement or elongation are not regarded as diseases, till some inconvenience is produced by them. The internal parts of generation are the vagina and uterus and its appendages. See Vagina, Uterus, \&c.
Gineration (Male organs of). The parts which constitute the organs of generation in men are the Penis, Testicles, and Vestcule seminales. For which, see these respective arricles.
GENERATING LINE or figure, in geometry, is that which by its motion proguces any other plane or solid figure. Thus a right line moved any way parallel to itself, generates a parallelogram; round a point ina the same plane, with one end fastened in that point, it generates a circle. One encire revolution of a circle, in the same plane, generates the cycluid; and the revolution of a semicircle round its diameter, generateís a sphere.
GE'NERATIVE. a. (generatif, French.) 1. Having the power of propagation (Brown). 2. Prolific ; having the power of production; fruitful (Bentley).

GENERA'IOR.s. (from genero, Lat.) The power which begets, causes, or produces (Br.).

Generator, in music, signifies the prineipal sound or sounds by which others are produced. Thus the lowest \mathbf{C} for the treble of the harpsichord, besides its octave, will strike an attentive ear with its twelfith alove, or G in alt, and with its seventeenth above, or E in alt. The C, therefore, is called their generator, the \mathbf{G} and \mathbf{E} its products or harmonics. Bat in the approximation of chords, for \mathbf{G} its octave below is substituted, which constitutes a fifth from the zenerator or lowest C ; and for E is likewise substituted its fifieenth below, which, with the abovementioned C, forms a third major. To the lowest hotes, therefore, exchanged for these in alt hy substitution, the denominations of prolucts or harmonics are likewise given, whllst the \mathbf{C} retains the nabre of their generator. But still, according to the system of Tartini, two notes in concord, which when sounded produce a thind, may be termed the concurring generators of that third.

As the famous discovery of Tartini is farr from universally known, although is has led to the adoption of some new and ingenious principles in the theory of music, a brief account of it is here bid before the reader.
"If two sounds be produced at the same time properly tuned and with due force, from their conjunction a third sound is generated, so much more distinctly to be perceived by delicate ears as the relation between the generating sounds is more simple; yet from this rule we must except the unison and octave. From the fifich is produced a sound unison with its lowest generator ; from the fourth, one which is an octave lower than the highest of its generators; from the third major, one which is an octave lower than its lowest; and from the sixch minor (whose highest note forms an octave with the lowest of the third formerly mentioned) will be produced a sound lower by a double octave than the highest of the lesser gixth; from the third minor, one which is double the distance of a greater third from its lowest; but from the sixth major (whose bighest note makes an octave to the lowest in the third minor), will be produced a sound only tower by double the quantity of a greater third than the highest; from the second major, a sound lower by a double octave than the lowest; from a second minor, a sound lower by triple the quantity of a third major than the bighest; from the interval of a diatonic or greater semitone, a sound lower by a triple octave than the highest; from that of a minor or chromatic semitone, a sound lower by the quantity of a fifth four times multiplied than the lowest, \&c. \&c. But that these musical phenomena may be tried by experiments proper to avcertain them, two hautboys tuned with scrupulous exactness must be procured, whilst the musicians are placed at the distance of some paces one from the other, and the hearers in the middle. The violin will likewise give the same chords, but they will be less distinctly perecivel, and the experiment more fallacious, because the vilrations of other strings nay be suppused to enter into it."

GENE'RIC. Genérical.a. (generique? French.) That comprehends the genus, or dis: tinguishes from another genus (Watls).

Generic chabacter, in botany, or zoology, the definition of the genus of a plant or animal. This is factitious, essential, or naeural. See Genus and Character.

Generic name. Cognomen gentilitium. In botany, the family surname, as it were, of vegetables.
GENERICALLY. ad. With regard to the genus, though not the species ($W_{\text {ood- }}$ sard.

GENERO'SITY. s. (generosité, French.) The quality of being gencrous; magnanimity; liberality (Loche).

Generosity, the disposition which prompts us to bestow favours, which are not the purchase of any particular merit. It has not, like mercy, any immediate relation either to imprudencies or criminality. It is compoonded of benevolence with a degree of sympathy with some peculiarities in the state or circumstances of another, which demand our aid, either in the remission of pecuniary claims, in voluntary grants, or in donations apd bene-
factions to-assist their indigence. It generally relates to some concessions, sacrifices, or peculiar exertions that have been made in the exercise of the benevolent principle. The extent of generosity is measured by the advantages and pleasures which have been relinquished in favour of another; or according to the troubles and difficulties which have been encountcred by the benefactor on the one hand, and the sleuder pretensions of the object to these benerolent offices on the other. (Cogan on the Passions).
GE'NERUUS. a. (generosus, Latin.) 1. Not of mean birth; of good extraction. 2 Noble of mind ; magnanimous; open of heart (Pope). 3. Sprightly; daring; courageous (Cowley). 4. Liberal; munificent (Parnel). 5. Strong; vigorous (Boyle).

GE'NEROUSLY. ad. (from generous.) 1. Not nreanly with regard to birth. 2. Magnanimously; nobly (Dryden). 3. Liberally, munificently.

GE'NEROUSNESS. s. (from generous.) The quality of being generous (Collier).

GENESIS, the first book of the Old Testament, containing the history of the creation and the lives of the first patriarchs. The book of Genesis stands at the head of the Pentateuch. Its author is held to be Moses; it contains the relation of 2369 years, viz. from the beginning of the world to the death of Joseph. The Jews are forbidden to read the beginning of Gencsis and the beginning of Ezekiel before 30 years of age. The Hebrews called this book Bereschith, because it begins with that word, which in their language signifies in principio, or "in the beginning. ${ }^{\text {. }}$ The Greeks gave it the name Genesis, rniat, q. d. production, gencration, because it begins with the history of the prop duction or generation of all beings. This book, besides the history of the creation, contains an account of the original innocence and fall of man ; the propagation of mankind ; the rise of religion ; the general defection and corruption of the world; the deluge; the restoration of the world; the division aud peopling of the earth; and the history of the first patriarchs to the death of Joseph. It was easy for Moses to be satisficd of the truth of what he delivers in this book, because it came down to him through a few hands: for from Adam to Noak there was one man, viz. Methuselah, who lived so long as to see them hoth: in like manner Shem conversed with Noah and Abraham; Issac with Abraham and Joseph, from whom the records of this book might easily be conveyed to Moses by Amrans, who was contem, porary with Joseph.

Genesis, in geometry, denotes the formation of a line, plane, or solid, by the motion or flux of a point, line, or surface. (See FlukIONs.) The genesis or formation, e. gr. of a globe or sphere is conceived by supposing a semicircle to revolve upon a right line, drawn from one extreme thereof to the other, called its axis, or axis of circumvolution : the motion or revolution of that senicircle is the genesis of the sphere, \&\&. I-se genesis of figures ${ }_{2}$ \&q.
the finde of surface that moves is catled the describent; and the line round which, or according to which, the revolution or motion is made, the dirigent:
GENET, id diastiology: See Vtberan.
GENETHLIACI, in astrologi, persons *ho erect horoscoopes; or pretend to foretel what ghall befal a man, by means of the stars which presided at his nativity. The word is formed of the Greek $\gamma_{1016 n}{ }^{2}$, origin, generation, nativity.

GENETHLIACUM, Genethliac POEM, is a composition in verse, on the birth of sone prince, of other illustrious petson; twhercin the poet promises him grtat honours; ddantages, \&c.

GENETHLI'ACS: s. (from ywitnn:) The science of calculating nativities, or predicting the future events of life from the atars predomibant at thie birth.
GENEITE, in the old matrages a Turkish bit, the curb of which is all of oue piece, made like a large ring, and placed abore the liberty of the tongrie. When thicy bridled a borse, they made his chin pass through this curb; whith sutrounds his beard. This sort of bit tras muich used at the coutt of France whett Guillet wrote.

GENETTE, is aliso used fot a particular way of riding practised in Spain: this, being so short that the spurs beat upon the horse's flank; twould be reckoned absurd in England; but, among the Spaniards, it is thought handsome, when they tide upon their geneites before the ladies in going to court.

GENEVA, an antient, large, and populous town; capical of a repullic of the same name, near the confines of France and Swisserland. It is seated on the trost natrow part of the lake of the same name, where the Rhone issues in two large narrow channels, which soon after unite. This river divides the city into two unequal parts. Geneva, which lies partly in the plain on the botders of the lake, and partly on a gentle ascent, is irtegular! built. It is the most populous town of Swissefland, containing 24,000 souls. The reformation, first preached at Geneva, by William Farel, a native of Gap, and Peter Viret, of Orhe, owed its final reception aide eatablishment hete to the celebrated John Calvin: The treaty of alliance which Geneva contracted with Berth and Friburg, in 1526, may be considered as the true era of its llberty and in tependence; for, bot lorig after, the dukes of Sav ! were deprived of the authority which they possessed over this city, the bishop was expel'ed, a republican form of goveriment established; and the reformation incruduced. In 1584, Geneva concluded a treay of perpetial alliance with Zurich and Bern, by which it is alled with the Swiss cantous. It is governed by a senate, or little councll of 25 ; bf which four are annually chosen syndics, who are the chief magistrates: Thus far the govetnment is aristocratic. But there is also a great council, and a general kouncil br assembly of the peoplc; the lattet amounting to athout 1500, who name hall the mensbets of the great council, as the

GEN

seriate does the other half. This is the democratic part of the government. The houses of Geneva ate lofty, and many that stand in the trading part of the city have arcades of wood, which are raised eten to the upper stories. These atcades, supported by pillars, give a gloomy appearance to the street, but art useful to the inhobitants in protecting them from the sun and rain. The citizens of both sexes are remarkably well instructed. Lat. 46. 11 N. Lon. 6. 5 E.
Gbneva (Lake of), a large lake betweeni Swisserland and Savov, in a valley, which separates the Alps from Mount Jura. The length along the coast of Swissetland is eighteen leapues and three qharters (iwenty-five to a degree), on the side of Savoy fifteen leagues: the greatest breadth three leagues and a quarter. The water is clear, except where the entrance of the Rhone makes it foul by the quantity of mud it brings along with it in its course: near Genera it is shallow, bat in some parts exceedingly deep, by some said to be unfathomable: it abounde in fish remarkable as weil for their excellence as size.

Geneva. Gin. A hot, fiery spirit, too much used by the lower classes of people in this country as a dram, and is unquestionably most injurious to their constituition and morals. A liquid of this tind was formerly sold in the apothecaries shops, drawn from the juniperberry, but distillers now have completely sups planted the tratc of the apothecary, who sell it under the name of geneva, or gin, in which, it is believed, juniperi:betries make no part of the cothposition. It is composed of bil of turpentine and malt spirits. A better sort is said to be drawn off by a slow fire, from juniperberries, proof-spiftls, and water in the propors tion of thitee pounds of berries to four gallons of water and ten of spirit. The celebraled Hollands genera is manufactured chiefly at a village near Roterdaim, from the same materiak, makiing use of French brandy instead of malt spirits.
GENEVIEVE, a town of North America, on the west side of the Missisippi. Lat. 37. 35 N. Lon. 90. 44 W.

Genevifte, St. Gerevitue, or St. Geneviepte, fathers of religious of St. Genevieve, the name of a congregation of regular canoins of the ordet of St . Augustin, established in France. The congregation of St. Genevieve is a reform of the Augustine canons. It was begun by St. Charles Paute, in the abbey of St. Vincent de Senlis, whereof he was á member, it the year $16^{\prime} 18$. The congregation takes its name from the abbey of St. Generieve, which is the chief of the order, and whose abloot is the general thereof. The abbey itself took its naine from St. Generieve, the patronest of the city of Paris, who died in the year 512. Five years after her death, Clovis erected the church of St . Genevieve, under the name and invocation of St. Peter, where her relics are still preserved, her shrine tisited, and her image carried with great processions and ceremonies upoll extraordinary occasions, as when some great favour is to be intreated of heaired.

GEN

GENIAL, Geniales, an epithet given by the pagans in certain gods who were supposed to preside over generation.

Ge'wial. a. (genialis, Latin.) i. That contribotes to propagation (Dryden). 2. That gives chetrfulness, or supports life (Milton). 3. Natural ; natire (Brown).

GENIALLY. ad. 1. By genius ; naturally (Glancille). 2. Gaily; cheerfully.

GENICULATE. In botany. Kneed. (Knce-jointed, With.) Applied to a stem, pedancere of awn, forming a very obtuse angle it the joints, as when the knee is a litile bent. As in alopecurus geniculatus. In Delin. PI. it is explained to be, intetnodiis interceptus. which is the same with nodosus. There is this difference, however, that nodous (nodosus) means knotuy, ot merely having knots; whereas geniculate implies, that the stem is bent in an angle at the joint. Flexuous is totally different froth both, for it implies deviation in a curre, not at an angle. See Knotted.

GENICULE. (dimin. from Genu.) In botany. Knee, knot, of joint. Properly a Joint, where there is a bending, like that at the knee: but is frequently put for a joint in general; and then is sytonymous with nodus. See Knot and Knotited.

GENICULATION. s. (geniculutio, Lat.) Enotiness.

GENII, a sort of intermediate beings, which the Mahometans believe to exist between nien and angels: of a grosser fabric than the latter, but much more active and powerful than the former. Some of them are good, others bad; and they ere thought capable of future salvation and damniation, like then.

GENIO. s. (genio, Ital. genius, Latin.) A man of a particular turn of mind (Taller).

Gento. (from ymaor, the chin.) In anatomy, hames compounded of this wor d belong to muscles which are attached to the chin.

Genio-hyo-glossus. (musculus gemio-Lyo-glossus, yruognossor ; from ywinv, the chin, and γ^{\prime} nesa, the tongue, so called from its origin in the chin, and insertion in the tongue.) This muscle forms the fourth laget between the lower jaw and os hyoides. It arises from a mogh protuberanct in the inside of the middie of the lower jaw ; its fibres run like a fan, forwards, upwards, and backwards, and are iuserted into the top, middle, and root of the tongue, and base of the os hyoides, near its comu. Its use is to draw the tip of the tongue back wards into the mouth, the middle downwards, and to render its back concave. It also draws its root and the os hyoides forwards, and thrusts the tongue out of the mouth.

Gemio-hyordeus. (musculus, genio-hyuideus, yomoundaus; from yurm, the chin, and woning, the os hyoides, so called from its origin in the chin, and its insertion in the os hyoides.) This muscle constitutes the third layer between the lower jaw and os hyoides. It is a long, thin, and fleshy muscle, arising teindinous from a rough protuberance at the inside of the chin, and growing sonewhat brnader and thicker as it descends backward to be inserted hy very short tendinous gibres into both the
edges of the base of the os hyoides. It drates the os hyoides forwards to the chin.

GENIOSTOMA, in botany, a genus of the class pentandria, order monogynia. Corol funnel-form, the throat bearded; calyx inferior, five-cleft; stigma cylindrical, grooved; capsule two-celled, many seeded. One species; a native of Tama island.

GENIPI ALBUM. The plant which bears this name in the pharmacopœias is the Artimisia fupestris; foliis pinnatıs, eaulibus adscendentibus; Horibus globosis, cernuis; receptaculo papposo, of Linnéus. It has a grateful smell, and is used in some countries in the cure of intermittents and obstructed catamenia。 Sce Artemisia.

Gesipi verum. The plant directed for medicinal purposes under this title is the Achillea; foliis, pinnatis, pionis simplicibns, glabris, punctulis of Haller. It has a verg grateful smell, and a very bitter taste, and is exhibited in Switzerland in epilepsy, diarrhaca, and debility of the stomach. See Achillea.

GENISTA. Green-weed. la botany, 2 genus of the class dialelphia, orler decandria. Calyx two-lipped, with two short teeth above and three longer beneath ; banner oblong, reflected back by the pistils and stameus. Twentyfive species; almost all of them natives of Europe, gencrally of the south of Europe: three only common to our own heaths. Of this genus a few are spinous, but by far the greater number unarmed. Those indigenous amongst ourselves are:

1. G. tinctoria: with leaves lanceolate, glabrous; branches round, striate, erect; legumes glabrous. It is found both on our heaths and in our pastures with a shrubby stalk about three feet high. The flowers are used by dyers for giving a yellow colour to their materials, whence the plant has oltained the name of dyer's weed, or dyer's broom. Horses and cattle of all kinds eat it. See the article Dyeing.
2. G. pilosa. Leaves lanceolate, fascicled; silky underneath, peduncles axillary very short; corols hairy: stem tuhercled, striate, procumabent. Found on dry heaths; and not disliked by catte.
3. G. anglicana; with simple or compouud spines, flowering branches unarmed; leaves oblong, glabrous; racemes leafy; corols gla」 brous. Found in large quantities on almost every heath; and too common to require farther notice. Horses and cattle refuse it; goats, howerer, eat it readily.

Genistacanariensis. The systematie name of the tree whose wood is called rhodium. Sce Rhodiumlignum.

GE'NITAL.S. s. (grni(alis, Lat.) Parts belonging to generation (Brown).

GE'NITING. s. (A corruption of Janeton, French.) An early apple. See Pyrus.

GENITIVE, in grammar, the second case of the declensions of nouns.

The relation of one thing considered as be. longing in sone manuer to another, has nccasioned a peculiar termination of nouns, called the genitive case.

In English, the genitive case is made by prefixing the particle of; in French, de, or du, \&ie. though, in strictness, there are no cases at all, or at most only two, in either of those lairguages, inasmuch as they do not express the different relation of things by different terminations, but only by additional prepositions. (See Case.) In the Latin, this relation is expressed in divers manners: thus we say, caput hominis, the head of a man; colur rosce, the colour of a rose; opus $D_{c i}$, the work of God, \&c.

GENITUM, in mathematics, a name given by sir Isaac Newton, in his Principia, to any quantity which is not made by addition, or subduction of divers parts, but is generated or produced, in arithmetic, by the multiplication, division, or extraction of roots, of any terms whatsoever, in geometry, by the invention of contents, and sides, or of the extremes and mean proportionals. "Quantities of these sorts (says he) I consider as variable and indetermined, and increasing or decreasing, as it were, by a perpetual motion, or flux; and I understand their momentaneous increments, or decrements, by the name of moments. Se FluxIONS.

GE'NIUS. s. 1. The protecting or ruling power of men, places, or things (Millon). 2. A man endowed with superior faculties (Addison). 3. Mental power or faculties (Waller). 4. Disposition of nature by which any one is qualified for some peculiar employment (Pope). 5. Nature; disposition (Burnet).
Genius, a good or evil spirit or dæmon, whom the ancients supposed set over each person, to direct his birth, accompany him in life, and to be his guard. (See Demon.) Among the Romans, Festus observes, the name genius was given to the God who had the power of doing all things, deum qui vim oblinerel rerum onnium gerendarum ; which Vossius, de Idol. rather chooses to read genendarum, who has the power of producing all things, by reason Censorinus frequently uses gerere for gignere. Accordingly St. Augustin, de Civitat Dei, relates, from Varro, that the genius was a god who had the power of generating all things, and presided over them when produced. Testus adds, that Aufustius spake of the genius as the son of God, and the father of men, who gave them life. Others, however, represented the genius as the peculiar or tutelary god of each place; and it is certain the last is the most usual meaning of the word. The ancients had their genii of nations, of cities, of provinces, \&c. Nothing is more common than the following inscription on medels; GENiUS POPULI ROM. "the genius of the Roman people;" or GENIO POP. ком. "to the genius of the Roman people;" In this sense genius and ler were the same thing; as, in cffect, Censorinus and Apulius affirm they were. See Lares and Penates.
The Platonists and other eastern philosophers supposed the genii to inhabit the vast refion or extent of air between earth and
heaven. They were a sort of intermediate powers, who performed the office of mediators between gods and men. They were the interpreters and agents of the gods, communicated the will of the deities to men, and the prayers and rows of men to the gods. As it was unbecoming the majesty of the gods to enter into such trifling concerns, this became the lot of the genii, whose nature was a mean betwoen the two, who derived immortality from the one and passions fromi the other, and who had a body framed of an aërial matter. Most of the philosophers, however, held that the genis of particular men were born with them, and died; and Plutarch attributes the ceasing of oracles partly to the death of the genii. See Oracie.
Genius, in matters of literature, \&c. a natural talent or disposition to do one thing more than another, or the aptitude a man has received from the God of nature to perform well and easily that which others can do but indifferently and with a great deal of pains. The distinguishing characteristic of genius is invention. A man of genius is fertile in the production of new trains of thought, new selections and groupings of imagery, new expedients for the removal of difficulties, \&c. Thus genius may be termed the power of making new combinations, pleasing or elevating to the mind, or useful to mankind. To know the bent of nature is of great importance. Men usually come into the world with a genius determined not only to a certain art or science, but often to certain parts of it, in which alone they are capable of success. If they quit their sphere, they fall even below mediocrity in their profession. Art and industry add much to natural endowments, but cannot supply them where they are wanting. Every thing depeads on genius. A painter often pleases without observing rules, whilst another displeases though he observes them, because he has not the happiness of being born with a genius for painting.
A man born with a genins for commanding an army, and capable of becoming a greas general by the help of expericnce, is one whose organical conformation is such, that his valour is no obstruction to his presence of mind, and his presence of mind causes no abatement of his valour. Such a disposition of mind cannot be acquired by art: it can be possessed only by a person who lias brought it with him into the world. What has been said of these two arts may be equally applied to all other professions. The administration of great concerns, the art of putting people to those employments for which they are naturally formed, the study of physic, and even gaming itself, all require a genius. Nature has thought fit to make a distribution of her talents among men, in order to render them necessary to one another, the wants of men being the very first link of society ; she has therefore pitched upon particular persons, to give them aptitude to perform rightly some things which she has rendered inpossible to others; and the latter have a greater facility granted them for other things, whicle

GEN

facility has been refused to the former. Nacure, indeed, has made an unequal distribation of her blessings among her children; yet she has disiaherited none; and a man divested of all kinds of abilities is as great a phenomenon as an universal genius.

From the diversity of genius the difference of inclination arisee in men, whom Nature has had the precaution of leading to the employments for which she designs them, with more or less impetuosity in proportion to the greater or less nuinber of obsticles they have to surmount in order to render themsefves capable of answering this vocation. Thus the inclinations of men are so very different, because they follow the same mover, that is, the impulse of their genius. This, as with the painter, is what renders one poet pleasing even when he trespasses against rules, while others are disagreeable, notwithstanding their striet regularity.

The genius of these arts, according to the abbe du Bos, consists in a happy arrangement of the organs of the brain; in a just conformation of caeh of these organs; as also in the suality of the blood, which disposes it to ferment, during exercise, so as to furnish plenty of spirits to the springs employed in the funotions of the imagination. Here he supposes that the composer's blood is heated, for that painters and poets cannot invent in cool blood; may, that it is evident they must be wrapt into a kind of enthusiasm when they produce their ideal. Aristotle mentions a poet who never wrote so well as when his poctic fury hurried him into a kind of phrensy. The admirable pictures we have in Tasso of Armida and Clo--rinda were drawn at the expence of a disposition be had to real madness, into which he fell before he died. "Do pou imagine (says Cicero), that Pacuvius wrote in cold blood? No, it was imposisible. He must have been inspired with a kind of fury, to he able to write tueh admirable verses."

We by no means wish it to be understood, from any thing said above, that genius is indeperadent of method, or derives no aid from it. On the contrary we are persuaded that the man of philosophical genius parsues his investigations, the poet courts his muse, the painter sits down to his cantas, the inventive mechanist turve to his insiruments, each by some method peculiar to himself; each following some rale, which though he is most probably incapable of imparting or even of explaining to another, be nevertheless invariably conforms to. The following remarks which a truly philosophical arist has applied to painting, may be exiended, with some trifling alterations, to all the different emplogments of our intellectual powers.
"What wo now call genius, begins, not where rules abstractedly taken end, but where known, vulgar, and trite rules have no longer eny place. It must of necessity be, that works of genius, as well as every other offoot, as they muen have tho'r causo, mast likewise have their sules: it canmot be by chance thet exeollencies

GEN

are produced with any constancy, or any certainty, for this is not the nature of chance ; hut the rules by which men of extraordinary parts, and such as are called men of genius, work, are either such as they discover by their own peculiar observation, or of such q ince texture as not easily to admit handling or expressing in words.
"Unsubstantial, however, as these rules may seem, and difficult as it may be to conveg them in writing, they arestill seell and felt in the mind of the arist; and he works from them with as much certainty as if they were embodied, as 1 may say, upon paper. It is true, these refined principles cannot be always made palpable like the more refined rules of art; yet it does not follow, but that the mind imas be put in such a train, that it shall perceive, by a kind of scientific sense, that propriety which words can but very feebly suggest." (Sis Jeshua Reymolds's Discourses).

GENOA, a republican state of Italy; bounded on the north by Piedmont, the Milanese, and the Parmesail, on the east by the states of the duke of Tuscany, on the south by the Mediterranean sea, and on the west by the county of Nice; about 180 miles in length. but scarcely in any part more than twenty in breadth. The country is mountainous, and part of it covered with barren rocks, which serve for its defence. Sorne of the mountains are covered with wood, and some gieh good pasture. There is but a small quantity of arable land, so that the inhabitants are obliged to purchase great part of their corn from Naples, Sieily, and other places; however, they carefully cultivate every place they can, and throughout the year they are supplied with exellent legumes and vegetables for the table. They make a considerable quantity of wine, and have abundance of excellent fruit.

Genoa, a city of Italy, capital of a republic of the sane name. It is about ten miles about, and defended towards the land by a donble wall. Several bastions are erected along the sea shore, on meks which rise above the water. The streets are in generad narrow, but clean and well paved; two, catled the Strada Nuora and Strada Balbi, are filled with magnificent palaces, fronted with marble. It is the see of an archbishop. The cathedral is built in the Gothic style, and paved with black and white marble, in the treasury of which is preserved a curious hexagon dish, said to be of a single omerald, found at Cesarea in the time of the crusades, which the Genoese received as their share of the plunder. Besides the cathedral, it contains thirty-two parish churches, many of which are magnificent, and adorned with sculptures and pictures by the best masters. The doge's palace is large, without decoration, except two statues of John Andrew Doria and Andrew Doria, larger than the life, at the entrance. The arsenal contains arms for 34,000 men, machines, models for bridges, the armsur worn by a number of Genoese women in the crusares, a shield containing 120 pistols, made by Julius Cesar Vacche, for the purpose of ase

GEN

sassinating the doge and senate at one time, \&ce. Other public buildings are the Albergo, which serves as a poorhouse and house of correction, where is a beautiful relievo, the Virgin supporting a dead Christ, by Michael Angelo; and the assumption of the Virgin, in white marble, by Puget, an inimitable piece of sculpture; a large hospital for the sick of all nations and religions; the Conservatory, for educating and portioning 300 poor girla; and a great number of palaces belonging to the nobility. They rection at Genoa sixty-nine convents of men and women. The number of inhabitants is estimated at 150,000 . Lat. 44. 25 N . Lon. 8. 41 E.

The government of Genoa was aristocratic, none but the nobility having any share in it. These were of two sorts, the old and the new, whence there were eighty persons chosen, who made the great council, in which their sovereignty resided. Besides these, there was a senate, conposed of the d (ge and twelve senators, who had the administration of affairs. The doge continucd in his office but two years. In the year 17y8, the French contrived, by intrigues and force, entirely to change the old government, and to erect the Genoese rerritory into what they called the Ligurian republic, governed after the manner, of their own, by two councils and a directory: the country likewise was divided into departments. At present Genoa is subject to the dominion of a son-in-law of Bonaparte, who has assumed the title of king of Italy.

GENSENG, in botany. See Panax.
GENT. a. (gent, old French.) Elegant; soft; gentle; polite: not in use (Spenser).
GENTEEL. a. (gentel, Fr.) 1. Polite; elegant in behaviour; civil (Addison). 2. Graceful in mien (Tatler). 3 Elegantly dressed (Law).

GENTE'ELNESS. s. (from genteel.) 1. Elegance; gracefulness; politeness (Dryden). 2. Qualities befiting a man of rank.

GENTES, in botany, nations, great tribes, or rather casts of vegetables. Linnéus makes mine of them. 1. Palmax. 2. Gramina, or grasses. 3. Lilio. 4. Herba. 5. Arbores, trees. 6. Filices, ferns. 7. Musci, mosses. 8. Alga. 9. Fungi. The only difference between this arrangement and that of families is, that the third, fourth, and ffith divisions of the former are included in the seventh of the latter.

GENTIA'NA. Gentian. In botany, a genus of the class pentandria, order digynia. Corol one-petalled, tubular at the base, without nectariferous pores; capsule superior, twovalved, one-celled, many-seeded. Fifty-six species: which may be thus sub-arranged.
A. Corols from five to nine-cleft; somewhat canipanulate.
B. Corols funnelform, naked, five or tencleft.
C. Corols four or five-cleft, with capillary, many-cleft acute scales at the orifice.

1. Corols \{our or five-cleft, salret-shaped, with the orifice naked.

GEN

The different species are scattered over the globe, but the greater number are Alpine plants; and five indigenous to the pastures and mountains of our own country. Those of chief note are,

1. G. lutea. Cornls about five-cleft, wheelshaped, whorled; the whorls somewhat cymer!; calyx spathaceous. It has a long, cylindric root, which affords the common gentian of the dispensatories. This root has litule or no smell, but to the taste evinces great bitterness, on which account it is in general use as a tonic, stomachic, anthelmintic, antiseptic, emmenagogue, and febrifuge. The officinal preparations of this root are infusum gentians compositum of the London pharmacopœia, and infusum amarum, vinum amarum, tinctura amara of the Edinburgh pharmacopoia ; together with an extract, for which a formula is given in both pharmacopocias. This plant is a native of the Alps, and some parts of Germauy.
2. G. acaulis. Long-flowered gentian. Corol campanulate, five-cieft, as long as the stem; stem quadrangular. It is a native of the Alps, but frequently tound in our flowergardens, to the heauty of which it contributes in no small degree by its elegant and variable little azure flowers. See Nat. Hist. Plate CXXIII.
3. G. nivalis. Corols five-cleft, fumnelform; angles of the calyx equal, acute; branches alternate, one-flowered. It is found wild both in our own country and on the A1pine mountains.
The centaurium minus, or lesser centaury, is arranged by Liuncus and Hudson as a species of this genus : more minute examination, however, has since established it to be a monogynian rather, than a digynian plant; and hence on the authority both of Withering and Curtis, we have transferred it to the genus chironia. See Chironia centaurium.

Gentia'na alba. The root of this plant, laserpitium latifolium; fuliis cordatis, inciso-serratis, of Linnéus, possesses stomachic, corroborant, and deobstruent virtues. It is seflom used. See Lasbrpitium.
GENTILE, Gentilis, a pagan, or person who adores false gods. The Hebrews applied the name era, genies, nations, to all the penple of the earth who were not Israelites or Hebrews.
Gentile, in the Roman law and history; a name which sometimes expresses what the Romans otherwise called barbarians, whether they were allics of Rome or nut; but this word was used in a more particular sense for all strangers and foreigners not subject to the Roman empire.
GENTILESCHI (Horatio), an Italian painter, was bors at Pisa in 1563. He painted in many cities of Italy, in France, and in England, with great repute. His finest work abruad was the portico of cardinal Bentivogliot palace at Rome; and in England, the cielings at Greenwich and York-house. He died im this country at the age of eighty four.

GEN

Gentileschi (Artemisia), daughter of the preceding, painted also with great success. Her picture of David with Goliah's head is deemed her best performance. She lived chiefly at Naples, in great splendour; and was famous for her amours.

GENTILESSE. s. (French.) Complaisance; civility: not used (Hudibras).

GE'NTILISM. s. (gentilisme, $\mathbf{F r}_{r}$) Heathenism ; paganism (Stilling flect).

GENTILITIOUS. a. (gentiletius, Latin.) 1. Endemial; peculiar to a nation (Brown). 2. Hereditary; eutailed on a family (Arbuthnot).
GENTI'LITY. s. (gentilite, French.) I. Good extraction; dignity of birth. 2. Elegance of behaviour; graeefulness of mien; nicety of taste. 3. Gentry; the class of persons well born. 4. Paganisin; heathenism (Hooker).

GE'NTLE. a. (gentilis, Latin.) 1. Well born; well descended; ancient, though not noble (Sidney). 2. Soft; bland; mild; tame; meek; peaceable (Fairfax). 8. Soothing; pacific (Davies).
Ge'ntle. s. 1. A gentleman; a man of birth (Shakspeare). 2. A particular kind of worm (Walton).
To Ge'ntie. v. e. To make gentle (Shakspeare).
GE'NTLEFOLK. s. (gentle and folk.) Persons distinguished by their birth from the vulkar.

GENTLE FLOWER, in botany. See Amarvilis.
GENTLES, in angling, the grubs or maggots of the musca vomitoria, or common Feshfly or blow-fy, and of several other insects that feed on putrid animal food. They are a very common and useful bait in general fishing. In London they may be generally had of the callow-chandlers fit for use, and should be kept in oatmeal and bran, as bran by itself is too dry. Where they cannot be thus obtained, the following, among other methods, may be an easy way of breeding and preserving them. Take a piece of beast's liver, and with a cross stick, hang it in some comer over a potor barrel, half full of dry clay, and as the gentes grow big they will fall into the barrel and scour themselves, and be always ready for use whensoever you ineline to fish; and mav be thus created till after Michaelmas. But if you desire to keep gentles to fish with all the year, get a dead eat or kite, and let it be fly-blown, and when the geniles begin to be alive and to stir, bury it and them in coft moist earth, but as fre from from as you can, and these you may dignp at anytime when you intend to ue them ; they will last uill March, and about that sime turn to tiles.

GENTLEMAN, a person of good family, or descended of a family which has long burie arms, the grane of awhich adds gentility to a son's family.

The word is formed of the French gentilsumme, or rather of gentil, fine, fushionaide, or tecoming; and the Ma:ion suan, q. d. honestus,

GEN

or honesto loco natus : it probably comes originally from the Latin gentilis homo. The word is now applied indiscriminately to every man of an appearance and behaviour above the lower orders of the people.

Mr. Caunden observes, that the distinction of a gentleman of coat-armour, or an upstart, and a gentleman of blood, is the bearing of arms from the grandfather; and that he who bears arms from his grandlather, is to all intents and purposes a genleman of blood; for which cause it is requisite by the statutes of the Bath, that every knight before his admission, proves himself to be so qualified; which done it carries with it, if his merit be equal, a passport also to the order of the garter. Notitia Anglicana, p. 24. Sce also Doddridge's Honour's Pedigree, p. 147. Smith, De Republ. Angl. \& Fortescue, fol. 82.

Gentleman-usher of the alack rod, the chief gentleman-usher to the king: his duty is to bear the rod before the king at the feast of St. George at Windsor ; and to his custody all peers questioned for any crime are first committed. His balge is a black rod, with a lion in gold at top.

Gentlemen of the bed-chamber, persons of the first rank, ten in number; whose office is, each in his turn, to attend a week in the king's bed-chamber.
Gentlemen of the chapel, officers whose duty and attendance is in the royal chapel, being in number thirty; ten whereof are priests, and the other twenty called clerks of the clapel, who assist in the performance of divine service.
Gentlemen pensioners. Sce Pensioner.

GEntLEMANLI'KE. Ge'ntleman, iv. a. (gentleman and like.) Becoming a man of birth (Surifi).
GE'NTLENESS. s. (from gentle.) I. Dignity of birth; goodness of extraction. 2. Soltness of manners ; sweetness of disposition; meekness (Milton). 3. Kindness; benevolence : obsonkte (Shuhspeare).
GE'NTLESHIP. s. Carriage of a gentleman.

GE'NTLEWOMAN. s. 1. A woman of birth ubove the vulgar; a woman well descended (Baron). 2. A woman who waits about the person of one of high rank (Shakspeare). 3. A word of civility or irony (Dryden).

GFiNTLY. ad. (fiom gentle.) I. Sofily; mecisly; tenderly; inoffiensively; kindly (Lorhe). 2. Sofily; without riolence (Grewi). GE'NTRY. s. (gentlery, gentry, from genbic.) 1. Birth ; condition (Shat speare). 3. Clans of preople alove the vulgar (Siducy). 3. A term of ciritity real or irnical (Prior). 4. Civility ; emomlaisance: obsolete (Shakspeare).

GENTOOS, or Gentus, in madern history, aceording to the common accepration of the term, denote the proftessore of the religion of the bramins or brachnans, avho inhahat ahe counery called Hindustan, in the Fast In. dies, from the word stan, a region, and Zinet

GEN

or hindu; which Ferishteh, as we leara from coloncl IDow's translation of his history, supposes to have been a son of Hain the son of tioah.
The term Gentoo, or Gent, in the Sanscrit dialect, denotes amimals in general, and in its more confined sense mankind, and is never appropriated particularly to such as follow the doctrines of Brhima. These are divided into four great tribes, each of which has its own separate appellation; but they have no common or collective term that comprehends the whole nation under the idea affixed by the Enropeans to the word Gentoo.

The doctrine of transmigration is one of the distinguishing tenets of the Gentoos. With regard to this subject, it is their opinion, according to Mr. Holwell, that those souls which have attained to a certain degree of purity, dither by the innocence of their manners or the severity of their morifications, are removed to regions of happiness proportioned to their respective merits; but that those who cannot so far sumbount the prevalence of bad example, and the powerful degencracy of the times, as in deserve such a promotion, are condemned to undergo continual punishnient in the animation of successive animal forms, until, at the stated period, another renovation of the four jogues shall commence, upon the dissolution of the present. They imagine six different spbeces albove this earch; the highest of which, called sultec, is the residence of Brhima and bis particulas favourites. This sphere is also the habitation of those men who never uttered a falschood, and of those women who have voluntarily burned themsetves with their husbands; the propriety of which practice is expressly enjoined in the code of the Gentoo laws. This code, printed by the East India Company in 1776, is a very curious colleetion of Hindoo jurisprudence, which was selected by the mogt experienced pundits or lawyers from curious originals in the Shanscrit language, who were employed for this purpose from May 1773 to February 1775 ; afterwards translated into the Persian idion, and then into the English language by Mr . Halhed.

The several instiutes contained in this collection are interwoven with the religion of the Gentoos, and revered as of the highest authority. The curious reader will discover an astonishing similarity between the institutes of this code and many of the ordinances of the Jevish law; between the character of the bramins or priests, and the Levites; and between the ceremony of the scape-goat under the Mosaic dispensation, and a Gentoo ceremony called the ashummed jug, in which a borse answers the purpose of the goat. Many obsolete customs and usages alluded to in many parts of the Old Testament inay also receive Illustration from the institutes of this code. It appears from the code, that the bramins, who are the prieste and legislators of the country, have resigned all the secular and executive power inte the hands of another cast or tribe; and no bramio has been properly capable of
the magistracy since the time of the sutice jogue. The only privilege of importanco which they have appropriaied to themselves is an exemption from all capital punishnent: they may be degraded, branded, imprisoned for life, or sent into perpetual exile; but it is every where expressly ordained, that a bramia shall not be put 20 death on any account whatsoever. Sre Hindus.

GIENU. (genu, rom, wapa тo us rom ruur, because by it the body is bent cowards the earth.) The knee.

GENU FLE'XION. s. (genuflexion, Fr.) The act of bending the knee; adoration expressed hy bending the knee (Stilling, fret).
GE'NUINE. a. (genuinus, Lat.) Not spus rious; real ; natural; true ('íllutson).

GE'NUINELY. ad. Without adulteration; without foreign admixtures; naturally (Buyle). GE'NUINENESS. s. (from genaise.) Freedo:n from any thing counterfeit; freedom from adulteration; purity; natural state (Boyle).

For the distinction between genuiaeness and authenticity, sce Authenticity.

GENUS, among metaphysicians and logieians, denotes a number of beings which agrees in certain general properies comumn to them aH: so that a genus is nothing else but an abstract idea, expressed by some general name or term. See Logic and Metapaysics.

Genus, the third division in a systenn atic arrangement of animals and vegetables; comaining animals or plonts of the same class and order, which agree in certain invariable parts of their structure, but disagree in others.

Genuses making an awkward plural, and genera not being English; it is perhaps to be often wished that we might be allowed to substitute kind for genus, and sort for species.

Genus, in music, by the ancients called genus melodice, is a certany matmer of dividing and subdividing the principles of melody; that is, the consonant and dissonant imtervals into their concinuous parts. The moderns concidering the octave as the most perfect of intervals, and that whereon all the concords depend in the present theory of music, the division of that interval is considered as containing the true division of the whole scale. But the ancients went to work sonsewhat differently: the diatessaron, or fourth, was the leart interval which they admitted as concord; and therefore they sought first how that might be most conveniently divided; from whence they constituted the diapente and diapason. The diatessaron being thus, as it were, the root and foundation of the scale, what they called the genera, or kinds, arose from its various divisions; and hence they defived the genus modulandi to be the manner of dividing the tetrachord and disposing its four sounds as to succession. The genera of music were three, the enharmonic, chromatic, and diatonic. The two first were variously subdivided: and even the hast, though that is commanily rockoned to be without any species, yet differant authors have proposed different divisions under that
name, without giving any particular names to the species as was done to the other two. For the characters, sce. of these several genera, see Enharmonic, Chromatic, and Diatomic.

GEOCENTRIC, is said of a planet or its orbit, to denote its having the earth for its centre. Tbe moon alone is properly geocentric. And yet the motions of all the planets may be considered in respect of the earth, or as they appear from the earth's centre, and thence ralled their geocemtric motions. Hence also the terms grocentric place, latitude, longitude, \&.c. being the place, latitnde, longitude, $\$ \mathrm{cc}$. of a planet as seen from the earth's centre.

GEODE'SIA. s. (yrwiatara.) That part of geometry which contains the doctrine or art of measuring surfaces, and finding the contents of all plane fagres (Harris).
GEOD库TICAL. e. (from geodasia.) Relating to the art of measuring eurfaces.

GEOFFRE'A. (Geoffroa, mamed in honour of Dr. Geofrey.) The bark so called is the preduce of the Gooffroya inermis, of Swatz. Genffroya inermis, foliohe lenceolatis. Class diadelphia. Order decandria. A native of Jamaica, where it is distingurished by the name of cabbage-bark tree, or worm-bark tree. It has a mucilaginnos and sweetish taste, and a disagreeable smell. According to Dr. Wright of $\mathrm{m}_{\text {maica, }}$ it is powerfully medicinal as an anthelmintic. See Geoproxa.

GEOFFRO'YA, in botany, a genus of the elass diadelphia, order recandria. Calyx fivecleft; drnpe crite; not compressed. Three species; natives of Sonth America and the West Indies: one well known as a tall, spinous tree, with axillary racemes: the other two unarmed, bot trees also. Of these the bart of g. inermis, commonly distinguished by the name of bulgo-water tree, or bastardcabbage tree, is used successfully in Jamaica as a verurifuge. It is given in the different forms of powder, decoction, syrup, and extract.

GEOGRAPHER. s. (y and $r^{\circ}{ }^{\text {aqw.) }}$) One who describes the earth aocording to the position of its different parts (Browz).

GEOGRA'PHICAL. a. (geograpkique, Fr.) Relating to geography.

GEOGRA'PIICALLY. ad. In a geographical mamer (Broome).

GEOGRAPHY, the science that teaches and explains the nature and properties of the carth, a: to its figure, place, magnitude, motions, celestial appearances, \&ce. with the various lines, real or imaginary, on its surfice.
Geography is distinguished from cosmography, as a part from the whole; this latter considering the whole visible world, both heaven and earth. And from topography and ohorography, it is dietinguished, as the whole from a part.

Golnitz considers geography an either exterior or interior: but Varenius more juskly divides it into general and apecial; or universal and particular.
General or Unioersal Geogrephy, is that which considers the earth in general, withont any regard to particular countrias, or the aficotions common
to the whole globe : as its figure, magraitude, woo tion, land, sen, \&c.
Specied or Partiociar Gcogrophy, is that which contemplates the constitution of the seceral particular regiuns, or countrics ; their bounds, figure, climate, seazons, weather, inhabitants, at ts, customs, lanyuage, \&c.
ifistory of Geography. The study and practice of Geography most have commenced at very eariy ages of the world. By the accounts we have remaining, it seems this science was in use among she Babylonians and Eryptians; from whon it passed to the Greeks first of auy Europenus, and from these successively to the Romans, the Arabians, and the western nations of Europe. Herodotus says the Greeks frst learned the pole, the gnomon, and the twelve divisious of the day, from the Babylonians. But Pliny and Diugenes Lacrtius amert, that Thales of Miletus, in the sixth cert tary before Christ, tirat found out the passage of the sun from tropic to tropic, and it is said was the author of two books, the one un the tripic, and the other un the equinox; both probably deternined by means of the gnomon ; whence the was ted to the discorery of the four seasons of the year. which are determained by the equinuxas and solstices; all which however it is likcty he learmod of the Exyptiany, as well as bis divisiou of the year into 365 days. This it is said was invented by the second Mcreury, surnamed Trismegistus, who, pocording to Euselius, lived about 50 yemis aftor the Exudus. Pliny oxpressig rays that this discovery was unade by observing when the shadow retwrued to its marks; a clear proof that it was done by the gacmon. It is farther said that Thales constructed a globe, and representell the land and nee upoa a toble of brass. Farther that Anaximander, a disciple of Thales, Grat drew the figuve of che earth upon a globe; and that Hecate, Demorritue, Ew 2 doxue, and others, formed geographical mapps, and -brought them into common use in Greece.

Timocharis add Aristillus, who began their observations about $\$ 95$ B. C., ; ed to fix the latitudes and longitudes of the fixud stara, by considering their distances from the equetor, \&c. One of their observations gave rise to the discovery of the precession of the equinoxes, which was first remarked by Hipparchus about 150 years after; who also made use of their method, for delineating the parallels of laxitude and the meridians on the surface of the earth; thus laying the foundation of this science as it now appears.

The latitudes and longitudes, thue introduced by Hipparchus, were not bowever much attended to till Ptolemy's time. Strabo, Vitruvius, and Pliny, have all of them entered into a misute geographical description of the situation of places, according to the length of the shadows of the gnomon, without noticing the longitudes and latitudes.

Maps at first were little more than rude outlipes, and topographical sketches of different countries The carliest on record were those of Sesostris, mentioned by Eustathius ; who says, that « this Egyptian king, having traversed great part of the earth, recorded his march in mapa, and gave copies of them not only to the Egyptians, but to the Scythiams, to their great astonishment." Some have imagined with much probability, that the Jews made a map of the Holy Land, when they gave the different portions to the nine tribes at Shiloh : for Joshua tells us that they were sent to walk through the laad, and that they described

GEOGRAPHY.

* in seven parts in a book ;and Josephus relates that when Jushua sent out people from the difierent tribes to miasure the land, be gave them, as companions, persons well skilled in geomutry, who could not be mistaken in the truth.

The first Grecian map on record was that of Allaximander, mentioned by Strabo, lib. 1, p. 7, supposed to be the one referred to by Hippanchus under the designation of the ancient map. Herodotus minutely describes a map made by Aristagor mas tyrant of Miletus, which will serve to give come idea of the maps of those times. He relates, that Aristagoras shewed it to Cleomenes king of Sparta, to induce him to attack the king of Persia at Susa, in order to restore the lonians to their ancient liberty. It was traced upon brass or copper, and seems to have been a mere itinerary, contaitsing the route through the intermediate countries which were to be trarersed in that march, with the rivers Halys, the Euphrates, and Tigris, which Herodutus mentions as necessary to be crossed in that expedition. It contained one straight line called the Royal Road or Highway, which took in all the stations or places of enampment from Sardis to Susa; being 111 in the whole journey, and containing 13,500 stadia, or $1687 \frac{1}{2}$ Roman miles of 5000 feet each.

These itinerary mape of the place of encampment were iudispensably necessary in all armies and marches; and indeed war and navigation seem to be the two grand causes of the improvements both in geography and astronomy. Athenæus quotes Beton as author of a work intitled, The Encampments of Alexander's March; and likewise Amyntas to the same parpose. Pling obs serves that Diognetus and Becton were the surveyors of Alexander's marehen, and then quotes the exact number of miles according to their mensu ration; which be aferwands confirms by the letters of Alexander himself. The same author aloo remarks that a copy of this great monarch's sur. veys was given by Xenueles his treasurer to Pa trocles the geographer, who was admiral of the ficets of Seleucus and Antiochus. His book on geography is often quoted both by 8trabo and Pliny; and it seems that this author furnished Eratosthenes with the principal materials for constructing his map of the oriental part of the world.

Eratosthenes first attempted to rednce zeography to a resular syetem, and introduced a regular parallel of fatitude, which began at the straits of Gibraltar, passed eastwards through the isle of Rhodes, and so on to the mondiains of India, noting all the internediate places through which it passed. In drawing this line, he was not regulated by the same latitude, but by observing where the longest day was 14 hours and a balf, which Hipparchns afterwards determined was the latitude of 36 dgrees.

This first parallel through Rhodes was ever after considered with a degrec of preference, in courstructing all the anciont maps; and the longitude of the then known worlil was often attempted to be meavired in stadia and mites, according to the ex'ent of that line, by many succerding geognapliers.

Eratosthenes soon after attempted not ordy to draw other parallels of latitude, tut also to trace y meridian at rikhtangles to these, passing throukh ※bodesand Alexandria, down to Syeneand Merué; an : at leng'h he undertouk the ariuous task of detrivivirs the circymferunce of the globe, by ap
sctual measurement of a segment of one of its great circles. To find the magaitude of the earth, is ipdeed a problem which bas engaged the attention of astronomers and geographers ever sinces the spherical Dgure of it was known. It seems Anaximander was the first ampng the Greeks who wrote upon this subject. Archytas of Tarentum, a Pythagorean, famous for his skill in mathematics and mechanics, also made some attempts in this way.

As to the methods of measusing the circamference of the earth, it would seem, from whut Aris. totie says in his treatise De Coelo, that they were much the same as those used by the moderus, deficient only in the accuracy of the instiuments. That plilosopher there says, that different stars pass through our zenith, according as our situation is more or less northerly; and that in the suuthern parts of the carth stars come above our horizn, which are no longer visible if we go northward. Hence it appears that there are two ways of measuring the circumference of the earth; une by observing stars which pass through the zenith of one place, and do not pass through that of another; the other, by obsersing some sfars which come above the borizon of one place, and are observed at the same time to be in the horizon of another, The cormer of these methods, which is the best, was followed by Eratouthenes at Alexandria in Egjpt 250 years before Christ. See Digret.

In the time of Pompey the Great, Posidonius determined the measure of the circumference of the earth by the second method above hinted by Aristotle, viz the horizontal observations. Knowing that the stur called Canopus was but just visible in the horizon of Rhodes, and at Alexandria flading its meridian height was the 48th part of a great circle in the heaveps, or $7 \frac{1}{2}$ degrees, answering to the like quantity of a circele on the earth: then, supposing these two places under the same meridian, and the distance petween them $\$ 000$ stadia, the circumference of the earth will be 240,000 stadia, which is the first measure of Posidonius. But, accerding to Strabo, Posidoniqs made the measure of the earth to be 180,000 stadia, at the rate of 500 stadia to a degree. The reason of this difference is thought to be, that Eratosthencs meas ured the distance between Rhodes and Alexandria, and found it only 3750 stadia: taking this for a $48 t h$ part of the earth's cirevomference, which is the measure of Posidonius, the whole circumference will be 180,000 stadia, This neasure was received by Marinus of Tyre, and is usually ascribed to Ptolemy. But this measurement is subject to great uncertainty, both on account of the great refraction of the stars near the horizon, the difficulty of measuring the distance at sea betweco Rhodes and Alexandria, and by supposing those places under the wame meridiap, when they are really very different.

Several geographers aftrywards made ase of the different beights of the pole in distant places uno der the same neeridian, to fiud the dimensions of the earth. About the year 800 , the khalif Atmar mun had the distance measured het ween two places that were two degrees asunder, anit vinder the same ineridian in the plains of Sinjar near the Rell Sea : and the result was, that the degree at ope tine was found equal to 56 miles, and at another 564 or $56 \frac{2}{3}$ miles.
The acat attempt to find eut the cirecupfirence of the enith was in 152.5, by Fernelius, a Jearned philusupher of Frapee, For this purposey he lopit

GEOGRAPHY.

the beight of the pole at Paris, going frum thence directly northovards, till he came to the place where the height of the pole was one degree more than at that city. The length of the way was measured by the unmber of revolutions made by one of the wheels of his carriage; and, after proper alowances for the declirities and turnings of the road, he concluded that 68 Italian miles were equal to a degree on the earth.

Accorting to these methods, many other messurements of the earth's circumference have since that time been made, with much greater accuracy. See Degree and Earth.

Though the inaps of Eratosthenes were the best of his time, they were get very inperfect and inaccurate. They contained little more than the states of Greece, and the dominions of the successors of Alexander, digested according to the surveys above mentioned. He bad indeed seen, and has quoted, the voyages of Pythias into the great Atlantic ocean, which gave him some faint idea of the western parts of Europe; but so imperfect, that they could not be realized into the outlines of a chart. Strabo says he was very ignorant of Gaul, Spais, Germany, and Britain; and he way cqually ignorant of Italy, the consts of the Adriatic, Pontus, and all the countries towards the north.
riuch was the state of geography, and the nature of the maps, before the time of Hipparchus. He made a closer consection between geography and astronomy, by determining the latitudes and lonsitades from celestial observations. From his time nothing of any consequence to deserve recurding occurs till about 150 yeare after Chist, when Ptolemy composed his system of geography. The chief materials he employed in composing this work, were the proportions of the gnomon to ite shadow, taken by different aetronomers at the times of the equinoxes and solstices; calculations foonded on the length of the longest days; the measured or computed distances of the principad soads contained in the Roman itineraries and surveys; the varivus reports of travellers and navigators; and tine worke of preceding anthors, particularly Strabo, whe published under Augustus. All these were compared together, and digested into one uniform body or system. This system, however, was very imperfect, containing some great errors, which are pointed out in Blair's Higzory of Geography: nevertheless it continued in vogue till the last toree or, four centuries, within which time, the great improvements in astronomy: the discoveries of new countries by uavigators, and the progress of commerce and of arms, have contriberted to a very great degree of perfection.
From an observation of the diversity in the length of the days and nights, the rising and setling of the sun, with the $\mathrm{sth} \boldsymbol{r}$ phenomena, the antient geographers divided the surface of the earth into certain districts, which they called climates; and instead of the method of describing the situation of places by their latitude and longitude as we do now, they contented themselies with mencioning the elimate in which they were situated.

This method of dividing the surfuce of the earth into climates, though now very much disused, has been adopted by several modern geographers. Sume of these begin their climates at the equator, reckoning them by the increase of half an huur in the length of the day northward. Thun they go on tifl they come to the polar circles, where the longest day is 94 hours: betwixt these and the poles they count the climates by the increase of a matural dey in the jength of time that the sun con-

VOL. V.
tinues above the horizon, until they come to one where the longest day is $\mathbf{1 5}$ of ours or half a month; and froin tials to the pole they count by the increaze of half-months or whole months, the climates ending at the poles where the days are six months long. The climates betwixt the equator and the polar circles are called hoar climates, and those between the polar circles and the poles are called month elimates. In cominon language, however, we take the word climate in a very different sense; so that when two countries are said to be in different climates, we understand only that the temperature of the air, seasons, de. are different. See Cinmate.

From the difference in the length and positions of the shaduws of terrestrial substances, ancient geographers have given different terms to the inhatitants of certain places of the earth; the rea. son of which will be easily understoorl from the following considerations: 1 . Since the sun in his apparent annual revolution never remores farther from the equator than $25 \frac{1}{2}$ degrees, it fullows, that none of these who live without that space, or beyond the tropics, can have the luminary vertical to them at any season of the year. 8. All who live between the tropics have the sun vertical twice a year, though not all at the same time. Thus, to those who live directly under the equator, he is directly vertical in March and September at the time of the equinox. If a place is in 10° north latitude, the sun is vertical when be has 10° north deccination, and so cf every other place. S. All whe live between the tropics have the sun at noon sometimee north and sometimes south of them. Thus those whu live in a place situated in 90° north latitude have the gun at noon to the northward when he has more than 90 degrees north declination, and to the southward when he has less. 4. Such of the inhabitants of the earth as live without the tropics, if in the northern bemisphere, have the sun at noon to the couthwand of them, but to the northward if in the southern hemi-sphere.-1. Flence when the sun is in the zenith of any place, the shadow of a man or any upright objects falls dieectly upon the place where they stand and consequently is invisible : whence the inhabitants of such places were called Ascii, or without shadow. 2. Those who live between the tropics, and have the sun sometimes to the north and sometimes to the south of them, have of consequence their shadows projzecting noith at some seasons of the year, alid south at others, whence thev were called Amplisicii, or having two kinds of shadows. 3. Thuse whe live without the tropics theve their noon-shindows alusiss the same way, and are :herafore called Heteroscii, that is, having only one kind of shadow. If they are in north latitude, the shadows are always turned towards the north, and if in the suathern hemisphere, towards the south. 4 When a place is so far distant from the equator that the daysure ? + hours long, orionger, the inhabitants were gintled Periscii, because their shadows turn sound tièm.

Nanes have likewise been imposed upon the inhabitants of different paits of the eart: from the parallels of latitude under which they live, and their situation with regard to une another. 1. Thome who lived at distant places, but under the same parallel, were colled Periseci, that is, living in the same circle. Some writers, however, by the name of Perizeci distinguish thuse who live under opposite points of the same parallel, where the noon of one is themidnight of the other. 9. When two places lie under parallels equally distant from

GEOGRAPHY.

the cquator, bat in opposite hemispheren, the inL.abitants were called Autieci. These have a similar increase of days and nixhts, and similar seasons, but in opposite months of the year. According to some, the Antzci were such as lived undor the sanegcographical meridian, and had day and night at the same time. 3. If two places are in parallels equally distant from the equator, and in upposite meridians, the inhabitants were called Antupodes, that is, having their feet opposite to one another. When two persons are Antipodes, the zenith of the one is the nadir of the other. They have a like elevation of the pole, but it is of differnt poles; they have also days and nights alike, and similar seasons of the year, but they have opposite hours of the day and night, as well as seasons of the year. Thus when it is midday with us, it is midnight with our Antipodes; when it is summer with us, it is winter with them, \&ce.

From the various appearances of the sun, and the effects of his light and heat upon different parts of the carth, the division of it into zones has arisen. These are five in number. 1. The torrid sone, lying between the two tropics for the space of 47° of latitude. This is divided into two cqual parts by the equator. 2. The two temperate zones lie between the polar circles and the tropics, containing a space of 43° of latitude. And, 3. The two frigid zones lie between the polar circles and the poles. In these last the longest day is ncver below 24 hours; in the temperate zones it is never quite so much, and in the torrid zone it is never above 14. The zones are named from the degree of heat they were supposed to be subjected to. The torrid zone was supposed by the ancients to be uninhabitable, on account of its heat; but this is now fuund to be a mistake, and many parts of the temperate zones are more intolerable in this respect than the torrid zone itseli. Towards the polar circles also these zones are intolerably cold during the winter season. Only a suall part of the northern frigid zoue, and none of the southern, is inhabited. Some geographers reckoned sixzones, dividing the torrid zone into two by the equator.

The natural division of the surface of the globe is into sea andland; about three-fuurths of the whole being oecupied by water, although probably no where to a depth comparatively very considerable, at most, of a few miles on an average. The remaining iuurth consists of laids, elevated more or less abuve the level of the sea, interspersed, in sime parts, with smaller collections of water, at various heights, and in a few instances, somewhat duwer thau the general surface of the main ocean. Thus the Caspian Sca is said to be ahout three bundred feet lower than the ocean; and in the interior parts of Africa there is probably a lake equally dif pressed.

Hence arise the following technical terms: A continent is a large portion of the earth, which cumprehends several countries that are not sepasated by any sea; such are Europe, Asia, Africa, and America. An island is a part of the earth which is entirely surrounded by water; as Gircat Rritain. A peninsula is a tract of land aimost sursounded with water, and is joived to a contisent only by a narruw slip or neck; such is the innea in Grace. An isthnus, or neck of jand, i. : trat part by which a peninsula is juined to a contment, or two contineuts twrether; as the v-i:ano of Suez, which joins Africa to Asia. A proneritury, or cape, is a high part of land which +1. Lches into the rea; thus the Cape of Guod ii we is a promontory. An uecian is a vast cul-
lection of waters surrounding a considerable part of the continent; as the Atlantic. A sea is a smaller collection of waters; as the Black Sea. A gulf is a pert of the sea which is neally surrounded with land; as the gulf of Venice. A bay has a wider entrance than a gulf; as the Bay of Biscay. A strait is a narrow passage that joins two seas: as the Strait of Gibraltar, which joins the Mediterranean to the Atlantic. 1 lake is a large collection of water entirely surruunded by land, having $n o$ visible communication with the sea; 28 the Caspian Lake in Asia. A river is a stream of water that has its source from a spring, which keeps continually running till it falls into some other river, or into the sea.
The ancieuts considered the globe under the three grand divisions of Asia, Europe, and Africa. Here the distinctions were arbitrary, as they uften included Egypt under Asia, and they had nut discovered the limits of Europe towards the N. EModern discoveries have added a fourth division, that of America, which exceeding even Asia in size, might bave been admitted under two grand and distiuct denominations, limited by the ischmus of Darien. Till mithin these last thirty years it was supposed that a vast coutinent existed in the south of the globe; but the second navigation of captain Cook dispelled the idca, and demonstrated that if any contineut existed there, it must be in the uninhabitable ice of the south pole. The vast exteut of New Holland rewarded the views of the enterprize; this, which seems too large to be ranked annong islands, and too small for a continent, eludes the petty distinctions of man: and while geographers hesitate whether to ascribe it to Asia, or to denominate it a fith specific division of the earth, it is not improbable that the popular division of four quarters will still predominate over all speculative discussions.

Of the grand divisions of the earth, Asia bas ever bean estecmed the most populous; and is supposed to contain five hundred millions of souls ${ }_{2}$ if China, as has been averred by the latest writers, comprizes thee hundred and thirty millions. The population of Africa mady be estimated at thirty millions, of America at tweuty millions, and one hundred and lifty millions may perhaps be assigued to Europe.

We cannut observe any general symmetry in the distribution of the earth's surface; exceptiog that the two large continents of Africa and Sunth Ancrica have sume slisht resemblance in their forms, and that each of them is terminated to the eastward by a collection of numerous islands. The large capes projecting to the southward have also a similarity with respect to their form, and the islands near them; to the west the continents are excavated into larye bays, and the islands are to the east: thus Cape Ilorn has the Falkland Islands; the Cape of Good Hope, Madagascar and Cape Comorin, Ceylon to the east.

The great continent, cumposed of Europe, Asia. and Africa, constitutes about a seventh of the whule surface of the carth; America about a sixteenth; and Australasia, or New Suuth Wales. about a fifcieth; or in hundredth parts of the whole, Europe coutains two; Asia, seven; Africa, .xix; Aumerica, six; and iustralasia, two ; the remaining seventy-seren being soa; although some authors assign seventy-two parts only out of une hundred to thec sca, aad twenty-eight th the land.

These proportions may be ascertained with tolerable accuracy, by weighing the paper made for

GEOGRAPHY.

covering a globe, first entire, and then cut out according to the terminations of the difier nt countries; or, if still greater precision were required, the greater parts of the coutinents might be divided into known portions of the whole spherical surface, and the remaining irregular portions only weighed.

Tbe general inclinations and levels of the continents are discorered by the course of their rivers. Of thes. the principal are, the rivers of the Amazons, the Senegal, the Nile, the river St. Lawrence, the Hoangho, the river La Plata, the Jonisei, the Mississippi, the Volga, the Oby, the Amur, the Oronooko, the Ganges, the Euphrates, tive Danube, the Dun, the Indus, the Dnieper, and the Dwina; and this is said to be nearly the order of their magnitudes. But if we class them accordins to the length of the country through which they run, the order will, according to Major Renmel's calculation, he somewhat different; taking the length of the Thames for unity, he estimates that of the rirer of Amazons, at $15 \frac{3}{4}$; the Kian Kiw, in China, 151; the Hoango, $19 \frac{1}{2}$; the Nile, 121; the Lena, $11 \frac{1}{2}$; the Amur, 11 ; the Oby, $11 \frac{1}{2}$; the Jenisei, 10; tive Ganges, its companion the Burrampooter, the river of Ara, and the Volga, each $9 \frac{1}{2}$; the Euphrates, $8 \frac{1}{2}$; the Mississippi, 8; the Danabe, 7 ; the Indus, $5 \frac{1}{2}$; and the Rhine, $5 \frac{1}{4}$

We may form a tolerably accurate idea of the levels of the ancient continent, by traci:ig a line across it in such a direction as to piss no river, which will obviously indicate a tract of country higher than most of the neighbouring parts. Beginning at Cape Finisterre, we soon arrive at the Pyrennees, keeping to the south of the Garronne, and the Loire.

After taking a long turn northwande, to avoid the Rhine, we come to Swisserland, and we may approach very near to the Mediterranean in the state of Genoa, taking care not to cross the branches of the Po. We make a circuit in Swisserland, and pass between the sources of the Danube, and of the branches of the Rhine, in Swabia. Crossing Frapconia, we leave Bohemia to the morth, in order to avoid the F!be; and coming near to the borders of Austria, follow those of Hungary to the south of the Vistula. The Dnicper then obliges us to go northwards through Lithuania, leaving the Don wholly to the right; and the Volga, to pass still further north, between Petersburg and Moscow, a little above Bjelosero. We may then go eastwards to the boundary of Asia, and thence northwards to Novn Zembla. Hence we descend to the west of the Oby, and thence to the east of the branches of the Volga, and the other inland rivers flowing into the lake Aral and the Caspian Sea. Here we are situated on the widely-extended elevation of Indis, in the neighbourbood of the soarees of the ludus; and, lastly, in our way from hence towards Karnschatka, ne leave the Jenisei and Lena on the left, and the Canges, Kiang Kew, the Hoangho, and the Amur, to the right.

The direction of the most conspicuous mountains is, however, a little different from this; the principal chain first constitutes the Pyrennees, auddivides Spain from Prance, then passes through the Vivarais and Aucergne, to join the Alps, and through the Ssuth of Germany to Dalmatia, Albania, and Macedonia; it is found azain beyond the Enkine, under the names of Taurus, Cancasas, end Ioraus. and gues on to Tartary, and to Kaascetrotkin The peninsula of intia is divided from morth to south by the mountains of Gute, extend-
ing from the extremity of Caucasus, to Cape Comorin. In Africa, Mount Atlas extends from Fez to Egypt, and the mountains of the Moon run nearly in the same direction: there is also a considerable elevation between the Nile and the Red Sea. In the new world, the neighbou: hood of the western coast is the most elevater; in North America, the Blue Mountains, or Stony Mountains, are the most considerable; and the mountains of Mexico join the Ande; or Cordeliers, which are cuntinuet alung tine whole of the west coast of South Anerica.
There are sereral points in hoth hemispheres, from which we may obscrve rivers separating to run to different scas; such are Swisserland, Bjelosero, Tartary, Little Tibet, Nigritia or Guinea, and Quito. The highest mountains are Chinaburaçao, and some others of the Cordehers in Pefu, or perhaps. Descabesado in Chili, Mont Blanc, and the Peak of Teneriffe. Chimboraçao is about seven thousand yards, or nearly four miles, above the level of the sea; Mont B anc, fire thonsand, or nearly three miles; the Peak of Teneriffe about four thousand, or two miles and a quarter; Ophir, in Sumatra, is said to be five or six hundrad feet higher. It has, however, been asserted, that sume of the snowy monntains to the north of Brngal are higher than any of those of Suth America. The plains of Quito, in Peru, are so much elevated, that the barometer stands at the height of fifteen inches only, and the air is reduced to half its usual density. But none of these heights is equal to a thousandth part of the earth's semi-diameter, and the greatest of them might be represented on a sixinch globe by a single additional thickness of the paper with which it is covered. Monnt Sinai, in Japran, Mount Caucasus, Etna, the Southern Pyrenees, St. Georse among the Azores, Mount Adam in Ceylon, Atlas, Olympus, and Taurus, are also high mountains; and there are some vety considerable elevations in the island of Owyhee. Ben Nevis, in Scotland, is the loftiest of the British hills, but its height is considerably less than a mile.

The most elevated mointains, excepting the summit of volcanos, consist of rocks, more or less mixed, without regular order, and commonly of granite or porphyry. These are called primary mountains; they ran generally from cast to west in the old world, and from north to south in the nev; and many of them are obserred to be of easier ascent on the east than the west side. The sccondary mountains accompany them in the same direction; they consist of strata, mostly calcareous and argillaceous, that is, of the nature of lime-stone aud clay, with a few animal and regetable remains, in an obscure form, tozether with sait, coals, and sulphur. The tertiary muantains are still smaller; and in these, the animal and re. getable remains are very abundant; they consist chietly of lime-stone, marble, alabaster, buildingstone, mill-stone, and chalk, with beis of fint. Where the secondary and tertiary mumains are intersected by valleys, the opposite strata often correspond at equal hcights, as if the valieys had been cut or washed from between them ; but sometimes the mountains have their strata disposised as if they had been clerated by an internal fo:c c, and their summits had afterwards crombind anoy; the strata which are lowest in the pains being highesf in the mountains. The strata of the se mountains are offen internired with veins of metal, rumang in all possibse direetions, and occupying vacuitic: which apyear to be of sumewhat later date thus

GEOLOGY.

the original formation of the mountains. The volcanic mountains interrupt those of every other description, without any regularity, as if their origin were totally independent of all the rest.

The internal constitution of the earth is very little known from actual observation, for the depths to which we have penetrated are comparatively very inconsiderable, the deepest mine scarcely descending half a mile perpendicularly. It appears that the strata are mure commonly in a direction nearly horizontal, than in any other; and their thickness is usually almost equable for some distance; but they are not disposed in the order of their specific gravity, and the opinion of their following each other in it similar series, throughout the greater part of the globe, appears to rest on very slight foundations.

Among the mocierns, the chief authors on the subject of Geography are Johannes de Sacrobosco, or John Hallifax, who wrote a Treatise on the sphere : Sebastian Munster, in his Cosmographia Universalis, in 1559; Clavius, on the sphere of Sacrobosco; Piccioli's Geographia et Hydrographia Reformata; Weigelius's Speculum Terraz; De Chales's Geography, in his Mundus Mathematicus ; Cellarius's Geography ; Cluverius's Introductio in Universam Geographiam; Leibnecht's Elementa Geographim Generalis; Stevenius's Compendium Geographicum ; Wolfius's Geographia, in his Elementa Matheseos; Busching's New System of Geography; Gordon's, Salmon's, and Guthric's Grammars i Adams's Geography, ancient and modern; and Pilkington's Geograpby, lately published in two vols. 4to., with all introduction by Mr. Vince. But, as an excellent scientific work, we must not omit Varenius's Geographia Generalis, with Jurin's additions: we really wish some gentleman of talents would publish a new edition of this admirable work, suited to the present state of the science. Dr. Playfair has recently published a system of Geography, which is, in many respects, a valuable performance.

In studying particular Geography, recourse must be had to voyages and travels: the collections of Mavor, and that by Pinkerton now publishing, may be safely recominended. We must also mention

Pennant's Tours in Britain.

Young's Tours in the British Isles.
Saintfond's Travels in England and Scotland.
Holcroft's Tour in France.
'Spallanzani's Travels in the Two Sicilies.
Coxe's Travels in Russia, \&c.
Porter's in Do.
Pallas's Travels in the' Russian Empire.
Carr's Northern Summer, and his other volumes of Travels.
Staunton's Account of China.
Barrow's Travels in China.
Percival's Account of Ceylon.
Cordiner's Do.
Symes's Embassy to Ava.
Collins's Account of New South Wales.
Bruce's Travels in Abyssinia.
Barrow's Twavels in Africa.
Park's Travels in the Interior of Africa.
Branne's Travels in Δ frica.
Sonnini's Travels in Egypt.
Acerbi's Journey to the North Cape.
Percival's Cape of Good Hope.
Mackenzie's Journey in North America.
Davis's Travels in America.
Pinckard on the Weat Indies.
Mackinapa's Tour in the Wést'Indies.

The Moravian accounts of their Mission in the interior of America: with the Voyages of Ausons Byron, Cooke, Phipps, Bligh, Wilson, Waliss, La Peyrouse, Peiron, \&c. (Blait, Grgory, Hullon, Nirholion, Pinkerton).

GEOLOGICAL. a. (from genlogy.) Relating to the subject of geology.

GEOLOGY. (from γ^{n}, the earth, and λ oros, a discourse, or treatise.) That part of natural philosophy which treats of the structure of the earth, in regard to the origin, composition, and decomposition of its sulid contents. Thus explained, mineralogy should seem to be a branch of geology: but the former term has of late years been carried to such an extent by the most popular mineralogist of his day, M. Werner, as to include not only geology, properly so called, but every thing immediately connected with it : the situation of the materials constituting the solid contents of the earth, so far as we have been able to examine them, as well as their mode of origin, and the veins by which they are intersected. And hence, in the Wernerian system, geology becomes a branch of mineralogy; and, in order to prevent coufusion, from the subjection of what hay hitherto been regarded as a classific term to an ordinal station, the word geognosy has been invented to supply its place. Sce Mineralogy.

The object of geology, then, is to unfold the structure of the globe; to discover by what cauges its parts have been arranged; from what operations have originated the general stratification of its materials, the inequalities with which its surface is diversified, and the immense number of different substances of which it is compoeed.
In pursuing this investigation, many difficulties occur to us. The bare surface or mere crust of the solid substance of the earth is the whole that we are capable of boring into, or of acquiring a knowledge of, even by the derpest clefts of volcenoes, or the bottoms of the deepest seas. It is not often, however, that we have a possibility of examining either seas or volcanoes at their bottom: the inhabitable part of the globe bears but a small portion to the uninbabitable, and the clisitized an infinitely smaller proportion still. Hence, our experience must be necessarity extremely limited; a thousand facts may be readily conceived to be unfolded that we are incapable of accounting for, and a variety of systems that shall, nevertheless, aim at an explanation.

So far as the superficies of the earth has been laid open to us by ravines, rivers, mines, \&e. we find it composed of stony mnsses, sometimes simple, as lime-stone, serpentine, or quartz; but more frequently compound, or composed of two or more sin.ple materials, variously mixed and united wo gether, as granite, which is a composition of quartz, felspar, and mica. These stony mayses, or rocks, are numerous, and they appear to be laid one over the other, so that a rock of one kimd of stune is corered by another species of rook, and this by a third, and so on. In this superposition of rocks, it is easily observable, that their situation is not arbitrary : every stratum occupies a determinate place, so that they follow each other in regular order from the deepest part of the earth's crust, which has been examined, to the very surface. Thus there are two thiags respecting rocks, that peculiarly claim our attention; their composition and their relative situation. But, besides the rocke which constitute the earth'e crust, there are other massee which must also be considered. These traverse the rocks in a different

GEOLOGY.

direction, and are known by the name of veins, as if the rocks had split asunder in different places from top to bottom, and the chasus had been afterwards filled up with the matter which constitutes the rein.

Independently of the substances thus presented to us, we mieet with facts that prove most decisively that the general mass has undirgone various revolutions at various times, and revolutions not only of great antiquity, but of universal extent. We have the most unexampled proof, that its whole surface has been covered with ocean, and that every part of it has suffered change; mountaius bave been raised, plains levelled, islands separated from a contineut, and the waters collected $\$ 0$ as to leave an elevated land. We find it difficult to conceive causes adequate to the production of such effects; and operations so immense seem too remote from any means of investigation which we possess, to admit of being explained.

One point, however, in the midst of all the intricacy that surrounds us still remains decided, that the shell of the glube has, at some period or other, been in a state of flnidity, and that from this circumstance has arisen its present arrangement. Now the only two causes that can enter into the mind of man as being competent to such an effect are the operation of fire orof some solvent: and hence our researches become in some degree limited to the inquiry by which of these means this effect has been induced. If a solvent have been the cause, that solvent must have been water, for there is to other fluid in nature in sufficient abuidance to bave acted the part of a solveat upon a scale so prodigious.

Hence, then, two distinct theories arise, which appear to have been agitated with considerable Farmth in former times, but with a much greater dernet of uarmth, and much deeper view of the salject, in the present day. Is the present structure of the molid contents of the earth, so far as it is capabile of examination, the result of igneous fusinn, or of aqueotis solution? Is the Plutonic or the Neptunian system fiounderl on the strongest basis? In ancient times Heraclitus took the lead so to il:e former: and Thales, or rather, perhaps, Epicuris, as to the latter. In our own day, thoush the Plutonic theory was first started by M. Buffion, its defenders are now chiefly confined to our oir n country, and consist of Dr. Hutton, profensor Playfair, and very lately of sir James Hall; numes unquestionably highly respectable, and en.it ed to every deference, but most powerfully opposed by the respectable authorities of Werner, te Saussure, and Kirwan, not to mention that the ceneral voice of geotogists is very considerably in favour of the Neptunian theory, or chat eatertained by the last-mentioned philosophers.
Plulonic Theory--1. According to this system there is in the substance either of the entire globe, or throughout the ratire crnst of it with which we are sequяinted, a regular series of decay and remuvation, and the procusses by which these are affected have an uniform relation to each other. The bardest rocke are wom down by air and water, causes which, however slowly they-may operate, are constant in their action, and which, therefore, in indefinite time, must be equal to the production of the greatest effect. From the figure of the surface of the earth, the decayed materials mpast be carried towards the ocean, and ultimately deposited in its bed. This transportation may be impeded by local causes, or say, in general, be
extremely slow, yet from the declivity of the land it must necessarily take place; and may, theie-fore, be admitted as an uniformly operating cause.
9. It is further assumed, that at certain depths in the mineral regions an immense heat is constantly present; a beat which operates in the fusion and consolidation of the substances deposited in these regions. To the action of this subterraDeous fire the formation of all our strata is attributed, for by this they are again sublimed, and exposed to view in different states of combination and perfection. These strata, therefore, consist of the wrecks of a furmer world, which have been more or less completely fused by this agent, and by subsequent cooling have been cunsolidated.
The subterraneous fire to which these effects are ascribed is conccived to operate under the modification of compression, in consequence of which, from various facts appealed to, and to a certain extent confirmed by some very valuable experiments by sirJames Hall , (provided those experiments should bear the test of farther enquiry) it seems pretty clearly ascertained, that when certain gasses appertaining to the fusible substance, as carbonic acid for example, are rendered incapable of fying off, a much less quantity of actual heat is sufficient for the purpose of fusinn, than when such gasses, freed from a heavy superincumbent pressure, have a possibility of escaping. Now the subterraneous fire being placed at immense depths, the substances on which it operates must be enormously compressed; which compression will prerent their volatilization in whole or in part: and from this circumstance it is possible, we are told, to explain appearances and qualities in minerals, and to answer various objections, which would otherwise weigh heavy against the hypothesis.
3. The elevation of the strata is in like manner the result of this same subterraneous heat: and it is contended that nothing but the extensive and furcible power which is hereby produced can be fairly conceired adequate to such an effect.

The first of these positions is not very objectionable, and as far as relates to its general priuciple, separated from the positions with which it is connected, may be admitted. It may be allowed by the Neptunian as well as by the Plutonic geologist, that the strata of the earth are liable to waste, and that the materials are carried forward to the mea: but the appearance of lime-stones and marbles containing shells, in which the sparry structure is as perient as it is in the primary limcstone, and in which are distributed veins of crystallized carbonat of lime, this, and a variety of facts like this, must at all times militate fatally a gainat the agency of fire in the production of such sparry structure, and such veins of crystallization; for in every instance in which it is found sufficient to produce such a structure, it must necessarily have destroyed every vestige of the structure of the shells, and bave altogether dissipated the carbonic acid, necessary for the veins of erystallized carbonat of lime.

Against the second position the objections are indeed strong, and, if we mistakenot, insuperable. " It is not fire, says Mr. Playfair, in the usual sense of the word, but heat, which is required for this purpose: and there is nothing chimerical in supposing that nature has the means of producing heat, even in a very great degrec, without the assistance of fuel, or of vital air. Friction is a source of beat, unlimited, for what we know, in

GEOLOGY.

its extent; and so perhaps are other operations, both chemical and mechanical; nor are either combustible substances or vital air concerned in the beat this produced. So also, the heat of the sun's rays in the fucus of a burning glass, the most intense that is known, is indepeudent of the substance just mentioned; and though the heat wunld not calcine a metal, nor even burn a piece of woud, without oxygenous gass, it would duubtless produce as high a temperature in the absence as in the presence of that gass." From these and other expetiments, he concludes "that it is not absurd to suppose, that the heat of great, dense, and fixed bodies may be consumed by the greatness of the berdies, and the mutual action and reaction between them and the heat they emit."

In reply to this argunent, which, we admit, is very ingeniously conducted, it is forcioly asked, by the author of the Comparative View ot the two systems, in direct reply to Mr. Playfair's Illustratiuns of the Iluttonian I'heory, "To what purpose are the various sources of heat enumerated in this reasoning? To prove that it may exist, or be produced indrpendent of burning. This will be fadily granted; but the reasoning can prove nothing farther. It can be satisfactorily shewn that auy of the known causes of heat are as incapable of producing it in the interior parts of the globe, to thai extent which unust be supposed in the Hut tonian theory, as combustion, which, even ty its alcfenders, is confessed to be inadequate to that purpose."

In regard to the third general position, that the strata, atter having been fused and consulidated by subterranean heat, are clevated by the same power, the sane general ubjection is applicable, which has been already urged against the preceding principle, viz. the difficulty or impossibility of obtaining and preserving a degree of heat sufficient for such a purpose. And even were this granted, no principle is pointed out in the theory, by which the action of such a power can be regulated; why it may not anticipate or be too late for its due season of action, and be as often the cause of havoc and disoider, as it is asserted to be the regular and pre-ordained instrument of the renovation of a continent. Hence, the principle assumed is at oftee gratuitous and improbable.

In a work restricted, as is the Pantologia, to narrow extent in the discussion of the ditierent articles of which it is composed, it is always a point of very considerable consequence to detect insuperable objections to a system in linine: for it enables the editors to appropriate many of their pages, which wuuld otherwise be devoted to the same subject, to inquiries of mgre importance, because vested on a firmer foundation. If the objuctions to the Plutonic theury, as already urged, few as they are, be conceived decisive (and we can scarcely inagine any other verdict from our readers), we may well be saved the trouble of pointing out those incousistencies it labours under, as well in regard to the actual position of many of the stony rocks of the glole cuntemplated in mass, as in the appearances and propertics of individual fossils: thuugh we feel persuaded that the arguments resulting from a minute investigation into both these points, would be altogether as complete as in the question of principle. It is suflicient, however, to observe, that notwith. stand ng its magnificence of structure, and extent of application, notwithstanding the speciousness of it: first introduction, and the talents with which it has been supported, the Plutonic theory is
built upon assumption alone. It lays down priso ciples which it cannot support, and in stating obeervations to other tieories, it rather clears the way for the advance of something unborn than establishes its own positions.

Neptumian theory.-Under this view of the origin and :tructure of the globe, less superb indecd, but possessing a much wider appeal to facts than the preceding, it is conceived that aqueous solution has b : en the 'agent by which the phaenomena on the superficies of the globe have been produced. It is conceived that the materials of which our strata consist were at one time dissolved or suspended in water, and that from this fluid they have succersively consolidated ia various combinations, jartly by crystallization, and partly by mechanical decomprostion. Granite being the rock which composes the most elevated part of the glibe, and which likewise forms the basis on which the greater number of the strata rest, is supposed to have been first formed, the clifferent parts of which it consists, felspar, quartz and mica, having concreted by a crystallization nearly simultaneous. This is conccived to have been accompanied with, and fullowed by, a similar consolidation of the other primitive strata, gneis, micareous schist, argillaceous schist, porphyry, quartz, \&c.

Those rocks compose the chief elevations of the globe. They arc never found to contain any orsanic remains, and of course their formation must bave bcen prior to the existence of the vegetable and animal kingdoins.

From the period of the formation of these strata, it is contended that the water covering the surface began to diminish in he:ght by retiring gradually into cavities in the internal parts of the earth. And if we nay be permitted to recur, by an effurt of the imagination, to that epocha in which, according to sacred and profane historians, the water and earth were confounded, and the confused mix. ture of all principles formed a chaos, we shall see that the laws of gravity inherent in matter must hare carried it down,and necessarily produced the arrangement which obscrvation at present exhibits to us. The water, as the least hcavy, must have purified itself, and arisen to the surface by a filtration through the other matcrials: while the carthy principics must have precipitated, and formed a mud, in which all the elements of stones were confoundex. In this very natural order of things, the general law of affinities, which continually tends to bring tegether all analogous parts, must bave exerted itself with its whole activity upon the principles of this almost fluid paste, and the result bave been a number of bodies of a more definite kind, in crystals more or less regular; and from this muddy substance, in which the principles of the stones were confounded that compose the granite, a rock must have been produced, containing the elementary stones all in possession of their distinct forms and characters. In this manuer it is that we observe salts of very different kinds develop themselves in waters which hold them in solution; and in this manner it still happens that crystals of spar and gypsum are formed in clays which contain their component parts.

It may easily be conceived that the laws of gravitation must bave influenced the arrangement and disposition of the products. The most gross and heavy bodies must have fallin, and the lightest and most attenuated substances must have arranged themselves on the surface of the furegoing; and this it is which constitutes the primitive schi ts, the gneis, the rucks of mica, \& k, which commonfy

GEOLOG.Y.

sepose upen masses of coarse-grained granite. The disposition of the fine-grained granite in strata, or beds, appears to depend on this position, and the tineness or tenuity of its parts. Being placed in inunediate contact with water, this Quid must naturally have influenced the arrangement which it presents to us; and the elements of this rock, being subjucted to the effect of waves, and the action of currents, must have formed strata.

The rocks of granite being once established as the nucleus of the superficies of our globe, we may, from the analysis of its constituent principles, and by attending to the action of the various ugents capable of altering it, follow the changes to which it has been subjected, step by step.

Water is the principal agent whose effects we shall examine. This tuid, collected in the cavity of the orman, is carried by the atmosphere to the tops of the most elevated mountains, where it is precipitated in rain, and forms torrents, which return with various degrees of rapidity into the counmon reservoir. The uninterrupted motion and fall must gradnally attenuare and wear away the Mardest rocks, and carry their detached parts to distances more or less considerable. The action of the air, and the varying temperature of the atmosphere, facilitate the attennation and the destruction of these rocks. Heat acts upon their surface, and renders it more accessible and more penetrable to the water which succeeds; cold dividesthern, by freezing the water which has entered into their texture; the air itself affords the acid principle, which attacks the limestone, and causes it to efforesce; the oxygen unites to the iron, and calcines it: insomuch that the concurrence of causes favours the disunion of principles; and consequently the action of water, which clears the surface, carries away the products of decomposition, and makes preparation for a succeeding process of the same nature.

The first cffect of the rain is therefore to depress the mountains. But the stones which compose them must resist in proportion to their hardness; asud we ought not to be surprised when we ubserve praks which have brared the destructive action of tine, aod still remain to attest the primitive level of the mountains which have disappeared. The primitive rocks, alike inaccessible to the injury of ages as to the animated beings which cover less elerated mountains with their remains, may be considcred as the source or origin of rivers and streams. The water which falls on their summits fows down in torrents by their lateral surfaces. In its course it wears away the soil upon which it incessantly acts. It hollows out a bed, of a depth proportioned to the rapidity of its course, the quantity of its waters, and the hardness of the rock over which it flows; at the same time that it carries along with it portions and fraginents of such ctones as it loosens in its course.

These stones, roiled along by the water, must strike together, and break off their propecting angles: a process that must quickly have aflorded thuse rounded flints which form the beds of rivers. These pebbles are found to diminish in size, in proportion to the distance from the mountain which affords them; and it is to this cause that Mr. Dorthes has referred the disproportionate magnitude of the pebbles which form our ancient Wura stunes, when compared with those of modern date; for the sea extending itself formerly much pore inland, in the dirrction of the Rhone, the stoues luicin it received from the rivers, and
threw back again upon the shores, had not run through so long a space in their beds as those which they at present pass over. Thus it is that the remains of the Alps, carried along by the Rhone, have successively covered the vast interval comprised betweent he mountains of Dauphiny and Vivarais, and are carried into seas, which deposit them in small pebbles on the shore.

The pulverulent remains of mountains, or the powder which results from the rounding of these tints, are carried along with greater facility than the flints themselves: they float for a long time in the water, wiose transparency they impair; and when these same waters are less agitated, and their course becomes slackened, they are deposited in a fine and light paste, forming beds more or less thick, and of the same nature as that of the rocks to which they owe their origin. These strata gradually become drier by the agglutination of their principles; they become consistent, acquire hardness, and form siliccous clays, silex, perrosilex, and all the numerous class of pebbles which are found dispersed in strata, or in banks, in the ancient beds of rivers. The mud is mucis more frequently deposited in the interstices left between the rounded flints themselves, which intervals it fills, and there forms a true cement that becomes hard, and constitutes the compound stones known by the name of pudding-stones and grit-stones; for these two kinds of stones do not appear to dilfer but in the coarseness of the grain which forms them, and the cement which cona nects them together.

We sometimes observe the granite spontaneously decomposed. The texture of the stones which form it has been destroyed; the principles or component parts are disunited and separated and they are gradually carried away by the watcrs. Water tiltrating through mountains of . primitive rock, frequently carries along with it very minutcly-divided particles of quartz; and procecds to form, by deposition, stalactites ${ }_{2}$ agates, rock crystal, \&c. These quartzoes stalactites, differently coloured, are of a formation considerably analogous to that of calcareous alabasters; and we perceive no other difference between them than that of their constituent parts. Thus far we have exhibited, in a few words, the principal changes, and various modifications, to which the primitive rocks have been subjected. We have not yet observed either germination or life; and the metals, sulphur, and bitumens, have not hitherto presented themselves to our observation. Their formation appears to be posterior to the existence of this primitive globe; and the alterations and decomposition: which now remain to be inquired into, appear to be produced by the class of living, or organized beings.

On the one hand, we behold the numerous clase of shell animals, which cause the stony mass of our globe to increase by their remains. The spoils of these creatures, long agitated and driven about by the waves, and more or less altered by collision, form those strata and banks of lime-stone, in which we very often perceive impressions of those shells to which they owe their origin. On the other hand, we observe a numerous quantity of vegetables that grow and perish in the sea; and these plants, likewise deposited and heaped tugether by the currents, form strata, which are decomposed, lose their organization, and leave all the principles of the vegetable confounded with the earthy principle. It is to this source
that the ofigin of pit-coas, and secondary echio$t_{u s,}$ is usually attributed; and this theory is established on the existence of the texture of decomposed vegerables very usually seen in schisti and coal, and likewise on the presence of shells and fish in most of these products. It appears that the formation of pyrites ought in part to be attributed to the decomposition of vegetahles: it exists in greater or less abundance in all schissi and coal. A wooden shovel has been found buried in the depositions of the river De Ceze, converted into jet and pyrites. The decomposition of animal substances may be added to this calse; and it appears to be a confirmation of these ideas, that we tind many shells passing to the state of pyrites.

Not only the marine vegetables form considerable strata by their decomposition; but the remains of those which grow on the surface of the globe ought to be regarded among the causes or agents which concur in produciag changes upon that sutface. We shall separately consider how much is owing to each of these causes; and shall follow the effects of each, as if that cause alone was employed in modifying and altering our plane.

1. The secondary calcarcous mountains are constantly placed upon the surface of the primitive mounians; and thuugh a few solitary observations present a contrary order, we ought to consider this inversion and derangement as produced by shocks which have changea the primitive disposition. It must be observed also, that the disorder is sometimes merely apparent; and that some naturalists of little iaformation have described calcareous mountains as inclining beneath the granite, because this last pierces throuch the envelope, rises to a greater height, and leaves at its feet, almost beneath it, the calcareous remains deposited at its base.

Sometimes even the lime-stone fills to a very great depth the crevices or clefts formed in the granite, bonretimes schistus, or :rap, occasionally containing petrifactions. These, in the Wernerian system, are called intermediate ir transition rocks or strata. It likewise happens frequently enough that such waters as are loaded with the remains of the primitive granite heap them together, and form recoodary granites which may exist above the calcareous stone. These calcareous mountaind are decomposed by the combined action of air and water ; and the product of their decomposition sometimes forms chalk or marle. The lightness of this earth renders it easy to be transported by water; and this fluid, which does not possess the property of holding it in solution, soon deposits it in the form of gurhs, alabasters, stalactites, \&ic. Spars owe their formation to no other cause. Their crystallization is posterior to thee origin of calcarcous mountains.
Waters wear down and carry away calcareous mountains with greater ease than the primitive mountains: their remains being very light, are rolled along, and more or less worn. The fragments of these rocks are sometines connected by a gluten or cement of the sane nature; from which process calcareons grit and breccias arise. These calcareous'remains forme:ly deposited themselves upon'the quartzose sand; and the union of primitive matter, and sucondary products, gi. cs rise to a rock of a mired nature.
2. The mountains of secondary schistus frequently exhibit to us a pure mixture of earthy principles, without the smallest vestige of bitumen. These rocks atford; by ahalysis, silex, alu. mina, maghesia; lime if the state of caobritate,
and iron; principles which are more or less united, and consequently accessible in various degrees to the action of such agents as destroy the rocks hitherto treated of.
The same principles, when disunited, and carried away by waters, give rise to a great part of the stones which are comprised in the magnesian class. The same elements, worn down by the waters, and deposited under circumstances proper to facilitate crystallization, form the schorls, tourmaline, garnets, \&c. We do not pretend by this to exclude and absolutely reject the system of such naturalists as attribute the furmation of magnesian stones to the decomposition of the primitive rocks. But we think that this furmation cannot be objected to for several of them, more especially such as contain magnesia in the greatest abundance.

It frequently happens that the secondary schists are interspersed with pyrites; and, in this case, the simple contact of air and water facilitates their decomposition. Sulphuric acid is thus formed, which combines with the various constituent principles of the stone; whence result the sulphates of iron, of magnesia, of alumina, and of lime, which effloresce at the surface, and remain confounded together, Schists of this nature are wrought in most places where alum works have been established: and the most laborious part of this undertaking consists in separating the sulphats of iron, of lime, and of Inagnesia from each other, which are mixed togeiher. Sometimes the magresia is so abundant that its sulphat predominates. The sulphat of lime, being very sparingly soluble in water, is carried away by that liquid, and deposited to form gypsium ; while the other more soluble salts, remaining suspended, form vitrolic mineral waters. The pyritus schists are frequently impregnated with bitumen, and the proportions constitute the various quantities of pit-coal.

It appears shar we may lay it down as an incontestable principle, that pyrite is abundant in proportion as the bituminous principle is more scarce. Hence it ari, es, that coals of a had quality are the most sulphureous, and destroy metallic vessels, by converting them into pyrite. The foci of volcanos appear to be formed by a schist of this nature; and in the analyses of the stony matters which are ejected, we find the same principle's as those whict.constiture this schist. We cught not therefore to be much surprised at finding schorls among volcanic products; and still less at observing that subterranean fibres throw sulphuric salts, sulphur, and other analogous products, out of the entrails of the earth.
3. The remains of terrestrial vegetables exhibit a mixture of primitive earths more or lest coioured by iron: we may therefore consider these as a matiix in which the'sceds of all stony combinations are dispersed. The earthy principles assort themselves according to the laws of their affinities ; and form crystals of spar, of plaister, and even the rock crystals, according to ali appearance: for we find ochreous earths in which these crystals are abundantly dispersed; we see them formed almost under our eyes. We have srequently observed indurated ochres full of these crystals terminating in two pyramids.

The ochreous earths appear to deserve the greatest artertion of naturalists. They constitute one of the most fertile means of action which nature employs; and it is even in earths netrly similar to these that she elaborates the diamoud; in the kingdoms of Golconda and Visiapouts.

GEO

The spoils of snimals, which live on the surface of the globe, are entiticd to some consideration among the number of causes which we assign to explain the various changes our planet is subjected to. W'e find bones in a state of considerable prevervation in certain places; we can even frequently enough distinguish the species of the animals to which they have belonged. From indications of this surt it is that some writers have endeavoured to explain the disappearance of certain species: and to draw conclusions thence, eitber that our planet is perceptibly cooled, or that a sensible change has taken place in the position of the axis of the earth. The phosphoric salts and phosphorns which have been found, in our time, in combination wrich lead, iron, \&c. prove that, in proportion as the principles are disengaged by animal decomposition, they combine with other bodies, and form the nitric acid, the alkalies, and is general all the numerous kinds of nitrous silts.
In examining, then, the merits of the antagonist systems of geology now offered, we hare no objection to confess that to the Huttonian belongs the praise of novelty, boldness of conception and milimited extect of view. It aspires not only to acenume for the present appearances of the earth, bat to trace a plan by which the formation of sweceasive worlds is developed: it seeks to extend that order and arrangement, that principle of belance asd restoration observed in all the departments of nature, to the constitution of the ghobe itself.

With this system the Neptunian forms a perfect contrast. It presumes not to carry ite researches beyond the commencement of the present world, or to extend them beyond its termination. All the phzenomena of genlogy conspire to prove that water has been the great agent by which rectes have been formed, and the surface of the earth arranged. It does not pretend to deny the existence of subterranean fires to a certain estent, or that many of the phenomena which scrike us moat forcibly may be the result of such an agency; but it does deay that such an agency it the grand or general came of the geological facts and appearances that accoot us on every side, and denies still farther that any such fire or beak can exist to an extent comperent to such an extent. While the science remains in an imperfect state deticiencies may be found in the application of its general principle. But we discover mo ineonsistencies with that principle, nor contradictions to known and entablished cruths.

More especially do we feel disposid to adhere ∞ this last theory from its general coincidence with the comnogeay of the holy scriptures. The Monaic account indeed reatrains the process of creation and the period in which the waters covered the entire surface of the globe to a limit in whick "if the terme be understood in their ctict and liveral seuse, the existing phemensmena of nature seem to evince that they could not posibly have cccurred: for it confines the entire work of creation within the compass of six days. In another part of the ecriptures, however, we have andeniahie proofs that the term day, instead © being restrained to 2 cisgle revolution of the earth around ite aris, is used in a lonser and more Feneral acnse, for a definite, iadeed, but a much moce exceasive periol: and we have as ample a proof fronk the book of nature, the exicing face of the sarth, that the six days or pesiode referred To is the Munaic cusmology imply epochs af

GE O
much greator duration than n many durnal revolutions as we have in the page of hu nan hiotory, that the same terms werc employed with the same laxity of meaning by the prophes Daniel. Thus interpreted scepticism is driven from her last and inmost fortress: every subterfuge is annihilated, and the word and work of the Leity are in perfect unison with each other. That the Creator might have produced the whole by a single and instantaneous effort is not to be denied : but as both revelation and nature concur in asserting that such was not the fact, it is no more derogatory to him with whom 2 thousand years are but as one day, and one day as a thousand years, to suppose that he allotted six thousand years to the completion of his desiga than that he executed it in six days. And surely there is something far more magnificent in conceiving the world to have progressively attained form, order, and vitality, from the mere operation of powers communicated to it in a state of chaos, or unfashioned matter, than in supposing the actual and persevering exertions of the Almighty for a definite, although a shorter period of time." -Goad's Life of Lucretius, p. Ixxxi.

GEOMANCY, Geomantia, a kind of divination, performed by means of a number of. little points or dots made on paper at random; and considering the various lines and figures which those points present, and thence forming a pretended judgment of futarity, and deciding any question proposen. The word is of the Greek y^{m}, terra, earth, and menlea, divination ; it being the ancient custom to cast little pebbles on tiie ground, and thence to form their con. jectures, instead of the points afterwards made ose of. Polydore Virgil defines geomancy a kind of divination performed by means of clefts or chinks made in the ground, and taket the PersianMagi to have been the inventors ofit.

GEOMANTIC. a. (from geomancy.) Per taining to the art of geomancy.
 in geometry; a geometrician ($\mathrm{Wa}_{\text {alt }}$).

GEOMETRA, in entomology. See Pra. LENA.
GEO'METRAL. a. (geomelral, French.) Pertaining to geometry.

GEOMETRICAL. Geome'tric.a. (quMipuro,.) 1. Pertaining to geometry (More). q. Prescribed or laid down by geometry. 3. Disposed according to geometry (Grew).
Geometrical line or curve, called also algebraic line or curve, is that wherein the relations of the abscisees to the semiordimates may be expressed by an algebraic equation. Sée Algebraic curver.
Geometrical lines are distinguished into classes, orders, or genera, according to the number of the dimensions of the equation that expresses the relation between the ordinates and the abscisses : or, which often a mounts to the same, according to the number of points in which they may be cust by a right line.
Thus, a line of the first order will be only a right line: those of the second, or quadratic order, will be the circle, and the conic sece tions; and those of the third, or cubic order, will be the cubical and Dieliau parabolas, the cissoid of the ancients, \&ic.

GE O

But a curve of the first gender (because a right line cannot be reckoned among the curves) is the same with a line of the second order; and a curve of the second gender, the same with a line of the third order; and a line of an infinitesimal urder is that, which a right line may cut in infinite points; as the spiral, helicoid, the quadratrix, and every line generated by the infinite revolutions of a radius.
It is to be observed that it is not so much the equation, as the construction or description, that makes any curve, geometrical, or not. Thus, the circle is a geometrical line, not tecause it may be expressed by an equation, but because its description is a postulate: and it is not the simplicity of the equation, but the easiness of the description, that is to determine thechoice of the lines for the construction of a problem. The equation that expresses a parahola, is nore simple than that which expresses a circle; and yet the circle, by reason of its more simple construction, is admitted before it. Again, the circle and the conic sections, with respect to the dimensions of the equations, are of the same order; and yet the circle is not numbered with them in the construction of problems, but by reason of its simple description is depressed to a lower order, viz. that of a right line; so that it is not improper to express that by a circle, which may be expressed by a.right line; but it is a fault to construct that by the conic sections, which may be constructed by a circle.
Geometrical progrbssion, a progression in which the terms have all, successively the same ratio: as $1,2,4,8,16, \& c$. where the common ratio is 2 .
The general and common property of a geometrical progression is, that the product of any two terms, or the square of any one single term, is equal to the product of every other two terms that are taken at an equal distance on both sides from the former. So of these terms,

$$
\begin{aligned}
& 1,2,4,8,16,32,64, \& c . \\
& 1 \times 64=2 \times 32=4 \times 16=8 \times 8=64
\end{aligned}
$$

In any geometrical progression, if edenote the least term,
z the greatest term,
r the common ratio, π the number of the terms, s the sum of the series, or all the terms; then any of these quantities may be found from the others, by means of these general values, or equations, viz.

$$
\begin{aligned}
& t=\sqrt[n-1]{\frac{2}{a}}, \\
& z=a \times r^{n-1}, \\
& a=z \div r^{n-1}, \\
& n=\frac{\log \cdot \frac{r z}{a}}{\log \cdot r}=\frac{\log . r+\log \cdot z-\log \cdot a}{\log \cdot r}, \\
& s=\frac{r n-1}{r-1} \times a=\frac{r n-1}{r-4} \times \frac{2}{z^{n-1}}=\frac{r z-a}{r-1}=
\end{aligned}
$$

$$
\frac{\frac{n}{n-1}-\frac{n}{n-1}}{\frac{1}{z^{n-1}}-\frac{1}{n-1}}
$$

When the series is infinite then the least term a is nothing, and the sum $s=\frac{r z}{r-1}$.
In any increasing geometrical progression, or series beginning with 1 , the 3 d , 5 th , 7th, $\& \mathrm{c}$. terms will be squares; the $4 \mathrm{th}, 7 \mathrm{th}, 10 \mathrm{th}$, 8 cc . cubes; and the 7 th will be both a square and a cube. Thus in the series $1, r, r^{2}, r 3, r 4$, $r^{\circ}, r^{r}, r^{7}, r^{8}, r^{\circ}, \& \mathrm{\& c}, r^{2}, r^{1}, r^{6}, r^{8}$, are squares; r^{3}, r^{6}, r^{9}, cubes; and r both a square and a cube.

Geometrical proportion, called also simply proportion, is the similitude or equality of ratios.

Thus, if $a: b:: c: d$, or $a: b=c: d$, the terms a, b, c, d, are in geometrical proportion; also 6, $3,14,7$, are in geometrical proportion, because $6: 3: 14: 7$, or $6: 3=14: 7$. In a geometrical proportion, the product of the extremes, or 1st and 4 th terms, is equal to the product of the means, or 2 d and 3 d terms. So $a d=b c$, and $6 \times 7=3 \times 14=49$.

GEOMETRICALLY. ad. (from geometrical.) According to the laws of geometry (Ray).
 skilled in gcometry; a geometer (Brown).

To GEO'METRIZE. v. n. (ушшніраш.) To act according to the laws of geonetry (Buyle).
GEOMETRY, the science or doctrine of extension, or extended things; that is of lines, surfaces, or solids.
The word is Greek, ywumprac, formed of yrea, or γm, earth; and μ reffw, measure; it being the necessity of measuriug the earth, and the parts and places thereof, that gave the first occasion to the invention of the principles and rules of this art; which has sinee buen extended and applied to unmerous other things; insomuch that geometry with arithmetic form now the general foundation of all mathematics.

Who were the first inventors of geometry is by no means certain. it is generally allowed that the Chaldeans were first possessed of the mathematical sciences, especially astronomy, which must imply geonetry. Whether Abraham taught these sciences first to the Egyptians, when he went from Ur of the Chaldees, as some learned men assert, is not clear; but on this we may depend, that the Egyptians were the first people that cultivated geometry, being compelled thereto by necessity, the mother of inventions, in order to as certain to every man his legal property and estate. in a countiy where boundaries and land-marks rere swept away and confounded by yearly inulldations.
That the Egyptians, in their ancient, free, monarchical state, were acyuainted with some of the simple elements and easy problems in geonstry, is not denied; but we cannot believe they made any great improvements in the abstruse parts thereof, since to Pythagoras (the fansous pbilosopher of Samos, who flouristred so low as abont fire homdred and twenty years before Christ, and who bed

GEOMETRY.

lired twenty-two years in Egypt) was attributed the invention of the thirty-sccond and forty-seventh propositions of the first of Euclid; for the latter of which be conceived so much joy, that he is said to have offered an hecatomb. A dixcovery of this kind, in later times, would have been entitled but to a small share of honour, and the want of knowing these propositions must needs make their geometry very coarse and imperfect. Upon this accounh, therefore, it may be concluded that the learming of the Egyptians, for which their priests were so famous, and Moses su celebrated in holy writ for having attained it, did not so much consist in mathematics, as in the arts of legislation, and civil poiity, and magic. Their magicians, or wise men, thought that the sun, moon, stars, and elements, were appointed to govern the world; and though they acknonledged that God might, upon extraordinary occasions, work miracles, reveal his will by audible vuices, diviue appearances, dreams or prophecirs, yet they thought also, that, generalIy spraking, oracles were given, prodisies caused, dreams of things to come occasioned by the disposition of the several parts of the universe to influence upon one another, at the proper places and scasons, as constantly and as necessarily as the beavenly bodies performed their revolutions; and they imagined that their learned professors, by a deep study of, and profound inquiry into, the powers of uature, could make themselves able to work wonders, obtain oracles and omens, and interpret dreams, either from fate (meaning the matural course, of things), or from nature, which was when they used any artificial assistance by drinks, inebriations, discipline, or other useans, which were thought to have a natural power to produce the vaticinal influence, or prophetic frenzy: and in all these particulars they thought the Deity not concerned, hut that they were the mere matural effects of the influence of the elements and planets at set times and critical junctures.

From Egypt, geumetry travelled into Greece; for Thales the Milesian, who flourished five hundred and eighty-four years before Christ, was the first of the Greeks who, coming into Egypt, transferred ytometry from thence into Greece. He is reputed, certainly, besides other things, to have found out the fifth, fiftcenth, and twenty-sixth propositions of Euclid's first book, and the second, third, fourth, and fifth of the fourth book. The same person improved astronomy, for be began to observe the equinoxes and solstices, and was the first who foretold an eclipse of the sun.

After him was Pythagoras, of Samos, beforementioned. This man much improved and adorned the matbeunatic sciences, and so attacbed was he to arithmetic in particular, that almost his whole method of philusophizing was taken from numbers. He first of all abstracted geometry from matter, in which elevation of mind he found ont several of Euclid's propositions. He tirst laid open the matter of incommensurable magnitudes, and the five regular bodies.

Next fourished Anaxagoras of Clazomenar, and Enopides of Chios. These were followed by Briso, Antipho, and Hippocrates, uf Chios; which three, for attempting the quadrature of the circle, were reprehended by Aristotle, and, at the same time, relebrated. Then caune Demucritus, Theodorus, Cyrenacus, and Plato, than whom nu one brought greater lustre to the mathematical sciences; he amplified geometry with great and nutable additions, bestowing incredible study upon it, and above all, the art amalytie, or of resolution, was
found out by him; the most certain way of insention and reasoning. Upon the door of his aca-
 isoitw. Thirteen of his fatniliar acquantance are commemorated by Proclus, as inen by whose studies the mathematics were improved. After these were Leon, and Eudoxus of Cnidos, a man great in arithmetic, and to whom we owe the whole fifth book of the elements; Xenocrates, and Aristotle To Aristeus, Isidore, and Hypsicles, most subtile geometricians, we are indebted for the books of solids. Afterwards Euclid yathered together the inventions of others, dispused them into order. improved them, and demonstrated them more accurately, and left to us those Elements, by which youth is every where instructed in the mathematics. He died two hundred and eighty-fuur years before Christ. Almost an hundred years after followed Eratosthenes and Archimedes; the writings of the first are lost, but we have many remaina of the latter. The very name of Archimedes suggest an idea of the top of human subtidty, and the perfection of the whule mathematical sciences; this wonderful inventions have been delivered to us by Polybius, Plutarch, Tzetres, and otbers. He was the first who was able to give the exact quadiature or mensuration of a space, bounded by the arch of a curve and a right line, which he did by demonstrating that the segment of a parabola is to its inscribed triangle as $4: 3$. Cotemporary with him was Conou; and at no great distance of time was Apollonius of Perga, another prince in geometry, called, by way of encomium, the great geometrician. We have extant four books of couics in his name; though some think Archimedes was the author of them: we have also three bouks of spherics by Theodosius the Tripolite. In the year seventy, after Christ, appeared Claudius Ptoled mæus, the prince of astronomers, a man not only most skilful in astronomy, but in geometry also, as many other things by him written witnesso but especially his books of subtenses. After these flourished Eutocius, Ctesibius, Proclus, Pappus. and Theon. Then ensued a long period of iynorance; arts and sciences, liberty and learningo being driven away and overrun by that brutish herd of northern barbarians, whose whole excellence was in their bones and muscies, and feats of chivalry their highest ambition. During this dismal night of ignorance, duabtless many curiuus discoveries and useful pieces of knowledge were totaliy lost, and the remaiader buried, as it were, in ruins, till the restoration of learning upon the taking of Constantinople by the Turks in the year 145 I after Christ; Whereby the residue of Greek aud Roman learning was driven for refuge into Italy and the other neighbouring countrics of Europe.

Geometry has a!w ays been valued for its extersive usefulness, but has been most admired for its true and real exceli-nce, which consists in its perspicuity and perfect evidence. It may, therefure. be of use to consider the nature of the demonstrations, and the steps by which the ancients were able, in several instances. from the mensuration of right-lined tigures, to judtre of such as were bounded by curve lincs; for as they did not allow themselves to resolve curvilinear figures into rectilinear elements, it is worth while to examine by what art they could make a transition from the oue to the other.

They found that similar triangles are to each other in the duplicate ratio of their bumologons sides; and by resolving similar polygons intu similar triangles, the same proposition was extend-

GEOMETRY.

ed to these polygons also. But when they came to compare curvilineal figures, which cannot be resolved into rectilineal parts, this method failed. Circles are the only curvilineal piain figures cousidered in the elements of geometry. If they could have allowed themselves to have considered chese as similar polygons of an infinite number of sides, (as some have since done, who pretend to abridge their demonstrations,) after proving that any similar polyeons inscribed in circles are in the duplicate ratio of their diameters, they would have immediately extended this to the circles themselves, and would have considered 2 Euc. 12. as an easy corullary from the first: but there is reason to think they would not have admitued a demonstration of this kind, for the old writers were very careful to admit no precarious principles, or aught else but a few self-evident truths, and no demonstrations but such as were accurately deduced from them. It was a fundamental principle with them, that the difference of any two unequal quantities, Dy which the greater exceeds the lesser, may be added to itself till it shall exceed any proposed finite quantity of the same kind: and that they founded their propositions concerning curvilineal ligures upon this principle, in a particular manner, is evident from the demonstrations, and from the express declaration of Archimedes, who acknowledges it to be a foundation upon which he established his own di-courses, and cites it as assumed by the ancients in demonstrating all the propositions of this kind: but this principle seems to be inconsistent with the admitting of an infinitely little quantity or difference, which, added to itself any number of times, is never supposed to become equal to any finite quantity soever.

They proceeded, therefore, in another manner, less direct indeed, but perfectly evident. They found that the inscribed similar polygons, by having the number of their sides increased, continually approached to the areas of the circles; so that the decreasing difference between each circle and its inscribed polygon, by still further and further divisions of the circular arches, which the sides of the polygon subtend, could become less than any quantity could be assigned; and that all this while the similar polygons observed the same constant invariable proportions to each other, viz. that of the squares of the diameters of the circles. Upon this they founded a demonstration, that the proportion of the circles themselves could be no other than that same invariable ratio of the similar inscribed polygons. For they proved, by the doctrine of proportions only, that the ratio of the two inscribed polygons cannot be the same as the ratio of one of the circles to a magnitude less than the other, nor the same as the ratio of one of the circles to a magnitude greater than the other; therefore the ratio of the circles to each other, must be the same as the invariable ratio of the similar polygons inscribed in them, which is the duplicate of the ratio of the diameters.
In the same manner the ancients have demonstrated, that pyramids of the same height are to each other as their bases, that spheres are as the cubes of their diameters, and that a cone is the one third part of a cylinder on the same base, and of the same height. In general, it appears from their way of demonstration, that when two variable quantities, which always have an invariable ratio to each other, approach at the same time to two determined quantities, so that they may differ less from them than by any assignable measure; the ratio of these limits or determined
quantities must be the same as the invariable ratin of the two variable quantities: and this may be cansidered as the most simple and fundamental proposition in this doctrine, by which we are enabled to compare curvilineal spacts in some of the more simple cases.

The next improvement in the way of demonstrating among the ancient geometricians, scems to be that which we call the method of exhaustions. See Exhaustions.

Archimedes, indeed, takes a rather different way for comparing the spheroid with the cone and cy linder, that is more general, and has a nearer analogy to the modern methods. He supposes the terins of a progression to increase constantly by the same difference, and demonstrates several properties of such a progression relating to the sum of the terms, and the sum of their squares; by which he is able to compare the parabolic conoid, the spheroid, and hyperbolic conoid, with the cone; and the area of his spiral line with the area of the circle. There is an analogy betwixt what he has shewn of these progressions, and the proportions of figures demonstrated in the elementary geometry ; the consequence of which may illustrate his doctrine, and serve, perhaps, to shew that it is more regular and complete in its kind than some have inagined. The relation of the sum of the terms to the quantity that arises by taking the greatest of them as often as there are terms, is illustrated by comparing the triangle with a parallelogram of the same height and base; and what he lias demonstrated of the sum of the squares of the terms compared with the square of the greatest term may be illustrated by the proportion of the pyramid to the prism, or of the cone to the cylinder, their bases and heights being equal; and by the ratios of certain frustums or proportions of these solids deduced from the elemeutary proportions.

He appears solicitous, that his demonstrations should be found to depend on those principles only that had beell universally received before his time. In his treatise of the quadrature of the parabola, he mentions a progression, whose terms decrease constantly in the proportion of four to one; but he does not suppose this progression to be continued to infinity or mention the sum of an infinite number of terms; though it is manifest, that all which can be understood by those who assign that sum was fully known to him. He apprars to have been more fond of preserving to the science all its accuracy and evidence, than of advancing paraduxes; and contents himself nith demonstrating this plain pmperty of such a progression, that the sum of the terms continued at pleasure, added to the third part of the last term, amounts always to f of the first term: nor does be suppose the chords of the curve to be bisected to infinity ; so that after an infinite bisection, the isscribed polygon might be said to coincide with the parabola. These suppositions would have been new to the geometricians in his time, and such he appears to have carefully avoided.

This is a summary account of the progress that was made by the ancients in measuring and comparing curvilineal figures, and of the method by which they demonstrated their theorems of this kind. It is often said, that curve lines have been considered by them as polygons of an infinite number of sides; but this principle no where appears in their writings: we never fird them resolving any figure or solid into infinitely small elcments; on the contrary, they seem to have

GEOMETRY.

aroided such euppositions, as if they judged them unfit to be received into geometry, when it was obvious, that their demonstrations might have been sometimes abridged by admitting them. They considered curvilineal areas as the limits of circumscribed or inscribed figures, of a more simple kind, which approach to these limits (by a biscetion of lines or angles, continued at pleasure) so that the diff:rence between them may become less than any given quantity. The inscribed or circumscribed figures were aiways conceived to be of a magnitude and number that is assignable; and from what hal been shewn of these digures, they demonstrated the mensuration, or the proportions of the curvilideal linits themselves, by arguments ab absurdo. They had made frequent use of demonstrations of this kiod from the beginaing of tha elements; and these are, in a particular manner, adapted for making a trarsition from right-lined figures, to such as are bounded by curve lines. By adraitting them only, they established the more difficult and sublime part of their geometry, on the same foundation as the Grat elements of the science; nor could they have proposed to themselves a more perfect inodel.

But as these demonstrations, by determining distinctly all the several magnitudes and proportions of these inscribed and circumscribed figures, did frequently extend to rery great leugths, other methods of demonstrating have beell contrived by the moderns, whereby to avoid these circumstantial deductions. The first attempt of this kind known to us, was made by Lucas Valerius; but afterwards Cavalerius, an Italian, about the year one thousand six hnndred and thirty-tive, advanced his method of Indirisibles, in which he prom pores, not ouly to abbreriate the ancient demonstrations, bat to remove the indirect form of reasouing used by them, of proving the equality or proportion between lines and spaces, frum the impossibility of their having any different relation; and to apply to these curved magnitudes the same direct kind of proof that was before applied to right-lined quantities.

This method of comparing magnitudes, invented by Cavalerius, supposes lines to be compounded of points, surfaces of lines, and sulids of planes; or, to make use of his own description, surfaces are considered as cloth, consisting of parallel threads; and solids are considered as formed of parallel planes, as a book is composed of its leaves, with this restriction, that the threads or lines, of which surfaces are compounded, are not to be of any conctivable breadth, nor the leaves or planes of solids of any thickness. He then forms these propositions, that surfaces are to each other, as oll the lines in one to all the lines in the other; and solids, in like manuer, in the proportion of all the planes.

This method exceedingly shortened the former edicus demonstrations, and was easily perceived; so that problems, whicb at first sight appeared of an insuperable difficulty, were afterwards resulved, and came, at leagth, to be despised, as too simple and easy: the mensuration of parabolas, hyperbolas, spirals of all the bigher orders, and the famous cycloid, were among the early productions of this period. The discoveries made by Torricelli, de Permat, de Roberral, Gregory St. Vincent, \&c. are well known. They who have not read many authors, may find a synopsis of this metbod in Ward's Young Mathematician's Guide, where he treats of the mensuration of superlicies and solids.

Notwithstanding, as this method is here explained, it is manifestly founded on iucousistent and inpossible suppositions; tor while the lines, of which surfaces are suppused to be made up, are real lines of no breadth, it is obvious, that no number whatever of them can furm the least imaginable surface: if they are supposed to be of some sensibie breadth, in order to be capable of filling up spaces, i. e. in reality to be parallelograms, bow minute soever te their altitude, the surfaces may not be to each other in the proportion of all such lines in one to all the like lines in the other; for surfaces are not always in the same proportion to each other with the parallelograum inscribing them.

The same contradictory suppositions obvionsly attend the composition of sol ds by parallel planes, or of lines by such imaginary points.

This heterogencous composition of quantity, and confusion of its species, so diffirent from that distinctness, for which the mathematics were ever farnous, was opposed at its first appearance by several eminent geometricians: particularly by Guldinus and Tacquet ; who not only excepted to the first principles of this method, but taxed the conclusions formed upun it as erroneous. But as Cavalerius took care that the threads or lines of which the surfaces to be compared together were formed, should have the same breadth in each (as he limself expresses it) the conclusions dedaced by his method might generally be verilied by sounder geometry; sunce the comparison of these lines was, iu effect, the comparing together the inscribed figures.

As in the application of this method, error, by proper caution, might be avoided, the assistance it scemed to promi.e in the analytical part of geometry made it eagerly followed by those who were more desirous to discuver new propositions, than solicitous about the elegance or propriety of their dennonstrations. Yet so strange did the contradictory conception appear, of composing surfaces out of lines, and solids out of planes, that, in a short time, it was new modelled iuto that form, which it still retains, and which now universally prevails among the forcign mathemati cians, under the name of the differential method, or the analysis of infinitely littles.

In this reformed antion of indivisibles, surfaces are now supposed as composed not of lines but of parallelograms, having infinitely little breadths; and solids, in like manner as formed of prisme, having infinitely little altitude3 By this al eration it was imagined, that the heterugencous composition of Cavalerius was sufficiently evaded, and all the advantages of his method retaiued. Bat here, again, the same absurdity occurs as before; for if, by the infinitely little breadth of these parallelograms, we are to understand what these words literally import, i. e. no breadth at all; then they caunot, any more than the lines of Cavalerius, compose a surface; and if they have any breadth, the right lines bounding them cannot coincide with a surface bounded by a curve line.

The followers of this new method grew bolder than the disciples of Cavalerius, and having transformed his points, lines, and planes, into infinitely little lines, surfaces, and solids, they pretended they no longer compared together heterogeneous quantities, and insisted on their principles, beiug now beconic genuine; but the mistakes they frequently fell into were a sufficient confutation of their boasts; for notwithstanding this new model, the same limitations and catations were still ne:

GEOMETRY.

cessary : for instance, this agreement betiveen the iuscribing figures and the curved spaces to which they are adapted, is only partial; and in applying their principles to propositions already determined by a juster method of reasoning, they easily perceived this defect ; both in surfaces and solids, it was evideut, at first view, that the perimeters disagreed. And as no oue instance can be given, where these indivisible or infinitely little parts do so completely coincide with the quantities they are supposed to compound, as in every circumstance to be taken for them, without producing erroneous conclusions, so we find, where a surer guide was wanting, or disregardel, these figures were often imagined to agree, where they ought to have been supposed to differ.

Leibnitz, in two dissertations, one on the resistance of fluids, the other on the motion of the heavenly bodies, has, on this principle, reasoned falsely conceruing the lines intercepted between curves and their tangents. Bernoulli has, likewise, made the same mistake in a dissertation on the resistance of fluids, and in a pretended solution of the problem concerning isoperimetrical curves. Nay, Mr. Parent has had the rashness to oppose erroncous deductions from this absurd principle, to the most indubitable demonstrations of the great Huygens. 'Thus it appears, that the doctine of indivisibles contains an erroneous method of reasoning, and, in consequence theresf, in every new subject to which it shall be applied, is liable to fresh errors.

It is also manifest, that the great brevity it gave to demonstrations, arose entirely ficm the absurd attempt of comparing curvilineal spaces in the same direct manner as right line figures can be compared; for, in order to conclude directly the equality or proportion of such spaces, no scruple was made of supposing, contrary to truth, that rectilineal figures, capable of such direct comparison, could adequately fill up the spaces in question; whereas, the doctrine of exhaustions does not attempt, from the equality or proportion of the inscribing or circumscribing figures, to conclude, directly, the like proportions of these spaces, because those figures can never, in reality, be made equal to the spaces they are adapted to: but as these figures may be made to differ from the spaces to which they are adapted, by less than any space proposed, how minute soever, it shews by a just, though indirect deduction from these circunseribing and inscribing figures, that the spaces whose equality is to be proved, can have no difference; and that the spaces, whose proportion is to be shewn, cannot have a different proportion thau that assigned them.

The Arithmetica Infinitorum of Dr. Wallis was the fulicst treatise of this kind that appeared before the invention of duxions. Archimedes had considered the sums of the terins in an aritbmetical progrescion, and of their squares only, (or rather the limits of these sums only) these being sufficient for the mensuration of the figures he had examined. Dr. Wallis treats this subject in a very gen ral mamer, and assigns like limits for the sums of any powers of the terms, whether the exponents be integers or fractions, positive or negative. Hasiag discovered one general theorem that inchoies all of this kinil, he then composed new preseresions from various aggegates of these terms, and enquired into the sums of the powers of the eve terms, by which he was enabled to meastre accurately, or by approximation, the areas of figuies without munber: Lut he composed this
treatise (as he tells us), before be had examined the writings of Archimedes; and he proposes his theorenis and demunstrations in a less accurate form : he supposes the progressions to be continued to infinity, and investigates, by a kind of induction, the proportion of the sum ot the powers, to the prodnction that would arise by taking the greatest power as often as there are terms. His demonstrations, and some of his expressions, (as when he speaks of quantities more than infinite) have been excepted against; however, it must be owned, this valuable treatise contributed to produce the great improvements which soon after followed.
The next promoter of geometry, with respect to time, among our countrymen, was Dr. Barrow, a man of a penetrating genius, and very in. defatigable: he had amassed a large magazine of learning; and his general character was, that whatever subject he treated he exhausted: be was a perfect master of the ancient geometry; and has obliged us with compendious, yet clear demonstrations of what is left of the geometrical writings of Euclid, Archinedes, Apollonius, and Theodosius. But the adrances he made in currelined geometry, his own particular improrements, are contained in his lectures. He begins with treating on the generation of magnitude, which comprehends the original of mathematical hypotheses. Magnitude may be produced various ways, or conceived so to be; but the primary and chief among them is that performed by local motion, which all of them must in some sort suppose; because, without motion, nothing can be generated or produced : so true is Aristotie's axiom, viz. be that is ignorant of motion, is necessarily ignorant of nature. What mathematicians chiefly consider in motion, are these two properties, viz. the mode of lation or manner of bearing; and the quantity of the motive force. From these springs the differences of motions flow ; but because the quantity of motive force cannot be known without time, the doctor gives a long metaphysical account of the nature of time; which he defincs to be, abstractedly, the capacily or possibility of the continuarce of any thing in its ozon being. Towards the latter end of this he agrees with A ristotle, that we not only measure motion by time, but also tine by motion ; because they determine cach other: for in like manner, as we first of all measure a space by some magnitude, and declare it is so much; and afterwards, by means of this space, compute other magnitudes correspondent with it : so we first assume time from some motion, and afterwards judge thence of other motions; which, in reality, is no more than comparing some motions with others, by the assistance of time; jnst as we investignte the ratios of magnitude by the help of some space E. 3. He who computes the proportion of motion by the proportion of time, does no more than get the said ratio of motions from clocks, dials, or from the proportion of sular motions in the same time. Again, because time is a quantity uniformly cxtended, all whose parts correspond, either propurtionally to the respective parts of an equal motion, or to the parts of spaces moved through with an unequal motion; it may, therefore, be very aptly represented to our ininds by any maznitude alike in all its parts; and especia!ly the most simple ones, such as a straight or cinculor line; between which and time there happens to be much likeness and analogy: for as tine consists of parts altugether similar, it is reasonable to consider it as a quantity eudowed with ont dimen-

GEOMETRY.

sion only; whether we imagine it to be made up, as it were, either of the simple addition of rising moments, or of the continual flux of one unoment; and fur that reason ascribe on!y length to it, and deteruine its quantity by the length of a line passed over. As a line is luoked on to be the trace of a puint moving furward, being in some sort divisible by a point, and may be divided by motion one way, viz. as to length; so time may be conceived as the trace of a moment continually fluwing; having some kind of divisibility from an instaut, and from a successive flux, inasmuch as it can be divided nome way or other. And like as the quantity of a line consists of but one length fullowiong a motion, su the quantity of time pursuts bat one succession stretched out, as it were, in length; which the length of the space moved over shews and determines. Time may, therefore, always be expressed by a right line; first, indeed, taked or laid down at pleasure; but whose parts will exactly answer to the proportionable parts of time, as its points do the respective instants of tiune, and will aptly serve to represent them.

The doctor next proceeds to the effective force of time, being the same as what he before called the motive force by which magnitudes are generated. He considers this as a kind of quantity, capable of computation, like ot'rer quantities: for it is plain from experience, that when two moveable bodies depart from the same place along the same line, the one moves a greater space than the other in the same time; the reason of which can oaly be this, that that body which moves swiftest, is acted upon by a greater force or motive power; this force, therefore, admitting of greater and less modifications, may be justly conceived as divisible into any infinite or indefinite parts; the least of which is called rest, or the lowest degree of velocity: considering, therefore, the thing absolute' y, in order to represent the quantity of this force justly to the mind, we need only lay down some regular magnitude in its stead. As a right line is the most simple and perspicuous of any, it is, therefure, the fittest to represent any degree thereof. When this furce comes under a mathematical consideration, it is called velocity; which is defined to be that poseer by wolich a moveab'e body can piass over a given space in a gioen lime; whence it follows, that every particular quantity of any velocity cannot be known, neither by the space moled through unly, nor by the time singly, but may be fuund by calculation from the quantity of space and time together; as, on the cuntrary, the quantity of time may be oltained from the quantity of the space and velucity tugether: nor does the quantity of space (so far as it can be known this way by motion) depend wholly upon the quantity of a definite velocity, or upon any assigned time, but upon the congoint ratio of both. The quantity of space is fuund after the same manuer as we do that of a supericies, by its dimensious; but the guantitios of velocity and time are found exactiy atter the same manner as when a superticies and one of its dianensious are given, we thereby fiad the other: f.r to every moment of time theie answer, sume degrec of veiocity, which a moveable buly is then cunctivedto have; w which degree bome length of the space moved over answers. Wicu time fluws cqually, it wil be most spty representel by a right line; and the several dexiectuf vedacity, whether equal or unequal, ineach justant, may be also exprevined by riglit lues; and because these desrees of veluety do in every moenent of lime jass uver ouc adivilicer iadegendeatis
and without mixture; therefure, if right lines parallel to each other, and horizuntal, be drawp through all the points of the perpendicular line representing the time, the plain superlicies thence resulting, will exactly represent tire aggregate of the degrees of velocity; which superficies, baving its paits proportionable to the respective parts of the space moved through, may very well represent that space. If the velocities answering to each inctant of time are equal, this superficies will be a parallelogram; if unequal, a triangle. From the properties of the former figure are deduced all the theorems of equable and uniform motion; and from the latter, all those which concern equally accelcrated motion. Moreover, if the degrees of velocity, in a continual succession from rest. throughout every instant of time, to a given dogree, be conceived to increase to it, or decrease from thence to rest in the progression of the square numbers, the aggregatical velocity, as well as the space moved thruugh, may most conseniently be represented by the semiparabola, whose vertex denctes rest, the sereral equal parts of the absciss, the given equal times, and the ordinates, the respective degrees of velocity; from a well known property of the parabola. In like manner, any supposed degrees of velocity, any way increasing or decreasing continually, or interruptedly after any imaginable way, may be truly and conve. niently expressed by right lines applied to that representing the time, kecping what-ver proportion any one is pleased to assign; so that kuowing from thence the representative space, the quantity of space moved through will be easily had, and the contrary; for it is easy to deduce theorems, if any one knows rightly and congruously how to reduse quantities of any kind soever, subject to his contemplation, to analogous magnitudes.

Perhaps this dry account of these metapbysical subjects may to some scem tedious; but if it be considered that hereupon are founded the theories of the descent of heavy bodies, of pendulums, and of projectiles, the reducing of which to geometrical detnonstrations raised the famous Galilco to so high a reputation, that he was said to have added two new sciences to the mathematics; and whem we further consider that the doctrine of fuxions is comprised in two mechanical problems, and that mechanics, or the doctrine of motion, depends upon computation of the quantities of time, velocities, and forces; it will then appear that these considerations directly lead towards fluxions, and that it cannot be time ill-spent to consider their nature abstractedly; unless we could be content to know the manner of operating by them only. without contemplating the reason of them in theory, and klowing whether they are really scentific or not. See Flusions, Invivisiblef, $\&$

For a catalogue of the principal writers, ancient and modern, we must refer the reader to the article Geometry in Dr. Hutton's Mathematical Dictionary.

Geumetry is distinguished into theoretical or speculative, and practical.

Theoretical or Speculs/ise Genmetry, treats of the various properties and re'ations in magnituder, demonstrating the theorms, \&e. And

Practical Geomelry, is that which applies thuse specolations and thenrems to particular uses in the solution of probicms, and in the measurements in the orlinary concerns of life.

Speculative geonetry again may be diyiked iato clementary aud sublime.

GEOMETRY.

Elementary or Common Geometry, is that which is employed in the consideration of right lines and plane surfaces, with the solids generated from them. And the

Higher or Sublime Geometry, is that which is cmployed in the consideration of curve lines, conic sections, and the bodies formed of them. This part has been chiefly cultisated by the moderns, Dy help of the improved state of algebra, and the moderi analysis or fluxions.

The standard author on the elements of geome. try is Euclid. See Euclid and Elements. The definitions and propositions of his lirst six, and eleventh and twelfth books, are as below.

Book I. Def. 1.-A point is that which hath no magnitude.
2. A line is length without breadth.
3. The extremities of a line are points.
4. A straight line is that which lies evenly between its extreme points.
5. A superficies is that which hath ouly length and breadth.
6. The extremitics of a superficies are lines.
7. A plane superficies is that in whici any two points being taken, the straight line between them Hes wholty in that snperficies.
8. "A plane angle is the inclination of two lines to one another in a plane, which meet together, but are not in the same direction."
9. A plane rectilineal angle is the inclination of two straight lines to one anuther, which meet toEether, but are not in the same straight line.
10. When a straight line standing on another straight line makes the adjacent angles equal to one another, each of the angles is ralled a right angle; and the straight line which stands on the other is called a perpendicular to it.
11. An obtuse ansle is that which is greater tban a right angle.
12. An acnte angle is that which is less than 2 right angle.
13. "A term or boundary is the extremity of any thing."
14. A fiyure is that which is inclosed by one ar more bonndarics.
15. A circle is a plane figure contained by one line, which is called the circumference, and is such that all straight lines dirawn from a certion point within the figure to the circumference, are equal to one another.
16. And this point is called the centre of the circle.
17. A diameter of a circle is a straight line drawn through the centre, and terminated both vays by the circumference.
18. A semicircle is the figure contained by a diameter and the part of the circumference cut off by the diameter.
19. "A segment of a circle is the figure contained by a straight line, and the circumference it cuts off."
20. Rectilineal figures are those which are coutained by straight lines.
21. Trilateral figures, or triangles, by three straight lines.
22. 2uadrilateral, by four straight lines.
23. Multilateral figures, or polygons, by more than four straight lines.
24. Of three sided figures, an equilateral triangle is that which has three equal sides.
25. An isosceles triangie, is that which has only two sides equal.
26. A scalene triangle, is that which has three noequal sides.
27. A right angled triangle, is that which has a right angle.
28. An obtuse angled tiangle, is that which has an obtuse ancle.
29. An acute angled triangle, is that which has three acute angles.
30. Of four sided figures, a square is that which has all its sides equal, and all its angles right angles.
61. An oblong, is that which has all its angles right angles, bu: has not adl its sides equad.
32. A rhombus, is that which has all its sides equal, but its sugles are not risht ansles.
33. A rhombid, is that which has its opposite sides equa! to one another, but all its sides are not equal, nor its angles ripht angles.
34. All oti,er four sided figures besides these, are called trapeziums.
35. Parallel straight lines, are such as are in the same plane, and which, being produced ever so far both ways, do not meet.

Postulutes.-1. Let it be granted that a straight lize may be drawn from: any one poiut to any other point.
2. That a terminated straight line mas be produced to any length in a straight line.
3. And that a circle may be described from any centre, at any distane irum that centre.

Ax:oms. - 1 . Things which are equal to the same are equal to one another.
2. If equals be added to equals, the wholes are equal.
S. If equais be taken from equnls, te remainders are equal.
4. If equals be added to unequals, the who!es are urequal.
5. If equals be taken from anequals, the remainders are unequal.
6. Things which are double of the same, sre equat to one another.
7. Things which are hal:es of the same, are equal to one another.
8. Maguitudes which coincide with one ancther, that is, which exactly fill the saine space, are equal to one another.
9. The whole is greater than its part.
10. Two straislit liaes cannot inclose a space.
11. All right angles are equal to one another.
12. "If a straight line enects twy straignt lines, so as to make the two interiur angles on the sane side of it taken together less than two rizht angles, these stra: ${ }^{\text {cht }}$ lines being continually produced, shall at length mect upon that side on which are the angles which are less than owo rizht ancles. See the uotes on Prop. XXIX. of Book I."
Yrop. I. Prob. To describe an equilateral triangle upon a giren finite straight lide.

Prip. II. Prob. Froni a given point to draw a straight line equal to a given straight line.

Prop. 1II. Prob. Frum the greater of tro given straight lines to cut off a part equal to the less.

Prop. IV. Theor. If two triangles have two sides of the one equal to two sides of the other, each to each; and have likewise the angles contained by those sides enual to ove another; they shall likewise have their bases, or third sides, equal; and the two triangles shall be equal ; and their other angles shall be equal, each to each, viz. those to which the equal sides are opposite.

Prop. V. Theor. The angles at the base of en isosceles triangle are equal to one another; and, if the equal sides be produced, the angles upon the other side of the base shall be equal.
Prop. VI. Theor. If two angles wf a triangte te

GEOMETRY.

equal to one another, the sides also which subtend, or are opposite to, the equal angles, shall be equal $t o$ one another.

Prop. VII. Theor. Upon the same base, and on the same side of it , there cannot be two triangles that have their sides which are terminated in one extremity of the base equal to one anuther, and likewise those which are terminated in the other extremity.

Prop. VIAI. Theor. If two triangles have two sides of the one equal to two sides of the other, each to each, and have likewise their bases equal; the angle which is contained by the two sides of the one shall be equal to the angle contained by the two sides equal to them, of the other.

Prop. IX. Prob. To bisect a given rectilineal angle, that is, to divide it into two equal angles.

Prop. X. Prob. To bisect a given finite straight line, that is, to divide it into two equal parts.
Prop. XI. Prob. To draw a straight line at right angles to a given straight line, from a given point in the same.
Prop. XII. Prob. To draw a straight line perpendicular to a giren straight line of an unlimited length, from a given point without it.

Prop. XllI. Theor. The angles which one straight line makes with another upon the one site of it, are either two right angles, or are together equal to two right augles.
Prop. XIV. Theor. If, at a point in a straight live, two other straight lines, upon the opposite sidis of it, make the adjacent angles together equal to two right angles, these two straight lines shal! be in one and the same straight line.
Piop. XV. Theor. If two straight lines cut one anuiher, the vertical, or opposite, angles shall be equal.

Prup. XVL Theor. If one side of a triangle be produced, the exterior angle is greater than cither of the interior opposite angles.

Prop. XVII. Theor. Any two angles of a triangle are tugether less than two right angles.
Prop. XVIII. Theor. The greater side of every triangle in opposite to the rreater angle.
Prop. XIX. Theor. The greater angle of every triangle is subtended by the greater side, or has the greater side opposite to it.

Prop. XX. Theor. Any two sides of a triangle are together greater than the third side.

Prop. XXI. Tbeor. If, from the eads of the side of a triangle, there be drawn two straight lines to a point within the triangle, these shall be less than the other two sides of the triangle, but shall contain a greater angle.

Prop. XXII. Prob. To make a triangle of which the sides shall be equal to three given ttraight lines, but any two whaterer of these must be greater than the third.

Prop. XXIII. Prob. At a given point in a given straight line, to make a rectilineal angle equal to a given rectilineal angle.

Prop. XXIV. Theor. If two triangles have two sides of the one equal to two sides of the other, eacb to each, but the angle contained by the two sides of one of them greater than the angle contained by the two sides equal to them, of the other; the base of that which has the greater angle shall be greater than the base of the other.

Prop. XXV. Theor. If two triangles have two sides of the one equal to two sides of the other, each to each, but the base of the one greater than the bave of the other; the angle also contained by the sides of that which has the greater base, shall

VOL. ∇.
be greater than the angle contained by the sides equal to them, of the other.

Prop. XXVI. Theor. If two triangles have two angles of one cqual to two angles of the other, each to each; and one side equal to one side, viz. either the sides adjacent to the equal angles, or the sides opposite to equal angles in each; then shall the other sides be equal, each to each; and also the third angle of the one to the third angle of the other.

Prop. XXVII. Theor. If a straight line falling upon two other straight lines makes the alternate angles equal to one another, these two straight lines shall be parallel.

Prop. XXVIII. Theor. If a straight line falling upon two others traight lines makes the exterior angle equal to the interior and opposite upon the same sude of the line; or makes the interior angles upon the same side together equal to two right angles; the two straight lines shall be parallel to one another.

Prop. XXIX. Theor. If a straight line fall upon two parallel straight lines, it makes the alternate angles equal to one another; and the exterior angle equal to the interior and opposite upon the same side; and likewise the two interior angles upon the same side together equal to two right andles.
Prop. XXX. Theor. Straight lines which are parallel to the same atraight line are paraliel to one another.

Prop. XXXI. Prob. To draw a straight line throush a given point parallel to a given straight line.

Prop. XXXII. Theor. If a side of any triangle be produced, the exterior angle is equal to the two interior and opposite ansles: and the three interior angles of every triangle are equal to tiro right angles.
Prop. XXXIII. Theor. The straizht lines which join the extremities of two equal and parallel straisht lines, towards the same parts, are also themselves equal and parallel.

Prop. XXXIV. Theor. The opposite sides and angles of parallelograms are equal to one another, and the diameter bisects them, that is, divides them in two equal parts.

Prop. XXXV. Theor. Parallelograms upon the saine base and between the same parallels, are equal to one another.

Prop. XXXVI. Theor. Parallelograms upon equal basis, and between the same parallels, are equal to one another.
Prop. XXXVII. Theor. Triangles apon the same base, and between the same parallels, are equal to one another.
Prop. XXXVIII. Theor. Triangles upon equal bases, and between the same parallels, are equal to one another.

Prop. XXXIX. Theor. Equal triangles upon the same base, and upon the same side of it, are between the same parallels.
Prop. XL. Theor. Equal triangles upon equal bases, in the same straight line, and towards the same parts, are between the same parallels.

Prop. XLI. Theor. If a parallelogram and triangle be upon the same base, and betwern the same parallels; the parallelogram shall be double of the triangle.

Prop. XLII. Prob. To describe a parallelogram that shall be equal to a given triang'e, and have one of its angles equal to a giren rectitineal angle.

GEOMETRY.

Prop. XIIII. Theor. The complements of the parallelourans which are about the diameter of any parallelogram, arc equal to one another.

Prop. XLIV. Prob. To a given straight line to apply a parallelogram, which shall be equal to a given triangle, and have one of its angles equal to a given rectilincal angle.

Prop. XLV. Prob. To describe a parallelogram equal to a given rectilineal figure, and having an angle equal to a given rectilineal angle.

Prop. XLVI. Prob. T'o descrive a square upon a given straight line.

Prop. XLVII. Theor. In any right angled triangle, the square which is described upou the side subtending the right angle, is equal to the squares described upon the sides which contain the right angle.
Prop. XLVIII. Theor. If the square described upon one of the sides of a triangle, be equal to the squares described upon the other two sides of it; the angle contained by these two sides is 2 right angle.
Buok II. Def. 1.-Every right angled parallelogram is said to be contained by any two of the straight lines which contain one of the right angles.
2. In every parallelogram, any of the parallelograms about a diameter, together with the two complements, is called a gnomon.

Prop. I. Theor. If there be two straight lines, one of which is divided into any number of parts; the rectangle contained by the two straight lines, is equal to the rectangles contained by the undivided line, and the several parts of the divided line.

Prop. II. Theor. If a straight line be divided Into any two parts, the rectangles contained by the whole and each of the parts, are together equal to the square of the whole line.

Prop. III. Theor. If a straight line be divided into any two parts, the rectangle contained by the Whole and one of the parts, is equal to the rectangle contained by the two parts, together with the square of the foresaid part.

Prop. IV. Theor. If a straight line be divided into any two parts, the square of the whole line is equal to the squares of the two parts, together with twice the rectangle contained by the parts.

Prop. V. Theor. If a straiglit line be divided into two equal parts, and also into tivo unequal parts; the rectangle contained by the unequal parts, toyether with the square of the line between the points of section, is equal to the square of half the line.

Prop. WI. Theor. If a straight line be bisected, and produced to any point; the rectangle contained by the whole line thus produced, and the part of it produced, together with the syuare of half the line bisected, is equal to the square of the straight line which is made up of the half and the part produced.

Prop. VII. Theor. If a straight line be divided into any two parts, the squares of the whole line, and of one of the parts, are equal to twice the rectangle contained by the whole and that part, together with the square of the other part.

Prop. VIIl. Theor. If a straight line be divided into any two parts, four times the rectangle contained by the whole line, and one of the parts, together with the square of the other part, is equal to the square of the straight line which is made up of the whole and that part.

Prop. IX. Theor. If a straight line be divided into two equal, and also into two unequal parts; the squante of the tro unequal parts are together
double of the square of half the line, and of the square of the line between the points of section.

Prop. X. Theor. If a straight line be bisected; and produced to any point, the square of the whole line thus produced, and the square of the part of it produced, are together double of the square of half the line bisected, and of the square of the line made up of the half and the part produced.

Prop. XI. Prob. To divide a given straight line into two parts, so that the rectangle contained by the whole, and one of the parts, shall be equal to the square of the other part.

Prop. XII. Theor. In obtuse angled triangles, if a perpendicular be drawn from any of the acute angles to the opposite side produced, the square of the side subtending the obtuse angle is greater than the squares of the sides containing the obtuse angle, by twice the rectangle contained by the side upon which, when produced, the perpendicular falls, and the straight line intercepted without the triangle between the perpendiculas and the obtuse angle.

Prop. XIII. Theor. In every triangle, the square of the side subtending any of the acute angles, is less than the squares of the sides containing that angle, by twice the rectangle contained by either of these sides, and the straight line intercepted between the perpendicular let fall upon it from the opposite angle, and the acute angle.

Prop. XIV. Prob. To describe a square that shall be equal to a given rectilineal figure.

Book III. Def. 1.-Equal circles are those of which the diameters are equal, or from the centres of which the straight lines to the circumferences are equal.

This is not a definition but a theorem, the truth of which is evident; for, if the circles be applied to one anuther, so that their centres coincide, the circles must likewise coincide, since the straight lines from the centres are equal.
2. A straight line is said to touch a circle, when it meets the circle, and being produced does not cut it.
3. Circles are said to touch onc another, which meet, but do not cut one another.
4. Straight lines are said to be equally distant from the centre of a circle, when the perpendiculars drawn to them from the centre are equal.
5. And the straight line on which the greater perpendicular falls, is said to be farther from tho centre.
6. A segment of a circle is the figure contained by a straight line and the circumfercnce it cuts off.
7. The angle of a segment is that which is contained by the straight line and the circumference.
8. An angle in a segment is the angle contained by two straight lines drawn from any point in the circumference of the segment, to the extremities of the straight line which is the base of the segment.
9. And an angle is said to insist or stand apon the circumference intercepted between the straight lines that contain the angle.
10. The sector of a circle is the figure contained by two straight lines drawn from the centre, and the circumference between them.
11. Similar segments of a circle, are those in which the angles are equal, or which contaia equal angles.

Prop. 1. Prob. Te find the centre of a given circle.

G-E OMETRY.

Prop. II. Theor. If any two points be taken in the circumference of a circle, the straight line which joins them shall fall within the circle.
Prop. III. Theor. If a straight line drawn throngh the ceutre of a circle bisect a straight line in it which does not pass through the ceatre, it shall cut it at risht angles; and, if it cuts it at right angles, it shall bisect it.

Prop. IV. Theor. If in a circle two straight lines cut one another which do not both pass through the centre, they do not bisect each other.

Prop. V. Theor. If two circles cut one another, they shall not have the same centre.
Prop. VI. Theor. If two circles touch one another internally, they shall not have the same centre.

Prop. VII. Theor. If any point be taken in the diameter of a circle, which is not the centre, of all the straight lines which can be drawn from it to the circumference, the greatest is that in which the centre is, and the other part of that diameter is the least; and, of any others, that which is searer to the line which passes through the centre is always greater than one more remote: and from the same point there can be drawn only two straight lines that are equal to one another, one upon each side of the shortest line.

Prop. VIII. Theor. If any point be taken without a circle, and straight lines be drawn from it to the circumference, whereof one passes through the centre; of those which fall upon the concave circumference, the greatest is that which passes through the centre; and of the rest, that which is nearer to that through the centre is always greater than the more remote: but of those which fall upon the convex circumference, the least is that between the point without the circle, and the diameter; and of the rest, that which is nearer to the least is always less than the more remote: and only two equal straight lines can be drawn from the point unto the circuunference, one upon each side of the least.

Frop. IX. Prob. If a point be taken within a circle, from which there fall more than two equal straight lines to the circumference, that point is the centre of the circle.
Prop. X. Theor. One circumference of a circle cannot cut another in more than two points.

Prop. XI. Theor. If two circles touch cach other internally, the straight line which joins their centres being produced shall pass through the point of contact.

Prop. XII. Theor. If two circles touch each other externally, the straight line which joins their centres shall pass through the point of contact.

Prop. XIII. Theor. One circle cannot touch another in more points than one, whether it zouches it on the inside or outside.

Prop. XIV. Theor. Equal straight lines in a circle are equally distant from the centre; and those which are equally distant from the centre, are equad to one another.
Prop. XV. Theor. The diameter is the greatest straight line in a circle; and, of all others, that which is nearer to the centre is always greater than one more remote; and the greater is nearer to the centre than the less.

Prop. XVI. Theor. The straight line drawn at right angles to the diameter of a circle, from the extremity of it, falls without the circle; and no straight line can be drawn between that straight line and the circumference from the extremity, so as not to curt the circle; or, which is the same thing, no straight line can make so great an acute
angle with the diameter at its extremity, or so small an angle with the straight line which is at right angles to it, as not to cut the circle.

Prop. XVII. Prob. To draw a straight line from a given point, either without or in the circumference, witich shall touch a giren circle.

Piop. XVIII. Theor. If a straight line touches a circle, the straizht line drawn fiom the centre to the point of contact, shall be perpendicular to the line touching the circle.
Prop. XIX. Theor. If a straight line touches a circle, and from the point of contact a straight line be drawn at right angles to the touching line, the centre of the circle shall be in that line.

Prop. XX. Theor. The angle at the centre of a circle is double of the angle at the circumference, upon the same base, that is, upon the same part of the circumference.
Prop. XXI. Theor. The angles in the same segment of a circle are equal to oue another.

Prop. XXII. Theor. The opposite angles of any quadrilateıal figure described in a circle, are together equal to two right angles.

Prop. XXIII. Theor. Upon the same straight line, and upon the same side of it, there cannot be two similar segments of circles, not coinciding with one another.

Prop. XXIV. Theor. Similar segments of circles upon equal straight lines, are equal to one another.

Prop. XXV. Prob. A segment of a circie being given, to describe the circle of which it is the segment.
Prop. XXVI. Theor. In equal circles, equal angles stand upon equal circumferences, whether they be at the centres or circumferences.

Prob. XXVII. Theor. In equal circles, the angles which stand upon equal circumferences are equal to one another, whether they be at the centres or circumferences.
Prop. XXVIII. Theor. In equal circles, equal straight lines cut off equal circumfarences, the greater equal to the greater, and the less to the less.

Prop. XXIX. Theor. In equal circles equal circumfereuces are subtended uy equal straight lines.

Prop. XXX. Prob. To bisect a given circumference, that is, to divide it into two equal parts.
Prop. XXXI. Theor. In a circle, the angle in a semicircle is a right angle; but the angle in a segment greater than a semicircle is less than a right angle; and the angle in a segment less than a semicircle is gieater than a right angle.

Prop. XXIII. Theor. If a straight line touches a circle, and from the point of contact a straight line be drawn cutting the circle, the angles made by this line with the line touching the circle, shall be equal to angles which are in the alteruate segments of the circie.

Prop. XXXIII. Prob. Upon a given straight line to describe a segment of a circle, containing an angle equal to a given rectilineal angle.

Prop. XXXIV. Prob. To cut off a segment from a given circle which shall contain an angle cqual to a given rectilineal angle.

Prop. XXXV. Theor. If two straight lincs within a circle cut one another, the rectangle contained; by the segments of one of them is equal to the rectangle contained by the segments of the other.

Prop. XXXVI. Theor. If from any point without a circle two straight lines be drawn, one of which cuts the circle, and the other touches it ; the rectangle contained by the whole line which

G E O M ETRY.

cutg the circle, and the part of it without the circle, shail be equal to the square of the line which tourhes it.
Pop. XXXVII. Theor. If from a point without a circle there be diamn ento straight lines, one of which cuts the sircle, and the other incets it; if the rectangle contained by the whole line which cuts the c rele, and the part of it withont the circ!e be equal to the square of the line which meets it, the line which meets shall tonch the circle.

Book IV. Def. 1.-A rectilineal figure is said to be inseribed in another rectilincal tigure, when all the angles of the inseribed figure are upon the side of the tixure in which it is inscribed, each uponeach.
2. In like manner, a dizure is said to be described about another figare, w: en all the sides of the circumscribed fixue pass through the anyular points of the figure about which it is described, each through each.
3. A rectilincal fizure is said to be inseribed in a circle, when all the angles of the inscribed tigure are upon the ci:cunference of the circle.
4. A rectilin al figure is said to be described about a circle, when each side of the circumscribed figure touches the circumference of the circle.
5. In like manner, a circle is said to be inscribed in a rectilineal figure, when the circumference of the circle touches each side of the fizure.
6. A circle is said to be described about a rectilineal figure, when the circumference of the circle passes through all the ancular points of the figure about which it is described.
7. A straight lize is said to be placed in a circle, when the extremities of it are in the circumference of the circle.

Prop. I. Prob. In a given circle to place a straight line, equal to a given straight line not greater than the diam ter of the circle.

Prop. II. Prol. In a given circle to inscribe a triangle equiangular to a given triangle.

Prop. III. Prob. About a given circle to describe a triangle equiangular to a given triangic.

Prop. IV. Prob. To inscribe a circle in a giren triangle.

Prop. V. Prib. To describe a circle about a given trianzle.

Prop. VI. Pioh. To inscribe a square in a giren circle.

Prop. VII. Piob. To describe a square about a given circle.
Prop. VIll, Prob. To inscribe a circle in a given square.

Prop. IX. Prob. To describe a circle aboat a given square.

Prop. X. Prob. To describe an isosceles triangle, having each of the angles at the base double of the third angle.

Prop. XI. Prob. To inscribe an equilateral and equiangular pentagou in a given circle.

Prop. XII. Prob. To describe an equilateral and equiangular pentagon about a given circle.

Prop. XIIl. Prub. To inscribe a circle in a given equilateral and equiangular pentagon.

Prop. XIV. Prub. To describe a circle about a given equilateral and equiangular pentagon.
. Prop. XV. Prob. To inscribe an equilateral and equiangular hexagon in a given circle.

Prop. XVI. Prob. To inscribe an equilateral and equiangular quindecagon in a given circle.
Book V. Def. 1.-A less maynitude is said to be a part of a greater magnitude, when the less measures the greater, that is, when the less is confained a certain number of tiwes exactly in the rreater.
2. A greater magnítude is said to be a murtiple of a less, when the greater is measured by the less, that is, when the greater contains the less a certain number of times exact!y.
3. Ratio is a mutual relation of two magnitures of the same kind to one another, in respect of quantity.
4. Magnitades are said to have a ratio to one another, when the less carr be multiplied so as to exc ed the other.
5. The first of fuur magnitudes is said to hare the same ratio to the second, which the third has to the fourth, when any equimultiples whatsoever of the first and third being taken, and any equimuttiples whatsoever of the secord and foarth; if the multiple of the first be less than that of the srcond, the multiple of the third is also less than that of the fourth; or, if the multiple of the first be equal to that of the second, the multiple of the third is also equal to that of the fourth; or, if the multiple of the first be greater than that of the sccond, the multiple of the third is also greater than that of the fourth.
6. Maguitudes which have the same ratio are called proportionals. N. B. When four magaitudes are proportionals, it is usually expressed by saying, the first is to the second, as the third to the fourth.
7. When of the equimultiples of four magnitudes (taken as in the fifth definition) the multiple of the first is greater than that of the second, but the multiple of the third is not greater than the multiple of the fourth; then the first is said to have to the second a greater ratio than the third magnitude has to the fuurth; and, on the contrary, the third is said to have to the fourth a less ratio than the first has to the second.
8. Analogy, or proportion, is the similitude of ratios.
9. Proportion consists in threc terms at least.
10. When three magnitudes are proportionals, the first is said to have to the third the duplicate ratio of that which it has to the second.
11. When four naggnitudes are continual proportionals, the first is said to have to the fourth the triplicate ratio of that which it has to the second, and so on, quadruplicate, \&cc. increasing the dennmination still by unity, in any number of proportionals.

Defiaition A. to wit, of compound ratio.
When there are any number of magnitudes, of the same kind, the first is said to have to the last of them the ratio compounded of the ratio which the first has to the second, and of the ratio which the second has to the third, and of the ratio which the third has to the fourth, and so on unto the last magnitude.

For example, if A, B, C, D be fonr magnitudes of the same kind, the first A is said to have to the last D the ratio compounded of the ratio of A to D , and of the ratio of B to C . and of the ratio of C to D; or, the ratio of A to D is said to be compounded of the ratios of A to B, B to C, and C to D: and if A has to B the same ratio which E has to F; and B to C, the same ratio that G has to H; and C to D, the same that K has to L; then, by this definition, A is said to have to \mathbf{D} the ratio compounded of ratios which are the same with the ratios of E to F, G to H, and K to L : and the same thing is to be understood when it is more briefly expressed, by saying A has to D the ratio compounded of the ratios of E to F, G to H, and K to L .

In like manner, the same things being supposed.

GEOMETRY.

if M has to N the same ratio which A has to D; then, for shortness sake, M is said to have to N, the ratio compounded of the ratios of E to E, G to H, and K to L
12. In proportionals, the antecedent terms are ca!led bomolugous to one another, as also the consequents to one anotber.

Gcometers make use of the fullowing technical words to signify certain ways of changing either the order or magnitude of proportiunals, sw as that they continue still to be proportionals.
13. Permutando, or alternando, by permutation, or alternately; this word is used when there are four proportionals, and it is inferred, that the first has the same ratio to the third, which the second has to the fourth; or that the first is to the third, as the second to the fourth: as is shewn ia the XVI. Prop. of this Book V.
14. Invertendo, by inversion: when there are Sour pruportionals, and it is inferred, that the second is to the first, as the fuuth to the third. Prop. B. Book V.
15. Cumponendo, by composition, when there are four proportionals, and it is inferred, that the first, toyether with the second, is to the sccond, as the third together with the fourth, is to the Gourth. Prop. XVIII. Buok V.
16. Dividendo, by division; when there are four proportionals, and it is inferrcd, that the excess of the tirst above the second, is to the second, as the excess of the third above the fourth, is tu the sourth. Prop. XVII. Book V.
17. Consertendo, by couversion; wlen ti.cre are four propoitionals, and it is inferred, that the first is to its excess above the secoud, as the third to its excess above the furth. Prop. E. Houk V.
18. Ex aequali (sc. distantia), or ex acquo, from equality of distance; when there is any numGer of maynitudes more than two, and as many wthers, so that they are propurtionals when taken tro and two of each rank, and it is iuierred, that The tist is to the last of the first rank of magniendes, ar the tirst is to the last of the others: of this there are the two following kinds, which arise from the different order in which the magnitudes are taken two aud two.
19. Ex acyuali, from equality; this term is used simply by itself, when the first magnitude is to the second of thee first rank, as the first to the second of the other rank; and as the second is to the third of the Grst rank, so is the secoud to the third of the other; and so on in order, and the inf:rence is as mentioned in the preceding definition; whence this is called ordinate proportion. It is demonstrated in Prop. XXII. Book V.
20. Ex aequali, in proportione perturb:ta, seu inordinata; from equality, in perturbate or disorderly propertion; this term is used when the first magnitude is to the second of the first rank, as the last but one is to the last of the second rank; and as the scound is to the third of the first rank, mo is the last but two to the last but one of the second rank; and as the third is to the fourth of the first rank, so is the third from the last to the last but tso of the second rank: and so on in a cross order: and the inference is as in Def. 18. It is demonstrated in Prop. XXIII. Buok V.

Axioms.-1. Equimultiples of the same, or of equal magnitudes, are equal to one another.
2. Those magnitudes of which the same, or equal masnitudes, are equimultiples, are equal to one another.
3. A multiple of a greater magnitude is greater that the same multiple of a less.
4. That magnitude of which a maltiple is greater than the same multiple of auther, is greater tban that other macnitude.

Prop. I. Theor. li any number of magnitudes be equinuluples of as many, each of eac!; what multiple soever any one of them is of its part, tho same n:ultiple shall ail the fist nagnitudis be of all the utler.

Prop. 11. Theor. If the first magnitude be the same multiple of the second that the third is of the fourth, and the lifth the same multiple of the serond that the sixth is of the fourth; then slall the first together with the fifth be the same multiple of the second, that the third together with the sixth is of the fourth.

Prop. HII. Theor. If the first be the same multiple of the secund, which the third is of the foarth; and if of the first and third there be taken equimuitiples, these shall be equimultiples, the one of the second, and the other of the fourth.

Prop. IV. Theor. If the first of four magnitudes has the same ratio to the second which the third has to the fourth; then any equinultiples whatercr of the first and third shall have the same ratio to any equimultiples of the second and fourth, vik the equimultiple of the first shall Lave the same ratio to that of the secund, which the equimultiple of the third has to that of the fourth.

- Prop. V. Theor. If one magnitude be the same multiple of another, which a magnitude taken foom the lirst is of a magnitude taken from the cther; the remainder shall be the same multiple of the demaiader, that the whole is of tie whole.
Prup. VI. Theor. If two magnitules be equimalliples of two others, and if equimultiples of these be taken from the first two, the remainders are either equal to these others, or equimultiple: of them.
Prop. A. Theor. If the first of four magnitudes has to the second, the same ratio which the thard has to the fourth; then, if the tirst be greater than the second, the third is also greater than the fourth; and, if equal, equal; if less, less.

Prop. B. Theor. If four magnitudes are proportionals, they are proportionals also whea taken iuversely.

Prop. C. Theor. If the first be the same nuitiple of the second, or the same part of it, that the third is of the fourth; the first is to the second, as the third is to the fourth.

Prop. D. Theor. If the fist be to the second as the chird to the fourth, aud if the first be a multio ple, or port of the steond; the trird is the same unutipie, or the same part of the fourth.
Prop. VII. Tlicor. Equal magnitudes liase the same ratio to the same magnitude; and the same has the same ratio tu equal magnitudes.

Prop. Vlll. Theor. Of uncqual uagmindes, the greater has a greater ratio t, the same than the less has; and the same magnitude has a greater ratio to the less, than it has to the sreater.

Prop. IX. Theor. Magnituxles which have the same ratio to the same maznitude are equal to one another; and thuse to which the same magnitude has the same ratio are equal to one auother.

Prop. X. Theor. That magnitude which has a greater ratio than another has unto the same magnitude is the greater of the two: and that maguitude to which the same has a greater ratio than it has unto another maguitude is the lesser of the two.

GEOMETRY.

Prop. XI. Theor. Ratios that are the same to the same ratio, are the same to one another.

Prop. XII. Theor. If any number of maynitudes be proportionals, as one of the anteccelents is to its conscquent, so shall all the antecedents taken togetlier be to all the consequents.

Prop. XIII. Theor. If the first has to the second the same ratio which the third has to the fourth, but the third to the fourth a greater ratio than the fifth has to the sixth; the first shall also have to the second a greater ratic than the fifth has to the sixth.

Prop. XIV. Theor. If the first has to the second, the same ratio which the third has to the fourth; then, if the first be greater than the third, the second shall be greater than the fourth; and if equal, cqual ; and if less, less.

Prop. XV. Theor. Magnitudes have the same ratio to one another which their equimultiples have.

Prop. XVI. Theor. If four magnitudes of the same kind be proportionals, they shall also be proportionals when taken alternately.

Prop. XVII. Theor. If maonitudes, taken jointly, be proportionals, they shall also be propurtionals when taken sceparately; that is, if two magnitades together have to one of them the same ratio which two others have to one of thesc, the remaining one of the first two shall have to the other the same ratio which the remaining one of the last two has to the other of these.

Prob. XVIII. Theor. If maznitudes, taken separately, be proportionals, they shall also be proportionals, when taken jointly, that is, if the first be to the second, as the third to the fourth, the first and second together shall be to the second, as the third and fourth together to the fourth.

Prop. XIX. Theor. If a whole magnitude be to a whole, as a magnitude taken from the first, is to a magnitude taken from the other; the remainder shall be to the remainder, as the whole to the whole.

Prop. E. Theor. If four magnitudes be proportionals, they are also proportionals by conversion, that is, the first is to its excess abore the second, as the third to its excess above the fourth.

Prop. XX. Theor. If there be three magnitudes, and other three, which, taken two and two, have the same ratio; if the first be greater than the third, the fourth shall be greater tian the sixth; and if equal, equal; and if less, less.

Prop. XXI. Theor. If therc be three magnitudes, and other three, which have the same ratio taken two and two, but in a cross order; if the first magnitude be greater than the third, the fourth shall be greater than the sixth; and if equal, equal; and if less, less.

Prop. XXII. Theor. If there be any number of magnitudes, and as many others, which, taken two and two in order, have the same ratio; the first shall have to the last of the first magnitudes the same ratio which the first of the others has to the last. N. B. This is usually cited by the words "s ex aequali," or "ex aequo."

Prop. XXIII. Theor. If there be any number of mag itudes, and as many otbers, which, taken two and two, in a cross order, have the same ratio; the first shall have to the last of the first magnitudes the same ratio which the first of the others has to the last. N. B. This is usually cited by the words, "ex aequali in proportione perturba$t^{n} ;$ " or " ex aequo perturbate."

Prop. XXIV. Theor. If the first has to the second the same ratio which the third has to the
fourth; and the fifth to the second, the same ratio which the sixth has to the fourth; the first and fifth together shall have to the second, the same ratio which the third and sixth together have to the fourth.

Prop. XXV. Theor. If four magnitudes of the same kind are propurtionals, the greatest and least of them together are greater than the other two together.

Prop. F. Theor. Ratios which are compounded of the same ratios, are the same with one another.

Prop. G. Theor. If several ratios be the same with several ratios, each to each; the ratio which is compounded of ratios which are the same with the first ratios, each to each, is the same with the ratio compounded of ratios which are the same with the other ratios, each to each.

Prop. H. Theor. If a ratio compounded of scveral ratios be the same with a ratio compounded of any other ratios, and if one of the first ratios. or a ratio compounded of any of the first, be the same with one of the last ratios, or with the ratio compounded of any of the last; then the ratio compounded of the remaining ratios of the first, or the remaining ratio of the first, if but one remain, is the same with the ratio compounded of those remaining of the last, or with the remaining ratio of the last.

Prop. K. Theor. If there be any number of ratios, and any number of other ratios such, that the ratio compounded of ratios which are the same with the first ratios, each to each, is the same with the ratio eompounded of ratios wbich are the same each to each, with the last ratios; and if one of the first ratios, or the ratio which is compounded of ratios which are the same with several of the first ratios, each to each, be the same with one of the last ratios, or with the ratio compounded of ration which are the same, each to each, with several of the last ratios: then the ratio compounded of ratios which are the same with the remaining ratios of the first, each to each, or the remaining ratio of the first, if but one remain; is the same with the ratio compounded of ratios which are the same with those remaining of the last, each to each, or with the re, maining ratio of the last.

Book VI. Def. 1.-Similar rectilineal figures are those which have their several angles equal, each to each, and the sides about the equal angles proportionals.
2. Reciprocal Ggures, viz. triangles and parallelograms, are such as have their sides about twa of their angles proportionals in such manner, that a side of the first figure is to a side of the other, as the remaining side of this other is to the remaining side of the first.
3. A straight line is said to be out in extreme and mean ratio, when the whole is to the greater segment, as the greater segment is to the less.
4. The altitude of any figure is the straight line drawn from its vertex perpendicular to the base.

Prop. I. Theor. Triangles and parallelograms of the same altitude are one to another as their bases.

Prop. II. Theor. If a straight line be drawn parallel to one of the sides of a triangle, it shall cat the other sides, or those produced, proportionally: and if the sides, or the sides produced, be cut proportionally, the straight line which joins the points of section shall be parallel to the remaining side of the triangle.

Prop, III. Theor. If the angle of a triangle be
divided into two equal angles, by a straight tine which also cuts the base; the segments of the base shall hare the same ratio which the other sides of che triangle have to one another: and if the segments of the base have the same ratio which the other sides of the triangle have to one another, the straight line drawn from the vertex to the point of section, divides the vertical angle into two equal angles.

Prop. A. Theor. If the outward angle of a triangle made by producing one of its sides, be dirided into two equal angles, by a straight line which also cuts the base produced; the segments between the dividing line and the extremities of the base have the same ratio which the other sides of the triangle have to one another: and if the segments of the base produced, have the same ratio which the other sides of the triangle have, the straight line drawn from the vertex to the point of section divides the outward angle of the triangle into two equal angles.

Prop. IV. Theor. The sides about the equal angles of equiangular triangles are proportionals; and those which are opposite to the equal angles are homologous sides, that is, are the antecedents or consequents of the ratios.

Prop. V. Theor. If the sides of two triangles, about each of their angles, be proportionals, the triangles shall be equiangular, and have their equal angles opposite to the homologous sides.

Prop. V1. Theor. If two triangles have one angle of the one equal to one augle of the other, and the sides about the equal angles proportionals, the triandes shall be equiangular, and shall have those angles equal which are opposite to the hor mologous sides.

Prop. VII. Theor. If two triangles have one angle of the one equal to one angle of the other, and the sides about two other angles, proportionals, then, if each of the remaining angles be either less, or not less, than a right angle; or if one of thein be a right angle : the triangles shall be equiansular, and bave those angles equal about which the sides are proportionals.

Prop. VIII. Theor. In a right angled triangle, if a perpendicalar be drawn from the right angle to the base; the triangles on cach side of it are similar to the whole triangle, and to one another.

Prop. IX. Prob. From a giren strait line to cut of any part required.

Prop. X. Prob. To divide a given straight line similarly to a given divided straight line, that is, into parts that shall have the same ratios to one another which the parts of the divided given straight line have

Prob. XI. Prob. To find a third proportienal to two given straight lines.

Prop. XII. Prob. To find a fourth proportional to three given straight lines.
Prop. XIII. Prob. To find a mean proportional between two given straight lines.

Prop. XIV. Theor. Equal parallelograms which have one angle of the one equal to one angle of tbe other, have their sides about the equal angles reciprocally proportional : and parallelograms that have one angle of the one equal to one angle of the other, and their sides about the equal angles reciprocally proportional, are equal to one another.
Prop. XV. Theor. Equal triangles which have one augle of the one equal to one angle of the other, have their sides about the equal angles reciprocally proportional: and triangles which have
one angle in the one equal to one angle in the other, and their sides about the equal angles reciprocally proportional, are equal to one another.

Prop. XVI. Theor. If four straight lines be proportionals, the rectangle contained by the extremes is equal to the rectangle contained by the means: and if the rectangle containcd by the extremes be equal to the rectangle contained by the means, the four straight lines are proportionals.

Prop. XVII. Theor. If three straight lines be proportionals, the rectangle contained by the extrenses is equal to the square of the mean : and if the rectangle contained by the extremes be equal to the square of the mean, the three straight lines are proportionals.

Prop. XVIII. Prob, Upon a given straight line to describe a rectilineal figure similar, and similarly situated to a given rectilineal figure.

Prop. XIX. Theor. Similar triangles are to one another in the duplicate ratio of their homologous sides.

Prop. XX. Theor. Similar polygons may be divided into the same number of similar triangles, baving the same ratio to one another that the polygons bave; and the polygons have to one another the duplicate ratio of that which their homologous sides have.

Prop. XXI. Theor. Rectilineal figures which are similar to the same rectilineal Ggure, are also similar to one another.

Prop. XXII. Theor, If four straight lines be proportionals, the similar rectilineal figures similarly deseribed upon them shall also be proportionals; and if the similar rectilincal figures similarly described upon four straight lines be proportionals, those straight lines shall be proportionals,

Prop. XXIII. Theor. Equiangular parallelograms have to one another the ratio which is compounded of the satios of their sides.

Prop. XXIV. Theor, The parallelograms about the diameter of any parallelogram, are similar to the whole, and to one another.

Prop. XXV. Prob. To describe a rectilineal figure which shall be similar to one, and equal to another given rectilineal figure.

Prop. XXVI. Theor. If two similar parallelograms have a common angle, and be similarly situated; they are about the same diameter.

Prop. XXVII. Theor, Of all parallelograms app plied to the same straight line, and deficient by parallelograms, similar and similarly situated ta that which is described upon the half of the line; that which is applied to the half, and is similar to its defect, is the greatest.

Prop. XXVIII. Prob, To a given straight line to apply a parallelogram equal to a given rectilineal figure, and deficient by a parallelogram similar to a given paralielogram: but the given rectilineal figure to which the parallelogram to be applied is to be equal, must not be greater than the parallelogram applied to half of the given line, having its defect similar to the defect of that which is to be applied; that is, to the given parallelogram.
Prop. XXIX. Prob. To a given straight line to apply a parallelogram equal to a givep rectilineal figure, exceeding by a parallelogram similar to another given.
Prop. XXX. Prob. To cut a given straight line in extreme and mean ratio.

Prop. XXXI. Theor. In right angled triangles, the rectilineal figure described upon the side opposite to the right angle, is equal to the similara
and similarly described fogures upon the sides containing the rishit angle.

Prop. XXXII. Theor. If two triangles which have two sides of the one proportional to two sides of the other, be joined at one angle, so as to have their homologous sides parallel to one another; the remaining sides shall be in a straight line.

Piop. XXXIII. Theor. In equal circles, angles, whe her at the centres or circumferences, bave the same ratio which the circumferences on which they stand have to one another: so also bave the secturs.

Prup. B. Theor. If an angle of a triangle be bisected by a straight line, which likewise cuts the base; the rectangle contained by the sides of the triangle is equal to the rectangle contained by the segments of the base, together with the square of the straight line bisecting the angle.

Prop. C. Theor. If from any angle of a triangle a straight line be drawn perpendicular to the base; the rectangle contained by the sides of the triangle is cqual to the rectangle contained by the perpendicular and the diameter of the circle described about the triangle.
Prop. D. Theor. The rectangle contained by the diagonals of a quadrilateral inscribed in a circle, is equal to both the rectangles contained by its opposite sides.

Book XI. Def. 1.-A solid is that which hath length, breacith, and thickness.
2. That which bounds a solid is a superficies.
3. A straight line is perpendicular, or at right angles to a plane, when it makes right angles with every straight line mectivis it in that plane.
4. A plane is perpendicular to a plaue, when the straight lines drawn in one of the planes perpendicularly to the cominon section of the two planes, are perpendicular to the other plane.
5. The inclination of a straight line to a plane is the acute ang!e contained by that straight line, and another drawn from the point in which the first line meets the plane, to the point in which a perpendicular to the plane drawn from any point of the lirst line above the plane, meets the same plane.
6. The inclination of a plane to a plane is the acute angle contained by two straight lines drawn from ar.y the same point of their common section at right angles to it, one upon one plaue, and the other upon the other plane.
7. Two planes are said to have the same, or a like inclination to one another, which two other planes have, when the said angles of inclination are equal to une another.
8. Parallel planes are such which do not meet one another though produced.
9. A sold angle is that which is made by the meeting of more than two planes, which are not in the same plane, in one point.
10. The tenth definition is omitted for reasous given in the notes.
11. Similar solid figures are such as have all their solid angles equal, each to each, and which are contained by the same number of similar planes.
12. A pyramid is a solid figure contained by planes that are constituted betwixt one plane and oue point above it in which they meet.
19. A prism is a sclid figure contained by plane figures of which two that are opposite are equal, similar, and parallel to one another; and the ethers parallelograms.
14. A sphere is a solid figure described by the
revolution of a semicircle about its diameter which remains unmoved.
1.5. The axis of a sphere is the fixed straight line about which the semicircie revolves.
16. The centre of a sphere is the same with that of the semicircle.
17. The diameter of a sphere is any straight line which passes through the centre, and is terminated both ways by the superficies of the sphere.
18. A cone is a solid figure described by the revolution of a right angled triangle about one of the sides containing the right angle, which side remains fixed.

If the fixed side be equal to the other side containing the right angle, the cone is called a right angled cone; if it be less than the other side, an obtuse augled, and if greater, an acute angled cone.
19. The axis of a cone is the fixed straigbt line about which the triangle revolves.

20 . The base of a cone is the circle described by that side containing the right angle, which revolves.
21. A cylinder is a solid figure described by the revolution of a right angled parallelogram about one of its sides which remains fixed.
22. The axis of a cylinder is the fixed straight line about which the parallelogram revolves.
23. The bases of a cylinder are the circles described by the two revolving opposite sides of the parallelogram.
24. Similar cones and cylinders are those which have their axes and the diameters of their bases proportionals.
25. A cube is a solid figure contained by six equal squarcs.
26. A tetrahedron is a solid figure contained by four equal and equilateral triangles.
27. An octahedron is a solid figure contained by eight equal and equilateral triangles.
28. A dodecahedron is a solid fizure contained by twelve equal peutagons which are equilateral and equiangular.
29. An jcosahedron is a solid figure contained by twenty equal and equilateral triangles.

Def. A. A parallelepiped is a solid figure contained by six quadrilateral figures, whereof every opposite two are parallel.

Prop. I. Theor. One part of a straight line cannot be iu a plane and another part above it.

Prop. II. Theor. Two straight lines which cut one another are in one plane, and three straight lines which meet one another are in one plane.

Prop. III. Theor. If two planes cut one another, their common section is a straight line.

Prop. IV. Theur. If a straight line stand at right angles to cach of two straight lines in the point of their intersection, it shall also be at right angles to the plane which passes through them, that is, to the plane in which they are.

Prop. V. Theor. If thrce straight lines meet all in one point, and a stiaight line stands at right angles to each of them in that point; these three straight lines are in one and the same plane.

Prop. VI. Theor. If two straight lines be at right angles to the same plane, they shall be parallel to one another.

Prop. VII. Theor. If two straight lincs be parallet, the straight line drawn from any point in the one.to any point in the other, is in the same plane with the parallels.

Prop. VIII. Theor. If two straight lines be parallel, and one of them is'at right angles to a plane;

GEOMETRY.

the other also shall be at right angles to the same plane.

Prop. IX. Theor. Two straight lines which are each of them paralled to the same straight line, and not in the same plaue with it, are paralled to one another.

Prop. X. Theor. If two straight lines meeting one another be parallel to two others that mect one another, and are nut in the same plane with the first two; the inst two and the other two shall contain equal angles.

Prop. XI. Prob. To draw a straight line perpendicular to a plane, from a given point above it.

Prop. XII. Prob. To erect a straight line at right anoles to a given plaue, from a point given in the plane.

Prop. XllI. Theor. From the same point in a given plane, there cannot be two straight lines at right angles to the plane, upon the same side of it: and there can be but one perpendicular to a plane from a point abore the plane.

Prop. XIV. Theor. Pianes to which the same straght line is perpendicular, are parallel to one another.

Prop. XV. Theor. If two straight lines meeting one anether, be parallel to two straight lines which meet one anuther, but are not in the same plane with the first two; the plane which passes through these is parallel to the plane passing through the others.

Prop. XVI. Theor. If two parallel planes be cut by another plane, their counmon sections with it are parallels.

Prop. XVII. Theor. If two straight lines be cut by parallel planes, they shall be cut in the same ratio.

Prop. XVIII. Theor. If a straizht line be at right angles to a plane, every plane which passes through it shall be at right angles to that plane.

Pmp. XIX. Theor. If two planes cutting one another be each of them perpendicular to a third plane; their common section shall be perpendicular to the same plane.

Prop. XX. Theor. If a solid angle be contained by three plane angles, any two of them are greater than the third.

Prop. XXI. Theor. Every solid angle is contained by plain angles which together are less than four right angles.

Prop. XXII. Theor. If every two of threc plain angles $b \cdot g r e a t e r ~ t h a n ~ t h e ~ t h i r d, ~ a n d ~ i f ~ t h e ~ s t l a i g h t ~$ lines which contain them be all equal; a triangle may be made of the straight lines that juin the extremitics of those equal straight lines.

Prop. XXIII. Prob. To make a solid angle which shall be contained by three given plane angles, any two of them being greater than the third, and all three together less than four right angles.

Prop. A. Theor. If each of two solid angles be contained by three plane angles equal to one another, each to each; the planes in which the equal ansles are, have the same inclination to one another.

Prop. B. Theor. If two solid angles be containel, each by three plane angles which are equal to one angher, each to each, and alike situated; these solid angles are equal to one another.

Prop. C. Theor. Solid figures contained by the same number of equal and similar planes alike situated, and having none of their solid angles contained by more than three plane angles, are equal and similar to one another.

Prop. XXIV. Theor. If a sulid be contained by six planes, two and two of which are parallel; the
opposite planes are similar and equal parallelegrams.

Proo. XXV. Theor. If a solid parallelepiped be cut by a piane paralcl to two of its opposite planes; it divides the whole into two solids, the base of one of which shall be tu the base of the other, as the one solid is to the other.

Piop. XXVI. Prob. At a given point in a given straight line, to make a solid angle equal to a given solid angle contained by three plane augles.

Prop. XXVII. Prob. To describe from a given statisht line a solid parallelepiped similar, and similarly situated to one given.

Prop. XXVIII. Theor. If a solid parallelepiped be cut by a plane passing through the diagonals of two of the opposite planes; it shall be cut in two equal parts.

Prop. XXIX. Theor. Solid parallelepipeds upon the same base, and of the same altitule, the insisting straight lines of which are terminated in the same straight lines in the plane opposite to the base, are equal to one another.

Prop. XXX. Theor. Solid paralle!epipeds upon the same base, and of the same altitude, the insisting straight lines of which are not terminated in the same straight lines in the plane upposite to the base, are equal to one another.

Prop. XXXI. Theor. Solid parallelepipeds which are upon equal bases, and of the same altitude, are equal to cne another.

Prop. XXXII.Theor. Sulid parallclep:peds which have the same altitude, are to one anothar as their baves.

Prop. XXXIII. Theor. Similar soiid parallelcpipeds are one to another in the triplicate ratio of their homologous sides.

Prop. D. Thcur. Solid parallelepipeds contained by parallelograms equiangular to one auother. each to tach, that is, of which the solid angles are equal, each to each, have to one another the ratio which is the same with the ratio compounded of the ratios of their sides.

Prop. XXXIV. Theor. The bases and altitudea of equal solid paralt-lepipeds, are reciprocally proportional; and if the bases and altitudes be reciprocally proportional, the solid parallele pipeds are equal.

Prop. XXXV. Theor. If, from the vertices of two equal plane angles, there be drawn two straight lines elevated above the planes in which the ang!es are, and containing equal angles with the sides of those angles, each to each; and if in the lines abuve the planes there be takin any points, and from them perpendiculars be drawn to the planes in which the first named angles are: and from the points in which they meet the planes, straight lines be drawn to the vertices of the angles first named; these straight lines shall contain equal augles with the straight lines which are above the planes of the angles.

Prop. XXXVI. Theor. If three straight lines be proportionals, the sulid parallelepiped described from all three as its sides, is equal to the equilateral parallelejiped described frum the mean proportional, one of the solid angles of which is contained by threc piane angles equal, each to each. to the three plane angles containing one of the solid angles of the other figure.

Prop. XXXVII. Theor. If four straight lines be proportionals, the similar solid parallelepipeds similarly described from them shall also be proportionals. And if the similar parallelepipeds similarly described from four straight lines be proportionuls, the straight lines shadl be proportionals.

GEOMETRY.

Prop. XXXVIII. Theor. If a plane be perpendicular to another plane, and a straight line be drawn from a point in one of the planes perpendicular to the other plane, this straight line shall fall on the comunon section of the planes.

Prop. XXXIX. Theor. In a solid parallelepiped, if the sides of two of the opposite planes be divided each into two equal parts, the common section of the planes passing through the points of division, and the diameter of the solid parallelepiped cut each other into two equal parts.

Prop. XL. Theor. If there be two triangular prisms of the same altitude, the basc of one of which is a purattelogram, and the base of the other a triangle; if the parallelogram be double of the triangle, the prisms shall be equal to one another.

Book XII. Lemura 1.-Which is the first proposition of the tenth book, and is necessary to some of the propositions of this boak.

If from the greater of two unequal magnitudes, there be taken more than its half, and from the remaiuder more than its half; and so on: there shall at length remain a magnitude less than the least of the proposed magnitudes.

Prop. I. Theor. Similar polygons inscribed in circles, are to one another as the squares of their diameters.

Prop. II. Theor. Circles are to one another as the squares of their diameters.

Prob. 1II. Theor. Every pyramid having a triangular base, may be divided into two equal and similar pyramids having triangular bases, and Which are similar to the whole pyramid; and into two equal prisms which together are greater than balf of the whole pyramid.

Prop. IV. Theor. If there be two pyramids of the same altitude, ufon triangular bases, and each of them be divided into two equal pyramids similar to the whole pyramid, and also into two equal prisms; and if each of these pyramids be divided in the same manner as the first two, and so on: as the base of one of the first two pyramids is to the base of the other, so shall all the prisms in one of them be to all the prisms in the other, that are produced by the same number of divisions.

Prop. V. Thcor. Pyramids of the same altitude which have triangular bases, are to one another as their bases,
Prop. VI. Theor. Pyramids of the same altitude which have polygons for their bases, are to one another as their bases.
Prop. VII. Theor. Erery prism haring a triangular base may be divided into three pyramids that have triangular bases, and are equal to one another.
Prop. VIII. Theor. Similar pyramids having tri msular bases are one to another in the triplicate ratio of that of their homolozous sides.

Prop. IX. Theor. The bases and altitudes of equal pyramids having triangular bases are reciprocally proportional: and triangular pyramids of which the bases and altitudes are reciprocally proportional, are equal to one another.
Prop. X. Theor. Every cone is the third part of a cylinder which has the same base, and is of an equal altitude with it.
Prop. XI. Theor. Cones and cylinders of the same altitude, are to one another as their bases.

Prop. XII. Theor. Similar cones and cylinders have to one another the triplicate ratio of that which the diameters of their bases have.

Prop. XIII. Theor. If a cylinder te cut by a plane parallel to its opposite planes, or bases; it divides the cylinder into two cylinders, one of
which is to the other as the axis of the first to the axis of the other.

Prop. XIV. Theor. Cones and cylinders upon equal bases are to one another as their altitudes.

Prop. XV. Theor. The bases and altitudes of equal cones and cylinders, are reciprocally proportional: and if the bases and altitudes be reciprocally proportional, the cones and cylinders are equal to one a nother.

Prop. XVI. Prob. To describe in the greater of two circles that have the same centre, a polygon of an even number of equal sides, that ghall not meet the lesser circle.

Prop. XVII. Prob. To describe in the greater of two spheres which have the same centre, a solid polyhedron, the superficies of which sball not meet the lesser sphere.

Prop. XVIII. Theor. Spheres have to one another the triplicate ratio of that which their diameters have.

Geometry (Descriptive), the name given to a species of geometry almost entirely new, and which we owe in great measure to M. Monge.

When any surface whatever penetrates another, there most frequently results from their intersection carves of double curvature, the determination of which is necessary in many arts, as ind groined vault-work, cutting arch-stones, wood-cutting, for ornamental work, \&c. the form of which is frequently very fantastical and complicated: it is in the solution of problems appertaining to these subjects that descriptive geometry is especially useful.
Some architects more versed in geometry than persons of that profession commonly are, have long ago thrown some light on the first principles of this kind of geometry. There is, for example, a work by a jesuit named Father Courcier, who exauined and shewed how to describe the curves resulting from the mutual penetration of cylindrical, spherical, and conical surfaccs: this work ras published at Paris in 1663. P. Deraud, Matheurin Jousse, Fruzier, \&c. had likewise contributed a little towards the promotion of this branch of geometry. But Monge has given it very great extension, not only by proposing and resolving rarious problems both curious aud difficult, but by the invention of several new and interesting theorems. We can ouly mention in this place one or two of the probleuns and theorems. Thas among the problems. 1st, Two right lines being given in space, and which are neither parallel nor in the same plane, to find in both of them the points of their least distance, and the pusition of the line joining these points. 2d, Three spheres being given in space to determine the position of the plane which touches them. There are also curious problems relative to lines of double curvature, and to surfaces resulting from the application of a right line that leans continually upon two or tbree others given in position in space. Among the theorems, the following may be mentioned: if a plane surface given in space is projected upon three planes, the one horizontal, and the two others vertical and perpendicular to each other, the square of that snrface will be equal to the sum of the squares of the three surfaces of projection. This theorem is as interesting in the geometry of solids, as Pythagoras's theorem (Euc. 1. xlvii.) is in plane geometry. But for more on this subject we must refer to Monce's and Lacroix's ingenious works entitled Geometrie Descriptice.

Grometry of the compasses, a species of goometry more ingenious than profound, lately

G E

proposed by the Abbe Mascheroni. Hitherto both the ruler and the compasses hare been made use of in the solution of problems in plane geometry, and it had not been imagined that problems could be solved or constructed without the combined use of these two instruments. But the Abbé Mascheroni has struck out a greater number of problems, which are rendered very piquant and amusing, by the new condition of employing only the coropasses in their solution. Thus: two points terminating a right line being given, to find either between those two points or exteriorly any num. ber of points which shall be in the same right line with the former, and which shall be with the interval between them in a given ratio: to draw to a given line perpendiculars, or parallels, or lines making with them given angles: to inscribe or circumscribe within or about a circle, the various polygons which are constructible by plane geometry: to determine the mean proportional between two given distances; or to find third and fourth proportionals: all the problems indeed of the Euclidean reometry are here resolved by the simple intersection of arcs of circles, without drawing a single right line. He also resolres by ingenious approximations many problems which lie beyond the limits of common geometry, as those relating to duplications, trisections, \&c. still employing only the compases. The inquisitive reader will be much entertained with the work entitled Gemmetria del Compassa, in which these curious particulars are explained with much perspicuity and elegance. A French translation of this work was published in 1798, in 1 vol. 8vo.

GFOPO'NICAL. a. [m and xoms.] Relating to agriculture. (Brown).

GEOPO'NICS. s. [y and aros.] The science of cultivating the grouad, the doctrine of agriculture.

GEORGE I. king of England, was-the eldest son of Ernest Augustus, elector of Brunswick Lunenburg, or Hanover, by the princess Sophia, daughter of Frederic, elector Palatine, and king of Bohemia, and of Elizabeth daughter of James I. He was born in 1660, created duke of Cambridge in 1706, and succeeded queen Anne in 1714. The next year a rebellion broke out in Scotland, in favour of the pretender, which, however, was shortly quelled. In his reign parliaments were made septennial, and the order of the Bath was revived. In 1720 happened the failure of the famons South sea scheme, by which many thousands were ruincd. He died June 11, 1727, at Osnaburgh.

The following character of this monarch is extracted from Allen's History of Eugland :"George the first was plain and simple in his person and address, grave and composed in his deportment, though easy, familiar, and facetious in his hours of relaxation. He is said to have been the only prince of his time who knew what it was to enjoy the sweets of private friendsbip; a pleasure from which sovereigns in general are, by the elevation of their rank, excluded. He had gisen a proof of his political abilities before his arrival in this island. Naturally inclined to justice and equity, though he was absolute and despotic in his hereditary dominions, he ruled them with all the lenity and moderation of a limited monarch. He
considered civil and religious liberty as the unalienable ri,ht of mankind; and therefore he granted it to a people who pleaded no other claim to it than the known goodness and humanity of his temper. Poisessed of these noble and generous scatiments, though his accession to the British throne enlarged his sphere of action, it did not alter his plau of conduct ; that was uniformly and invariably the same, both before and after his alvancement to that high dignity. In a word, it may be affirmed, that no prince was ever better qualified to sway the sceptre over a free people, nor any who ever exercised the virtues of a great and good governor with more distinguished ability, or more uninterrupted success."
George II. king of England, succeeded his father in 1727. In 1737 he lost his queen Caroline, a woman of excellent qualities, and of a strong mind. In 1739 admiral Vernon was sent with a squadron to the West Indies, where he demolished Porto Bello, but failed in his attempt on Carthagena. In $17+3$ George put himself at the head of his army on the continent, and gained the battle of Dettingen, June 16th. In August 1745, the pretender's eldest son landerl in the Highlauds, and was joined by several clans. After obtaining scveral successes, the rebels were defeated by the Duke of Cumberland, at Culloden, in 1746. In 1748 peace was concluded at Aix-la-Chapelle. In March, 1750, died, universally lamented, Frederic prince of Wales, between whom and his father there had never been any cordiality. The next year an act passed for regulating the commencement of the year, by abolishing the old style. In 1753 another famous act passed for preventing clandestine marriages. In 175x war broke out between the Euglish and the French, which was at first very unpromising ; Braddock was defeated and killed in North smerica, and Minorca was taken in the Mediterranean, for which admiral Byng, who was sent out to relicve it, was shot at Portsmouth. About this time Mr. Pitt became prime minister, and public affairs began at length to wear a new face under his active management. In 1768, a treaty was entered into bet ween Eugland and Prussía, which proved very burthensome to the former nation; but the successes with which our fleets and armies were attended; made the people cheerful under ali the expences of the war. The British flag waved triumpliant in every sea; and Geo. II. died suddenly anidst the blaze of glory, October 25th 1760 ; and was succeeded by his grandson, our present gracious sovereign.
" The memory of George II. (says Guthrie), is reprehensible on no head but his predilection for his electoral dr.minions. He never could form an idea that there was any difference between them and his regal dominions; and he was sometimes ill enough advised to declare so much in his speeches to parliament. We are, however, to remember, that his people gratiticd him in this partiality, and that he never acted by power or prerogative. He was just rather than generous; and in matters of ceconumy,

GEORGE.

either in his state or his household, he was willing to connive at abuscs, if they had the sancuin of law and custom. He wass not very accessible to conversation, and thetefore it was no wonder that having left Germany, after he had attained to man's estate, he still retuined foreign notions both of men and things. In government he had no favouite; for he parted with sir Robert Walpole's administration with great indiffierence, and shewed very little concern at the subsequent revolutions among his servants. This quality may be decmed a virtue, as it contributed greatly to the internal quiet of his reign, and prevented the people from loading the king with the faults of his ministers. In his personal disposition he was passionate, but placable; fearless of danger, fond of military parade, and enjoyed the memory of the campaigns in which he served when young. His affections, cither public or private, were never known to interfere with the ordinary course of justice ; and though his reign was distracted by party, the courts of justice were never better filled than under him."

George (St.), or George of Cappadocia; a name whereby several orders, both military and religions, are denominated. It took its rise from a saint or hero famous throughout all the East, called by the Greeks Mıуаломи, 7 us, q. d. great martyr. On some medals of the emperors Johin and Manuel Comneni, we have the figure of St. George armed, holding a sword or javelin in one hand, and in the otherabuckler, with this inseription;
en O, and thercin a little A, and $\Gamma E \frac{P}{O}$ rioc,
making o arioz reoprios, O holy Gcorge. He is generally represented on horseback, as being supposed to have frequently entaged in combats in that manner. He is highty venerated throughout Armenia, Muscory, and all the countries which adhere to the Greek rite ; from the Greek, his worship has long ago been received into the Latin church; and England and Portugal have both chosen him for their patron suint. Great difficulties have been raised about this saint or hero. His very existence has becn called in question. Dr. Heylin, who wrote first and most abont him, concluded with giving him entirely up, and supposing him only a symbolical device; and Dr. Pettingal has turned him into a mere Basilidian symbol of victory. Mr. Pcger, in a paper in vol. i. of the Archæonlogia, has attempted to restore him. And finally, Mr. Gibbon (Hist. yol. II. p. 404.) has sunk him into an Arian bishop in the reigns of Constantius and Julian. The hishop alluded to,

George the Cappadorian, was sosurnamed, according to our author, from his parents or education ; aud was born at Epiphania, in Cilicia, in a fuller's shop. "From this obscure and servile origin he raised himself by the talents of a parasite : and the patrons whom he assiduously flattered procured for their worthless dependent a lucrative commision, or contract, wo supply the army with bacon. His employ-
ment was mean : he rendered it infamous. He accumulated wealth by the basest arts of fraud and corruption ; but his malversations were so notorious, that George was compelled to escape from the pursuits of justice. After this disgrace, in which he appears to have saved his fortune at the expence of his honour, he embraced, with real or affected zeal, the profession of Arianisin. From the love, or the ostentation, of learning, he collected a va'uable library of history, rhetoric, philosophy, and theology; and the choice of the prevailing faction promoted George of Cappadocia to the throne of Athanasius." His conduct in this station is represented by our historian as polluted by cruelty and avarice, and his death considered as a just punishment for the enormities of his life, among which Mr. Gibbon seems to rank his " emmity to the Guds."
The immediate occasion of his death, however, as narrated by ecclesiastical writers, will not probably appear calculated to add any stain to his menory. "There was in the city of Alexandria a place in which the heathen priests had been used to offer human sacrifices. This place, as being of no use, Constantius gave to the church of Alexandria, and George the bishop gave orders for it to be cleared, in order to build a Christian church on the spot. In doing this they discovered an immense subterraneous cavern, in which the heathen mysteries had been performed, and in it were many human skulls. These, and other things which they found in the place, the Christians brought out and exposed to public ridicule. The heathens, provoked at this exhibition, suddenly took arms, and rushing upon the Christians, killed many of them with swords, clubs, and stones: some also they strangled, and several they crucified. On this the Christians proceeded no farther in elearing the temple; but the heathens, pursuing their adrantage, seized the bishop as lie was in the church, and put him in prison. The next day they dispatched him; and then fastening the body to a camel, he was drayged about the streets all day, and in the evening they burned him and the camel together. This fate, Sozomen says, the bishop owed in part to his haughtiness while he was in favour with Constantins, and some say the friends of Athanasius were concerned in this massacre; but he ascribes it chiefly to the inveteracy of the heathens, whose superstitions he had been very active in abolishing.

St. George, the patron saint of Eugland, and of the order of the Garter, is much revered in Russia, and his figure nccurs in all the churches. He is represented as usual, riding on a horse, and piercing a dragon with his lance. This same device also forms part of the arms of the Russian sovereign, and is observed upon several of the coins. As most persons endeavour, if possible, to derive every custom and allusion from their own country, some of the English historians have conjectured, that Ivan Vassilievitch the Second, beirg presented with the Garter by Queen Elizabeth, assumed the Gicurge and the Dragon for his arms, and
ondered it to be stamped upon the current money. But this supposition is erroneous, as it by no means appears, that the Tzar was created a knight of the Garter; and it is certain that the sovereigns of Moscow bore this device before they had the least conncetion with England; for the arms of Moscory are thus described by Chanceler, the first Englishman who discovered Russia, as being affixed to a dispatch sent in 1554, from Ivan Vassilevitch to Queen Mary:-"This letter was written in the Muscovian tongue, in letter much like to the Greeke letters, very faire written in paper, with a broade seale hanging at the same, scaled in paper upon waxe. This seale was much like the broad scale of England, having on the one side the image of a man on horseback in complete harnesse fighting with a dragon." Hackluyt, vol. 1. p. 255.

Many writers are of opinion that the history of St . George is an allegory; others maintain that the device is borrowed by the Christian church from the ancient story of Persens and the sea-monster, of Belleropion and the Chimera, or of Apollo and the serpent Pithon, or from some Ezyptian hieroglyphics, or from charms and amulets worn by the Pagans; others have traced his legend from the history of George of Cappadocia, the Arian arehbishop of Alexandria. Amongst the authors who hare written upon this subject with the greatest success, must not be omitted Mr. Byrom (Miscellaneous Poems, vol. i. p. 100), who has composed a metrical rhapsody addressed to lord Willoughby, president of the Antiquarian Society, in which he endeavours to prove that St. George is a corruption of St. Gregory ; and to use his own words:-

Now, my lord, I would ask of the learn'd and laborious,
If Ge-orgius ben't a mistake for Gregorius?
In names so like letter'd it would be no wonder,
If hasty transcribers had made such a blunder;
And mistake in the names by a slip of their pen,
May, perhaps, have occasioned mistake in the men.
That this has been made, to omit all the rest,
Let a champion of yours, your own Selden attest;
See his book upon titles of honour-that quarter
Where he treats of St. George, and the knights of the Garter.

And again :
This, my lord, is the matter-the plain simple rhimes
Lay no fault, you perceive, upon Protestant times :
I impute the mistake, if it should be one, solely
To the pontiffs succeeding, who christen'd wars holy;

To monarchs who madding, around their round tables,
Preferr'd, to conversion, their fighting and fables:
When soldiers were many, good Christians but few,
St. George was advanc'l to St. Gregory's due.
One may be mistaken-and therefore would beg
That a Willis, a Stukely, an Ames, or a Peese,
In short, that your lordship, and all the fam'd set,
Who are, under your auspicies, happily met
In perfect good humour-which you can inspire,
As I know by experience-would please to enquire,
To search this one question, and settle, I hope,
Was old England's old patron, a knight, or a pope?
In opposition to these opinions, several authors have entered the lists; particularly Heylin, Sckien, and Fuller; and lately, Mr. Pexgo endeavours to rescue this saint from aunihilation, and to prove, at the same time, that he was a different personage from St. Gregory. But unfortunately for the arguments of the learned antiquarian, Mr. Byrom's treatise, which he opposes, is written in verse with so much ease, humour, and whimsical rhyming. that the reader is almost divesterl of his juigment, and with difficulty is prevented by the most weighty reasons from siding with the poet, who, instead of dull and dry disquisitions, treats us with much wit, couched in an easy flow of doggrel metre.
George. s. (Georgius, Latin.) 1. A figure of St . George on horseback worn by the knights of the garter (Shak.). 2. A brown loaf (Dry.).
George (FortSt.). See Madras.
George (St.), one of the Azores, inhabited by atwout 5000 persons, who cultivate much wheat. Lat. 38.39 N . Lon. 28.0 W.

George's islands (Kinz), are two islands in the Soutlr sea, lying in W. lon. 144.56 S . lat. 14. 28. They were first discovered by commodore Byron in 1705, and have since been visited by captain Cook in 1774. Commodore Byron's people had an encounter with the inhabitants, which proved fatal to some of the natives; but captain Cook was more fortunate. A licutenant and two boats well armed wers sent on shore by captain Cook, and landed without opposition. As soon as the gentlemen landed, the islanders embraced them by touching noses; a mode of civility used in New Zealand, which is 900 leagues distant, and the only place besides this where the custom has been observed to prevail. Notwithstanding this ceremony, however, very little real friendship seemed to take place on the part of the islanders.
George town, the seat of justice in a dis-
rict of the same name in S. Carolina. Lat. 3:3. 20 N . 1.0n. 79.30 W .
GLORGIA, a country of A sia, called by the Persians Gurgistan, and by the Turks Gurtshi. It is one of the seven Cancasian uations, in the countrics inclurled between the Black sea and the Caspian, and comprehends the ancient lberia and Colchis. It is bounded on the \mathbf{N}. by Circassia, on the E. by Daghestan and Schirvan, on the S. by Armenis, and on the W. of the Cuban, or new Russian gorernment of Cancasus. It is divided into nine provinces. Of these, five are subject to lleraclius, and form what is commonly called the kingdom of Georgia; and four, which are subject to David, form the kingdom or principality of Imeretia. This country is so extremely beautiful, that some fanciful trayellers have imagined they had bere found the situation of the original garden of Eden. The hills are covered with forests of oak, ash, beech, chesnuts, walnuts, and elons, enriched with vines, growing perfecily wild, but producing vast quantities of grapes. From these is annually made as much wine as is necessary for their yearly consumption; the remainder are left to rot on the vines. Cotton grows spontaneously, as well as the finest European fruit-trees. Rice, wheat, millet, hemp, and tlax, are raised on the plains almost without culture. The valleys afford the finest pasturage in the world; the rivers are full of fish : the mountains abound in minerals; and the climate is delicious; so that nature appears to have lavished ou this favoured country every production that can contribute to the happiness of its inhabitants. On the other hand, the rivers of Georgia, being fed by mountain torrents, are always either too rapid or too shallow for the purposes of navigation; the Black sea, by which commerce and civilization might be introduced from Europe, has been till very l.tely in the exclusive possession of the Turks; the trade of Georgia by land is greatly obstructed by the high mountains of Caucasus; and this obstacle is still increased by the swarms of predatory nations, by which those mountains are inhabited. The inhabitants are Christians of the Greek communion, and appear to have received their present name from their atachments to St. George, the tutelary saint of these countries. Their dress nearly resembles that of the Cossacs; bat men of rank frequently wear the liabit of Persia. They usually dye their hair, beards, and nails with red. The wonen employ the same colour to stain the palms of their hands.

Georgia, the most southern of the United States of N. America, bouuded on the E. by the Atlantic ocean, on the S. by E. and W. Florida, on the W. by the river Mississippi, and on the N. by N. and S. Carolina, being divided from the latter by the river Savannah. It is ahout 000 miles long and 950 broad. It is divided into 11 counties, namely, Chatham, Effinghan, Burke, Richmond, Wilkes, Liberty, Glynn, Cainden, Washington, Greene, and Franklio. The capital is Augusta. The
principal rivers are the Savannah, Ogeechee, Alatamaha, Turtle River, Little Sitilla, Great Sitilla, Crooked River, St. Mary's, and Appalachikola. The winters in Georgia are very mild and pleasant. Snow is seldom or never seen. The soil and its fertility are various, according to situation and different improvements. By culture are produced rice, indigo, cotton, silk, India corn, potatoes, oranges, figs, pomegranates, \&c. Rice at present is the staple commodity; but great atlention begins to be paid to the raising of tobacco. The whole coast of Georgia is bordered with islands, the principal of which are Skidaway, Wassaw, Ossahaw, St. Catharine's, Sapelo, Frederica, Jekyl, Cumberland, and Amelia. For more on the subject of this state, see Cruttwell's Gazetteer.

Gigorgia (New), or South Georgia, an island in the South Atlantic ocean, about thirty leagues in length, and ten in breadth. It abounds in bays and harbours, but the prodigious quantity of ice on the coast renders it inaccessible during a great part of the year, and even at other times floating masses of ice render the anchorage dangerous. The appearance of the land is the same throughout; the lofty mountains towards the south are divided into numberless parts, and appear like flames of fire. The coasts are bounded with high perpendicular rocks of ice, large portions of which frequently break off and fall into the valleys or into the sca, where they are tossel about by the waves, and resemble small detached islands. The interior country is not less savage, the summits of the rocks are lost in the clouds, and the valleys are covered with eternal snow; there is neither tree nor shrub. The only vegetables discovered were a kind of coarse grass, a species of burnet, and a plant like moss. The rocks are composed of a kind of slate, of a blueish grey colour, disposed in horizontal beds : many shining fragments of which cover the strand, and appear to have no mineral in the composition. In all the coast there was found neither river nor fresh-water spring. Lat. 54. 30 S. Lon 37. 0 W.

GEORGIC, a poetical composition upon the subject of husbandry, containing rules thercin, put into a pleasing dress, and set off with all the beauties and embellishments of poetry. The word is horrowed from the Latin georgicus, and that of the Greek γ wwarixos, of y_{m}, terra, earth, and «pru乡омat, opero, I work, or labour, of ${ }_{i}$ yor, opus, work. Hesiod and Virgil are the two greatest masters in this kind of poetry. The moderne have produced nothing in this way, except Rapin's book of Gardening; and the celebrated poem intitled Cyder, by Mr. Philips, whn, if he had enjoyed the advantage of Virgil's language, would have been secoud to Virgil in a much nearer degree.

GEORGINA, in botany, a genus of the class syngenesia, order polygamia superflua. Receptacle chafly, downless; calyx double, the outer many-leaved; inner one-leaved; eightparted. Three species; all natives of Mexioo.

GEORGIUM SIDUS, the name given by

G ER

Dr. Herschel to the planet which he discorered. It is sometimes called Uranus; but the majority of astronomers have, as it were, by common onsent, given it the name of its discoverer. Sce Herschel and Astronomy.

GEOTIC. a. Belonging to the earth.
GERANIUM. Cranesbill. In botany, 2 genus of the class monadelphia, order decandria. Calyx five-leaved; petals five, regular ; nectary five glands fixed to the base of the longer filaments; fruit beaked, separating into five oneseeded capsules, each tipped with a long simple awn, which is neither spiral nor bearded. Thirty-nine species; scattered over the globe; of which nearly half are indigenous to the pastures or thickets of our own country; and of these the doves foot (G. columbinum) is the most common.

The whole may be subdivided into,
A. Peduncles one-flowered.
B. __ two-flowered perennial.
C. -- two-flowered annual.

The cultivated geranium adds much to the beauty of our gardens and green-houses; and chere are few, except those of the most southern climates, that may not be inured to the common temperature of our external atmosphere, if proper pains be taken to accustom them to the change gradually. They may all be propagated either by seeds or cuttings; the cattings may be made in any of the summer months, and when well rooted should be exposed till October to the external air to harden them.

GERAR, or Gerara, the south boundary of Canaan near Berseba, situated between Cades and Sur, two deserts well known, the former facing Egypt, the latter Arabia Patfea.

GERARDIA. In botany, a genus of the class didynamia, order angiospermia. Calyx five-cleft, corol two-lipped; the lower lip three-parted with the lobes emarginate; the middle lip two parted; capsule three-celled, gaping. Twelve species; chiefly American and Cape plants.

GERARDS (Mark), a painter of Bruges, born in 1571. About 1580 he came to England, and was appointed principal painter to queen Elizabeth. He was eminent in history, portrait, and landscapes; and died in 1635 .

GERAW, a town of Germany, in Hesse Darmstadt, capital of a district of the same name. Lat. 49.45 N . Lon. 8. 29 E .

GERBES, Gersi, or Zerbi, an island of Africa, on the coast of the kinglom of Tunis. It bears no com but barley; though there are large quantities of figs, olives, and grapes, which, when dried, form their principal trade. It depends on the dey of Tripoli. Lon. 10. 30 E. Lat. 33: 50 N.

GERENT. a. (gerens, Latin.) Carrying; bearing.

GERFAICON. s. A bird of prey, in size between a vulture and a hawk. See Falco.

GERGESA, a trans-Jorian town, no otherwize known than by the Gergeseni of St . Matthew, and Gergesari of Moses; supposed
to have stood in the neighbourhood of Gadar and near the sea of Tiberias.

GERM. Sec Germen.
GERMAIN (St.), a town of France, in the departinent of Seine and Oise, and late pmvince of the Isle of France. It is seated on the river Seine, and has a magnificent palace embellished by several kings. Lat. 48. 52 N . Lon. 2. 15 E.

Germain's (St.), a borough in Cornwall, with a market on Fridaye. It was once the largest town in the county, and a bishop's see. It now consists chiefly of fishermen's cottages; but is governed by a mayor. Lat. $50.2: \mathrm{N}$. Lon. 4. 2. W W.

GERMAN, in a genealogical sense, signifies whole, entire, or own. Hence, brothergerman, denotes a brother both by the father'is and mother's side, in contradistinction to uterine brothers, \&c. who are only so by the mother's side. Cousins-german, are those in the first or nearest degree, being the children of brothers or sisters.

German, or Germanic, also denotes any thing belonging to Germany.

GERMANDER TreE. See Teucrium.
GERNANICUS, a name common in the age of the emperors, not only to those who had obtained victories over the Germans, but even to those who had entered Germany at the head of an army. The most celebrated among thein was Germanicus Cexsar, a son of Drusus, and Antonia, the niece of Augustus. He was adopted by his uncle Tiberius, and raised to the most important offices of the state. When Augustus died, he was emploged in a war in Germany, and the affection of the soldiers unanimously saluted him emperor. He refised this honour, continued his wars, and defeated the celebrated Arminius, and was rewarded with a triumph at his return to Rome. Tiberius declared him emperor of the east, and sent him to appease the seditions of the A rmenians. But the success of Germanicus in the east was soon looked upon with an envious eye by Tiberius. He was secretly poisoned at Daphne by Piso, A.D. 19, in the 34th year of his age. The news of his death was received with the greatest grief. He had married Agrippina, by whom he had nine children, one of whom, Caligula, disgraced the name of bis illustrious father. Germanicus has been commended, not only for his military accomplishments, but also for his learning, humanity, and extensive henevolence.

GERMANY, a country of Europe, in ancient times inhabited by various nations who derived their origin from the Celts and Sclavonians, or Vandals, differing in language and in manners. Germany, the name given to the whole country, is inost generally supposed to be Roman, though the word by some is thought to be derived from a Teutonic word, which signifies warlike. It is bounded on the E. by Hungary and Poland, on the \mathbf{N}. by the Baltic Sea and Denmark, on the W. by France and the Netherlands, and on the S. by

G E R M A N Y.

the A!ps, Swisseriand, and Italy: being about $0+0$ milis in length, and 550 in breadth. The air is temperate and wholesome; but as to the particular productions, they will be taken notice of where the circles are described. Germany contains a great many pritices, secular and ecclesiastic, who are independent of each other; and there are a great number of free imperial citics, which are so many little republics, governed by their own laws, and united by a head who has the title of emperor. The western Roman empire which had terminated in the year 475, in the person of Augostulus, the last Roman emperor, and which was succeeded by the reign of the Huns, the Ostrogothss, and the Lombards, was revived by Charlemagne, king of France, on Christmasday in the year 800 . This prince being then at Rome, pope Lco IIl. crowned him emperor, in St. Peter's church, amid the acclamations of the clergy and the people. Nicephorus, who was at that time emperor of the East, consented to this cornnation. After the death of Charlemagne, and of Lewis le Debonnaire, his son and successor, the empire was divided between the four sons of the latter. Lothario, the first, was emperor ; Pepin was king of Aquitaine; Lewis king of Germany; and Charles le Chauve (the Bald) king of France. This partition was the source of incessant feuds. The French kept the empire, mader eight emperors, till the year gis, when Lewis III. the last prince of the line of Charlemagne, died without issue male. Conrad, count of Franconia, the son-in-law of Lewis, was then elected emperor. Thus the empire weat to the Germans, and became elective; for it had been hereditary under the French emperors, its founders. The emperor was chosen by the princes, the lords, and the deputies of cities, till toward the end of the 13th century, when the number of the electors was fixed. Rodol ${ }^{2}$ hus, count of Hapsburgh, was elected emperor in 1273. He is the head of the house of Austria, which is descended from the same stock as the house of 1 orrain, reanited to it in the person of Francis 1. father of the two late emperors, Joseph and Leopold. On the death of Charles VI. of Austria in 1740, an emperor was chosen from the house of Bavaria, by the name of Charles VII. On the death of this prince in 1745, the abovementioned Francis, grand duke of Tuscany, was elected emperor; whose grandson, Francis, now enjoys the imperial dignity; the pre rogatives of which were formerly much more extensive than they are at present. At the close of the Saxon race in 1024, they exercised the right of conferring all the ecclesiastical benefices in Germany; of receiving their revenues during a vacancy; of succeeding to the effects of intestate ecclesiastics; of coufirming or annullius the election of the popes; of assembling councils, and of appointing them to decide concerning the affairs of the church; of conferring the title of king on their vassals; of granting vacant fiefs; of receiving the reve-
nues of the empire; of governing Italy as ite proper sovercigns; of crecting free cities, and establishing fairs; of assembling the diets of the empire, and fixing the time of their duration; of coining money, and conferring the same privilege on the states of the empire; and of administering justice within the territorics of the different states; but in 1437 they were reduced to the right of conferring all dignities and titles, except the privilege of being a state of the empire; of appointing once during their reign a dignitary in each chapter or religious hoise; of granting dispensations with respect to the age of majority; of erecting cities, and conferring the privilege of coining money; of calling the meetings of the diet, and presiding in thein. To this some have added a few particulars, which we have enumerated under the article Emperour. The electors of the empire are three ecclesiastical, namely, the archbishops of Treves, Cologne, and Mentz; and five secular, namely, the king of Prussia, as elector of Brandenburgh : the king of Great Britain, as elector of H:nover ; the present emperor, as archduke of Austria; the elector of Saxony, and the elector palatine of the Rhine. Each elector bears the title of one of the principal officers of the empire; the elector of Ha nover, for instance, being " arch-treasurer and elector of the holy Roman empire." To prevent the calamities of a contested election, a king of the Romans has been often chosen in the lifetime of the enperor, on whose death he succeeds to the imperial dignity, as a circumstance of course. The emperur always assumes the titic of august, of Cesar, and of sacred majesty. Although he is chief of the empire, the supreme authority resides in the diets, which are composed of three colleges; the first that of the electors, the second that of the princes, and the third that of the imperial towns. The electors and princes send their deputies, as well as the imperial towns. When the college of the electors and that of the princes disagree, that of the towns cannot decide the difference; but they are obliged to give their consent when they are of the same opinion. The diets have the power of making peace or war, of settling general impositions, and of regulating all the important affairs of the empire; but their decisinns have not the force of law till the emperor gives his consent. All the sovereigns of Germany have an absolute authority in their own dominions, and can lay taxes, levy troops, and make alliances, provided they do not prejudice the empire. They determine all civil causes definitively, unless in some particular cases in which an appeal may be made. These appeals are to two courts, called the Imperial Chanrber, and the Aulic Council. The three principal religions are, the Roman Catholic, the Lutheran, and the Calvinistic. The first prevails in the dominions of the emperor, in the ecclesiastical electorates, and in Bavaria; the sccond, in the circles of Upper and Lower Saxony, great part of Westphalia, Franconia Suabia, the Upper Rhine, and in most of the

GER

Imperial towns; the third, in the dominions of the lindgrave of Hesse Cassel, and of some other princes. But Christians of almost every denomination are tolerated in many parts of the empire, and there is a multitule of Jews in all the great towns. The principal rivers of Germany are, the Danule, Rhine, Ellbe, Weger, Maine, and Oder. Germany is divided into nine circles, each of which comprehends several oher states; the princes, prehates, and counts of which, with the depuries of the imperial towns, meet together about their common afiairs. Each circle has one or two directors, and a colonel : the directors have 2 power of conroking the assembly of the states of their circle, and the colonel connmands the army. The nine circles are those of Austria, Bavaria, Suabia, Franconia, U'pper and Lower Khine, Westphalia, ard Upper and Lower Saxony. The language of Germany is a dialect of the Teutonic, which succeeded that called the Celtic.
Such was the state of Germany, and its sulordinate governments, in 1802, when much of the gengraphical department of the Pantoloria was prepared for the press. Since that period Germany has been a!most constantly the seat of war; and it is now (ISO, 1) alnost entirely under the power of France. lis c.yital, Vienna, has been possessed by a French army ; its emperor has changed his title from emperor of Germany to emperor of Ausiria; and it seems extremely probable that he will become a mere dependent upon the liberality and justice of Buonaparte!

GERMEN. In botany. Germ, ovary, or seed-bial. Rodimentum fructus immaturi in Hore. The rudiment of the fruit y et in embryo. Analogous to the ovary of animals, sitice it contains the rudiments of the seeds. It is the lower part or base of the Pistil, which see. Gerin, differing little from the Latin rerin, and being sulficiently established as an English word, may be used in preference to Germen, and afforms a much better plural.

A grom, when included within the corol, is said to be superior ; but when placed below it, inferior. On the contrary, when a corml is placed above the germ, the corol is called superior (corolla supera, flos superus); and when it incloses the germ, so as to have its base below it, it is called inferior (corolla inficra, flos inferus). When a germ is elevated on a fulcre, besides the peduncle, it is said to be perlicelled.

To (iE'RMINATE. v.n. (germino, Latin.) To spmut; to shoot : to bud (Woodward).

GEirMINATION. s. (germination, Fr.) The act of sprouting; growth ($\mathrm{F}_{\mathrm{o}} \mathrm{tllon}$).

Germination of plants. Whella eced is placed in a situation favourable to vegetation, it very soon changes its appearance. The radicle is converted into a root, and sinks into the earth; the plumule, on the other hand, rises above the earth, and becomes the trunk or stem. During these changes the seed is said to germinate; and the process itself is called germination.

VOL. V,

GER

Sceds do not acrminate equally and inliffer: ently in all places and seesons: germination, therefire, does not depend upon the seed alone, something external must also alfect it.
These auxiliarics have been examined into, and appear to be moisture, heat, and oxygen; for without the presence and co-operation of these, secds cannot be made to germinate: they never germinate in perfect dryness, below the freezing point, nor in the vacnum of an air-pump.

Light has been supposed to be an auxiliary by some physiologists; but it has since bech pretty accurately ascertained that light only assists germination when combined wht hear, and that when pure and separate from heat, it rather retards than promotes germination ; and hence one reason for covering seeds over with the soil in which they grow.
Electricity has also been tried, but with a doubtrul result. Gencrally speaking, it seens to adrance the process of germination; but this is not an universal effect, nor is it perfectly clear, in the cases in whichit is said to have succeeded, that some other agency did not co-operate.
In what manner do these substances of moisture, heat, and oxygen, affect the seed? What are the changes which they produce?
In the article Botany we have observed that every seed possesses one or mure cotyledons, which contain a quantily of fariaceeous matter laid up on purpose to supply the embryo plant with frod as soon as it begins to require it, as well as to communicate to the heartlet the auxiliaries which germination demands. This food, however, must undergo some previous preparation, before it can be applied by the plant to the formation or completion of its organs. It is probable that all the phxnomena of germination, which we can perceive, consist in the chemical changes which are produced ia that food, and the consequent developement of the organs of tho plant.
These chemical changes consist in the evolution of carbonic acid, which is always emitted, even though no oxygen gass be jiresent; in the absorption of oxygen, and in the production of heat, which last is thrown forth so abundantly that hay often takes fire in consequence hereof; at ihe same time that a quantity of sugar is formed, a result taken adrantage of by our maltsters and distillers, and the very basis of the arts of distillation and brewery. It is owing to a partial change of this kind that old hay generally tastes much sweeter than new hay. Now we have no reason to suppose that any agents peculiar to the vegetable kingdon reside in hay; as all veretation and all power of vegetating are evidently destroyed.
When the farina of the vegetable vessels is thus converted into sugar, a number of vessels make their appearance in the ontyledon. Branches from these vensels pass into the radicle, which in conseqnence increases in size and becones a root, sinks into the earth, and extracts nouridhuncit for the fiuture growth of

G E S

the plant. The cotyledon next assumes the semblance of leaves, which appear above ground, forming what are callicd the seminal Feaves of the plant. After this the plunule, assisted froin the same quarter, gradually increases in size, rises out of the earth, and expands itself into branches and leares. The seminal leaves, soon after this, decay and drop off, and the plant carries on the proce:s of vegetation witiont their assistance. For other plamomena of vegetation, sec the articles Bofany, Converthblity, Physiology, and Vegeisble.
GERON'LLS, in antiquity, a kind of je:lges or masistratis in Sinata, similar to the Aropagites at Athens. None were admitted to this oftice muler ou years of age. They were succeeded be the ephori.
GleROHOCON. Old-man's beard. In botany, a genus of the class syugenesia, orler palygima x guali-. Receptacle with bristlelike chatt or maked calyx, many-lcared, simple or inverted with scale: ; seeds of the disk with a feather: dnwn of the ray fre-awned. Three species; natives of thaly; not greaty differng from many species of Tragopogon, which sce.

GERS, a department of France, which includes the hate provinces of Gascony and Armannac. It has its name from a iver that fraters Auch and Lectoure, and falls into the Garonne, above Agen. Auch is the eqpital.

GERSAE, a town of Swizzerland, on the N . side of the lake of Schwecitz, at the foot of the Rigi. It is a republic, the smallest in Europe. Its territory is two leagues in leng:h and one in breadth. It contains tore) inhabitants, who have their general assembly of burgesses, their landamman, council of regency, courts of justice, and nilitia. Gersau is componedentirely of scattered linuses and cottages, of a cery neat and picturesque appearaice. The inhabitants are much employed in preparing silk for the manufacture at Basle.' This revublic is ander the protection of the cantons of Luccrn, V'ri, Schweitz, and Underwalden; and, in case of war, furnishes its quota of men. Gcrsan is 19 miles S.IV. of Schweitz.

GERTYRDENBERG, an ancient town of Duth Brabant, in the Netherlands, 10 miles N. of Rrely. Lat. 52.44 N. Lon. 4.42 E.

GERUMENMA, a strong town of Alentejo, in Porlugal. Lat. 38. 26 N. Lon. 7. 10 W .

GERUND, in grmmmar, a verbal noun of the neuter qeider, pariaking of the natiore of a participle, declimble only in the singular number, throing all the cases except the vere:itive; as nom. amandium, aen. a mandi, dat. anun!?, accus. amandum, abl. amaindo. The word is formed of the Latio erreandirus, and that from the verb gerere, to bear. The gerund expresses not only the time, but also the manner of in action; : :s, "he fell in running past." I diffore re:n the perticiple in expressing the time, which the enatiepple does mot.
fiFClite (Courad). an coninnot plyercian amp phay hiner, way born at Zurich, io Swat

G E S

zerland, in 1516. His father was ton poor to give him a learnel education; and, though he son displayed a lively genius, he was on the point of veiug taken trom his studies, when Ammian, professor of Latin and elopuence at Zurich, took him to his own house to complete his edncation. Atier his father's death he travelled to mend his fortu: e. At Sa-raburg he made some progres in the Hebrew languare. beme bliowed a pension by the academy of Turich to enable him to make the tour of France, he went to Paris, accompanied by John Prisius. If afterwarls returaed to Zurich to preside over a school, but haviay married, and his appointurent being inalequate to his expenees, he devotedall his spare time tothe study of physic, to which even in his childhomed he liad a strong propensity. He went in Basil, where he studed the Greek physicians in their own language, till he was made Greek professor at Lausame. Ite went to Mont clier, and applied himelf on anatomy and botany; and returning to Zurich was admitted to a doctor's degree, and practised as a physician. He was som afterwards made protessor of philosophy, which situation he filled till his death in 1.50): He wrote sisty-six works on grammar, botany; medicine, and natural history; and for the variety of his attainments was called the German Pliny.

Gesner (Soloman), a boohsellerand poct, was born at Zurich in 1730. He was a mernber of the semate of that city, and excellod in laudscape painting as well as in poetry. Most of his pietures were sold in England, where his beantiful piece, intitted, the 1)eath of Ahel, is also well known. He died in 1788. He wrote several elegant poems besides that above mentioned; particularly, Daphnis, Erasus and Fvander, his ldylls, and the First Navigator. Gesner often dipplars the humowr of sterie and Fontaine, without their licentiouness; his fictions are interesting; his languaze graceful and cary; and his characters extremely well delincated.

Gesner (John Mathew), a profound scholir and niost acute critic, iwas born neatr Newhuri, in Germany, in 1(ix)1. On the reconmendation of Buddeus, he was appointed to superintend the public school of Weitheim, which situation he filled eleven ycars. From Weinheim he was remored to Anspach, to a more lucrative office; and be finally settled at Gotingen, where he was made professor of humanity, public librarian, and inspector of public schiools in the district of Lunenburgh. Ile died at Gottingen in 1701 . His most esicemed works are, editions of some of the classics, and an excellent Thesaurus of the Latin Tonewe.
GESNERIA, in botany, a genus of the class didynamia, order angiospermin. Calyx fivecleit, seated on the germ; corot incurved aid iccursed; capsule inforior, two colled. Fleven species; all natives of Sonth Anierica or the W'est luches; some herbaceous, some shrubbv. GESSES. s. The furniture belonging 10 g hawk.

GET

GEST. s. (gestum, Latin.) Obsolete. I. A deel; an action; an achievement (Spenser). 2. Show; representation. 3. The roll or jourmal of the se:eral days, and stages prefined, in the progre:ses of kings (Shuhispcure). 4. A slage; so much of a journey as passes without interruption (Broma).

GETPATIUN. s. (gestatin, Latin.) The act of learing the young in the womb (Ray).

To GESTICLLACLE v. n. (gesticulor, L.:.) To play antic tricion; to show perstures.
(iESTICLLATION: s. (graticslutio, Latin.) Antic trichs; various pontures.

GESTRIKLE, a province of Sweden, bounded on the N. by He!maia, on the E, by the gulf of Bothmia, on the S . by Upland, and on the W. by Dalecarlia. It is diversified by forests, rocks, hills, and dales, pasture and arable laad, lakes and rivers.

GE'STU'RE. s. (gestum, Latin.) I. Action or posture expressive of sentiment (Sidury). 9. Movement of the body (Addison).

To Ge'sture. va. a. (from the noun.) To accompany with action or posture (Heoker).

To GETV. v.a. pret. I got, anciently gat; part, pass. got or gotlen. (zezan, gezzan, 乌ax.) 5. To procure; to oltain (Boyle). 2. To force; to seize (Daniei). 3. To win by contest (Knolles). 4. To have possession of; to have (Herlert). 5. To beget upon a female (IFaller). 6. To gain as profit (Locke). 7. To gain a superiority or adrantage (Shatspare). 8. To earn; to gain by labour (Loche). 9. To receive as a pricc or reward (Lucke). 10. To learn (Watts). 11. To procure to be (South). 12. To put into any state (Giardian). 13. To prevail on; to induce (Spee (ator). 14. Todraw; to hook (.Aduis,n). 15. To betake; to remove (Kinolle's). 16. To rernove by force or art (Boyle). 17. To put (Shaksprure). 18. To Get off: To sell or disporie of by some expedient (ímift).

To Get. v. n. 1. Tu arriveat any state or posture by degrees with sonc kiud of labour, cffort, or difficulty (Sidiney), 2. To fall; to come by accident (Tatter). 3. To find the way (Boyle). 4. To move; to remove (Knolles). 5. To have recourse to (Knolles). 6. To go; to repair (Knolles). 7. To put onc's self in any state (Clarcndun). 8. To become by any act what one was not before ($D_{\text {ryd }}$ (cu). 9. To be a gainer; to receive advantage. 10. To Ger off. To escape (Drydin). 11. To Get over. To ennquer; to suppress; to pass without being stopped (Swift). 12. To Giet ир. 'Гo rise from repose (Dacon). 13. To Get up. To rise from a seat. 14. To remove from a place (Numlers).

GETHIN (Lady Grace), an English lady of uncommon parts, was the daughier of sir Genrge Norton, of Abbots-Leigh, in Somersetshire, and burn in the year $10 ; 0$. She had all the advantages of a líocral education, and becane the wife of sir Richard Gethin, of Gethin Gentt, in Ireland. She was mistress of great accomplishments, natural and acquired. But did not líve long enough to display them to tye world, for she died in the 21st fear of her
age. She was buried in Westminster-abbey; where a beautiful monument with an inscription is crected over her; and, for, perpetaating her memory, provision was made for a sermon to be preached in Westminster-abbey. yearly, on Ash-Wedne:day for evor. She wrote, and left behind her in lonse papers, a work which soon after her deatio was methodised and published under the title of Reliquix Gethiniana; or, Some remains of the most ingenious and excellent lady, Grace lad! Gethin, bately deceased. Being a collection of chonce di.cours s, pleasant apophthegms, and wity sentences. W ritten by her, for the most part, be way of essay, and at spare hours. Lond. $1 ; 00,410$
GETHSEMANE, anciently a village in the mount ai Ohes, whither Jesus Christ sometimes retreated in the right-time. It was in a garden belonging to this village that he was arrested byJudas and the rest who were conducted by this traitor. The place is by Manadrel descrited as an even plot of ground, not above 57 yards square, lyng between the foot of Momim Olitet and the brook Cedron.
GETIIYLLIS, in botany, a gernus of the class hexandria, order nonogrnia. Corol sixparted with a very long filitorm tube. call xless; berry clavate, radical, one-celled. Five species; all herbs of the Cape, with a single flower on a naked stalk, and a fruit of a grateful olour and pleasint taste.

GETTEIR. s. (from get.) 1. Oue who procures or obtains. 2. One who begets on a female (Shakspare).

GE'TIING. s. (from get.) 1. Act of getting; acquisition (Proverl's). 2. Gain ; profit (Bacnn).

GEUM. Avens. In botany, a genus of the class icnsandria, order polygrmia. Calyx ten-cleft, inferior; petals five; secds with a jointed awn, receptacle columnar. Ten species; some natives of Europe, others of America: the two following of our own country.

1. G. urbanum: with flowers epect, awns hooked, naked; stem-leaves ternate, with rounded cut stipules; radical ones lyre-pinnate. It bears a large yellow terminal flower, which is succeeded by a globular fruit. It constitutes the earyophyllata of the dispensaries; the ront of which has been employed as a gentle styptic, corroborant, and stomachic. It has a mildly austere, sonewhat aromatic taste, and a very pleasant smell of the clove kiad. It is still used on the continent as a febrifige.
2. G. rivale. Flowers chooping; petals as long as the calyx; awns frathery, bent in the middle. The root in Nurth America is used. in the case of intermittents, in preference to Peruvian bark. It is also empleyed in diarrhoeas and hamorrlages, and is said to be highly serviceable. Cattle in general eat the first of these two species; and a few, especially grats, cat the second. Horses are not fond of either.
GEVAUDEN, a late territory of Lanzuetioc, in France, forming the present department of Lozcre.

GFiWGAW.s. (zezaf, Saxom.) A showy trife; a thy; a bauble (:1ll $\cdot 0 t$).

GE'wGaw. a. Splendidly trifling; showy without value (Lave).

GEZULA, a province of Morocen, which is very productive, and contains mines of iron and enpper.

G GAMMCT, in music, the first Gelow the bass-cliff note.

GHA'STFUL. a. (zarz ard fulle, Saxon.) Preary; disual; melancholy (Sppnser).

GHA'STLINFSS. s. (from ghustly.) Horror of countenance; resemblance of a ghost; palcinese.

GHA'STLY. a. (zirz, or glost, and like.) 1. Like a ghost; having horror in the countenance; pale; dismal (Ḱnulles). 2. Horrible; shocking; dreadful (Milton).
GHA'STAESSS. s. (from zarz, Saxon.) Ghastliness ; horrour of look : not used (Shakspeare).
GHE'RKIN. s. (from gurche, German, a cucumber.) A small pickled cucumber.
GHENT, the capital of Austrian Flanders, with a strong casilc and a bishop's see. It contains 70,000 inhabitants; but it is not populous in proportion to is extent, which is so great, that Charles V. said to the French king, Francis I. "I have a giove (the French name for (Ghent is Gand, a glove) in which I can put your whole city of Paris." Here is still shown the house in which that emperor was born. There are several silk and woollen manufictures here, which are in a flourishing condition, and they bave a great trade in corn. The city is cut by several canals, which divide it into 26 isles, and over the canals are 300 bridges. The cathedral is a noble ancient structure, dedicated to St. Buvon. Beside this, there are only six parochial churches. The Benedictine ablicy of St. Pcter is a magnificent edifice. Lat. 31.3 N . L.on. 3.49 E .

To GIILSS. u. n. To conjecture ; to guess.
GHIL.AN, a province of Persia, lying on the S.W. side of the Caspian sea. It is supposed to be the Hyrcania of the ancients. It is very agreeably situated, having the sea on one side, and high mountains on the other; and there is no entering it but through narrow pas-es, which may be casily defended. This is one of the mest fruitful provinces in P'ersia. Resht is the cepital.
GHINIA, in botany, a genus of the class diandria, orier monogynia. Calyx with five awn-like tecth; corol ringent, the border fiveeleft; nu: Heshy, four-celled; seeds solitary. Two species; natives of Guiana and the West Indies, with axillary racemes and blue flowers: annual plants.

Gllirlandilo (Domenicn), a Florentime painter, was bora in $14+9$. He was intendad by his friends for a goldsmith; but having a streng passion for painting, he cultivated that art with such stecess, that he acquired reputation in his time. His manner was however pothic and dry, and he deserves most to be celeitrated for having Michact Angeto for his dissip'e. He died at the age of 4 , Imaving thee
sons, David, Benedict, and Rhandolph, all of them painters.

GHISOLFI (Ginvanni), a painter, born at Milan in 1623, and died in 1683 . He excelled in painting perspective views and sea ports, and his works are sull held in high repute.

GHOST, an apparition, or spirit of a person deceased. The ancients supposed every man to be possessed of three different ghosts, which after the dissolutian of the human body were difierently disposed of. These thrce ghosts are distinguished by the names of Manes, Spiritus, Umbra. The manes, they fancied, went denvin into the infernal regions; the spiritus ascended to the skies; and the μ milra hovered about the tomb, as being unwilling to quit its old connections. Thus Dido (Virg. IEn. iv. 384.) threatens Fineas after death that she will haunt him with her umbra, whilst her manes rejnice in his torments below. This idea of a threefuld soul is very clarly expressed in these lines, which have Leen attributed to Ovid.

Bis duo sunt nomini: Manes, Caro, Spiri/us, Uimera :

Quatuor ista loci bis duo suscipiunt.
Terra tegit Earnem, tumulum circumvolat Uinira,
Orcus habet Manes, Spirilus astra petit.
The most striking outlines of the popular superstitions respecting ghosts among us are humprously collected by captain Grose in his Provincial Glossary; to which we refer. With respect to the possibility or probability of ghosts bcing permitted to appear, we are aware that much has been said, both for and against, by persons of considerable abilities, who do not scem to be under the dominion of either superstition or prejudice: but as the question is as yet undecided, we shall not fill up our columas with any argumeuts relating to it.
Ghost (To give up the). To die; to yield up the spirit into the hands of God (Shalispeare).

T'o Ghost. v, in. (from the noun.) To yield up the ghost; to dic: not in use (Sidncy).
To Ghost. v.a. To haunt with apparitioua of departed men: obsolcte (Shat'speare).
GHO'STLINESS. s. (from ghoslly.) Spiritual tendency; quality of having reference chicfly to the soul.

GHO'STLY. . . (from ghost.) 1. Spiritual ; relating to the soul; not carnal; not secular (Heok (r). 2. Having a character from religion; spiritual (Shalspeare).

GIACH, in chronology, a cicle of 12 years, in use among the Turks and Cathayans. Each ycar of the giagh bears the name of some animal; the first that of a mousc; the second that of a hullock, \&e.

GIAILALINA. s. (Ital.) Earth of a bright gold colour (Wooduard).

GIA'M13EUX. s. (jamles, French.) Legs, or armour for legs; greaies (Spenser).
GIANT, a person of extracidinary bulk and stature. The romances of all ases have furnished us with so many extravagant accounts of giants of inçredible bulk and strength thing

G $1 \mathbf{A}$

the existence of such people is now genetally disbelieved. It is commonly thought, that the stature of a man has been the saine in all ages; and some have even pretended to demonstrate the impossibility of the existence of giants mathenatically. Of these Mr. M•Laurin has been the most explicit, yet his arguments are by no means conclusive. In the scriptiares we are told of giants, who were produced from the marriages of the sons of God with the danghters of men. This passage indeed has been differently interpreted, so as to render it doubtful whether the word translated giants does there imply any extraordinary stature. In other parts of scripture, howerer, giants with their dimensions are mentioned in a manner that we cannot possibly doubt; as in the case of Og king of Basan, and Goliath.
MI. Le Cat, in a Memoir read before the Academy of Sciences at Roten, gives succinct acounts of giants that are said to have existed in different ages; and of these the heights are between the limits of eight feet and 30 in height.

With regard to the credibility of all or any of M. Le Cat's accounts, it is difficult to determine any thing. If, in any castle of Bohemia, the bones of a man's ley 26 feet in length are preserred, we have indeed a decisite proof of the existence of a giant, in comparison of whom most others would be but pigmies. Nor indeed could these bones be supposed to belong to an elephant; for an elephant itself twould be but a dwarf in comparison of such an enormous monster. But if these boncs were really kept in any part of Bohemia, it seems strange that they have not been frequently visited, and particular descriptions of them given by the learned who have travelled into that country. It is certain, however, that there have been nations of men considerably exceeding the comunda stature:

But whethet these accounts are credited or not, it is manifest that the stature of the hu: man body is by no means absolutely fixed. We are ourselves a kind of giants in comparison of the Laplander; nor are these the most diminutive people to be found upon the earth. The abbe La Chappe, in his journey into Si beria in order to observe the last transit of Venus, passed throigh a village inhabited by people called Wotiacks, neither men not women of whom were above four feet high. The accounts of the Patagonians also, which cannot be entirely discredited, render it very probable, that somewhere in South America there is a race of people very cenisidetably exceeding the common size of mankind, and consequently that we cannot altogether discredit the relations of giants handed down to us by ancient authors ; though what degree of credit we ought to give thetii is not easy to be determined. See Patagonia.
Giants (Rebel), in ancient mythology, were the sons of Terra, or the Earth, who made war against Jupiter and the celestial deities, to avenge the defeat of the Titans. These giants are represcuted as of an enormous

GIA

height and size, and of proportionable strength : each of them had a hundred eyes, and serpents instead of legs. These rebels were vanquished by Jupiter, and cast into Tarturus.

Giants bones, a name too hastily given by the rulgar to certain bones and parts of skeletons, of an enormous size, found in England and other places. Of all the numbers of these, which have been publicly shewn about as wonders in nature, not one but has proved, on examination, a bone of an elephant, or else of a whale; the first, however, is usually the case, as the bones of elephants are much more frequently found buried in the earth than those of the whale: We had not long ago the forefin of a whale, not fossile, but recient, taken chean from the skin, and shewn about London for the hand of a giant.

Giantscauseway, a name given by the conmon people of the cuiunty of Antrim in Ireland to a vast quantity of that kind of black marble; called basaltes, which stands in columns, and is natural to that marble, and runs out a great way into the sea.

The ignorance of the rulgar as to the nature of this stoue has occasioned ihis great pile of it to be supposed artificial; and the work of giants, once inhabitants there. But the truth is, that the basaltes, in whatever part of the world it is found, is always naturally of this figure. Whoever considers this anazing series of columens in Ircland, will be soon convinced no human hands could have formed them, and will find an accuracy in their figures, greater than could have been expected from the most curious hand. The length of the several columns, and their joints so regularly placed in series; and the niceness of their articulations, by which no space or racuity is left between, are wonderful.
The single columns, of which this mass of piles consists, are somelimes octangular, sometimes of seven, or fewer sides, but, generally, from three to nine sides; and, when examined, they are found just such as must necessarily be required in the places where they stand to fill up between others, so as to leave no vacuity. Each of these columns is composed of a great many series of joints, each of which is so well fitted to the place, that the joining appears onily a crack or crevice in the stone: yet these are regularly articulatel, there being always a ball on one part, and a socket in the other to receive it, so that the joints cannot slip off from one another. The triangular and square columns are fewer in number than the others, but they stand principally in the inner part of the large serics, and are seldom seen, unless searched after by a curinus eye. It ia observalle that every single pillar retains the same thickness, and angles, and sides, from top to hotion.
There are two other smaller and imperfect canseways to the left hand of the great one, and farther in the sca, a great number of rocks shew themselves at low water, which appear plainly all to consist of the same sort of columns. In gning up the hill from the causeway there are found, in difierent places, a rast

G 1 A

niniber of the same columns; but these do nint stand erect, but are la:d slanting opwards in different angies and directions. Beyond this hiti, castwand, also, at several distances, there stand a great number of the same pillars, placed straight and erect, and in clusters of difterent sizes. These are seen scattered, as it were, over the se eati parts of the hills.

An accurate fecome of the Giant'sCauseway, and neighbouring columus of a similur nature, is given in Le:twrs concerning the Nord Coast of the County of Antrim, from which the folIowing paricudars are taken:
" 1. The pillars of the causeway are small, not very much excecdine one font in breadh and thirty in letrotin ; sharply defined, neat in their articulation, with concave or convex terminations to each point. In many of the capes and hills they are of a larger size ; more imperfect and irregular in their figure and articulation, having often that terminations to their joints. At Fuirhcad they are of a pigantic masuitude, sometimes exceeding five feet in breadth and one hundred in lengith; oftentimes apparently destitute of joints altogether. Through many parts of the country, this species of stone is chtirely rude and unformed, separating in loose . Wocks; in which state it reicmbles the stone known in Sweden by the name of trappe.
" 2. The pillars of the Giant's Causeway stand on the level of the beach; from whence they nay be traced through all degrees of elevation to the summit of the highest grounds in the neighbourhood.
" 3 . At the causeway, and in most other places, they stanid perpendicular to the horizon. In some of the capes, and particularly near Eshet harhour, in the Isle of Baghery, they lie in an oblique position. At Doon poist in the same island, and along the Balintoy shore, they form varicty of regular curves.
$\therefore 4$. The stonie is black, clowe, and uniform; the varietics of colnur are bline, reddish, and grey; and of all kinds of grain, from extreme fineness to the coarse granulated appcarance of a stone which resembles imperfect granite, :ibounding in crystals of schoerl chiefly black, chough sometimes of various colours.
" 3 . Though the stonc of the Giant's Causeway be in general compact and homegeneous; yet it is remarkable, that the upper joint of Each pillar, where it can be ascertained with any cerrainty, is always rudely formed and cellular. The gross pillars also in the capes and mountains frequenty abound in these air-holes through all their parts, which sometimes contain tine clay, and other apparently foreien bercies: and ihe irregular hasaltes beginning Where the pillars cease, or lying over them, is - in general extremely honcy combed; containing in its cells civetuls of zedite, litule morsels of ince brown chay. sonctimes very pure steathe. nond in a few instances bits of acate."
Wih reapect to the promontory of Fairhead, abme mentionad, it has not been much nericol titl of late rears: bit Dr. Richardon is of npinion that it is by far the most superb c. lon ade of basaltic pillars jet discorcret.

GIB

For his account of it, with a plate, we refer to Nicholion's Journal, vol. v. P. '321; and for more on the subject of the Giant's Causeway, to Phil. Trans abr. iol. ii. p. 511, \&c. See also Phil. Trans. for 1808, or Retrospect of Discoveries, No. 19, for Dr. Richardson's Remarks on the basallic surface of the counties of Derly and Antrim.

GI'ANTESS. s. (from giant.) A she-giant; a woman of unnatural brik (Howel).

Gifantlike. Gi'antly. a. (fromgiant and like.) Gigantic ; vast (Suuth).

GI'AN'ISTHP. s. (from giant.) Quality or character of a giant (Millon).

Gil3, in mechanics. See Crane.•
Cil'BBE. s. Any old worn-out animal (Shanispicare).

To GI'BHER. v. n. (from jaller.) To speak inarticulately (Shatispeare).

GI'BBERISH. s. Cant; the private language of rogues and gipsies; words without meaning (Suift).
GI'BBET. s. (gilet, French.) I. A gallows; the past on which malefactors are hanged, or on which their carcases are exposed (Clcaveland). 2. Any traverse beans.
To Gi'bвet. v. n. (from the noun.) 1. To hany or expuse on a gibbet. (Oldhinm). e. To havin on any thing going traverse (Shakspcare).

Gl'BLIER. s. (French.) Game; wild forri (Addison).
GIBBON (Elward), an elegant English writer, was born at Putney in 1737. He was sent, when very young, to the grammar-sehool at Kingston, from which he was removed, first to Westminster school, and afterwards to Magdalen college, Oxford. While at the university he contracted the principles of popery, which greatly alarmed his father, who, to recover him, sent him to a protestant minister at Lausanne, in Switzerland, where he did indeed renounce his new creed, but at the sinte time he abandoned christianity altogether. His first literary performance was an Essay on the Study of Literature, written in French, and afterwards translated into English by himself, and dedicated to his father in 1765 . In 1744 he was chosen, under the auspicies of lord North, member of parliament for Liskeard in Cornwall. He was also appointed a lord of trade ; and it need hardly be inentioned, that during the time of his being a senator, he was a constant supporter of administration. When that parliament expired he lost his seat and his place, and then retired w lansinne, for which country he had a particular affection. It was there that he wrote the principal part of his History of the Decline and Fall of the Roman Empire, a work which will cause his mane long to be renuembered. Mr. Gibbon died in 1791, and since his death his posthumous works hare been published in 2 vols. 4 to. by his friend lord Sheffiedd.

Few writers wee possessed of such popular talente as our historian. The acuteness of his penetration and the fertility of his genius have been seldom equalled, and scarcely ever surpased. He seizes, with singular felicity, on

GIB

ell the mostinteresting facts and situations, and these the embellishes with the utmost luxuriance of fancy and elegance of style. 1lis; prorods are full and harmonions; his language is alwins well chosen, and is froquently distinguished by a new and peculianly happy ad.:ptation. His epithets, too, are in gencral brautiful and happs; but he is sather ton fond of then. The uniform statement of his diction sometimes imparts to his narrative a derere of obscurity, uniess he deseends to the miserable expedient of a note, to explain the minuter circunstances. Mi, stile, on the whole, is much teo arrificial ; and this gives a degree of monotony to his periois, which extends, we had almost satid, to the turn of his thoughis.

A more serions oljection is his atack upon Christanity; the lo, ese and disespectlal manner in whetibe mentions ma:ny peints of morality regarded as important on the prixciple; of natural religion; and the indecent altusions and expresions which too olten occur in the work. In atack upon Christianity is not censurable uncrely as such; it may proceed from the purest aind most virtusus mofices; but, in that care, the attack will never be carried on in an insidious manuer, and with innproper weajon:; and Christianity isself, so far from dreastiny. will invite every mode of fair and candid discurion. Our historian, it nust be confessed, often makes, when he cannot readily find, an opportmity to insult the Christian religion. Such, indeed, is his eagerness in the catuse, that he stoops to the most despicable pun, or to the most aw Pward perversion of language, for the pleasure of turning the Scripture into ribalary, or calling Jesus an impostor.

Yet of the Christian religion has Mr. Gibbon himself observed, that it " contains a puce. benevolent, and universal system of ethics, adapted to every duty and ciery condition of life." Such an acknowledgment, and from such a writer ton, ought to have due weight with a certain class of readers, and of authors likewise, and lead them scriously to considet, how far it is consistent with the character of good citizens, to endeavour, by sly insinuations, cblique hints, indecent sueet, and profane ridicule, to weaken the influence of so pure and Lencuolent a system as that of Christianity, acknowledged to be admirably calculated for promoting the happiness of individuals, and the welfare of society.

Mr. Hasley, in his poetical Essay on Ilisinry, after a splendid panemyric on the arduous Jabours of his friend, lametrits the irreligions spirit by which lie was actilited.

Think not my verse means blindly to engage
In rash defence of thy profaner pace!
Thourh keen her spirit, lier attachmeht fond.
Base seivice cannot suit with Friendhhifs bond;
Too firm from Duty's sacred path to turn,
She breathes an honest sigh of deep concern

GIB

And pities Genias, when his wild career Gises Futh a wound, or Innocence a tear: Humility herself divinely mild, Sublime Redizion's meek and madest child; Like the dumb son of Crœesus, in the strife; Where force assaiid his father's sacred life, Breaks silence, and witn filial dnty warm, Bids thee revere i:er parents hallowed form!

The part of the History whic! thus gave such oflience to his own frie:d, as well as to the friends of the Christian religion in general. was the account which our tibiorian has giveri of the progress and establishment of Christianity in the two list chapters of his iirst volume; in which lie rudeavours in prove that the wonderful triumph of that religion orer all the established relig:ons of the eaith, was not owing to any miraculous attertations to its truth, hut to fise sccondary canses which he ennmerates; and that Christanity, of course could not be of divine origin. Screral answers dppeared on this occasion, written, as we may naturally suppose, with different degrees of temper and ability. His principal opposers were Dr. Chelsun, Dr. Randolph, Dr. Watsnin (bishop of Llondafi), lord Hailes, 1)r. White, Mr. Apthorpe, Mr. Daries, and Mr. Taylor, author of the Letters of Ben Mordecai. One of them on!y, Mr. Davies, who had undertal:en io point out various instances of misrepresentation, inaccuracy, and even plapiarism in his account, did our historian conUsecend patticularly to answer, and that in at tone of proud contempt and confident superiority. To this Mr. Davies replied; and it is but justice to obscree, that his reply bears evio dent marks of learning, judement, and critical acumen, and that lee has convicted our author of solnetimes quoting inaccurately io serve as purpose. At his other answerers Mr. Giblom merely glanced, treating 1)r. Watson, however, with partlcular respect; but his posihumoris memoirs shew how much he felt the altacks made on him by lord Hailes, Dr. White of Oxford, antl Mr. Taylor. To Dr. Priestley. $\mathbf{x} \cdot \mathrm{h}$, in his History of the Corruptions of Christianity, threw down his gaunlets at once to Bishop Hurd and the historian of the Roman empire, and who presented the latter with a cops of his book, declaring, at the same time. that lie sent it not as a gift but as a challonge, he wirnte in such terins as prodiced a correspondence, which certainly added not to the honour of the socinian divine.
(IIBBO)'SITY. s. (gilhosite, Fr. from gilLous.) Convexity; prominence; protuberance (Ia!).

Gl'sBOUS. a. (gitcus, Latin.) 1. Convex; protuberant: swelling into inequalitios (1)ryilr:). 2. Crookbacked (Brow'n).

Gibious iemp, in botany, hunched. IIaving both surfaces convex, by means of a very abundant pulp. (Sce Convex.) This term. when applied to a perianth, mejua only swelling out at bottom. Instances of this we have in the clases diadiphia and retratymamia.

GIDBOTSNESS. s. (from gillous.) Convexitv: prominence (Bent/ry).

Gl'BCATE. s. An old wornout cat (Shaksperris).

To (ilBE. v. n. (galer, old French.) To sneer; to join censoriousuess with contempt (Suij).

ToGibe.t.a. To reproach by onntemptuous hints; to flowt: to scoff; to ridicule; to sheer; to taunt (Surif!).

Gisis. s. (from the verl.) Sncer; hint of contempt by word or look; scoff; act or expression of scorn; tamt (Spectultor).

GIBliAht, a city in the tribe of Benjamin, lying north of Jerusalem about 20 or 30 furlongs, and buils apon a hill, as its name innр)

GiDELINS, or Gibellins, a famons faction in laty, opposed to another called the Ginelphac. Those two factions ravaged and laid whute Italy for a long serics of years; so that the history of that country, for the space of two centurics, is no more than a detail of their mutual viclences and slanghters. The Gibefine stood for the emperor against the pope: but concerning theis origin and the reason of their names we have but a very obscure account. The most probable opinion is that of Maimburg, who says, that the two factions of Guelphs and Gibelins arose from a quarrel betweels two ancient and illustrious houses on the confines of Germany, that of the Henries of Gibeling, and that of the Guclphs of Adorf.

GIIBEON, a city seated on an eminence about 40 furlones from Jerusalem northward, and not far from the city of Gibeah. This was the eapital city of the Gibemites, who took the advantage of Joshna's oath, and of that which the elders of lisracl tikewise swore to them, upon an artificial representation which they made of their telonging to a very remote country, and their desire of making an alliance with the IIebrews. Joshua (ix. $3,4, \mathcal{E} \times \mathrm{sq}$).

GI'BER. s. (from gile.) A sneerer; a scoffer: a tainter (Ben Jonson).
GI'BINGLY. ad. (from gile.) Scornfully; contaptously (Shatispearc).
GI'BSTAPI. s. 1. A long staff to gage water, or to shove forth a vessel into the deep. 2. A weapon used formerly to fight heasts.

GI'BIEITS. s. The parts of a geose which are cut off before it is roasted ($D r y d e n$).

GIBRALCAR, a town of Spain, in AndaJusia, near a mountain of the same name, formerly calied Calpe, which, and Mount Abyla on the oppersite shore of A frica, were called the pillirs of Hercules. Tarick, a general of the Morors, built a fortess here, which he callied Gibel-Tarck, that is to siry, Meunt Tarick. Suce that time a town has been buite at the foot of this rock, which is strongiy fortified. I can le approached only by a narrow passege belween the motntain and the sea, across which the Spaniards have drawn a line, and fortified it, to prevent the gartison from havilez any communication with the country.

If was formerly thought to be impregnabie : but in $170+$ it was taken by the confederata Hect, commanded hy sir Grorse Rooke; and has remamed in the hands of the Euglish evey since. It has been sereral times attacked by the Spaniards, who have always been unsuccessful : their last effort to recover it was made Sept. 13, 1782, with floating batterics, in which were mounted 212 brass cannons and mortars. General Elliot, who was governor of Gibraltar, had prepared a great number of redhot tallis against the attack: and these so efficetrally destrojed the floating bateries, thas the Spaniards were greatly annoyed, and relimquished the enterprize. Lat. 30.6 N . Lor. 5. 17 W .

Gibraltar, a town of South Anerica. in the country of Terra Firma, and province of Venczuela, situated on the east coast of the lake of Maracaibo. In the entirons of which is gathered the best cocna of the proviuce, and an excellent kind of tobacco grows, of high esteem in Old Spain. The air is exceedrimely unwholemue in the rainy season, on which account the merchants and planters generally retire at that time to Maracaibo. It is defended by some fortifications, but was taken ly the French and bumed in the year 16;9: fify miles SSE. Maracaibo. Lon. 40.50 W. Lat. 10.4 N.

GIBSON (Edmund), bishop of London, was born at Kinipe, in Westmoreland, in 160\%), In 1686 he became a servitor at Queen's colleze, Oxford. In ligit he published a new elition of William I)rummond's Potemo Middiana, and James the V. of Scotland's Cantilena Rustica ; the next year a translation into Latin of the Chronicon Saxonicum, with the Saxon original, and his own notes. He published also an cdition of Camden's Britannia, in English, and the posthumous works of sir Henry Spelinan, on the laws and antiquitics of England. His writings recommended him to Dr. Tenison, archbishup of Canterbury, who made him his domestic chaplain, and greatly fatronized him. In 1715, Tenison dying, Wake bishop of Lincoln succecied to the primacy, and Gibsonn was raised to the see of Lincoln. In $1 / 20$ he was transhted to London. He obtained in ample endowment from the crown, for the regular performanee of di tine service in the royal chapel at Whitehath. by a succession of clergynen, selected from hoth universities, and exerted himself at an tines with great zeal in behalf of the church of Lingland and vital christianity. He dicd in 1748, at the age of 79 . Besides the alouve works he published several of his own, chicfiy in divinity. His Codex Juris Ecclesiastici Anylincani is a work of much labour, and is highly celcbratet.
Gil), or Giddines, in veterinary medicine, a rettign aflicting the heal in slacep, apes, and sonie othe: animals. Among sheep it commouly proceeds from their being tho richly fed, and consequently it usually yields to a^{2} free employment of the laucet. The

GIF

Grmers call this disease sturdiness, or the sturdy evil.

GI'I)DILY. ad. (from giddy.) 1. With the head seeming to turn nound. 2. Inconstanily; unsteadily (Donne). 3. Carelessly ; heedlessly; neqligently (Shakspenre).

GIIODINESS. s. (from giddy.) 1. The atate of being giddy or vertiginous. 2. Inconstancy; unsteadiness; mutability; changeableness (Bacen). 3. Quick motation ; inability to keep its place. 4. Frolick; wantonnees of life (Donnc).

G'IDDY. a. (dicig, Saxon.) i. Vertiginous; having in the head a whirl, or sensasion of circular motion (Ta/e). 2. Rotatory ; whirling ($\boldsymbol{\mu}$ ope). 3. Inconstant; mutable; unsteady; changeful (Shakspeare). 4. That eauses giddiness (Prior). 5. Heedless; thoughttess; wild (Rowe). 6. Tottering; unfixed (Shakspeare). 7. Intoxicated; elated to thoughilessness; overcome by any overpowersing incitement (Shakspeare).
GI'DDYBRAINED. a. (giddy and brain.) Careless; thoughtless (Otway).

GI'DIDYHEADED. a. Without steadiness or constancy (Bnrten).

GI'DIYYPACEI). a. Moving without regularity (Shakspeare).

GIDEON, in Seripture history, the son of Joash, of the tribe of Manassch. He was chosen judge of Isracl in the year of the world ejay, and died in 2768 .

GIFFORD (1)r. Andrew), an English baptist minister, was born in 1700. He was essistant librarian many years at the British Museum, and died in 1;84, bequeathing his library to the baptist academy at Bristol. Dr. Gifford was a learned antiquary and a pious disine.

GIFT. s. (from gice.) 1. A thing given or bestowed (Marthect). 2. The act of giving (Millon). 3. The right or power of bestowing (South). 4. Oblation; offering (Todit). 5. A bribe (Deutcronomy). 6. Power; faculty (Shalispeare).

Gift, Donum, in law, is a conveyance which passeth either lands or goods, and is of a larger extent than a grant, being applied to things moveable and immoreable; yet as to thines immoveable, when taken strictly, it is applicable only to lands and tenements given in tail ; but gift and grant are too ofien confounded.

Nese-Ycar's Giffs, presents made on newycar's day, as a token of the giver's good will, as well as by way of presage of a happy year. This practice is very ancicut, the origin of it anong the lomans being referred to Tatius king of the Salines, who reigned at Rome conjointly with Romulus, and who having considered as a good omen a present of sonie sprigs of vervain gathered in a wooxl consecrated to Strenia the goddess of strength, which he received on the first day of the new ycar, authorised this custom afterwarck, and gave to these presents the name of Strenx.

GI'FTED. a. (from gift.) 1. Giren; be-

GIL

stowed (3ilion). 2. Endowed with extraot. dinary powers (Dryden).

GIG. s. (Eivmulogy uncertain.) 1. Any thing that is whirled round in play. 2. (gigia, Islaidick.) A fiddle: out of use. 3. A light open carriage, drawn by a single horse.

GIGA, or Jig, in music, an airy brisk movenent generally writien in the time of $\hat{\text { : }}$.

Giga, a small island on the W. coast of Scotlard, between the iste of Shive and the peninsula of Cantyre, in Argyleshire, in which county it is included. The inhabitauts anuually export 2 considerable quantity of grain.

GIGANTES, the rebel giants.
GIGA'NTIC. a. (giganes, Latin.) Suitablo to a giant ; big; bulky; emormous (Pope).

To GI'GGLE. v. n. (gicligelen; Dutch.) To laugh idly ; to titter (Garrick).

Gl'GGLER. s. (from giggle.) A laugher; a titterer (H erlert).

GI'GLET. s. (zeasl, Saxon.) A wanton; a lascivious girl: out of use (Shahspeare).

GI'GO'T. s. (French.) The hip-joint.
GIGS, a term in the stable, but now almost obsolcte, for what are now called flaps, a kind of faccid fleshy enlargement on each side a horse's jaw, which, in his mastication, frequently falling between the grinders, is productive of pain, and prevents the horse frome eating. If long and thin, they may be completely taken off by a pair of scissors, and the wounds washed with a strong solution of alum in water: If they are 100 fleshy for this inode of extirpation, they may be slightly scarified with a bistory, or abscess loncet.

GIHON, in ancient geography, one of the rivers of Paradise; aceording to Wells, the eastern branch of the Euphrates, into which it divinles after its conjunction with the Tigris.
GILBERT (William), a learned physician, who discovered several of the properties of the loadstone, was born at Colchester, in 1540 , and educated at Cambridge, but took his degree of M.D. abroad. On his return to England he was clected a fellow of the college of physicians in London in 1573, and practised in the nuetropolis with great success and repute. so that queen Elizabeth appointed him her physician in ordinary. In tioo he published a work, intidted De Magnete, magneticisgue Corporibus, and de magio Magneté tellure. Physiologia nova. He dicd in I603. (If at: kins).

Gilbert (Sir Humphrey), an able navifator, who took possession of Newfoundland in the name of queen Slizabeth; but was unsuccessfal in an attenpt he made to plant a colony on the continent of America. He contended for the existence of a N.W. passage to the Indies, in a book written for that purpose. He died in 1583.
GILBERTIA. In botany, a genus of the class decandria, order monngynia. Calyx four or five-toothed; corol four or fire-petalled; nectary cylindrical, truncate ; anthers inserted ino the margin of the nectary ; copsule fors-
celled; the cells abont one-seede.l. Four speciss: matives of the we of Bourton.

CilibleleTINFS, an order of religious, thon cutied tron Si. Gilbert of Sempringham in the combty of Lincoin, who fotaded the s.mme dimut the year $114 x$; the monks of which otscrved the rile of st. Augustin, and were accourted canons: and the nuns that of St. Bendedict. The mounder of this order erected a donble momastery, or rather two difficent ones, contiguot to each other, the one for men, the other for womell, but parted by a rery high wall. St. Giltiert himsilf founded $1: 3$ monasteries of this order, viz. four for men alone, and mine for men and women together, which hat in them 700 brethren and 1500 sisters. At li:e disoblution there were about 25 houses of this order in England and Walles.

Gllis()d, mountains of Samaria, stretching out from west to cart, on the contines of the half tribe of Manasseh, and of the tribe of Isactar; and to the somb part of the valley of Jezreel, begimuing westward at the city of Jearel, situatid at the fiot of these mountains, reaching almost quite to the Jordan, lying at the distance of six miles from Scythopolis: fanous for the death of Saul and his soms Jonathan, and the defeat of the Israelites by the Philistines.
(illi). Sec Guild.
To Gitio: v. as. pret. gilded or gilt. (zitran, Saxon.) 1. To overlay with thin gold (Spenser). 2. To cover with any yellow matter (Shak). 3. To adorn with lustre (Pope). 4. To brighten; to illuminate (South). 5. To recommend by adventitious ornaments (Shakspearr).

Gi'Lilill. s. (from gild.) 1: One who lars gold on the surface of any other body (Baacont). 2. A coin, from one shilling and sixmence, to two shillings (Shatspeure):

Gi'li)ING. s. (fron gild.) Gold laid on any surface be way of ornament (Bacon).

Gilding (Artof). Sec Gold.
GILEAD, in Scripture history, the son of Machir, and grandson of Mandsseh, had his inheritance alloted hian in the momatains of Gileal, whence he took his name. See Ge-ne-is xxxi, xaxrii, Sic.

Gilead (Balm of). Sce Dracocepha. Lem.
(iliead (Balin of. Tree). Sce Amykis.
Glli. (Johu, D.D.), a protestant dissentine minister of the baptiss denomination, aud the som of Jdward and J:lizabeth Gill, was bern at Ketterine in Northamponshire, November 93,1 (ixy 7 . His sentiments, as a divine, were thronghout Calvinistic: "And perhaps non man (says the Rer. Mr. Toplady, a minister in the chureh of Kingland), since the days oi Austun, has writum so largely in defence of the system of grace; and certainly no man has treated that momentous suheect, in all its branches, more closely, judiciously, and successtuily." He died at Camberwell, Octoter 14, 1才引1, ased 73 years 10 monthe and 10 dajs. In 1718 the dector anaried Mrs. Eli-
zabeth Negus, by whom he had many chidds ren, two of whoin only surviral him. Mirs. Gill died in 17bit. His works are, a Commicmary on the Old and New Testament, in os vols. folio. A Rody of Divinity, in 3 vols. quarto. The Cause of God and Truth, 4 vols. octavo. A Treatio concerning the Prophecies of the Oid Testament reveciing the Neestiah. A Discertation on the Anlliquity of the Hebrew Lamwage, Letters, Vowel-Points, and Accents. Sermons. on the Canticks, felion; besides a great number of sermons and conaroversial pieces on difieront sutyects. The dractor was a man of considerable labour and industry; his works, thoweh somewhat udious and dull, exhibit marlis of sound piety and a gored understandine; but we do not now recollect a single trait of zenius.
GILIS, in ichthonongy, the respiratory orgon of tishes, anatomically denomibated branchix, and in many reppects very clusely assimilating to the luyes of quadrupeds. The gilis or branchix lic in wo large opening, one on each side of the head. Their form is semicirs cular, and terminate with a fringe of beantiful fibrilla, resembling, in their form, the vane of a feather. They ate perpectually subject to an alternating action from the pressure of tha water, nor is any red blood to be discovered where such alternate pressure dues not exist. Over these gills is a large flap, or valve, allowing a communication externally, by which the water fishes are compelled to take into their mouths with their frod finds an exit without passing into the stomach. The blood is collected from the infinite ramification of the small branchial arteries, by a yast number of small veins, gradually comununicating and errlarging, which at lengeh, instead of uniting to form a pulmonary vein, as in quadrupeds, and return the blookl to the heart, unite and forith an aorta descendens, which, without the intervention of the contraction or dilation of the heart, circulates the blood through erery part of the system, to be returned to the heirt by the corporeal veins alone. The heart of fishes, which is single instead of double, is, hence, a mere pulancuary and not a corporeal heart.
Giles, in butany. Sec Lanel.
Ginit, a measure of capacity, containing a quarter of an English pint.

Gill, contracied from Gillian, is an appellation for a wonan in ladicrous language.

Gill-cover, in ichthyolozy, the tony or cartilupinous substance placed on the membrane that covers the gills.

Gillif()Wier. Gilliflower (Clove). in botany. Sec Dianthus.

Gilliflower ($\}$ Uueen's), in hotany. Sce Hesperis.

Ginhiflowfre (Stotb), in botany. Sce Cheiranthus.
(illOL(), a large island of the Fast Inclies. It lies dire cily under the equimoctial tine, in lam. 130.0 E . The inhabitants are fierce and criel.

GILPIN (Bernard), an English divine of extraordinary merit, was bern at hentuire iat

TVestmoreland in 1513, and educated at Queen's college, Oxford, where he took his degress in arts, and was chosen a fellow. On the completion of the foundation of Christ church collue by Henry VIll. he was chosen one of its first masters. In the reign of Edward VI. his zeal for popiery led him to hold a diapute with Peter Marigr, the result of which was his own conversion to the protestant religion. Soon after this he was presented to the living of Nortoa in the diocese of Durham, and by the advice of Tonstal, bishop of that diocese, who was his uncle, he went abroad, that he might consult foreign divines, taking with him a MS. of that prelate on the eucharist to get printed. After the accession of queen Mary, Fonstal being restored to his see, he ofiered a valuable living to Gilpin, who declined it from scruples of conscience. Soon after he went to Paris, where the first thing he did was to print his uncle's book. In $15 j 6$ Gilpin returned to England, a little before the death of queen Mary. His uncle conferred on him the archdeaconry of Durham, with the rectory of Easinstion annexed. Although the persecution still raged against the protestants he preached openly against vice of every kind, bat more particularly in the clergy, and amongst other things, against pluralities and non-residence, by which he brought such a persecution on himself that he was twice formally accused before his bishop, who, however, found means to protect him. But he was so em!arrassed with the malice of his enemies, that he resigned the arehdeaconty and retired to Houghton-le-spring, the living of which becoming vacant was given to him by his uncle. Although he now forbore to attack the clergy, they could not forgive him, and he was accused before Bonuer, bishop of London, who ordered him to be apprchentied. He began without delay to prepare himself for martyrdom, and, having desired his house steward to provide him with a long garment, in which he proposed to go to the stike, he set out for London. But the death of queen Mary, the news of which be received on the road, sared him in this exrremity. He returned to Houghton, where his parishioners received him with every token of respect and satisfaction. When the popish bishops were deprived, a congé delire was sent to Cartisle to elect him bisthop of that sce ; but he declined the honour, and the following icar refused the provostship of $Q_{\text {ureen's college. }}$ He endeared himself to all by his munificence, charity, and virtuous life. His dcath was hastened by an accident. He was thrown down in the inarket-place at Durham by anon, and extremely hurt; and though he got abroad again after a long confinement, he never perfectly recovered. He died in 1583, in the ơith year of his age. (Wallins):

GIITT. s. (fmin gild.) Golden shome ; gold laid on the surface of any matter (Sialaspeare). Gilt T. The participle of gild.
GILTHEAD, in ichthyology. Sie Spaeves.

Gim. a. (An old word.) Neat; sprece.
GIMBOLS, are the brass rifize by which a
sea-compass is suspended in its box that usually stands in the binacle.

GI'ACRACK. s. (ludicrously formed from gin.) A slight or trivial mechanism (Prior).

GI'MLET. s. (gitelet, guimifelet, French.) A borer with a screw at its joint (.2lwan).

Gl'MMAL. s. (gimellus, Latin.) Some litthe quaint devices of machinery (Hunmer).

GIMMER. s. Movement; machinery (Morc).
GIMP. s. A kind of silk twist or lace.
GIN. s. (from engine.) 1. A trap; a snare (Ben Jonson). 2. Any thing moved with screws, as an engine of torture (Spenser). 3. A pump worked by rotatory sails (Wooducard). 4. (contracted fromi Geneva.) The spirit drawn by distillation from juniper-berries.

Gin, in mechanics, an engine for driving piles. See Pile-engine.

GINGEE, a town of Asia, in the peninsuta of Hindustan, and on the coast of Cormandel. It is a large town, well peopled, and strong both by art and nature, being seated on a mountain, whose top is divided into three points, on each of which is a castle. The Great Mogul in $16 y 0$ began a siege, which continuod three years, to no purpose. It is 33 miles W. of 1^{\prime} ondicherry. Lat. 11. 42 N . Lon. 10. 13 E.

GINGER, in botany. See Amomum.
GI'NGERBREAD. s. (ginger and liread.)
A kind of farinaceous sweetmeat made of dough, like that of bread or biscuit, swectened with treacle, and Havoured with ginger and some aromatic seeds (Suift).

GI'NGERLY, ad. Cautiously; nicely (Shakisprare).
Gl'NGERNESS. s. Niceness; tenderness.
GINGIDIUM, in botany. Sce Cherefolium.

GINGiRO, or Zindero, a small territory of Λ frica, to the south of Abessinia; being separated from it by the river Zebee, by which it is also almost entirely surrounded. This river is extrenely large, having more water than the Nile, airl being much more rapid: so that during the rainy season it would be altogether impassable, were it not for the larze. rocks which are in its channcl. The extreme difliculty which occurs in paseing this river. however, is the means of preserving the kinadom of Gingirn, which could otherwise be conquered in a single season by the (adla.

In this kinghom every thing is conducted. or preteaded io be conducted, by magic ; and all those slaves, which in other African countries are sold to Furopeans, are here sacrificed to the devil, human blood being a necescory part in all their accursed solemnities. "How far (says Mr. Bruce) this reachio, to the santhward, I do not humw; but llook upon this to be the geographical bounds of the reign of the desil on the north side of the equator in the peainsula of Africa."
-GINCiVAK. (gingiva, from simno, to brget, becatse the tecth are, as it were, born ia them) The mams. See Gums.
(iNGIVAL. n. (wimpon, Latin!) Brloning to the grems h tere:

To GINGLE. v. n. 1. To utter a sharp clatering noise (P ope), 2. To make an affected sound in periods or cadence.
T'o Gi'ngle. v. a. To shake so that a sharp shrill clattering noise should be made (Pope).
To Gingle. s. (from the verb.) 1. A shrill resounding noise. 2. Affectation in the sound of perimps.
GI'NGLYMOID. a. (yrøyдино; a hinge, and ade.) Resembling a ginglymus; approaching to a ginglymus.
 a hinge.) The hinge-like joint. A species of diarthrotis or moveable connexion of bones, which admits of flexion and extension, as the knee-joint, \&e.

GlNKSO, in botany. See Mauritia.

Gl'NNE'T. s. (yeroc:-) A nag; a mule; a degenerated breed.
GINONIA. In botany, a genus of the class dodecandria, order monogynia. Calyx six-cleft; petals six: capsule one-celleil, fourvalved, many seeded. One species; a myrtleform shrub of Cuba, with leaves opposite, lanceolate, entire, glabrous; peduncles axillary and terminal, one-flowered.

GINSENG. (ginseng, Indian.) The plant from which this root is obtained is the panax quinquefolium ; foliis ternis quinatis, of Linnéus. A genus of the class polygamia, order dioecia. It is imported into this country scarcely of the thichness of the little finger, about three or four inches long, frequently forked, transversely wrinkled, of a horuy texture, and both internally and externally of a yellowish white colour. To the taste it discovers a mucilaginous sweetness, approaching to that of liquorice, accompanied with some degree of bitterness, and a slight aromatic warmth. The Chinese ascribe extraordinary virtucs to the root of gingseng, and have no confidence in any medicine unless in combination with it. In Furope, however, it is very scldom employed. Sec Panax.

GlOIA (Flatio), of Amalf in the kingdom of Naples, the celebrated mathematician; who, from his knowledze of the magnetic powers, invented the mariner's compass, by which the navigation of the Europeans was extended to the most distant regious of the ghobe: before this invention, navigation was coufined to coasting. The king of Naples bejug a younger branch of the royal family of France, he marked the north point with a fleur de lis, in compliment to that country. It is said the Chinese know the compass long before; be this as it may, the Europeans are indebted to Ginia for this invaluable discorery. He fourished A.1). 1abe.

GIORGIONLE, so called from his comely aspect, was an illustious Venetian painter, born in 1478. He received his first instructions from Giovanni Bellino; bat studying aiserwards the works of Leonardo da Vinci, he soon surpassed them both, being the first among the Lombards who fonud out the admirable etfects of strong lights and shadows. Titian became his rival in this art, and was so
carefut in copying the life, that he excelleal Giorgione in discorering the delicacics of 11нture, by tempering the boldness of his colouring. The most valuable piece of Giorgione in oil is that of Christ carrying his cross, now in the church of San Rovn in Venice ; where it is held in great veneration. He died young of the plague in 1511.

GIOITO, an eminent painter, sculptor。 and architect, was born near Florence in 1270, and was a disciple of Cimabue, whom he greatly excelled. He was chiefly admired for his works in mosaic, the best of which is a ship over the grand entrance of St . Peter's chureh at Rome. At Florence is the famous mossic of the death of the Virgin, which was wonderfully admired by Michael Angelo. He died in 13 зit.

GIOVENAZZO, a town of Naples, in Terra di Bari, with a castle. It is seated on a mountain near the sea. Lat. 41. 26 N. Lon. 16. 30 E.

To GIP. v. a. To take out the guts of herrings.

GI'PSY. s. (corrupted from Egyptian.) 1. A vagabond who pretends to foretell futurity, commonly by palmestry or physiognomy. (Sce GYPsy.) 2. A reproachful name for a dark complexion (Shakspeare). 3. Name of slighe reproach to a woman.

GIRALDI (Lilio Gregorio), an eminent writer, was born at lerrara in 1479. He resided some time at Rome in favour with some eminent men at that court, but after losing his patrons he fell into poverty, and returned to his native place, where he died in 15.52. The most esteemed of his works is, Historia de Diis Gentium, and it is aniong the last be wrote.

Giraldi (John Baptist Cintio), an Italian poet, was born at Ferrara in 1504. After gos ing through a course of classical and philosoplical study, he applied to physic, in which he took his doctor's degree. He was for some time secretary to the duke of Ferrara, but afterwards accepted the professorship of rhetoric at Pavia. Being greatly afficted with the gout be quitted the chair, and retired to his native place, where he died in 1573. His works are cliiefly tragedies, an edition of which was published at Venice, in 1683, in 8 vo .

GIRARD (Gabriel), author of the celebrated work, intitled, Synonymes François, 8c. was almoner to the duchess de Berry, and the king's interpreter for the Russian and Sclavomian languages. He also wrote a work, intirled Principes de la Langue Françnise; but this is inferior to the former, which indeed cxhibits great subtlety of understanding and refinement of taste. The abbe Girard died in $17+8$ a the age of 70.
GIRARI)ON (Francoisj, a French sculptor and arciaitect, was born at Troyes in $16 \% 8$. After studying under Maziere and Anguier, he was sent io Ronne be Louis XIV. to perfect himself in his art, and succeeded le Brun as inspector-genera! of sculpture. The chief works of this artist are the Mausoleum of cars dinal de Richelien, in the church of the Sur-

G 1 R

Bnane : the equestrian statue of Lonis XIV.; and the rape of Proserpine, in the gardens of Versailles. He died at Paris in 1715.

GIRASSE, in mastiolojo. See Camelor pardalis.
ToGIRD. r.a. pret. girded or girt. (zẏдan, Saxon.) 1. To bind round (Maccalces). 2. To put on so as to surround or bind (Swifl). 3. To fasten by binding (Milton). 4. To inrest (Shakspeare). 5. To dress; to habit; to clothe (E :criel). 6. To cover round as a garment (Milton). 7. To furnish; to equip (Milton). 8. To enclose; to encircle (Milfori). (9). To reproach; to gibe (Shakspeare).

To Gird v. n. To break a scornful jest ; to gite; to sneer (Shakspeare).

Gird. s. (from the verb.) A twitch; a pang (Tilllison. Goodinan).

GIRDERS, in architerture, some of the largest pieces of timber in a floor. Their ends are usually fastened into summers and breastsummers, and joists are framed in at one end

FIR.

Length.	readth.	Height.
$10 f$.	$8 i$	$10 i$
12	8	11
14	9	11.1
16	9	11.9
18	10	12
20	10	12.6
22	11	12.6
24	11	13.2

GIRDLE. s. (zijnbe, Saxon.) 1. Any thing drawn round the waist, and tied or buckiled (Brown). 2. Enclosure; circunference (Shat peare). 3. The zodiack (Bacon).

Girdle (Maidens' or Virgins'). It was the custon among the Greeks and Romans for the hasband to untie his bride's girdle. Homer, lih. xi. of his ()dyscey, calls the girdle Ton;9mum $\zeta 4 \mathrm{~mm}$, maid's girdle. Festus relates that it was made of sheep's wool, and that the husbond untied it in bed. The perers altribute to Venus a particular kind of girdle called cestus, to which they annexed a faculty of inspiring the passion of love.

To Girdie. v. n. (from the noun.) 1 To gird; to bind as with a girdle (Shaksfeare). 2. To inclose; to shut in; to ensiron (Shakispare).

Girdle (Order of the). The order of Cordeliers.

GI'RDLEBELT. s. (girdle and lefl.) The belt that encircles the waist (Dryden).

GI'RDLER. s. (from girdlc.) A maker of ci:Hes.

GIR

to the girders. The size of girders and suma mers, upon the rebuildiug of London, were ordained by act of Paaliament, to be in lengith from ten to twenty-six feet, in breadth from eleven to seventeen inches, and in depth from eight to fourteen inches. It was also ordained by the same statute, that no girder or sumner should be less than ten inches in the wall, and that their ends should be laid in loain; as also that they be of good hearty oak, as free from k nots as may be, because that will be the least subject to breaking, and may with more safety be relied on in this cross and transverse work.
A scantling of fir 10 feet in length, 8 inches in breadth, and 10 high, is found to be sufficiently strong for all practical purposes; the following tables contain the diutensioris of other girders, of yery nearly equal strength, atlowing the relative strength of oak and fir te be as stated under the article Bean.

OAK.

Length.	Breadih	Height.
$10 f$.	$7 i$.	$10 i$.
12	7	11
14	8	11.1
10	8	11.9
18	9	11.9
20	9	12.5
28	10	12.5
24	10	13.

GIRE. s. (gyrus, Latin.) A circle described by any thing in miotion.
Girgashites, or Gergesenes, an ancient people of the land of Canaan, whose habitation was beyond the sea of Tiberiag, where we find some fontsteps of their name in the city of Gergesa, upon the lake of Tiberias.
GIRGE, a town of Eeypt, the capital of the Said, situate near the left bank of the Nilc. It is about three mailes in circumference. Lat. 26. 30 N. Lnn. 31.22 E .

GIRGENTI, a town of Sicily, which necupies part of the site of the ancient Agrigentum. It has only one street fit for carriages.
It is inhabited by 15,006 persons, but ham no remarkable buildings or works of art that descrve mention; the only antiquities to be seen were a Latin inscription of the time of the Antonincs, as is pretended, relative to some association between Agrigentum and Lilybeum : and a piece of ancicint masonry in the foundations of a church pretended to be the remains of a temple of Jupiter. At some distouce, on the old ground in the vale, stands
the cathedral, a clumsy building patched up by barbarous architects with various discordant parts. This church is enriched with no works of modern painters or sculptors that claim any tite to praise; but the baptismal font is made out of an ancient sarcophagus faced with yery beatuiful basso relievo. This sce is the richest in Sicily, but has the character of being less enlightened and polished than the rest of the island. It is scated on a hill, near the river St. Blaise Lat. 37.24 N . Lon. 13.26 E .

GIRL. s. (karlinna; Icelindick, a woman.) A voung woman, or female child (Nhal.).

Girl (Invisible). The name given to an ingenious acoustic apparatus, by which sounds issue from a small hoilow laall, as if they procected from a girl within it.

There have been two communications with a view to explatin the secret of the invisible pirl, puiblished in Nos. 65 and 60 of the Philosophical Journal. The author of the first of these communications, havinjoboced that the secret of the invisible girl has not yet been publisined, here presents the explanation of it given by Mr. Millingon of Chancery-lane, in his Philosophical Experiments.

The visible part of the apparatus connected with the invisible girl is this--First, a mahogany frame not very unlike a bedstead, having at the corners four upright poist, alwut five feet high, which are united by a cross rail near the top, and two or more cross rails near the botton, to strengthen the frame : these cross rails are about four feet in length. The frame thus constructed stands upon the floor, and from the top of each of the four pillars s_{i} riings one of four strong bent brass wires, converging towards the top, where they are secured by a crown and other ornaments. Firm these four wires a hollow eopper ball, of a foot in diameter, is suspended ly slight ribbons so as to cut off all posistle communication with the frame. This globe is supposed to contain the in isible being, as the voice apparently proceeds from the interior of it: and for this purpose it is equipped with four trumpets, placed round it in an horizontal direction, and at right-angles to each other, the trumpet mouths coming to within about half an inch of the respective cross rails of the frame surrounding them.

When a question is proposed, it is asked from any side of the frame, and spoken into one of the trmapets, and an answer immediatcly proceeds from ali the trampets, so loul as to be distinctly lieard by an car addice:sed to any of them, and yet so disiant and feeble that it appears as if coning from a very diminutive bcing. In this the whole of the experiment c.msists, and the variations are, that the answer mav be returned in several languages, a kiss will be remmed, the breath producirg the woice may he felt, and somps are sung, actompanied by the piano-forte, \&ic.

In this illusion the sound is really conieged by a tule, in a manner sianiar to the old and well-kuown contrisance of the speaking-buat; the invisible sisl only difiering in this one circumstance, that an artificiad echo is produced
by means of the trumpets and hollow globe, ist consequence of which the sound on longer appears to proceed in its original direction, but is completely reversed. In the present case the beginning of the tube is in one of the handrails jost opposite the centre of the month of one of the trumpets, the orifice being concealed try reeds or other mouldings: the tube itself, which may be about half an inch in diameter, runs through half the hand-rail, then down one of the corner posts, and from thence under the floor till it reaches a large deal case aluost similar to an inverted funncl, along the side of which it rises till it comes nearly into contact with the ear of the confederate, who with a piano-forte, \&ic. are conccaled in this case. Any question asked by a voice directed into one of the trunpets will be immediately reflected back from the concave iuterior suiface of the glohe to the orifice of the tuhe, alon:5 which it will be conveyed so as to be distinctly heard by the persmi in the deal case; and the answer returned, or a song, or a ture from the instrument, will in consequence of a similar reffection be distinctly heard at the mouths of the trumpets, but no where else; and there it will appear to come precisely from the interior of the globe. A small hole, closed with glass, is left through the deal case and side wall of the room, by means of which the concealed person has an opportunity of observing and commenting upon any circumstance which may take place in the room.
The author of the second commanication confirms the former explanation of the invisible girl, except as to the manner in which it is suppoised she saw the company, for he carefully examined the rom of a similar exhibition at Bristol, and ascertained that there conkl be no such aperture as is above spoken of. In this exhibition there was a loose rail with eight leg; ; seven of which the operator always removed from their places to blunt suspicion; but the cighth was a!ways found immoveabig fixed, and that was always the leg towards the closet where the lady sat. Here, too, the rail was covered opposite the mouth of the trumpets with stained paper; but the vibration might be felt on the holes when any one answered, and peoples' hands had a litle indent, ed them by accideatal pressure.

Notwithstanding the affirmation of the writer of the second article above, that there couid be no aperture for the lady to see through, in the room at Wristol, we are inclined to think there has been some such orifice in other exhibitious of this kind in different parts of the united kingrlom. If such an aperture was fixed at the height of ten or twelve feet, and the concealed seat of the confederate elevated accordingly, it would give her conciderable advantage in secing what is going forward in the room, at the saine time that it would be extremely easy, by ineans of some artificial ornar ment attached to the wall, (of which thrie might be several alike) to prevent the possiti, lity of discovering any such hol-. Or without clevating the seat of the conficierate, two ur

G I R

ahree plane mirrors properly disposed, one of them horizontaily just above the top of the room and diszuised by a feigned ventilator, or as open-work ornament, would give her a still anore complete view of every thang in the exhi-bition-rom, and thet, if it were thought proper, pruttruyed on a glass lying before her upon her musical instrumem.

The gricral method of diyposing such mirmors meit be rery obviois to thone who are merely acquainted with the rudiments of (atapptrics; and others will see it explaned in Montucli's an:l simatar books of Pailuspiphical Racreations, where a jealons husband is taught how to se: what his wite is dome in atother opirtment or a persin to see thuse who approach the door of his house, without lowking but at the window, or without having a front at whith to look out.

The methax of managing this exhibition, as generaily performed in Lugland, is doubtiess pointed out in these letters: various other methads, all depending upnn the simple principle of rellected sounds, are either described or suggested in the good father Kircher's entertaining work intited Musurgia Universalis. (Retrospect of Discoteries, No. O.)

GI'RLLSHI. s. (from girl.) Suitinga girl; gouthfil (Carew).
(il'RLIshLy'.ad. In a girlish manner.
To GIRN. v. n. It seems to be a corruption of rrin.
(;IRONDE, a department of Prance, which includes part of the late province of Guiemue. It lies on both sides the Garonne. Its chief town is Rondeaux.

GIRONNA, an ancient city of Spain, in Catalonia, with a bishop's see. It is seated on a hill, loy the side of the river Onhall. Lat. 42. 0 N. Lon. 2. 52 E .

GIRT. The pirt. pass. of gird.
To Girt. v.a. (from gird.) To gird; to encompass; to encircle: not proper (T'homson).

Girt, in the measuring of timber, is the cireumference of a tree, though some use this word for the fourth part of the circumference only, on acconnt of the use made of it. The square of the fourth part is considered as equal on the area of the secrion of the tree, which square therefore, multiplied by the length of the tree, is accounted the solid content. This content is about one fourth less than the true quantity, being nearly equal to what it will be atier the tree is hewn square, and is probably intended to make an allowance for the squaring the tree.

Girrs, in naval afliirs, the situation of a ship Which is moored so tight by her cables as to be prevental turning to any change of the wind or tide. to the current of which her head would onherwise be directed. The cables, to produce this, are extended by a strong application of nechanical powers within the ship, so that as she ieers, or endeavours to swing almut, her side bears upon one of the cables, which intermipts her in the act of traversing.
GGIRTANNER (Dr. Christopher), a celcbrated chemist, was born in Swisserland, about

G I V

1700. He remored into Germany early in life, and was the first chemist there who adopled the new chemical doctrine of the Frencir. In 1791, ine published at Berlin a work imtiled The New Chemical Nomenclature, it the German languare (Neue Chrmiscine Nomenklatur fur dic Dentsche fprache); and the next year The Elements of the Antiphilogistic Chemistry. He was the atuthor also of several other works, and of a great many papers on chemistry and other subjects, prinicd in difirent journals. He died at Gottingen, in an apoplatic fit, May 17th, 1S00, in the 40th year of his age. (1 hiil. Mag.)

GIRTH-LINE, a rope passing through a single block on the head of the lower masts to honst up the rigqing, and the pcisons employed to place the rigging and cros-trees on the niast beads. The girn-line is the first rupe emploved to rig a ship, after which it is temoved till the ship is to be unrigged.
GIRTHS, horse suathes made from woollen web, and used for keepiag the saddicie in a pronper position. These, to prevent gathor, shanald be made of elastic, and not of tight-wove weh, which, being rigid and harsi, is likely te licerate during the heat and friction of a loing chase. Observation should be made that githis are never too shont, so as to have the buck le below the paak of the saddle, either on one side or the other; for want of attention to which, narbles sitfists, and wounds, very frequently ensue.

To Girth. n. a. To bind with a girth.
GISARMIS, in our old writers, a baihert.
GISBOROUGH, a town in the N. Riding of Yorkshire, with a market on Mombays. It is noted for being the first place where alum was made. Lat. 54.35 N . Lon. U. 5.5 W.
gishurn, a town in the W. Riding of Yorkshire, with a market on Mondays. Lat. 53. 5.5 N. Lon. 2.22 W.

To GISE Ground. v. a. Is when the owner of it does not feed it wish his own stock, but takes other cattle to graze (Bailey).

GI'SLE. Among the ancicnt Saxons, signifies a plodze: thus, fredgisle is a pledge of peace; Gisielert an illustrious pledge (Gib. son).
GISON, in Jewish antiquity, a wall about treast high, made round the temple, and the altar of burnt sacrifices, to keep the people at a proper distance

GITTITII, a Hebrew word occurring often in the Psaluns, and generally translated winepresses.

To GIVE. v. u. pret. gare. ; part. pass. giren. (z'pan, Saxon.) i. To bentow; to confer without any pratee or revaril (Holicer). 2. To transonit from himself to armether by hand, speech, or writing; to de iver (Burnel). 3. To put into oue's prineosinn; to consign; to impart; in comannicate (Tomple). 4 To pay as a price or reward, or in exchange (Shlentspeare). 5. To yicld; not in withhold (Bacon). (6. To quit; to yield as due (Brolus:. 7. To conice; io impart (Bramhall). \& To expnoe; to vield withont intention (Dry/rn). 0. To grant; to allow (Altcrlury). is. So

GIU

yiedd; not to deny (Rowe). 11. To afford; to supply (Hookit). 12. To empower; to commission (Pope). 13. To enable (Hooker). 14. To pay (Shatispeare). 15. To utter; to vent; to pronounce (Sirifi). 16. To exhibit; to show (IJale). 17. To exhibit as the prodact of a calculation (Arbuthnot). 18. To do any act of which the consequence reaches others: he gave no offence (Burnet). 19. To exhibit; to send forth as odours from any booly (Bucon). 20. To addlict; to apply (Siduey). 21. To resign; to gield up (Herlerl). 22. To conclude; to suppose (Garth). 23. Tu Give aucay. To alienate from one's self; to make over to another (Taylor). 2t. To Give tarí. To return; to restore. 25. To Give forth. To publish; to tell. 26. To Give the hand. To yield pre-eminence, as heing subordinate or inferiour. 27. T'o Give orer. 'To leave; to quiit to cease (Honker). 28. To Give over. To addict; to attach to (Sidury. Grenn.) 29. Tis Give over. To concluile lost (Arbuthnot). 30. To Give over. To abandon (Iludilitas) 31. To Give out. To proclaini; to publish; to utter (Kínolies). 32. To Give out. To show in false appearance (Shatispeare). 33. To Give up. To resign; to quit; to yield (Sidney). 34. To Give wp. To abandon (Stilinuffrel). 35. To Give up. To deliver (Sulf?). 36. To Give way. To yich; not to resist ; to make room for (Collier).

To Give. v. n, s . To rush; to fall on; to give the assault. A French phrase (Hooker). 2. To relent ; to grow moist ; to melt or snfteri; to thaw (Bucon). 3. To move. A French phrase (Daniel). 4. T'o Give in. To go hack: to give way: not in use (Hayward). 5. I'n Give into. To adopt; to embrace. Λ French phrase (Addisun). 6. To Give off. To cense; to forbear (Loche). 7. To Give oner. To cease: to act no nore. 8. To Give out. To publish; to proclaim (Sirift). 9. To Give out. To cease; to yield (Nicift).

Give and take plates, in horseracing, plates in running, for which the horses carry weight according to their height, in the proportion of four inches to a hand. The fixed rules for a give and take are, that horses measuring fourteen hands dre each to carry nine stone; and that, if above or below which height, they are to carry seven pounds, more or less, for every iuch they are higher or lower. A horse, therefore, measuring fourteen hands one inch and a hallf, will carry nine stone, ten pounds, eight ounces; a horse measuring thirteen hands two inches and a half, will carry ouly cight stone, three pounds, cixht nunces; the former being noe inch and a half alove the fourten hands, the other one inch and a half below it.

GI/VIR. s. (from to giec.) One that gives; donor ; bestower ; distributer; granter (Pope).

GIVES. s. Fetters or shackles for the feet.

GilliA, a town of Upper Ilumary, 30 miles S.W. of Great Waradin. Lat. 46.40 N . Low. 20. 0 E.

GilC'SANDEL, an epi:copal town of Ma-

G L A

celonia, in Furopean Turkey. Lat. 41.40 Ns, Lon. 20.36 E .

GIUSTO, in music, a term denoting regularity and equability in time.

GI'ZZAR1). s. (gosier, French; gigeria, Latin.) It is sometimes called gizarri.) 1. The strong musculuns stomach of a fowl. 2. Apprehension or conception of mind; as, lie frets his gizeard, he harasses his imagination (Hudi(ras).

GLABRARIA. In botany, a genus of the chass polyadelphia, order polyandria. Calyx fire-cleft; petals fire; nectary placed on the receptacle, and composed of bristles as long as the calyx; stamens thity, six in each set: drupe. One sprecics only : a large East Indiau tree, with leaves alternau, ovate-lancenlate, entire, downy underneath; Howers in axillary clucters.

GLn'BRITY. s. (from glaber, Latin.) Smoothness; baidness.

GLA'BROUS. (glulrous, Iatin.) In natural history, smooth; glossy; slining.

GLA'CIAL. a. (glaciul, French ; glacialis, Latin.) Icy; made of ice; frozen.

Io GLA'CIATE. v. n. (glacies, Lat. glacor, French.) To turn into ice.
GLACIATION. s. (from glaciate.) The act of turning into ice; ;ice forned (Brown).

GLA'ClOUS. a. (olacic, Latin.) ley; resembling ice (Brown).

GLÁCIERS, a name given to some very extensive fiedds of ice among the Alps The Glaciers may be divided into two sorts; the first occupying the valleys situated in the bosom of the Alps, which are called Lower Glaciers; the scoond, which clothe the summits and sides of the mountains, are called Uppor Glaciers. 1. The Lower Glaciers aro by far the most considerabic in extent and depth. Some stretch several leagues in length; that of des Bois, in particular, is more than fifteen miles long, and above three in is greatest breadth. The Lower Gbaciers do not, as is generally imagined, communicate with each other, and but few of them are parallel to the central chain : they mostly stretch in a transverse direction, are bordered at the higher extremity by inaccessible rocks, and on the other extend into the cultivated valleys, The thickness of the ice varics in diflerent parts. M. de Saussure found its general depth in the glacier des Bois from eighty to a huudred feet, bit questions not the information of those who assert that in some places its thickness exceeds even six hundred feet, These immense fields of ice ustanlly rest on an inclined plain. Being pushed forward by the pressure of their own weight, and but weakly supported by the rugred rocks bencath, they are intersected by large transverse chasms, and present the appearance of walls, pyramids, and other funtastic shapes, olserved at all heights and in all situations wherever the declivity excecds thirty or furty degrees. But in those parts where the plain ou which they rest is horizontal, or only zently inclined, tho surface of the ice is nearly uniorm; the chasus

GLACIERS.

are but few and narrow, and the traveller crosses on foot without much difficulty. The surface of the ice is not so slippery as that of frozen ponds or rivers; it is rough and granulated, and is only dangerous to the passenger in steep descents. 2. Upper Glaciers may be subdivided into those which cover the summits, and those which extend along the sides of the Alps. Those which cover the summits of the Alps owe their origin to the snow that falls at all seasons of the year, and which remains nearly in its original state, being congealed into a hard substance, and not converted into ice. For although, according to the opinion of some philosophers, the summit of Mont Blanc and of other elevated mountains is, from the glistening of the surface, supposed to be covered with pure ice, yet it appears, both from theory and experience, that it is not ice, but snow. For in so elevated and cold a region there cannot be melted a quantity of snow safficient to impregnate with water the whole mass which remains undissolved. Experience also justifies this reasoning. M. de Saussure found the top of Mont Blane only encrusted with ice, which, though of a firm consistence, was yet penetrable with a stick; and on the declivities of the summit he discovered beneath the surface a soft snow without coherence. The substance which clothes the sides of the Alps is neither pure snow like that of the summits, nor ice which forms the Lower Glaciers, but is an assensblage of both.

Considerable difference of opinion has prevailed amongst philosophers, whether the masses of ice and snow in these regions of endless winter increase, decrease, or remain nearly stationary. Mr. Coxe seems inclined to think they vary in their size: that gentleman olserves, that the glacier of Montanvert is generally bordered with trees; near the base of this vast body of frozen matter the ice is excavated into an arch, perhaps one hundred Feet in height, whence the Arveron rushes with impetuosity and in a large sheet of water. As he approached the ice, he passed through a furest of firs: those near the arch were very ancient, and about eighty feet high ; the teces between them and the glacier were evidently younger, from the inferiority of their size and other intrinsic marks, others still less, had been enveloped by the ice, and many were thrown down: arguing from this gradation in the appearance of the firs, he concludes, that the glacier has originally extended to the full grown ancient trees, and dissolving, young ones have grown on its former site, which have been overturned by a fresh increase of ice.

This inference seems almost conclusive, but it is still further supported by the f.ll of large pieces of granite called moraine by the inhabit. ants, which, borne along by the ice, sink through it as it dissolves, and falling into the plain, form a border along its extremity; those have been urged forward by the presiure of new ice, and extend even to the pisce occupied by the large firs.

Exclusive of these dircumstances, Mr. Coxe discovered, that the glacier of Grindelwald had diminished, at least, 400 paces, between the dates of his two visits in 1776 and 1785 ; and in the valley of Chamouny, the Muraille de Glace, which he had described as forming the border of the glacier of Bosson, in 1776, no longer existed in 1785, and young trees had grown on the site of the edge of the glacier of Montanvert.
M. Bourrit, who appears to have viewed and described the glaciers, with all that enthusiasm which the contemplation of such objects is calculated to inspirc, speaks of them thus :-" To come at this collected mass of ice (Des Bois) we crossed the Arve, and travelling in a tolerable road, passed some villages or hamlets, whose inhabitants behaved with much politeness; they invited us to go in and rest ourselves, apologized for our reception, and offered us a taste of their honey. After amusing ourselves some time amongst them we resumed our road, and entered a beautiful wood of lofty firs, inhabited by squirrels. The bottom is a fine sand, left there by the inundations of the Arveron; it is a very agreeable walk, and exhibits some extraordinary appearances. In proportion as we advanced into this wood, we observed the objects gradually to vanish from our sight; surprised at this circumstance, we were earnest to discorer the cause, and our eyes sought in vain for satisfaction; till, having passed through it, the charm ceased. Judge of our astonishment, when we saw before us an enormous mass of ice, twenty times as large as the front of our cathedral of St. Peter, and so constructed, that we have only to change our situation to make it resemble whatever we please. It is a magnificent palace, cased over with the purest crystal; a majestic temple, ornamented with a portico, and columns of several shapes and colours; it has the appearance of a fortress, flanked with towers and bastions to the right and left, and at bottom is a grotto, terminating in a dome of bold construction. This fairy dwelling, this enchanted residence or cave of fancy, is the source of the Arveron, and of the gold which is found in the Arve. And if we add to all this rich variety, the ringing tinkling sound of water dropping from its sides, with the glittering refraction of the soiar rays, whilst tints of the innst lively green, or blue, or yellow, or violet, have the effect of different compartments, in the several divisions of the grotto, the whole is so theatrically splendid, so completely picturesque, so beyond imagination great and beautitul, that I can hardly believe the art of man has ever yet produced, nor ever will produce, a building so grand ia its conitruction, or so varied in its ornaments. Desirous of surveving every side of this mass, we crossed the river about four hundied yards from its source, and mounting upon the rocks and ice, approached the vault; but while we were attentively employed in viewing all its parts, astonished at the sportiveness of fancy, we cast our eyes at une considerable menber

VOL. V.
of the piic above us, which was unaccomatably sujpented; it see:ned to hold by almost nothing: cour impromence was too evident, and we hastened to retreat; yet scarcely had we stepped bark thirty paces before it broke off afl at once with a prodigious noise, and tumbled, rolling to the very spot where we were standing just before." Sce Avatanches.

Gl.AClS, in fortitication, that mass of earth which serves as a parapet to the covered way, sloping easily towards the champaign, of ficid. The ylacis, otherwise catled esplanade, is about six feet high, and loses itself by an insensible diminution in the space of ten fathoms.

GLAD. a. (弓ֹæ, Saxun; glad, Danish.) 1. Cheerful; gay; in a state of hilarity (.1liiton). 2. Wearing a gay appearance; fertile; bright; showy (Isainh). 3. Pleased; elevisted with joy (Procerls). 4. Pleasing; exhilarating (Ẅ̈ney). 5. Expressing gladnas (IOpie).

Tu Glav. v.a. (from the arljective.) To make glad ; to cheer ; to exhilarate (P^{\prime} ope).

CiLADBACH, a town of Westphalia, in the dichy of Juliers. Lat. 51. it N. Lon. 0. $10 \vdots$.

To GLADDEN, v. a. (from glad.) To cheer ; to delight; to make glad; to exhilarate (Iddisen).
(iliAl)DER. s. (from glad.) One that makes glad; one that exhilarates (Iryden). (iLADEE. s. (from $\boldsymbol{z} \operatorname{lop} p: n$, Saxou.) A hawn or opening in a wood (Pope)

Glál)EN. Gla'der. s. (from gladius, Lat. a sword.) Swordgrass : a general name of plants that rise with a broad blade like sedge.
(iLa'DFULNESS s. (glad and fulness.) Jov; gladuess: obselete (Spenser).

GLADIATE SILIQUE. Gladiatem legnmen. In botany. A gladiate or sword-shaped gilign:e or iegume. Âs in Cleome arabica, Molichos ensíformis.

GLADIATORS, persons who fought for the amusement of the public in the arenas of amphithcatres in the city of Rome, and at onther places under the dominion of the Romans. The term is derived from their use of the gladius, or sword, and the origin of this horrid custom is said to have been the practice of sacrificing captives to the manes of chiefs killed in batte. It seems, however, more probable, that it arose from the funcral gancs of antiquity, when the fiends of the deceased fought in honour of his memory; an instance of which occurs in the twenty-third book of the lliad, at the hurning of the body of Patroclus, Achilles having ordained every solemn rite usual upon thoee occasions, Homer adds,
"The prizes next ape ordered to the field,
For the boll champions who the cæstus wicld."
The leather which eomposed the casstus being icoaded with lead, enatiod the combatants to pice each other mortal blows, though the hands only were used. Epeus, of pigantic stature, challenged the whole of the Grecian

G L A

chicfs, who were terrified at his bulk, and Euryalus alone accepted his defiance:
> "Hinn great Tydides urges to contend,
> Warm with the bopes of conquest for his frical;
> Officious with the cincture girds him round, And to his wrist the gloves of death are bound."

The captives slain on this occasion were not commanded to fight; they had been led to: the pile, and died with the sheep, oxell, courgers, and dogs, that their bodies might be burnt by the tlames which consumed that of Patroclus:
os Then, last of all, and horrible to teh, Sad sacrifice! twelve 'Trojan captives fell."
The above quotations positisely prore, that the Romans deviated from their predecessarg in the practice of this barbarous cuntom. The Grecks appear to have destroyed their prisoners on a revengeful principle, and dispatched them immediately; but the former refined upon cruelty, and would rather purchase captives, or destroy the lives of in-dieposed slaves, than send the ashes of their friends to the urn bloodless, or the speotators of the obsequies home, without the gratification of witnessing wretches cutting eaeh other to death, though not under the influence of previous anger. According to Valerius Maximus; and Lampridius in Heliogabalus, gladiators were first incroduced at llome by M. and D. Britus, at the funcral of their father, in the cousulship of Ap. Claudius and M. Fulvius.

There were various kinds of gladiators, digtinguished by their weapons, manner, and time of fighting, \&ic. as, the Andabatæ. The catervarii, who always Kought in troops or companies, number against number ; or, according to others, who fonght pronniscuously without any certain order. The dimacha, who fought armed with two poniards or swords, or with sword and dagger. The essedarii, who fought in cars. The fiscales, or Cæsariana, who belonged to the emperor's company; and who, being more robust and dexterous than the rest, were frequently called for, and therefore named algo postulatitii. Several other kinds are mentioned by ancient authors.

There are few nations which have not, in some part of their history, encouraged gladiators in a greater or less degree, It is not a century since we had gladiators in London, who fought and bled, bat never killed each other. Malcolm's Aneedutes of the Manners and Customs of this great Metropolis, contains numerons particulars relating to theso modern swordsinen, whose exertions were rivalied by several fe:males in the art of boxing and cuttine. One of their challenges, from the publication alluded to, will be a proper conclusion to this article: "In Islington Road, on Monday, being the 17th of July, 1727, will be performed a trial of skill by the following comibatants: We, Robert Barker and Mary Welsin, from 1 reland, having often contaminated our swords in the abdominiung

GLA

torporations of such antagonists as have had the insolence to dispute our skill, do find ourselves once more necessitated to challenge, defy, and invite Mr. Stokes, and his bold Amazonian viragn, to meet us on the stage; where we hope to give a satisfaction to the honourable lord of our nation, who has laid a wager of twenty guineas on our hearls. They that give the most cuts to have the whule money, and the benetit of the house. And if swords, daggers, quarter-staff, fury, rage. and resolution will prevail, our friends shall not meet with a disappointment."-" We, James and Elizabeth Stokes, of the city of London, having already gained an nniversal approbation by our agility of body, dextrous hands, and courageous hearts, need not preamlulate on this occasion, but rather choose to exercise the sword to their sorrow, and corroborate the general opinion of the town, than to follow the custom of our repartee antagonists. This will be the last time of Mrs. Stokes performing on the stage. There will be a door on purpose for the reception of the gentemen, where coaches nlay drive up to it, and the company come in without being crowded. Attendance will be given at three, and the combatants mount at six. They all fight in the same dresses as before."

Gladiator (The dying), is a most valuable monament of ancient sculpture, which is now preserved in the palace of Chighi. This man, when he had received the mortal stroke, is particularly careful ut procumbat honeste, that he might fall honourably. He is seated in a reclining posture on the ground, and has just strength sufficient to support himself on his right arm; and in his expiring moments it is plainly seen that he does not abandon himself to grief and dejection, but is solicitous to maintain that firmness of aspect which the gladiators valued themselves on preserving in this season of distress, and that attitude which they had learnt of the masters of defence. He fears not death, nor seems to betray any tokens of fear by his countenance, nor to shed one tear. We see, in this instance, notwithstanding his remaining strength, that he has but a moment to live; and we view him with attention, that we may see him expire and fall. Thus the ancients knew how to animate marble, and to give it almost every expression of life.
Gladiators' mar, lellum Gladiatorum or Spartacum, called also the scrvile war, was a war which the Romans sustained about the year of their city 680. Spartacus, Crinus, and Oenomaus, having escaped, with other gladiators to the number of seventy-four, out of the place where they had been kept at Capua, gathered together a body of slaves, put themselves at their head, rendered themselves masters of all Campania, and gained sevetal victories orer the Roman pretors. At length they were defeated in the year 682, at the extremity of Italy, having in vain attempted to pass over into Sicily. This war proved very lormidable to the Romans. Cras-

G L A

sus was not able to finish it : the great Pompery was forced to be sent as general.

Gladiatoril ludi, combats originally exhibited on the grave of deceased persons. They were first introduced at lome by the Bruti upon the death of their father, A.U.C. 488. It was supposed that the ghosts of the dead were rendered propitious by human blood, therefere at funerals it was usual to murder slaves in cool blood. In succeeding ages the barbarity was covered hy the specious show of pleasure and voluntary combat; their slaves were permitted to kill each other. Originally captives, criminals, or disobedient slaves, were trained up for combat ; but when the diversion became more frequent, and was exhibited on the smallest occasion, to procure esteem and popularity, many of the $R \cdot m a n$ citizeus enlisted themelves anong the gladiators, and Nero, at one show, exhibited no less than 400 senators and 600 knights. It is supposed that there were no more than three pair of gladiators exhibited by the Brati. Their numbers, however, increased with the luxury and power of the city; and under the emperors, not only senators and knights, but even women engaged among the gladiators, and seemed to forget the inferiority of their sex. These cruel sports, after a continuance of 600 years, were abolistied by Constantine the Great. They were revired, however, under Constantius, and his two successors. But were finally abolished by Theodoric in the year 500. See Adam's and Kennett's Rom. Antiq. and Lempriere's Class. Dic.

GLAD'IOLUS. Corn-flag; in botany, genus of the class triandria, order monogyuia. Corol six-parted, tubular, mostly ringent; stamens ascending. Fifty-two species; a few natives of Russia, or the south of Europe; the rest uniiormly Cape plants : some of them an undivided, others with a branched scape. We shall instance one or two.

1. G. Communis. Common corn-flag. Corol somewhat ringent; spathe longer than the tube: leaves ensiform, nerved. A native of the south of Europe, with white or red flowers, open, distant, but pointing ane was.
2. G. cardinalis. Corol erect, with a companulate border; scape many-flowered, pointing one way; leaves ensiform, manynerved; a native of the Cape; the segments of the corol scarlet, with a large rhombic white spot on the lower ones; spathe shorter than the tube. A very elcgant plant.
3. G. rosalbus. Corol with a funnel form, curved tube, the segments nearly equal; spine two-rowed; Icaves linear-ensiform, flat; a little twisted at the base; staniens elosely accumbent; flowers pale rosy. Sce also Nat. Hist. PI. CXXXIX.

> GLADIOLE, in botang. Sce Gladiolus. Gladiole water. See Butomus.
> GLADILS, sword. Jus gladii, or right of the sword, is used, in our ancient Latin authors, and in the Norman laws, for supreme jurisdiction.

G L A

G L A

GLA'TLY. ad. (from glad.) Joyfully; with yancly; with merriment (Shakispeare).

GLADNESS. s. (from glad.) Cheerfiolness; joy: exultation (Dryden).

GLÁDSOME. a. (from glad.) I. Pleased; gay ; delighted (Spenser). 2. Causing joy; having an appearance of gaycty (Prior).

GLiA'LSOAELY. ad. (from gladsome.) With gavety and delight.

GLA'DSOMENESS. s. (from gladsome.) Garety; showiness; delight.

GLADWIN. (Stinking) See Inis.
GLAI'RE, s. (zlen, Saxon, amber; glar, Danish, glass ; glaire, French.) 1. The white of an cgs (Рсасһан), o. A kind of halliert.

To Gifaree. r. a. (glairet, Fr. from the noun.) To smear with the white of an eg.
GLAMORGANSHIRE, a county of South Wiles, bounded on the north by Breckinockshire, on the east by Monmouthshire, on the south by the Bristol Channel, and on the west by Caernarthenshire ; about forty-eight miles from east to west, and twenty-seren from north to south. The greatest part of the sea-const forms a semi-circular sweep, the western extremity being formed into a narrow beak between the open channel on the one hand, and an arm running round to the Caermarthenshire coast on the other. On the north and north-east sides it is very mountainous, the soil of the hilts extremely varied. In some parts they are absolute rocks, in others full of coal and yron. The surface over these mines produces plenty of fine wool. What corn grows in the county is principally between the south side of the mountains and the sea, in a spacious vale, or plain, open to the latcer The roads over the mountains are excessively steep, stony, strewed, as well as the heaths on each side of them, with stones of varions sizes, detached from the rocks by the winter rains. The air on the north side is sharp, occasioned by the long continuance of the snow on the hills; but on the south side mild and temperate, improved by the sea breczes. Such is the profusion of coal and limestone in this county, that lime is the geveral manure of $i t$, and there is scarce a cottage that is not white-washed regularly once a week. The plenty of coal, and the convenicncy of exportation, have brought a large copper work to Swamsea. Glamorgian. shire contains one episcopal town, Llandatf, and several others, as Cardiff, Caerphilly, Neath, Brigend, Swansey, Llantrisint, Mar-ther-Tydvil, and Cowbridye. The priucipal rivers are the Tave, the Neath, the Taw, the Osmore, and the Kumney. Glamorganshire is divided into 10 humdreds and 118 parishes, which contain 14,762 houses, and $71,525 \mathrm{in}$ habitants. The whole quantiiy of surface is about 422,400 acres, of which about 120,000 are uncultivated, including woodlinds. The county sends one member to partiancent, bce sides one for the town of Cardiff.

GLAMOUR, or Glamer, a superstitious terin used in Scotland, denoting a kind of mist, belicyed to be raised by sorcerers; which
deluiled the spectator with visions of tiin) which did not exist, and changed the appearance of those which did exist.

GLANCE. s. (glantz, German.) 1. A sudden shoot of light or splendour (Milton). 2. A stroke or dart of the beam of sight ($D_{\text {r. }}$) 3. A suatch of sight; a quick view (Watts). To Glance. v. n. (from the noun.) 1 . To shoot a sudden ray of splendour (Rowe). 2. To fly off in an oblique direction Shaksp.) 3. To strike in an oblique direction (Pope). 4. To view with a quick cast of the eye; to play the eve (Popc). 5. To censure by ollique hints (Shakspeare).

To Glance. v. a. To move nimbly; to shoot obliquely (Shakspeare).

GLA'NCINGLY'. ad. (fron glance.) In an oblique troken manuer; transiently (Hakcw:)

GLAND. (glaydula, a gland). An organic part of the body, composed of bloxdvessets, nerves, and atsorbents, and destiucd for the seeretion or atteration of some peculiar fluid. The glands of the human body are divided by anatomists into different classes, either according to their structure, or the fluid they contain. According to their fabric they are distinguished into fonr classes. 1. Simple glands. 2. Compounds of simple glands. 3. Conglobate glands. 4. Conglomerate glands. According to their fluid contents they are more properly divided into, r . Mucous glands. 2. Sebaceous glands. 3. Lymphatic glands. 4. Salival glands. 5 . I achrymal glands. Simple glands are small hollow follicles, covered with a peculiar membrane, and having a proper excretory duct, through which they evactiate the liquor contained in their cavity. Sach are the anucous glands of the nose, tongue, fauces, trachea, stomach, intestines, and urinary bladder, the scbaceous glands about the anus, and those of the ear. These simple glands are either dispersed here and there, or are contiguous to one another, forming a heap in such a manner that they are not covered by a common mentbrane, but each has its own excretory duct, which is never joined to the excretory duct of another gland: The former are termed s.llitary simple glands, the latter aggregate or congregate simple glands. The eonupound glands consist of many simple glands, the excretory ducts of which are joined in one common excretory duct; as the scbaccous glands of the face, lips, palale, and varinus prarts of the skin, especially about the pubes. Cortglobate, or, as they are also called, Iymphatic glands, are those into which lymphatic vesscls enter, and from which they go out ag.in: as the mesenteric, lumbar, \&e. They are composed of a texture of lymphatic vessels, connected together by ce!lalar membramehave no excretory duct-they are largest in the fetus. Cunglonerate glands are composed of a congeries of many simple glands, whose excretory ducts open into one common trunk; as the parotid gland, thyroid gland, paucreas, and all the salival glands. Conglonersie glands differ but litite from the compould glands, yet they are compored of more simpie

GLANDERS.

Elamds than the eompound. The excretory duct of a gland is the duct through which the fluid of a gland is excreted. The ressels and neries of glands always come from the neighbouring parts, and the arteries appear $t 0$ possess a higher degree of irritability. The use of the glands is generally to separate a peculiar liquor, or to change it. The use of the comglobate glands is unknown.
GLANDERS, a discase in the horse, so termed, probably, from the swelling with which it is usually accompanied, of the sub-maxillary glands. It consists of an altered and vitiated action of the vessels \mathbf{a} bich, in a state of bealth, secrete the mucus covering the pituitary membrane, or that membrane which lines the cavity of the nostrils. In the incipicnt state of the complaint, this memy brane is apt to appear infamed, and discharges a small proportion of whitish glutinous pus. As the disease becomes more violent, the discha:ge a'sumes a sanious appearance, a disa;reeable smell, and an unpromising colour, or a mixture of colours, being frequently composed of several, as yellow and green, with red or bloody streaks. at this period, although it may be out of our limits of inspection, there is reason to suspect that ulceration bas taken place in some of the sinuses of the head. A small swelling may, in the majority of cases, be perceived in one or more of the glands under the jaws, seldom attended with pain, end scarcely ever increasing to any considera!le size. The prozress of the disease is extremely nucertain; as some horses will endure it, even tor many years, without any other obvious inconsenie:ace than a slight discharge, and the enlargenent of the glands; and, indeed, there have been jnstances of these symptoms disap earing fur seviral weeks, an: returning, perhaps, with mu :urmented virulence. Ia most cacs, however, the course of the malady is more rapid; the bones and catulages of the nose are specedily eroderl by tice malignity of the ulcers, from which an absorption commences, and conveys the poison into the circulation, gradualy and fatillly contaminating the whole animal frane.
It is but seldom that either the appetite or condition of a glandered horse suffers materially in the early or mild stage of the complaint. When, however, it has spread its dominion over the thoracic viscera, forming ulcers in the substance of the lunss and in the wind-pipe, great pain and difficulty are experienced in respiration, the discharge becomes immense, the appetite is iniured, the body of the unfortunate animal displays a haggard and striking picture of distress, and, if neither motives of humanity nor of safety induce bis owner to destroy him, dissolution will approach by tardy steps, and, at length, afford effectual relief to the wretched sufferer.

It seems pretty universally understood, that the disease called glanders is highly coutagiou; the matter of it for years retaining its noxious quality. We believe, however, that contagion is not so frequently the cause of glanders as some other circumstances. The horses of regiments that have been long encamped, in severe weather, suffer considerably more from the shanders than those which have not been engazed in that species of service. It would appear, that this arises froun hooses, on such occasions, being cowifind to a particular spot, when not on daty, and exposed t) all the inclenuencies of the scason; and, in
the inean while, they are prevented from support ${ }^{\text {F }}$ ing the bodity warmth by such means as they would instinctively employ at grass, such as ranging about, and seizing every opportunity of shic:tering themselves against the keenness of the weather. Sudden changes of temperature, and also of condition, may be considerel as great causes of glanders: it is well known, that horses of the abuve description have to ander, disadvantages most particularly. To the causes already mentioned may be added, infection frum the matter of farcy when applied to the nustrils, violent culds long neglected, and the respiration of foul air in close stables, or in the holds of shipping. It was the opinion of the celebrated Buffon, that the borse acquired the elanders by immer:ing his nostrils deeply into the water whell drinking, and the coldness of the flotid produciug an inflamination of the pituitary membrane. To support this coujecture, be remarked, that the ass drank more superficially, or from the surface of the water, by which methol he avoided the complaint. Were the ass, however, treated after the manner of horses, we are conviuced that the one would be as liable as the other to the glanders; but, inured from his infancy by nature and habit, his weather-beaten frame is nowise affected by a varicty of changes which operate so frequeutly and so powerfully on the animal more delicately used. Nutwithstanding these circumstances, the ass is subject to the glanders; and, accurding t the present state of our knowledge of the disease, it seems peculiar to the horse, the ass, and the mule.

The elliorts of vetcrinarians have usually been employed in endeavours to destroy, not to propagate, this dreadful malady, and we are acquaitited with 110 other quadrupeds liable to be aflicted with it ; yet we are strongly inclined to suppose it might le communicated to sume of them by inoculation. It appears that a glandered horse may accompany horned cattle, when at grass, without any danger of their receiving injury from the disease. We should be happy could we. offer to the public an effectual method of curs for this baneful distemper, but this at present is not within the limits of our abilities: still, we mnst confess, we are sanguine erough to bope, that, by some accident or other, or by the exertions and experiments of men of enterprising genius, au antidute will be happily discovered, fully adequate to the important task of totally eradicnting this most destructive and very preva. lent calamity.

On a supposition that the glanders was merely a local discase, some writers, particularly of the old school, have asserted, that it might be removed by the use of astringent and detergent injectious. More effectually to apply these, the sinuses of the head have been laid open by tive operation of trepanning; yet, notwithstandiny the assertions of the adrocates of this treatment, we believe this practice has never been attended with pemanent success. We inagine, that cases of glanders truly local are seldom to be mit with. The blood is generally much contaminated, as may be easily proved by the operation of transtiasion: if we take a quantity of bloorl from a healthy horse or ass, and replace it with an equal proportion, while in its fluid state, of bloud drawn from the animal afilicted 1 ith the glande:s, the ditase will make it: appeatance uthe comes of a fen days, and in a mure volent degree than

GLANDERS.

It can be produced by any other means of contasion. F : a particular description of this experiment, sie the aticle Taansfusion.

The analugy existing between the glanders and the venereal disese is exceedingly striking: unluckity, honerer, ti, y valy in the most essential particular ; fur the giandes will not yield to mercury. A case indeed oceurred at the Veterinary Culige, of a coach-torse, belonging to Mr. Houiton, one of the examining committee of that institution, supposed to have heen perfectly cured by a long course of mercurials. Professor Coleman makes mention of this case in his Lectures. and certainly with good reason, as two facts were apparently established, which seemed to mark it with a degree of decision: these are, first, that the horse was perfectly cured; and, secondly, that the disease of which he was so recovered was the glanders. No doubt would have arisen as to the nature of his disease, had it not yielded to the treatment employed, which was that of repeated and long-continued doses of calomel, carried to the extent of salivation. To remove that doubt, however, the horse was kept in a stable with other glandered horses; so that if the disease had been any other than what was supposed, the animal could not fail of being infected: but the fact was, that he was sent from the intirmary of the College free from the complaint, and we have since had reason to know that he experienced no relapse. It may be supposed, that this case led t, many trials of a similar naturc, but, unhappily, without the success which was hoped for by the Professor, who exert d his wonted ingenuity to improve the hint which this solitary instance appeared to affurd. We too have administered mercury in every way we thought the most promising of success; but, though we have sometimes flattered ourselves that the symptoms were abated by its assistance for a time, we have invariably suffered an ultimate disappointment.

Sume years ago, great expectations were formed from the use of the mineral acids in the renereal dismase, and, from the obvious resemblance that that complaint and the glanders bear towards each other, some trials were made on a few cases of the latter, but without the desired success.

We have been informed, and from respectable authrity, of horses decidedly glandered recovering spontaneously; but our own experience does not supply a single fact to comntenance this sursestion. As the glanders are equally fatal and contaxions, great attention ought to he paid to any discharg? which may be perceived from the nosirils, or any swelling of the glands; for one of these rircumstances does not invariably precede the other. Culds and strangles may be mistahen, by persons unacquainted with the nature of the diseases of horses, for the glanders; but a considerable light will be thrown on the subject, pe:ihaps, by the following obsercations. In the former complaints there is always some degree of fever, a duhness about the eyes, and a loss of p:petite: in gland rs, none of these symptoms occur, except in its latest staces. In colds, snd in the strangles, the swollen glands are painful to the touch, increase rapidly in bulk, and may he brought witiout much difficulty to suppuration: in glanders, they are nearly insensible, nud seldum become larger than a walnut. The dischange from a catarth is usually from both nostrils, is plentiful in quantity, of a healthy culuur and consistence, and inoffensive odour $;$
it will flow still more profusely by exposing she head t, the steams of hot mashes: on the other hand, the discharge in conseqnence of glanders is originally very small in quantity, soov acquiring a strong and disagreeable smell and coluur, and is very little affected by warm vapours. A cold does not always, though it does in general, at: tack both nostrils: the glanders most frequent! affects one only, to which it may confine itself for many months, and the gland will most probably be found enlarged on the side of the affected nustril. In all cases, however, where there appears the most distant prospect of danger, it will be highly prudent to scparate the diseased from other horses; and, before the expiration of any long period, we shall be pretty accurately convinced of the real disposition of the complaint.

As we are led, by experience and the information of others, to think, that serere or tedions catarrh, attended with discharge from the nose, is sometimes apt to degenerate into gianders, we conceive that, on such an occasion, the means recommended for the cure of the former (see the article Catarra) should be para ticularly attended to, as they may possibly have the effect of preventing an evil of a more serious complexion. Wherever the matter may be supposed to be detained or lodged in the upper parts of the nostrils, the steams of scalded bran, and injections of milk-warm water, frequently employed, will be found of considerable advantage.

When a horse exhibits such appearances as hold out an unduubted proof of the disease being the glanders, the sooner he is destroyed the safer it will be to the proprietor, as well as more humane to the animal. Nothing but laudable motives of experiment should induce us to protract his tedious and melancholy existence.

We have observed, that, whenever a horse is in the least suspected of glanders, it is proper that he should be removed from other horses, and kept alone, sufficiently secure from all possible communication with them : but particular care is also to be taken that the rack, manger, and such other parts of the stable as he may hare come in contact with, be thoroughly cleansed from every particle of the infections matter, the virulence of which we know no means of destroying but by totally removing the matter itself. The most effectual way of accomplishing the above purpose will be loy scraping the contaminated parts with kuives, or other sharp instruments, scouring them afterwaids with soap, sand ${ }_{2}$ and boiling watcr, and repeating the process till we are convinced it has exterminated every source of contagion; and lastly, a thick coat of well-sized lime should be spread over the whole. It is scarcely necessary to add, that the litter must be swept completely away, and the stable-floor properly cleaned.

It is a common practice with the owners of horses, when they have bad any one of them seized with the glanders, to bleed and purge tha rest by way of precention: the intention is certainly good, but the consequences cannot possibly prove what they are led to expect. The abore method will serve rather to promate, than prea vent, the disease, as it will considerably increase the action of the absorbent vessels, by which action the glanders is conveyed into the system. All we would recommend on these occasions is, to remove them from that part of the stable in which
the suspected borse has been standing, until it shall have been made pure from all matters of an infectious quality, and their nostrils may be washed a few cimes with a sponge and warm water

Great stresshaving been laid by writers on farriery on the virtue of fumigations of brimstone and other substances, some persons, fully dependiag on their efficacy, have adopted them, withoat atteading to such simple, yet much more powerful, means as we hare already mentioned. It is from actual contact only with the mater of a glandered horse, and not frum any vapour that arises from him, that other horses receive the infection; and although we admit that foul air will produce the glanders, the air we mean is What has become heated and vitiated by being sespired by a number of animals for too long a period. We believe, that, by throwing open the doors and windows of the stable for several days, every purpose of funigation will be auswered; but where the miad can reccive any satisfaction from their use, it will certainly be as well to employ them, at the same time attending to the other precautions.

Mr. St. Bel obserres, he restored many horses that were "thought," by some, " to be glandered," because they had no "certain criterion for ascertaining the true glanders;" but he candidly confesses, that he never succeeded "but in oue instance" in effecting a complete cure of that disease. That iustance, bowever, which might have been more valuable than all these instances of failure, he has not thought proper to detail. Nevertheless, if we are to give him credit for this assertion, in spite of his having withheld the particulars of so inestimable a fact, it will at least serve to strengthen the idea, that the glanders is not an incurable disease in all possible instances.

Mr. St. Bel, in a situation so favourable to trials of that nature, was induced to ascertain the effect of inoculation of the virus of glanders intn the borlies of sound animals, as well as the production of the disease by contact.

1. "Two sound horses, the one fresh from grass, aged six gears, and the other nine years, just cume from work, were placed by a horse who had the glanders, drinking out of the same pail, and eating at the same manger. The first shewed evident signs of the glanders at the expiration of thinty-four days. It fully declared itself in the second at the end of six weeks."
2. "Two horses in good health, the one seven, the other eleven, years old, both just taken from work, were placed by a horse who had the glanders. The former caught the discase, and ran at the nostrils, fifty-two days afterwards, the second in three months."
3. "A horse, thirteen years old, very lean, was made to drink the same water out of the same pail with a horse who bad the glanders, and continued so do fur two months; but he was kept from the discased animal during that time. He did not catch the glanders."
4. "A borse, nine ycars old, in tolerable condition, placed by a horse who had the glanders in the last stage of the disorder, caught it at the end of furty-:hree days."
5. "Threc old horses, destined to the anatom:cal investigations of the school, having been inoculated with the virus in the neck, did nit catch the disease. This experiment was repeatid on various horses of all ages, without producing
any effect. It was also perfurmed upon an ox a sheep, and a dog, without impairing in the least the bcallth of those animals."
6. "Ther coverings and saddles that had been used to glandered horses, being placed un several horses in good health for a month, and during the heat of summer, did not convey the distemper."
7. "The virus, mixed with a little flour, given to three horses for the space of a week, communicated the disease to the youngest at the end of a month. The two others did uot sickentill some time after."

Mr. St. Bel observes, that, only by multiplying such experiments, we shall be able, ist, To ascertain the digrec of infection of the glanders. 2dly, To discover the first symptoms by which it is announced, and which have escaped our notice to this day. 3dly, We should, by such means, be certain of attacking it in its origin, and miglit attain to a probable method of cure: " for, notwithstanding my failures," says this writer, "I think that a remedy may be found for the glanders. The animal, vegetable, and mincral kingdoms abound with an intinite number of substances, the cumbination and rational application of which will, perhaps, in time, overcome those obstacles which have hitherto opposed the progress of the veterinary art, in this and many other discases. Discoverics wait only favourable opportunitics to disclose themselves; and the most farourable are those which are furnished by scientific associations extending their patronse aud encouragement for the perfection of the arts."

In concluding the account of his experiments, he observes, that many circumstances have convinced him, that the virus of the glanders has more activity in southern than in nortaern countries; and that its progress is more rapid in the inule and the ass, than in the horse; but that the former are not so subject to receive it by infection or contact as the horse is.

Copper, as an internal medicine, has been used progressively to an extent of not morc, at best, than from a dram to an ounce of veriligris only; but with even less effect than mercury

GLANDI'FEROUS. a. (glans and fero, Latin.) Bearing mast; bearing acorns (Murtimer).

GLANDULA LACIRYMALIS. See

Lachrymalgland.

GLANDULIE MYRTIFORMES. Caruncule myriformes. The small glandiform bodies at the entrance of the vagina in women. They are the remains of the hymen, which is cleft in several parts during the first coition.

Glandule pacchionie. (Pacchimi, the name of the discoverer.) A number of small, oval, faty substances, not yet fully aseertained to be glandular, situated under the dura mater, about the sides of the longitudinal sinus. Their use is not known.
(ilandollation. In botany. Tle situation and structure of glands.

GLANIDULE. In betany. A litle pland. Papilla humorem excernens. Or, as it is explained in Regn. Veg.-fulerum securnens liquorem. An excretory or seesesory dut or vessel. Fxemplified in urena, ricinus, i.uropha, passitiora, cassia, opulus, turnera, salix

G L A

tetrandra, heliocarpus, brionia zeylanica, acacia cornigera, bauhinia aculeata, prunus armeniaca, amygdalus, morisona.

Glauds or glandules are usually found on the leaves, the petioles, the peduncles, or the s ipules.
Gla'ndule. s. (glandula, Lat.) A small gland serving to the sccretion of humours (Ray).
GLANDULO'SITY.s. (from glandulous.) A collection of glands (Brown).
GLANDULUUS. a. (glundulosus, Latin.) Pertaining to the glands; subsisting in the glands; having the nature of glands (Brown).

Glandulous leaf, or Glancular leaf, in botany. A leaf which has glands either on the surf:ace or on the serratures.
GLANFORI) BRII)(EE. See Brigg.
GLANS PENIS, in anatomy. (Glans.) The very vascular body that forms the apex of the penis. The posterior circle is termed the corona glandis. See Corpus spongiosum urethis.

Glansuncuentarta. Sce Bennux.
GLANTIL (Joseph), a learned and ingeninus, but fanciful and credulows writer in the 17th century, was born at Plymouth in 16:36, and bred at Uxford. He became a great admirer of Mr. Baxter, and a zealous person for a commonwealth. After the restoration, he published The Vanity of Dogmatizing; was chosen a fellow of the Royal Society; and, taking orders in 166%, was presented to the vicarage of Frome-selwood in Somersetshire. This same year he publistied his Lux Orientalis; in 1665 his Scepsis Scientifica; and in the year following, Some Philosophical Considerations touching the Being of Witches and Witcheraft, and other pieces on the same sutiject. In 1660 he published Plus Ultra ; or, The E'Proaress and Adrancement of Knowledge since the \mathbf{D} yss of Aristotle. He likewise published A scasonable Recommendation and Defence of Reason; and Phiiusophia Pia, or A Discourse of the religious Temper and Tendencics of the Experimental Philosophy. In 1078 he was made a prebendary of Worcester, and died in 1680.
glarf, in orycology. See Arena.
To Glare. v. n. (slaeren, Dutch.) I. To shine so as to dazzle the eyes (Fiarfar). 2. To look with fierce piercing eyes (Shahspeare). 3. To shine ostentationsly (leiton).

To Glare. e.a. To shoot such splendour as the eyes cannot bear (Milton).

Glare.s. (from the verb.) 1. Overpowering lustre; splendour, such as dazzles the eyes (Pope). 9. A fierce piercing look (Millon).
GLAREOLA. Pratincole. In zoolngv, a genus of the class aves, order grallie. Bill strong, stout, straight, hooked at the tip; nostrils at the base of the bill linear, oblique; gape of the mouth large; feet four-toed; tocs long. slender, connected at the base by a niembraine; tail forbed, consisting of twelve feathers. Three speciea, as follow :

1. G. austriara. Austrian pratinenle. Alove grey, brown; cllar black; chin and threa

G L A

white; breast and belly reddish-grey. Four other varieties from varicties of hucs. Three varicties inhabit the heaths of Europe, near the banks of rivers; two varictics are found on the coast of Commandel. A bout nine inches long; feeds on worms and aquatic insects; is very restless and clanorous.
2. G. sencgalensis. Senegal pratincole. Bill, lege, and whole body, brown. Inhabits near the Senegal ; and also Siberia : nine and a half inches long.
3. G. navia. Spotted pratincole. Brown spotted with white; lower parts of the belly and vent reldish-white, with black spots; bill and legs black. Inhabits Germany: size of G. anstriaca.

GLANEOUS. a. (glarieux, French, glarcosus, Latin ; from glaire.) Consisting of viscous transparent matter, like the white of an egg.

GLA'RING. a. Applicd to any thing notorious; as, a glaring crime.

GLARUS, one of the thirteen cantons in Swisscrland, bounded on the E. by the Grisums; on the S. by the same, the canton of Uri, and that of Schweitz; and on the N. by the river Linth. It is a mountainous country; and their chief trade is in cattle, cheese, and butter. The government is demucratic: every person of the age of sixtcen has a vote in the Landsge:meind, or General Asscinbly, which is held annually in an open plain. This assembly ratifics new laws, biys contributions, enters into alliances, declares war, and makes prace. The Latdamman is the cinief of the republic, and is alternately chosen from amnog the protestants and caiholics; with this ditierence, that the former remains three years in office, the latter only two. Both sectis live together in the greatest harmony: in several paris, they successively perform divine service in the same church; and all the offices of state are amicably administered hy hoth. The executire power is in a council of regency, composed of 48 protestants and 15 catholics; each sect has its particular court of justice; and it is necessary, in all lawsuits between persons of different religions, that the person having the casting voice among the five or nine judges, who are to determine the canse, should be of the same religion as the defendant. Glarus is surrounded by the Alps except towards the north, where is the only entrance. The capital of this canton is of the same name, and is situated in lat. 46. 56 N . Lon. 9. 1 E.

GLASGOW, a city of Scotland, in the county of Lanerk, situated on the banks of the Clyde, which, by an act of parliament, and at a considerable expence, has been within these list thirty years made navigable for vessels drawing seven feet six inches of water. It was firmerly the sce of a bishop, said to have been founded in the sixth century, and erected into at archbishopric in the 15th. The cathedral escaped the ill-directed zeal of the reformes, and still remains at least a venerabie monsment of Gothic architecture, preserved by the care of the inhabitants. In the year $11 \mathrm{R}_{\mathrm{R}}$

GLASS.

Glasgow was erected into a royal borough. In the year 1611, the city received a charter from James VI., and, in i636, another from king Charles I., with considerable power and privileges, which charters were confirmed by acts of parliameut in 1001 and $16 y 0$. The principal trade of Glasgow formerly was the curing and exporting of salmon and herrings, the principal market for which was France, from whence they imported wines, brandy, and salt. On the union with England, in the year 1707, the merchants of Glasgow first entered into the American trade. And, in the year 1775, they imported upwards of 57,000 horgheads of tobacco, 500 of sugar, upwards of 110 puncheons of rum, and 500 bags of cotton. Since the decline of the American trade, the merchants have fuund out new channels, and the trade is still incressing. Varieties of manufactures are earried on at Glasgow, the principal of which seem to be in the article of cotion, pottery, coarse earthen ware, hats, stockings, gloves, ropee, cordage, glass, and several otters. The number of inhabited houses in Glasgow is upwaris of 12,000 , and 86,380 inhabitants. Cilas row was originally one parish, but now, for the benefit of the poor and ease of ministers, divided into eight, with as many churches, besides three chapel3 of ease. clacgow contains several hospitals and charitable foundations, and a public ir firmary. The unisersity of Glazgow was founded in the year $14 \dot{t}$, under the direction of a chancellor, rec2or, dean, principal, and fourteen professors. 1)i-tance 45 miles from Edinburgh. Lat. 55. $42 \mathrm{~N} . \operatorname{Lon.~4.~} 2 \mathrm{~W}$.

Glasgow (Port), a town in Renfrewshire, on the S. side of the Clyde, erected in 1710, to serve as the seaport of the city of Glasgow, from which it is distant about 21 miles.

GL.ASS, vitrum, a transparent, solid, britthe, factiiius body, produced by a mixture of earthv or metallic, with saline substances fused tog ther by the action of fire.

The word is formed of the Latin gla itum, a plant called, by the Greeks, isatis; by the Romans, vitrum; by the ancient Britons, guadum; by the English, wead. We find frequent mention of this plant in ancient writers, particularly Cæsar, Vitrusius, Pliny, \&c. who relate, that the ancient Britons painted or dyed their bodies with glastum, guaium, vitrum, \&c. i. e. with the blue colour prowired from this plant. And hence the factitious matter, we are speaking of, came to be called slass, as having always somewhat of this buishn"ss in it.

At what time the art of glass-making was first invented is altogether uncertain. Some ima: ine it to have been invented before the for, d: but of this we have no direct proof, though there is no imprabability in the supposition; for we know, that it is almost impossible to excite a very vio-b-nt fire, such as is necessary in metallurgic operations, without vitrifying part of the bricks or stoncs wherewith the furnace is built. This, indeed, might furnish the first hints of glass-makjug; though it is also very probable, that such pmperfect vitrifications would be observed a lung time before people thought of making any use of th. m.

The Efyptians boast, that this art $\begin{gathered}\text { ass } \\ \text { ta: } \\ \text { aht }\end{gathered}$
them by their great Hermes. Aristophanes, Aristotle, Alexander, Aphrodiseus, I.ncretius, and St. John the divine, put it out of all doubt that glass was used in their days. Pliny relates, that it was first discovered accidentally in Syria, at the mouth of the river Belus, by certain merchants driven thither by a storm at sea; who being obliged to continue there, and dress their rictuals by mak. ing a fire on the ground, where there was great plenty of the herb kali; that plant, burning to ashes, its salts mixed and incorporated with the sand, or stones fit for vitrification, and thus produced class ; and that, this accident being known. the people of Sidon in that neighbourhood essayed the work, and brought glass into use; since which time the art bas been continually improving. Be this as it may, however, the first glass-houses mentioned in history were erected in the city of Tyre, and here was the only staple: of the manufacture for many ages. The saud which lay on the shore for about half a mile round the month of the river Belus was peculiarly adapted to the making of glass, as being neat and glitterins; and the wide range of the Tyrian commerce gare an ample vent fur the productions of the furnace.

Mr. Nixon, in his obscrvations on a prate of glass found at Herculaneum, which was destroverd A.D. 80, on which occasion Pliny lost his life. offers several probable conjectures as to the ases to which such plates might be applied. Such plates, he supposes, might serve fur specula, or lookiur-glasses; for Pliny, in speaking of Sidon. adds, siquidem etian specula excogitaverat: the reflection of images from these ancient specula being effected by besmearing them behind, or tingiug them through with some dark coluur. Another use in which they might be eniployed was for adorning the wal:s of their apartmeats, by way of wainscot, to which Pliny is suppored to refer by his vitreac camera, lib. xxxvi. cap. 25. § 64. Mr. Nixon farther conjectures, that these g'ass plates might be used for windows, as well as the lamina of lapis specilaris and phengites, which were improvements in luxury mentiond by Seneca, and introduced in his time, Ep. xc. However, there is no positive authority relating to the using of glass-windows earlier than the close of the third century : Manifestius est (says Lactantius), mentem esse, qua per oculos eq quas sunt opposita, transpiciat, quasi per fenestras lucente vitro aut speculari lapide olductas.

The first time we hear of glass made among the Bomans was in the reign of Tiberius, when Ping relates that an artist had his house demolished for making glass malleable, or rather flextble; though Petronius Arbiter and some others assure us, that the emperor orlered the artist to be beheaded for his invention.
It appears, however, that before the conquest of Britain by the Romans, glass-honoes had been erected in this island, as well as in Gaul, Spain, and laly. Hence in many parts of the country are to be found annulete of gliss, having a narrow perforation and thick rim, dencminat d by the remaining Britons gleinett naigreedh, or glase adders, and which were prohably in former times used as annulets by the druids. It can scarcely be questioned that the Britons were sufficientiv well verved in the manufacture of giass, to firm out of it many more uscful instiuments than the glass beals. History indeed assures us, that they did mannfacture a consid-rable quantity of glass vessels. These, like their annu.ets, were most

G L A S S.

pribably green, bine, yellow, or black, and many of them curiously streaked with other colours. Ftic process in the manufacture would be nearly the same with that of the Gauls and Spaniards. The sand of their shores, being reduced to a suffecient degree of finenpss by art, was mixed with elirec-fourths of its weight of their nitre (much the same with our kelp), and both were melted together. The unctal was then poured into other vesacls, where it was left to harden into a mass, and afterwards replaced in the furnace, where it became transpavent in the boiling, and was afterwards figurcd by blowing or modelling in the bathe into such ressels as they wanted.

It is not probable tiat the arrival of the Romans would improve the glass manufacture among the Eritons. The taste of the Romans at that time was just the reverse of that of the inhabitants of this island. The former preferred silver and gold to glass for the composition of their drinking-vessels. They madr, indeed, great improvements in sheir orn at Home, during the government of Nero. The vessels then formed of this metal rivalled the bowls of porcelain in their dearness, and equalled the cups of erystal in their transpazency. But these were by far too costly for common use; and therefore, in all probability, were everer attenpted in Britain. The glass commonIy made use of by the Romans was of a quality greatly infeiior; and, from the fragments which have been discovered at the stations or towns of either, appcar to have consisted of a thick, sousetimes white, but mostly blue green, metal.
According to the venerable Bede, artificers skilled in making glass for windows were brought over into England in the year 674 by abbot Benedict, who were employed in glazing the church and monastery of Weremouth. Acconling to others, they were first brought over by Wilfrill, bishop of Worcester, about the same time. Till this time the art of making such glass was unknown in Britain; though glass windows did not begin to be common before the year isso: till this period they were very scarce in private houses, and considered as a kind of luxury, and as maiks of great magnificence. Italy had them first, next France, from whence they came into England.

Veaice for aany years excelled all Earope in the fineness of its glasses; and in the thirteenth century the Venetians were the only people that had the secret of making, erystal looking-glasses. The great glass-works were at Muran, or Mlurano, a viliage near the city, which furuished all Europe with the Guest and largest glasses.

The glass manufacture was nirst begun in England in 15.57: the finer sort was made in the place called Crutrhed Friars, in Iondion; the tine flint glass, little inferior to that of Venice, was first made in tle Savoy-house, in the Strand, Lomdon. This manalacture appears to have becon much improved in 1635, when it was carried on with seacoal or pitcoal irstead of wood, and a monopoly was grante. to sir Robert Mansell, who was allowed to import the fine Venetian Hint glasses for difinhing, the art of making which was not brought to perfection lefore the reign of William III. But the first glars plates, for looking-glasses and coachwintous, were made in 1073, at Lambeth, by the enconagement of the duke of Buchingham; who in 1 in 0 introduced the manufacture of fine glass into Fingland, by means of Venctian artists, with amazing success. So that within a contury past, the Frinch and English have not only come up to,
but even surpassed, the Venetians; and we aste now no longer supplied from abroad.

The French made a considerable improvement in the art of glass, by the invention of a method of casting very large plates, till then unknown, and scarce practised yet by any but themselves and the Eaglish. That court applied itself with a laudable industry to cultivate and improve the glass manufacture. A company of glass-men was established by letters patent; and it was provided by an arret, not only that the working in glass should not derogate any thing from mobility, but even that noue but nobles should be alluwed to work in it.

An extensive manufactory of this elegant and valuable branch of commerce was first established in Lancashire, about the year 1773, through the spirited exertions of a very respectable body of proprietors, who were incorporated by an act of parliament. From those various difficulties constantly attendant upon new undertakings, whea they have to contend with powerful foreign establishments, it has not, howerer, been conducted with any great degree of success.

The properties of glass are very remarkable, some of which follow.

1. It is one of the most elastic bodies in nature. If the force with which glass balls strike each other be reckoned 16, that wherewith they recede by virtue of their elasticity will be vearly 15 .
2. When glass is suddenly coold.d, it becomes exccedingly brittle; and this brittleness is sometimes attended with very surprising phanomena. Hollow bells made of annealed glass, with a small hole in them, will fly to pieces by the heat of the hand only, if the hole by which the internal and external air communicate be stopped with a finger. Lately, however, some vessels made of such annealed glass have been discovered, which have the remarkable property of resisting very hard strokes given from without, though they shiver to pieces by the shocks received from the fall of very litht and minute bodies dropped into their cavities These glasses may be made of any shape; a! that need be observed in making them is, that their bottom be thicker than their sides. The thicker the bottom is, the easier do the glasses break. One whose bottom is three fingers breadth in thickness flies with as much ease at least as the thinnest glass. Some of these vessels have $b \in \in$ tried with strokes of a mallet sufficient to drive a nail into wood tulerably hard, and have held good without breaking. They have also resisted the shock of several heavy bodies let fall into their cavitics, from the height of two or three feet; as mushet-balls, pieces of iron or other metal, psrites, jasper, wood, bone, \&cc. But this is not surprising, as other glasses of the same shape and size will do the same : but the wonder is, that taking a shiver of flint of the size of a small pea, and letting it fall into the glass only from the heisht of three inches, in ainoat two seconds the glass fie s, and sumetimes at the very mument of the shock; nay, a bit of lint no larger than a grain dropped into several glasses successively, though it did not immediately break them, yet when set by, they all Hew in less than three quarters of an hour. Some other bulies produce this efficet as well as fiint; as sapphire, diamund, porcelain, hard-tempered steel; also marbles such as boys play with. and likewise pearls. These experiments were made before the Royal Suciety, and suceceded equa!ly when the glasses were held in tle hand, when they were rested on a pillow, put in water,
or Rlled with water. It is also remarkable, that the glasses broke upon haring their bottoms slightIy rubbed with the finger, though some of them sid not fly till half an hour after the rubbing. If the glasses are every where extremely thin, they do not breuk in these circumstances.

Some have pretended to account for these phænomena, by saying, that the bodies dropped into the vesseds cause a concussion which is stronger t ban the cohesive force of the glass, and consequently that a rupture must ensue. But why does not a ball of iron, gold, silver, or copper, Which are perhaps a thonsond times heavier than Giat, produce the same effect? It is because they pre not elastic. But surely iron is more elastic than the end of one's finger. Mr. Euler has endeavoured to acconnt for these appearances from his principles of percussion. He thinks that this experiment entirely overthrows the opinion of those who measure the force of percussion by the vis viva, or absolute apparent strength of the stroke. According to his principles, the great bardness and angular figure of the flint, which makes the space of contact with the glass extremeiy small, ought to cause an impression on the class vastly greater than lead, or any other metal; and this may acconnt for the flint's breaking the vessel, though the bullet, even falling from a considerable height, does no damage. Hollow cups made of green bottle-glass, some of them three inclies thick at the bottom, were instantly broken by a shiver of flint, weighing about two grains, though they had resisted the shock of a mosket-ball from the theight of three feet.

That Mr. Euler's theory cannot be conclusive any more than the other, mast appear evident from a very slight consideration. It is not by angll lar bodies alone that the glasses are broken. The marbles with which children play are round, and Yet they hare the same effect with the angular fiut. Besides, if it was the mere force of percussion which broke the glasses, undoubtedly the fracture would always take place at the very instant of the stroke; but we have seen, that this did not happen sometimes till a very considerable apace of time had elapsed. It is evident, therefore, that this effect is occasioned by the putting In motion some subtile fluid with which the subgtance of the glass is filled, and that the motions of this fluid, when once excited in a particular part of the glass, soon propagate themsolves thmugh the whole or greatest part of it, by which means the cohesive puwer becomes at last too weak to resist them. There can be little doubt that the flaid just now mentioned is that of plectricity. It is known to exist in glass in very great quantity; and it also is known to be capable of breaking glasses, eren when annealed with the greatest care, if put into too violent a motion. Probably the couling of glass hastily mas make it more electric than is consistent with its cohesive power, so that it is broken by the frast increase of motion in tlic electric flud by friction or othurwisc. This is evidently the case When it is broken by rubbing with the finger; but why it should also break by the mere contact of Hint and the other bodies above mentioned, has pot get been satisfactorily accounted for.

A mnst remarkable phanomenort also is produc. ed in glass tabes placed in certain circumstances. When these are laid before a fire in an horizontal position, having their extremities properly supportcd, they acquire a rotatory motion round
heir axis, and also a progressive motion towaris. the fire, even when their supports are declining from the fire, so that the tubes will move a litue way up hill towards the fire. When the tubes ave placed in a nearly upright posture, leaning to the right hand, the motion will be from east to west; but if they lean to the left hand, their motion win be from west to east; and the nearer they are placed to the perfcctly upright posture, the lem will the motion be either way. If the tube is placed horizontally on a glass plane, the fragment, for instance, of coach window-glass, instcad of moving towards the fire, it will more from it and about its axis in a contrary direction to what it had done before; nay, it will recede from the fire, and more a little up hill when the plane inclines towards the fire. These experiments are recorded in the Philosuphical Transactions. They succeeded best with tubes about 20 or 22 inches long, which had in each end a pretty strong piai fixed in cork for an axis.

The reason given for these phenomena is the swelling of the tabes towards the five by the heat. which is known to expand all bodies. For, say the adopters of this hypothesis, granting the existence of such a swelling, gravity must pull the tube down when supported near its extremities; and a fresh part being exposed to the fire, it must also swell out and fall down, and so on. But, without going farther in the explanation of this hypothesis, it may be here remarked, that the fundamental principle on which it proceeds is false: fur though fire indeed makes bodies expand, it does not increase them in weight; and therefore the sides of the tube, though one of them is expanded by the fire, must still remain in equilibio; and hence we must conclude, that the cause of these phænomena remain yet to be discovered.
4. Glass is less dilatable by heat than metalline substances, and solid glass sticks are less dilatable than tubes. This was first discovered by Col. Roy (see Phil. Trans. vol. 1xvii. p. 6i2), in making experiments in order to reduce barometers t, a greater degree of exactness than hath bitherta been found practicable; and since his experiments were made, one of the tubes 13 inches long, being compared with a solid glass rod of the same length, the former was found by a pyrometer to expand four times as much as the other, in a heat approaching to that of boiling oil. On account of the general quality which glass has of expanding less than metal, M. de Iuc recoramends it to be used in pendulums: and he says is has also this good quality, that its expansions are always equable and proportioned to the degrees of heat; a quality which is not to be found in any other substance yet known.
5. G'ass appears to be more fit for the condensation of vapours than metallic substances. An open glass filled with water, in the snmmer time, will gather drips of water on the cuts:ide. just as far as the water in the inside crauhes; and a person's breath blown on it manif stly moistens it. Glass alse becomes moist with dew. when uetals do not.
6. A drinking-glass partly filled with mater, and rubbed on the brim with a wet linger, yields mir sical notes, higher or lower as the glass is more or less full, and will make the liguor frisk and leap about. See Armonica.
7. Glass is possessed of extriordinary electrical virtues. See Einectricity, passim.

Glass (Janufacture of). Glass is made from

GLASS

mand, flints, spar, or some other silicious matters. White sand is the substance in the most repute at present, as it requires no preparation for coarse goods; and for the finest washing in fair water is sufficient: whereas tints require a tedious process of calcination, and after that to be pulverized. Many other substances may be used for experianent ; though sand only is employed in the manufactory.

It is also necessary that the silicious matter should be fused in contact with something called a flux. The substances proper for this purpose are lead, borax, arsenic, nitre, or any alkaline matter. The lead is used in the state of red lead, and the alkalies are soda, pearl ashes, sea salt, and wood ashes. When red lead is used alone, it gives the glass a yellow cast, and requires the addition of nitre to correct it. Arsenic, in the same manner, if used in excess, is apt to render the plass milky. For a perfectly transparint glass, The pearl ashes are found ranch superior to lead; perhaps better than any other flux, except it be borax, which is tuo expensive to be used, except for experiments, or for the best looking-glasses.

The materials for making glass must tirst be seduced to powder, which is done in mortars or by horse-miils. Alter sitting out the coarse parts, the proper proportions of silex and flux are mixed together and put into the calcining furnace, where they are kept in a moderate heat for tive or six loours, being frequently stirred about during the process. When taken out the matter is called trit. Frit is rasily converted into glass by ouly pounding it, and vitrifying it in the melting pots of this glass furnace: but in making Gne glass it will sometimes require a small addition of thax to the frit to corroct any fault. Fur, as the flux is the most expencive article, the manufacturer will aather put too little at first than otherwise, as he a an remedy tisis deffet in the melting pot. Whe beat in the furnace must be kept up untulthe glass js brought to a state of perfect lusion; and during this proeess any scum whici arises must be removed by ladlis. When the glass is perfectly melted, the glasi-bluwers commence their operations.

The following eompositions of the ingredients for glass are extuacted from the Handmaid to the Arts:

6 For the best flint-giass, 120 ibs. of white sand, tolbs. of red lead, $40 l b s$. of the best prarl-ashes, Qolbs. of nitre, and five onnces of marnesia; if a pound or two of arsenie be added, the composition will fuse much quicker, and with a lower temperature.
"For a cheaper flint-glass, 1201 bs . white sand, Silbs. of pe arl-ashes, 40 lus. red lead, 13 lbs . of nitre, six pounds of arsenic, and four ounces of magnesia.
"This requires a long beating to ma'ke clear glass; and the heat should be brought on gradually, or the arsenic is in danger of subliming before the fusion commerces. A still chcaper composition is made by omitting the arsenic in the fortgoing, and substituting common sea salt.
"For the best German crystal glass, 1201 bs of calcined flints or white sand, the best pearl-ashes TOlbs., saltpetre lolbs., arsenic half a pound, and tive ounces of magnesia. Or, a cheaper composition for the same puipose is, l20lbs. of sand or flintr, 4 (ilbs. of pearl-ashes, seven pounds of nitre, six pounds of arsenic, and tive ounces of magnesias This will require a long continuane in the
furnace; as do all others where much of the arse nic is employed.
"For looking-glass plates, washed white sand 60lbs., purified pearl-ashes 25 lbs , , $i t r e ~ 15 \mathrm{lbs}$, and seven pounds of borax. If properly managed, this glass will be colourless. But if it should be tinged by accident, a trifling quantity of arsenic, and an equal quantity of magnesia, will correct it; an ounce of each may be tried first, and the quantity increased if necessary.
"The ingredients for the best crown-glass must be prepared in the same manner as for lookingglasses, aud mixed in the following proportions: 601 bs . of white sand, 30 lbs of pearl ashes, and 15 lbs . of nitre, burax a pound, and half a pound of arsenic.
"Tbe composition for common green window glass is $\mid 20 l \mathrm{bs}$. of white sand, 30lbs. of unpurified pearl ashes, wood aslies well burnt and sifted, 60 lbs common salt 20lbs., and five pounds of arsenic.
"Common green buttle-glass is made from 2001 bs. of wodashes, and 1001 bs . of sand; or $170 l \mathrm{bs}$. of ashes, 100 lbs of sand, and solbs of the lava of an iron-furnace: these materials must be well mixed."

The inaterials employed in the mannfactory of glass are by chemists reduced tu threc classes, namely, alkalies, earths, and metallic oxides.

The fixed alkalics may be empioyed indifferently ; but soda is preferred in this country. The sola of commerce is usually mixed with common salt, and combined with carbonic acid. It is proper to purify it from both of these foreign bodies befure using it. This, howerer, is seldom done.

The carths are silica, linse, and sometimes a littie alumina. Silica constitutes the basis of glass. It is employed in the state of fine sund or flints; and sometimes, for making rety tine glass, rock crystal is employed. Wh:m sand is useri, it ought if posible to be perfectly whate; for when it is coluured with metallic oxides, the tiansparency of the glass is injured. Such sand can only be employed for very coarse giasses. It is neccssary to free the sand from all the loose earthy particles with which it may be mixed, which is done by washing it well with water.

Lime renders glass less bittle, and enables it to withstand better the action of the atmosphere. It ought in no case to excred the twentieth part of the silica employed, otberwise it corroles the glass pots. This indeed masy be prevented by throwing a little clay into the melted glass; but in that case a green glass only is obtained.

The metallic oxyds employed are the red oxyd of load or !itharge, and the white oxyd of arsenic. The red oxyd of lead, when added in sufficient quautity, enters into fusion with silica, and furms a glass without the addition of any other ingredient. Five parts of minium and two of silica form a glass of an orange-colour and full of strix. Its specific gravity is five. The red oxyd of lead renders glass less brittle and more fusible; but, when added beyond a certain proportion, it injures the transparency and the whiteness of glass.

The white oxyd of arsenic answers the same purposes with that of lead; but on account of its poisonous qualitiesit is seldum used. It is custo mary to add a little nitre to the white oxpll of arsenic, to prevent the heat from reviving it, and rendering it volatile. When added beyond a certain proportion, it renders glass opaque and milky like the dial-plate of a watch. When any coun.

$$
\mathfrak{G L A S S} \quad \mathbb{F} \mathbb{U} \mathbb{R} \mathbb{N} \mathbb{A} \mathbb{E} .
$$

Aublished by Givarrstoy Fiod Atrret Varh a sue.

G L A S S.

Bustible body is present, it is usual in some manufactures to add a little white oxyd of arsenic. This supplying oxvgen, the combustible is burnt, and thies off; while the revived arsenic is at the same time rolatilized.

There are several kinds of glass adapted to different uses. The best and most beautiful are the dint and the plate glass. These, when well made, are perfectly tramspavent and colourless, beavy and brilliant. They are composed of fixed alkali, pure silicious saud, calcined flints, and litharge, in different proportions. . The fint-glass contains a large quantity of oxyd of lead, which by certain procrsses is easily separated. The plate-glass is poured in the melted state upon a table covered with copper. The plate is cast half an inch thick, or more, and is ground down to a proper degree of thinness, and then polished.
Crown-glass, that used for windows, is made without lead, chietly of fixed alkali fused with silicious sand, to which is added some black oxyd of manganese, which is apt to give the glass a tinge of purple.
Buttle-glass is the coarsest and cbeapest kind: into this little or no fixed alkali enters the composition. It cunsists of an alkaline earth combined with alumina and silica. In this country it is composed of sand and the refuse of the soap-boiler, Thich consists of the lime empłoyed in rendering his alkali caustic, and of the earthy matters with which the alkali was contaminated. The most fusible is dint-glass, and the least fusible is bottleglass.

Flint-glass melts at the temperature of 10° Wcdgewoorl; criwn-ghass at 30°; and bottleclass at 47°. Ti:c specific gravity varies between 2.48 and 3.33 .

Glass is often tinged of rarions colours by mixjng with it while in fusion some one or other of the metallic oxyds; and on this process, well conductert, depends the formation of pastes or factitious gems.
Blue stass is formed by means of oxyd of cobalt.
G reen, by the oxyd of iron or of copper.
Fiolet, by oxyd of manganese.
Red, by a mixture of the oxyds of copper and iron.

Parple, by the purple oxyd of gold.
White, by the oxyd of arsenic and of zine.
Yellow, by the oxyd of silver and by combussible bodies.

Opticians, who employ glass for optical instruments, often complain of the many defects under Which it labours. The chief of these are the fullowing:

Streaks.-These are waved lines, often visible in glass, which interrupt distinct vision. They are probably owing sonetimes to want of complete fusion, which prevents the different materials from combining sufficiently; but in some cases also they may be produced by the workmen lifting up, at tivo difierent times, the glass which is to go to the formation of one vessel or instrument.

Tears.-These are white specks or knots, occa. sinned by the vitrified clay of the furnaces, or by the presence of some forcign salt.

Bubbles.-These are air-bubbles which have not been allowed to escape. They indicate want of complete fusion, either from too litile alkali, or the application of too little heat.

Corrls.-These are asperities on the surface of the glass, in consequence of too little heat.

Ciass.blowing. The art of furming vessels of
glass is termed blowing, from its being in a great measure performed by the operator blowing througlo as iron tube, and by that means inflating a piece of glass which is heated so as to become soft and exceedingly pliable. By a series of the most simple and dextrous operations, this beautiful materiat is wrought into the various utensils of elegance and utility, by methods which require but very few tools, and those of the most simple construction.

The slass-blowers' furnace is of a circular form, as shewn in the plan, fig. 2, Plate 89. It consists of three distinct parts. The lowest is a large arch, which is carried beneath the centre of the furnace: in the plan, fig. 2, this is represented by the dotted litres AA: in the section, fig. 1, nothing of this arch is seen, except part of its upright sides AA. In the centre of the furnace the covering of this arch is wanting, and its place is supplied by a grate, (represented in the plan) upon which the fire is made. The arch AA, which is called the draught arch, is intended to bring a constant supply of fresh air to the furnace. The second part of the furnace is a circular wall KK , of masoury or brick work, strengthened by nine ribs or piers BBB, which extend from the foundation to the top of the furnace, (as shewn in the section). Within the circutar wall or waist of che furnace, the crucibles or pots to contain the glass are placed; these are nine in number, and are situated behind the spaces between each pier. The fire is made upon the grate in the centre of the furnace, and its lames are reverberated down upon the pots by a dome DD, ig. 1, called the vault, constrocted of firebricks. The vault, and indeed the whole superstructure of the furnace, is supported only by the nine piers B: by this means nine apertares arc left beneath the vault which are the mouths of the furnace.

The vigucte at the top of Plate 81 , is a view of the interior of a glass-house, with workmen performing the various operations. In this figure. the nine mouths of the furnaces are represented as partially closed by a sereen of fire-bricks, in which are three apertures to gire the workinan access to the pots; the use of the screen is to defend the workman as much as possible from the beat of the furnace; and the apertures are therefore proportioned to the size of the work to be perfurmed. The nine puts are placed exactly beueath the mouths of the furnace, and are arranged round the furnace upon a circular course of brickwork (EE in the clevation), so that the current of flame ietlected from the vault DD, strikes directly upon them. The thame and heated air are carrind off from the furnace by nine flues, five of which FFF, are seen in fig. 1, Pl. 82, into an upper dome GG, which is the third part. It has a cylimitric chimney HH, erected on the top of it, and carried up some he:ght, to cause sufficient draught for the tire.

The implements used by a glass-blower are neither vumerous nor expensive: the principal of them are shewn in tig. 2, PI. 81. A is the blowing pipe, an iron tube about three feet six inches lung, and covered at one end with yarn, to prevent it burning the workman's hand. B is an iron rod, of which the workman has several. D are the pliers, with which the glass is worked: they are made of steel, and the circular part being reduced very tiain, acts buth as a spriag and a joint to the blades. E are shears used in cutting the glass while in a soft an'l pliable sta'e. F are ca:ipeis used for measuriug the work occasionaliy.

CLASS

To gire a general idea of the art of forming glass veysels, it will be necessary to choose some one as on exnmple; for this purpose we have selected a decanter, fir. 6. To form this the glass-blower, or a boy who assists him, introduces his blowingiron A through the side aperture in the mouth of the furnace, and dipping it into the melted glass, le turns it round at the same time, so as to gatier a sunall quantity of elass at the end of it. Tben, taking it from the furnace, he rulls it on the iron plate or marble diab, as represented on the right hawl side of the vignette; the boy is seen not far from him.

Whell he has, by repeating this operation two or thre times, accumulatel a suificiency of metal to form the ressel, he blows through the tube, as represented in the centre of the virnette. By this means the glass is intlated like a bladder, fig. 4: and by rolling it again on the slab, it is brought to the propersize. The artizan now seats himself in the seat represented behind each workman, and placing his bluwing-pipe across the two pieces of wood, which are exactly similar to the elbows of on arin-chair, he rolis the pipe along the arms vith his lett hand, while he forms the glass vessel, which projects over the arm with the pliers held in the right hand. This operation is sepn at the Left hand of the vienette. At the same time that he holds the vessel in the plier D, as shewn in tig. 5, he turns it round by rolling the blowing-iron. Ky this means it is made truly circular. The end is flattened to make the bottom of the decanter, by the flat blade of the pliers pressed against it, while it is turning roumd. It is to be observed, that the pliers or auy tools which are to touch the glass, must be rubbed with bees-wax, or the cold metal would crack the glass. When these proceerlings have brought the decanter to the state of fig. 3, the boy brings the rod B with a small portion of glass at the end; sticking it to the bottom of the ressel, the workman tonches the neck with a piece of cold iron, and the glass instantly separates from the blowing-pipe. The boy then heats the glass at the furnace month; and when he returns it the workman opens the mouth of the decanter with the point of the pliers, as at fig. 5. The rings on the neck are put on by the boy bringing a piece of hot glass, \&, fig. 6, and rolling it round the neck: then cutting it off by the shears E, and smoothing it by the pliers, the decanter is broken off from the rod B, and the operation is completed. Another boy now carries it by putting a long stick into the mouth, and thus conveys it into the top compartment of the furnace over the vault. The manner of doing this is shewn at the lefthand side of the furnace. Here the glass remains several hours at a considerable heat, until it is thoroughly annealed, and loses that britileness which it would have without such an operation. A common plass bottle for wine is first brought to the state of K , fig. 7. This is placed in the mould GH, the two halves of which are shut down together, and the ring b put over the handles kk to keep it shut. The workman then blows through his tube B, and inllates the glass so as to fill the mould: by this means all the bottles will be of one size.
Watch-glasses are made by first blowing a hollow globe, the proper radius for the glasses; then hy touching it with the iron ring, Gig. 8. This cracks oit a watch-glass in an iustant. The same globe will make several glasses.

Windor or table-glass is worked nearly in the mamer ahove described: the workman blows and manayes the metal, so that it extends two or three
feet in a cylindrical form. It is then catried ta the fire, and the operation of blowing repeated till the metal is stretched to the dimensions required; the side to which the pipe is fixed dimmishing gradually till it ends in a pyramidal form; but, in order to bring both ends nearly to the same dianueter, while the glass continues flexible, a small portion of hot metal is added to the pipe; the whole is drawn out with a pair of iron pincers, and the same end is cut off with a little cold water as before.

The cylinder thus open at one end is returned to the mouth of the furnace, where it is cut by the aill of cold water, after which it is gradually heated on an earthen table, in order to unfuld its length, while the workman with an iron tool alternatcly raiscs and depreszes the two halves of the cylinder: by this process, the later accommodates itself to the same flat form in

Plate-glass is the last and most valuable kind, and is thus called frum its being cast in plates or large sheets : it is almost exclusively employed for mirrors or looking-glasses, and for the windows of carriages.
Plate-glass was formerly blown; but that methot having been found very meonvenient, casting was invented; namely, the liquid metal is coureyed from the furnace to a large tab!e, on which it is poured, and all excrescences, or bubbles, are immediately removed by a roller that is swifily passed over it. It is then amnealed in the manner already referred to.

Glasss (Painting in). The ancient manner of painting in glass was very simple: it consisted in the more arrangement of pieces of glass of different coluurs in some sort of symmetry, and constis tuted what is now called Mossic work. (See Mosaic). In process of time they caine to attempt more regular designs, and also to represent figures heightened with all their shades: yet they prod ceeded no farther than the contours of the figures in black with water-colours, and hatching the draperies after the same manner on glases of the colour of the object they designed to paint. For the carnation they used glass of a bright red colour; and upon this they drew the principal lineaments of the face, \&c. with black. At length, the taste for this sort of painting improving considerably, and the art being found applicable to the adorning of churches, palaces, \&c. they found out means of incorporatiug the colours in the glass itself, by heating them in the fire to a proper dcgree, having first laid on the colours. A French painter at Marseilles is said to have given the first notion of this improvement, upon going to Rome under the pontiticate of Julius 11.; but Albert Durer and Lucas of Leyden were the first that carried it to any height.

This art, however, has frequently met with much interruption, and sometimes been almost tutally lust; of which Mr. Walpole gives the following account in bis Ancedotes of Painting in England: " The first interruption given to it was by the reformation, which banished the art out of churches; yet it was in some manner kept up in the escut cheons of the nobility and gentry in the windows of their seats. Towards the end of queen Eliz3beth's reign, indeed, it was umitted even there; yet the practice did not entirely cease. The chapel of our Lady at Warwick was ornamented anc by Robert Dudley earl of Leicester and bis countess, and the cipher of the glass-painter's name yet remains, with the date 1574; and in some of the

GLASS.

chapels at Oxford the art aguin appears, dating itself in 1622, by the hand of no contemptible master.
" I could supply eren this gap of 48 years by many dates on Flemish glass: but nebody ever supposed that the secret was lost so eariy as the reign of James I.; and that it has not perished since will be evident from the following series, reaching to the present hour.
" The portraits in the windows of the !ibrary at All Soals, Oxford. In the chapel at Zueen's Coltege there are twelre windows, dated 1518. P. C. a cipher on the painted glass in the chanel at Warwick, 15:4. The wiudows at Wadhain-colkese; the drawirg pretty good, and the coluurs fine, by Bernard Van Linge, 16 ?. In. In the chapet at Lincoln's Inn, a wirdow, with the nameBernard 1623. This was probably the preceding Van Linge. In the cturch of St. Leonard, Stioreditch, two winduws by Baptista Sutton, 1634. The windows in the chapel at University-college, Henry Giles pinxit 1687. At Christ-church, Isaac Oliver, aged 8t, 1700. Window in Merton-chapel, William Price, 1700. Windows at 2ueen's Newcollege, aud Maudin, by William Price, the son, now living, whose culuurs are fine, whuse drawing is good, and whose taste in ornaments and Mosaic is far superior to any of his predecessors; is equal to the autique, to the geod Italian masters, and only surpassed by his own singular modesty.
" It may not be unwelcome to the curious reader to see sume anerdotes of the revival of taste for painted glass in England. Price, as we have said, was tire only painter in that stile for many years in England. Afterwards one Rowell, a plumber at Rzading, did some things, particularly for the late IIenry earl of Pombrcke; Lut Row ell's collurs sorn vanished. At last he found out a very durable a od beautiful red; but he died in a year or two, a ad the secret with hin. A man at Birmingham began the same art in 1756 or 1757, and fitted up a window for lord Lytteiton in the chureb of Hasley, but soon broke. A little after him, one Peckitt at York began the same business, and has made good proficiency. A few lovers of that art collected some dispersed pares from ancient buildings, particularly the latc lord Cobham, who erected a Gothic temple at Stowe, and filled it with arms of the old nobility, \&c. About the year 1753 one A sciotti, an Italian, who had married a Flemish voman, brought a parcel of painted glass from Flanders, and sold it for a few guineas to the bon. Mr. Bateman of Old Windyor. Uponthat I sent Axciotti again to Flanders, who brought me 450 pitces, for which, including the expence of his journes, I paid him 36 guineas. His wife made more journeys for the same purpose; and sold her cargoes to one Palmer, a glazier in St. Martin'slane, who immediately raised the price to one, two, or Give guineas for a single piecr, and fitted up entire windows with them, and with mosaics of plain glass of different culcurs. In 1761 Paterson, an auctioneer at E.sex-hous'- in the Strand, exhibited the tivo fist auctions of pain'ed glass, inpoted in like manner from Flanders. All this manufacture consisted in rounds of scripturestories, stained in black and yeilow, or in small fizures of black and white; birds and lowers in culours, and Fiemish coat: of arms."
The colours used in paint:ng or staining of glass are very different from those used in paiating either in water or oil colours. For black, take scales of iron, one ounce; scales of copper, one ounce; jet, half an ounce; reduce them to poivder, and
mix them. For blue, take powder of biue on pound; nitre, half a pound; mix them and grind them well together. For carnation, tabe red chalk, eight ouncer; iron scales, and litharge of silver, of ench two ounces; gum arabic, half an onnce; disoutre in water, griud all, together for half an hour as stiff as you can; then pat it in a glass and stir it welt, and let it stand to setule fourteen days. For green, take red lead, one pound; scales of copper, one pound; aud \&int, five pounds; divide them into three parts, and add to them as much nitre; pat thes into a crucible, and melt them with a strong fire; and when it is cold powder it, and grind it on a porphyry. Fur gold culour, take silver, an ounce; antimony, bali an ounce; melt them in a crucible; then pound the mass to powder, and griad it on a copper piate; add to it yellow ochre, or brick-dust calcined asain, fifteen cunces, and grind them well together with water. For parple, take minium, ons pound; brown stone, one pound; white dint, five pounde; divide them into three parts, and add to them as much nitre as one of the parts; calcine, melt, and grind it as you did the green. Forred, take jet, four ounces; litharge of silver, two ounces; red chalk, one ounce; powder thein filse, and mix them. For white, take jet, two parts; white flint, ground on a glass very fine, one part; mix them. For yellow, take Spanish brown, ten parts; leafesilver, one part; antimony, half a part; put all into a crucible, and calcine them well.

In the windows of ancient churches, \&cc. thpre are to be seen the most beautiful and vivid cotours imaginable, which far exceed any of those used by the moderns, not so much because the secret of making those colours is entirely lost, as that the moderns will not $\begin{aligned} \\ \text { no to the chance of them, nor be }\end{aligned}$ at the necessary pains, by rcason that this sort of painting is not now so much in esteem as formerby. Those beautiful works, which were made in the glass-houses, were of two kinds.

In some, the colour was diffused through the whole substance of the glass. In others, which were far the most cominon, the colour was only on one side, scarce penetratinr within the substance above one-third of a line; though this was more or less according to the nature of the colour, the ycllow being always found to enter the deepest. These last, though rot so strong and beautiful as the former, were of more advantage to the workmen, by reason that on the same glass, though already coloured, they could show other kinds of colours where there was occasion to embroider draperies, enrich them with foliages, or represent other ornaments of gold, silver, \&c.

In order to this, they made use of emery, grinding or wearing down the surface of the glass till such time as they were got through the colour to the clear glass. This done, they applied the proper colours on the other side of the glass. By these means, the new colours were hindied from running and mixing with the former, when they expused the glasses to the fire, as will appear hereafter. When indeed the omaments were to appear white, the glass was only bared of its colour with emery, without tinging the place with any colour at all; and this was the manner by which they wrought their lights and heightenings on all kinds of colutur.
The first thing to be done, in order to paint ot stain glass in tlic modern wing, is to design, and even colour the whole subject on paper. 'Then they choose stech pieces of glass as are clear, eren, and amooth, and pruper to receive the several

G L A S S.

parts; and proceed to distribute the design itself, or the paper it is drawu on, into pieces suitable to those of theglass, always taking care that the glasses may join in the contours of the figures and the folds of the draperies; that the carnations and other finer parts may not be impaired by the lead with which the pieces are to be joined together. The distribution being made, they mark all the glasses as well as papers, that they may be known arain: which done, applying every part of the design upon the glass intended for it, they copy or transfier the design upon this glass with the black colour diluted in gum-water, by tracing and following all the lines and strukes as they appear through the glass with the point of a pencil.

Wiea these strokes are well dried, winich will happen in about two days, the work being only in black and white, they give it a slight wash over with urine, gum arabic, and a little black; and repeat it several times, according as the shades are desired to ba heightened; with this precaution, never to apply a new wash till the former is suffie:ently dried. This done, the lizhts and risines are given by rubbing off the colonr in the respective places with a wooden point, or the handle of the penc: .

As to the other coloure above mentioned, they are used with gum-water, much as in painting in miniature; taking care to apply them liṣthy, for fiar of effacing the outlines of the design; or even, for the greater security, to apply them on the other side; especially yellow, which is very pernicinus to the other colours, by blending therewith. And here too, as in pieces of black and white, particular regard must always be had not to lay colour on colour, or put on a new lay, till such time as the former is well dried.

When the painting of all the pieces is finished, they are carried to the furnace to anneal or bake the culours. See Enameiling.

Having often been delighted with the grand effect produced by the windows of stained glass in old churches and monasteries, we have reyretted that such fine and durable colouring should, in se many cases, have been pmstituted upon wretched designs inferior to the productions of our sign-post daubers. We have wished that some mole could be devised of copying and multiplying pictures upon glass-sume mechanical mode, which should require the aid of the artist in the first instance only, and leave all the subsequent operations to be performed by inferior hands, as in the case of copper-plate printing. Portraits at least, on a single piece of glass, which should perpetuate the features of great men and beautiful women, secure frum that decay of colour and of canras which has already begun to obliterate the Ginest paiutings of the greate t artists whom the world has ever produced, might possibly be produced in the followme way:
Suppose, after the outline of a likeness is drawn, that blocks were cut from it after the same manner as for callicues, or paper-hangings, only with superiur wicety, and in greater number for the pirwose of multiplying and better blending the tints.

Enamellers must determine what shall be the proper substances for the different colours, and with what liquid they shall be moistened, that they may be readily taken up by the blocks, and thence transferred to another body by pressure.

From these blocks, and with these colours, let. the figure be printed on paper; and, to prevent inaccuracy in bringing the stparate pats, cut on the diffecut blochs, to unite intoa complete nloble,
let the paper be placed under a frame secured in an immoveable position during the operation. The blocks being accurately squared, all exacily of the same dimensions, and each nicely fitting the frame, cannot, in passing through it to deliver their several impressions, make the smallest deviation frum their intended places, but must produce an exact picture-at least on the paper.

To transfer that impression to plass, is, indeed, a work of nicety and difficulty. Were it nut for some smaller strokes which must necessarily be in wood, the entire impression might in the outset be made on the glass itself, without any interventio:a of paper; since experience bas proved to the cai-lico-printers that the great masses of colour cannot be successfully delivered from wood; wherefore they are obliged, in those parts of their patterns, to use bits of smooth worn-out beaver-hat, which might very well be pressed on the glassplate.

However, from what we every day see effected in the case of prints affixed to glass without any of the paper remaining, and also of copper-plate embellishments upon purcelain and queen's ware, we doubt not that the picture, while fresb, may, by well-managed pressure, be transferred from thic paper to an even plate of ground glass coated with a pruper gluten which shall not, at least not materially, offuscate its transparency: and experiment must determine whether the paper may afterward be gently drawn or peeled uff, or must be burned away, or destroyed by a corrosive liguid, if ang such can be found which will not injure the colours.

Suppose, however, the operation of remoring the paper to be satisfactorily performed, proceed we nuw to secure the indelibility of the picture.

Let a square plate of cast-iron, an inch or two in thickness, and as level and smouth as possible, be furnished on every side with a metal ledze rising an inch or more in height, which ougbt to be in two separate pieces, the one permanently fastened to the plate, the other capable of bein: removed at pleasure, for the purpose of laying in and taking nut the glass without viulence.

Within that ledge let the glass be fittex, closely tonching it on every side, and lying with the painted surface uppermost. Upon this lay another plate of glass, fitterl in the same manuer.

Ict, now, the metal frame, with the inclused glasses, be exposed to the action of fire until the glass plates, without being melted to absolute fluidity, shall nevertheless become sufficiently soft to coalesce into one body under a strong pressare. The boily which conveys the pressure, and lies in immediate contact with the glass, must equally tit and completely fill the entire space between the ledges, that there be no room for the soft glass to spread in any direction.
Those who have witnessed the process pursied in softening tortoise-shell in the fite, and pressing It into the various shapes of snuffiboxes, éluis, \&c. \&c. will not conceive much difficulty in this use of the glass. It may be managed by the aid of 3 machine somewhat similar to, but more powerful than, a conmon printios-press, with a solid metal platine, to fit and fill the frame, as above; though much better contrivances may be fuund amons the multifarious engines employed at Birmingham for the purposes of cuining, and striking the heavy dies, than any we can possibly suggest. In whatever manner the two slasses may be pressed uito union, the united boly mary be afterward ground and !nlis!ar.

G L A

Glass (Muscovy). See Mica.
Glasses (Musical). See Armonica and

Euphon.

Glasses (Optical). See Lens, Mirror,
Optics, \&c.
Glass (Burning). See Burning giass.
Glass (Cupping). Sce Surgery.
Glass wort. See Salsola.
Glass (Hour). A glass used in measuring time by the flux of sand (Shakspeare), Glass signifies, farther. 1. The destined tune of man's life (Chapman). 2. A cup of glass used to drink in (Philips). 3. The quantity of wine usually contained in a glass; a draught (Taylor). 4. A perspective glass (Dryden).
Glass.a. Vitreous; made of glass (Shaks.).
To Glass. v. a. 1. To see as in a glass; to represent as in a glass or mirror: not in use (Sydxey). 2. To case in glass (Shak:ppare). 3. To cover with glass; to glaze (Buyle).

Glass, in surgery, is sometimes employed by surgeons when roughly powdered, as an escharotic to opacities of the cornea.
Glass of antimony. See Oxidum stibit vitreum.
Glass-wort (Snail-seeded). See Kali.
Glass-shared, in botany. See CyathiFORM.

Glass (John, M.A.), a minister of the church of Scoland, and founder of a sect, called, in Scotland, Glassites, and in Eingland, Sandemanians; was born at Dundee, in 1638. He was educated at St. Andrew's, and obtained a church near the place of his birth. In 1797 he published a work to prove that the civil establishument of religion is inconsistent with Christianity, for which he was deposed; on which he became the father of a sect. He wrote several controversial tracts, which were publisted in four vols. Svo. at Ediuburgh. He died at Dundice in 1773.

Glass (John), sun of the above, was born at Dundee in if 25. He was bred a surgeon, but afterwards became captain of a merchant vessel belonging to London. In 1763 he took bis wife and daughter to the Brazils; and in 1705 sailed for London, having with him his fauily and all his pruperty. When he was within sight of I reland, four of his seamen formed a conspiracy and murdered him; his wife and daughter, the mate, one seaman, and two boys. Having loaded the boat with dollars, they surk the ship, and landed at Ross, and proceeded to Dublin, where they were apprehended and executed. Glass was a man of talents. He published a work in one vol. 4 to. intitled, A Description of Tenerific.
GLA'SSFURNACE s. (glass and furnace.) A furnace in which glass is made by liquefacLion (Locke).

GLA'SSGAZING. a. (glass and gazing.) Finical: often contemplating himself in a mirror (Shakspeare).

GLA'SSGRINDER. s. (glass and grinder.) One whose trade is to polish and grind glass.
GLA'SSHOUSE. s. (glass and house.) A house where glass is manufactured (Addison). VOL. V.

G•L A

GLA'SSMAN. s. (glass and man.) One who sells glass (Swift).

GLA'SSMETAL. s. (glass and metal.)Glass in fusion (Bacon).
GLA'SSWORK. s. (glass and work.) Manufacure of glass (Bacok).
GLA'sSwORT s. A plant ; saltwort (MFl.).
GLA'sSY. a. (from glass.) 1. Made of glass ; vitreous (Bacon). 2. Resembling ylass as in smoothness or lustre, or briuleness (Sandys).
GLASTONBURY, a town of Somersetshire, with a market on Tuesday. It is seated near a high hill called the Tor, and is noted for a fainous abbey, some magnificent ruins of which are still remaining ; but they have been much diminished for the sake of the stones: however, the carious structure called the abbot's kitchen is entire, and is of a rery unusual contrivance. The only manufacture here is stockings; but the chief support of the place is the resort of people to see the ruins of the abley. The George Inn was formerly called the Abbot's Inn, because it was a recepiciele for the pilgrims that came to the abbey. It was preteaded that the bodies of Joseph of Arimathea, of king Arthur, and of king Edward the Confessor, were buried here. Glastonbury has two churches. Lat. 51.8 N. Lon. 2. 40 W.

Glastonbury thory, in botany. See Crategus.

GLATZ, a strong town of Bohemia, and capital of a county of the same name. Lat. 50.25 N . Lon. 16.50 E.

GLALBER (John Rudolph), an industrious chemist, was born in Germany. After passing a considerable time in travel he setuled at Amsterdam, about the middle of the seventeenth century. He wrote a number of works, mostly infecied with the enigmatical jargon and uniutelligible theory of the hermetic philosophy, yet containing some useful facts in true chemistry, and some processes of his own invention. His name is perpetuated in the purgative neutral salt called Glauber's, composed of the sulphuric acid and soda; a valuable remedy, but, together with others of his invention, extolled by himself to an extravagant degree. He kept several of his medicines secret, and made advantage of them as nostrums. Of his works an abridged collection was made in German, which was trauslated into English in 1689; but they are now consigned to oblivion.

Glauber's salt. Sulphat of Soda. (See SODA). It is found native; and, according to Bergman, it contiins sulpharic acid, soda, and water, in the proportions of $27.15 \cdot 58$; that is, when saturated with water of crystallization. When efflurescent, the native Glauber's salt contains, beside pure sulphat of soda, sone oxyd of iron, and porions of muriat and carbjnat of soda. It is found in old saltmines, on the borders of the salt lakes in different parts of the world, and on the surface of peat-mosses in France. It is also held in solution in the Natron-lakes of Egypt, and the lution in the Natron-lakes of Egypt,
mincral springs of Carlsbad. Glauber's salt casily dissolves in water, and shoots into long and beautiful crystals, which contain a large quantity of watcr; in consequence of which they undergo the aqueous fasion, when exposed to heat. This salt, on account of its efficacy as a pargative, was formerly hell in the highest esteen, and was denuminated sal mirabile Glauberi. It has been used in some countries as a substitute for soda in the manufacture of white ghass.

GLAUCIUM. Iforned poppy. In botaay, a genus of the class polyandria, order monogynia; calyx two-leaved; petals four ; silique superior, linear, two-celled, two or three valved; seeds numerons dutted. Four species: three of them common to the sandyshores and fields of our own country, and one a native of Japan.
 xos, blue, because of the eye becoming of a blue or sea-green colour.) An opacity of the vitreous hamour of the eye which it is difficult to ascertairt, and which is only to be known by a very attentirc examinntion of the ere-ball.

GEA'UCOPIS. Watle-bird. In zoology, a genns of the class aves, order pice. Bill incurrate, arched, the lower mandible shorter and carunculate, beneath at the base; nostrils depressed, half coloured with a subcartilaginons membrane ; tongue subcartilaginous, split, and fringed at the top; fect ambulatory. One species only. G. cinerea ; cincrenus wattlebird. Inhabits New Zealand; fifieen inches long, walks on the ground, and seldom perches on trecs; feeds on berries, insects, and small birds; makes a hissing and murmuring noise: flesh good. See Nat. Hist. Pl. CXXIV.

GLAUCUS. Ancient writers have recordad many of this name. of whom the following are the most celebrated: I. A som of Hippolochus, the smn of Bellerophon. He assisted Priam in the Trojan war, and bad the simplicito to exchange his golden suit of armour with Diowedes for an iron one, whence came the proverb of Glauci et Diomedis permutatio, to express a foolish purchase. He behared with much courage, and was killed by Ajax (Hemer.) ?. A fisherman of Arithedon, in Beootia, son of Neptune and Nais, or according to others, of Polybins, the son of Mercury. As he was tishing, he observed that all the fishes which he laid on the grass received fresh rigour as hey touched the ground, and immediately escaped from him by keaping into the sea. Haring perceived the grass on which be laid the Ashes to inspire them with fresh vigour, and to cause them to leap into the cea, he lonked, and instantly desired to inhabit the sea. He therefore leapjed into it, and was made a sea deity by Oceanus and Tethys, at the request of the vods. After this tranisformation, he became riamoured of the Nereid Scylla, whose ingraittude was severely punished bv Circe. He is ripresented with a long beard, dishevelled hair, and shaggy eyc-brows, and with the tail of a fith. 3. A son of Sisyphus, king of Corinth, 1.: Merope, the daughier of Atlas, born at Pot-
nia, a village of Boeotia. He prevented his mares from having any commerce with the stallions, in the expectation that they would become swifter in running ; upon whichVenus inspired the mares with such fury, that they' tore his body to pieces as he returned from the games, which Adrastus had celebrated in honour of his father. He was buried near Potnia (Hygin. Virg.) 4. A son of Minos 11. and Pasiptrae, who was sinothered in a cask of honey, and miraculoesly brought to life by means of an heri, which had previnusly beerr seen by a soothsayer, named Polyidus, to reanimate a serpent (Apollod. Hygin.) 5. A son of Epytus, who succeeded his father on the throne of Messenia, about ten centuries heforethe Angustan age. He introduced the worship of Jupiter among the Dorians, and was the first who offiered sacrifices to Machaon, the sou of Aisculapius (Paus.)
GLAVE. s. (glaive, Fr.) A broad sword; a falchion (Fairfax).
To GLA'VFR.v. \boldsymbol{n}. (glare, Wetsh, flattery.) To flater; to wheedle (L'Estrange).
GLAUX, in botany, a genus of the pentandrian nonogynian class and order. Natural order of cakcanthemx. Salicarix, Jussieu. Fsseotial character: calyx one-leafed, bellshaped; corolless; capsule one-celled, fivevalied, five-sceded. There is only one species, viz. G. maritima, sea milk-wort, or black saltwort. It is common on the sea-coast, and or salt marshes at a distance foum the sea; it is a heautiful little plant, enlirening large tracts of the dreary situations where it is found ; the whole plant is sncculent, and sale to the taste.
To GLAZE. v. a. (to glass, only accidentatly varied.) 1. To farnish with windows of glass (Bacon). 2. To cover with glass, as potters do their earthen ware. 3.To overlay with something shining and pellueid (Grem").

GLA'ZIER. s. (corrupted fronn glasier, or glassict, of giass.) One whose trade is to nake glass windows (Gay).

Glaztex's vice, is an imstrament for drawing lead. We have given a figure of it at PI. 76 , fig. 4 , where PG, QH , are two axles running in the frame KL, ML: C, D, two wheets of iron case-hardened, $1 \frac{1}{2}$ inetr broad, and of the thickness of a pane of glass ; these wheels are fixed to the asles, and mon sery near one annther, their distance not excecuing one-tenth of an inch: across their eldes severat nicks are cut, the better to draw the lead through. 1:, F, are two pinions, cach of twelve leaves, turning one another and proing upon the ends of the axles, which are square, being kept fast there by the nuts P, Q, which are screwed fast with a key. A, B, are two chrecks of iron, ease-hardened, and fised on each side to the case with screws; these are cut with an opening near the two wheels, and set so mear to the wheels as to leave a spice equ..t to the thickness of the lead; so that between the wheels and the cheeks there is left a hole of the firm represented at N , which is the shape of the lead when cut thmugh. The frame KL.ML is held together by cros tase-

G L A

passing through the sides, and screwed on; and a cover is put over the machine to exclude the dust. The whole is screwed down tast to a bench by screw-nails LL. When the vice is used, the lead to be drawn is first cast in moulds, into pieces a font long, with a gutter on each side. One of these pieces is taken, and an end of it sharpened with a knife; then being put into the hole between the whecls, by turning the handle I the lead is drawn through the vice, and receives the form designed.
GLAZING, in the arts, is the polishing or crusting over earthen ware. When earthen ware is properly baked, it is dipped into a composition called a glaze, made by mixing together in water, till it becomes as thick as cream, fifty-six parts of white lead, twelve of ground flints, and three of ground flint-glass. The ware, by being baked, acquires a strong property of imbibing moisture, and in this state it is called biscnit; when dipped into the glaze, it attracts it into its pores, and the ware becomes presently dry; it is then exposed a second time to the fire, by which means the glaze it has imbibed is melted, and a thin, glassy coat is foraned upon the surface. The colour is more or less yellow, according as a greater or less proportion of lead has heen used. The lead promntes also the vitrification; the flint serves to give a consistency to the lead during the time of vitrification, and $t 0$ prevent its becoming too fluid, and running down the sides of the ware, and thereby leaving them unglazed. This kind of glazing by lead is liable to be attacked by acids, and of acting in some degree as a poison ; a substitute has therefore been recommended, which consists of equal parts of white glass and sora finely pulverized, and exposed to a strong heat till quite dry, and with this the vessels are varnished or glazed. See Pottery.
M. Westrumb, an eminent German chemist, was required by the government of Hanover to devise a less pernicious method of glazing earthen ware than any hitherto praclised. In consequence of numerous experiments, he has at length published the successful result of several compositions, in which not a particle of lead was employed, and which in his opinion will prove an useful glazing for ordinary vessels. First : $\mathbf{3 2}$ parts of sand, 11 , 15, or 20 parts of purified potash, and from three to five parts of borax. Second: 32 parts of glass (we suppose flint-glass), 16 parts of torrax, and three parts of pure potash. Third: 150 parts of crystallized Glauber's-salt, with eight parts of pulverizel charcoal, previously roasted, till it has acquired a grey colour; 16 parts of sand, and cight parts of borax.

Another method of glazing without lead has been invented by M. Nieseman, a potier at Leipzig : it consists of half a pound of saltpetre, h.lf a pound of potash, and one pound of common salt. This composition is not rerre expensive, and said to produce in enamel not inferior to that prepared with lead. Prufessor Leouhardi has investigated, and found it cmi

G L E

nently useful. We trust, therefore, our potters will in future conscientiously desist from using that pernicious and slowly poisonous metal.

GL.EAD, a name used in the northern parts of the kingdom for the milvus or kite.

GLEAM. s. (zeloma, Saxon.) Sudden shoot ofdight; lustre; brightness (Milion).

To Gleasiov. n. (from the noun.) 1. To shine with sudden coruscation (Thumson.) 2. To shine (Thomson).

GLE'AMY. a: (from gleam.) Flashing; darting sudden coruscations of light (Pupe;.

To GLEAN. v. a. (glaner, French.) 1. To gather what the reapers of the harvest leave behind (Dryden.) 2. To gather any thing thinly scattered (Shakspeare).

Glean. s. (from the verb.) Collection made laboriously by slow degrees (Dryden).

GLEA'NER. s. (from glean.) 1. One who gathers after the reapers (Thomson.) 2. One who gathers any thing slow and laboriously (Locke).

GLEA'NING. s. (from glean.) The act of gleaning, or thing gleaned (Atterlury).

GLEBE. s. (glela, Latin.) 1. Turf; soil; ground (Dryden.) 2. The land possessed as part of the revenue of an ecclesiastical benefice (Spelman).
GLE'BOUS. \} a. (from glele.) Turfs GLE'BY. ($P_{\text {rinr }}$).
GLECHOMA. Ground Joy. In botany, a genus of the class didynamia, order gynnospermia. Calyx five-cleft; anthers approaching each other in pairs, and cach pair forming a cross. One species only, a well-known native of the hedges of our own country, possessing a pleasant aromatic odour, and forimerly employed medicinally, but now completely banished from the medical catalogue. It is eaten by sheep, but by no other cattle ; even goats and swine refusing it : horses dislike it, but will cat it when they have no other fodder.

GIEDE s. (zlizaz'ioe, Saxon.) A kind of hawk. See Falco.

GLLEDITSIA. Honey-locust. Acacia. In botany, a genus of the class polygamia, order monoecia. Herm. calyx four-cleft; corol four-petalled ; stamens six, pistil one; legume. Male : calyx threc-leaved; corol threepetalled; stamens six. Female : corol fivepetalled, pistil one: legume. One species only: a native tree of Virginia and the West Indics. It rises with an erect trunk, to the height of thirty or forty feet, and is propagated by seeds, which must be procured from the place in which the tree grows naturally, as it does not ripen its seeds in this country: the seeds may be sown in spring, upon a bed of light earth, burying them in the ground an inch deep; and, if the spring should prove dry, they must be frequently watered; and, as sometinies they ren:ain two years in the ground, those who desire to save time should oow the seeds in pots, which may be planged into a moderate hot-bed, to bring up the plants the same season. They must he frequently watered, and gradually inured to the open air : during the summer season, the plants in

GLE

pots will require frequent waterings; but those in the full ground will not dry so fast, and need not have any water, unless the season should prowe very dry. In autum, the plants in the pois may ise pliced under a hot-bed frame, to jestect them from frost; and those in the full gromal sion ld be covered with mats on the first appearance of a irost. The tolowing April, the plants may be tranqplanted into narse iy-beche, at the ditence of six inches, in nows, a foot asunder. If the season should prove ury, they must be watered; and if the surtace of the bed be covered with moss, or nulueh, to prevent the earth from drying, it will be of great service to the plants. Here th: mav remain two years, during which time tacy wint ioe kept clean from weeds; and in tie whe there should be some rotten tan, or other male:, spreal over the surface of the groand, on resist the frost. If the plants have tamen well, they will now be fit to transplant to the piaces where they are designed to remain: the best season for this purpose is late in the opring ; they thrive best in a deep light soil, for in strong, shallow gromid, they become mosjy, and never grow large: they should alion have a sheltered situation, for when much exposed to winds, their branches are frequently broken, in the summer-season, in consequence of the weight of their leaves.

GLEE. s. (glisze, Saxun.) Joy; merriment; gayety (Gay).

Glee, in music, a vocal composition in three or more parts, generally consisting of more than one movement, and the subject of which, notwithstanding the reccived sense of the word Glee, may be either gay, tender, or grave; bacchanalian, amatory, or pathetic. When the glee was first introduced in England is not exactly known, but it is of modern invention, and was originally, as appears evident from its name, confined to themes of cheerfuln nss and conviviality. (Busby).

GLIEED: s. (from slopan, Saxon, to glow.) A hot glowing coal: obsolete.
GLE'EFUL. a. (glee and full.) Gay; merry; cheerful: not used (Shahspeare).

GLEEK. s. (s'tzre, Saxon.) Musick ; or 2 musician (Shakspear').

To Gleek. v. a. (zlizman, in Saxon, is a mimick or a droll.) To sueer; to gibe; to droll upon (Shak:speare).
To GLEEN. v. n. To shine with heat or polish (Prior).

GleEt. See Blennorrhagia.
To Gleet. v. n. (from the noun). 1. To drip or ooze with a thin sanius liquor (Wise.). 2. To run slowly (Cheyne).

GLEETY. a. (froin gleet.) Ichorous; thinly sanious (IViseman).

GLEICHE'NIA. In botany, a genus of the class cryptogamia, order filices. Fructification three or four together, oval, sessile, half iminersed in an hemispheric hollow of the segments of the frond, one-celled, two-valved; seeds numerous, roundish. Two species, both exotics.

G L I

GLEN. s. (gleann, Erse.) A ralley; a dale ; a depression between two hills (Spenser).
GLENCOE (Vale of), a valley, near the head of Loch Etive, in Argyleshire; noted for a cruel massacre of its inhahitants in 1691.

GLENCROY (Vale of), a wild and romantic tract, near the N. E. extremity of Luch Loung, in Argyleshire. The two ranges of mountains, which overhang this valley, approach each other, and between these the traveller is immured. Their stupendous height, and the roaring of numerous cataracts, that pour over their broken surface, produce an awrul eftect.

GLENOID CAVITY. (cavitas glenoides; $\gamma^{\lambda r r v a i s o s,}$, from $y^{\lambda \lambda \eta m, ~ a ~ c a v i t y, ~ a n d ~ a d o s, ~ r e s e m-~}$ blance). In anatomy, the articular cavity of the scapula.

GLENLUCE, a town in Wigtonshire, seated on the river Luce, near its entrance into the bay of that name, 16 miles W. by S. of Wigton.
GLENSHEE (Spital of), a noted pass of the Grampian nomutains, in Scotland, a little S. of the point where the counties of Perth, Ansus, and Aberdecn, meet.

GLEW. s. (glutcn, Latin.) A viscous cement. Sue Glue.

GLIB. a. (from λ at 3 , Shinner.) 1. Smooth; slippery; so formed as to be easily moved (Burnet.) 2. Smooth ; voluble (Shatspeare).
Glib. s. A thick curled hush of hair hauging down over the eyes (Spenser).
To Glif. v. a. (from the adjective.) To castrate (Shakspeare).
GLI'BLY. ad. (from glic.) Smoothly ; rolubly (Government of the Tongue).

GL1'BNESS. s. (from glic.) Smoothness; slipperiness (Chapmun).

To GLIDE. v. n. (glioan, Saxon.) 1. To flow gently and silently (Fairfar.) 2. To pass ou without change of step (Dryd. $^{\text {. }}$) To move swifly and smoothly along (Shukspeare).
Glide. s. (from the verb.) Lapse; act or manner of passing smoothly (Shuhispeure).
GLI'DER. s. (from glide.) One that glides. GLIKE. s. (zlız, Saxon. See Gleek.) A sneer: a scoff; not in use (Shakspeare).

To GLI'MMER. v. n. (glimmer, Danish.) 1. To shine faintly (Shakispeare.) 2. To be perceived imperfectly ; to appear faintly (Wot.). Glimmer, in oryctology. Sce Mica.
Gli'mmer. s. (from the verb.) Faint splendour ; weak light.

GLIMPSE. s. (glimmen, Dutch.) 1. A weak faint light (Locke.) 2. A quick flashing light (Milton.) 3. Transitory lustre (Dryden.) 4. Short fleeting enjoyment (Prior.) 5. A short transitory view (Hakevill.) 6. The exhibition of a faint resemblance (Shakspearc).

GLINUS, in botany, a genus of the class dodecandia, order pentagynia. Calyx fiveleared; corolless; nectaries cloven bristles; capsule five-angled, five-celled, five-valved, many-seeded. Three squecies ; natives of Asia, with shrubby stems and hoary or hairy leaves: lower lip three-parted; receptacle chafly. Nine
$\mathbb{G} \mathbb{I} \mathbb{D} \mathbb{E}$.
PL. 83.

G L O

species, chiefly natives of the south of France and the Lerant. The following alone are worthy of notice.

1. G. vulgaris. Blue-daisy. Stem herbaceous, slender, simple one-fowered; root-leaves petioled, clustered, emarginate with a point within the noteh; stem-leaves alternate, nearly sessile, three-toothed. Flowers blue. Connmon to many parts of Europe.
2. G. alypum. Stem shrubby; leaves lanceolate, three-toothed and entire; heads terminal. The leaves are employed in Spain as a powerful cathartic; and often as an antidote to the prison of siphilis. The plant grows indizenously in Spain, France, and Italy.

GLIRES. The fourth order of the class mammalia, in the Linnéan system of zoology : thus ordinally characterised: fore-teeth two in each jaw, approximate, remote from the grinders; tuskless. See Zoology.

GLISSON (Francis,) a learned English phesician in the 17th century, was educated at Cambridge, and was made regius professor of that unitersity. In 1034 he was admitted a fellow of the college of physicians in London. Daring the civil wars he practised physic at Colchester, and afterwards setled in London. He greatly improved physic by his anatomical dissections and observations, and made several new discoveries of singular use towards establishing a mational practice. He wrote, 1. De rachitide, \&c. 2. De lymphaductis nuper repertis; with the Anatomica prolegumena, \&f Anal'mia hepatis. 3. De nature sulislantia energetice; seu de via vilce natura, ejusque tribus primis facultatibus, \&c. quarto. 4. Tractalus de ventriculo \& inlestinis, \&ic. The worid is obliged to him for the capsula communis, or vagina porta.

GLIST, in oryctology. See Mica.
To GLISTLEN. v. n. (glittan, German.) To shine; to sparkle with light (Thomson).

To GLI'STER. v. n. (g/isteren, Dutch.) To shine; to be bright (Spenser).

Glister. s. See Clyster.
To GLITTER. v. n. (ठliziman, Saxon.) 1.To shine; to exhibit lustre; to gleam (Dry.) 2. To be specious; to be striking (Young).

Gli'tter. s. (from the verb.) Lustre; bright show; splendour (Collier).

GIITTERAND. part. Shining; sparkling. GLITTERINGLY. ad. (from glitter.) With shining lusure.

To GLOAR. v. a. (gloeren, Dutch.) To squint; to look askew (Skinner).

To GLOAT. v. n. To cast side glances as a timorous lover (Roue).

GLO'BARD. s. (from glow.) A glowworm.

GLOBATED. a. (from glale.) Formed in shape of a globe; spherical ; spheroidical.

GLOBATE GLAND. A lymphatic gland.

See Gland.

GLOBBA, in botany, a genus of the class diandria, order monogynia. Corol equal, threecleft; calyx superior, three-cleft; capsules three-celled; seeds numerous. Four species, herbacpous plants of India.

G L O

GLOBE, in geometry, one of the round bodies mfore usually called a sphere : it is bounded by one uniform convex surface, every point of which is equally distant from a certain point within oalled the centre.

For Euclio's sefinition, we the articleGrometry.
If d denote the diameter of the glube,
c the circumference,
a the altitude of any segment, and
$p=3.1416$; then

In the Globe	$\begin{array}{c}\text { The surface. } \\ p d^{2}=c d\end{array}$	$\begin{array}{c}\text { The solidity. } \\ \text { In the Segt. } \\ p a l\end{array}$
$\frac{1}{6} p a^{2}+5 d-2 a$		

See the article Spazre.
Globe, or Artificial globe, is more particularly used for a glube of metal, plaister, paper, pasteboard, \&c. on the surface of which is drawn a map, or representation of either the heavens or the earth, with the several circles conceived upon them. And hence
Globes are of two kinds, terrestrial, and celestial; which are of considerable use in geography and astronomy, by scrving to give a lively representation of their principal objects, and for performing and illustrating many of their operations in a manner easy to be perceired by the senses, and so as to be conceived even without any knowledge of the mathematical grounds of those sciences.

Description of the Cilobes.- The fundamental parts that are common to both globes, are an axis, representing the axis of the world, passing through the two poles of a sphe:ical shell, repiesenting those of the world, which shell makes the body of the globe, upon the external surface of which is drawn the representation of the whole surface of the earth, sea, rivers, islands, \&c. for the terrestrial globe, and the stars and constcllations of the heavens, for the celestial on-; besides the equinoctial and ecliptic lines, the zodiac, and tiro tropics and polar circles, and a number of meridian lines. There is next a brazen meridian, being a strong circle of brass, circumscribins the globe, at a small distance from it quite round, in which the globe is hung by its two poles, upon which it turns round within this circie, which is divided into 4 times 90 degrees, beginning at the equator on both sides, and ending with 90 at the two poles. There are also two sinall bour circles, of brass, divided into twice 12 hours, and fitted on the meridian round the poles, which carry an index pointing to the hour. The whule is set in a wooden ring, placed parallel to, and representing the horizon, il which the globe slides by the bracs meridian, elevating or depressing the pole according to any proposed latitude. There is also a thin slip of brass, called a quadrant of altitude, made to fit on occasionally upon the brass meridian, at the highest or vertical point, to measure the altitude of any thing above the horizon. A magnetic compuss is sometimes set underneath.

The late Mr. George Adains made some improvements in the construction of the globes. His globes, like others, are suspelided at their poles in a strong brass circle NZ/Es (see the figure of the celestial globe in Plate 83, and turn therein upon two iron pins which form the axis. They have each a thin brass semicirsle NHS moveable about these poles, with a small, thin sliding circle H thereon; which semicircle is divided into two quadrants of 90 degrees euch, from the equator to both the poles. Ois the tertestrial globe this semicircle is a moveable merilian, and jits small slidiag circle, which in divided into a

Sev points of the compass, is the visible horizon of any particular place to which it is set. On the cetestial glube this semicircle is a mov cable circle of declination, and its sanall annexed circie an artificial sun or planct. Each globe has a brass wire TWY placed at the limits of the crepusculum or tivilight, which, logether with tise globe, is mounted in a wooden frame, having underneath a matnetic needle in a cumpass-box. On the strong brass circle of the terrestrial globe, and about $2: 3 \frac{1}{2}$ degrees on each side of the north pole, the days of tach munth are laididown according to the sun's derlination; and this brass circle is so contrised, that the g'ole may be placed with the north and south poles in the plane of the horizon, and with the south pole elevatcd above it. The quator on the surface of either globe serves the purpose of the horary circle, by means of a semicircular wire placed in the plane of the equator $\mathbb{E F}$, carrying two indices, one on the east, the other on the west side of the stiong brass circle : one of Which is occasionally to be used to point out the time upon the equatur. In these globes, therefure, the indices being set to the particular time on the equator, the g!obes are turned round, and the indices point out the time by remaining fixed; whereas, in the glubes as generally mounted, the indices move over thie horary circles While the g!obe is moving, and thes point out the change of time. For farther particulars of these glober, and the method of using them, see Adans's Treatise on the Construction and U'se of the Glubes.

Mr. G. Wright, of London, has yet farther simplified the construction of the hour-circle, and it is thereby rather less operose. It consists of the fullowing particulars:-There are engiaved on the globes two hour-circles, one at each of the poles; which are divided into a double set of twelve hours, as ustal in the common brass oncs, except that the hours are figured round both to the right and left. The hour-hand or inde: x is placed in such a manner under the brass meridian, as to be moveable at pleasure to any requised part of the hour circle, and yet romain there fixed during the revolution of the globe on its axis, and is entircly independent of the poles of the giobe. In this manner, the motion of the globe mund its axis carrying the houracircle, the fixed index serres to puint out the time, the sanie as in the reverse way by other giobrs.

There is a small advantage in having the hourrincle fiyured both ways, as one hour serves as a complement to XII for the other, and the time of sun risine and setting, and cice rersa, may both be seen at the same time on the hour-circle. In the probluns generally to be performed, the inner circle is the circie of reckoning, and the outer one only the complement. Fiz. 5. is a representation of the globe, with Mr. Wright's improved hour. circleat C.

In the Philos. Trans. for 1789, p. 1, Mr. Smeaton has proposed some improvements of the celestial globe, especially with respect to the quadrant of altitade, for the resolntion of problems relating to the nzimuth and altitude. The d thenlty, he observes, that hasoccurrexi in fixing a emicircle, so as to have a centre in the zenith nid nadir points of the globe, at the same time t ' at the meridian is left at liberty to raise the pole to its desired elevation, I suppose, has induced the glube-makers to be cont-nted with the etrip of thin flexible brass, called the quadrant of alticude; and it is vell known how imperfectly it
peiforms its office. The improrement il lave ato umpred, is in the application of a quadrant of aititude of a more solid construction; which be.. ing affixed to a brass socket of some length, and this ground, and made to turn upon an uprigbt steel spiadle, fixed in ti.e zenith, steadily directs the q:adrant, or rather arc, of alitude to its true azimuth, without being at liberty to deriate frum a vertical circle to the right hand or left; by which means the azimuth and altitude are given with the same exactuess as the measure of a my other of the great circles. For a mure particular description of this inprovernent, illustrated with Gigures, see the place above quoted.

The globes commonly used are composed of plastir and paper in the following manner:-A wooden ax:s is provided, somewhat less than the intended diameter of the globe, and into the extremes thercof two iron wires are driven for poles: this axis is to be the basis of the whole structure. On the axis are applied ewo hemispherical caps, firmed on a kind of wooden mould or block. These caps consist of pastcboard or paper, laid one lay after anuther on the mould to the thickness of a cruwn-piece; after which, having stood to dry and embody, making an incision along the micule, the two caps thus parted are slipprid of the mould. They remain now to be appiied on the poles of the axis, as befure they were on those of the mould: atid to fix them in their new place, the two edges are sewed together with pack: thread, \&c. The rudiments of the globe leing laid, they proceed to strengthen and mase it smooth and regular. In order to this, the two poles are hasped in a metalline semicircle of the size intended; and a kind of plaster made of whiting, water, and glue, heaterl, melted, and incorpurated together, is daubed all over the papersurtice. In proportion as the plaster is upplicd, the ball is turned round in the semicimle, the ed;e wherenf pares off whatever is superlluous and beyond the due dimension, leaving the rest adheiong in places that are short of it. After such application of phaster the tall stands to dry; which done, it is put afain in the scmicircle, and fresh mitter appied. this they continue alternately to apply the composition and dry it, till such timn as the ball every where accurately touches the semicircle; in which state it is perSectly smooth, reanlar, and complete. The tall being finished, it remains to paste the inap or descriptiun thereon: in order to this, the map is projected in several gorcs or gussets; all which, join accurately on the spherical surface, and cuser the whole ball. To direct the application of these gores, lines are drawn by a semicircle on the surface of the ball, dividing it into a number of equal parts corresponding to those of the gores, and subdiviting those acain answerably to the lines and divisions of the gores. When papers are pasted on, there remains nothing but to culour and illuminate the rivbe, and to varnish it, the better to resist dn-t, moistur, \&c. The globe itself finished, they hang it in a brass meridian, with an hour-cirsle and a quadrant of altitude, and thus fit it into a wouden horizon,
Ti, describe the gorcs or gissets for the glibes. In Chambers's Dictionary the following method is directed: "1. From the given diameter of the globe find a right line AB, fig. 1. Pl. 63. cqual ta the circumference of a great rircle, and divide it into twelve equal parts. 2. Through the several points of division, $1,2,3,4, \& c$. with the inter:
val of ten of them, describe arches mutually inersecting sach other in D and E; these figures or pieces, duly pasted or joined together, will anake the whole surface of the globe. 3. Divide each part of the right line $A B$ into thirty equal parts, so that the whole line $A B$, representing the periphery of the equator, may be divided into 360 degres. 4. Frum the poles D and E, fig. 2. with the interral of $23 \frac{1}{2}$ deg. describe arches $a b$; these will be twelfth-parts of the polar circles. 5. After the like manner, from the same poles D and E, with the interval of $66 \frac{1}{2}$ deg. reckoned from the equator, describe arches $c d$; these will be twelfthparts of the tropics. 6. Thruagh the digree of the equator e, corsesponding to the sight ascension of any given star and the poles Dand E, draw an arch of a circle, and, taking in the compasses the complement of the declination from the pole D, descibe an arch intersecting it in i; this point i will be the place of that star. 7. All the stars of a censtellation being thus laid dewn, the fgure of the constella'jon is to be drawn accorilirg to Bayer, Hev.lius, or Plamstead. 8. Lasty, afler the same manner are the declinations and rigbt ascensions of each degree of the ecliptic $\& g$ to be determined. 9. The surface of the globe thns projected on a plane is to be engraven on copper, to save the trouble of doing this over agan fur each globe. If the declinations and right ascensions of the stars be not given, but the lungitudes and latitudes in lieu thercof, the surface of the globe is to be projected after the same manner as \boldsymbol{q}^{\prime} fore, except that in this case D and E, fig. 8. are the poles of the ecliptic, and f h the ecliptic itself; and that the polar circles and tropics, with the equator $g d$, and the parakels thereof, are to be determined from their declinations.
M. De Ia Lande, in his Astronomie, 1771, tom. 3. p. 736, describes the following methods: - To coostruct celestial and terrestrial globes, gores must be engraved, which are a kind of projection or inchosure of the globe (fig. 3.) similar to what is now to be explained. the length PC of the axis of this curve is equal to a quarter of the circursference of the globe; the intervals of the parallels on the axis PC are all equal, the radii of the circles KDI, which represent the pasahts, are equal to the cotangents of the latitudes; and the arches of each, as DI, are nearly equal to the number of the degrees of the breadth of the gore, (which is usually 30°) multiplied by the sine of the datiude: thus there will be found no jatricacy in tracing them; but the difficulty proceeds from the variation found in the trial of the gores when pasting them on the globe, and of phe quantity that must be taken from the paper, less on the sides than in the middie (because the sides are lunger), to apply it exactly to the space shat it sioukd cover.
"The method used among workmen to delineate the gores, and which is described by Mr. Bion (Usage des Globes, tome 3.) and by Mr. Robert de Vaugenby, in the 7th volume of the Encyclopédie, is little geometrical, but yet is sufficient in practice. Draw on the paper a line AC, equal to the chord of 15°, to make the half breadth of the gore; and a perpendicular PC, equal to three times the chord of 3()$^{\circ}$, to make the half length; for these papers, the dimensions of which will be equal to the choids, become equal to the arcs themselves when they are pasted an the glube Divids the heighs CP into nine
parts, if the parallels are to be dravan in every 10°; divide also the quadrant $B E$ into nine equal parts through each division point of the quadrant, as G; and through the corresponding point D of the right line CP draw the perpendiculars HGE and DF, the meeting of which in F gives one of the points of the curve BEP, which will terminate the circumference of the gore. When a sufficient number of points are thus found, trace the outline PIB with a curved rule. By this construction are given the gore breadths which are on the globe, in the ratio of the confines of the latitudes; supposing these breadths, takien perpendicular to CD, which is not very eaact (lunt it is impossible to prescribe a rigid operation, sufticient to make a plane which shall cover a curved surface, and that on a right line AB shall make lines PA, PC, PB, equal amoug themselves, as they ought to be on the globe. To describe the circle KDI which is at 30° from the equator: there must be taken above D a point, which shall be distant from it the value of the tangent of 60°, taken out either from the tables, or on a circle equal to the circumference of the globe to be traced; this point will serve as a centre for the parallel DI, which should pass through the point D, far it is supposed equal to that of a cone circumscribing the globe, and which would touch at the point D. "The meridians may be traced to every 10 degrees by dividing each parallel, as KI, into three parss at the points L and M, and drawing from the pole P, through all these division points, curves, which represent the intermediate meridians between PA and PB (as BR and ST, fig. 4.). The ecliptic may be described by means of the known declination from different points of the equator that may be found in a table; for 10°, it is $3^{\circ} 58$; for $20^{\circ}, 7^{\circ} 50^{\prime}$; for 30°, 11° 29', \&c.

It is observed in general, that the paper on which charts are printed, such as the colombier, shortens itself $\frac{1}{2}$ part or a line in six inches upon an average, when it is dried after printing; this inconvenience must therefore be corrected in the engraving of the gores; if, notwithstanding that, the gores are found too short, it must be remedied by taking from the surface of the ba!! a little of the white with which it is covered, thereby making the dimensions suitable to the gore as it was printed. But what is singular i, that in drawing the gore, moistened with the paste to apply on the globe the axis GH lengul.ens, and the side AK shortens, in such a mannur, that neither the length of the side ACK nor thic of the axis GEH of the gore are exactly equal to the quarter of the circumference of the globe, when compared to the tigure on the copper, or to the numbered sides shown in fig. 4. Mir. Bonne having made several experiments on the dimenaions that gores take after they had been parted ready to apply to the glube, and particularly with the paper named jesus that he made use of for a globe of one foot in diameter, founid that is wan necesmary to give to the gores on the copper the dimensions shewn in fig. 4. Supposing that the radius of the globe contained 790 parts, the half breadth of the gore is $A G=188$, the distance AC for the parallel of 10 degrees taken on the right line L.M is 128.1, the small deviation from the parallel of 10 degrees in the middle of the gore ED is t, the line $A B N$ is right, the radius of the parallel of 10°, or of the circie CEE, is 4083; and so of the others as marked ia
the figure. The small circular cap, which is placed under H , has its radius 253 , instead of 274 , which it would have if the sine of 20° had been the radius of $i t$.-For the uses, \&c. of the globes, we refer to some of the many treatises which have been written upon this subject; among the best of which we reckon those of Adams, Bransby, Butler, Davis. Harris, and Molineux.

Very large globes have been made in different parts of Europe, as at Gottorp, Paris, \&c. but we believe they are all inferior in size to one erected at Per:brole college, Cambridge, under the direction of the late Dr. Iong. The description of this machine is here added in the doctor's own words:
" I have, in a room lately built in Pembrokehall, erected a sphere of eighteen feet diameter, wherein thirty persons may sit conveniently ; the entrance into it is over the south pole by six steps : the frame of the sphere consists of a number of iron meridians, not complete semicircles, the northern ends of which are screwed to a large round plate of brass, with a hol in the centre of it; through his hole, from a beam in the ceiling, comes the north pole, 2 round iron rod, about three inches long, and supports the upper parts of the sphere to its proper elevation for the latitude of Cambridge : the lower part of the sphere, so much of it as is invisible in England, is cut off; and the lower or southern ends of the meridians, or truncated semicircles, terminate on, and are screwed down to, a strong circle of oak, of about thirteen feet diameter, which when the sphere is put into motion, runs upon large rollers of lignum vita, in the manner that the tops of some windmills are made to turn round. Upon the iron meridians is fixed a 20 diac of tin, painted blue, whereon the ecliptic and heliocentric orbits of the planets are drawn, and the constellations and stars traced : the great and little bear, and draco, are already painted in their places round the north-pole; the rest of the constellati•ns are proprsed to follow : the whole is turned round with a sraall winch, with as little labour as it takes to wind up a jack, though the weight of the iron, tin, and wooden circle, is about a thousand pounds. When it is made use of, a planetarium will be placed in the middle thercof. The whole, with the floor, is well supported by 2 frame of large timbers." Since this was written, in 1758, the constellations and chief stars visible at Cambridge have been painted in their proper places npon plates of iron joined together, which form one concave surface.

We are sority to remark that, since the death of Dr. Long, this curious structure appears to have been much neglected, and now exhibits atrong tokens of decay: although, if we are not misinformed, the doctor in his will made ample provision for keeping it in constant repair.

Globefish. See Astracion.
Globe amaranthus, in botany. See Gomphrena.

Glope paisy, in botany. See Glotularia.

Globernanuculus, in botany. See Tollius.

Globe thistre, in botang. See Echivops.

GLOBOSE. Globular, or spherical, a term in botany, applied to the ronts, heads and corols of plants: a globalar root; roundish, with
lateral fibres; as in Bunium, Ranunculus. A globular head of flowers, rquand on all sides. A globular corol ; a corol or flower round like a ball; as in Trollius. It is applied also to the receptacle, to the germ, and to seeds. A globular-depressed pericarp. A Hattedglobular, or more properly an oblate spheroidal pericary or fruit.

GL()BUSITY. s. (from globose.) Sphericity; sphericalness (Ray).

G'LU'BOUS. a. (globosus, Latin.) Spherical; round (Philips).

GLO'BULAR. a. (glolulus, Latin.) In form of a small sphere; round; spherical (Grew).

GLUBULA'RIA. In botany, a genus of the class tetrandria, order monogynia. Com-mon-calyx imbricate; proper tubular, inferior; upper lip of the corollet two-parted, lower three-parted; receptacie, chaffy. There are eight species; though only one, G. vulgaris, or common blue daisy, is to be met with in our gardens.

GLO'BL LE s. (globule, Fr. globulus, Lat.) Such a small particle of matier as is of a globular or spherical figure; as the red particles of the blood (Newton).

GLO'BULOUS. a. (from globule.) In furm of a small sphere; round (Boyle).

GLOBUS HYSTERICUS. In medicine. The air rising in the cesophagus, and prevented by spasm from reaching the mouth, is so called by authors, because it mostly attends hysieria, and gives the sensation of a ball ascending in the throat.

GLOCESTLER. See Gloucester.
GLOGAW, a strong town of Silesia, in Germany, and capital of a duchy of the same name. It was taken by the king of Prussia in 1741. Lat. 51. 40 N. Lon. 16. 31 E .

Glogaw the less, a town of Silesia, in the duchy of Opelen, belonging to the king of Prussia. It is three miles S. E. of Great Glogaw. Lat. 51. 38 N. Lon. 16. 33 E.

GLOME, in botany, a roundish head of flowers.

GLOMERATE (glomero, from glonws, a clue of yarn or thread), in botany, applied to the spike and panicle. A glomerate spike; (spiculis varie congestis;) having the spikelets or component spikes variously heaped together: as in panicum italicum. A glomerate panicle is exemplified in poa ciliaris, and dactylis glomerata. The flowers grow pretty close together, in a globular or sub-globular form. Scaliger derives glomus from globus; but others on the contrary derive globus from glomus.

Glomerate gland, in medicine, a gland formed of a glomer of sanguineous ressels, having no cavity, but furmisherl with an excretory duct ; as the lachrymal and mammary glands.

To Glómerate. v.a. (glomero, Latin.) To gather into a ball or sphere.

G L O

GLOMERATION. s. (glomerutio, Iatin.) 1. The act of forming into a ball or sphere. 2. A boly formed into a ball (Bacon).

GLOMERELLS, in our old writers, commissarics appointed to determine differences between scholars of a school or unirersity, and the n ownsmen of the place.

GLOMEROUS. a. (glomerosus, Latin.) Gathered in a ball or sphere.

GLOMERULE. (dimin, from glomus.) In botany. A small glome.

GLUMME, a river of the prorince of Aggerhuys, in S. Norway, which flows into the North Sea, at Fredericstadt.

GLOOM. s. (xlomans, Saxon, twilight.) 1. Imperfect darkness ; dismalness; obscurity ; defect of light (Milton). 2. Cloudiness of aspect ; heaviness of mind ; sullenness.

To Gloos. v. n. (from the noun.) 1. To shine obscurely, as the twilight (Spen.) 2. To be cloudy ; to be dark. 3. To be melancholy; to be sullen.

GLOOMILY. ad. (from gloomy.) 1. Obscurely; dimly; withont perfect light; dismally. 2. Sullenly; with cloudy aspect; with dark intentions; not checrfully (Dryden).

GLOO'MINESS. s. (from gloomy.) 1. Want of light: obscurity ; imperfect light; dismalness. 2. Want of cheerfulness; cloudiness of look; heaviness of mind; melancholy (Collier).

GLOOMY. a. (from gloom.) 1. Obscure; imperfectly illumiuated; almost dark; dismal for want of light (Dryden). 2. Dark complexion (Millon). 3. Sullen; melancholy; cloudy of look; heary of heart.

GLORIA PATRI, among ecclesiastical writers. See Doxology.

GLO'RIED. a. (from glory.) Illustrious; bonourable : not in use (M itt,n).

GLORIFICATION. s. (glorification, Fr.) The act of giving glory (Taylor).

To GLÓRIFY. v. a. (glorifier, French.) 1. To procure honour or praise to one (Dan.). 2. To pay honour or praisc in worship (Hook). 3. To praise; to honour; to extol (Donne). 4. To exalt in heaven (Romans).

GLORI'OSA. In botany, a genus of the class hexandria, order monogynia. Corol sixpetalled, undulate, entirely reflected; style oblique. Two species. 1. G. superba. Superb lily, with leaves ending in a tendril; an elegant plant, not unfrequently found in our green-houses, but a native of Malabar. The roots and every part of the plant are poisonous. ع. G_{0} simplex. Simple gloriosa : a native of Senegal, with pointed leaves, climbing stem, and blue flowers.

GLORIOUS. a. (gloriosus, Latin.) 1. Boastful ; proud; haughty (Bacon). 2. Noble ; illnatrious ; excellent (Addison).

GLO'RIOUSLY. ad. (from glorious.) Nobly; splendidly; illustriously (P ope).

GLORY. s. (gloria, Latin.) 1. Praise paid in adoration (luke). 2. The felicity of heaven prepared for those that please God (Milloz). 3. Honour; praise; fame; re-

G L O

nawn; celebrity (Sidney). 4. Splendour; magnificence (Matthew). 5. Lustre; brightness (Pope). 6. A circle of rays which surrounds the heads of saints in picture (Souti). 7. Pride; boastfulness; arrogance (Young). 8. Generous pride (Sidncy).

To Glo'ry. v. n. (glorior, Latin.) To boast in ; to be proud of (Siduey).

To GLOSE. v. a. To flatter; to collogue.
GLOSS. s. ($\lambda \lambda \omega \sigma \sigma=$; glose, Frencl.) 1. A scholium; a comment (Davies). 2. Superficial lustre (Addison). 3. An interpretation artfully specious; a specious representation (Houker).
To Gloss. 0. n. (gloser, French.) 1. To comment (Dryden). 2. To make sly remarks (Prior).

To Gloss. v. a. 1. To explain by comment (Donne). 2. To palliate by specious exposition or representation (Hooker). 3. To embellish with superficial lustre (Dryden).

GLO'SSARY. s. (glossarium, Latin.) A dictionary of obscure or antiquateic words (Buker).

GLOSSATOR. s. (glossateur, French.) A writer of glosses; a commentator (Ayliffe).

GLO'SSER. s. (glossarius, I at.) I. A scholiast ; a commentator. 2. Λ polisher.

GLO'SSINESS. s. (from glossy.) Smooth polish; superficial lustre (Boyle).

GLOSSO, in anatomy, (from $\gamma^{2} \omega$ usca, the tongue.) Names compounded with this word belong to muscles, nerves, or vessels, from their being attached, or going to the tongue.

Glosso-pharyngeal nerves. The ninth pair of ne rves. They arise from the processes of the cerebellum, which run to the medulla spinalis, and terminate by numerous branches in the muscles of the tongue and pharynx.

Glosso-pharyngeus. (Musculug glosso-
 tongue, and pafv; ξ the pharynx: so named from its origin in the tongue, and its insertion in the pharynx.) Sce Constrictor pharyngis superior.

Glosso-stafhilinus. (Musculus glosso-
 tongue, and rasudisos the staphylinus.) See Constrictor isthmi faucium.
 A scholiast : a commentator.
 The writing of commentaries.

GLOSSO'MA. In botany, a genus of the class tetrandria, order monogynia. Calyx fourtoothed; corol four-petalled; anthers cohering by a membrane; stigma four-cleft; drupe with a grooved one-secided nut. One speries, a native of Guiana: a shrub branched at top, with leaves opposite, oblong, pointed, glabrous, very entire, flowers white, in axillary cymes. GLOSSOPETALUM. In botany, a genus of the class pentandria, order pentagrinia. Calyx half inferior ; five-toothed; corol fivepetalled with a linear-lanceolate ligule at the tip of each : berry fivc-sceded. Two specics,

G L O

both natives of Guiana, trees from fifty to sixty feet high, with flowers in a spherical head.

GLO'SSY. a. (from gloss.) Shining; smoothly polished (Dryden).

GLO'IIIS. (glottis, $\boldsymbol{y}^{\lambda \omega}=1 / \mathrm{c}$ from $\gamma^{\lambda \omega}$?la, the tonguc.) The superior opening of the larynx at the bottom of the tongue.

Glortis, in music, the name applied by the ancients to an additional and moreable part of the flute, which they placed between their lips in performance, and which is supposed to be similar to our reed.

GLOUCESTER, a city of Gloucestershire, with two markets on Weducsday and Saturday. It is seated on the E. side of the Severn, where, by two streams, it makes the isle of Alnes. It is a large and well-inhatited place, has been lately much improved, and its four principal streets are admired for the regularity of their junction in the centre of the town. It contains 12 churches, of which six only are in' use, beside the cathedral of St . Peter, which is a handsome structure, remarkable for its large cloister and whispering gallery. Gloucester is a city and county of itself, and governed by a mayor, 12 aldermen, and 26 com-mon-council, a town-clerk, and sword-bearer: the mayor is recorder of the city. It contains five hospitals, two frec-schoois, and a new county goal, and was fortified with a wall, which king Charles II, after the restoration, ordered to be demolished. It sends two members to parliament, and furnishes 1163 militiamen. It contains 1368 houscs, and 7579 inhabitants. Great quantities of pins are made here. Lat. 51. 50 N. Lon. 2. 16 W .

Gloucester (Robert of), the oldest of our English poets, lived in the time of Henry 1I. Camden quotes many of his old English phymes, and speaks highly of him. He died about the begimning of the reign of king John, at an advanced age.
GLOUCESTERSHIRE, a county of Eng. land, is bounded on the west by Monmouth. shire and Herefurdshire, on the north by Worcestershire, on the east by Oxfordshire and Warwickshire, and on the south by Wiltshire and part of Somersetshire. It is sixty miles in length, twenty-six in breadth, and one hundred and sixty in circumference; containing 800,000 acres, 48,172 houses, 250,800 inhabitants, 290 parishes, 140 are impropriations, 1229 villages, two cities, and 28 markettowns. It sends only eight members to parliament : six for three towns, viz. Gloucester, Tewkesburv, and Cirencester, and two for the county. The soil and cultivation of Gloucestershire differ in diffierent parts. On the Coiswold hills the sail is in general loamy, with stones; the earth shallow, seldom allowing the plow to enter more than four or fise inches, beneath which is generally a kind of limestone. In some places the land is stiff and sour. About Fairford and Cirencester the soil is richer and deeper. The farms in feneral are large : great qumatities of shecp are

G L O

fed here, formerly celebrated for the fineness of their wool, and the smallness of their fieece. It is notimprobable that the fine-woolled sheep of Spain might originally have been procused from Cotswold, sent over by Richard I, or Elward 1. This breed of sheep has been changed for others of a larger hind, which produce a larger fleece of coarser wool. Here are many considerable dairy farms, and betwcen the hills are some excellent meadows. What is called the vale of Berkelcy is an extensive and fertile plain, lying on both sides of the Scvern, in the souih-west part of the county. This part of the county is celebrated for itsexcellent cherse. The vale about the city of Gloucester contains excellent meadow and pasture land. Towards Tewkesbury the soil is a saudy loam, rich and deep, chiefly employed in grazing and dairying. In the forest of Dean, it was formerly supposed the best ship-timber grew : this forest at present contains but a small part of what it did formerly; however, some pains are taken to preserve what remains. The woollen manufacture is carried on to a great extent in this county, particularly at Dursley, Stroud, Wotton-Underedge, Painswick, Min-chin-Hampton, and their neighbourhood. Mines of coals abound in Kingswood and the neighbourhool of Bristol, and mines of iron in the forest of Dean. Great quantities of cider are made in the villages on the banks of the Severn, a kind of which, called Styre ciler, is a!most peculiar to the western banks of that river.
GLOVE, chirotheca, a habit or covering for the hand and wrist, used both for warmith. decency, and as a shelter from the weather. Gloves are distinguished, with respect to commerce, into leathern gloves, silk gloves, thread gloves, cotton gloves, worsted gloves, \&c.
To throw the Glove was a practice op ceremony very usual among our forefathers, being the challenge whereby another was defied to single combat. It is still retained at the coronation of our kings, when the king's champion casts his glove in Westminster-hall. Favyn supposes the custom to have arisen from the eastern nations, who in all their sales and deliverics of lands, goods, \&c. used to gire the purchaser their glove by way of delivery or investiture. To this effect he quoter Ruth iv. 7. where the Chaldee paraphrase calls glore what the cominon rersion renders by shoe. He adds, that the rabbins interpret by glove, that passage in the cviiith Psalm, In Humeam extendam calceamentum meum, Over Elom will I cast out my shoe. Accordingly, among us, he who took up the glore, declared therely his acceptance of the challenge; and as part of the ceremony, continues Faryn, took the glove off his own right hand, and cast it npon the ground, to be taken up by the challegger.

To Gloye. v. a. (from the noun.) To cover as with a glove (Cleaveland).
GLO'VER. s. (from glove.) Oue whove trade is to make or scll gloves (Shakspeape).

G L U

Glover (Richard), an English poet. He was also an eminent merchant in the city of London, and distinguished himself by a remarkable speech at the bar of the house of commons in 1739, juit before the betaking cut of the Spanish war. He was the autior of Leonidas, and the tragedies of Boadicea and Medea. His Leonidas has been greatly adonired, and was translated into French. He died in 178.5, at the age of 74,

To GLOUT. v. n. To pout; to look sullen (Chapman).
To GLOW. v. n. (3lopan, Saxon.) 1. To be heated so as to snine without flame (Hakiexill). 2. To burn with vehement heat (Sizith). 3. To feel heat of body (Addison). 4. To exhibit a strong bright colour (Millon). 5. To feel passion of mind, or activity of fancy (Prior). 6. To rage or burn as a passion (Shadicelt).

To Glow. v. e. To make hot so as to shine : not in use (Shakspeare).

Glow. s. (from the verh.) 1. Shining heat. 2. Vehemence of passion. 3. Brightness or vividness of colour (Shahspeare).
Glow-worm, in entomology. See LamPyRis.
GLOXI'NIA. In botany, a genus of the class didynamid, order angiospermia. Calyx superior, five-leaved; corol campanulate, with the border oblique; rudinent of a fifth filament inserted into the receptacle. One species ooly ; a native herbaceons plant of Carthagena, with axillary one-flowered peduucles; and a corn pubescent outwardly.

Tu GLOZE. v. n. (zleran, Saxon.) 1. To flatter; to wheedle; to insinuate; to fawn (South). 2. To comment; to gloss (Shaks.).

Gloze. s. (from the verb.) 1. Flattery; insinuation (Shahispeare). 2. Specious show ; glows: not used (Sidney).

Glucina, or Glucine. See Glpcina.
GLUCKSTAD'1, a strong town of Saxony, in Germany. Lat. 53.53 N. Lon. 9. 15 E.

GLUE, among artificers, a tenacious viscid matter, which serves as a cement to bind or connect things together. See Gelatine.

Glue, method of preparing and using, Set a quart of water on the fire, then put in about half a pound of good glue, and boil them getitly together till the glue be encirely dissolved, and of a due consistence. When glue is to be used, it must be made thoroughly hot; after which, with a brush dijped in it, besinear the faces of the joints as q aick is possible, then clapping them together, slide or rub them lengthwise one upon another, two or thrce times, to settle thein close; and so let them stand till they are dry and firm.

Glue (Parchment), is made by boiling gently shreds of parchment in water, in the proportion of one pound of the former to six quarts of the latter, till it be reduced to one quart. The flyid is then to be strained from the dregs, and afterwards boiled to the consistence of glue. Isinglass glue is made in fhe same way ; but this is improved by dissolve

G I U

ing the isinglass in alcohol, by means of a gentle heat. See Cements and Gelatinfo

To Glue. v. a. (from the noun.) 1. \because, join with a viscous cement (Ecclus). 2. it, hold togecher (Newton). 3. To join ; to unitc; to inviscate (Tillutson).

GLU'EBOILER. s. (glue and boil.) O:: whose trade is to make glue.
GLU'ER. s. (from glue.) One who coments with glue.

GLUM. a. (a low cant word.) Sullen; stubbornly grave (Guardian.)

GLUME. In botany. (from glubo, denuin. corticem detraho, to bark, or take the ba: from a tree; from the Greek $\boldsymbol{j}^{\lambda \nu j \omega w, \text { to scraic }}$ or carve.) Calyx graminis, valuis ampleaistilus. The calyx or corol of curn and grass:"。 formed of valves embracing the seed. It is thus explaned by Varro (de R. R. I. c. 4 s): "Spica; in ordeo \& tritico tria habet con:tinentia, granum, glumam, aristam. Gluu: est folliculus ejus. Arista \& granum oranibias fere notum : gluma paucis. Videtur vocihn:lum etymon habere a glubendo, quòd eo foriticulo deglubitur granum." In commou datguage it is called the husk or chaff.
GLUMOUS. In butany, a term applicd : the flower. A glumous or glumose flow it a kind of aggregate flower, having a filiform r.ceptacle, with a common glume at the base. \therefore, in corn and grasses, scirpus, cyperus, caric.

To GLUT. o. a. (englou/ir, Fr. glatiLat.) 1. To swallow; to devour (Mith, ": 2. To cloy; to fill heyond sufficiency (Jacu) 3. To feast or delight even to satiety (Drydet ${ }^{2}$. 4. To overfill; to load (Arluthnol). 5. is saturate (Bnyle).
Glut. s. (from the verb.) 1. That whi: is gorgid or swallowed (Milion). 2. Ple:: even to loathing and satiety (Milton). -More than enough ; overmuch (B. Jonson:4. Any thing that fills up a passage (Wooiur:-

GLUTA. In botany, a genus of the cid: pentandria, order monogynia. Calyx can:;inulate, deciduous; petals five, unglutina:s at the bottom to the coluinn of the germ ; f: ments inserted into the tip of the coluan: : germ pedicelled. One species: a native $u \cdots$ of Java, with alternate, sessile, lanceon. $\%$ leaves; terminal panicle; stamens iuberiu! at the hase of the germ.

GLU'TE'AL ARTERY, a branch of i:.e. internal iliac artery.

GLUTEN (Animal). See the artice Fibrin.

Glutey (Vegetable). A substance rey closely resembling animal gluten in all 1 ir essential chemical properties, is found in $\because-$ veral vegetables, and hence it has receinis the name of regetable gluten.

Wheat flour was first found hy Becca: or contain it in considerable quantity, and i: , from this source that it is usually obtaineti is r experiment by the following simple and $\cdot \cdots$ process. Moisten any quantity of wheat t ir with a little water, and knead it with 1:: hand into a tough ductile paste; then $\mathrm{k}:$ a

G L U

very slender stream of water keep dropping on the paste while it is incessantly worked about with the hands, and the water will run off white and turbid, owing to the fecula or starch which it carries off. The paste in the mean time gradually becomes more of a grey and almost demi-transparent appearance, and when the water runs off quite clear, nothing is left in the hands but pure gluten. No other precaution is required in this preparation but that of not drenching the flour at first with water, but only using a very small quantity with much kneading, that the gluten may not be carried off along with the starch. Good wheat flour will yield in this way about a fourth of its weight of gluten, and no other flour but that of wheat will yicld it except in a very small proportion; and hence protatly the peculiar property of wheat flour to make bread without any other addition than a ferment. See the article Pread.

Gluten thus prepared is soff, extremely tenacious and elastic, so as to bear bcing extended considerably without pulling in pieces, and returni:g to its former dimensions. It is aiso considerably alhesive, readily sticking to the fingers. Its colour is a dirty grey; it has a laiat and peculiar sachl. It reatily dries into a britte scmi-tranparent substance, which tooks not unlike glue, and in drying, it strongly adheres to the substance on which it rests: so that advantage is taken of this property to cement together broken pieces of china and other rough surfaces.

Gluten is absolutely insoluble in water, though it must owe its adhesincness and ductility to the water which it absorbs when the flour is first wetied. Boiled with water it only becomes denser, aid loses part of its alliceive:aess. A! the acills, vegeabie as well as mineral, the latter being difuted, dissolve it widhom diffically, forming a clear solution, from which it is again separated by alkaties. Stoong suiphuric acid blacke ns and carbonizes it, and disentages from it an inflammable gass, and convers it partly to acetous acid, partly to ammonia. Coneentrated nitric acid when cold disengages azotic gass from it, when hot it cunvers it chicfly into malic and oxalic acids with evolution of maich nitrous gass and ammonia. The alkalies also dissolve gluten with ease. When gradually heated without addition, it dries thoroughly, then shrinks and cnils up like most other of the soft animal substances, then melts and takes fire, burning with the fetid olour of animal matter.

In close vessels it yields some ammoniacal water, and a very brown fetid thick oil in abundance, together with crystallized carbonat of ammonia and carburrettell hydroden.

In short, it exhibits to chenical analysis all ne properties of animal matter.

Gluten, when dry and kept so, remains unaltered for any length of time; but if kept constantly moist in the state in which it was first procured, it slowly alters, loses much of its tenacity, becones fetid and covered with a
thick white down, and falls into putrefaction. This process, however, is slow, and at the same time a sour smell is perceivable, and an acid is generated which probably corrects and retards the putrefaction. In this circumstance it is that it chiefly differs from animal gluten. M. Cadet has found that gluten, after having been kept for many days moist and mouldy, is partially soluble in alcohol. Some of this gluten was rubbed up with alcohol, and passed to the state of a thick turbid sirup; on adding more of the spirit, much of the gluten separated in its original form; but a part remained in perfect solution. This latter being diluted with water immediately became milky, and let fall a copious white precipitate which appeared like a fecula ; but was glaten in intinate division. Another part of the alcoholic solution, being gently evaporated, left behind a dry, britule, yellowish, glossy gluten, appearing like a vatnish, and which the author of the experiment proposes to be used for this purpose, euther by usclif or as a vehicle for colours of different kinds.

Gluten is contained in small quantity in sereral regetable juices and other parts, and may be sepsrated from them with care: turnugh in none is it so abundant as in wheat flour. Birctime, a singular subitance, extractell from the bark of the holly and also from the misletoe, is supposed to be chicfly g!uten ; and the green fecula of plants atoo appears to be composed very largely of this substance, as mentioned under that article.
GLUTEUS MAXIMUS. In anatomy. (Gluteus, from yavтor, the buttocks.) Gluteus magnus of Albinus. Glutceus major of Cowper. This broad radiated muscle, which is divided into a number of strong fasciculi, is covered by a pretty thick aponeurosis derived from the fascia lata, and is situated inmediately under the integuments, It arises fleshy from the outer lip of somewhat more than the posterior half of the spine of the ilium, from the ligaments that cover the two posterior spinours processes; from the posterior sacro-ischiatic ligament; and from the outer sides of the os sacrum and os coccygis. From these origins the filres of the muscle run towards the great trochanter of the os femoris, where they form a broad and thick tenclon, between which and the trochanter there is a considerable bursa mucosa. This tendon is inserted into the upper part of the linea aspera, for the space of two or three inches duivnwards; and sends off fibres to the fascia lata, and to the upper extremity of the vastus externus. This muscle serves to extend the thigh, by pulling it directly backwards; at the same time it draws it a little outwards. and thus assists in its rotatory motion. Its origin from the coccyx seems to prevent that bone from being forced too far backwards.
Gluteus medius. The posterior half of this muscle is covered by the gluteus maximus, which it greatly rescmbles in shape: but the auterior and upper part of it is corared
only by the integuments, and by a tendinous nembrane which belongs to the fascia lata. It arises fleshy from the outer lip of the anterior part of the spine of the ilium, from part of the posterior surface of that bone, and likewise from the fascia that coversit. From these origing its fibres run towards the great trochanter, into the outer and posterior part of which it is inserted by a broad tendon. Between this renton and the trochanter there is a small thin lursa mucosa. The nses of this muscle ase nearly the same as those of the glutcus maximus; but it is not confined like that muscie, to rolling the os femoris outwards, its anterior portion heing capable of turning that bone a little inwards. As it has no origin from the coccyx, it can have no effect on that bone.

Gluteus minimus. Glataus minor of Albinus. This, which is likewise a radiated muscle, is situated under the glateus medius. In adults, and especially in old subjects, its outer surface is usually tendinous. It arises feshy between the two semicircular ridges we observe on the outer surface of the ilium, and likewise from the edge of its great niche. Its fibres run in different directions towards a thick flat tendon, which adheres to the capsular liganeut of the joint, and is inserted into the fore and upper part of the great trochanter. A small lursa mucosa may be observed between the tendon of this muscle and the trochanter. This muscle assists the two former in drawing the thigh backwards and outwards, and in rolling it. It may likewise nerve to prevent the capsular liganent from being pinched in the motions of the joint.

GI.UTINOUS. a. (glatineux, French.) Gluy; viscous; tenacious (Bucon).

Glutinous leaf. In botany. Humore Jubrico illitum. Besmeared with slippery
moisture. moisture.

GLUTINOUSNESS. s. (from glutinous.) Viscosity; tenacity (Cheyne).

GLUTTON. s. (glouton, French.) 1. One who indulges himself too much in eating (Prior). 2. One eager of any thing to excess (Covecry).

Glutton, in mastiology. See Ursus.
To GLUTTONISE. v. n. (from glutton.) To play the glutton; to be luxurious.

GLUTTONOUS. a. (fromglutton.) Given to excessive feeding (Raleigh).

GLUTTONOUSLY. ad. With the voracity of a glutton.

GLUTTONY, a voracity of appetite, or a propensity to gormandizing. A morbid sort of gluttony has been supposed to exist, called fames canina, "dog.like appeitite"" which sometimes occurs, and renders the person seized with it an object of cure as in other discases. See Bulimy. But professed habitual glattons may be reckoned amongst the monsters of nature, and for this reason king James I. was not greatly in the wrong when he asked a man who was presented to him that could eat a whole sheep at one meal, "S What he could do more than another man?"

G L Y

and being answered, "He could not do so much," said, "Hang him then; for it is unfit a man should live that eats as much as twenty men, and cannot do so much as one."
The emperor Clolius Albinus would devour more apples at once than a bushel would hold. He would eat 500 firs to his breakfast, 100 peaches, 10 melons, aq pound weight of grapes, 100 gnat-snappers, and 400 orsters. "Fye upon him (s.ith Lipsius;) God kecp such a curse from the earth."
One of our Danish kings named Hardiknute was so great a glutton, that a historian calls him Bucca de Poreo, "Swine's-mouth." Ilis tables were covered four times a day with the most costly viands that either the air, sea, or land, could furnish: and as he lived he died; for, revelling and carousing at a wedding bunquet at Lambeth, he fell down dead. His death was so welcome to his subjects, that they celcbrated the day with sports and pastimes, calling it Hock-tide, which signifies scorn and contempt. With this king ended the reign of the Danes in Eig gland. Oae Phayon, under the reign of the emperor Aurelianus, at one meal ate a whole boar, 100 loaves of bread, a sheep, a pig, and drank abeve three gallons of witce.
We are told by Fuller, that one Nicholas Wood, of Harrison in Kent, ate a whole sheep of 16 s . price at one neal, raw; at another time, 30 dozn of pigens. At Sir William Sidley's, in the same county, he ate as much victuals as would have stifliced 30 men. At Luid Wolton's maision-house in Kent, he devoured at one dimner 84 rabbits; which, by computation at half a rabbit a man, would have served 168 men. He ate to his beakfast 18 yards of black pudling. He devoured a whole hog at one sitticg cown; and after it, being accommodated with fruit, he ate three peeks of dansons !!
GLUY.a. (fron glue.) Viscous; tenacious; glutinous (Ad'disom).
GLYCiNA, Glycine, or Glucine, as it is sometimes but improperly called: (from $\gamma^{\text {dunpas, }}$ stect, on occount of the high saccharine taste by which its salts are distinguished.) In chemistry, one of the five proper and unalkatine earths. See the articie Earrif. In mineralogy it ranks under the order silicinus. White, and somewhat unctuous to the touch, adheres strongly to the tongue when reduced to powder, is insipid and inodorous: produces no cha:ige un regetable colours: does not contact in its dimensions by heat, and is not fusitle; but with the assistance of borax runs into a clear transparent glass: specific gravity 29. 6: is not soluble in water, but when moistened with this fluid it forms a somewhai ductile paste. It combines with sulphuretted hadrogen through the medium of water: is soluble in the liquid fixed alkalis, resembling, in this respect, slumine: insoluble in ammonia; but dissolves readily in carbonated ammonia as ytria does: unites with the acids forming saline compounds, all
the soluble ones of which have a remarkably s.seet subastriugent taste.

It is a true earth of beryl and emerald: and was first detected in the former in 1793, by V luquelin, who analyzed it at the request of Yi.uy, to determine whether it were formed of t:e same ingredients as the emerald, as Haüy boud conjectured from mineralogical considerat.ons. The result was the discovery of this eirth in both, and consequently a contirm:rinn of the suspicions of Haily. The expesiments of Vauquelin have since been reye:ated by Klaproth with equal success.

In order to procure glycine in a perfectly $p: r e$ state, take any quantily of beryl or emerad, and having reduced it to a very fine powder, mix it with about three uines its weight of caustic potash in a liquid form, and ciget it to dryness in a silver crucible, after w.inich let it be modrately ignited for about lialf an hour : the resulting mass will be found to be entirely soluble in a slight excess of muriatic acid; and the solution, after being evaprartited to dryness, and then diffused in water, vill deposit nearly the whole of the silex. The miuriatic solution is now to be supersaturated with muriatic acid, and afterwards mixed at a builing temperature with carbonat of soda, icposits the whole of its earthy contents in the fmm of white soft precipitate : this, when well w: shed in water, is to be dissolved in sulphurie :cid, and the solution being transferred to a araund stoppered botte, is to be considerably oupersaturated with carbonat of ammonia: Trit the alumine and glycine will be at first precipitated, but this last, by the assistance of orcasional agitation, will be redissolved in the - surse of a few hours. The elear liquor being :omred off, the earthy residue is to be again \therefore Solved in sulphuric acid, and sulphat of pot\because h being added, a enpious deposit of crystals oi alum will take place: the mother liquor a::1 washings of the crystals being again treated "ill a large excess of carbonated ammonia, IIe remaining portions of glyciac will be extacted, and the two ammoniacal solutions are t.) !e added tozether. This fluid, when boiled i: a retort, will deposit the whole of the glycine in the state of a white powder, and comhi:ised with carbonic acid: after being washed .: d dried it must be ignited, by which it will i.)se carbonic acid and moisture to the amount If about half its weight, aad the residue is a glycine.
Sivcine (Carbonat of), may be prepared Becr by precipitating sulphat of glycine by - B .are of the carbonated tixed alkalics, or sim, by heating the solution of glycine in carimied ammonia: a white impalpal le powder - ": down, which is carbonat of mycine.

This sa!t, according to Klaproth, consists of Glycine - - - 53 Carbonic acid and water - $\quad 47$
\vdots :s deromposable by a low red heat, the : :a : an ivere becin: driven off: it is alsode. "aidic with eiferescence by other acids.

G L Y

Glycine (Phosphat of), is obtained by adding phosphat of soda to sulphat, nitrat, or muriat of glycine: a white pulverulent precipitate falls down, which is the salt in question. When perfectly neutralized, it is uncrystallizable, insoluble in water, and insipid: at a high heat it melts into a transparent glass: when the acid is in excess, it is soluble in water. It is decomposable by the alkaline carbonat and alkaline earths, except carbonat of magnesid, aind by the sulphat, nitrat, and muriat of alumine.
GlyCINE (Sulphat of), is procured byaiding either pure or carixonated glycine to sulphuric acid, till this last is perfectly saturated: oy spontancous crystallization, sulphat of glycurc is deposited in octohedrona, composed of two oblique fuur-sitited pyranids, joined base to base, with the edges and solid angles truncated. The taste of this salt is very sweet, and somewhat astringent: it is readily soluble in water, and tincture of galls added to the solution occasions a yellowish white precipitate. The solid salt, when heated, dissolves in its water of crystallization, and afterwards becomes pulverulent: at a red heat the acid is entircly driven off, the pure earth being left behind.

If a litule sulphat of potash is added to a solution of stiphated glycine, and the liquor is slowiy evajerated, a quantity of small crystalline grains are deposited, which are readily solubie in seren or eight times their weight of cold water. If carbonated glycine is digested in a solution of common alum, the glycine is taken up, and the alumine entirely precipitated.
Glycine (Nitrat of), is prepared in the same manner as the preceding salt, by substituting the nitric for the sulphuric acid. Its taste is sweet and astringent, it is strongly deliquescent, and when evaporated assumes the consistence of honey, but does not crystallize : like the preceding salts, it is decomposable by a red heat, he acid being evaporated. With tincture of galls it gives a yellowish brown precipitate.
Glycine (Muriat of), both in the mode of its preparation, and in its general character, bears a close resemblance to the preceding; it is, howerer, capable of being crystallized, which is not the case with nitrat of glycine. Neither the pure earth nor any of its salis have been applied to any use.

Gly'cise. Wild liquorice. In botany, a genus of the class diadelphia, order decandria. Caly x two-lipped; keel of the corol turning back the banner at the tip. Forty-five species: natives of South America, the Cape, and India. They are all of the vetch or kidacy bean tribe, and many of them, by some botanists, are made species of the phascolus, bus erroneously. The plant most cultivated in our gardens is G. frutescens, or Corolina bean as it is called, with bracted racemes, twining. shruliby stem, and blue flowers. See Nat. Hist PI. CXXIII.

G L Y

oweet, and sixpes, bitter, so called from its bitterish sweet taste). The woody nightshade. See Dulcamara.

GIIYCYRRHIZA. Liquorice. Calyx twolipped; the upper lip three-parted; lower unduided; legume ovale, compressed. Six species; of which the following are chiefly worthy of notice:

1. G. echinata. Prickly-podded liquorice. Legumes prickly; flowers in heads; stipules lauceolate; leaflets glabrous, oblong, mucronate.
2. G. glabra. Smooth-podded or common liquorice. Legumes glabrous; flowers racemed; stipuleless; leaHets ovate, somewhat setuse, a litile glutinous underneath.
3. G. hirsuta. Hairy-podded liquorice. legunes hairy; leaflets oblong lanceolate; flowers racemed.

The first species grows naturally in Apulia and Tartary ; the second in Franconia, Fratce, and Spain; and is commonly cultivated in Fngland, for its use in medicine. It flowers in July, but the seeds do not ripen in this cnuntry. The third species grows naturally in the Levant; the first and third are preserved in butanic gardens only for the sake of variety: these fluwer at the same time with the second species, and in warm seasons ripen their seeds in England; thev are all propagated in the same manner. The common liquorice is propagated in many parts of Eugland to very great adsantare. It delights in a rich sandy soil, which should be three feet deep at least; for the chief advantage consists in the length of the roots. The greatest quantities of it propagated in England are about Pontefract in forkshire, and Godalmin in Surry. The ground designed for liquorice must be well dug, and dunged the year before, that the dung may be thoroughly rotted in it; and just before it is planted, the earth is to be dug three spaces deep, and laid very light. The plants to be set should be taken from the sides or heads of the o!d roots, and each must have a very grod bud, or ege, otherwise they are very subject to miscarry; they should also be about ten inches long, and perfectly sound. The best season for planting then is the end of February, or the beginning of March, and this must be done in the following manner. The rows must be marked by a line drawn across the bed, at two feet distance, aud the plants must be set in these by making a hole of their full depth, and something more, that the eye of the ront may be an inch below the surface: they must also be set at two feet distance from each other in each row. The ground may then be sown nver with onions, which, not rootine deep, will do the liquorice no injury for the first year. In October, when the stalk's of the liquorice are dead, a little very rotten dunz thould be spread over the surface of the ground. Three years after the time of planting, the liquorice will be fit to take up for use; and this should be done just when the stalks are dead off; for if taken up sooner, the roons are very apt to shrink greatly in their weight. The

G N A

roots about London look browner than those which have been propagatud in a less rich suil, but then they are much larger, and grow quicker to their size.
The root of all these, but especially of \mathbf{G}. glabra, contains a great quantity of saccharine matter, joined with some proportion of mucilage; and hence it has a sweet viscid taste. This last root is, on this account, in common use as a pectoral, or emollient, in catarrhal defluctions on the breast, coughs, hoarsenesses ${ }_{n}$ \&c. Infusions, or the extract from it, which is called Spanish juice, afford likewise very commodious vehicles for the exhibition of other medicines: the liquorice taste concealing that of unpalatable drugs more effectually than syrups, or any of the sweets of the saccharine kind.

GLYN. s. (Irish.) A hollow between two mountains; a glen (Spenser).

GLYPHE, in sculpture and architecture, denotes any canal or cavity used as an ornament.
GMELIN (Samuel Gottlieb), a man eminent for his knowledge of natural history, way the son of a physician at Tubingen, and was horn in 1745. He passed great part of his life in travelling, and died in Tartary. He wrote a work, entitled, Travels in Russia, which was published at Petersburgh, in the German language, in 4 vols. 4 to.

GMELI'NA. In botany, a genus of the class didynamia, order angiospermia. Calyx slightly four-toothed; corol four-cleft, cainpanulate; anthers, two of them two-parted, the other two simple; drupe with a twocelled nut. One species, an Asiatic tree with round stiff branches; leaves opposite ovate downy underneath ; flowers racemed, terminal. There is a variety which consists of a much smaller plant.

GNAPHA'LIUM. Everlasting goldy-locks. Cudweed. In botany, a genus of the clars syngenesia, order polygamia superflua. Receptacle naked ; down feathery or rough; calyx imbricate with the marginal scales routeded. scarinus and coloured; Hurets of the margin subulate. A hundred and furty-six specics scattered orer the globe, but by far the greater number Cape plants; and nine indigenous in the pastures, marshes, or mountains of our own country. They may be thus subdivided:
A. Shrubby ; with white flowers.
13. Shrubby ; with yellow flowers.
C. Herbaceons; with yellow flowers.
D. Herkacenss; with white flowers.
E. Filago-formed.
F. Of doubtful form, and insufficiently described.
The shrubby sorts almitted into gardens are generally propagated by slips, or cuttings. which may be planted in June or July, in a bed of light earth; and those that are naties of warm countries should be covered with glasses, or shaded with mats, observing to refresh them frequently with water, in pente quantities. In four or five weeks, when these cuttings will have put out roots, they shouk

G N A

be taken up, and planted in pots filled with light earth, and placed in a shady situation till they have taken new root; then let them be renoved into an open place, till abolt the middle or end of Octoler; at which time they may be removed under a common frame; but in mild weather exposed to the open air. But such as are more hardy, and are natives of France, Germany, and oher parts of Europe, will live in the open air in England: these nalay be proparated by slips or cutings, which may be planted dunaty any of the summer months, in a shady border, and in autumn transplanted to the places in which they are designed to remain. These sorts, for the most pari, should have a dry undunged soil. The annuals are propagated by seeds, which, in general, should be sown upon a bed of light earth, where the plants are to continue: when they come up they should be thinned where they grow ton close, and kept clean from weeds. Some sorts will arise from scattered secds better than when they are sown by art. The mountain gnafaliun, called also catsfoot, grows naturally in the mountains of England, and other countries in Europe, and is a pereunial plant, propagated by off-sets, which should be planted in autumn, in a shady situation, where they will require no other care than to keep them clean from weels. There is one variety of African gold locks, with an oblong narrow leaf, and a celdish Hower, which is afterwards ycllow, that may be propagated in the same manner; as may also be several others from the same part of the world. Virginia goldylocks, with a plaintain leaf, is sometimes propagated by sceds; but the plants multiply so Gast by off-sets, that the seeds are little regarded: this sort will thrive in the open air, if planted in a warm soil, and a dry situation. Blunt-lcafed goldylocks, with silvery heads growing in clusters, is also a native of North America; and is propagated by seeds; from which, if permitted to be scattered, the plants will come up amually, without any other care than that of keeping them clean from weeds.
G. stachas, with linear, corymb-compound leaves, wand-like branches, and ycllow flowers, generally appearing in May or June, was formerly admitted into the pharinacopocias, under the name of Elichrysum ; which see.
to GNAR. To Gnarl. v. n. (znjnnan, Saxon.) To growl; to murmur; to snarl (Spenser).

GNA'RLED. a. Knotty (Shakspeare).
To GNASH. v. a. (knaschen, Dutch.) To strike towether ; to clash (Dryden).

Tu GNash. v. n. 1. To grind or collide the teeth (Matthewo). 2. To rage even to collision of the teeth; to fume; to growl (Dryden).

GNAT, in entomology. See Culex.
GNA'TFLOWER. s. (gnat and flower.) The beefower.

GNATSNAPPER. s. (gnat and snap.) A bird that lives by catching grats (Hakewill.)

To GNAW. v. a. (дnazan, Saxon.) 1. Te eat by degrees; to devour by slow corrosion

G N I

(Dryden). 2. To bite in agony or rage (Shakspeare). 3. To wear away by biting (Sandys). 4. To fret; to waste; to corrode. 5. To pick with the teeth (Dryden).
T'o GNaw. v. n. To exercise the teeth (Shakspeare).
GNAWED, in botany. See Eroued.
GNA'WER. s. (froun gnaw.) One that gnaws
GNEISSUM. Gnerss. In mineralogy, agenus of tus class earths, order aggregate. Composed of parts coliering together without any internuediate cement; often in the form of crystals, and sometimes alternating in layers, of a slaty, occasionally a fib bous texture, forming plates laid on each other; found in primitive inountains, generally resting upon beds of grauite; hard, not melting before she blow-pipe, nor mouldering in the air. Thirty-one species; confined to Europe ; chiefly found in Germany, and the adjoining councries, especially the Carpathian mountains; and in the neighbourhood of Vesuvius.
The following are the chief:

1. G. formacum. Micaceous slate. Consisting of the greater part quartz and mica. Found in most mountainous countries of Europe, in innumerable varieties of proportion, combination, distribution, colour, and harduess; and is chiefly covered with argillaceous slate, sand, and limestone. It is formed of distinct plates laid on each other, and separated by thin layers of mica; and is generally ri:h in metallic ores: it is used for laying the beds of large furnaces.
2. G. micaceum. Micaceous schistus, consisting of the greater part mica and quartz. Found in Norway; forming entire mountiins of a silvery colour and splendour: the plates of . mica are extremely thin and closely compacted together, so as to form distinct tables; the quartz is generally disposed in small veins, granulations, or larger strata.
3. G. alpinum. Consisting of quartz, mica, and garnets. Found in most of the higher Alpine mountains; the mica chiefly silyery, sometimes predominant, sometimes verv equally distributed, sometimes hardly visible; the garnets are more commonly red than brown, sometimes of a common form and considerable size; sometimes crystallized and less: sometimes there is found with the gneiss a portion of schorl, talc, or feldspar: when the quartz is in greater proportion it is made iuto millstones.

GNESNA, an episcopal town of Poland, 90 miles N. by E. of Breslau. Lat. 52. 28 N. Lon. 17. 40 E.

GNETUM. In botany, a genus of the class monocia, order monadelphia. Male: calyx a minute coloured scale of the ament; corol. less ; filament one, with two anthers. Fem. calyx a lacerated scale of the ament; corolless; style with a cloven stigma; drupe oneseeded. One species : an East Indian herb.
GNI'DIA. In botany, a genus of the class octandria, order monogynia. Calyx funnelform, four-cleft; petals four, inserted on the calyx; nut somewhat drupaceous. Sixieen

G $\mathrm{N} O$

species : all Cape plants, except G. daphnse folia, with ten stamens and five-cleft terminal flowers, which is a native of Madagascar.
GNOMES, GNomi, certain imaginary beings who, according to the cabbalists, inhabit the inner parts of the earth. They are supposed small in stature, and the guardians of mines, \&c.

Gnome, is also somet:mes used for a pithy and sententious observation.

GNOMON, in astronomy, is an instrument or apparatus for measuring the altitudes, declinations, \&c. of the suil and stars. The gnomon is usually a pillar, or column, or pyramid, erected upon level ground, or a pavement. For making the more considerable observations, both the ancients and moderns have made great use of it, especially the former ; and many have preferred it to the sinaller quadrants, both as more accurate, easier made, and more easily applied.

The most ancient observation of this kind extant, is that made by Pytheas, in the time of Alexander the Great, at Marseilles, where he found the height of the gnomon was in proportion to the meridian shadow at the summer solstice, as 213 to to 600 ; just the same as Gassendi found it to be, by an observation made at the same place, almost 8000 years after, viz. in the year 1636. Ricciol. Almag. vol. i. lib. 3, cap. 14.

The elevation of the pole may be found by means of the gnomon, by finding the meridian height of the sun; for, this being given, we have the elevation of the equator, and consequently that of the pole. The meridian height of the sun may he found in the follow:ing manner: Let AC, fig. 5, PI. 76, be the gnomon, AB the sharlow, and CB part of a ray drawn from the centre of the sun, passing by the top of the gnomon, and terminating the shadow at B. These three lines form a rightangled triangle BAC, whereof the two legs AB and AC are given, the number of feet and inches in them being found by actual mensuration. Hence the acite augles may be found in the following manner: Let one ieg be radius, and the other will be tangent of the opposite angle. Thus, if we make AB radius, AC will be tangent of the opposite angle ABC. This tangent is found by the golden rule-as the number of feet, inches, \&c. in AB, is to the number of fect, inches, \&e. in AC; so is che radius to a fourth nuunber, which is the tangent required. This fourth number looked for in the table of tangents gives the measure of the angle $A B C$, which is the meridian height of the sua required.

This method of observation, however, is by no means accurate ; and Ricciolus takes notice of the following deficiencies in the ancient observations mode in this manner: 1 . They did not take into account the sun's parallax, which makes his apparent altitude less than it woukd be if the gnomon were placed at the centre of the earth. 2. They neglected refraction, by which the apparent height of the sun is somewhat increased. 3. They made their calVOL. V.
culations as if the shadows were terminated by a ray coming from the sun's centre ; whereas it is bounded by one coming from the upper ealge of his limb. These errors, however, may be easily allowed for; and, when this has been done, the ancient observations are generally found to coincide nearly with those of the moderns.
Some gnomons show the alcitude of the sun not by the shadow, but by a hole in the top made in a plate of netal inserted therc, through which the rays fall upon a level pavement. In gnomons of this kind the centre of the instrument is always exactly under the hole in the metal plate; and the method of finding the height of the sun is the same as that already described. A gnomon of this kind was made in the year 1576 by Egnatio Dante, in the church of St. Petronia at Bologna. Near the top of the south wall of the church he placed a brass plate about three-eighths of an inch thick, in which was cut a circular bole almost an inch in diameter. The plate was set in the wall at an angle of about $45 \frac{1}{2}$ deg. the height of the equator in that place. The height of the hole in the plate from the ground is near 66 feet, and the length of the line drawn upon the pavement is 169 feet. This line, however, is not exactly in the meridian, but as near it as the pillars of the church would admit ; and on it the rays of the sun, passing through the hole, formed an ellipsis at different distances from the wall, according to the season of the year. Another gnomon of this kind was made in the same church by D. Cassini, in 1655.
Gnomon, in dialling, is the style, pin, or cock of a dial, the shadow of which points out the hours. This is always supposed ω represent the axis of the world, to which it is therefore parallel, or coincident, the two ends of it pointing straight to the north and south poles of the worid.

GNOMONICA, or Gnomonics. Sce.

Dialing.

G.NOSSIS and Gnossia, an epithet given to Ariadne, because she lived or was born at Gnossus. The crown which she received from Bacchus, and which was made a constellation, is called Gnossia Stella.

GNOSTICS, an ancient sect of Christians, celcbrated from the first rise of Christianity, especially in the East.

It appears from several passages of the sacred writings, particularly I John ii. 18. 1Tim, vi. 20. and Col. ii. 8. that many persons were infected with the gnostic opinions in the first century; though the sect did not render itself conspicuous, either for number or reputation, before the time of Adrian, when some writers erroneously date its rise.

The word is formed of the Latin gnosticus, and that of the Greek rraisix, knowing, of y irworw, I know.
The name Gnostic was adopted by those of this sect, as if they were the only persons who had the true knowledge of Christianity : just as the term Rational Christians is assumed by some modern Arians, and we believe all So-
cinians: as the most modest way of insinuating that no other Cinistians are rational or men of real knowledge but themselves. Accordingly, they looked on all other Christians as simple, iguorant, aad barbarous persons, who explained and interpreted the sacred writings in a too low. literal, and unelify ing signification.

At first, the Ginoties were only the philosophers and wits of those times, who formed themselves a peculiar system of theology, asreeable to the philosophy of Pythagnas and Plate; to which they accommolated all their interpretations of scripture. But
Gnostics afterwards became a generical name, comprehending divers sects and parties of heretics, who roce in the first centuries, and who, though they differed annong themseives as vo circumstances, yet all agreed in some common principles. They were such as corrupted the doctrine of the gospel by a profane nixture of the tenets of the oriental philosophy, concerning the orimin of evil and the creation of the world, with its divine truths. Such were the Valentinians, Simonians, Carpocratiaus, Nicolatans, \&c.

Gnostics was sometimes aliso more particularly attributed to the successors of the first Nicolaitans and Carpocratians, in the second century, upon their laying aside the names of the first authors. Such as would be thoroughly acquainted with all their doctrines, reveries, and visions, may consult St . Irensus, Tertullian, Clemens Alexandrinus, Origen, and St. Epiphanius ; particularly the first of these writers, who relates their sentiments at large, and confutes them at the same time: indeed, he dwells more expressly on the Valentinians than any other sort of Gnostics; but he shews the general principles whereon all their mistaken opinions were founded, and the method they tellowed in explaining scripture. He accuses them with introducing into religion certain vain and ridiculous genealogies, i. e. a kind of divine processions or emanations, which had im other foundation but in their own wild imagination.

In effect, the Gnostics confessed, that these zons or emanations were no where expressly delivered in the sacred writings; but insisted at the same time, that Jesus Christ had intimated them in parables to such as could understand him. They built their theology not omly on the gospels and the epistles of St. Paul, but also on the law of Moses and the prophets.
These last laws were peculiarly serviceable to them, on account of the allegories and allusions with which they abound; which are capable of different interpretations.

Though their doctrine, concerning the creation of the world by one or more inferior beings of an evil or imperfect nature, led them to deny the divine authority of the books of the Olid Testament, which contradicted this idle fiction, and filled them with an abhorrence of Moses and the religion he taught; alleging, that he was actuated by the malignant author
of this world, who consulted his own glory and authority, and not the real adrantage of wen. Their persuasion that evil resided in mather, as its centre and source, made them treat the body with contempt, discourige marriage, and rejece the doctrine of the resurrection of the bedy and its re-ubion with the imnortat spirit. Ther uotion, that malevolent genii presided in nature, and occastoned diseases and calamities, wars, and desolations, indired them to apply theniselves to the study of inagic, in order to weaken the powers or suspend the influence of these melignant agents.

The Gnostics considered Jesus Christ as the Son of God, and, consequently, inferior to the Father, who came into the world for the rescue and happiness of miserable mortals, oppressed by matter and evil beings: but they rejected our Lord's humanity, on the principle that every thing corporeal is essentially and intrinsically evil; and, therefore, the greatest part of them denied the reality of his sufferings. They set a great value on the beginning of the gospet of St. John, where they fancied they saw a great deal of their arons or emanations under the word, the life, the light, \&e. They divided all nature into thrce kinds of beinge, viz. hy/ic, or material; psychic, or animal; and pncumatic, or spiritual.

On the like principle they adso distinguished three sorts of men; material, animal, and spiritucul. The first, who were material, and incapable of knowledge, inevitably perished, both soul and body ; the third, such as the Gnostics themselves pretended to be, were all certainly saved; the psychic, or aninal, who were the middle between the other two, were capable either of being suved or dammed, according to their good or evil actions. With regard to their moral doctrines and conduct, they were much divided.

GiNU, in mastiology. See Antilope.
To GO. v. n. pret. I went; I have gone. (Jan, Saxon.) 1. To walk; to thove step by step (Shakspeare). 2. 'To move, not stand still (Matthew). 3. To walk solemmly (Hoch.). 4. To walk leisurely, not run (Shakispeure). 5. 'To travel; to journey (Millon). 1j. To proceed; to make a progress (Dryden). 7. To remove from place to place (Shakspeare). 8. To depart from a place; to move from a place (Cowlcy). 9. To move or pass in any manner, or to any end (IIerl:crt). 10. To pass in company with others ('Temple). H. To p:occed in any course of life good or bad (Ezehiel). 12. To proceed in mental operation (Diglo) 13. To take any road (Deuteronomy). 14. To march in a hostile or warlike manner (Shakspeare). 15. To change state or oprinion for better or worse: affairs go to ruin (Knolles). 16. To apply one's self: he went to lis studies (Bentley). 17. To have recourse to (Corinthiuns). 18. To be about to do; I am going to live (Lucke). 19. To shift; to pass life not quite well : I go furward as 1 can (Locke). 20. To decline; to tend toward death or ruin; ue thought his credit going (Shatispearr). 21:

To be in party or design (Dryden). se. To escape (Maccabers). \$3. To tend to any act (.Shatispeare). 24. To be uttered (.Addison). 25. Tu be talked of; to be known (Addison). \&if. To pass; to be receivad (Sidney). 27. I's move by inechanism ($0: w a y$). ©x. To be in motion from whatever cause (Shakispeare). 29. To move in any direction (Shakspicare). 30. To fow ; to pass; to have a course (Dryden). 31. To have any tendency (Dryden). 3 s. To be in a state of compact or partuership (L'Estrange). 33. To be regulated by any method; to procced upon principles (Sprat). 34. To be pregnant : women go commonly nine months (Bacon). 35. To pass; not to remain (Jndges). 36 . To pass; not to be retained (Shaispcare). 37. To be expended (Fellon). 38. To be in order of time or place: this name goes first (Walts). 39. To reach or be extended to any degree (Locke). 40. To extend to consequences (L 'Estrange). 41. To reach by effects (Wilkins). 42. To extend in meaning (Dryden). 43. To pread; to be dispersed; to reach (Tatc). 44. To have influence; to be of weight; to be of value (Γ emple). 45. - To be rated one with another; to be considered with regard to greater or less worth (Arbufhnot). 46. To contribute; to conduce; to concur; to be an ingredient (Collier). 47. To fall ont, or terminate; to succeed (Shakspeare). 48. To be in any state (Chronicles). 49. To proceed in train or consequence (Shakspeare). $\quad 50$. To Go alout. To attempt; to endeavour; to set one's self to any business (Shakspeare). 51. To Go aside. To err; 10 deriate from the right (Numbers). 52. To Go beticeen. To interpose; to moderate between two (Shakspeare). 53. To Go ly. To pass away unnoticed (Shakspare). 54. To Go ly. To find or get in the conclusion (Milton). 55. Tn Golly. To observe as a rule (Sharp). so. To Go dor'n. 'To be swallowed; to be receiverl, not reiected (Dryden). 57. To Go in and out. To do the business of life (Psalms). 58. To Go in and unt. To be at liberty (Johnt). 59. To Go off. To die; to go out of life; to dccease ('Tatler). 60. To Go off. 'I'o depart from a post (Shakspeare). 61. To Go on. 'lo make attack (Ben Jonson). 69. To Go on. To proceed (Sidney): 63. To Go vever. To revult; to betake himself to another party (Suift). 64. To Go out. To go upon an expedtion (Shakspeare). 6.5. To Go out. To be extinguished (Bacon). 66. To Go through. To perform thomughly; to execute (Sidney). 67. T", Go through. To suffer; to undergo (Arluthnot). 68. To Go upon. To take as a principle (Addison).

Go to. interject. Come, come, take the right courye. A scornful exhortation (Spenser).

Go-between. s. (go and l.etween.) One that transarts business by running between two parties (Shakspeare).

Go-sy. s. Delnsion; artifice; circumrention; overreach (Collier).

Go-cart. s. (go and cart.) A machine in
which children are inclosed to reach them to walk (Prior).

GOA, an island in the Indian sea, near the west coast of Hindustan, separated from the coutinent by a river called Mandova, which soon after runs into the sea; about eight le:crues in circmuference. The soil is fertile, especially in the valleys; the trees are always covered swith leaves, Howers, and fruit; and abundance of springs issue from the mountains.

Goa, a considerable city of the peninsula of Hindustan, on the coast of Malabar; the capital of the Portuguese settlements in India, and the seat of a viceroy. It stands on the \mathbf{N}. side of the small island of the same mame, and has the conveluiency of a fine river, capable of receiving ships of the greatest burden. This city contains a nuinber of handsome churches and convents, with a stately hospital, and an elegant palace for the viceroy. The narketplace takes up an acre of ground. The number of inhabitants is said to be, in all, about 20,000 : of these the native Portuguese amount to a very sunall number; the Mestizos are more nuincrous: the Canarins, or natives, are as black as jet, but have long black hair, and many of them fine features; multitudes of negro slares, and pagans of different nations, make up the rest of the people. It is generally agreed, that the men are for the most part proud, iodolent, jealous, revengeful, and indigrent; the women lazy, lascivious, and as well tkilled in poisoning as any in the world: 215 miles S.S.E. Bombay. Lat. 15. 28 N. Lon. 73.45 E .

GOAD. s. (zad, Saxon.) A pminted instrument with which oxen are driven forward (Pope).

To Goad. v. a. (from the noun.) 1. To prick or drive with a gead. 2. To incite; to stimulate; to instigate (Dryden).

GOAL. See Gaol.
Goal. s. (gaulc, French.) 1. The landmark set up to bound a race ; the point marked out to which racers rum (Milton). 2. The starting-post (Dryden). 3. The final purpose; the end to which a design tends (P ope).

GOAR. s. (goror, Welsh.) Any edging sewerl upon cloth to strengthen it.

Goar (Si.), a town of Germany, in the circle of Lower Rhine. It is seated inder the stupendous rock and castle of Rheinfels; and has a hrisk commerce in wines and hides. 15 miles S.E. of Coblentz.

GOAT, in mastiology. See Capra.
Goat, in astronomy. Sit Capricorn:
Goat's beard, in botany. Seetracia POGON.

Goat-sucker, in ornithology. She Caprimulgus.

Goat's thorn, in botany. See Astracalus.

GOA'TISit. a. (from goat.) Resembling a goat in any quality: as, rankness; lust (Mure). (GOB. s. (Lole, French.) A small quantity. GO'BBET. s. (gole, French.) A mouthful; as much as can be swallowed at once (Sandys).

G O B

To Go'bbet. v. a. To swallow at a mouthful (L'Estrange).
To GO'BBLE. v. a. (goler, French.) To uwallow hat tilv with tumult and noise (Prior).
GOBBLER s. (from gotble.) One that de-- vours in haste; a gormond ; a greedy eater.

GOBBO (Hietro Paolo Cortonese), a very eminent painter of frut and landscapes, was boru at Cortona in 1580. His subjectis are admirably relieved, touched with a free pencil, and charmingly coloured. He died in $16 \not 10$.

GOBELIN (Giles), a famous French dyer, in the reign of Francis I. discorered a method of dyeing a beautiful scarlet, and his name has been given ever since to the finest French scarlets. His house, in the suburb of St. Marcel at Paris, and the river he made use of, are still called the Gobelins. An academy for drawing, and a manufactory of fine tapestries, were erected in this quarter in 1666; for which reason the tapestries are called the Gobelins.

GOBIUS. Goby. In zoology, a genus of the class pisces, order thoracica. Head small ; eyes approximate, with two punctures between them; gill-membrane four-rayed; body small, comprissed on each side, covered with small scales, with a tubercle behind the vent; ventral fins united into a funnel-like oval: dorsal fins two. These lie chiefly under stones; feed on worms, insects, and the spawn and young fry of other fishes: they adhere firmly to rocks by the funnel-shaped ventral fins; mouth small; jaws armed with small sharp teeth; tongue short, obtuse; palate rough with four bones; aperture of the gills narrow, rounded; lateral line in the middle of the body. Twenty-five species; chiefly natives of European and Asiatic seas: a few of American. The following are the chief:

1. G. niger. Black or common goby. Second dorsal fin with fourteen rays. Inhabits the European and Asiatic seas ; from five to six inches long; body deep-bruwn or whitish, with deep-brown and yellow spots; flesh very good.
2. G. jozo. Rays of the dorsal fins setaceous, reaching above the membrane: boly above brown, beneath whitish, covered with scales. Inhabits the shores of the European and Mediterranean seas; from four to six inches long: flesh hardly.eatable.
3. G. schlofferi. Blackish-brown, beneath whitish; rays of the first dorsal fin spinous: body a little compressed, and hardly decreasing towards the tail, covered with large, round, coriaceous scales. Inhabits the lakes of Amboina; very fat, and about a span long; when pursued by other fishes hides itself in the mud.
4. G. lanoeolatus. Tail very long, sharppointed; body oblong, corered with round imbricate scales which are longer on the hind part; beneath cinereous; flesh good. Inhabits the rivers and brooks of Martinico. See Nat. Hist. PI. CXIX.
5. G. ocellaris. Upper jaw longer ; first dorsal fin six-rayed, with a black ocellate spot near the base on the hind part. Inhabits the fresh-river - aters of Otaheite.

G 0 D

6. G. strigalus. Ventral fins divided; firt dorsal fin six-rayed. Inhabits the Pacife Ocean near Otaheite.
7. G. Gronovii. Ventral fins divided; firs dorsal fin ten-rayed ; tail forked. Inhabits the South American seas; body silvery, above black, spotted with black at the sides, and covered with small imbricate seales.

GOBLET. s. (gobelet, French.) A bowl, or cup, that holds a large draught (Denhem).

GO'BLIN. s. (goleline, French.) 1. An evil spirit; a walking spirit; a frightful phantom (Locke). 2. A fairy ${ }^{\prime}$ an elf (Shats.). GOBY, in ichthyology. See Golius.
GOCH, a town of Cleves, in Germany, subject to the king of Prussia. Lat. 51. 39 N. Lon 5. 52 E.

GOD, Deus, the Supreme Being, the fint cause or creator of the universe, and the ooly true object of religious worship. The Hebrews named him Jehovah; which name however they never pronounced, but used insead of it the words Adonai, or Elohim.
By his immateriality, intelligence, and fretdom, God is distinguished from fate, nature, destiny, necessity, chance, anima mundi, and from all the other fictitious beings, acknowledged by the Stoics, Pantheists, Spinosiss, and other sorts of atheists.
The knowledge of God, his nature, attributes, word, and works, with the relations between him and his creatures, make the subject of the extensive science called theology.
In Scripture, God is defined by, I am that I am, Alpha and Omega; the Beginning and Eull of all things.
Among philosophers, he is defined a being of infinite perfection; or in whom there is no defect of any thing which we conceive might raise, improve, or exalt his nature.
Among men, he is chiefly considered as the first cause, the first being, who has existrd from the heginning, has created the world, of who subsists necessarily, or of himself.
Sir Isaac Newton chooses to consider and define God, not as is usually done, from his perfection, his nature, existence, or the like; but from his dominion. ": The word God, according to him, is a relative term, and has 2 regard to servants; it is true, it denotes a bio ing eternal, infioite, and absolutely perfect; but a being, however eternal, infinite, and atsolutely perfect, without dominion, would nut be God.
" The word God, the same author obsere?, frequently sigrifies Lord; but every lord is not God: it is the dominion of a spiritual teing or lord, that constitutes God; true dominion, true God; supreme, the supreme; feignad, the false god.
" From such true dominion it follows, that the true God is living, intelligent, and powerful; and from his other perfections, that he is supreme, or supremely perfect: he is etermal and infinite; omnipotent and omniscient; that is, he endures from eternity to eteruity, and is presens from infinity to infinity.

G O D.

"He governs all things that exist, and knows all things that are to be known : he is not eternity or infinity, but eternal and infinite : he is not duration or space, but he endures, and is present : he endures always, and is present every where ; and by existing always, and erery where, he constitutes the very thing, duration and space, eternity and infinity.
"Since every particle of space is always, and every indivisible moment of duration every where, the Creator and Lord of all things can pever be nunquam, or nusquam.
" He is omnipresent, not only virtually, but also substantially; for power without substance cannot subsist. All things are contained, and move in him; but without any mutual passion: he suffers nothing from the motions of bodies; nor do they undergo any resistance from his omnipresence.
" It is confessed, that God exists necessarily; and by the same necessity he exists always, and every where. Hence, also, he must be perfectly similar; all eye, all ear, all brain, all arm, all the power of perceiving, understanding, and acting; but after a manner not at all corporeal, after a manner not like that of men, after a manner wholly to us unknown.
" He is destitute of all body, and all bodily shape; and therefore cannot be seen, heard, nor touched; nor ought to be worshipped under the representation of any thing corporeal.
" We have ideas of the attributes of God, but do not know the substance even of any thing: we see only the figures and colours of bodies, hear only sounds, touch only the outward surfaces, smell only odours, and taste tastes ; and do not, cannot, by any sense, or any reflex act, know their inward substances; and much less can we have any notion of the substance of God.
"We know him by his properties and attributes: by the most wise and excellent structure of things, and by final causes; but we adore and worship him only on account of his dominion : for God, setting aside dominion, providence, and final causes, is nothing else but fate and nature." Newt Philos. Nat. Princip. Math. in calce:

An ingenious divine has wrmught these thoughts of that admirable philosopher into form, and ripened them into a more express kystem, in a discourse on this subject. Maxwell's Disc. concerning God.
The existence and principal attributes of the Sopreme Being may be inferred very briefly from the following considerations :
We must either admit that impotence and ignorance produce power and knowledge, or that the latter are absolutely necessary in themselves. Now, so necessary are power and knowledge in nature, that if we deny their absolute and inconditionate necessity, we affirm their absolute impossibility, since there was nothing in nature to produce them. This is one of these instances where it is impossible for the mout disingenuons sceptic to doubt with lis utimost effort. They must likewise be in-
finite or unlimited, for they could not have limited themselves, or made themselves less perfections than they necessarily were. That necessary power and knowledge should lessen or limit themselves, is both morally and physically impossible; and there was nothing else in nature to limit or lessen them, for nature consisted of nothing else. Ignorance and impotence are still nothing. Add to this, that it is something positive that must be infinite; and nothing is of such a positive nature as such perfections, and those necessary. Infinite joined to a negation, that is, infinite nothing, is absurd. Infinite deadness, infinite weakness, infinite ignorance, makes the perfections which are thus infinitely denied, again impossible. Lastly, they must be undivided, as well as unlimited, for the same reasons, which it is almost needless to repeat. Division is limitation. It is their nature to be united. They could not have divided themselves. Infinite power, or infinite knowlerge, could not have been divided, and thereby lessened itself. This is again both morally and physically impossible. And as there was nothing else in nature, they could not have been divided: we must still remember that their contraries are nothing, and could not make a part of nature.
But, as Mr. Maclaurin observes, the plain argument for the existence of the Deity, obvious to all, and carrying irresistible conviction with it, is from the evident contrivance and fitness of things for one another, which we meet with throughout all parts of the universe. There is no need of nice or subtle reasonings in this matter; a manifest contrivance immediately sugzests a contriver. It strikes us like a sensation, and artful reasonings against it may puzzle us, bat without shaking our belief. No person, for example, that knows the principles of optics and the structure of the eye can believe that it was formed without skill in that science, or that the ear was formed without the knowledge of sounds, or that the male and female, in animals, were not formed for each other, and for continuing the species. All our accounts of nature are full of instances of this kind. The admirable and beautiful structure of things for final causes, exalt our inea of the' contriver: the unity of design shows him to be one. The great motions in the system, perforined with the same facility as the least, suggest his almighty power, which gave motiot to the earth and the celestial bodies with equal ease as to the minutest particles. The subtilty of the motions and actions in the internal parts of bodies, shows that his influence penetrates the inmost recesses of things, and that he is equally active and present every where. The simplicity of the laws that prevail in the wortd. the excellent disposition of things in order to obtain the best ends, and the beauty which adorus the works of nature, far superior to any thing in art, suggest his consummate wisdomi. The usefulness of the whole scheme, so weli concrived for the intelligent beings that enjov: it, with the internal disposition and mosal structure of those beings themselves, show his
unbounded goodncss. These are the arguments which are sutficiently open to the views and capacities of the unlearned; while, at the same time, they acquire new strength and lustre from the discoveries of the learned.

The Deity's acting and interposing in the universe show that he zoverns as weil as formed it; and the depth of his counsels, even in coriducting the material universe, of which a great part surpasses our knowledge, keep up an inward veneration and awe of this great being, and dispose us to receive what may be otherwise revealed to us concerning him. It has been justly observed that some of the laws of nature now known to us must have escaped us if we had wanted the sense of seeing. It may be in his power to bestow upon us other senses, of which we have at present no idea; without which it may be impossible for us to know all his works, or to have more adequate ideas of himself. In our present state we know enough to be satistied of our dependency upon him, and of the duty we owe w him, ihe Lord and Disposer of all things. He is not the object of sense ; his esscuce, and indeed that of all other substances, is beyond the reach of all our discoverics : but his attributes clearly appear in his admirable works. We know that the highest conceptions we are able to form of them are still beneath his real perfections: but his power and dominion over us, and our duty towards him, are manifest.
\because Though God has given us no innate ideas of hiniself," says Mr. Lneke, "yet having furnished us with those faculties our minds are endnwed with, he hath not left himself without a witness: since we have sense, perception, and reason, and cannot want a clear proof of him, as long as we carry ourselves abont us. To show, therefore, that we are capible of knowing, that is, being certain that there is a Gond, and how we may come by this certainty, I think we need gn no firther than ourselves, and that undoubted knowledge we have of our own existence. I think it is heyond question that man has a clear perception of his own being; he knows certainly that he exists, and that he is something. In the next place, man knows, by an intuitire certainty, that bare nothing cati no more produce any real being than it can be equal to two right angles. If, therefore, we know there is some real being, it is an evident demonstration, that from eternity there has been something: since what was riot froin elernity had a beginning, and what had a beginning must be produced by soinething else. Next it is evident that what has its being from nother, must also have all that which is in and belongs to its being from another too: all the powers it has must be owing to, and received from, the same source. This eternal source then of all beings, must be also the source and original of all power; and so this eternal being must be also the nost powerful.
'f. Again, man finds in himself perception and knowledge: we are certain then that there is not only some being, but some knowing intelligent being, in the wortd. There was a
time then when there was no knowing being, or else there has been a knowing being from eternity. If it be said, there was a time when that eternal being had no knowledge; I reply, that then it is impossible there shou'd have ever been any knowledge; it being as impossible that things wholly void of knowledge, and operating blindly, and without any perception, should produce a knowing being, as it is impossible that a triangle shonld make itself three angles bigger than two right ones. Thus, from the consideration of ourselves, and what we infallibly find in our own constitutions, our reason leads us to the knowledge of this ceriain and evident truth, that there is an eternal, most powerful, and knowing Being, which whether any one will call God, it matters not. The thing is evident ; and from this idea, duly considered, will casily be deduced all those other attributes we ought to ascribe to this eternal Being.
" From what has been said, it is plain to me, that we have a more certain knowledge of the existence of a God than of any thing oor senses have not immediately discovered to us. Nay, I presume I may say, that we more certainly know that there is a God, than that there is any thing else without us. When I say we know, I mean there is such a knowledge within our reach which we cannot miss, if we will but apply our minds to that as we do to sereral other enquiries.
"It being then unavoidable for all rational creatures to conclude that something has existed from eternity, let us next see what kind of a thing that must be. There are but two sorts of beings in the world that man knows or conceives; such as are purely material, without sense or perception; and sensible perceiving beings, such as we find ourselyes to be. These two sorts we shall call engitative and incogitative beings; which, to our present purpose, are better than material and immaterial.
"If then there must be something eternal, it is very obvious to reason that it must necessarily be a cogitative being; because it is as impossible to conceive that bare inengitatire matter should ever prodace a thinking intelligent being, as that nothing of itself should produce matter. Let us suppose any parcel of mater eternal, we shall find it in itself unable to produce any thing. Let us suppose its parts firmly at rest together; if there were no other being in the world, mist it not eternally remain so, a dead unactive lump? is it possible to conceive that it can add motion to itself, or produce any thing? Matter then, by its own strength, cannot produce in itself so much as motion. The motion it has must also be from eternity, or else alded to matter by some other being more powerful than matter. But let us suppose motion eternal too ; but yet matter, incogitative matter, and motion could never produce thought. Knowledge will still be as far beyond the power of nothing to produce Divide matter into as minute parts as you will, vary its figure and motion as much as you please, it will operate no otherwise apon other
hodies, of proportionable bulk, than it did'before this division. The minutest particles of matter repel and resist one anotirer just as the greater do, and that is ail they can do; so that if we supprose nothing eternal, matter can neser begin to be; if we suppose bure matter without motion eternal, motion can never begin to be; if we suppose only matter and notion eternal, thought can wever begin to be; for it is impossible to conceive that matter, either with or without motion, could have, originally in and from itself, sense, pereqpion, and knowledge, as is evident from hence, that then sense, perception, and knowledge, nust be a property eternally inseparable from matter, and every particie of it. Since, therefore, whatsoeret is the first eternal being, must necessarily be cogitative; and whatsoever is frrt of all thines must necessarily contain in it, and acturlly have, at least, all the perfections that can ever after exist; it necessarily follows that the first eternal being caunot he monter. If, therefore, it be evident, that something munt necessarily exist from eternity, it is also as evident that that sometining must be a mgitative being. For it is as impossible that incogitative matter hould produce a cogitative being, as that nothing, or the negation of all being, shoukl produce a positive being or matter.
"This discorery of the necessary existence of an eternal mind sutficiently leads us to the knowledge of God; for it will hence follow that all other knowing beings that have a beginning must depend on him, and lave no other ways of knowledge, or extent of power, than what he gives thein; and, therefore, if he made those, he made also the less excellent pieces of this universe, all inanimate bodies, whereby his omniscience, power, and providence, will be established; and fron thence all his other attributes necessarily follow."
The existence of Gind is also farther evinced by those arguments which have been usually afieged to prove, that the world had a beginning, and, therefore, that it must have been creutal by the energy of divine power. In proof of this, the history of Moses, considered neerely as the most ancient historian, deserves particular regard. His testimony is confirmed by the most ancient writers among the heathens, Imoth poets and historians. It may be aloo fairly alleged, that we have no history or tradition more ancient than that which agrees whth the received opinion of the word's beginning. and of the manner in which it was produced: and that the most ancient histories were writen long after that time. And this consideration is urged by Lucretius, the faronus Epicurean, as a etrong presumption that the world had a beginning:

- Si nulla fuit genitalis origo

Terrarum et coli, semperque zterna fuere: Quur supra bellum Thebanum, et funera Troise,
Non alias aliei quoque res cecinere poetre?
Yet grant this heaven, this earth the heaven surrounds,
Time ne'er produc'd, eternal of themselves-

Wheice, ere the Theban war, and fate of Troy, Have earlier bards no carlier action sung?

GOOD.
Besides, the origin and progress of learnitg, and the most useful arts, as is also observed by the same poet, contirm the notion of the world's beginning, and of the common ara of its creation: to which also may be added, that the world itself, being material and corruptible, must have had a beginning; and many phenomena occur to the ob-ervation of the astronomer and natural historian, which furnish a strong presumption, that it could have had no long duration, and that it gradually tends to dissolution. From all these considerations we may infer the existence, auributes, and providence of God.

The enquiring reader may farther consult, on this interesting topic, Baxter's Matho, vol. i., Clarke on the Attributes, Paley's, Naturad Theology, Hariley on Man, Doddridge's Lectures on Pneumatolngv, \&ic. Bishop Hamilton's works, vol. ii., O. Gregory's Astronomy, the concluding chapter, Browri's Compendiois view of Natural and Revealed Religion, and Barrow on the Apostles' Creed. See also our articles Atrributes, Christianity, Providence, Religion, Theology, dic. And for the doctrine of three persons in one Gid, the article Trinity.

God is also used in speaking of the false deities of the heathers, many of which were only creatures to which divine honours and worship were superstitiously paid. The Greeks and Latins, it is observable, did not mean by the name of God an all-perfect being, whereof eternity, infinity, ominipresence, \$c. were essential attributes; with them, the word only implied an excelleut and superior nature, and accordingly they give the appellation gods to all beings of a rank or class higher or more perfict than that of men, and especially to those who were inferior agents in the divine administration, all subject to the one Supreme. Thus men themselves, according on their syctem, might become gorls after death; inasmich as their sonls might attain to a degrec of excellence superior to what they were capable ofinlife.
The first divines, father Bossu observes, were the poets: the two functions, though now separated, were orizinally combined. Now the great variety of attributes in God, that is, the number of relations, capacitics, and circumstances, wherein they had occasion to consider him, put these porets, δ de. under a necessity of making a partition, and of separating the divine attributes into seseral persons; beca:se the weakness of the human mind could not conceive so much power and action in the simplicity of one single divine nature. Thus the omnipotence of God came to be represented under the person and appellation of Jupiter; the wislom of God under that of Minerva ; the justice of God under that of Juno. The first idols or false gods that are said to have been adored were the stars, sun, moon, 8sc. on account of the lipht, heat, and other benefits, which we derive from them. Afterwards the earth came to be deified, for furnish-

G O D

ing fruits necessary for the subsistence of men and animals ; then fire and water became objects of divine worship, for their usefulness to human life. In process of time, and by degrees, gods became multiplied to infinity; and there was scarce any thing but the weakness or caprice of some devolee or other elevated into the rank of deity; things useless or even dentructive not excepted. See Drt and Mythology.

To God. v. a. (from the noun.) To deify; to exalt to divine honours (Shakspeare).

GODALMING, a town in Surrey, with a market on Saturdays. It is seated on the Wey. Lat. 51.13 N . Lon. 0. 34 W .

GODAVERY, or Gunga, or Godoury, a river of Hindustan, which rises at'rut seventy miles north-east Bombay, and fails into the Bay of Bengal by several mouths, between lon. 81.40 and 82 . 30 E . Greenwich; lat. 16. 20 and 16.50 N . This river is reckoned sacred by the Hindios.

GODBOTE, in our old customs, a church fine.

GO'DCHILD. s. (god and child.) A term of spiritual relation; one for whom one became sponsor at baptism, and promised to see educated as a christian.

GODDAUGHTER. s. (god and daugh--er.) A girl for whom one became sponsor at baptism.

GODDARD (Jonathan), an English physician and chemist, was born at Greenwich about 1617. He was educated at Oxford, and having studied physic at that university, he went abroad. On his return he trok his doctor's degree, and in 1646 he was chosen a fellow of the college of physicians, and the following year was appointed lecturer in anatomy to that society. He was greatly patronized by Cromwell, by whom he was made head physician to the ariny, and afterwards appointed warden of Merton college, and one of the council of state. On the restoration, Dr. Goddard was removed from his wardenship by the king. He then removed to Gresham college, where he had been chosen professor of physic in 1655 . He now constantly attended those meetings in which the royal society originated; and on the incorporation of that body, by royal charter, in 1663, he was nominated one of the first council. He was deemed an able practitioner, and so conscientious that he constanly prepared his own medicines. He died in $10 \% 4$. Bishop Ward says, that Dr. Goddard was the first Englishman who made a telescope..

GODDESS, a heathen divinity, to whom the female sex is attributed. The ancients had nearly as many goddesses as gods: for under this character they represented the virtues, graces, and principal advantages of life; as truth, jusitice, piety, fortune, victory, \&c.
Goddes-like. a. Resembling a goddess (Pope).

GODEAU (Anthony), a French bishop, was born in 1605. He was one of those who met at the house of M. Conrart to converse on polite literature, and communicate their productions, which society gave rise to the Freach
academy of belles-lettres, of which Godeat was one of the first members. Cardinal Richelieu gave him the bishopric of Grasse, which he afterwards relinquished for that of Venice; at which place he died in 1671. He wrote an Ecclesiastical History, in 3 vols. folio; and 2 Translation of the Psalms into French verse.

GODFATHERS, and Godmothers, persons who, at the baptism of infants, answer for their future conduct; and by this means lay themselves under an obligation, which ought to be reckoned indispensable, to instruct them, or to watch closely their actions. This custom is of great antiquity in the Christian church, and was probably instituted to prevent children being brought up in idolatry, in case their parents died before they arrived at years of discretion.

Godfathers, was also a term anciently given to a kind of seconds who attended and assisted the knights in tournaments.

GO'DHEAD. s: (from god.) 1. Godship; deity; divinity; divine nature (Milton). 2. A deity in person ; a god or goddess (Dryden).

GO'DLESS. a. (from god.) Without sense of duty to God; atheistical ; wicked; irreligious ; impious (Dryden).

GO'DLIKE. a. (god and like.) Divine ; resembling a divinity ; supremely excellent (Miłton).
GO'DLING. s. (from god.) A little divinity ; a diminutive god ($D_{\text {ryden }}$).

GO'DLINESS. s. (from godly.) 1. Piety to God. \%. General observation of all the duties prescribed by religion (Hooker).

GO'IDLY. a. (from god.) 1. Pious towards God (Common Prayer). 2. Good; righteous; religious ($P_{\text {salms }}$).

Go'dly.ad. Piously; righteously (Hook.).
GO'DLYHEAD. s. (from godly.) Goodness ; righteousness (Spenser).

GODMANCHESTER, a large village (or, according to some, a borough) of Huntingdonshire, parted from Huntingtion by the river Ouse. It is seated in a rich and fertile soil, which yields great plenty of corn. Here is a school called Ti, free gram mar school of queen Elizabeth. When James 1. came through this place fron: Scotland, the iuhabitants met him with 70 irew ploughs, drawn by as many teams of hoses; in purstance of the tenure by which they hold their land.

GC'DMOTHER. s. (God and mother.) A woman who has undertaken sponsion in infant baptism.
(;O'DSHIP. s. (from god.) The rank or character of a gud; decty; divinity (Prior).

GO'DSON. s. (god and son.) One for whom one has been spousor at the font (Skahspeare).
GODSTOW, a place northwest of Oxford, in a sort of island formed by the divided streams of the Isis after being joined by the Evenlode. It is noted for fish, and their excellent manner of dressing them ; but more so for the ruins of that nunnery which fair Rusamond quitted for the embraces of Henry II.

GO'DWARD.a.ToGodward is toward God. GODWIN SANDS, sandbanke off the

GOD

coast of Kent, between the N. and S. Foreland. They run paralled with the coast for three leagues, at about two and a half leagues distance, and add to the security of the capacious roads, The Downs. These sands occupy the space that was formerly a large tract of low ground, belonging to Godwin, earl of Kent, $F_{\text {father of }}$ King Harold ; and which being afterwards given to the monastery of St. Augustin, at Canterbury, the abbot neglecting to beep in repair the wall that defended it from the sea, the whole tract was drowned in the year 1100, leaving these sands, upon which many ships have been wrecked.

Godwin (Mary Wollstonecroft), an ingenious writer, was born at Beverley in Yorkshire, in 1768. Her father was of a roving remper, and thereby considerably impaired his finances. In the 24th year of her age she opened a day-school at Islington, which was soon after transferred to Newington-green. She had for a partner a young lady to whom she was strongly attached, whom she accompanied in 1785 to Lisbon. On her return to England she entered into the family of lord Kingsborough, as governess to his daughters; in which, however, she remained but a short time. In 1787 she again settled in the metropolis, and had recourse to her pen for subsistence. She published a litule work, intitled, Original Stories from real Life, for the use of children; translated some works from the French and German; and had some concern in the Analytical Review. In 1790 she published an answer to Burke's Reflections on the French Revolution, and the gear following her Vindication of the Rights of Women. In 1792 she went to Pa ris, and there formed an unfortunate connection with an American named linlay, by by whom she had a daughter. For him she undertook a voyage to Norway to regulate some commercial concerns. This tour occasioned her Letters from Scandinavia. On her arrival in England she found herself forsaken by this man, on whom she had placed an unrequited love. In this state of distress she resolved to destroy herself, and accordingly plunged into the Thames from Putney-bridge. She was eaved, however, from the water, and restored to life. In 1796 she was married to Mr. William Godwin, the well-known author of an Enquiry concerning Political Justice, and other works. She died in child. birth in August 1797, and was buried in St. Pancras chureh-yard. Since her death have been published her posthumons works, consisting of Letters and Fragments; in which we meet with some true touches of nature, but they are disgraced with the intermixture of many expressions which are too indelicate, not only for the public eye, but even for private letters of the most confidential nature. This lady possessed atrong and original powers of mind, but her notions, particularly ou political and religious sabjects, were frequently wild, visionary, and romantic:
GODWIT, in ornithology. See Scolopax.

G 0 L

GODYELD. Gódyizld. ad. (corrupted from God shield, or protect).

GO'EL. a. (Jolep, Sason.) Yellow(Tusser).
GOER. s. (from go.) 1. Onc that goes; a runner (Shakspeare.) 2. A walker; one that has a gait or mauner of walking good or bad (Wotton).

GOES, or Ter Goes, the capital of South Beveland, in Zealand, oue of the United Provinces. Lat. 51. 33. N. Lon. 3. 50 E. GOG, and MAGOG, the former signifying literally, the roof of a house, the latter, covering, are mentioned Ezekiel xxxviii and xxxix. and Rev. xx. and are, by most interpreters, taken in an allegorical sense for such princes and people as were enemies to the church and caints. Gog was prince of Magog, according to Ezekiel, and Magog the country or people; Magog is said to be second son of Japheth. Gen. x. 2. without mentioning Gog, whom Bochart places in the neighbourhood of Caucasus, which he calls Gogchasan, i. e. the fortress of Gog.

To GOGGLE. v. n. To look asquint.
Gogele-eyed. a. (дəeдleдen, Saxon). Squint-eyed; not looking straight (Ascham).
GOGUET (Antony- Yves), a French writer, and author of a celebrated work, intitled, L'Origine des Loix, des Arts, des Sciences, O' de leur Progres chez les anciens Peuples, 1758,3 vols. 410 . His father was an adrocate, and he was born at Paris in 1716. He was very unpromising as to abilities, and reckoned even dufl in his early years; but his understanding developing itself, he applied to letters, and at length produced the above work. The reputation he gained by it was great : but he enjoyed it a very short time ; dying the same year of the small pox, which disorder it seems he always dreaded. It is remarkable that Conrad Fugere, to whom he left his library and his MSS. was so deeply affected with the death of his friend, as to die bimself three days after him. The above work has been translated into English, and published in 3 vols. 8vo.

GOGMAGOG HILLS, four miles E. of Cambridge, are the most elevated in the county, and afford a good prospect from their summit. They are noted for the entrenchments and other works cast up there, whence some suppose they were the site of a Roman camp.

GO'ING. s. (from go.) 1. The act of walking (Shakspeare).) 2.Pregnancy (Grew.). 3. Departure (Milton).

GO'La. s. The same with Cymatium.
GOLCONDA, a country of the Decan of Hindoostan, situated between the lower parts of the rivers Kisna and Golavery, and the principal parts of Dowlatabad: It was formerly called Tellingaua, or Tilling, and is now subject to the Nizam of the Decan. Itabounds in corn, rice, and cattle; but it is most remarkable for its dianond mines, the most considerable in the work. The black merchants buy parcels of ground to search for these precious stones in. They sometimes fai! in meeting with any, and in others they find inmmense riches. They hare also mines of salt,
fine iron for sword-blades, and curious cali- ry and goid, and is afterwards heated in a propep coes and chintzes. Hydrabad is the capitad.

Golconda, a celebrated fortress in the country of the same name, situated about six miles W. N. W. of Hydrabad, and joined to thet city by a wall of communication. It nccupies the summit of a hill of a conical form, and is deemed impregnable.

GOLD Of this metal we have already treated in a mineralogical and systematic view under the article AURUM. It yet remains for us to contemplate it in a metallurgic point of view, and as appropriated to the arts and the purposes of coin.
Metaliurgic processes. The richest gold mines, enncerning which we have any particular description, are those of Hungary ; a: d we shall hence pay some attention to these entablishments. The high coanmercial value of gold, compared with that of every other metal, depends in a cons.iderable degree on its rarity; bence even the most profitable veins of gold are of trifing magnitude, and will pay very well to the miner, though intimately mixed with so large a proportion of st ny gangue and other impuritics as would render it impossible to work any other metal simiarly circumstanced. In the Hungarian mines the attention of the miner is not confined to the utrings of ore, but the whole contents of the veiu are usually extracted. It is raised for the most part in large masses to the surface, and io then distributed to the workmen, who break it frut with large hammers, and afterwards with smaller ones till it is reduced to pieces of the size of a walnut or less. During this process each piece is attentively examined and arranged according to its value. The native gold, even to the smallest visible grain, is separated as accurately as possible from the quarter in which it is chielly inbedded, and put by itself : the auriferous galena and pyrites are also thrown into separate heaps. The small splinters detached during this process, as well as the sand and mud of the mine, are also collected, washed, and sifted, and arranged according to their fineness and apparent richness. The portion rejected in this birst examination is afierwards re-examined by boys, whose time is of little value, and who pick rut nearly the whole of what has been overlooked by the men, and zort it in the manner just mentioned.

The native gold with its adhering matrix is again broken by hand into still amaller pieces, by which an additional quantity of impurities and stony matter is got rid of: it is then put into a kind of wooden box, floored with cast iron plates, and reduced to a heavy powder by the action of two or more heavy spars of oak shod with iron, and worked alternately in the manner of a coramon atamping mill. This powder, or flour, at it is called, being now removed into a convenient vessel like a large bason, is mixed with a sufficient quantity of salt and water to render it damp, after which a workman takes a thin porous leather bag, puts a quantity of mercury into it, and by a continued regular pressure forces the mercury in minute drops, like dew, through the leather: in this minutely divided state it fallo upon the pulverised ore, and is immediately kneaded up with it till the requisite quantity (depending in a great measure on the proportion of gold) has been added. This part of the process being completed, the mixture is rubbed together by a wooden pestle for some time to expedite the incorporation of the mercu-
vesset to abour the temperature of briling water for three or four days. Finally, the minture is washed very carefulty by mall parcels at a tinex, the earthy partichei are carried of by the water, and there remaias behind only the mercury combined with the gold into an amalgam. Patt of the mercury is then separated by pressure io 2 leathera bag, and the rest is driven off by distilation. leaving behind only the gold and the silver with which it may happen to be alloyed

Native gold is thus extracted from its ore. But a much more complicated process is required to separace that portion of the metal which is dispersed invariably in the pyrices, ochre, galenh, and other metallic subotances, as well as the stony parts of the gangue. These, jo the worting already deucribed, are separated not po.y 2 -. cording to their appartut richness, but, what it of more importance, are aleo arranged according to their hardness.

This being completed, they are transferred to the stamping mill, which is a cumplicated machiuery that first pounds them into a sery fine or coarse: powder, according to the nature of the combination, the pounding being never carined to a finer result than is absolutely necessary; aster which the pulverised matter is, by the came machinery, washed, in consequence of the admir sion of a atream of water into the coffer thas contains it, into shallow channels ur troughs of rariuus dimensions, constructed either of wond or stone, and communicating at their cestremitios with each other, the whole serics being called 2 labyrioth; these are separated from each other by sliders; and when the material of greatest specific gravity, and which may first be supposed to sette, has deposited, another slider is added, and fresh portion of water admitred from the cofer. After which another labyrinth is opened, and then a third, till the whole are progresively filled, taking care not to mix what has been deposited in one channel with whit has beea deposited in the others. After this the one is accurately mingled with a little quick lime by way of flux, and with galena proportioned to the quaptity of gold and silver that the pyrite (where much pyrite exists; is found to contain according to the result of a previcus essay. The mixture being next placed in a reverberating furnace is made red hot, and, as soon as it begine to clot toget ber, is atirred up from time to time, and kep at a temperature inadequare to its fuior, ill part of the sulphur is driven off: this being ef fected, the fire is increased, the whole is brougte to a state of thin fusion, and then let out into a mould of sand. It is afterwards broken into small pieces, and roasted and fused once or twice more, till all the sulphur and other impurities are got rid of, and nothing remains but the various inctals with which it is combined, usually silver and copper, but occasioually lead, antimeny, platina, and iron.
The separation of gold from these metah $100-$ atitutes the process of refining. Lead is seper rated upon a large ceale, by what is called teating, or converting the lead ioto a rixreous oxyd : antimony by the use of sulphur, which, while it will not unite with the gold, converts the antinony into a sulphuret. This sulphuret of antimony may be afterwards emploged to separate goid from silver, as well as from the imperfect metals. While it is usually separated from platina by mercury, which unites less rea-

G 0 L D.

Aily with platina than with gold, and of course leares the platina pure. I'he gold is afzerwards separated from the mercury by disti!lation.
divplication of Go'd to a varify of the arts.-Under this head we shall consider the processes of goldbeatine and gildang in general.

Godd-beating, in-luding the mode of manufacturing gold leuf and gill wire.

The colour of pure gold, by reflected light, is a full bright yellow, verging on one hand towards oiange, and on the other towards brass yeilow: it is remarkable that gold fused with borax becomes considerably paler than usual, and, on the other hand, when fused with nitre, it becomes more highly coloured, without any other periepzible change being induced by either of there malts; hence as this metal is reckoned beautiful in proportion to the fullness and brilliancy of its colour, the borax flux used by the goldsmiths is generally mixed with a sufficient quantity of nitre to counterbalance its discolouring property. The colour of gold, when in high fusion, is blueish green. of nearly the same tiat with chat of gold by trapemitted light : this latter may convenientIy be observed by laying a leaf of gold between two thin plates of colourless glass, and holding it between the eye and a strong light.

The specific gravity of gold is only inferior to that of platina : with regard to its precise amount a considerable variation snay be observed on comparing the reports of different authors, one seating it as high as 20 , and another as low as 18.7.5. This difference is no doubt in part attributable to slight imparities in the gold itself, partly also to imperfection in the balances made use of, to differences of temperature, to the gold's being cast in sand or metal, to its being hammered or not, and to other causes, which, in the article Alloy, we have briefly pointed out as affect. ing the specific gravity of metallic substances. According to an experiment by Mr. Ellicot, whose accuracy is well known, the specific graviiy of an ingot of gold refined by antimony was $=19.184$, and of the same, when hammered, $=$ 19.207. According to Lewis, the specific gravity of fioe goid at 5.5° Fah. amounted to 19.376 . Brison reports the specific gravity of fine gold in ingot to be $=19 \cdot 258$, and the same, when hammered $=19 \cdot 361$. In hardness this metal ranks comewhat above silcer and below copper. It is extremely flexible, and so tongh, that, when at length by repeated bending it is made to break, both the fractured pieces appear terminated by a wedge-shaped extremity. From its softness and toughness it receives, with perfect exactpess, the impression of the dies in coining, and, for the same reasons, it does not file freely, clogging up the teath of the instrument in a very short time. It poseseses little elasticity or sonorousness. It receives great brilliance from the burnisher, but not from the action of polisbing powders. It is inodorous and insipid. The tenacity of gold is by no means so great as was supposed by the earlier chemists; it is inferior in this respect to iron, copper, platina, and silver. Δ wire of gold, $1 \frac{1}{1}$ of an inch in diameter, will support about $x 54$ lbe. of avoindupois, before it breaks. It is extremely malleable both when hot and cold, and very ductile.

In consequesce of the high conamercial value of gold, it is scurcely ever employed in mass, or Ia thick plates, for ormaneptal purposes; but advantage bas been taken of its remarkable mal-
leability to reduce it into leavet of an almost incredible thinness; *o that in this state, natwithstanding its high specific gravity, it will float in the air like a feather. Of the ingenious art called gold-beating, we shall proceed to give a short account.
The gold selected for this purpose is as pure as possible; the quantity used at one time by the English artists is two ounces. This being melted in a black-lead crucible with some borax, is poured into an iron mould, previously heated and greased, by which it is formed into 2 plate six or cight inches long, and three quarters of an inch wide. This plate is heated red hot, in order to burn off the tallow, and is then extencied by forging on an anvil. and afterwards passed between steel rollers, till it becomes a long ribband as thin as paper. The ribband is now cut into 150 equal pieces, each of which is forged on an anvil, till it is about an inch square, after which they are well annealed. Jach of the squares in this state weighs six grains and four tenths, and ia thickness is equal to $t>x$ of an inch. The 150 plates of gold thus produced are interlaid with pieces of very fine vellum, about four inches square, and about twenty :ellum leaves are placed an the outsides; the whole is then put into a cave of parchment, over which is drawn another similar case, so that the packet is kept close and tight on all sides. Being now laid on a smooth block of marble, from 2×0 to (00) lbs. in weight, the heavier the better, the workrian begins the beating with a round-faced somewhat conver haminer, called the catch hammer, weighins sixteen pounds; the packet is turned occasionally upside down, and beaten with strong hut not acute strokes, till the gold is extended nearly to an equality with the vellum leaves, to accertain which the packet is opened fiom time to time, and also bent and rolled hetween the hands to facilitate the extension of tine gold between the leaves. This first part of the process being completed, the packet is then taken to pieces, and each leaf of gold is divided into four, with a stetl knife; the 800 pieces thus produced are interlaid with pieces of oxgut, of the same dimensions and used in the same manner as the vellum. The beating is continued, but with a lighter hatamer, called the shoddering hammer, and weighing about twelve pounds, till the goid is brought to the same dimensions as the interposed meabrane. It is now axain divided into four, by means of a piece of cane cut to an edge, the leaves being by this time so light, that any accidental moisture, condersing on an iron blade, would cause them to adhere to it. The 2410 hence resulting are parted into thrce packets, with interposed membrane as before, and beaten with the finishing or gold hammer, weighing about ten pounds, till they acquire an exte:t equal to the former. The packets are now taken to pieces, and the gold leaves, by means of a cane instrument and the breath, are laid fat on a leathern cushion, and cut one by one, to an even square, by a cane frame; they are lastly laid in books of 25 leaves each, the paper of which is previously smoothed, and rubbed with red bole, to prevent them from adhering. Hence it appears, that each of the inch square pieces, into which the ribband of gold was divided, is extended, by beating, to 196 square inches, or 16 leaves, weighing 0.4 of a grain each, and not exceeding in thickness normof an inch. Each grain of gold furniches 30% equare inches.

Guid wire, as it ie called, is in fact only silver wire gilt, and is prepared in the following manner: 4 solid cylinder of fine silver, weighing about twenty pounds, is covered with thick leaves of gold, which ure made to adhere inseparably to it by means of the burnisher: successive lamina are thus applied, till the quantity of gold, if intended for common gold wire, amounts to 100 grains for every pound troy of silver; if for double gilt wire, to about 140 grains.

This gitt silver rod is then drawn successively through holes made in a strong steel plate, till it is reduced to the size of a thick quill, care being taken to anneal it accurately after each operation. The succeeding process is similar to the former, except that a mixed metal, somewhat softer than steel, is employed for the drawing plates, in order to prevent the gilding from being stripped off, and no further annealing is requisite, after it is brought to be as slender as a crow quill. When the wire is spun as thin as is necessary, it is wound on a hollow copper bobbin, and carefully annealed by a very gentle heat: finally, it is passed through a latting-mill, and the process is complete.

According to Dr. Halley, six feet in length of the finest gilt wire before flatting, will counterpoise no more than a grain: and as the gold is not quite $\frac{1}{1}$ of the whole, a single grain of gold thus extended will be $345 \cdot 6$ feet long. By the operation of flatting, the length of the wire is increased alout a seventh, and its width is equal to $\frac{1}{6}$ of an inch: hence the surface occupied by one grain is equal
 an inch.

Gilding in general.-One of the most valuable properties of gold is, that of its extreme ductility, which we have just noticed, for without this, it could seldom, on account of its dearness, be employed in substance, and its ornamental use would be extremely limited. It is in consequence of this property, that we are able to cover almost any substance with layers almost infinitely fine, and to make them assume the appearance and possess the extreme beauty of this precious metal. And on this the art of gilding depends.

The materials of gilding, or rather the different states in which gold is used for this purpose, are the following: leaf-gold of different thicknesses, and formed either of the pure metal, or of an alloy of this with silver, amalgam of gold, and gold powder. Gilding is performed either with or without the application of heat. By the first of these methods, those substances are gilt which are not liable to attraction by exposure to a moderate heat, such as metals, and sometimes glass and porcelain: the second method is practised with those substances, such as wood, paper, leather, silk, lacquered and japanned ware, \&c. which would be injured and even destroyed at the temperature requisite for gilding the former. This last is the simplest method, and we will describe it before we proceed to the art of gilding by beat.

On wood there are two methods of gilding, viz. oil-gilding, and burnished gilding. The first is thus performed: the wood must first be covered or primed with two or three coatings of boiled linseed oil and white lead, in order to fill up the pores and conceal the irregularities of the surface occasioned by the veins in the wood. When the priming is quite dry, a thin coat of gold size must be laid on. This is prepared by grinding together some strongly calcined red ochre with the thickest drying oil that can be procured, and the older the
better: that it may work freely, it is to be mixe 4 previously to being used, with a little oil of turpentine, till it is brought to a proper consistence. If the gold size is good, it will be sufficiently dry in twelve hours, more or less, to allow the artist to proceed to the last part of the process, whick is the application of the gold. For this purpose, a leaf of gold is spread on the cushion (formed by a few folds of flannel, sercured on a piece of wood about eight inches square by a tight covering of leather), and is cut into strips of a proper size, by a blunt parallel knife; each strip being taken up on the point of a fine brush, is applied to the part intended to be gilded, and is then gently pressed down by a ball of soft cotton; the gold immediatoly adheres to the sticky surface of the size, and after a few minutes, the dexterous application of a large camel's hair-brush sweeps away the loose particles of the gold leaf without disturbing the rest. In a day or two the size will be completely dried, and the operation is finished. The adraptages of this method of gilding are that it is very simple, very durable, not readify iujured by changes of weather, even when exposed to the open air, and when soiled it may be cleaned with a little warm water and a soft brush; its disadvantage is that it cannot be burnished, and therefore wants the high lustre produced by the next method. Its chief employment is in out-door work. Burnished gilding, or gilding in distemper, is thus performed : the surface to be gilt must first be carefully corered with stroug size, made by builing down pieces of white leather, or clippings of parchment, till they are reduced tua stiffjelly; this coating being dried, eight or ten more must be applied, consisting of the same size, mixed with fine Paris plaster, or washed chalk; when a sufficient number of lagers bave beels put on, varying according to the nature of the work, and the whole is become quite dry, a moderately thick layer must be applied, composed of size and bole, or yellow ochre; while this last is yet moist, the gold leaf is to be pat on in the usual manner; it will immediately adhere ull being pressed with the cotton ball, and, before the size is become perfectly dry, thowe parts which are inteaded to be the most brilliant are to be carefully burnished with an agaie or dog's tooth. In order to save the labour of burnishing, it is a common but bad practice slightly to burnish the brilliant parts, and to deaden the rest by drawink over them a brush dipped in size; the required contrast between the polished and unpolisherd gold is indeed thus ohtained, but the general effect is greatly inferior to that produced in the regular way, and the smallest drop of water falling on the sized part occasions a stain. This kind of gilding can only be applied on in-door work, as rain, and even a considerable degree of dampness, will cause the gold to peel off. When dirty it may be cleaned with a soft brush, and hot spirits of wine, or oil of turpentine. It is chiefly used on pictureframes, mouldings, and stucco.

Letters written on vellum or paper are gilded in three ways: in the first, a little size is mixed with the ink, and the letters are written as usual; when they are dry, a slight degree of stickinest is produced by breathing on them, upon which the gold leaf is immediately applied, and by a little pressure may be made to adbere with sufficient firmness: in the second method some white lead or chalk is ground up with strong size, and the letters are made with this by menns of a brush; when the mixture is athocet dry, the gold leaf may

GOLD:

be laid on, and afterwards burnished: the luat method is to mix up some gold powder with size, and make the letters of this by means of a brush. The edges of the leares of books are gilded while in the binder's press, by first applying a composition formed of four parts of Armenian bole, and one of sugarcandy, ground together to a proper consistence, and laying it on by a brush with the white of an egg; this coating, when nearly dry, is smoothed by the burnisber, it is then slightly moistened with clean water, and the gold leaf applied, and afterwards burnished. In order to jmpress the gilt figures on the leather corers of books, the leather is first dusted over with very fine powdered rosin or mastich, then the iron wol by which the fiyure is made is moderately heated, and pressed down upon a piece of leaf gold, which alightly adheres to it ; being then immediately applied to the surface of the leather with a certain force, the tool at the same time makes an imprey sion, and melts the mastich, which lies between the beated irou and the leather; in consequence of this the gold with which the face of the tool is covered is made to adhere to the leather, $s 0$ that, on removing the tool, a gilded impression of it remains behind.

Drinking-glasses and other utensils of this material are sometimes, especially in Germany, gilt on their edges; this is done in two ways, either by a simple adbesive varnish, or by means of fire. The varnish is prepared by dissolving in drying linseed oil a quantity of guin anime, or, atill better, of clear amber equal in weight to the oil; a very drying and adhesive varnish is thus prepared, which being diluted with a proper quantity of oil of tarpeative is to be applied as thin as possible to those parts of the glass which are to be gilded; -hen this is dry, which will be in about a day, the slass is to be placed by the fire side, or in a stove, till it is so warm as almost to burn the fingers When basdled: at this temperature the varnish wiil become glatinous, and a piece of leaf gold appliad in the usual way will immediately adhere; when the gibling is thus pat on, and before it is grown quite cohd, it nay be burnished, taking care only to interpose a piece of very thin paper between the gold and the burnisher. If the rarnish is very good, this is the best method of gildiny glasses, as the guld is thus fixed on more evenly thau in any otber way: it often happens, however, when the varnish is but indifferent, that by repeated washing the gold soon wears off; on this account the practice of burning in is sometimes hall recourse to. For this purpose some powdered gold is tempered with gum water and borax, and in this state applied to the clean surface of the glass with a fine camel's hair pencil; when quite dry, the glass is pat into a stove heated to about the temperature of an annealing oven, the gum burns off, and the borax, by vitrify ing, ceurents the gold with great frmpeas to the glass; afler which it may be burnished. The gilding upon porcelain is in like manaer fixed by fire and borax; and this kind of ware,being neither transparent nor liable to soften, aod thus injure its form in a low red heat, is free from the risk and injury that the finer and more fusible kinds of glass are apt to sustain from such treatmeni-All the methods of gilding hitherto deecribed resemble each other, by being accomphished by means of some adhesive medinm : this, bowever, is not the case with gilding upon metals; the gold is brought into immediate contact with the other metal, and they both remain Girmly
anited merely by the attraction of adhesion subsisting between them. The simplest of all the kiads of gilding on metal, and which strikingly demonstrmes the power of the affinity of adhesion, is one that is sometimes practised on plane surfaces of copper and inon with considerable success. The metal being previously polished and quite clean, is heated to about the temperature of melted lead, and covered with a double layer of gold leaf; by the cautious application of a blood-stone burnisher applied gently at first, and increasing the force of the pressure by degrees, the surfaces of gold and copper are brought to touch each other in almost every point, and then adhere with a furce proportioned to the completeness of the contact. The first lager being thus burnished down, a second is made to adhere in the same manner, and sometimes a third, if the gilding is intended to be very solid. The objection to this method of gilding is its tediousness, and the almost impossibility of using a sufficient pressure without injuring the evenness of the gilded surface; where these objections do not apply, there cannot be a more effectual mode of gilding, as is evident from the manufacture of gilt silver or copper wire. The bar, before it is committed to the wire-drawer, is plated with gold, by having several leaves of gold burnished down upon it, and being then subjected to the strong compression that takes place in wiro drawing, the gold and the other metal become so perfectly united as to form in a manner but one substance. The most usual method of covering the surface of a metal with gold is by means of an amalgam, or, as it is technically called, water gilding. If the metal to be gilt is sibver, the best way of proceeding is first to sciak it in warm dilute muriatic acid, that the surface may be rendered perfectly clean; it must then be washed in clean water changed two or three times to get rid of the whole acid; being afterwards dried and made moderately warm, a little gold amalgam, also warm, is to be carefully and evenly spread upon the silver, to which it will immediately adhere: when this is completed, the piece is plated upon a convenient support over a clear charcoal fire, and while tue mercury is evaporating, if any specks or places appear that tave cscaped the amalgam, a small piece is to be laid on and spread with a brush to suppiy the deficiency, witheat removing the articie from the fire. Aiter a time the whole of the mercury will be drivell off, and the piece, after cooling, being accurately examined, will be found to be eatirely covered with a thin coating of pale dull gold. The small roughnesses and loosely adhering particies ale now to be removed with a scratch brush, which is made of some exceedingly fine brass wire, bound together iut: a tuft; by this the surface is rendered perfectly smooth and bright, but it still remains of a pale yellow colour: this defect is next removed by warming the piece and smearing it over with gilder's wax, a composition of bees-wax, red ochre, vedigris, and green vitriol or alum. The wax being burnt off over a charcoal fire, and the piece quenched in urine, the ${ }^{-}$ colour of the gilding will be found to be much heightened; if it is not sufficient!y so by the first application, a succeeding one will complete the desired effect; after which the work may be bur-. nished or not, accordin; to the taste of the artist Instead of the common ;ilder's wax, a mixture of : equal parts of nitre, sal ammoniac, green vitriol, and verdigris, moistened with water, will answer. the purpose.

Copper and the aHoys formed by its combinatiun with zine, are cilded neariy in the sane way as silver; but as their affinity tor mercury is considerably less than that of sifiver, it would be difficult to make the amalgain of gold adhere to the burmished surface of these meials by the same ineans and with the same evenness as takes place in the case just described, and bince nitric acid is employed to facilitate the adliesion of the copper and mercury : by which aid five grains of gold may be made completely to gild tooth the upper and under surfaces of 144 copper buttons, each of them an inch in diameter.
Pron, or rather stecl, is gilt with great difficulty : for if a high heat be employed for this purpose, the temper of the steel will hercby be injured and reduced too low. One of the best plans lately recommended, is a mixture of sulphuric ether with nitro-muriat of gold: if ether thus charsed with gold be spread, by means of a tine brash, on the surface of highly pulished steel, the ether will presently evaporate, and leave the gold behind in close contact with the steel; at which time the adhesion will be considerably improved by an application of the burnisher. The dearness, and especially the rapid volubility of ether, are objections of some moment, but may be got over by using the best oil of turpentine instead of the ether, which has nearly the sane cflcacy in decomposing the nitro-muriat of gold; and while much chcaper, is by no means so quickly evaporable.

Application of Goll to the purboses of Coin.-The high Thlue of gold renders it at all times expedient to preserve it as fice from the wash produced by friction as possible: but mowe eopecia!ly so when it is converted into coin, and thus beromes a standard measure of value; and is extremely liable to wear out by an-incessant circulation.
It is beace constantly alloyed with some other méctal that is canab!e of giving it additional hardnesss, and in just such a quantity as is sufficient to produce this effect. In the stindard wold of our own country, copper is the alloy employed for this purpose, and the proportion is that of thirtyeight grains to the vunce. The gold thus intermixed, at the same time that it is rendered harder, is as ductile as in its state of purity. The colour is changed to a deeper yellow, and its speritic sravity is remarkably diminished beyond the mean of its ingredients.
This last result is a very extraordinary fact, and has led to an examination of the effect produced by an intermixture of gold with other alloys, so as to decide which might be must adrantagcously employed as an alloy for geld coin, by enabling the metal to retain bulk for bulk the nearest approach to its own specific gravity when pure, at the same time that it augments its hardn: ss, and dues not detract from its ductility. These enquinies were lately entered upon with great spirit, by Mr. Hatchet and Mr. Cavendish, and the general result of them has been communicated to and since published by the Royal Socicty.

Arsenic, on account of its volatility, can be combined with gold only in amall proportions. The alloy, or mixed metal hence produced, is of a grey colour, coarse granular fracturc, and very brittle.

Antimony, mixed by fusion with either fine or standard gold in the proportion of not more than 3 gr . to the ounce, (being not more than $7 \mathrm{w}_{2}^{18}$ of the whole mass) will give a brittle compouid of a close granular fracture, with little metallic lustre: while, with a clange quite as extraordinary as in
the proluction of standard gold, thoush of a dif firent character, its bulk will the found remarkably grcater than would be deduced from the mean specific gravity of its ingredients.
Zinc forms with gold an alloy of a brass-yellow colonr; in other respects its action resembles that of arsenic. The specific gravity of the coms,ound is swnewhat gerater than the calcalated mean, when the zine constitutes $\mathrm{r}^{\prime} \mathrm{I}$ of the mases.

Cobalt, mixed with standard guld in the proportion of four grains to an ounce, reuders the colour somewhat paler, and induces a slight degree of brittieness, but does not materially alter the gravity. In the proportion of 33 gra . to the ounce it renders the guld very britlle, and gives it and earthy fracture.

Nickel, mixed in the proportion of 38 grains to the ounce, produces an alloy of the colour of fine brass, with a coarse-gramed earthy fracture and very brittle: its specific grarity being somerrhed less than the mean.
With manganese, in its black oxyd, gold will combine, and produce an alloy of a reddish grey, cai pable of receiving a brilliant Instre like steel: the mixed metal is excecdingly hard, and so far possessed of ductility, as to be in some measure flattened by the hammer before it breaks.

With bismuth, in the proportion of 58 grains to the ounce, it yields an alloy of a pale greenish yellow, exccssively brittle, and exhibiting a finegrained earthy fructure: its specific gravity somewhat greater than the mean. If standard gold be alloyed with even a quarter of a grain of bismuth is the ounce, the mixture, although in colcour and texture resembling gold, is yet perfectly britte.

Lead, melted with gold, in the pruportion of 38 giains in the ounce, gives an altoy exteraally resembling fine pale gold, but which is as britule ag glass, is wholly destitute of metallic lustre, and has a fine-grained porcellaneous appearance: its specific sravity a little less than the mean. The very fumes of this metal are nearly as projudicial to the ductility of gold as those of bismath.

Tin, mixed with gold in the proportion of 38 grs. to the ounce, furms a pale yellow alloy with a somewhat earthy fracture; it may be bent without brcaking, but is very little ductile: its specifie gravity is cousidcrably sreater than the mean of the ingredients.

Iron, in the state of bar, cast, or stcel, may be combined with gold to the amount of 38 grains, aod probably unuch more in the ounce, without impairing its durability: the colour of the alloy is pale yellowish grey, approaching to dull white: it is considerably harder than standard gold, and its specific gravity is somewhat less than the mean or its constituent ingredients.

Platina and gold, when the proportion of the former ainounts to 38 grains in the ounce, compose an alloy of a yellowish white colour, like burnished silver, perfectly ductile, hut much barder, and coas siderably more elastic, than standard gold.
Silver may be alloyed with gold in all proportions, and occasions hardly any perceptible alterution of ductility, hardness, or mean specific gravity: the colour of the mass becomes paler exactly as the quantity of the silver is increased.

Quicksilver and gold unite with the utmost readimess into an amalgam. The smailest quantuty of the former renders the alloy extremely brittle. Amalgam of gold is of a yellowish white colour, and crystallizes in tetrahedral prisms when composed of six parts of mercuiy to one of gold.

Copper we bave already noticed in speaking of
standard gold. K is uot, however, every kind of reputedly pure cupper that cas sufely be used for ajoying gold as a unaterial for minting: even the Simedish dollar copper uciasionaliy remalers the gold which it is muxed as britule as glases. This appears to be oxing to the lead and antionony which most copper contains, and is hirh, though not in sufficient quantity to affect in any material decree the ductiluy of the copper itmelf, are fully adequate to destroy the ductility of the gond with which they are mixed.

Gold-finch, in ornithology. See FainGILLA.

Golb-finny, in ichthyology. See LaERE日。

Gold-fish, in ichthyology. See Cypainus.

GOLDBEATER, one whose occupation is to beat or foliare gold. Sie Giold.

GOLDHERG, a town of Silesia, in the duchy of Lignitz. The inhabitants are engaged in manufactures of woollen and linen. Lat. 51. 3N. Lon. 16. 23 E.

GOLDBOUND. a. Encompassed with gold (Shakspeare).

GOLD COAST, a maritime country of Guinea, where the Europeans have several forts and settlements. It reaches from the Gotl River, 12 miles W. of Assinc, and ends 8 miles E. of Acraw, being about 180 miles in length. It includes several districts, in which are two or three small towns, lying on the sea-shore. The negro inhabitants are generally very rich, as they carry on a great trade with the Europeans for gold; and many of then are employed in fishing, and cultivating rice, which grows in incredible quantities. This they exchange with others for Indian corn, yains, potatoes, and palm oil. Most of the inhabitants go naked; and those who are best clothed have only some yards of stuff wrapped about their middle.

GOLDIEN. a. (from gold.) 1. Marle of gold; consisting of gold (Dryden). 2. Shiuing; bright ; splendid; resplendent (Crashair). 3. Yellow ; of the colour of gold (Mortimer). 4. Excelleat; valuable (Dryden). 5. Happy; resembling the age of gold (Shalspeare).

Golden eye; in ornithology. See
Anis.
Golden flefee (Oriler of the), a miliIary order instituted by Philip the Good, duke of Burgundy, in 1429. It took its denomination from a representation of the golden fleece, borne by the knights on their collars, which consisted of flints and steely.

GOLDEN FLY, in entomology. See Chrysis.

Golden mouse-ear, in botany. See Hieracium.

GOlden number, in chronology, a number shewing what year of the Mitonic or lunar cycle any given year is. To find the golden number, add 1 to the given year; and divide the sum by 19; what remains will be the golden number; unless 0 remain, for then 19 is the golden number.

The discovery of the Metonic cycle exhicited such extensire astronomical know-ledge,

GOL

that it obtained great success and reputation in Greece, insomuch that the order of the period was engraved in letters of gold; whence it acquired the name of Golden Number.
Golden rod, in botany. See SoliDAGO.

Golden rod tree, in botany. See Rosea.

Golden rose. The pope anuuatly consecrates a goiden rose on the fourth Sunday in Lent, which is sent to princesses, or to some church, as a mark of his peculiar affection.

Golden rule, the name usually given by arithmeticians to the Rule of Proportion. or Kule of Three, on account of its extensive usefulness.
GO'LDENLY. ad. (from golden.) Delightfully; splendidly (Shakspeare).

GOLLDFINDER. s. (gold and find.) One who finds gold. A term ludicrously applied to those that empty jakes (Swift).

GOLDSIZE. s. A glue of a golden colour. GOLDSMITH. s. (zolo and ruir, Saxon.) 1. One who manufactures gold (Shakspeare). 9. A banker; one who keeps money for others in his hands (Sucift).

The goldsmith's work is either performed in the mould, or beat out with the hammer, or other engine. All works that have raised figures are cast in a mould, and afterwards polished and finished: plates, or dishes; of silver or gold, are beat out from thin flat plates; and tankards, and other vessels of that kind, are formed of plates soldered together, and their mouldings are beat, not cast. The business of the goldsmiths formerly required much more labour than it does at present; for they were obliged to hanmer the metal from the ingot to the thinness they wanted: but there are now invented flattingmills, which reduce metals to the thinness that is required, at a very small expence. The goldsmith is to make his own moulds, and for that reason ought to be a goo! designer, and have a taste in sculpture : he also ought to know enough of metallurgy to be able to assay mixed metals, and to mix the alloy. The goldsmiths in lo:ndon employ several hands under them for the various articles of their trade; such are the jeweller, the snuffbox and toy maker, the silver turner, the gilder, the burnisher, the chaser, the refiner, and the gold-beater.

Goldsmiths' compamy. SeeCompany.
Goldsmith (Oliver), a celebrated writer, was born at Roscommon in lreland, on Nov. gyth, 1728. His father had nine children, five sons, and four daughters: Oliver was the second son. He was intended by his father for some mercantile employment, and with this view received a scanty instruction in his mative village. But some early specimens of his wit and genius induced his father, at the instigation and with the assistance of some liberal friends, to send him to the university; he was, therefore, after a preparatory education at some good schools, sent to Dublin college, in June 1744. Here he was guilly
of some indiscretions, and, in consequence of some harsh treatment from the tutor, fled from college. By the assistance of an uncle, he was removed, about 1752, from Ireland to Edinburgh for the purpose of sturlying physic. Here he continued till the year 1754, when he passed over to Rotterdam and thence to Leyden, where he studied chemistry under Gaubius and anatomy under Albinus. On leaving Leyden, he made the tour of a great part of Europe on foot, and met with many adventures which he has related in his Vicar of Wakefield; in the year 1756 he arrived in London. While on the Continent he subsisted chiefly by a litile skill in music, which made him acceptable to the peasantry; but he often met with a kind reception at the religious houses, where his genius and learning were much esteemed. On his return to England, he was in such low circumstances that it was long before he could get employment in London, being rejected by several apothecaries to whom he offered himself as a journeyman. He was at last taken into a laboratory, and shortly after met with a Dr. Sleigh, who now afforded him aid till something better could be done for him. By degrees he rose into fame from his poems, dramatic writings, and novels, and might have acquired a competency, but that he was lavish of his money and addicted to gaming, which constantly kept him poor. In the latter part of his life he was afflicted with a stranguary, and fell into an habitual despondency. He died in April, 1774, and was buried in Westminster abbey, where there is a monument to his memory, with an elegant epitaph, written by his friend Dr. Johnson.

As to his character, it is strongly illustrated by Mr. Pope's line, "In wit a man, simplicity a child." The learned leisure he loved to enjoy was too often interrupted by distresses which arose from the liberality of his temper, and which sometimes threw him into loud fits of passion: but this impetuosity was corrected upon a moment's reflection; and his servants have been known, upon these occasions, purposely to throw themselves in his way, that they might profit by it immediately after; for he who had the good fortune to be reproved was certain of being rewarded for $i t$. The universal esteem in which his poems were held, and the repeated pleasure they give in the perusal, is a striking test of their merit. He was a studious and correct observer of vature ; happy in the selection of his images; :a the choice of his subjects, and in the harmony of his versification; and though his embarrassed situation prevented him from putting the last hand to many of his productions, his Hermit, his Traveller, and his Deserted Village, decidedly clain a place among the sinished pieces in the English language.

Besides the works already mentioned, he wrote, 1. History of the Earth and Animated \because ture, 6 vols. Rvo. 2. History of England, j vrile. 8vo. 3. History of Rome, 2 vols. 4. thidgments of the two last, for the use of

G 0 L

schools. 5. A View of Experimental Philosophy, 3 vols. 8ro.; a posthumous work, not much esteemed. 6. Miscellanies. 7. The Citizen of the World. 8. The Good natured Man, a comedy. 9. She Stoops to Conquer. a comedy.
GOLDY LOCKS, in botany. See Chrysocoma

GOLF, Gofp, or Goup, an ancient English and Scotch game, and still common to the latter country, in which clubs are used for striking ballo, stuffed very hard with feathers, from one hole to another. He who drives his ball into the hole with the fewest strokes is the winner.
The derivation of the word golf or goff has been differently given by the etymologists. Skinner deluces it from the Latin colaphus, a blow : Pinkerton proposes the Scandinavian golf, pavimentum, from its being played on level fields; others, with more probability, from the German kollee, a club; whence the Dutch and Swedish kolf of the same meaning. This is farther confirmed by the fact that gouf, in the Scottish dialect, still means a blow or stroke; and that the Dutch still follow the game of golf under the denomination of colf, which they play in an inclosed area, in which are placed two circular posts, each of them about eight or ten feet from each end wall : "and the contest is who shall hit the two posts in the fewest strokes, and make his ball retreat from the last one with such an accurate length as that it shall be nearest to the opposite end wall of the area." Statist. Acc. (Inveresk.) xvi. 23.130. N.
Golf seems to have been an improvensent upon foot-ball, in the same manner perhaps as cricket has been an improvement upon golf. In Scotland it occupied so much of the time of the cominon penple, in conjunction with foot-ball, and similar sports, as to have rendered a prohibition absolutely necessary in the reign of James IV : for we find it formally enacted by the parliament of 1491 , "that in na place of the realme thair be usit fut-ballis, golf, or uther sic unprofitabill sportis for the commoun gude of the realue and defence thairof."
In England, golf (according to Strutt), was practised in the reign of Edward III. under the Latin name cambuca, which was given it, no doubt, from the crooked club or bat with which it was played: the bat was also called by the common people a bandy, froma its being bent; whence the game itself is frequently written in English bandy-ball. -Sports and Pastimes, p. 81.

As the game is now usually played, the club employed is taper, progressively diminisling towards the part that strikes the ball, which part is faced with horn and loaded with lead. There are six sorts of clubs used by goorl players; namely, the common club, used when the ball lies on the ground; the scraper, and half-scraper, when in long grass; the spoon, when in a hollow; the heavy iron club, when it lies deep among stones or

GOL

mud; and the light iron ditto, when on the surface of chingle or sandy ground. The balls are considerably smaller than those used at cricket, but much harder; being made of horse leaher, stuffed with feathers in a peculiar manner, and boiled.
The ground may be circular, triangular, or a semicircle. The number of hules are not limited; always depending on what the length of the ground will admit. The general distance between one hole and another is about a quarter of a nile, which commences and terininates every game; and the party who get their bull in by the fewest number of strokes are the victors.

Two, or as many as choose, may play together; but what is called the good game never exceeds four; that number being allowed to afford best diversion, and not so liable to confusion as a greater number. The more rising or uneven the ground, the greater nicety or skill is required in the players; on which account such is always given the prefcrence to by proficients.

Light balis are used when playing with the wind, and heavy ones against it. At the beginning of each game the ball is allowed to be elevated to whatever height the player chooses, for the conrenience of striking; but not afterwards. This is done by means of sand or clay, called a teeing. The balls which are played off at the beginning of the game must not be changed till the next hole is won, even if they should happen to burst. When a ball happeus $t 0$ be lost, that hole is lost to the party; and if a ball should be accidentally stopiped, the player is allowed to take his strobe again.

Suppose four are to play the game, A and 13 against C and D ; cach party liaving a ball, they proceed thus: A strikes off first ; C next, but perthaps does not drive his ball above half the distance A did, on which account 1 , his partuer, next strikes it, which is called one more, to get it as forward as that of their antagonists, or as much beyond it as possible; if this is done, then B strikes A 's ball, which is called playing the like, or equal, of their opponents. But if C and D, by their ball being in an awkward situation, should not be able, by playing one more, to get it as forward as A's, they are to play in turn, two, three, or as many more, until that is accomplished, before B strikes his partner's ball : which he calls one to two, or one to three, or as many strokes as they required to get to the same distance as A did by his once. playing. The ball is struck alternately, if the - parties are equal, or nearly so.

A club of yentlenen from London mect at the Green Man, Blackheath, every Saturday, when the weather is favourabie, and play at golf on the heath, a piece of ground pecu-- liarly fitted for the pastime.

GOLIUS (James), a learned Orientalist, was born at the Hague in 159(i). Having finished his education at Leyden, he travelled with the duchess de ha Tremonille into France, YOL. V.
and in consequence of an invitation he taught the Greck language a short time at Rochelle. On his return to Holland, he became the intimate friend of Erpenius, at that time Arabic professor at Leyden. In 1622 he went with the Dutch ambassador to the court of Muley Zidan, emperor of Morocco, taking with him a letter from Erpenius to that prince, together with a present of a grand atlas, and an Arabic translation of the New Testament. Golius returned from the journey with great acquisition to his knowledge in the A rabic, and with many books unknown in Europe. On the death of Erpenius, he succeeded to the Arabic professorship at Leyden. In 1625 he went to the Levant, and made excursions into A rabia; and in 1029 he returned to his native country, with a perfect knowledge of the Persian, Turkish, and Arabic tongues, and laden with manuscripts that have ever since been the boast of the university of Leyden. In his absence he had been chosen professor of mathematics in that university, aud after his return was appointed interpreter to the states for the eastern languages. He published an Arabic lexicon; a new edition of Erpenius's grammar; and !sereral pieces of Aralic poetry. This great man died in 1667, universally liamented.

GOLL. s. Hands; paws : obsolete (Sidncy). GOLNAW, a town of Prussian Pomerania, seated on the Ilna. Lat. 53. 46 N . Lon. 14. 59E.
GOLTZIUS (Henry,) a painter and engraver, was born in 1558 at Mulbrec, in the duchy of Juliers. He travelled through Germany and Italy in a curious disguise, having with him a servant who passed for master, while he appeared as a servant kept bv the other merely for his skill in painting. Froms this journey he derived great pleasure and improvement. He died at Haerlem in 1617. His execution as an engraver was highly esteemed.

GOMBAULD (John Ogier de,) one of the best French poets in the 17 th century, and one of the first members of the French acadenny, was born at St. Just de Lussac. He acquired the esteem of Mary de Medicis, and of the wits of his time. He was a Protestant, and died in a very advanced age. He wrote many works in verse and prose. His epigrams, and some of his sounets, are particularly esteemed. He died in 10660, at the great age of 92 ycars.

GOMBROON, a considerable seaport of Persia, in the province of Farsistan. It is called by the natives Bandar Abassi, and is seated on a bay, 12 miles \mathbf{N}. of the \mathbf{E}. end of the island of Kismish, and nine miles from the famous island of Orinus. The best houses are built of brick dricd in the sun, and stand close to each other, being flat at the top. with a square turret, having holes on each side for the free passage of the air. Upon these ronfs, those that stay in the town slegp every night in the summer seastin. The comnon prople have wreched huts, made with Z

$\mathbf{G}^{\prime} \mathrm{O} \mathrm{M}$

the boughs of palm-trees, covered with leaves. The surects are narrow and irregular. The English and Dutch have factories here, which is a great advantage to the trade of the place. Lat. 27. 28 N. Lon. 50. 30E

GOME. s. The black grease of a cartwheel.

GOMERA, one of the Canary islands lying between Ferro and Teneriffe. It has one good town of the same name, with an excellent harbour, where the Spanish lleet often take in refreshments. They have corn sufficient to supply the inhabitants, with one sugarwork, and great plenty of wine and fruits. It is subject to the Spaniards. Lat. 28.6 N . Lon. 17. 3W.
GOMORRAH, in ancient geography, one of the cities of the plain or of the vale of Siddim in Judea, destroyed together with Sodom, by fire from heaven, on account of the wickedness of the people.
GO'MPHIA. In botany, a genus of the class decandria, order monogynia. Calyx five-leaved ; petals five; anthers nearly sessile; drupes from two to five; one-seeded; inserted on a roundish fleshy receptacle. Five species; pative trees of the East or West Indies.

GOM PHOLO ${ }^{\prime}$ BIUM. In botany, a genus of the class decandria, order monogynia. Calyx campanulate, simple, five-parted; corol papilionaceous; stigma simple, acute; legume ventricose, one-celled, many-seeded. One apecies only; an Australasian shrub with the leaves rernate or unevenly pinnate.

GOMPHOSIS. (gomphosis, roupuors; from youpow, to drive in a nail). In anatomy, a species of synarthrosis, or immoveable connexion of bones, in which one bone is fixed in another, like a nail in a board, as the teeth to the alvenli of the jaws.

GOMPHRE'NA. Globe amaranth. In botany, a genus of the class pentandria, order digynia. Calyx coloured; the outer threeleaved; two of the leaves connivent, carinate; petals five rude, villous; nectary cylindrical, tive-toothed; capsule one-seeded; style half bifid. Ten species, scattered over the warm climates of Asia, Africa, and America.

The only species in common cultivation in our own gardens is G. globosa, with erect stem; leaves ovate-lanceolate; hears solitary; peduncles two-leared. There are two rarieties of it, one with a large head of fine bright purple flowers; the other with a head of white or silver-hued. Both are propagated by seeds, which should be sown on a hot-bed the beginning of March. When the plants are come up about balf an inch high, they should be tramsplanted on a fresh hot-bed, at about four inches distance, observing to shatie them till they have taken root: they should have fresh air admitted to then every day, in proportion to the warmth of the season, and be gently refreshed with water. In abont a month's time a fresh hotbed must be prepared, into which a sufficient number of pots, filled with light rich earth, should be planged; and when the bed is in

GON

a proper temperature of warmith, the plantis should be carefully taken up, with balls of earth to their roots, and each planted into a separate pot, observing to shade them th they have taken new root; and afterwards let them be trcated as other render exotic plants. When the plants have filled these pots with their roots they should be taken out, and their ronts carefully pared off on the outside of the ball of earth; then they should be put into pots of a larger size. In July the plants should be gradually brought to bear the open air, into which they may be removed aboot the middle of the month, and intermixed with other annuals, to adorn the pleasure-garden: The several other species of this genus are all so tender that they seldom perfect their seeds in England; and being plants not very remarkable for their beauty, are cultivated in botanic gardens only for the sake of variety.

GONATO-CARPUS, in botany, a genus of the class tetrandria, order monogynin. Calyxless; corol four-cleft; drupe inferior, eightsided, one-seeded. One species, an annual plant of Japan, with small drooping-spiked Howers.

GONAVE, an island of the West Indies, near the W. coast of St. Domingo. Lat. 18. 51 N . Lon. 73. 4 W .

GONDAR, a town of Africa, and capital of Abyssinia, situated on a hill of a conasderable height, surrounded on every side by a deep valley. It consisis of ten thousand families in time of peace: the houses are chiefly of clay, the roofs thatched in the form of cones, which is always the construction within the tropical rains. On the west end of the town is the king's house, formerly a structure of considerable consequence; it was a square building, flanked with equare towers; it was formerly four stories high, and, from the top of it, had a magnificent view of all the country southward to the lake Tzana. Great part of this house is now in ruins, having been burnt at different times; but there is still ample lodging in the two lowest floors of it; the audience chamber being above 180 feet long. The palace, and all it contignous buildings, are surrounded by a substantial stone wall, thirty feet high, with battements upon the outer wall, and a parapet roof between the outer and inner, by which you can go along the whole, and look into the street. There appears to have never been any embrasures for cannon, and the foor sides of this wall are above an English mile and a half in length. Lat. 18. 34 N. Lon, 37. 33 E .

GONDEGAMA, a river of the peninsula of Hindoostan, which rises near Combam, forms the nominal boundary of the Carmatic, on the north, and enters the bay of Bengal, at Mootapilly.

GONDI (John Francis Paul), Cardion de Retz, was the son of Philip Emanuel do Gondi, Count de Joigny, lieutenant-general, \&ce, and was born in 1013 . From a doctor of the Sorbonpe, he first became coanjutor h hin
${ }^{\text {ancle }}$ John Prancis de Gondi, whom he succeeded in 1654 as archbishop of Paris; and was finally made a cardinal. This extraordinary person has drawn his own character in his memoirs with impartiality. He was a man who, from the greatest degree of debauchery, and long languishing under its consequences, made himself adored by the people as a preacher. At the age of 23 , he was at the head of a conspiracy against the life of Candinal Richelien; he precipitated the parliament into cabals, and the people into sedition : he was (says M. Voltaire) the first biahop who carried on a civil war without the mask of religion. However, his intrigues and schemes turned out en ill, that he was obliged to quit France; and he lived the life of a vagrant exile for five or six years, till the death of his great enemy cardinal Mazarin, when he returned on certain slipulated conditions. After assisting in the conclave at Bame which chose Clement IX. he retired from the world, and ended his life like a philosopher in 1679; which made Voltaire say, chat in his youth he lived like Catiline, and like Auticus in his old age. He wrote his Memoirs in his retirement; the best edition of which is that of Amsterdam, 4 vols. 12 mo . 1719.

GONDOLA, a flat boat, very long and narrow; chiefly used at Venice to row on the canals. The word is Italian. Du Cange derives it from the vulgar Greck xovilinas, a bark, or little ship. The middle sized gondolas are about 20 feet long, and 4 broad : they ternipate at each end in a very sharp point, which is raised perpendicularly 5 or 6 feet.
Maegill, in his Travels in Turkey, Italy, \&c. describes the gondolas in the following mananer: "A gondola is a barge of considerable length, which from its peculiar construction sis very steady in the water. It is painted black by order of government, and has on is brow a piece of flat iron, highly polished, resembling the neck of a horse. The after part of the boat is several feet out of the water; and almose on the point of the stern stands the rower, who having from long practice acquired great dexterity, steers his gondola with one oar, with much exactness and velocity. I mention the one-oared gondola because I admire it the most, and think it by far more singuiar than any other. I never eaw men atand and row so elegantly as the Venetian goodoliers. In the middle of the boat is a small place covered with black velvet, which much resembles a hearse; in the front of this is a curtain; at each side a window with Venctian blinds; and on the part next the stern is a cushion large enough for two people. Underneath each window is a atool, on a level with the cushion; so that the persons within are placed in a reclining posture. These pondolas will turn a corner at full speed, and it is very rarely that any accident happens to them. The rowers have pertain expressions which they repeat to one enother, in order to give warning of their ap-

G 0 N

proach, and which serve as a mutual direction which side of the canal they are to take."

GONDOLI'ER. . (from gondola.) A boatman; one that rows a gondola (Shuks.). GONE. part. preter. (from go.) 1. Advanced; forward in progress (Swift). 2. Ruined; undone (Shakispeare). 3. Past (Shakspeare). 4. Lost; departed (Holder). 5. Dead ; departed frou life (Oldham).

Gone away, in sporting, the outcry or halloo from one sportsman to another in stag or fox-hunting, when the gane is perceised to break from his coverts and go off; at which time if it were not for some such exclamation, those who happen to be up the wind would have a chance of being thrown out, and from their distance, not know any thing of the matter. To prevent this ill-luck, the person who first espies the animal instantly vociferates the signal; which is as quickly reechoed by every one in succession, till it has reached and vibrates through the whole company. The chase then begins to be alive, and men, horses, and hounds all unite in rival ardour and spirit. See Foxhunting.
GO'NFALON, Gónfanon. s. (gonfanon, French.) An ensign; a standard (Mil.). GONJAH, a kingdomi of Africa, hetween the coast of Guinea on the south, and Tombuctou on the north. Gonjah the capital is in Lat. 13. 20 N . Lon. 6. 10 W .
GOOD HOPE. See Caps of Good Hope.

GONIOMETRY, a method of measuring angles, so called by M. de Lagny, who gave several papers, on this method, in the Memoirs of the Royal Acad. an. 1724, 1725, 1729. M. de Lagny's method of Goniometry consists in measuring the angles with a pair of compasses, and that without any scale whaterer, except an undivided semicircle. Thus, having any angle drawn upou paper, to be measured; produce one of the sides of the angle back wards behind the angular point ; then with a pair of fine compasses describe a pretty large semicircle from the angular point as a centre, cutting the sides of the proposed angle, which will intercept a part of the semicircle. Take then this intercepted part very exactly between the points of the compasses, and turn then successively over upon the arc of the semicircle, to find how often it is contained in it, after which there is commonly sone remainder: then take this remainder in the compasses, and in like manner find how often it is contained in the last of the integral parts of the 1 st arc, with again some remainder : find in like manner how often this last remainder is contained in the former; and so on continually, till the remainder become too small to be taken and applied as a measure. By this means he obtains a series of quotients, or fractional parts, one of another, which being properly reduced into one fraction, give the ratio of the first are to the semicircl,, or of the proposed angle to two right angles, or 180 degrees, and con-

28
equently that angle itself in dcgrees and minutes.

Thus, suppose the angle BAC' (fig. 6. PI. 76.) be proposed to be measured. Produce BA out towards f; and from the centre A describe the semicircle alcf, in which ab is the measure of the proposed angle. Take $a b$ in the compasses, and apply it four times on the semicircle, as at b, c, d, and e; then take the remainder $f f$, and apply it back upon $e d$, which is but once, viz. at g; again take the remainder gd, and apply it 5 times onge, as at h, i, k, l, and $2 n$; lastly, take the remaiuder $m e$, and it is contained just 2 times in $m l$. Hence the series of quotients is $4,1,5,2$; consequently the 4 th or last arc em is $\frac{1}{2}$ the third $m l$ or $g d$, and therefore the $3 d$ arc $g d$ is $\frac{1}{5 \frac{1}{2}}$ or $\frac{2}{11}$ of the 2 d are $e f$; and therefore again this $2 d \operatorname{arc}$ of is $\frac{1}{1 \frac{2}{11}}$ or $\frac{11}{13}$ of the 1 st arc $a b$; and consequently this Ist arc $a b$ is $\frac{1}{4!\frac{1}{3}}$ or $\frac{1,3}{}$ of the whole semicircle of. Jut $\frac{11}{6}$ of 180° are $37 \frac{1}{7}$ degrees, or $37^{\circ} 8^{\prime} 34^{\prime \prime 2}$, which thercfore is the measure of the angle songht. When the operation is nicely performed, this angle may be within ε or 3 minutes of the truth; though M. de Lagny pretends to measure much nearer than that.

It may be added, that the series of fractions forms what is called a continued fraction. Thus, in the example above, the continued fraction, and its reduction, will be as follow s

$$
\frac{1}{4}+\frac{1}{1+\frac{1}{5_{\frac{1}{2}}}}=\frac{1}{4}+\frac{1}{1 \frac{2}{11}}=\frac{1}{4 \frac{1}{1}}=\frac{13}{63}
$$

the quotients being the sucessive denominators, and 1 always for each numerator. (Hutlon's Dict.)

GONIUM, in zoology, a genus of the class vermes, order infusoria. Worm very simple, flat, angular, invisible to the naked eyc. Five species. Found on dunghills, or in stagnant waters, and two of them in pure waters: of which last the following is the more comunon :
G. pectorale. Quadrangular, pellucid, with sixicen spheroidal molecules: the molecules oral, ncarly equal in size; set in a quadranfolar membrane like diamonds in a ring, the fower mues a little larger than the rest.

GONORIRHCEA. (gonorrhirell, jwrospose; from $\gamma: n$, semen, and piw, to flow; from an croncous supposition of the ancients that it was a seminal flux.) A preternatural flux from the urethra or vagina. It alises from the action of the renereal virus on those pirts, producing first an itching, afterwards a discharge like pus, attended with heat on making water; and in men is occasionally arcompanied with phymosis, and sometimes Faraphymosis.

G 0

GOOD. a. comp. better; superl. best. (zn; Saxon; gocd, Dutch.) 1. Having such physical qualities as are expected or desired; nut bad; not cvil (Dryden). 2. Proper; fit; convenient (Bacon). 3. Uncorruptel; undamaged (Locke). 4. Wholesome; salubrious (Prior). 5. Medicinal ; salutary (Bacon). 6. Pleasant to the taste (Bacon), 7. Complete; full (Addison). 8. Useful ; valuable (Coll.) 9. Sound; not false ; not fallacious (Atterl.). 10, Legal; valid; rightly claimed or held. 11. Confirmed; attested; valid (Smith). 18. Well qualified ; not deficient (Locke). 13. Skilful; ready; dexterous (Snuth). 14. Happy; prosperous (Psalms). 15. Honourable (P ope). 10. Cheerful; gay (Pope). 17. Considerable ; not small though not very great (Bacon). 18. Elegant; decent; delicate; with breeding (Addison). 19. Real; serious; not feigned (Shakspeare). 20. Rich; able to fulfil engagements (Shakspeare). ©1. Religious; virtuous; pious (Alatthew). 22. Kind; soft ; benevolent (Sidney). 23. Farourable; loving (Sumuel). 24. Companionable; socia? ble; merry (Clar.). 25. Hearty; earnest; not dubious (Sidney). 26. In Good time. Not too fast (Collier). 27. In Good sooth. Really; seriously (Shakspeare). 28. To make Good. To keep; to maintain; not to give up; not to abandon (Dryden), og. To make Good. To confirm ; to establish ($S_{m a t}$ ridge.) 30. To make Good. To perform (W゙Fller). 31. To make Good. To suply (L'Estrange).

GOOD. s. 1. That which physically cone tributes to happiness; benefit; advantage; the contrary to evil (Shakspeare). 2. Prosperity; adrancement?'(Ben Jonson). 3. Earnest ; not jest (L'Estrange). 4. Moral qualities, such as are desirable; virtue; righteousness; piety (South).

Good, in metaphysics, or metaphysical good, called also absolute or real good, and good per se, is the essential perfection or integrity of a thing, whereby it has every thing that belongs to its nature.

In this sense, all things that are are good, inasmuch as they have the perfections naturally belonging to things of their kind. 'Thus, a thinking substance is good or perfect, as it has all the essential attributes of thought; so an extended substance is gool, as it possesses all the parts necessary to constitute it such.

GOOD (Physical or patural), is that wherchy a thing possesses all things necessary in its lene esse, i. e. its well-being, or second perfection, and to the performance of its functions anll uses.

In this sense, physical goodness coincides with physical perfection.

To this are required the several powers and farulics, in their proper degree; a due situa: tion, figure, and propertion of parts, \&c.

Note, beside ab:olute physical goodness, there may be a relative one; as in foods, which to one are salutary, to another peison. \& . To this head also belong the that

G 00

fobd pro tempore, or according to circumstinces; as the amputation of a morlitied limb, $8 \cdot$

Good (Moral or ethical), is the agreement of a thinking, reasonable being, and of the habits, acts, and inclinations thereof with the dictates of right reason, and the will of the Creator, as discovered by natural light. SeeVirtue.

Good (Chief, sovereign, or supreme), summate bonam, is that, the enjoyment of which renders men truly and conipletely happy. The xhools distinguish this chief good of man into thit which is simply and adequately so, and beyond which there can be no other; and an inferior, subordinate kind, which is, in sone measure, attainable in this inperfect state. This last they call felicitas uiaturum, and the former filicitas comprehensorum. The chief or sovercign good, according to the idea collected of it from the original, natural, and universal preconceptions of all mankind, is something agrecable to our nature, conducive to well-being, accommodated to all places and times, durable, self-derived, and indeprivable; and this consists, says Mr. Harris, in rectitude of conduct, or in living perpetually selecting, as far as possible, what is congruous to nature, and rejecting what is contrary, making our end that selecting and rejecting only.

An excellent writer lays down the following criteria orcharacteristics of the summum lonum, or chief good, which reason can demonstrate to be actually designed for man : it is something which all men, if not wanting to themselves, may be possessed of; it is one and the same to all mankind; and while in itself fitted to make the possessor happy, is not prevented in its operation by some other thing which keeps him from relishing it: and as to the highest good which it is possible for man to enjoy, it must be referred to no other, but all others must be embraced for the sake of this; and it must be sufficient to furnish a happiness adepuate to the capacities of human nature, and of equal duration; i. e. it must be not only perfect whilst it lasts, but everlasting. According to these characters we may infer, that neither the goods of fortune, nor those of the body, nor even virtue itself, constitute the chief giod. Virtue rightly understood is the perfection of human nature; it is the instrument of obtaining happiness: but this alone will not make a man happy; it is father uecessary that he be perfect as to life, or happy in the circumstances of his being: and, therefore, natural reason demonstrates, that the favour of God, secured by virtue, is properly man's supreme good. Grove's Sysiem of Moral Philosophy, vol. i. part I. passim.
(Goov. ad. I. Well; not ill; not amiss. 2. As (iond. No worse.

Good. imtcrj. Well; right.
Goon-conditioned. a. Without ill qualities or syinptoms (Sharp):

Good Henry, iu botany. Sec ChenoCODIUM,

G 00

Good Hopr (Cape of). See Cape:
GOODIA, in bolany, a genus of the class diadelphia, order decandria: Upper lip abbreviated, two-toothed, lower ihree-toothed and broader; keel of the corol truncated; legume perlicelled, gibbous at the back, twoseeded ; stigma capuate. One species, G. lotifolia, lotus-leaved goodia; a hardy green-house shrub, of handsome growth; flowers in May, June and July; is propagated by seeds and cuttings.
It is a native of New South Wales, and derives its appellation from a botanist of the name of Peter Givod, whose love of plants induced him to leave a lucrative employmient and repair to this remote colony to collect seeds for his majesty, in which service he died. See Nat. Hist. Plate CXXV.
GOOD-NOW. interjection. I. In good time: a low word (Shalispeare). 2. A soft exclamation of wonder ($D_{\text {ryden) }}$
GOODLLINESS. s. (froun goodly.) Beauty; grace ; elegance (Sidncy).
GO'ODLY. a. (from good.) 1. Beautiful; graceful; fine; splendid. 2. Bulky; swelling ; affectedly turgid (Dryden). 3. Happy; desirable; gay (Spenser).
Go'odsy. ad. Excellently: obsolete (Spenser).
GOODLIHOOD. s.(from goodly.) Grace; gondness: obsolete (Spenser).

GO'ODMAN. s. (grod and man.) 1. A slight appellation of civility (Shakispeare). 2. A rustick term of compliment; gaffer (Gay).
GO'ODNESS. \& (from gond.) Desirable gualities either moral or physical ; binduess; favour (IInoker).
GOODS. s. (from good). 1. Moveables in a house (Chapman). 2. Personal or moveable estate (Shakspeare). 3. Wares; freight; merchandise (Raleigh).
GOODY. s. (corrupted fron good wife.) A low term of civility used to mean persons (Gay).
GO'ODYSHIP. s. (from goody.) The quality of a goody (Hudiliras).
GOOGINGS; in naval affairs, certain clamps of iron or other metal, bolted on the stern-post, on which to hang the rudder; for this purpose there is a hole in each of them to receive a correspondent spindle, bolted on the back of the tudder, which turns thereby as on hinges. There are several googings on a ship's posts and rudder, according to her size, and on there the rudder is supported and traverses.
GOOLE, in law books, signifies a breach in a sea-bank, or wall.
GOOMPTY, a river in Hindoostan Prnper, which rises in the Rohilla country, and flowing S. E. by Lucknow and Joinpour, falls into the Ganges a little below Benares.
GOOSANDER, in omithology. Sec Mercus.
gOOSE, in ornithology. See Anas.
Goose, is also a name given to a tailor: smoothing iron.
goosfiberry tree. See Ribes.

Coostifrriy (American). See MeLA5TOMA
Gooseberry, of the Americans, and Bapbatses. succicios.

GORBELI.IFD. a. (from gorbelly.) Fat; be-leilind (Shakspeare).

GORBELI.Y. s. (from Jon, dung, and lelli.) a big paunch; a swelling beliy.

GiORCCM, a nown of the United Provinces, ir. Holland, which carries on a considerable trade in checse and butter. Lat. $51^{\circ} .51 \mathrm{~N}$. Lan. $4^{0 .} 51$ E.

GOR!)E'NIA. In bolany, a genus of the c!ass pentandria, order monogynia. Corol longutudinally cloven on the upper side, exposing the organs of fructification; the border five-cleft; leaning one way; anthers linear, beardless; stigna cup-shaped, culiate; capsule two-celled, iwo-valved; many-seeded; with a parallel partition. Ten species; shrube of New Holland. Sce Nat. Hist. PI. CXXXII. GORDIAN-KNOT. See Gordius.
GORDIANUS (M. Antoninus Africanus), a son of Metius Marcellus, descended from Trajan, by his mother's side, was an example of piety and virtue. He composed a poem in thirty books upon the virtues of Titus Antoninirs, and M. Aurelius. Having been promoted to the pretorship, he was sometime after elected consul, and went to take the government of Africa in the capracity of proconsul. After he had attained his eightieth year, in the greatest splendor, and domestic tranquillity, he was poused from his peaceful occupations by the tyrannical reign of the Maximini, and he was proclaimed emperor by the rebellious troops of his province. He long deckined to accepe the imperial purple, but the threats of immediate death gained his compliance. Maximinus marched against him with the greatest indignation; and Gordian sent his son, with whom he shared the imperial dignity, to oppose the enensy. Young Gerdian, who was of an amiable disposition, was killed in a bloody battle the 25 th of June, A. D. 236 ; and the father, worn out with age, and grown desperate on account of his misfortunes, strangled himself at Carthage, before he had been six weeks at the head of the empire, A. D. 236. He was universally lamented by the army and people. -2. M. Antoninus Pius, grandson of the first Gnrdian, was but twelve years Ad when he was honoured with the title of Cæsar. He was proclaimed emperor in the sixteenth year of his age, and his election was attended with universal marks of approbation. In the eighteenth year of his age, he married Furia Sabina Tranquillina, daughter of Misitheus, a man celebrated for his elnquence and public virtues. He entru:ted his father-in-law with the most important offices, in the execution of which he corrected the varions abuses which prevailed in the state, and restored the ancient riscipline amoug the soldiers. Gordian conquered Sapor, king if Persia, who had invaded the Roman provinces, and took many flourishing cities in the east from his adversary. In this success the senate decreed him a triumphs, and saluted
-Misitheus as the guavdian of the repuiblite. Gordian was assassinated in the east, A. D. 244, by the means of Philip, who usurped the sovereign power by murdering a warlike and amiable prince. During the reigu of Gordianus, there was an uncommon eclipse of the 9unn, in which the stars appeared in the middle of the day.

GORDIUS, a Phrygian, who, though originally a peasant, was raised to the throme, in consequence of an oracle given to the Phrygians, which recommended to them to give the crown to the first man they met going to the temple of Jupiter, mounted on a chariot. The famous Gordian kuot took its origin from this chariot. The knot which tied the yoke to the draught tree was made in such an artful manner, that the ends of the cord could not be perceived. From this circumstance, a report was soon spread that the empire of Asia was promised by the oracie to him who could untie the Gordian knot. Alexander, in his conquest of Asia, passed by Gordium; and as lie wished to inspire his soldiers with contrage and make his enemies believe that he was born to conquer Asia, he cut the knot with his sword; and asserted that the oracle was really fulfilled, and that his claims to universal empire were fully justified.

Gordius. Hair-worm. In roology, a genus of the class vermes, order intestina. Body round, filiform, equal, smooth. Five species: as follow.

1. G. aquaticus. Pale bown, with darts extremities. Inhabits soft stagnant waters; from four to six inches long; wists itself into various contortions and knots, and if incautiously handled, wiH inflict a bite at the the eord of the fingers, and occasion the complaint called a whitlow. It is vulgarly supposed to be produced by horse-hairs, accidentally dropped into the water. See Nat. Hist. PI. CXXX.
2. G. argillaceus. Body uniformly yellowish. Found in clay at the body of stagnant waters, which it pierces through ; and is handly distinguishable from the last.
3. G. filum. Borly filiform, whitish and hyaline. Found in the bark of old wooden pipes, which have been placed in the ground for the purpose of conveying streams of water; is extremely slender, and a litule tapering at the end.
4. G. lacteus. I Body uniformly white, and opake. Found in stagnant waters; when touched contracts itself for a moment, and afterwands extends.
5. G. arenarius. Body fulvous and obtuse. Inhabits the sandy bottom of Christian's Bay. in Norway. The filiaria medinensis or Gainea worm has often been confounded with this genus: the reader will perceive the difference by turning to Fifiaria.

GORDON (Thomas), a poiitical writer, was a native of Scolland. He was concerned with Trenchard in a periodical paper, called Cato's Letters, pablished in 1720, and afterwards in another, entituled, The Independent Whig, which Gordon continued for come tise

$$
\mathbb{B} \mathbb{T} \cdot \mathbb{A} \mathbb{N} \mathbb{Y} .
$$

after the death ofTrenchard. Sir Robert Walpole at length took Gordon into pay, to defend his administration, and made him commissioner of the wine licences. He died in 1750 . Gordon translated Taciuus into English.

Gordom (Alexander), M. A. a Scotch writer and antiquary. He was successively secretary to the society for encouragement of learning, the Esyptian club, and the antiquarian society. He went to Carolina, with governor Glen, where he died.

Gordon (The hon. George), commonly called lord George Gordon, was the son of Cosmo George duke of Gordou, and born in 1750. He entered into the navy when young, but quited it on account of some dispute with lord Sandwich. He afterwards sat in parliament for Ludgershall, and distinguished himself by some strange speeches against the king and his ministers. But what chiefly brought him into notice was his oppusition to the bill for granting farther toleration to Riman Catholics. His intemperance on this occasion proved the cause of the shameful riots in 1780 , for which he was tried and acquited. In 1780° he was excommunicated for not appearing as a witness in some cause. In 1788 he was found guilty of publishing a libel against the gueen of France, on which he fled to Holland. Some time after he returned to England, and was taken in the disguise of a Jew, which profession he had adopted, and was committed to Newgate, where he died in 1793.
GORDONIA. Loblolly bay. In botany, a genus of the class monadelphia, order polyandria. Calyx single; style five-sided, with a Gire-cleft stigma; capsule fire-celled, seeds two, with a foliaceous wing on one side. Four species. Trees and shrubs of the West Inclies, or Carolina. The following are chiefly worthy of notice.

1. G. lasianthus, with downy calyx villous at the edge; yellow flowers, on long peduncles; leaves coriaceous, glabrous; capsules ovate. The leaves are evergreen; the tree, which is tall and straight, begins to blossom in May, and continues to blosson through the whole of summer.
2. G. Franklini. A shrub indigenous, also, to Carolina, twenty feet high ; with oblong serrate, glabrous leaves; flowery sessile axillary, white, with the petals curled; and fruit globular.

GORE, in heraldry, one of the abatements, which, according to Guillim, denotes a coward. It is a figure consisting of two arch lines drawn one froni the sinister chief, and the other from the sinister base, both meeting in an acute angle in the middle of the fess point.

Gore. s. (Jone, Saxon.) 1. Blood effused from the body (Spenser.) 2. Blood clotted or congealed (Milion).

To Gore. v. a. (Jebepian, Saxon.) 1. To stab; to pierce (Shakspeare.) \&. To pierce with a horn ($D_{\text {ryden }}$).

GORE ISLAND, a place discovered by Captain Cook, in his last vogage. Lat. 64. 0 N. Lon. 169. 0 W.

GOREE, a small barren island extending about three quarters of a mile in length, of a triangular form. It belongs to the French. Lat. 14. 40 N. Lon. 17. 25 W.

Goree, a town of Holland. Lat. 51. 40 N. Lon. 4. 20 E .

GORGE, in architecture. 1. The narrowest part of the Tuscan and Doric capitals, lying between the astragal and the annulets. 2. A concave moulding, wider than the Scotia, but not so deep. 3. The neek of a column. 4. The throat of a chimney, or the part between the chambranle and the crowning of the mantle.

Gorge, in fortification, the entrance of the platform of any work. See FortipicaTION.

In all the outworks, the gorye is the interval betwixt the wings on the side of the greal ditch, as the gorge of a ravelin, half-mcon, \&ce. These, it is to be observed, are all destitute of parapets; because if there were any, the besiegers, having taken possession of the work, might use it to defend themselve3 from the shot of the place; which is the reason that they are only fortified with palisadoes, to prevent a surprise.
The gorge of a bastion is nothing but the prolongation of the curtins from their angle with the flanks, to the centre of the bastion where they meet. When the bastion is flat, the gorge is a right line, which terminates the distance between the two flanks.

Gorge. s. (gorge, French.) 1. The throat; the swallow (Sidiney.) 8. That which is gorged or swallowed (Spenser).

To Gorge. v. n. (gorger, French.) 1. To fill up to the throat; to glut; to satiate (Add.) 2. To swallow: as, the fish has gorged the hook.
GORGED, in heraldry, the bearing of a crown, coronet, or the like, about the neck of a lion, a swan, \&c. and in that case it is said, the lion or cygnet is gorged with a ducal coronet, \&cc. Gorged is also used when the gorge, or neck of a peacock, swan, or the like Bird, is of a different colour or metal from the rest.
Gorged, among farriers,, denotes any diffused swelling about a horse; but chiefly in his legs, occasioned rather by severe and hard work, than the effect of humours originating in a sizey or morbid state of the blood. A horse having his back sinews flushed, and legs thickened, so as to go short and stiff in action, but not broken down, is said to be gorged. Having the same appearances from humours, or 2 viscidity of the blood, he is said to be foul, and must be relieved by purgatives or diuretics, assisted by much hand-rubbing and other friction. Gorged horses should be blistered, and turned out in time, by which they frequently get fresh again: continued at work too long, they break down, and become cripples.
G'ORGEOUS. a. (gorgias, old French.) Fine; glittering in various colours; showy; splendid; magnificent (Milton). class vermes, order zoophyta. Animal growing in the form of a plant; stem coriaceous, corky, woody, horny, or bony, composed of glassy fibres, or like stone, striate, tapering, dilated at the base, covered with a vascular or cellular flesh or bark, and becoming spongy and
friable when dry ; months or florets covering friable whin dry; motms or forets covering Forty-one species, found in different parts of the globe; of which four or five are inhabitants of the coasts or seas of our own country.
The following are chichy entitled to notice. 1. G. lepadifera. Dichotomous, with crowded, imbricate, refected, companulate mouths or florets. Inbabits the Norway Scist : nearly two feet high : flesh pale, covered with minute whitish scales; forets covered with white, imbricate scales, and have the appearance of small bernacles; stem white, with a stony base, and cartilaginous branches.
2. G. nobilis. Red coral, with outspread, irregular, slightly tapering branches ; flesh red, soft, slippery, and full of minute pores; bone stony, bright red, and irregularly striate. Inhabits the Mediterranean and Red Scas; is very beautiful and valuable, and grows to about a foot in height: the pores or Horets are irregularly placed, and a little prominent, consisting of ei, hat valves, from which the polypes proceed, possessed of eight tentacles. This is the best and finest of our corals; for others of
an inferior quality, see Isis.
3. G. Habeltur, Venus's fan. Reticulate, with the branches compressed on the inuer sille; bark yellow, or purplish; bone black,
horny, and blightly striate on the larger brat horny, and blightly striate on the larger branches. Inhabits most seas: found about our own coasts; is often scveral feet high, and expanded into a large surface; flexile, horny, black; the older bark whitisti or grey ; pores irregularly placed, but generally in the form of a quivicunis: trunk and branches pinnate, and by means of the smallerbranches blending
lugether, and forming an ele gant hind of netlugether, and forming an elegant hind of net-
whork: polypes with eight claws. See Nat. Hist IPI. CXXII.

GORGONS, in antiquity and mythology. Authors are not agreed in the account they give of the Gorgons. The pocts represent them
as three sisters, whose names were Sitheno, as thrce sisters, whose names were Stheno,
Euryale, and Medusa; the latter of whom was cursale, and Medusa; the later of whom was
morial, and, having been deflowerd by Nep-

GO S

tune, was killed by Perscus; the two formee were subject neither to age nor death. They are described with wings on their shoulders, with serpents round their heads, their hands were of brass, and their teeth of a prodigious size, so that they were objects of terror to mankind. After the death of Medusa, her sisters, according to Virgil, were appointed to keep
the gate of the palace of Pluto.

Multaque praterea vatiarum monstra fera-run-
 Gorgones, Harpeiaque___

Diodorus Siculus will have the Gorgons and Amazons to have been two warlike nations of women, who inhabited that part of Lidya which lay on the lake Tritonidis. The extermination of these female natious was not effected till Hercules undertook and performed it. Others represent them as a kind of monstrous women, covered with hair, who lived in woods and forests. Others agrin make them animals, resembling wild sheep, whose eyes hat a poisonous and fatal influence.
GORITZ, the capital of a country of the same name in the duchy of Carniola, with a castle. Lat. 46. 20 N. Lon. 13.30 E.

GORLITZ, a strong and handsome town of Germany, in Upper Lusatia, on the river Neisse. Lat. 51. 10 N . Lon. 15.40 E .

GORMAND. s. (gourmand, French.) A greedy eater; a ravenous luxurious feeder. To GORMANDIZE. v. n. (from gormand.) To feed ravenously; to eat greedily. GORMANDI'ZER. s. (from the verb.) A voracious eater.

GORSE. s. (ðクnr, Saxon.) Furz, a thick prickly shrub, that bears yellow flowers. Sec Uiex.
GORTERIA, in botany, a genus of the class syngenesia, order polygamia frustranea. Receptacle naked; down woolly; florets of the ray ligulate; calyx one-leafed; clothed with imbricate scales. Seven species, all shruks of the Cape: there are other plants, and especially of the genera russinia and berckheya, which have at times becn erroneously introduced as species of gorferia; but which are here restored to their proper stations.
GO'RY. a. (from gorc.) 1. Covered with congealed blood (Spcncre.) 2. Bloody; murderous; fatal (Shahspeare).
GOSHAWK. s. (Jor, goose, hafoc, a hawk.) A hawk of a large kind. See Falco. GOSHEN, in ancient geography, a canton of Eyypt, which Joseph procured for his father and his brethren, when they came to dwell in Egypt. This country lay between Palestine and the city of Tanais, and the allotment of the Hebrews reached southward as
far as the Nile.

GOSLAR, a town of Lower Saxony, in Germany, where it is supposed gunpowder was first invented by a monk. It is 28 miles 42 E . of Brunswick. Lat. 52. 0 N. Lon. 1a

PL. $\mathbf{C x X I I}$.

Gorgonia Prctiona, or Red Come. teth in ito matural otate and deomrecuited

Gorgomien C'eortrum, or Brain Madraporr

GO'SLING. s. (from goose.) 1. A young grose; a grose not yet full grown (Suift). \%. A catkin on nut-trees and pines.

GOSPEL, a history of the life, actions, death, resurrection, ascension, and doctrine of Jesus Christ.
The word is Saxon, and of the same import with the Latin term evongelium, or the Greek suary ${ }^{\text {dinev, }}$, which signifies glad tidinge, or good news, or good message ; the history of our Saviour being the best history ever published to mankind. This history is contained in the writings of St. Mathew, St. Mark, St. Luke, and St. John; who from thence are called Evangelists. The Christian church never acknow ledged any more than these four gospels as canonical, notwithstanding which, sereral apocrypinal gospels are handed down to us, and others are entirely lost.

The word gospel is also used to denote the doctrines peculiar to the Christian religion, or those which point out the way by which man, as a fallen and rebellicus creature, may be restored to the image and farour of his Maker, may be, "c created anew unto holiness," though Christ Jesus, and thus be, " made meet for the inheritance of the saints in light."
To Gospel. v. n. (from the noun.) To fill with sentiments of religion (Shakspeare).

GOSPELLLER. s. (from gospel.) A name of the followers of Wickliffe, who first attempted a reformation in popery, given thean by the papists in reproach (Roue).

GOSPORT, a fortified town in Hampshire, on the \mathbf{W}. side of the harbour of Portsnouth, over which is a ferry. It has a market on Saturday; and here is a noble hospital, called Haslar hospital, for the sick and wounded of the royal navy. Lat. 50. 49 N . Lon. 1. 3 W.

GOSSAMER, a fine filmy substance, like cobweb, seen to float in the air in clear days in autumn, and more observable in stubble-fields, and upon furze and other low bushes. This is probably formed by the flying-spider, which, in traversing the air for food, shoots out these threads from its anus, which are borne down by the dew, \&c.

It has been commonly affirmed, that the gossamer, when it settles, deposits itself in directions nearly north and south, that is, parallel to the direction of the magnetic needle. But this is not srue. A near inspection shews that the threads lie in all directions: but as they are ge:ierally observed when the sun is near the horizon, and at a tiine of the ycar when the luminary rises and sets about the east and west points of the compass, the rays of the sun cause those which lie from north to south to be visible at a distance from which the others are not seen.

Gossaner-insect, in entomology. Sce Acarus.

GOSSIP. s. (from סor and ryp, relation, Saxon.) 1. One who answers for the child in buptism. 2 . A tippling companion

GOS

(Shakspeare.) 3. One who runs about tate tling like women at a lying-in (Dryden).

To Go'ssip. v. n. (from the noun.) i. To chat ; to prate; to be merry (Shakispeare.) $\%$. To be a pot-companion (Shakspeare.).
GO'SSIPRED. s. (gossipry, from gossip.) Gossipred, or compaternity, by the canon law is a spirimal affinity (Davies).

GOSSI'PIUM. Coton. In botany, a genus of the class monadelphia, order polyandria. Calyx double; the outermost threecleft: capsule three or four-celled; seeds wrapperl in cotton. Ten species; a few American, but by far the greater number Asiatic plants.

Most of these affiord a wool that may be usefully applied to mechanical or domestic purposes, or woven into cloths. The cotton shrubs of the Ainerican islands grow without the smallest cultivation, but their wood is coarse and short, and hence cannot easily be spun ; if imported into Europe it might answer the purpose of felts in the manufacture of hats; but it is generally consumed by the inhabitants themselves, as stufing for pillows and mattresses.

The generality of the West Indian species are annuals; but G. arboreum of India is a perennial tree, both in root and branch, rising in a straight line about eight feet high, witir leaves in five palmate lobes: the lobes lanceolate, obtuse, and mucronate.

The cotton chiefly selected for propagation is G. herbaceum, a native of the East Indies; a pubcscent herb; with the stern spotted with black at its top; leaves downy, peduncies branched, shorter than the pecioles; outer calyx three-parted, with heart-shape, cut segments doted with black ; corol one-petalled, with a short tube, fire-parted, the segments pale yellow, with five red spots at botom; capsule three-valved, three-celled. The pods are not unfrequently as large as midelling-sized apples: The common cotton plant thrives best in respect of good in new grounds; but best in respect of fruit in dry stony grouod that has been tilled already; and hence such is the soil generally preferred by our planters. The period of cultivation commences in March and April, and continues during the spring rains. The holes for the seeds are made in distinct rows, something like hop-planting, at a distance of seven or eight fect from each other; the seeds are thrown in and earthed over; and when they have shot forth to the height of five or six inches, all the stems are pulled up, excepting two or three of the strongest. These are cropped twice before the end of August, nor do they bear fruit till after the second priming. By such repeated croppings, the plant. though naturally an annual, nay be prolonged and nade to bear sufficiency of fruit to repay the planter for three years, yet it is better io renew them if there be opportunity. When the cotton is gathered in, the seeds are picked out, from the wool, ly means of a cottonmili, of a simple contrivance, and perfectly adequate to the plup pose.

GOT. The pret. and part, pass, of get.
GOTHA, a lown of Upper Saxony, capital of a duchy of the same name, in Thurnogia. Near it is the ducal observatory of Seeberge, the most beausiful and useful in Gernaany, of which the duke has expended upwards of 83001 . The superimendance of this ohservatory is entrusted to baron von Zach. Here, in 179e, a congress of astronowers was held; amony the varioue objects discusased, they agreed to form some new comstellations, as the Hironaus, Sic. Gotha han a cousiderable trade in weollen manufactures, as aloo in wood and beer. Lat. 51. N. Long. 10. 59 E.
Gotha, a river of Sweden, which issues from Lake Wenner, and falls into the North Sea at Gothebong.
GOTHARD, ane of the bighest meontains in Switzerland ; and from the top, where there is an hoopital for monks, is one of the finest prospectit in the would. It is eight miles from Aldorf.
GOTHEBORG, or Gorpensung, a Gourishing town of Sweden, in W. Gothland, seated at the mouth of the Gotha, winich Sorms an excellent harbour, the best situated for foreign trade of any in the kingdows, as it lies without the Sound. The inhabinants are computed to be 20,000 . Here is a consillerable berring fishery. Lat. 5.43 N. Lon. 11.44 E

GOTHIC ARCHITECTURE, the terna applied to that architecture so much used in Europe from the thirteenth to the sixteenth century, and which deviated wery much from the proportions and characteristics of the Greels and Roman arebitecture. Under the article Architecture we have suggestel the propriety of giving up the appellation Gothic, and adopting those of Saxon and Norman. Still however, we snppose the authority of custom will cause the term Gothic to be retained; we shall, therefore, hese speak of the Norman under that term.
The absolute Gothic, says Mr. Warton, or that which is free from all Saxon mixture, began with ramified windows, of an enlarged dimension, divided into several lights, and branchod out at the top into a multiplicity of whimsical shapes ond compartments, after the year 1300. The crusades had before dictated the pointed arch, which was here still preserved; but besides the alterations in the windows from the circular form of the Saxon, apparently fantastic capitals to the columns, and more ornament in the vaulting and other parts, were introduced. Of this fashion the body of Winchester cathedral, built by that munificent encourager of all public works, William of Wykeham, about the year 1390 , will afford
the justeat idea. But certain refinements in the justeot idea. But certain refinements in
this kind of architecture grew fashionable in this kind of architecture grew fashionable in
or before the reign of Edward III. as is pretif evident from Chaucer's description of the structure of his House of Fame:

[^1]
G 0 T

But raany subtell compaasinga As habenries and pinnacles, Imageries and tabernacles, I saw, and full eke of windowes." And in an old poenr called Piefce the Plow. man'sCreede, written perhaps before Chancer's, the author, in describing an abbey-church, has the following lines :
"Than I munte me forth the minstre for to knowen.
And awayted a woon, wonderly well ybild;
With arches on everich half, and bellychi
veorven ycorven
With crotchetes on corneres, with knotes of gold.
Wyd windowes jwrought, ywritten full thicke.

Tombes upon tabernacles, tyld apon lof, Housed in hornes, harde seti aboutea Of armed alabaustre."

These innavations, at length were mox beautifutly displayed in the roof of the divinity school at Oxford, which began to be built in 1427. The univeraity, in their letters to Kempe, bishop of London, quoted by Wood, speak of this edifice as one of the miracles of the age. They mention particularls, "Ornameota ad naturalis carli imagiuem variis picturis, subtilique artificio, cxlata; valvarum singularissima opera: turricularum apparatum,". \&c. Yet, even here there is nothing of that minute finishing, which afterwards appeared; there is still a massiness, though great intricacy and variety. The ornamental Goihic, at length, received its confirmation about 1441, in the very noble chapel of King's college, at Cambridge. This was the last Gothic building in England, in which. strength united with or nament, or substance with elegance, formed an admirable whole. After this what Mr. Warton calls the florid Gothic aroce; the firk considerable appearance of which was in the chapel of St. George, at Windsor; and the last in the superb chapel of Henry. VII. at Westminster. The florid Gothic is distinguished by an exuberance of decoration, by roofs, where the most delicate network is expressed in stoue, and by a certain lightness of finishing, as in the roof of the choir at Gloucester, where it is thrown like a web of embroidery over the old Saxon vaulting. Many monumental shrines, so well calculated, on account of the smallness of their plan, to admit a multiplicity of delicate ornaments highly finished, afford exquisite specimens of this style. See Essays on Gothic Architecture.
In almost every specimen of Gothic architecture we observe tokens of a masterly acquaint ance with the practice, if not the theory of building. Some particulars are noticed udder the article Architecture: this is a proper place for a few additional renoarks. The principles of masonry, and not of carpentry, should be seen in our architecture, if we would have is

G 0 T

sceording to the rules of juat taste. Now we affirm that this is the characteristic feature of what is called the Gechic architecture. In this no dependence is had on the transverse scrength of stone. No lintels are to be seen; no extravagant projections. Every s:one is pressed to its neighbours, and none is exposed to a transverse strain. The Greeks were enabled to execute their colossal buildings only by using immense blocks of the hardest materials. The Norman mason conld raise a building to the skies without using a stone which a labourer could not carry to the top on his back. Their architects studied the principles of equilibrium; and having attained a wonderful knowledge of it, they indalged themselves in exhibiting remarkable instances. We call this false taste, and say that the appearance of insecurity is the greatest fault. But this is owing to our habits ; our thoughts may be said to run in a wooden rain, and certain simple maxims of carpentry are familiar to our imagination; and in the careful adherence to these consists the beauty and symmetry of the Greek arehitecture. Had we been as much habituated to the equilibrium of pressure, this apparent ineccurity would not have met our eye: we should have perceived the strength, and we chould have relished the ingenuity.
The Gothic architecture is perhaps intitled to the name of rational architecture, and its beauty is founded on the characteristic distinccion of our species. It deserves cultivation : not the pitiful, servile, and unskilled copying of the monuments ; this will produce incongruities and absurdities equal to any that have crept into the Greek arehitecture; but let us examiue with attention the nice disposition of the groins and spaundrels; let us study the cracery and knots, not as ornaments, but as weeful members; let us observe how they have nade their walls like honey-combs, and admire their ingenuity as we pretend to admire the inetiact infused by the Great Arehitect into the bee. All this cannot be understond without meebanical knowledge; a thing which few of our professional architects have any share of. Thus woukd architectonic taste be a mark of ckill ; and the person who presents the design of a building would know how to execute it without commiting it entirely to the mason and carpenter.

Cothic colúne. Seo Column Gohic.
GOTHLAND, one of the five general divisions of the kingdom of Sweden, containing the provinces of Ostrogothia or E. Gothland, Smotand, Weatrogothia or W. Gothland, the isles of Gothland and CEland, Wermland, Dalia, Hedland, Bleckiagen, and Scania or Schonen.

Gothland, or Gotrland, an island of Sweden, in the Beltic, about seventy miles in length, and tweaty-five in its greatest breadih, sormerly an independent kingdom, but now sabjeor to the sapreme court of justice at Shockholm. From its convenient situation, it thas justly acquired the name of the eye of the Belic. The wil is fertile, and there are fine

GOT

woods of oaks and pines, good pastorec, and prifitaite ficteries on the island; large quarwies of stone, particularly the famous Gottland stone, and a sott grey sandy stone, which are exported to Stockholm and other places. Here are also foand some curious species of stones, as stone corals, cornelians. agates, and beautiful petrefactions. In former times here were also fine marble quarries. Very good lime stones, tar, deal boards, beans, turneps, and an excellent breed of sheep are exported from this island. Gouland is not infersed with bears or wolves, but is sufficiently stocked with deer, foxes, and hares: the inhabitants subsist by agriculture, grazing, fishing, working in the quarries, burning lime, and by several sorts of mechanic trades, and navigation. Lat. 57. to 58 N . Lon. 18. 6, to 19.6 E.

GOTHOFRED (Dennis), a French writer upon civil law, was born at Paris in 1549 ; but quitting the catholic faith, he removed first to Genera, and then into Gernuany, and taught law at several universities. He died in 1622 .

Gothofred (Theodosius), the eldest som of the preceding, became a member of the church his father had renounced. He was made counsellor of state in France, and acm quired a high reputation for letwers. He died in $16+9$.

Gothorfred (James), abother son of Dennis, adhered to calvinism. He was five five times syndic of Geneva ; and died there in 1659. He was a man of profound erudition.

Gothopred (Deunis), son of Theodosius, was born at Paris, and died at Liste, director of the chamber of accounts. He wrote the Histories of Charles VI. VII. and VIII.

Gotnoprid (John), son of the preceding, succeeded to the office of his father. He died in 1732. He wrote some historical works.
GOTHS, a warlike nation, and ahove alt others famous in the Roman history, came originally out of Scandinavia (the name by which the ancients distinguished the present countries of Sweden, Norway, Lapland, and Finmark.) According to the most probable accounts, they were the first inhabitants of those countries; and from thence sent colonies into the islands of the Baltic, the Cimbrian Chersonesus, and the adjacent places yet destitute of inhabitants.
The Goths were famons for their hospitality and kindness to strangers, even before they embraced the Christian religion. Nay, it is said, that, from their being eminently good, they were called Goths by the neighbouring nations; that name, according to Grotius and most other writers, being derived from the German word gotten, which signifies "good." They encouraged, says Dio, the study of philosophy above all nther barbarous or foreign nations, and often chose kings from among their philosophers. Polygamy was not only allowed but countenanced among them; every one being ralued or respected according to the number of his wives. By so many wives they had an incredible number of children, of whom
ther kept but one at home, sending out the rest in quest of new settlements; and hence those swarnis of people which overran so many countries. With them adultery was a capital crime, and irremissibly punished with death.

The time of the first setting of the Goths in Scandinavia, and that when they first peopled with their colonies the abovementioned islands and Chersonesus, are equally uncertain; though the Gothic annals suppose the latter to have happened in the time of Serug the great grandfather of Abraham. This first migration of the Goths is said to have been conducted by their king Eric; in which all the ancient Gothic chronicles, as well as the Danish and Swedish ones, agree. Their second migration is supposed to have happened many ages after ; whell, the abovementioned countries being werstocked with people, Berig, at that tine king of the Goths, went out with a fleet in quest of new settlements. He landed in the country of the Ulmerugians, now Pumerania, drove out the ancient inhabitants, and divided their lands among his followers. He fell next upon the Vandals, whose country bordered on that of the Ulmerugians, and overcame them; but instead of forcing them to abandon their cauntry, be only made them share their possessions with the Goths.

The Goths who had settled in Pomerania and the adjacent parts of Germany being greatly increased, insomuch that the country eould no longer contai:: them, they undertook * third migration in great numbers, under Filimer surnamed the Great, their fifth prince after leaving Scandinavia; and taking their course eastuvard, entered Scythia, adsanced to the Cimmerian Bosphorus, and, driving out the Cimmerians, setted in the neighbourhood of the Palus Mientis. Thence in process of time, being greatly increased in Scythia, they resolved to seek new settlements; and, accordingly taking their route eastward, they travers. ed several countries, and at length returned into Germany. Thcir leader in this expedition was the celebrated Woden.

The Romans distinguished the Goths into two classes; the Ostrogoths and Visigoths. These names they received before they left Scandinavia, the Visigoths being sotiened by she Latins from Westeronoths, or those who inhabited the western part of Scandinavia, as the Ostrogoths avere those of the eastern part of that country. 'Their history affords nothing of moment till die time of their quarelling with the Romans; which happened under the reign of the emperor Caracalla, son to Severus. After that time it becomes so closely interwoven with that of the Romans, that fur the most remarkable particulars of it we must refer to the historics of Rome. After the destruction of the Roman empire by the Heruli, the Ostrogoths, under their king Thendoric, becane masters of the greatest part of Italy, having overcome and put in death Odoacer, king of the Hernli, in 494. They retained their dominion in this country till the year 553 ; when trey were finally conquered by Narses, the emperor Justinian's geweral. The Visigoths settled in Spain in the
time of the emperor Honorius, where thes founded a kingdom which continued till the country was subdued by the Saracens.

GO'ITIiN. The part. passive of get. 1
GOTTINGEN, or Goetingen, a town of Germany, in the circle of Lower Saxony, and principality of Calenberg, and principial town of a quarter, or district, to which it gives name, situated in an agreeable, spacious, and fertile valley, on a canal, or branch of the river Leine, which passes through, and divides it into the New Town and Marsch. It contains about 1000 houses, and 8000 souls; the streets are large and convenient, and paved on each side. The principal ornament and advantage of Gottingen is the university, founded in the year 1734, by George II. king of England, and consecrated on: the seventeenth of September, 1737 ; which unirersity, by the inexpressible attention and care of its first curator, baron Munchausen, has acquired a very distinguished reputation. Belonging to it is a large splendid church, with a peculiar pastor, and to it likewise belong a new and stately structure of stone, the ground floor of which serves as a hall for public lectures, and that above is the library, with a conncil chamber, and other apartments. This library, to which considerable additions are every year made, if considered with regard to the number, goorlness, and value of its books, is one of the most capital librarics in Europe. It is called the Bulowean, having received its origin from a collection of about 10,000 volumes, bequeathed by the barou Bulow for the public use, and by his heirs given to the university. A roval society of sciences, founded in 1751, and a royal German society, also form part of the university. It has likewise a finc observatory, erccted on a tower on the rampart, with a physic garden, and near it a handsome anatomícal iheatre of ingenious construction, a schoul for teaching midwifery, \&ic. The territory belonging to the town is very considerable: tweaty-two miles N.E. Cassel, and fifty-one E.S.E. Paderborn. Lon. 27. 19 E. Lat. 51.24 N.

GOTIORP, a town of Deumark, in the duchy of Sleswick, capital of the duchy of Holstein Gottorp. Here is a fine old palare, formerly the ducal residence. Gottorp is scated at the bottom of an arm of the sea called the Slev. I.at. 54. 36 N. Loh. 9. 50 E.

GOUANIA. Chawstick. In botany, a genus of the class polygamia, order monoccia. Hermaphrodite: calyx five cleft; corolless; anthers five under a veil; styles three-cleit; fruit dry, divisible into three parts. One species: a native of St. Domingo, with shrubby stem, climbing by axillary tendrils; leares ovate with a point, tnothed, glabrous ; racemes furnished with a leaHet or two.

GOUDA, or TURGOw, a considerable town of South Holland, in the United Provinees, remarkable for its stately church. Lat. 52. 2 N . Lon. 4.41 E.

GOUDHURST, a town in Kent, with a market on Wednesdays. Lata 51.8 N. Lon. $0,31 \mathrm{E}$

GO.V

GOVE. s. A mow (Tusser).
To Gove. r. n. To mow ; to put in a gore, coff, or mow ('Tusser).

Tu GO'VERN. v. n. (gouverner, Fr.). 1. To rule as chief magictrate (Spenser). 2. To regulate; to influence; to direct (Alt.). 3. To manage; to restrain (Shaks.). 4. (In grammar.) To have force with regard to synaxa: as, ano governs the accusative case. To pilot; to regulate the motions of a ship.

To Góalern. v. n. 'To keep superiority; to behare with haughtiness (Dryden).

GUVERNABLE. a. (from gorern). Submissive to authority ; subject to rule (Locke).

GOVERNANCE. s. (from gocern). 1. Government; rule; management (Macc.). 2. Control, as that of a guardian (Spenser). 3. Behaviour; manners : obsolete (Spenser).

GU'VERNANT. s. (gouvernante, Fr.) A lady who thas the care of young girls of quality. GO'VERNESS. s. (gouvernesse, Fr.). 1. A female inrested with authority (Shaks.). 2. A tutoress; a woman that has the care of young Jadies (Clarendon). 3. An instructress; a disectress (More).
(;(YVERNMENT. s. (gouvcrnement, Fr.). 1. Form of a community with respect to the disposition of the suprene authority ('Temple). \%. An establishment of leral authority (Dry.). 3. Administration of public affiars (Young). 4. Regularity of behariour (Shaks.). 5. Ma--nareableness; compliance; obsequiousness (Sinaks.). 6. Management of the limbs or Arody (Spenser). 7. (In grammar). Influence with regard to construction.

Government, in general, is the polity of a state, or an orderly power constituted for the public good. Civil government was instituted for the preservation and advancement of men's civil interests, and for the better security of ineir lives, liberties, and property. The use arul necessity of government is such, that there never was an age or country without some sort of civil duthority : but as men are seldom unanitnous in the means of attaining their ends, \&n their difference in opinion in relation to government has produced a variety of forms of it. To enumerate them would be to recapitulate the history of the whole earth. But, according to Montesquien and most other writers, they may in general be reduced to one of these three kinds. 1. The republican. 2. The monarchical. 3. The despotic. The first is that, where the people in a boly, or only a part of the people, have the sovereign power; the second, where one alone governs, hut by fixed and established laws; but in the despotic government, one person alone, without law and without rule, directs every thing by his own will and caprice. See the arcicle l.aw.

On the subject of government at large, see Montesquieu's L'Esprit des Loix, 1. 2. c. 1; Iocke, ii. 129, \&c. quarto edition, 1768; Sidney on Government ; Sir Thomas Smith de Repub. Angl. ; and Archerly's Britannic Constitution. As to the Gothic government, its ori, inal, and faults, \&rc. see Montesquieu's L'E-sprit des Loix, l. 11.c.8. With respeat

GOU

to the feudal policy, how it limited goremb ment, see Foedal system. See also Aristocracy, Constitution, Demon Cracy, \&e.

A mixed government is composed by the combination of the simple forms of government which have already been, or will hereafter be, described; and, in whatever proportion each form enters into the constiturion of a government, in the same proportion may both the advantages and evils, which have been attributed to that form, be expected. The government of this country is unquestionably a mixed government, though by sone writers it is denominated a limited monarehy. It is formed by a combination of the three regular species of government; the monarchy residing in the king, the aristocracy in the house of peers, and the republic being represented by the house of commons. The perfections intended, and, with regard to the United Kingdoms, in a considerable degree effected, is to unite the adrantages of the several simple forms, and to exclude the inconveniences. "For, en with us," says sir William Blackstone, "the executive power of the laws is longed in a single person, they have all the advantages of strength and dispatch that are to be found in the niost absolute monarchy; and as the legislature of the kingdom is entrusted to three distinct powers, entirelg independent of eack other: first, the king; secondly, the lords, spiritual and temporal, which is an arisocratical assembly of persons selected for their piety. their birth, their wisdom, their valour, or their property; and, thirdly, the house of commons. freely chosen by the people from among themselves, which makes it a kind of democracy: -as this aggregate body, actuated by difierent springs, and attentive to different interests. composes the British parliament, and has the supreme disposal of every thing, there can be no inconveuience attempted by either of the three branches, but will be withstond by one of the other two; each branch being armed with a negative power sufficient to repel any innovation which it shall think inexpedient or dangerous." See Monarchy.

GOVERNOLO, a town of Mantua, in Italy, 12 miles N.W. of Mirandule. Lat. 45. 4 N. Lon. 10. 56 E.

GOVERNOUR. s. (gouvcrneur, Fr.). 1. One who has the supreme direction (Howker). 2. One who is invested with supreme authority in a state (South). 3. One who rules any place with delegated and temporary authority (Shaks.). 4. A tutor; one who has care of a young man (Shaks.). 5. Pilot; regulator; manager (James).

GOUGE, an instrument or tool used by divers artificers; being a sort of round hollow chisel, for cutting holes, channels, groores, \&ic. either in woml or stone.

G()URA, ol GURA, a town of Mazovia, in Poland; the greater part of the inhabitants are ecresiastics. Lat. 52.1 N . Lon. 21.50 F.

GOLKI). In botany. Sec Cucurbita.
Gourd (Ehiopian, sour). See Adaf. SON!A:

G O W

Gourd tree (Indian). See Crebcentia.
Gourd-worm, in helminthology. See Fasciola.
GOURDINESS, among farriers implies a diffused owelling in a horse's legs, of a dropsical or ce eematous nature. It often lays a fonadation for grease, and will produce it if not counteracted bv such evacuauts as appear most applicable to the case.
GOURNAY, a town of France, in the departurnt of Lower Seine, remarkalle for its fine butter. Lat. 49.32 N . Lon. 0.36 W .
GOUSSIER (Louis Jandes), a celebrated French mathenatician, was born in the year 1792, and applied at a very early period to the study of the mathematics. His first labours were, to arrange and superintend the publication of the nemoirs, which the celebrated Condamine gave to the public in 1751, on the measurement of the three first degrees of the meridian in the sonthern hemisphere. In conrequence of the ability which he displayed by the part he took in this interesting work, he was invited to co-operate in the Eneyclopedie with Diderot and D'Alembert. Being charged with the part respecting the mechanical arts, Goussier exercised several of them himeelf, that he might be better able to give a description of them; such as those of watch-making, lock-making, cabinet-making, turaing, \&cc. His articles display clearness, precision, and method. About the year 1760, the beron de Marivet invited Goussier to reside with him, in order that ie might improve himedf in natural philosophy. In 1779 they distributed the prospectuus of a New Philoophy of the World, which they proposed to publish conjointly, and which was to make fourteen volumes in quarto; but it was neyer carried farther than the eighth. Goussier was fond of sraveling on foot, and in this manner went over all France. He had a great attachment to hydraulics, and was acquained with every river and canal in the kingdom. With the came baron Marivet he published, in 1789, a work, in two volumes octavo, on the Internal Navigation of France, with an atlas adapted to the subject. He invented several currious pieces of mechanism, among which is a mill with portable arms for sawing planks. This piece of mechanism was sent to Poland to serve as a model for the mills destined to manufacture the timber of the immense forests of that country. He invented also a water level, much used by land surveyors. He died at Paris, Oct. 23, 1799, aged 77 years.
GOUT. See Midicine, and Arthritis.
GOUTY. e. (from gout.) 1. Afflicted or disessed with the gout (Dryd.). 2. Relating to the gout (Blackmore).
GOWER, the peninsulated extremity of Glamorganshire, to the W. of the bay of Swanmea. It has very lofy limestone cliffs next the zea, whence large quantities of lime are ex.ported to the English counties across the Briszol channel. The land is a fertile wract of ara. ble and pasturo.

GRA

Gowsr (John), one of outr mose macient English poets, was cotemporary with Chaycer, and his intimate friend. Of what family or in what country he was born is uneertain. He studied the lew, and was some time a memb. ber of the society of Lincoln's-ima, where his sequaintance with Chaveer began. Soome hare aseerted that he was a judge; but this is by no meaus certain. In the first year of Henry IV. he became blind; a misfortune which be laments in one of his Latin poems. He died in the year 1402, and was buried in St. May Overie, which church he had rebuilt chiefly at his own expence, so that he must have lived in affuent circumstances. His tomb wa magnificent, and curiously omamened. k still remains, but hath boen repaired in nutar times. From the collar of SS. round the neat of his effigies, which lies upon the tomb, itio conjectured that he had been knighted. As to his charater as a man, it is impossible, at this distance of time, to say any thing with certuinty. With regard to his poteical talenst, be was undoubtodly admirod at the time when he wrote, though a modern reader may find it difficult to discover much harmony or genines in any of his compositions. He wroce, 1 . Speculum meditanis, in French, in wa books. There are two copies of thin in the Bodidiea library. 2. Vox clamantis, in Latin verse, in seven books. Preserred alao in the Bodeian library, and in that of All-Souls. It is a chronicle of the insurrection of the commons in the reign of Richard II. 3. Confosio amantis; printed at Westminoter by Caxton in 1493. Lond. 1632, 1554: It is a son of poetical system of morality, interperesed with a variety of moral tales. 4. De rege Henrico IV. Printed in Chaucer's works. There are likowise several historical tracts in manusciph writen by our author, which are to be foond in different libraries; also some other shom poems sprinted in Chaucer's works.
GOWN. s. (gonne, Ilalian). 1. A long upper garment (Albot). 2. A woman's upper garment ($\boldsymbol{P o p e}$). 3. The long habit of a man dedicated to actis of peace, as divinity, medicine, law (Young). 4. The dress of pease (Dryden).
GOWNED. a. Dressed in a gown (Dyy).
GO'WNMAN. s. (gown and man.) A man devoted to the acts of peace; one whose proper habit is a gown (Rove).
GOWRE, in helminthology. See Cr-

prea.

GOUYE (Thomas), a French jenuil and eminent mathematician, was born at Dieppe in 1650, and died at Paria in 1725. His priocipal work is eniitled Mathematical and Philosophical Observations, two vols. 8ro. This writer must not be confounded with Gouse de Longuemare, who wrote various menoin and dissertations to illustrate the History of France.
GRAAF (Regnier de), an eminent physician, was born at Schoonhaven in Holland in 1641. He died at the age of 32 , laving be hind several worka whict do hoour to him memory. Two editions of them hemb beea
pablishod in cae vol. 8vo. at Leyden, the last n 1705.

GRABE (John Ernest), a very learned divine, was born in 1666, at Kowingsberg in Prussia. He devoted himsetf early to the study of divinity; and having read the works of the fathers, he became so convinced of the necessi\%y of an uninterrupted succession in the mimistry of the charch, that he left his natire country with the design of embracing the Romana catholic religion. On the road, threetracts, in answer to the memorial which he had left behind him explainiag his reasons for quitting the college, written by the order of the elector of Brandenburg, were presented to him, and Grabe immediarely changed his mind, so far as to hold a conference at Berlin with Spener, the author of one of the tracts; the resalt of which was, that Grabe was prevailed on to go to England, where an ecclesiastical succession was maintained, without the superstitions of the Romish worship. Here he received conciderable patronage, and the university of $\mathbf{O x}$ ford conferred on him the degree of D.D. He published several valuable works, the principal of which is an edition of the Septuagint. He died in 1718, and was baried in Westminster abbey.

To GRA'BBLE. v. n. To grope (Arbuth.).
to Grábble. v. a. To lie prostrate on the ground (Ainsworth).

GRACCHUS (T. Sempronius), father of Tiberius and Caius Gracchus, was twice consul and once censor. He marde war in Gaul, and met with much success in Spain. He married Sempronia, of the family of the Scipios, a woman of great virtue. Their sons Tiberius and Caius, under the watchful eye of their mother, rendered themselves famous for an obstinate attachment to the interests of the populace, which at last proved fatal to them. With a winning eloquence, and uncommon popularity, Tiberius began to renew the Agratian law, which, by the means of violence, was enseted. Being himself appointed one of the commisioners for putting the law into execulioa, he was assassinated in the office by Pub. Namica; and Caius, after his death, with more vehemenoe, but less moderation, endeavoured to carry the law into effect. This in 'the end increased the sedition, and he was murdered by order of the consul Opimius, B. C. 121, about 13 years after the unfortugate end of Tiberius. His body was thrown into the Tiber. Caius has been accused of having murdered Scipio Africanus, the younger. -2. Bempronius, a Roman, banished to the conest of Africa for his adulteries with Julia, the daughter of Angustus. He was assassi'nated by order of Tiherius, after he had been benished 14 years. Julia also shared his fate. -There were others also of this name, but of inferior mote.

GRACE. s. (grace, French). 1. Favour; tindnese (Sidney). 2. Favourable influence of God on the human mind (Common Pray.). 8. Virtue; effect of God's influence (Pope). 4. Rardon; mercy (Milion). 6. Favour confer-
red (Prior). 6. Privilege (Dryden). 7. A goddess, by the beathens supposed to hestow beauty (Prior). 8. Behaviour, considered as decent or unbecoming (Temple). 9. Adventitious or artificial benuty (Dryden). 10. Natural excellence (Hooker). 11. Embellish. ment; recommendation; beauty (Drydem). 12. Single beauty (Dryden). 13. Ornament; flower; highest perfection (Shaks.). 14. Single or particular virtae (Shaks.) 15. Virber physical (Shaks.). 16. The titie of a duke or archbishop; formerly of the king, meaning the same as your goodmess, or your clemency (Ba.) 17. A short prayer said before and after ment (Sueft).

Some of these meanings we must enlarge upon, as below :
Grace, among divines, is taken, 1. For the free love and favour of God, which is the spring and source of all the benefits we receive from him. 2. For the work of the Spirit renewing the soul after the image of God; and continuatly guiding and strengthening the believer ∞ obey his will, to resist and mortify sin, and overcome it.

Grace is also used, in a peculiar sense, for a short prayer said before and after meac. The proofs of the moral obligation of this ceremony, drawn from difficrent passages of the New Tertament, are well known. Some others, drawn from the practice of different uations, and of very remote antiquity, we shall introduce in this place.

1. Athenseus tells us, in his Deipnosoph. lib. ii. that in the famous regulation made by Amphictyon king of Athens with respect to the use of wine, both in sacrifices and at home, he required that the name of Jupiter the Sustainer should be decently and reverently pronounced. The same writer, in lib. iv. p. 149. quotes Hermeias, an author extant in his time, who informs us of a people in Egypt, inhabitants of the city of Naucratis, whose custom it was on certain occasions, after they had placed themselves in the usual posture of eating at the table, to rise again and kneel; when the priest or precentor of the solemnity began to chant a grace, according to a stated form amongst them; and when that was over, they joined in the meal in a solemn sacrificial man. ner. Heliodorus has a passage in his Ethiopics to the same purpose, that it was the custom of the Egyptian philosophers to pour out libations and put up ejaculations before they sat down to meals. Porphyry, in his treatise De abstin. lih. iv. p. 408. gives a great character of the Samnean gymnosophists in Esypt for the strictness of their life; as one article in their favour, he observes, that the sounding of a bell before their meals, which consisted only of rice, bread, fruits, and herbs, they went to prayers; which being ended, and not before, the bell sounded again, and they sat down to eating. In general this was a religious usage or rite amongst the ancient Greeks, and derived from yet older ages, if Clement of Alexandria rightly informs us. He mentions, that these people, when they met together to sefresh

GRACE.

themselves with the juice of the grape, sung a piece of music in innitation of the Hebrew pealus, which they called a scholion. Livy, lib. xxxix. speaks of it as a settled custom among the old Romans, that they offered sacrifice and prayer to the gods at their meals and compotations. But one of the fullest tessimonies to our purpose is given by Quintilian, Declane. 301. Adesti mensam, says he, ad quam cum venire capimus, Deos invocamus; "We approached the table (at supper wgether), and then invoked the gods."
The jesuit Trigautius, in his very elegant and instructive narrative of the Christian expedition of their missionaries into China, book i. p. (i). gives this account of the people there in the particular now under consideration. -، Before they place themselves for partaking of an entertainament, the persen who makes it sets a vessel, either of godd, ol silver, or marble, or some such valuable material, in a charger full of wine, which he holds with both his hands, and then makes a low bow to the person of chief quality or character at the table. Then, from the hall or dining-room, he goes into the porch or entry, where he again makes a very low bow, and, turning his face to the south, pours out this wine upon the ground as a thankful oblation to the Lord of heaven. After this, repeating his reverential obeisance, he returns into the hall," $\& c$.

The Turks pray for a blessing on their meat; and many more instances migit be produced of infidels who have constantly observed the like custom in some way or other. That the prophet Daniel gave thanks before meat is evident from the Apocryphal book concerning Bel and the Dragon, where, ver. 38, 39. we finkl, that " Daviel said, Thou hast remembered me, \mathbf{O} (iod! ucither hast thou forsaken them who seek thee and love thee. So Daniel arose, and did eat." Of this text Prudentius takes notice in Cathem. hymu iv.

Grace, of Gracefulness, an agrecable attribute, being the noblest part of bcauty. Every judge of beanty can point out grace, but few attempt a definition of it. Grace often depends on something very incidental in a fine face; and in actions it consists more in the manner of doing things than in the things themselves. It is perpetually varying its appearance, and is therefore much more difficult to be considered than in any thing fixed and steady. While we are adiniring, itsteals from under the eye of the observer; and is succeeded perhaps by another that escapes as soon and as imperceptibly. It is on this account that grace is better to be studied in Corregio's, Guido's, and Raphael's pictures, than in real Jife.
Though at times it may visit every limb or part of the hody. yet the minuth is the chief seat of grace, as much as the chief seat for the beauty of the passions is it the eyes. Thus, when the French use the expression of une louche fort pracieuse, they mean it properly of grace: but when they say. des youx tres gracicur, it then
falls to the share of the passions; and medna kind or favourable. In a very graceful face, by which we do not so much mean a majestic as a soft and pleasing one, there is now and then (for no part of beauty is either so engaging or so unconmon) a certain deliciousness that almost always lives about the mouth, in something not quire enough to be called a smile, but rather an approuch toward one, which varies gently about the different lines there like a litile flittering Cupid, and perhapa sometimes discovers a litule dimple, that after just lightening upon you disappeass and appears again by turns.

The grace of attitude may belong to the position of each part, as well as to the carriage or disposition of the whole body : but how much more it belongs to the head than to any other part may be seen in the pieces of the most celebrated painters, and particularly in those of Guido, who has been rather too lavish in bestowing this beauty on almost all his fine women; whereas nature has given it in so high a degree but to very few. The turns of the neck are extremely capable of grace, and are very easy to be observed, though very difficult to be accounted for. How much of this grace may belong to the arms and feet, as well as to the neck and head, may be seen in dancing. But it is not in genteel motions alone that a rery pretty woman will be graceful; and Ovid, who was so great a critic in beauty, had very good reason for saying, That when Venus, to please her gallant, imitated the hobbling gait of her hustand, her very lameness had a grear deal of prettiness and grace in it. "Every motion of a graceful woman, says Tibullus (a writer of the same age), is full of grace." She designs nothing by it perhaps, atad may not even be sensible of it berself: and indeed she should not be so; for the moment any gesture or action is affecter, it ceases to be graceful.
Horace and Virgil seem to extend grace so far as to the flowing of the hair, and Tibullus even to the dress of his mistress; but then he assigns it more to her manuer of puting on and appearing in whatever she wears, than to the dress itself. It is true, there is another wicked poet (Ovid) who has said with much less decency, " that dress is the better half of the woman:"-Pars minima est ipsa puell sui.

There are two very distinet, and as it were opposite, sorts of grace; the nisjestic and the familiar. The former belongs chiefly is very fine women, and the latter to very pretty ones. That is more commanding, and this the more delightful and engaging. The Grecian painters and sculptors used to express the former most strongly in the looks and attitudes of their Minervas, and the latter in those of Venus. Xenophon, in his Choice of Herculus (or at least the excellent translator of that piecc), has made just the same distinction in the personages of wistom and pleasure ; the furmer of which he describes as moving on to that young hero with the majestic sort of grace; and the latter with the familiar:

GRACE.

Graceful, yet each with different grace thoy move;
This striking sacred awe, that softer winning love.

No poet seems to have understood this part of beauty so well as Milton. He speaks of these two sorts of grace very distinctly; and gires the majestic to Adam, and both the familiar and majestic to Eve; but the latter in a less degree than the former:

Two of far nobler shape, erect and tall, Godlike erect, with native honour clad, In nated majesty, seem'd lords of all;
And worthy seem'd. For in their looks divine
The image of their glorious Maker shone:
Truth, wisdom, sanctitude severe and pure; Severe, but in true filial freedom plac'd;
Whence true authority in men: though both
Not equal, as their sex not equal, scem'd.
For contemplation he, and valour, form'd;
For softness she, and sweet attractive grace.
Par. Lost, L. iv. 298.
I espy'd thee, fair indeed and tall,
Under a plantain ; yet methought less fair, Less winning soft, less amiably mild,
Than that smooth wat'ry image. -
(Eve, of Adam and herself) ll. ver. 480.
—Her heav'nly form
Angelic, but more soft and feminine;
Her graceful innocence ; her ev'ry air
Of geature, or least action.
B. ix. 461.

Groce was in all her steps; heav'n in her eye;
In ev'ry gesture, dignity and love.
B. viii. 489.

Speaking, or mute, all comeliness and grace Attends thee; and each word, each motion, forms.

Ib. 223.
But though grace is so difficult to define, yet there are two particular things which seem to hold universally in relation to it. The first is, "c That there is no grace without motion;" that is, without some genteel or pleasing motion, either of the whole body or of some limb, or at least of some feature. And it may be hence that lord Bacon calls grace by the name of decent monion, just as if they were equivalent terms: " in beauty, that of favour is more than that of colour; and that of gracious and decent motion more than that of favour." Vingil in one place points out the majesty of Juno, and in another the graceful air of Apollo, by only saying that they move; and possibly he means no more when he makes the motion of Venus the principal thing by which Æneas discovers her under all her disguise; though the commentators, as usual, would fain find out a more dark and mysterinus meaning for it. All the best statues are represented as in some action or motion ; and the most graceful stative
VOL. V.
in the world, the Apollo Belvedere, is so much so, that when we face it at a little distance, we are alnost apt to imagine that he is actually going to move towards us.
All graceful heads, in the portraits of the best painters, are in motion; and very strongly on those of Guido in particular ; which are all either casting their looks up toward heaven, or down toward the ground, or side-way, as regarding some object. A head that is quite inactive, and laid flat upon the canvas, like the faces on medals after the fall of the Roman empire, or the Gothic heads before the revival of the arts, will be so far from having any grace. that it will not even have the least appearance of animation.
The second ohservation is, "That there can be no grace with impropriety;" or, in other worls, that nothing can be graceful that is not conformable to the character and situation of the person in question. For instance, the graces of a litule lively beauty would become ungraceful in majesty; and so would the majestic airs of an empress quite destroy the prettiness of the former. The vivacity that adds a grace to beauty in youth would give an additional deformity to old age; and the very same airs which would be charming on some occasions, would be shocking if greatly illtimed or misplaced.

Indeed the inseparable union of propriety and grace seeus to have been the general sense of mankind, as we may deduce from the languages of several nations; in which the words that answer to what we term proper or becoming, are used indifferently for beautiful or graceful. Thus, among the Greels, the words Π_{f} irov and кaлvy, and among the Romans pulchrum and decens, or decorium, are used indifferently for each other.
Those are wrong, however, who have gone so far as to assert, that grace consists entirely in propriety; because propriety is a thing easy enough to be understood, and grace, after all that we can say about it, very difficult. Propriety, therefore, and grace are no more one and the same thing than grace and motion are. It is true, it cannot subsist without either; but then there seems to be something else superadded, which cannot be explained, but which possibly may give it its greatest force and effect.

Whatever are the causes of it, this is certain, that grace is the chief of all the constituent parts of beauty; and so much so, that it seems to be the only one which is absolutely and universally admired : all the rest are only relative. One líkes a brunette beauty better than a fair one; I may love a litile woman, and you a large one, best ; a person of a mild temper will be fond of the gentler passions in the face, and one of a bolder cast may choose to have more vivacity and more vizorous passions expressed there : but grace is found in few, and is pleasing to all. Grace, like poetry, must be the giff of the Creator; it is never, wholly to be acquired by art. The most celebrated of all the ancient painters was Apelles, and the moast ceA A

G R A

lebrated of all the modern, Raphael; and it is remarkable that the distinguishing character of each of these was grace. Indeed, that alone could have given them so high a pre-eminence over all their competitors.
Grace (Act of), the appellation giren to any act of parliament which allows prisoners for civil debts to be set at liberty, upon making oath that they have surrendered to their creditors their whole property, and have not wherewithal to support themselves in prison. Other conditions have also been imposed in the acts for the relief of insolvent debtors which have of late years been passed by parliament.

Grace (Days of), three days immediately following the term of payment of a bill, within which the creditor must note and protest it if payment is not obtained, in order to intitle him to recover against the drawer.

Grace is also a title of dignity given to dukes, archbishops, and in Germany to barons and other inferior princes.
To Grace. v. a. (from the noun.) 1. To adorn; to dignify; to embellish (Pope). 2. To dignify or raise by any act of favour (Shakspeare). 3. To favour (Dryden).

GRACE-CUP. s. (grace and cup.) The cup or health drank after grace (Prior).

GRA'CED. a. (from grace.) Not in use. 1. Beautiful; graceful (Sidney). 2. Virtuous; regular; chaste (Shakspeare).

GRÁCEFUL. a. (from grace.) Beautiful with dignity (Pope).
GRA'CEFULLY. ad. Elegantly; with pleasing dignity (Suift).
GRA'CEFULNESS. s. Elegance of manner; dignity with beauty (Dryden).
GRA'CELESS. a. (from grace.) Void of grace; wicked; abandoned (Spenser).

GRA'CES. s. Good graces for farour is seldom used in the singular (Hudil,ras).

Graces, Gratise, Charites, in the heathen theology, were fabulous deities, three in number, who attended on Venus. Their names are, Aglia, Thalia, and Euphrosyne; i. e. shining, flourishing, and gay; or according to some authors, Pasithea, Euphrosyne, and Fegiale. They were supposed by sone to be the daughters of Jupiter and Eurynome the daughter of Oceanus ; and by others, to be the daughters of Bacchus and Venus.

Graces, in music, the general name given to those occasional embellishments which a performer or composer introluces to heighten the effect of the piece. Besides the appogiatura, Dr. Busby mentions the following, with their characters :
The staccato ' 1 '' or distinct and pointed manner of performance. The mezzo staccato
\cdots or extremely smonth and distinct. With these again may be included the piano, or soft; the mezzo piano, or rather soft : and the pianissimo, or very soft : the forte, or loud; the mezzo forte, or rather loud; and the fortissimo, or very toud. The several gradations of soumd in point of loudncss are expressed as.
follow
 crescendo, or gradual in. creasc in strength.
 diminuendo, os gradual decrease in strength.

The turn $\frac{n}{\square=P E A}$

Passing shake

GRA'CILE. a. (gracilis, Latin.) Slender; small.

GRA'CILENT. a. (gracilentus, Latin.) Lean.
GRACILIS. (gracilis, from its smallness.) Rectus internus femoris of Winslow. In anatomy. This long, straight, and slender muscle, is situated immediately under the integuments at the inner part of the iligh. It arises by a broad and thin tendon from the anterior part of the ischium and pubis, and soon becoming fleshy, descends nearly in a straight direction along the inside of the thigh. A litule above the knee it terininates in a slender and roundish tendon, which afterwards becomes flatter, and is inserted into the middle of the tibia behind and under the sartorius. Under the tendons of this and the rectus there is a considerable bursa mucosa, which on one side adheres to them and to the tendon of the semi tendinosus, and on the other to the capsular ligament of the knee. This muscle assists in bending the thigh and leg inwards.
GRACI'LITY. s. (gracilitas, Latin.) Slenderness; smallness.
GRACIOSA, one of the Azores, or Western Islands. It contains about 300 inhabitanks. Lat. 39. 2 N. Lon. 27. 58 W. .
Graciosa, a very small island, being one of the Canaries.

GRA'CIOUS. a. (gracieux, French.) 1. Merciful ; benevolent (Soush). 2. Favourable; kisud (Prior). 3. Acceptable; favoured

Natural History.
r. cx

1. Gracula ndigiosa, ov Indian frade. Male sprmate.
2. Glancofus or Wattle-tbird.
3. Htomatepuest fea ikive ar Pupter-Patcher.

G R A

(Clarcndon). 4. Viruous; gnod (Shakspente). 5. Excellent: obsolete (Hooker). 6. Graceful: becoming: obsolete (Camden).

GRA'CIOUSLY. ad. 1. Kindly; with kind condescension (Dryden). 2. In a pleasing manner.

GRA'CIOUSNESS. s. 1. Kind condescension (Clarendon). 2. Pleasing manner.

GRaCULA. Grakle. In zoology, a genus of the class aves, order pica. Bill convex, mharp-edged, nakedish at the base; tongue entire, sharpish, Heshy; feet ambulatory. Thirteen species, natives of India and South America; sowe of them of Europe: have a thick bill compressed at the sides, with small nostrils at the base, and sharp hooked claws ; the niddle toe of the fore-feet connected at the base to the outer. The following are the chief species:

1. G. religiosa. Minor grakle. Violet black; spot on the wings white; hind-hcad with a yellow naked band. There is another variety much larger. Both inhabit Asia: the first is ten and a half inches long; feeds on cherries, grapes, and other fruits ; when tamed is exceedingly loquacious. See Nat. Hist. Pl. CXX.
2. G. barita. Boat-tailed grakle. Greyish; shoulders blue; quill-feathers outside green. Bill shortish, blackish, beneath paler, nalied at the base; tail rounded and conca:e when folded, which it always is when on the wing; but flat when spread open. Inhabits America and the Antilles: thirteen inches long; fecds on insects and fruits.
3. G. cristellata. Crested grakle. Black; the first quill-feathers at the base, and tailfeathers at the tip white; bill yellow: plumage inclining to blue; irids orange; feathers of the front long, and erected at pleasure into a crest; greater quill-feathers, from the base to the middle, white, the other part deep blue; legs yellow. Inhabits China; eight and a half inches long; is very loquacious, and makes a hissing noise ; feeds on rice, worms, aud insects.
4. G. quiscala. Purple grakle. Violetblack; tail rounded. Another variety with the body white and black; head white; quillfeathers and tail black; wings and tail purple, the latter long, and wedged. Inhabits Mexico, the warm parts of America and Jamaica. Male thirteen and a half, female eleven and a half inches long; sings finely; and builds in trees in unfrequented places; lays five or six Hueish eggs with black stripes and spots; when domesticated feeds on all kinds of grain; and though very destructive to plantations, clears them in a considerable degree from noxious insects, on which account the breed has of late years been encouraged in the West Indies.
5. G. sturvina. Hoary; black on the crown and back; between the wings violet-black; tail and wings with a shade of green; the latter with a double white stripe. Female dirty ash; back brown; wings and tail deep-black. Inhabits the ozier banks of Dauria; in its nest and eggs resembles the thrush.

GRACULUS, in oraithology. Ses CorTUs.

G R A

GRADATION, in general, the ascending step by step, or in a regular and uniform manner. Thus it denotes in logic a form of reasoning, otherwise called Sorites; in painting, a gradual and insensible change of colour, by the diminution of the tints and shades. In rhetoric, it denotes the same with Clinax.

GRA'DATORY. s. (gradus, Latin.) Steps from the cloister into the church (Ainsw).
GR'ADIENT. a. (gradiens, Lat.). Walking; moving by steps (Wilhins).

GRADISCA, a town of Sclavonia, ou the frontiers of Croatia, seated on the Save. Lat. 45. 21 N. Lon. 18.39 E.

Gradisca, a strong town of Germany, in the county of Goritz. Lat. 46.6 N. Lon. 13. 14 E .

GRADO, in music, signifies degree. Thus, di grado is used to denote music, the notes of which rise or fall gradually from a space to its contiguous line, or from a line to its nearest space.

GRaDUaL, Graduale, was anciently a church-book, containing divers prayers, rehearsed, or sung, after the epistle. After reading the epistle, the chantor ascended the ambo with his gradual, and rehearsed the prayers, \&cc. therein; heing answered by the choir: whence the name gradual, on account of the steps or degrees of the ambo.
In the Romish church, the word gradual is still frequently used in the same sense.
Gradual, Gradualis, is also applied to the fifteen psalmy sung among the Hebrews on the fifteen steps of the altar.
Grádual. a. (graduel, French.) Proceeding by degrees; advancing step by step (Milton).
Gra'dual. s. (gradus, Latin.) An order of steps (Dryden).
GRADUA'LITY.s. (from gradual.) Regular progression (Broun)
GRA'DUALLY. ad. (from gradual.) By degrees; in regular progression (Newton).
T"GRA'DUATE. v. a. (graduer, French.) 1. To dignify with a degree in the university (Carew). 2. To mark with degrees (Derham). 3. To raise to a higher place in the scale of metals : a chymical term (Bacon). 4. To heighten ; to improve (Brown)
Gra'duate. s. (gradué, French.) One dignified with an academical degree, as a bachelor of arts, bachelor of laws, bachelor of divinity, master of arts, doctor, \& $\&$ c.

GRADUATION. s. (graduation, French.) 1. Regular progression by succession of degrecs (Grew). 2. Exaltation of qualities (Brown). 3. The act of conferring academical degrees.

Graduation ofmatrematical ingTRUMENTS; is the process by which the arches of quadrants, theodolites, circular instruments, \&c. are divided into degrees, and the minnter subdivisions. This is a branch of practical mechanics, which has been cultivated by the ingenious with great assiduity for more than a century; Hooke, Sharpe, Graham, Bird, Ramsden, Smeaton, Hindley,

G R A

and Troughton, being among the artists who have most distinguished themselves in producing the successive improvements. To trace the progression of their various methods with such minuteness and perspicuity as would be of real utility to the practical mechanic would lead us far beyond our narrow limits: we can only, therefore, refer the reader to Mr. Smeaton's paper in the Philosophical Transactions, vol. Ixxvi. (New Abridgement, vol. xvi. p. $30-76$), and to Mr . Troughton's, in the Phil. Transac. for 1809, Part 1. for the most ample information on this curious subject which has yet been published; and which, indeed, comprise together as well a history of all that has been done, as a clear description of the best methods.

GRAFF. o. A ditch; a moat (Clarendon).
Graff. Graft. s. (greffe, French.) A small branch inserted into the stock of another tree, and nourished by its sap, but bearing its own fruit ; a young cion (Pope).
To Grafp. To Graft. v. a. (greffer, French.) 1. To insert a cion or branch of one tree into the stock of another (Dryden). 2. To propagate by insertion or inoculation. ${ }^{3}$. To insert into a place or boxly to which it did not originally belong (Romans). 4. Tu fill with an adscititious branch (Shaks.). 5. To join one thing so as to receive support from another (S wift).

GRAFFIO, in our old writers, a landgrave or earl.
GRAFIGNY (Frances), a French lady, author of the Peruvian Letters, which have been translated into every European language, was the wife of a chamberlain of the duke of Lorrain. After the death of her husband she went to Paris with mademoiselle de Guise, where she was greatly admired and caressed for her talents, and where she died in 1758, at the age of 6.5 .

GRA'FTER. s. (from graff or graft.) One who propagates fruit by grafting (Evelyn).

Grafting, or Engrafting, in gardening, is the insertion of a shout or scion of one plant into the stock or stem of another, so that both may unite and become one tree. The same process has been occasionally resorted to in zoology, sometimes for mere sport or curiosity, and sometimes for purjoses of real utility. Thus the spur of a cock has been sometimes cut off and inserted into the ligaments upon his head: and thus a sound tooth from one person has been extracted and inserted into the gum and socket of another upon the removal of a diseased tooth. The formative principle of the bloorl in both animals and vegctables produces new vessels, and the adventitious substance becomes a part of the general system: but it is never so completely assimilated to its general system as its innate members; and hence, in animal life, in a variety of diseases in which the greneral crasis of the fluids is attenuated, as in sea-scurvy for example, the new connection is often destroyed, and the adventitious part drops off. In some, and perhaps similar diseases of trees,

GRA

though the graft be not so far loosened as to drop off, the connection between itself and the original stock seems to be so considerably affected as to render its branches incapable of farther fructification. In the choice of grafts, the following observations are well worth attending to. We should be careful, 1 st . That they are shoots of the former year. 2dly. That they are taken from healthy fruitful trecs. And, 3dly. from the lateral or horizontal branches, and not from the perpendicular shoots. These grafts should be cut off from the trees before the buds begin to swell, which is generally three weeks or a month before the season for grafting; and hence, when cut off, they should be laid in the ground with the cut downwards, burying them half their length, and covering their tops with dry litter, to prevent their diying: if a small joint of the former year's wood be cut off with the sciou, it will preserve it the better; and when it is grafted this may be removed; for the grafto must be cut to a proper length before they are inserted into the stocks; but till then, the shoots should remain their full length, as they were taken from the tree, which will preserve them better from striking. If these grafts be to be carried to a considerable distance, it win be proper to put their cut ends into a lump of clay, and to wrap them up in moss, which win preserve them fresh for a month at least : but these should be cut off earlier from the trecs than those which are not to be carried to 2 distance.
The use of grafting is to propagate any curious sort of frust, so as to be certain of the kind; which cannot he done by any other method: for as all our good fruits have been actually obtained from seeds, the seeds of these, when sown, will often degenerate, and produce such fruits as are not worth cukivating : but when shoots are taken from sach trees as produce good fruit, these will wever alter from their kind, whatever be the stock or tree on which they are grafted; for, though the grafts receive their nourishment from the stocks, they are never varied by them, but continue to produce the same kind of fruit as the tree from which they were taken.

General directions for Grafting.-All such trees as are of the same genus, i. e. which agree in their flower and fruit, will take upon each other; for instance, all nut-bearing trees may be safely grafted on each other; as may also the plum-bearing trees, under which head may be reckoned not only the several sorts of plums, but also the almond, peach, nectarine, apricot, \&c. which agree exactly in their general characters, by which they are distinguished from all other trees : but many of these are very sabject to emit large quantities of gum from such parts of them as are deeply cut and wounded, which, in the tender trees of this kind, viz. peaches and nectarines, being extremely hurtful, it is the best method in such cases to bud or inoculate them. See Inoculation.
All such trees as bear cones will to well upon each other, though they may differ ix

GRAFTING.

ene being ever-green, and the other shedding its leaves in winter; as is observable in the cerlar of Lebanus and the larch-tree, which are found to succeed upon each other very well : but these must be grafued hy approach; For they abound with a great quantity of rosin, which is apt to evaporate from the graft, if separated from the tree before it be joined by the stock, whereby they are often destroyed; so also should we act with the latrel on the cherry, or the cherry on the laurel. Again, all the mast-bearing trees will take upon each other, and those which have a tender soft wood will do well if grafted in the common way; but those of a more firm contexture, and that are slow growers, should be grafted by approach.

By striculy observing this rule we shall seldom uniscarry, provided the operation be rightly performed and at a proper season, unless the weather should prove very unfavourable. It is by this method that many exmics are not only propagated, but also rendered hardy enough to endure the cold of our own climate in the open air; for being grafted upon stocks of the same sort that are hardy, the grafts are rendered more capable of eaduring the cold; as has been experienced in most of our valuable fruits now in England, which were formerly iransplanted hither from more southerly climates. Prior to grafting we should be provided with a small hand-saw, to cut off the heads of large stocks, a good strong knife with a thick back, to make clefts in the stocks; a sharp penknife to cut the grafts; a grafting chisel, and a s mall mallet : bass strings, or woollen yarn; and a quantity of clay, which should be prepared a month before it is used, in the following manner. Get some strong, fat loam; then take some new horse-dung, and break it in amongst the loam; if you cut a little straw or hay very emall, and mix amongst it, the loam will hold logether the better; and if there be a quantity of salt added, it will prevent the clay from diriding in dry weather; this compost should be well intermixed like mortar, with a sufficiency of water added to it; after which it should be moistened afresh, and stirred every other day; bot it should not be exposed to the frosts, or to drying winds. Of late gears, some have made use of another eomposition for grafting, which they have found to answer the intention of keeping out the air better than the clay just prescribed : this is composed of turpentiae, bees-wax, and rosin, melted together; which, when of a proper consistence, may be put on the stock round the graft, in the same nianner as the clay is usually applicd; and though it be not above a quarter of an inch thick, it will resist the air more effectmally than the clay; and as the cold will harden it, there is no danger of its being hurt by frost, which is very apt to make the clay separate and sometimes fall of; and when the heat of summer returns, this mixture will melt a way without any trouble; but be careful not fo apply it tọ hot, lest you injure the graft.

There are several ways of grafting, the primcipal of which are the following:

Grafting in the rind, called also crowngrafting, and shoulder-grafting, is only proper for large trees, where either the head or the large branches are cut off horizontally, and two or four scions are put in, according to the size of the branch or stem: in doing this the scions are cut flat on one side, with a shoulder to rest upon the crown of the stock; then the rind of the stock must be raised up, to admit the scion to enter about two inches between the wood and the bark of the stock, so that the shoulder of the scion may meet, and closely unite with the crown of the stock; and after the number of scions are inserted, the whols crown of the stock should be well clayed over, leaving two eyes of the scions uncovered. This method of grafting was formerly much more in' practice than at present : its discontinuance was occasioned by the ill success with which it has been attended, from the scions being frequently blown out by strong winds, after they had made large shoots; which bas somotimes happened after they have had five or six years growth; so that whenever this method is practised, there should be stakes fastened to support the scions till they have almost covered the stock. The latter end of March, or the beginning of A pril, is the best time for this process.

Cleft-Grafting, termed also stock or slitgrafting, is practised upon stocks or trees of a smaller size, from an inch to two inches or more in diameter, and may be used with success where the rind of the stock is not too thick. This method of grafting is to be performed in the months of February and March; and in doing it, the head of the stock or branch must be cut off with a slope, and a slit made the contrary way in the top of the slope, deep enough to receive the scion, which should be cut sloping like a wedge, so as to fit the slit made in the stock, being careful to leave that side of the wedge which is to be placed outward much thicker than the other; and in putting the scion into the slit of the stock, care must also be taken to join the rind of the scion to that of the stock; for if these do not unite, the grafts will not succeed: when this mode of grafting is applied to stocks which are not strong, it will be proper to make a ligature of brass to prevent the slit of the stock from open-. ing: then the whoie should be clayed over, to prevent the air from penetrating the slit, so as to destroy the grafts; only leaving two eyes of the scious above the clay for shooting.

Whip-Grafting, called also tongue-grafting, is mnore commonly practised than any other by the nurserymen near Iandon, especially for sinall stocks, because the scions much sooner cover the stocks in this method than in any other. This is performed by cuttinz off the heads of the stocks sloping; there must then be a notch made in the slope toward the upper part downwards, a little nore than half an joch deep, to receive the scion, which 4 uast

G R A

be cot with a slope upward, and a part left in this slope like a tongue; which tongue must be inserted into the slit made in the slope of the stock, so as that the two rinds of both scion aud stock may be equal and join together exactly; there should then be a ligature of hass to fasien the scion, so as that it may not be easily displaced; and afterwards it should be claved over, as in the former methods.

Rool-Grafing, consists in grafting a fine fruitful brauch upon a root. The manner of performing it is to take a graft of the tree designed to be propagated, and a small piece of the root of another trec of the same kind, or very near it, or pieces of roots cut from the tree transplanted, and whip-graft them, binding thein well together. This tree may be planted where it is to stand, for the piece of root will drav sap and feed the graft, as the stock does in the other methods.

Graftinglyapproach. See Inarching.
Grafting (Escutcheon). Sec Inocu-

LATION.

GRAHAM (George), clock and watch maker, the most ingciious and accurate artist of his time, was born in 1675 . After his apprenticeship Mr. Tompion received him into his family, purely on account of his merit ; and treated him with a kind of parental affection as long as he lived. Beside his universally acknowledged skill in his profession, he was a complete mechanic and astronomer; the great mural arch in the observatory at Greenwich was made for Dr. Halley under his immediate inspection, and divided by his own hand: and from this incomparable original the best foreign instruments of the kind are copies made by English artists. The sector by which Dr. Bradley first discovered two new motions in the fixed stars was of his invention and fabric: and when the French academicians were sent to the north to ascertain the figure of the earth, Mr. Graham was thought the fittest person in Eurnpe to supply them with instruments; those who went to the south were not so well furnishel. He was for many years a member of the Royal Society, to which he communicated several ingenious and important discoveries, and regarded the advancement of science more than the accumulation of wealth. He died in 1751.

Graham (Catherine Macaulay), an English authoress of some note, who wrote a history of England from James I. to the Brunswick line: a treaticic on the Immutability of Truth; Letters on Elucation; and other works. She died in 1791.

GRAII. s. (from grefle, French.) Sinall particles of any kind (S;enser).

GRAIN s. (grain, French: granum, Lat.) 1. A single seed of corn (Shatisprare). 2. Corn (Dryden). 3.The seed of any fruit. 4. Any minute particle; any single body (Shaks.). 5. The smallest weight, of which in physic twenty make a scruple, and in Troy weight twenty-four make a pennyweight; and so ramed because it is supposed of equal weight

G R A

with a grain of corn (Holder). 6. Any thing proverbially small (Wisdom). 7. Grain of allovance. Something indulged or remitted (Wat/s). 8. The direction of the fibres of wood, or other fibrous matter (Shakspeare). 9. The body of the wood as modified by the fibres (Dryden). 10. The body considered with respect to the form or direction of the constituent particles (Brown). 11. Died or stained substance (Spenser). 12. Temper; disposition; inclination (IIudilrar). 13. The heart; the bottom (Hayward). 14. The form of the surface with regard to roughness and smoothness (Newton).

Grain (Jean Baptist le), a French historian, counsellor, and master of the requests to Mary de Medicis queen of France, was born in 150.5, and died in 1643. By a clause in his will he directed that uone of his descendents should entrust the education of their children to the jesuits. His Decades contain the History of Henry IV. and the History of Lewis XIII. to the death of the marshal d'Ancre.

Grain Coast, or Malaguetta, or Pepper Const, a country of Guinea, bounded by the Sierra Leona country, which lies to the west, and the Ivory Coast, on the southeast, extending along the Atlantic, about 100 leagnes. The climate is said to be unvololesome, especially to Europeans. The productions are peas, beans, gourds, lemons, oranges, and a kind of nut, with an exceedingly thick shell, a most delicious fruit, for which neither Europeans or natives have a name. The palm wine and dates of this country are in the greatest esteem. Cows, hogs, sheep, and goats, are also in great plenty; but what constitutes the chief wealth of the Grain Coast is the abundance of Guinea pepper, or grains of Paradise, it produces, called Malaguetta by the Portuguese, which draws a great trade, not only with all the neighbouring interior nations but with the Europeans also. The natives of this division are guilty of no excesses in eating or drinking, or indeed of intemperance in any kind of luxury.

Grain (Scarlet), in botany. See Quercus.

Grains of Paradise. See Amomum and Cardamomum.
GRAINING, in ichthyology. See Cyprinus.
GRAI'NED. a. (from grain.) Rough; made less sinooth (Shakspeare).

GRAINS. s. (without a singular.) The husks of malt exhausted in brewing (B. Jon.). GRAI'NY. a. (from grain.) 1. Full of corn. 2. Full of grains or kernels.
GRaKle, in ornithology. See Gracu14.

GRAMAT, a town of France, in the department of Lot. Lat. 44. 47 N. Lon. 1. 37 E.

GRAMEN CANINUM. Dog's grass. Conch grass. Triticum repens of Linnéus. The ronts are agreeably sweet, and possess aperient propertics. The expressel
juice is recommended to be given largely. See Triticum.

GRAME'RCY. interj. (contracted from grant me mercy.) An obsolete expression of surprise.

GRAMINA. Grasses. The fifth family, and the second nation, tribe or cast in Linnéus's General Division of the Vegetable Kingdom. The fourteenth order in the Fragments of a Natural Method in Philos. Botan. -and the fourth of the Natural Orders at the end of Gencra Plantarum.-In the Artificial System, nosst of the grasies are contained in the second order of the fifth class.

GRAMINEA, in antiquity, is applied to a crown formed of grass, gramien, bestowed by the Romans on certain of their generals, in consideration of their having saved or rescued an army.

GRAMI'NEOUS. a. (gramineus, Lat.) Grassy.

GRAMINIVOROUS. a. (gramen and voro, Latin.) Grass-eatiug (Sharp).
GRA'MMAR. s. (grammaire, French; grammatica, Latin.) 1. The science of speaking correctly; the art which teaches the relations of words to each other (Locke). 2. Propriety or justness of spicech (Dryden). 3. The book that treats of the various relations of words to one another.

GRAMMAR is the art of rightly expressing our thoughts by words.

Grammar in general, or universal grammar, explains the principles which are common to all languages.
The grammar of any particular language, as the English grammar, applics those comunon principles to that particular language, according to the establisbed usage and custom of it.
Grammar treats of sentences; and of the sereral parts of which they are cormpounded.
Sentences consist of words; words, of one or more syllables; syllables, of one or more letters.
S_{3} that letters, syllables, words, and sentences, make up the whole subject of xrammar.
introduction.
A letter is the first principle, or least part, of a word.

An articulate sonnd is the cound of the buman voice, formed by the organs of speech.
A vorel is a simple articulate sound, formed by the impulse of the voice, and by the opening only of the mouth in a particular manner.

A consonant cannot be perfectly sounded by itself; but joined with a vowel forms a compound articulate sound, by a particular motion or contact of the parts of the mouth.

A diphthong, or compound vowel, is the union of two or more vowels pronounced by a single impalse of the voice.

By means of inarticulate sounds beasts can express certain feelings, but man is distinguished from the brute erration by the power of modifying a much greater variety of sounds, and of fixing to each modification a particular meaning. The sounds thus modified are called worls; and as. monds hive no natural relation to the ileas and perceptions of which they are significant, the use of them muast either have been the result of human sagacity, or have been auggested to the first man by the Author of natore.

Since it does not appear that any language has beeuf formed by determinate rules, alid each has been sulbject to different degrees of cultivations they wili all have their respective excellencies and defects. Io determiniug these excellencies and deffects, we may expect to meet with mach altercation; and, according to the notions derived from the country which gave us birth, or the langunge which it was our chance to study, we shall form probably a standard for all countries. In Europe we are much attached to the structure of the Greek language. In the East the grammara are formed chiefy on the plan of the Arabic.
In expressing our thoughts, sume object must be denoted by a sound, of which we affirm something. Thus, gold is heary. Guld is the object; is denotes existence, and beavy is the mote of tlat existence. The thought may be dilated thus: Gild is heavier than lead. Where the thing. affirmed is, that it is heavier than lead : and a new object is introduced with sounds to denote comparison; er, or more than. From the various modes used by different nations to express the property affirmed of any object, great disputes. have arisen, not only on the different sorts of mords necessary to constitute a language, but on: the sorts of words actually existing in a given language. Thus, some writers affirm that language requires only two sorts of words; and others havewritten grammars for the use of children, whick: lay down ten sorts of words in the Euglish language, each class being distinguished by some name derived from the Latin. Though it appears to us that words might be more commodiously distributed into the general divisions of name, and attribute or praperty, yet, as the Latin language bas obtained universal anthority, we shall bow to the established practice, and treat of words under the accustoned division, into Noun, Article, Pronoun, Verb, Participle, Adverb, Prepositiou, Conjunctiou, aud Interjectiou.

CHAPTER 1.

Of the Noun or Substantive.
Nouns are all those words ly which objecte or substances are denominated, and which distinguish them from one another, without marbing either quantity, quality, action, or relation. The substantive or noun is the name of the thing spoken of, and in Greek and Latin is called name; for it is ompa in the one, and nomen in the other; and if in English we had called it the name rather than the noun, the appellation would have been more proper. That nouns or the names of thinge must make a part of every language, and that they must have been the words first suggested to the human mind, will not be disputed. Men could not speak of themselses or of any thing else, without having names for themselves and the rarious objects with which they are surrounded. Now, as all the objects which exist mu $t \mathrm{t}$ be either in the same state in which they were produced by nature, or changed from their original state by art, or abstracted from sabstances by the powers of imagination, and conceived by the mind as having at least the capacity of being characterized by qualities ; this naturaliy sngrests a division of. nouns into aatural, as man, vegetable, tree. \&c. aritifcial, as house, ship, watch, \&cc. and abstract, as whiteness, motion, temperance, \&c.

But the diversity of objects is so great, that had each individual a distiuct and proper name, it would bp impoesible for the moost teracions meme.

GRAMMAR.

ry, during the conrse of the longest life, to retain even the nouns of the narrowest language. It has therefore been found expedient, when a number of things resemble each other in some important particulars, to arrange them all under one speries; to which is given a name that belougs equally to the whole species, and to each individual comprehended under it. Thus the word man denotes a species of animals, and is equally applicable to every human being: the word horse denotes another species of animals, and is equally applicable to every individual of that species of quadrupeds; but it cannut be applied to the species of men, or to any individual comprehended under that species. We find, however, that there are some qualities in which several species resemble each other; and therefore we refer them to a higher order called a genus, to which we give a name that is equally applicable to every species and every individual comprehended under it. Thus, men and horses and all living things on earth resemble each other in this respect, that they have life. We refer them therefore to the genus called animal; and this word belongs to every species of animals, and to each individual animal. The same classification is made buth of artificial and abstract substances; of each of which there are genera, species, and individuals. Thus, in natural substances, animal, vegetable, and fossile, denote genera; man, horse, tree, metal, are species; and Alexander, Bucephalus, oak, gold, are individuals. In artificial substances, edifice is a genus; house, church, oower, are species; and the Vatican, St. Paul's, and the Tower of London, are individuals. In abstract substances, motion and virtue are genera; flight and temperance are species; the flight of Mahomet, and temperance in wine, are individuals. By arranging substances in this manner, and giving a name to each genus and apecies, the nouns necessary to any language are comparatively few, and easily acquired : and when we meet with an object unknown to us, we have only to examine it with attention ; and, comparing it with other objects, to refer it to the genus or *pecies which it most nearly resembles. By this contrivance we supply the want of a proper naine For the individual; and so far as the rescmblance is complete between it and the species to which it is referred, and of which we have given it the name, we may converse and reason about it without danger of error: whereas, had each individual in nature a distinct and proper name, words would be innumerable and incomprehensible; and to employ our labours in language would be as idle as that study of numberless written symbols which distinguishes the Chinese.

Although nouns are thus adapted to express not the individuals, but the genera or species into which substances are classed; yet, in speaking of these substances, whether natural, artificial, or abstract, all men must have occasion to mention sometimes one of a kind, and sometimes more than one. In every language, thereforc, nonns must admit of some variation in their form, to denote unity and plurality; and this rariation is called number. Thus in the English language, when we speak of a single place of habitation, we call it a house; but if of more we call them howses. In the first of these cases the noun is said to be in the singular, in the last case it is in the plural number. Greek nouns have also a dual number to express two individuals, as have likewise some Hebrew nouns: but this variation is evidently mot essential to language; and it is perhaps doubl-
ful whether it ought to be considered as an elegance or a deformity.

But although number be a natural accident of nouns, it can only be considered as efsential to those which denote gencra or species. Thus we may have occasion to speak of one animal or of many animals, of one man or of many men; and therefore the nouns animal and men must be capable of expressing plurality as well as unity. But this is not the case with respect to the proper names of inviduals: for we can only say Xenophon, Aristotle, Plato, \&c. in the singular; as, were ally une of these names to assume a plural form, it would cease to be the proper name of an indiridual, and become the common name of a speciés, Thus, we say the Cæsars, the Howards, tho Pelhams, the Montagues, \&c.: but Socrates can never become plural, so long as we know of no more than one man of that name.

Besides number, another characteristic visible in substance is that of sex. Every substance is either male or female; or both male and female; or neither one nor the other. With regard to bhis great natural characteristic grammarians bavo made ouly a threefuld distinction of nouns: those which denote males are said to be of the masculine gender; those which denote females, of the feminine : and those which denote substances, that admit not of sex, are said to be neuter, or of peitber gender. All animals have sex : and therefore the names of all animals should have gender. But the sex of all is not equally obvious, nor equally worthy of attention. In those species that are most common, or of which the male and the fen male are, by their size, form, colour, or other outward circumstances, eminently distinguished, the male is sometimes called by one name, which is masculive; and the female by a different name, which is feminine. Thus in English we say busband, wife; king, queen; father, mother; son, daughter, \&ce. In others of similar distinction the name of the male is applied to the femalc, only by prefixing a syllable or by altering the termination; as man, woman; lion, lioness; emperor, empress, anciently emperess; master, mistress, anciently masteress, \&cc. When the sex of any animal is nut obvious, or not material to be known, the same name, in some languages, is applied without variation to all the species, and that name is suid to be of the common gender. Thus in Latin bos albus is a white ox, and bos alla a white cow. Diminutive insects, though they are doubtless male and female, seem to be considend in the English language as if they were really creeping things. No man, speaking of a worm, would say he creeps, but it creeps, upon the ground. But, although the origin of genders is thus clear and obvious, yet the Euglish is the only language with which we are acquainted that deviates Dot, except in this single instance of insects, from the order of nature. Greek and Latin, and many of the modern tongues, have nouns, some masculine, some feminine, which denote substances where sex never had existence. Nay, some languages are so particularly defective in this respect, as to class every olject, inanimate as well as animate, uoder either the masculine or the feminine gender, as they have no neuter gender for thofe which are of neither sex. This is the case with the Hebrev, Freuch, Italian, and Spanish. But the English, strictly followiug the order of nature, puts erery noun which denotes a male animal, and no other, in the masculine gender; every, name of a female animal, in the feminine; and erery animal, vhose.

GRAMMAR.

cex is not obvious or known, as well as every inanimate object whatever, in the neuter gender. And this gives our language an advantage above nost others in the poetical and rhetorical style : for, when nouns naturally neuter are converted into masculine and feminine, the personification is more distinctly and more forcibly marked.

In some languages there is a variation in the mono, called by grammarians case. The Latin has five cases, the Greek four, the German three, the English one, the Hebrew none. From this difference in the use of cases, it is evident that they are not to be considered as essential in language. In English the variation in the ending of the noun expresses possession: and hence it is called the possessive casc. Thus, from God we have, for the possessive case, God's; by thus adding s or is to the name, we express a connection betwreen him and some other object then spoken of. Thus, Gafs house implies the house belonging to God: and old writers frequently used the word Zir, which may have given rise to the case: thus, Ged his house. In the Hebrew this connection is expressed by the mere position of the two words.

For other relations of one thing to auother, we use prepositions: thus, to, from, by, which relations in other languages are expressed by a change in the end of the noun, and this change derives its origin probably from some suffix which had the sorce of our preporition.

CHAPTER II.
 On Articles or Defmitives.

Manyand severe have been the disputes among grammatians upon the use and meaning of these little words. Reasoning oftentimes from a metaphor, they persuade themselves at last that they have made some notable discovery; and because in a building there must be joints and nails, we must have in language little words or pegs to keep all things together. Thus Mr. Harris, whose knowledge was derived from the Greek language and Greek grammarians, and whose principles, as is natural from knowledge founded on so narrow a basis, are contradicted by the slightest acquaintance with the Teutonic and Arabic, leads us through many a maze; and we might have wandered till this moment, if Mr. Tooke, in his excellent work on the word abat, enlarged in his Epea Pteroenta, had not pointed out to us the open and straight road of etymology, when we can travel upon it, and, when that faile us, of analogy. In the English language we call the words a and the articles: the Germans have cin and der: the French wen and L_{6} : the Greeks δ : the Hebrews, n : but the unfortunate Latins are said to be without these joints and pegs in speech. But if one language is without them, they are, it is evident, not essential to language : and it will be found difficult to make such a definition as shall exclude a variety of words, such as, his, ahis, that, \&ec. from making a part of this division.

In the languages above mentioned the precise meaning of the words, the der k, d, and n, cannot at first sight be ascertained. The Engilsh word a points obscurely to its meaning. The German cin and the French an clear the road for investigation. They are to be found continually applied to substantives, and mean ane: for it is obvious that in common conversation we must frequently find it necessary to limit the object of it to one of a specier. As the object must sometimes be limited, at others thin limitation may not be necessary; and it is curious to observe how different nations express the same iden. Thus if a thing is genesally reported, we any in English "they say,"
meaning a great number say so: and so in Prench it is, on dit, or anus dicet, " one person says," so meaning more than one person by an ellipsis very common in that language : in German it is mam sage, by man meaning man in general. We have thus fuund, that in two languages one of the articles is merely a word of number. Probably it may be so in English; a may mean one, or it is an abbreviation of any. By trying the two senses it is evident that any cannot be applied in the room of a, but that ene always can : and bence re might conclude that a and an ure only other words for one, and answer to the Gerinan cin.

The article tbe, as it is called, may not discover itself so easily. Yet let us try the same analogy. for the etymology of it is not ascertained. The answers toder of the Germans, and l_{c} of the French: but what is c ? the ille of the Latins, and hence we may reasonably presume that our word tbe is nu more an article than ille, and in fact that it comes from some adjective of the same signification. Let us try by etymology. In German we have der, die, dos: which was anciently ther, thia, (tbio, thin) thas, and in the plural tbic (thier). This looks very much like our the. In the Angloo Saxon we find sa seo, that : in Islandic, sa, su, thet : in Gothick sa, so, thata: in Hebrew $\pi m \pi, \pi \pi$: etymologists perhaps will not be displeased at our making the words in and the proceed from the same original, and we shall not be afraid of exposing ourselves to the laughter of critics, if we refer the Doric \boldsymbol{q} mros to the same stock. If we are right in our conjectures, the word the is as much a pronoun as the ills of the Latins: but, if persons choose to have a diftinct class of words under the name of articles, we may fay, that the Engliif bas two, and the, which "serve to define and ascertain any particular object, so as to distinguish it from the other objects of the general class to which it belongs, and of course to denote its individuality."

Chapter IIf.

On Pronount, or Substantives of the Second Order.
In communicating thoughts, a person must either speak of himself, of the person to whom he is speaking, or of some other persons or things. The word referring to the speaker is called the pronoun of the first person; the word refering to the person spoken to is the pronoun of the second person ; the word reierring to other persons is the pronoun of the third person. The use of such words is to avoid repetition. "The man speaking says so and 80° must be used continually, if the word I did not answer the same purpose: in the same manner thow, he, she, they, \&cc. answer similar purposes.

Hence we see why it is improper to say the I or the THOU ; for each of these pronouns has of itself the force of a noun with the definite articie prefixed, and denotes a person of whom somethiug is predicated, which distinguishes him from all other persons. I is the person who now speaks, thou is the person who is now addressed by the speaker. Hence too we see the reason why the pronoun I is said to be of the first, and the pronoun thow of the second person. These pronouns can havo place only in conversation, or when a man, in the character of a public speaker, addresses himself to an audience; but it is obvious, that there must be a speaker before there can be a hearer ; and therefore, that the pronouns may follow the order of nature, I, which denotes the person of the speaker, muft take place of shoy, which denotes the person of the hearer. Now the speaker and

GRAMMAR.

the hearer being the only persons engaged in conversation or declamation, Y is with great propriety called the pronoun of the first, and thou the proaonn of the second person. With respect to pronouns, the third person, as it is called, is merely a negation of the other two. This is evident from the slightest attention tothe import of those words which are called pronouns of the third person. He, she, or it, drnotes not the person either of the speaker or of the hearer ; and, as we have just observed, no other person can have a share in conversation or declamation. An absent person or an absent thing may be the subject of conversation, but can. not be the speaker or the person. addressed. He, she, and it, however, as they stand by theinselves, and assume the power of nouns, are very properly denominated pronouns; but they are not personal pronouns in any other sense than as the negation of sex is the neuter gender.
We have already seen that nouns admit of number; pronouns, which are their substitutes, likewise admit of number. There may be many speakers at once of the same sentiment, as well as one, who, including himself, speaks the sentiment of many : speech may likewise be addressed to manyata time, as well as to one; and the subject of the discourse may likewise be many. The pronoun, therefore, of every one of the persons must adnit of number to express this singularity or pluratity. Hence the pronoun of the first person I has the plural we; that of the secoud person shou has the plural ye or you; and that of the third person he, she, or it, has the plural tbey, which is equally applied to all the three genders.
There is a great deal of caprice in the use of these pronouns in different nations. Thus the English in addressing a person use the second pronoun pharal instead of the second singular: the Italians speak in the third person singular of the person spoken to ; and the Germans, from the ridiculous notions which they entertain of birth, and the servile state into which in consequence their minds have been reduced, use the third and the second persons plural, the third and the second persons singular according to the respect which they have for the person addressed. When the second person is used, it is either to Goul, an object of the greatest familiarity and affection, or as a mark of the utmost contempt or superiority. The pronoun we is in general used by a king when speaking of himself: but as he then speaks as an officer of and in the name of the people, this may plead in favour of an abuse of speech.

The pronoun of the third person denoting neither the speaker nor the hearer, but the subject of the discourse, and being merely the substitute of a noun which may be either masculine, ferninine, or neater; must of necessity agree with thie noun which it represents, and admit of a triple distinction significant of gender. In English, which allows its adjectives no genders, this pronoun is k in the masculine, she in the feminine, and $i t$ in the neuter; the utility of which distiaction may be better found in supposing it away. Suppose, for example, that we should in history read these words: "He caused him to destroy him"-and were informed that the pronoun, which is here thrice repeated, stood each time for something different ; that is to say, for a man, for a woman, and for a city, whose names were Alexander, Thais, and Persepolis. Taking the pronoun in this manner-livested of its gender-how would it appear which was destroyed, which the destroyer, and which the cause that moved to the destruction? But there is mombiguity when we bcar the
genders distingaished : when we are told, with the proper distinctions, that sbe caused hien to destroy if, we know with certainty that the promoter was tlie roman; that her instrument was the hero; and that the subject of their cruelty was the unfortunate city. From this example we should be surprised how the Italians, Prench, and Spasiards, could express themselves \cdot with prectsion or elegance with no more than two variations of this pronoun.

Although, in every language with which we are now acquainted, there is but one pronoun for each of the first and second persons; and although it is obrious from the nature and import of those words that no more can be necessary; yet the mere English reader may perhaps be puzzled with finding three distinct words applied to each $;$ I, mine, and me, for the first person, thow, thine, and thec, for the second. The learned reader will see at once that the words mine and me, thine aod thes, are equivalent to the genitive and accosative cases of the Latin pronouns of the first and seoond persons. That mine is a pronoun in the possessive case is obvious; for if 1 were asked "whose book is that before me?" I should reply-"It is mime;" meaning that it belongs to me. That theword me is the same pronoun in the case which the Latin grammarians call the accusative, is evident from the import of that word in the sentence he admires me, where the admiration is supposed to procced from the person spoken of to the person who speaks. It appears therefore, that though English nouns have only two cases, the nominative and possessive, the pronouns of thet language have three, as I, mine, ane; thow, thiner, thee; be, his, him, \&ec. Both pronouns, the Latin and the English, are irregularly inflected : and those words which are called the oblique cases of each were originally derived from nominatives different from go and I; but these nominatives are now lost, and mei and wine have, beyond all dispute, the effect of the genitives of the Latin and Einglish pronouns of the first person.

From the account here given of the personal pronouns, it appears that the first or second will, either of them, coalesce with the third, but not. with each other. For example, it is good sense, as well as good grammar, to say in any language, I am he-thou art he-we were they-gow were they: but we cannot say-I am thow-nor thou art Inor we are yow, \&cc. The reason is, there is no absurdity for the speaker to be the subject also of the discourse, as when it is said-I aen he; or for the person addressed, as when we say, thou art he. But for the same person, in the same circumstances, to be at once the speaker and the party addressed, is impossible; for which reason the coalescence of tie pronouns of the first and second persons is likewise impossible.
I, thow, be, she, and is, are all that are usuelly called personal pronouns. There is another class of words, which are called sometimes pronominal adjectives, sometimes adjective pronouns, sometimes possessive pronouns; and by one writer of grammar they have been most absusdly terned pronominal articles. It is not worth while to dispute about a name; but the words in question are my, thy, ker, cerr, your, their. These words are eria dently in the form of adjeccives: for, like other English adjectives, they have no rariation to indicate cither gender, number, or case; and yet they are put in concord with nours of every gender and both numbers, as my wiff, maf, my loak-her busbend, ber sons, ber danghters, \&e. But. though in the form of adjectives, they bave the

G R A M M AR.

power of the personal pronouns in the possessive case: my book is the book of me, or the book of bim wown now speaks; our hease is the house of ks , or the house occupied by the persens wobo noto speak; ber humband is the husband of a woman who call be known only from something preceding in the discourse; and their property is the property of them-of any persons, whether men or women, or both, who have been preriously meutioned. Words which have the form of adjectives, with the power of pronouns, may, without impropriety, be called pronominal adjectives; and such is the name by which we shall henceforth distiuguish them. Tu these pronominal adjectives, as well as to the personal pronouns, are subjoined the words cove and self-in the plural seloes; in which case they are emphatical, and imply a silent contrariety or opposition. Thus, I live in my own house; that is, not in a hired house. This I did with my own badd; that is, not by proxy. This was dene by myself, that is, not by another. The word self subjoined to a personal pronoun forms also the reciprocad pronoun; as, We hert oursedver by vain rage; he Wamed himself for his misfortune. Himself, itself, chemschoes, are supposed by Wallis to be put, by corruption, for bis self, its self, their selves; so that solf is alivays a substantive or noun, and not a pronoun. This seems to be a just observation : for we say, the man came himfdf; they went tbomseloes; where the words himedf and shemselves cannot be accusatives but nominatives, and were anciently written his self, their folwes.

There are other words which are usually ranked uoder the class of pronouns; as who, which, what. These, when employed in asking questions, are called interrogative pronouns; though a name more characteristic might surely be found for them. Their import, however, will be more easiIf ascertained after we have considered another species of promuns, which have been denominated redetives, and with which they are intimately onnnected.

The pronouns already mentioned may be called prepositive, as may indeed all substantives, because they are capable of introducing or leading a sentence: but there is another pronoun which has a character peculiar to itself; and which, as it is mever employed but to connect sentences, and must therefore have always a reference to something preceding, is called the subjunctive or relative pronoun. This pronoun is in Greek, $\delta_{;} ; \dot{n}, d$; in Latin, qui, que, quod; and in Euglish, wbo, wohich, 2hat.

In order to determine with precision the nature and import of the relative pronoun, it will be necessary to ascertain the powers which it contains, or the parts of speech into which it is capable of being resolved. Now it is obvious, that there is mot a single noun, or prepositive pronoun, which the relative is not capable of representing : for we say, I, who saw him yesterday, cannot be mistaken; gw, who did not see him, may have been misinformed; they, robe meither gaw nor heard, can know nothing of the matter; the ehings, wobich he exhibited, were wonderfol. From these examples it is apperent, in the first place, that the relative contains in itself the force of any other pronoun : bat it contains something more.

If from any sentence in which there is a relative, that relative be taken away, and the prepositive prononn, which it represeats, be substituted in its Itead, the sentence will lose its bond of union, and stand quite loose and unconnected. Thus, if inwead of saying the mate in wice robo Spechls bichle, we
should say the man is wise, he spesks litth, the sentence would be resolved into two ; and what is affirmed of the man's wisdom would have noconnection with the circumstance of his speaking lit tle. Hence it is evident, in the second place, that the relative contains the force of a connective 28 well as of the prepositive pronoun. What hind of connection it denutes is next to be ascertained.
It may be laid down as a general principle, ac that, by means of the relstive pronouil, a clause of a sentence, in which there is a verb, is converted into the nature of an adjective, and made to denote some attribute of a substance, or some property or circumstance belonging to the antecedent noun." Thus, when it is said homo gri prudentia praditus est, the relative clause-qui pram dentia preditus est, expresses nothing more than the quality of prudence in concrete with the subject howo, which might have been equally well expressed by the adjective praders.

Now if a relative clause expresses that which might be expressed by an adjective, the presumption is, that it may be resolved into the same constituent parts. But every adjective contains the powers of an abstract substantive, together with an expression of connection; and may be resolved into the genitive case of that substantive, of into the nominative with the particle of prefixed, which in English corresponds to the termiuation of the genitive in the ancient languages. That the member of a sentence, in which there is a rec lative, may, in every instance, be analysed in the same manner, will be apparent from the following examples. Vir qui sapiz, oir sapiens, and vir sapientie; " a man who is wise, a wise man, and a mat of wisdom;" are certainly phrases of the same import. Again, howo, cui ingratus est animus, malus fit amicus, may be translated into Greek, $\operatorname{avg}_{j u} \pi{ }^{\circ} \mathrm{os}$ exapsas xetxes ruvilat pinos; and into English, " uise man of ingratitude is a bad friend."
Thus then it appears, that the relative pronoun contains in itself the force of the prepositive pronoun, together with that connection implied in English by the preposition of, and in the ancient languages by the genitive case. When one soys, -ir sapit qui pamea loquitur, the relative clause qui panca loguitur expresses that attribute of the man from which his wisdom is inferred : it is conceived by the mind as stript of its propositional form, and standing in the place of a substantive noun governed in the genitive case by wir. The whole sentence might be thus translated, "the man of listle speaking is wise;" or, did the use of the English language admit of it, "the man of the opeaks little is wist."

We are sensible, that these expressions will appear extremely ancouth and offensive; but we mean not to recommend them as common modey of phraseology. Against their being employed as such, present use loudly remonstrates. They are introduced only with a view to show the true import of the relative pronoun; and for that porpose they are well adapted. That pronoun seems to be of use only when there is a deficiency of adjactives or substantives to denote sompe complex at tribute by which we want to limit a general term or expression. Where such adjectives or substantives exist in language, we may indeed use the relative or mot at pleasure. Thus we say, homo gui grandia loguisur, or homo grandilogwas ; because the adjective and the relative clause are perfectly of the sanae meaniug. But if the Latins were called opon to translate dofpwros aulodidaxlos, we beliere they must have made asa of the relative pronoull.

GRAMMAR.

as we know not any correspondent adjective in their language.

Some persons have supposed that the relative is equivalent to another pronoun, togetber with an expression of connection of that kind which is denoted by the particle and.

But the absurdity of this opinion will appear from the following sentence: "Charles XII. was the only monareh who conquered kingdoms to bestow them on his friends.' Here it is evident there is but one propusition, of which the predi. cate is expressed by the words-" oaly monarch who conquered kingdoms to bestow them on his friends;" so that tue rclative clause is a necessary part of the predi, ate, and has, like an abstruct noun in the gentive case, the effect of modifying the general terin monarck. Resolve this seutence, and you bave two propositions, of which the Girst is a noturious falsehood:-" Charles XII. was the only monarch; and he conquered kingdoms to bestow them on his friends." But instead of and substitute of-saying, "Charles XII. was the only monarch of he conquered kingdows to bestow thens on his friends :" and you preserve the true import of the expression.

Are there 110 cases, then, in which the relative may be resolved into the connective and with a prepositive pronoun? Undoubtedly there are, and we shall now endeavour to ascertain them.

Adjectives in language have tivo different effects upon the substantives to which they belong, according to the nature of the attribute which they express. If the attribute expressed by the adjective be competent to all the species of which the substantive is the specific name, it is plain that the adjective dues not modify or limit the substantive, for this obvious reason, that nothing can modify which is not discriminative. Thus, when Horace says, "Prata canis albicant pruinis," the adjective canis denotes a quality common to all hoarfrost; and therefore cannot mudify the substantive, because it adds nothing to the conception of which that substantive is the name. But when the attribute expressed by the adjective is competent to some individuals only of the species of which the substantive is the name, the adjective has then the effect of modifying or limiting the substantive. Thus, when one says vir benus, ne makes use of an adjective which modifies the substantive vir, because it expresses a quality or attribute which does not belong to all men.
The clause of a sentence in which there is a relative, as it is in every other respect, so is it in this, equivalent to an adjective; it either modifies. or does not modify, the antecedent, according as the attribute which it expresses is or is not characteristic of the species to which the antecedent belongs. Thus, when it is said, "Man, who is born of a woman, is of few days and full of trouble,' the relative clause-wbo is born of a woman, expresses an attribute common to all men, and thereforecannot modify. Inlike manner, when we say -"Socrates, who taught moral philosophy, was viir-tuous,'-the clause, who taught moral philosophy, does not modify. In both these instances the relative clause might be omitted; and it might be said with equal truth, "Man is of few days and full of trouble,"-and " Secrates was virtuous."

But if it be said, eir sapit gui pamsa loguitur, the relative clause-gui pawca logwiswr, modiaies the anteewdent oir; for it is not affirmed of every man, that he is wise, but only of such men as speak little. Som" Charles XII. was the onlymunarch
who conquered kingdoms to bestow them on his friends ;" and, " the man that endureth to the end shall be saved;" with many more examples that will occur to every reader.

Now it will be found, that it is ouly when the relative clause expresses such a property or circumstance of the antecedent as does not limit its signification, that the relative pronoun cau be resolved into a prepositive pronoun with the conjunction and, and that in these cases the relative clause itself is of very little importance. Thus in the assertion-s Charles XII. was the only monarch who conquered kingdoms to bestnw them on his friends,"-where the relative clause is restrictive, the who cannot be resolved into and he consistently with truth or common sense. But in the expression, "Man, who is born of a woman, is of few days and full of trouble," the relative ewho may be so resolved, at least without violating truth;-" Man is of few days and full of trouble, and he is born of a woman." The only difference between the sentence with the relative robo, and the same sentence thus resolved, is, that, in the former case, it contains but one predication; in the latter two, and these but loosely connected.

Thus then it appears that the general analysis of the relative pronoon is into the particle of, and a prepositive pronoun; but that there are also occasions on which it may be resolved into a prepositive pronoun and the particle and, without materially altering the sense. Now what is the reason of this distinction ?

If the relatire clause be equivalent to an adjective or to an abstract substantive in the geaitire case, it is easy to see that the relative itself may, in every instance, be resolved into another proo noun and the particle of; but it will not perhape be quite so evident how it should in any instance be resolved by and. This last analysis has its foundation in the nature of the particles of and and; or, to speak more properly, in the nature of the attribute which the relative clause expresses. Both the particles of and and are used to link or join conceptions together; but with this diffcrence, that of has the effect of making the conceptions it connects figure in the mind as one object ; whereas the conceptions connected by and are still conceived separately as before. To explain onrsetves by an exampie: Suppose we take two words, mas and eirtme, which denote two distinct ideas or coneeptions, and join them together by the particle of, saying man of virtue; the mind no longer. views them separately as significant of two conceptions, but of one. Take the same words, and join them together by the particle and, saying was and virtwe: the conceptions denoted by man ad virtue are still viewed separately as two; notice is only given that they are collaterally counected.

This being the case, it follows, that whea the relative modifies the antecedent, or, in other words, wher the relative clause and the antecedent denote but one conception, the relative must then be resolved by of, in order to preserve this unity of conception. But when the relative does not modify the antecedent; that is, when its clause does not express any necessary part of a complex conceptiou; then the conceptions or ideas denoted by the relative clause and the ante-cedent may be viewed separately as two; and therefore the relative may be resolred into the cerresponding prepositive pronoun and the partid cle and.

If the clause of the pelgaire be equiralent to an

GRAMMAR.

adiective, as in every instance it seems to be, it will naturally occur, that in the ancient languages, the relative should agree with its antecedent, in gender, number, and case. They do agree for the most part in gender and number; in case they cannot often, becanse the very intention of introducing a relative into language is to represent the antecedent in a different case. Whenever we have occasion to use a substantive or poun in a clatusc of a sentence, and afterwards to express by another clause, in which there is a verb, an attribute of the object denoted by that substantive, we then employ the relative pronoun. Now it seldom happeus that the two clauses admit of the same recimen; and hence the case of the relative is often necessarily different from that of the antecedent, as the case of each must be accommodated to the clause in which it is found. Thus we cannot say, "Dews qui colimus bonus est ;" but "Deus quem colimus bonus est;" because the regimen of the verb colo is always the accusative.

This shows the necessity of introducing a relative iato those languages which give inflexions to their nouns. Were all the nouns of a language indeclinable, there would be little occasion for a relative; and accordingly in English it is often omitted. Examples are frequent in our best authors. Suffice it to quote the following :
"For I have buriness would ernploy an age."
Janc Skerc.
" I had several men diod in my ship of calentures."
Swift.
a They who affect to guess at the object they cannot see."
B.lingbroke.

We are not ignorant that our most eminent grammarians consider such expressions as chargeable with impropriety; and we are far from recommending them in any dignified or sulemn compoaitioll. But in the instances adduced there is not the smallest degree of obscurity; at least there is none uccasioned by the omission of the relatire. The reason seems to be, that the mind can easily, ly an effort of its own, make the anececedent unite, first with the one clause, and then with the other. Thus when it is said-"I have business evould employ an age;" the mind can, without any difficulty, as the word business has mo inflexions, consider it first as the objective case after have, and then as the nominative to roould anploy: but this cannot be so casily done in the apcien: languages, where the termination of the noun is changed by the variation of its casce.

Both in the learned and in the living languares the relatire has different forms, correspondiug to the different genders of nouns; and by these it gives notice whetber it is applied to persons, or to things without life. Thus in the English language we say, "The man or the woman zuho wellt to Rome;" "The tres whicb stands on yonder plain." It admits likewise, when applied to males or females, a variation of cases similar to that of the personal pronouns. Thus we say, "The mau cobse book is now before me; The manor woman mbone 1 saw yesterday:" but the neuter admits of no such distinction"; as we say "The tree wbich I saw," as well as "The tree which stands on yonder plain." In modern languages the relative admits not of any distinction to denote number : for we say, "The man or the men who came yesterday; The man or the men of whom I speak."

* "Whase is by some authors made the possessive cave of which, and applied to things as well as persons; I think improperly." Lowidh.

In English, the word that is often used instead of the relative, as in the following examples: " He is the same man that I saw yesterday :H was the ablest f, rince that ever filled a thronc." With regard to the principle upon which this acceptation of the word that depends, we offer the fullowing conjecture:

Iu English, from the cool and phi-gmatic ars rangement of the language, occasioned by the want of inflexions and conjurations, the place of every part of a sentence is aimost umformly determined, and very little variety is allowed in the collocation of the woids. The adjective is almost always placed in opposition with its substantive, and the uominative with its rerb. In consequence of this uniformity in the collocation of the words, the mind acquiles a habit of cunnecting in idea any kiod of word with the place in which it is used to stand; and is naturally led to consider every word that stands in such a place as belonging to such a class. Hence it is, we imagine, that the definitive that passes into the nature of the relatire pronoun; as in those instances in which it occupies the place of the relative, it was natural to consider it as baving the same import. Yes the word that has uudoubtedly in itself no more the force of the relative pronoun than the or this, or any other detinitive, whaterer. In such expressions as the fureguing, it is not imprubable that originally the clause of the definitive tbat, which we now call the relative clause, was thrown in as a kind of modifying circumstance in the following manner: "The book (1 read that) is elegant;" where the speaker, finding the word bouk too general for his purpose, throws in a clause to qualify and restrict it, or to confine his affirmation to that particular book which he is then readingWe can easily suppose, that through time the definitive that in such an expression might be transpused or removed from its own place to that of the relative: so that the expression would run thus, "The book that I read is elegant;" whict would be considered as precisely equivalent to "The book which I read is elegant."

We have said that the interrogative pronouns, as they are called, who, whicb, what, are intimateIy convected with relatives; we now affirm, that the two first of these words are nothing but relatives, and that the last contains in itself the anited powers of a relative and definitive. With respect to cases, number, and gender, the words who and which, when employed as interrogatives, differ not from the same words when employed as relatives; and we hold it as a maxim, without which science could not be applied to the subject of language, that the same word has always the same radical import in whatever different situations it may be placed. To understand this, it is wecessary to observe, that all men have a natural propensity to communicate their thoughts in the fewest words possible: hence it follows, that words are oiten omitted which are necessary to complete the construction of the sentence; and this no where happens more frequently than in the use of whe and which. In sentences where these words are confessedly relatives, we oftea find them without an antecedent; as,
"Who steals my purse, steals trash.".
Shakspeare.
" Which whe would learn, as soon may tell the sands."

Dryder.
"Qui Bavinm non afif, awet tua carmina, Mavi.
Virs

GRAMMAR.

That is, " He who steals my purse, \&c.;" "Which he would learn as soon, \&c.;" and "Ille qui Bavium mon odit," \&c. Such abbreviations occasion no obscurity, because from previous circumstances the hearer knows the mind of the speaker and the persons to whom he reiers. But it is not with respect, $t \boldsymbol{t}$ the relative and antecedent only that such abbreviations have place: in sentences of a different farm, whole clauses are sometimes omitted, while the meaning of the speaker is made suff. ciently plain. Thus when king Richard III. having lost his horse in battle, exclains-" A horse! a horse! my kingdom for a horse!" there is no complete thought expressed; but the circumstances in which the king then was enabled those about to understand that he wanted a horse. Accordingly Catesby answers him-"Withdraw, my lord, I'll help you to a horse."
In like manner when a person asks a question, his expression is frequently incomplete; but the tone of his voice, or some other circumstance, enables us to ascertain his meaning, and to supply, if we please, the words that are omitted. Thus when it is said, An fecisti! nothing more is expressed than, If you did it (the Latin on being nothing else but the Greck ay si); but some circumstance enables the person who hears it to know that the meaning is, "Say if you didit." Let us apply these observations to the words who and which. If these words be relatives, and if our analysis of the relative be just, it is obvious that no complete meaning can be contained in the clause, "Who is your principal friend?" for that clause contains nothing more than the circumstance of being your principal friend predicated of some unknown person; " of he is your principal friend." That this is indeed the case, every man may be convinced, by asking himself what he means by the interrogative who in such a sentence; for he will find it impossible to affix to it any meaning without supplying an antecedent clause, by which that which is called an interrogative will be immediately converted into the relative pronoun. 'The custom, however, of language, and the tone of voice with which the relative clause is uttered, intimates, without the help of the antecedent, the wish of the speaker to be iuformed by the person addressed of the name and designation of his principal friend; and we know that the sentence when completed is, "Tell me the name and desig. nation of the person who is your principal friend." Again, when the prophet says, "Who is this that cometh from Edom, with dyed garments from Bozrah ? ${ }^{\circ}$ he utters but part of a sentence, which when completed will run thus: "Describe the person who cometh from Elom (this is that person), with dyed garments from Bozrah." He sees a persoll coming from Edom, of whose name and designation he is ignorant; he calls upon some one for information concerning these particulars; and that there may be no mistake, he describes the unknown person as having dyed garments from Buzrah; but lest even that description should not be sufficiently accurate, he throws in the defnitive clause, this is that person, pointing at bim, we may suppose, with his finger.-Which, used as an interrogative, indicates a wish of knowing a particular person or thing out of more than one mentioned; as, "Which of the two did it?" that is, "Tell me the one of the two which did it?" for in old Englisn which as a relative is often used, where in modern English we should say whe; and that mode of sperch is still retained when the antecodent is omitied, and the relative clause em-
ployed to indicate such a wish as that before us. What includes in itself the signitication of a definituve and a relative pronoun; as, "from what has goue before, wbat follows may cavily be guessed;" where the word whas is equivalent to that whick. Whell therefure we say," What rude fellow is that?" our meaning is, "Describe that person who is that rude fellow." Upon the whole, then, it is evident, that the words called interro gatives are merely relative pronouns; and that interrogative sentences are relative clauses uttered in such circumstances as to enable the hearer to supply the antecedents necessary to complete the meaning.

To conclude: We have seen that substantives are either primary or secondary; or, in other words, nouns or pronouns. Nouns denote substances, and those either natural, artificial, or abstract. They moreover denote things either general, or special, or partisular; and a general or specific name is made to denote an individual by means of words called articles or definitives. Pronouns are the substitutes of mouns, and are either prepositive or subjunctive. The prepasitive is distinguished into three orders, called the first, the secoud, and the third person. The smbjusctive, otherwise called the relative, includes the powers of all those three. having superadded as of its own the peculiar force of a connective.

CHAPTER IV. On Verbs.

Of all the constituent parts of speech none bas given the grammarians greater troubic than the verb. Erery schoolboy is told that the words, is, loveth, walketh, standeth, in English; and est, amat. amatur, ambulat, stat, in Latin, are verbs: he knows likewise that they are of different kinds ; that some of them are said to be active, some passive, and some neuter. But it should secm, that the first object of our investigation ought to be the chsracteristic of the verb, or that which all these words have in common, and which constitutes them verbs, distinguishing them from every other species of words. Now what does distinguish these verbs from nouns? It is affirmation or assertion, according to a generally received notion: then as all languages have verbs, we are to expect that this property of affirming the essential of the verb, will not universally exist without the verb. But our first enquiry after verbs strikes us in an extraordinary manner. The Hebrew language wants that essential is or affirmative quality, when it joins the predicate to the subject with affirmation. Thus in Euglish we say," Happy is the man; the fear of Gud is the beginning of wisdom;" but this supposed essential verb is not to be found in Hebrew. "Happy the man. The fear of the Lord the beginning of wisdom." To prove the position that affirmation is the essential attribute of the verb, the following reasoning has been used:

Should we be required to exemplify our theory by language, and to produce instances of this simplified verb in practice, we might answer, that the not being able to produce such instances would be no good argument against the truth of our principles. It is the nature of language to express many circumstances by the same word, all of which however are not essential to distinguish the species to which that word belongs from the other species of words; and it is the nature of man to infer from discourse many things which are not actually expressed. Perbaps, bowever,

GRAMMAR.

semething nearly approaching to an exemplification of our idea of a simple verb will be found in the fullowing proposition: "The three angles of every plane triangle are equal to two right angles." What other office the verb are here performs than simply to join the subjact and predicate, it is difficult to perceive. It dues not give notice of time; or such notice, if given, is an imperfection; for the truth of the proposition is independent on time. Neither ought it to inoply existence; for the proposition would be true, were there meither a triangle nor a right angle in nature.

Now the fact is, that the word are does mean existence, and existence ooly; and it is the word egral, which modifies the peculiar mode of the existence of the three angles.

Again in the English and the Hebrew languages, many words are at the same time acknowledged to be both nouns and verbs The word love is a moun and a verb; but how by placing the pronoun \int before love, does the latter acquire this affirmative quality? Love is sweet : sweetness is evidentis affirmed of love: but when we say, "We love," how do we alter the nature of the noun but by joining the quality to ourselves? The word looe is evidently the same in both cases, and the affirmation is not in the word itself, but understood. For this is equally good sense, "We affirm we love," which would make sad tautology if affirmation was also in luve.

It has been said, and the ascertion may very easily be maintained, that in all languages the radix of the verb is alrays a noup. It is su frequently apparent in Englisb, that there is sufficient ground for enquiry. In Hebrew also the same analogy holds us out. In English the pronoma is separated from the varh. In Hebrew we soe clearly that it is joined to it in general by abbreviativa, either before or behind the verb. Heace the 0 and the s terminating amo, amar, are probably the abbreviations of ago and $s x$; and though we cannot ascertain precisely the meaning of every eermination in the verbs of varions languares, with increased knowledye it may perhaps be acguired.

Supposing then that the noun and the verb are in the radix exactly the same, let us examiue the changes to which they are subject in consequence of their different appellation. The noun has cases, the rerb has tenscs. These tenses denote the different times in which a person or thing may be said to exist; also to every rerb it is found that the pronoun is or may be applied; and heuce perhaps we may be led to conclude, that the verb is a noun ouly which is capable of personal application at different times. Desire may be made a nerb, because it can be applied to ourselves at this moment, or at a time past-ave desirad. Globe can-- not become a verb, because though we may make a globe, be in a globe, \&c. as yet it does not express a quality which can belong to persons, and it retains unchangeably its own qualities. Hence we shall not be at a loss to determine in our own language mbat are verhe and what are not: and the same may be:applied to the infinitives of other - bngguages, on which the learned have not deter1 mined, whether thay are characteristics of the verbs, cor no verbe at all.

The verb then requires time and person, the ; substantive does not. If the whole human race had never existed, and consequently time had not been the subatantive, earth as well as the substance iteelf might have been the objuct of contempla-
tion. Now time, if we speak of any event, is either past or future: and to express these teuses something must be dune in the connection of the pronollu and the noun. To express past time, the Hebrew language places the pronoun after the noun: to express the future, it places the pronnun befure the noun. The English language expressee but imperfectly the times, and is consequeutly obliged to call in auxiliary verbs; it adds a syllam ble to the noun to express the past time. The Latin and Greek languages go beyond the necessity of the case, and modify the periods of past aud future time.
From not attending to the nature of time in itself, philosophical gramınarians, as they are called, have endeavoured to ascertain the nuinber of times or tenses which must be expressed by some means or other in every language. As a matter of speculation it may amuse them: they find no language agroeing with their theory, nor upon their principles can any number of teuses beyond the past and the future be allowed which may not be doubled or trebled at pleasure. The modifications of the past and future are infinite; and differeat methods are used in different languages to express rome of these modifications. In these modifications consists much of what is called the idiom of the language; and which, in learning a language, ouglit particularly to be attended to. From want of this attention, an Englishman makes continual mistakes between the ctois and the fus of the Frencb: and the translators of the Bible, from a similar waut of care, or ignorance of the structure of the English aud Hebrew verhs, show in a thousand instances, that they were manifestly incompetent, in this respect, for the task which they had undertaken.

Our grammars having beell constructed on those of the Greek and Latin languages, a certain variation in verbs is said to take place in our language, called moods; but though from ano we have cme, amom, amarem, \&c. yet no such change is to be found in the corresponding verb love. We can express the same ideas in English as in Latin: but we do not do it by moods, nor is a number of moods essential to any language. In English and Hebrew we see nothing like the variety of the Greek and Latin. One mood, if it may be so called, is uecessary: the indicative mood; if we allow more, we can see no reason for stupping. The Latins may express by amem, what the English express by I may or can love; and consequently the Euglish has the advantage in precision: but Imay love or cas love is indicative of possibility applied to the quality in the person, and the I way or I can is to be found in the $e m$ of the Latins. Mood of verb has been defined to be a concise mode of expressing some of those combinations of thoughts " which occur most frequently and are most important and striking." The definition will certainly apply to the languages which bave moods; but of them it may perhaps be justly said, that by an addition to the radix of the verb, which is an abbreviation of some definite verbs formerly in use, several languages express certain combinations of ideas, which in other languages, from this abbreviation not having taken place, are expressed by the use of other verbs applied to the principal verb.

The Greek and Latin languages have a certain variation in their verb, which goes by the name of voice; and bence it has been inferred that these roices are essential to language: but when we coppe to the true philosophy of language, that is,
the comparison of various languages now in or which furmerly had been in existence, we shall scarcely find that any two languages agree together in the number of voices. Thus the Hebrew, in the opinion of some, has three; of others, has five voices: the Greek has three, the Latin two, the English certainly only one. These voices are in general distinguished from the hature, as it is called, of action or suffering; and all verbs are to be reduced to one of three classes-acting, suffering, or neither the one nor the other. Such a division may very well suit this or any other subject: the verb must be or not be any given thing, that unay be proposed. There cannot be a doubt, that many verbs imply action, and the agent may become the patient, and he may suffer either from himself or another. Thus for the verb beat : \mathbf{A} beats \mathbf{B}; \mathbf{A} is beaten by B ; or \mathbf{A} beats himself; instead of using the verb is, and the noun himself, these parts may be comprehended in the inflection of the verb, but this modification of the serb can apply only to a small class of words relating to actions. What are we to do with such verbs as slecp and similar ones? They must be called neuters; but then this elass of neuters may be made very large, and verbs may be introduced which, if known to the Greeks and Latins, bave not been formed in a separate class. Thus to act and to cause to act, may be distinguished in the verb as in the Hebrew language: and instead therefure of classing the verbs under three voices, active, passive, and ncuter, we should perhaps look rather to the idiom of each language, and from that discover the changes made on the radix of the rerb, to which if we please the name of voice may be applied. Thus in parts of action, where the agent may become the patient, there are evidently two atates of the person. I beat, or I am beaten; which may be distinguished by the names of the active and the passive voice. I beat myself, the refiex roice in use among the Hebrews. I cause to beat, the causative voice in use in Hebrew: and there may be modifications without end in other languages, to which in a similar manner the name of voice may be applied. Since the English requires the use of another verb to express those states of the person which in other languages are implied by the form of the verb, this distinction of voices is superfluous, and thould not be admitted into the grammar of the language.

Though the English language exceeds much in simplicity, with respect to voices, either the Iatin, Greek, or Hebrew languages; yet there is an addition to the radix, which is analogous to a change in the verb of other languages, going by the name of participles. Of these participles we have two; in general called participles of the present, and participles of the past; loving, loved; learning, learned. They are called participles because they partake of the nature of the verb. Loving, learning, may be applied to persons, as may loved, learned, the former implying the actual existence of the quality in the person at the time spoken of; the latter that the quality had existed in the person. He is Learning English, or he has been Learning English for same time past. The present tense of the English language being rather an indefinite tense, this participle is also indefinite: leerning in both of the above instances showing that the quality was existing in the man for an indefinite time. In the sentences, "he is loved," or, "he has been loved," the participle loond shows that the quality had existed in the man at a former period; "he has bewn loved," namely, at a distant time; "be is
loved," implies that the person at the present time is one who had love, and no intimation being given that the love of him ceased to exist, it naturally follows that we presume he will continue to be beloved. In all languages the participle has thus the circumstance of time attending the quality expressed, which may belong to a person; and hence it differs from another class of wurds geatrally called adjectives.

CHAPTER \vee.

On Adjectivess
Nouns we have said are words by which objects are denominated, and which distinguish them from one another without marking their quality; and hence as there objects have a vast variety of qualities by which they may be compared together, there must be words to express these qualities only, and these words are called adjectives. Thos of apples we may say, "This is a sweet apple, that a sour apple." The words squeet and sour are adjectives. Since the adjective is the word expressing the quality of some object, it cav have no meaning by itself, and requires the presence or the implied presence of the substantive; and hence in some languages a change takes place in the adjective according to the nature of the substantive, which is very perplexing oftentimes to a leamer. In English, agreeably to the simplicity of its noun, there is no such change: in most other langnages the adjective varies its termination according to the gender or the number of the substantive to which it is applied.
Qualities admit of intensity or remission. One apple may be sour, but another may bave more of that quality; and hence in some languages a distinction is made of comparison, and that by degrees, which eometimes are called the comparative and the superlative degrecs. These degrees are expressed by an addition to the adjective, in English as sour, socrer, sourest, or by applying the words more and mast, as more deligbtfin, mous delightful; and from those different ways of expressing the same thing in the same language, it is evident that the confining of adjectives to two degrees is superfluous in the philosophy of language, and that we may expect to find some language, in which this classification does not take place. This is the case in the Hebrew language, to which of all others the English approaches nearest in simplicity. If we allowed of these degres in general, there would be no end to the classes: if one is allowed for adjectives which denote a quality greater, there should be another for a quality less; more delightful, less delightful, would be two classes of the comparative, and the superlative is evidently a comparative of greater intensity.

Since adjectives express qualities, and therefore cannot be used without the substantives expressed or implied, we now see why particles should frequently be taken for, or seem to pass into the class of, adjectives. "A learned man is nerer enteemed by a man whose claim to distinction is founded on his wealth or his rank." In this semtence, learned may be considered as an adjective, because from long use the quality oaly is expressed without reference to time. From having learned, the man is supposed to possess a quality which distinguishes bim from others, and this quality is seen when placed in opposition to others who have not had the same advantages. They ase called rude, barbarous. Tbus we any, "A rode man and a learned man are opposites; ${ }^{\text {n }}$ where rub is acknowledged at oace.to be an adjoctive, ama

GRAMMAR.

Peaned :xconsid-rad of the same class, because it is rizaiticant only of quality without refercnce to Lim:

The name of adserbs is given to a c!ass of uords in most lansuares, such as to the words exceedingIy, richile, o!inn, in, and the like; and as adiectires are called the attributes of substances, these adverbs are calied attributives of the second order, because they modify the attributes. UnfortunateIy in all languases a number of words is placed in this class, whirh strike the observer at first sight to be compound words. Thus, notwithstanding in the Enslish, ceperitut in the Freach, are cidently compunuls. Whic is a substuntive, meaning tithe, as is 9 of the Grecks. Wiscly is a compound of two adjectives, and we may say, "He speaks wisely," or "He speaks like a nise man," indifferently; the use of the adrerb, as it is called, giving conciseness only to the expression. This ciass of wotds was furmed fiom the isnorance of the parts in every compound; thos if, instead of luks a wise man, we trandate the phrase intu Latin, and use the word sapienter, this sapienter is inmiediately classed as an adverb or sonictians distinct firm the adiectie or verb; yet the er probably has the same forcer with the ly in our own tons:

We may motlify the quality expressad by a verb or a noun various ways. A high momtain may be called, "An excerdinaly hish mountain;" where excecdingy is applied to $h \frac{1}{o}$, hish like cxcedifg. nomely, most momatans we know. "He suffers patientiv;" uanely, " Like a patient man." "While the country was alamed by spies and pretemedel plots, the alarmists were rally attacking the lives and property of their fellow-constrymen." While is called an adverb, but it is a substantive; and we frequently say, "All the ahiie, i. e. all the time;" zehi'e therefore means during the time; realiy is like real men, and is in opposition to pretended. In all languages therefure nhere this elass is admitted, the studer.t should
endearour to learn the force of the rood not by fancuful moditications of wetbs and adjectives in a varie: y of senes, but by leaning the real meaning of the wurd. For our langate we may shortly expect to see arreat improveneme made in this branch of our science, as it will affod great scope for the researches of our best, and we might almost say, our only grammarian.

CHAPTER VI.

On Conjunctions, Prepositions, and Interjections.

Cunjuactions and prepositions come next in the general division of words. Conjunctions are words which are to " comnect cither two or moie words in a seatence, or to make of two simple sententes une compound sentence." This is the sencral acconat: but unfortunately, we stamble at the next step without baving enquired after any of these words, for these conjuntions are immediate'y after divided into two ciaviss, the , ne called comective, and the other disjunctive; that is, one class of these coniecting words, instead of connectins, disiom; and so many othor equally fancitul distinctions take place, that instead of following such absurditics, let us heakin to plain suber sense, whose dirtates are confimed by mater of fact and experimet. There ale centain words in all languages, which by frequent repetition have lust their original form, and tae:r meaning is not obvious. Such are the words if, and, bicuise, or. From their meaning mist behis linewn, fandiful writers have supposid them to have no meaning at al!, and that they were mere sumads to comaect or disjoin, were contimative, subeontinuative, collective, \&c. \&c. But Mr. H. Tooke has shown us, that many of these words are the imperatives of old Sax merbs; and the Hebrew languge is a confirmathon of his theory. We shall subjoin his table, which will save the troubic of many tedious metaphysical enquinies.

If		Gif		prifan
An		An	n	Anan
Unless		On!es	난	Onlcsan
Eke	\%	Fiac	$=$	E:^can
Yet	\pm	Gct	O	Cictaa
Still	판	Stall		Stellan
Floe	$\stackrel{\text { E }}{ }$	Ales	号	Alman
Though or		Thafig or	乐	$\left.\begin{array}{c}\text { Thatigall } \\ \text { or }\end{array}\right\}$
Thu*	\pm	Thaf	-	Thafian
But	2	Bot	\pm	Hotan
But	<	Be-utan	\bigcirc	Beon-utan
Without		Wyrth-ctan		I Wyithan-utan
And		(Anad		(Anan-ad

Togive.	
Togrant.	
To dijmiss.	
Toudd.	
To ret.	
Top.t.	
Tu diminish.	

allow.

To boot, to superaid.
To be out.
To be out.
Darc congeriom.
Lest is the participle Lesed of Lessan, to dismiss.

Since
$\left\{\begin{array}{l}\left.\begin{array}{l}\text { Scand-es } \\ \text { Siththe } \\ \text { or } \\ \text { Sinnes }\end{array}\right\} \text { is the participle of Seon, to see. } \\ \end{array}\right.$

That is the article or pronoun thaf.
As is es, a German article, meaning it, that, or which. And
So is sa or so, a Gothic article of the same import with as.

From considering the above table, and referring to a similar derivation in other languages, we have reason to beliuve that there is no such separate clase as conjunctions or words without meaning, to connect and disjoin, but that the connection or disjunction is to be found in the meaning of the woud.
VOL V.
If we are right in our opinion with respiect to conjurctions; we shall naturally be little inelined to admit prepositions as another class of words without meaning, to unite two ${ }^{\boldsymbol{a}}$ words of meaning together, which arithout this assistance could not coalesce.p We shall look to derivation for the meauing of these words; aud if ne have any H8
grounds for giving them a meaning, we shall class them accordingly. Let us try thell with the supposed prepositions, with, zeithout, chez, $\chi^{\text {difit; }}$ sase der.

Witb means, in all cases where it is cmploged, addition; without, the contrary. "The king of England, with the lords and cummons, can make alaw: without the lurds and commons, cannot make a law." Join the lords and cominnins to the king, and his act is good: take them eway, and in law-making he becomes a cypler. There is an Anglu-Saxon verb, withon, those imperative is trith, this imperative we say remains in use iu What is called the preposition ruith; the other parts of the verb are obsolete. Wincout comes from the Saxon suyrthan-wtan, be out. Thus in French avec, corresponding to our winh, is from the imperative of avoir and the adjective ce, heve tbat. Cbes is called a preposition in French; but it is in reality a corruption of casa, "a house;" chex meei, " at my house." x wis may very reasonably be referred to $X=\sim ; 4\} \omega$, when sonder of the Germans, of similar import, seems to have the same relatiouship to sandern, the rerb.

Thorough, thourrough, thorouv, through, or thro', is no other, says Hurue Tooke, than the (iothic substantive dauro, or the Teutonic substabtive thuruh, and, like them, means door, gate, passage. So that the sentence cited by him, resolved upon his prisr-iples, stands thus: "The splendid sun-join his treane-genially warnecth-pacsage the air, (or, Plee air boing the passage or mediom)-the fertile earth." Aud in the same manner may we translate the preposition through in every instance where through is used in Einglish, or its equivarent preposition in any language; as fiom the Latin and Italian word porfa (in Spanish puerta and French portc), have come the Latin and Italian preposition per, the French par, and the Spanish por.
$U_{p,}$ upen, coer, bove, above, have all, snys Horne Tooke, one common origin and siguification. In the Anglo Saxoln, ufa, ufera, ufiomast, are the adjectives afrus, altior, altissimus. Ufas or ufian, up; comparative ufere, ofose or of er, over or upper; stuperlative wfomast, upmost ur uppermust. Beufun, bufan, on bufan, buve, above If this be a just account of the orizin of these words, the sentences in his text, where upon, over, and abose, occur, will run thus: "The statue stoord on digh a pedestal;" " the river ran kigher a siund;" " che sum is risen on digh the tillso', And here we may observe, that the mere relation between stanizing, running, \&e. and ploce, is rather interred frum the verb itself, than expressed by a scparated word; nnd the reason is obvious. For if a statue stand, every one khows that it must stand on something as well as at some tinne. There is therefore to necessity, whatever clegasce there snay be in it, for employing any word to dencite that relation, which is commonly beliered to be signified by on; but it is necessary to insert, boiween the rerb and pedestal, a word significant of place, that pedestal may pot be mistaken, by an ignorant person, for a portion of time, or any thing else connected with the standiug of the statue.

Hence we may see the absurdity of a sentence given sometimes by our judges. The man shall atand in and upon the pillory: by which they do mot mean two distiact placings of the conviet, though the words thermasitves do; but this is one only oat of the thousapd instances of the absurdity in the courts of lap, of giving sanction to un
nbsurd precedent, instead of correctiog every abo surdity the moment it is deterted.

Having thus restored meaning to our prepositions and cunjunctions, we cume to the last part of the general division of words iu modern grammars, to the class of iuterjections, on which we shall make use of good authurity. "The neighing ut a horse, the lowing of a cow, the barking of a dog, the purring of a cat, sneczing, coughing. kroaning, shricking, and every other involuntary convulsion and oral sound, have almost as gond a title to be called parts of speech as interjections. In the intercuurse of language, interjections are employed only wheu the suddenness or vehemence of some affection or passion returns mem to their matural state, and makes them for a noment forget the use of speech: or when, for sume circumstance, the shortuess of time will not permit them to exercise it." It is pleasant to observe, what curious wurds, nay sentences, art placed by writers in the class of interjections Thus Dr. Beattic ranks, strange, prodigiows, amazing' dear me, in this class; and we may go on with this author in making a pretty list. In general the interjections are inarticulate sounds, which have uothing to do with sprech, and may be significant of pleasure or paiu, surprise, \&c. A laugh, or a shrick, or a snecze, will intervene in conversation: but they cannot, either of them, come into any division of worls.
Upun the whole, then, xe may observe of grammar, that as a wricuce it is at present very defective: instead of making an intimate acquaintance nith a raricty of lunguages the basis of a general theim ry, most writers have employed themselves in what are called metaphysical disquisitions, and the result of their speculations has been frequentIy contradicted by a plain reference to matter of fact in the languages with which they were unacquainted. It seems natural to suppose, that language in its origin must have been very imperfect: that sizns were frequently used to gire signification to men's words, junt as difference of the tune of the voice makes now a difference in the meaning of the same sentence. (Sjeects in nature were frst expressed by certain sounds; qualities were observed in them which were imitated by sounds, as the hissing of the snake: words were connected together into sentences, and after a considerable lenjth of time, worls which occuried very frequently sufferedabbreriation. Hence inhperfect ideas were annexed to many words; the art of speech was abused: it frequeully did bet convey the idcos of the speaker, and was intended to deceive the hearer.

As most knowledge is communicated by language, it is evidently incumbent that the princio ples of it should be well understood: and hence the first requisite is to instruct the leamer in the meaning of every word, and to shew how, by rarions processes, it came to lose'some part of its original meauing; to have more or fewer ideas anuexed to it. This is not a trifling knowledge in itself; when we consider that the perfect knorledge of any science will imply a know ledge of all the objects with which that language is conversant; and an accuracy and precision in the thoughts of every educated inan will be the consequence of the first principles of his education. But there are many obstacles to the promotion of this science, among which we do not know a greater than the practice of the law at present in Euc!and. In this profession there is an affectation of aceisracy in the use of wards; but, from the want \propto

G R A

stulying the principles of language, by a multiphicity of woods, oftentimes of a cuntradictory nature, the judges and barristers envelupe a plaiu matter in the utmust obscurits. This obscurity is inen ansed by the retaining of ancie:t law 5 , which ounght to te modernizid : by paying the prolession accordiag to the number of worils empluyed, instead of the judgment and enole of sayacity exercised. We might add, that the drawing up arts of parliament must necestarily imjure our language: they sbould not be inturied to a technical law yer, but tu a master of language. Muliere's l:ousebceper would be a better joldece of the: propriety of a sent cuec than some lu:d chief justices.

To understand the theory of lauguage, then, we must do as in other sciencis, walie expleriment the basis of our proceedings. We must nut make distinct:ons in our language, berause such are ntesesary in another. We must attend to the structure of each particular languaze, and from combining together the rarious facts in which they all akirre, we may at last turn our motions intu priuctiples, and lay the foundation of universal grammar.

Grammar schoor. s. A school in which the learned languages are grammatically taught.

GRAMMA'RLAN. s. (grammuitian, Fr. from gramniar.) One who teaches grammar; 2 philologer (IIolder).

GRAMMATICAL. a. (gramazatical, Fr.) 1. Belunging to grammar (Niducy). y. 1 aught ly grammar (Jryden).
ghamad tically. ad. Aceording to the rules or science of grammar (Watts).

GRAMMATICA'STER. s. (ILtin.) A nacall verbal pedant; a low grammarian (Rym(T).

GillaMME, in French weights. The unit weigits, called a gramme, is the weight of the cube of the hundredth part of the onetre of dissilled water, zaken at its maximum density. It auswers to $1.5 .++4$ grains. The kilogramme, or the wright of a thousaul granpenes, is equal to 391 Tray ounces.

Gilamalicls. In botany, a genus of the elass cryphogania, order filices. Fructification in straight icattered lines! involueneless, Bix species; ad exotics.

GRAMMONT, a town of Atstrian Flanders, seated on the riser Dender. Lat. 50.47 N. Lom. 3.59E

Grammont, a town of Eraice, in the department of Upper Vienue. Lit. 46.1 N . Lon. 1. 30 E.

GRAMPIAN HILLS, mountains of Scorland, which extend through the connties of Perth, Angus, Mearns, and Aberdeell. Thicy take their name from a single hill, the Mons Grampise, of Tacitus, where Galgacus waited che approuch of Aurieola, and where the batie was foughe so fatal to the brave Calctonians. Antiquarians have not agreed upon the particalar spot.

GRAMPOUND, a small thorough in Cornwall, with a market on Satardays. Here is a considerable manufactory of gloves. Lat. 50. 22 N. Lon. 4.49 W.

GRAMPLE, in ichthyology. See Canexr.

G R A

GRAMPLS, in ichtl:yology. See Cyprio nus.

GRAN CANTORE, in music, a five singer.

Gran gusto, a musical expression, denoting a rich and fu!l composition.

GRaNa CNiDII. Se Coccogridia.
Gkana pakadili. Cardamomun majus, melegucta maniguetta, cardamomum piperatium. The grai::s of paradive are the seeds of the amomum grama paradisi of Linneus. (See A момим.) They are angular redishb:own secds, smaller thin pepper, and resemblang very much the seeds of the caldanomum minus. They are extremely hot, and similar in sirtue to pepper. Sce lipernighum.

Geana tinctorta. Sfe Kemmes.
Grana tiglia. Sec Tigipagrana:
GRANADA, a provine of Spain, Lounded on the N. and W. by A ndalusia, on the LE., by Murcia, and on the S. by the Mcditerraucan Sca. It is about 175 miles in length, and 75 in breadth; is a mountainous comanty, and ret the soil is good; but it has not beell well cultivated since the Mours were expelled from it in 1409. Howeter, it produces arn, wine, oil, sugar, Hax, hemp, excellent fruits, honry. wax, grapes, and mniberry-Itecs, which feed a great number of silik-worms. The forests produce gill-nuts, palin-irecs, and oaks. Granada is the capitial.
Granada, a large, handsome, and delightful city of Spain, capsital of the kingdour of Granada, with an archbishop's see, and a universits. It is huilt on four hilly, and diviled into four parts, in one of which is the large chureh, containing the tombs of ferdinand and Isabella, who took this place from the Moors in 14! !2. In ano:her is a palace of the kioge of Spain, and an ancient palace of the Alorish kings, with so many romes, that it is like a lahyrinth; in the third the university stands; the fourth has nothing considerable: tut all the pabiic buiklings are very magniicent. It is seated not far from the river Oro, near its contluenee with the Xenil, 125 miles S.W. of Murcia, aud sess S. of Madrid. Lat. 37.8 N. Lon. 3. 30 W.

Granada, an istand in the W. Indies, the principal of the Granadillas, or Granadines, situated in $\mathbf{6 1}, 40 \mathrm{IV}$. lon. and between 11.55 and 12.23 N . lat. It is the last of the Windward Cariobores, and is 30 legants 10 the N.W. of Tobuso The chief part, called Lewis, is on the W. side, and is sery spacious. This island is finely wooderd; and the soil is suited to prodice sugar, tobacco, and indigo. It was takien from the French in 176i, confirmed to the English in 1763, taken by the French in 177!, and restored to the English in 178.3.

Granada, town of N. America, in the prowince of Nicaragua, seated on lake Nicaragua, 70 miles frote the south S.a. The inhabiants carry on a great trade be meane of the lake which comenunicates wi:i the Atlante Ocean. Lat. 18.5 N. Lon. 87. W.

Gramada (Ne:\%), e province of Sationo
fica, in Terra Firma, about 75 mile: in length, and as mush in breadth. It is bounded on the N. by Canharena and St. Martha, on the E. by Venczacha, on the S. by Popayan, and on the W. by Datien. It contains mmes of gold. copper, and irou; horses, mules, grod pastures, corn, and fruits. Santi-Ke-de-Bagota is the capital.

GRANADILLOES, the name of some islands of the Caribbees, in America, having St. Vincent to the nor:h, and Granada to the south. They are so inconsiderable that they are quite neglected ; but were ceded to England by the leaty of peace in 1763.

GRAN Alllith, a soldier armed with a firelock, a bisonet, and, nccasionally, a pouch full of hand-gramadues. They wear high caps, are generally the tallest and brikkest fellows, and ate always the first upon all attacks. Every betalion of foot has gevecrally a company of granaliere belnening to it ; or else four or five granadiers belong to cach company of the battalion, which, on occasion, are drawn out, and form a company of themselves. These always ta'se the right of the batalion.
(ilaNAIO), a bollow ball or shell, of iron or oiher metal, about two inches and a half in dianneter; which being filled with fine powder, is set on fire by means of a sma! fusee fastened to the touch-hole, made of the sanie councosition as that of a bomb: as soon as the fire cuters the shell, it bursis into many pieces, much to the damage of all that stand near.

GRANARY, a building to lay or store corn in, especially that deqigned to be kept a cons:derable time. Sir Henry Wotton advises to make it losk to the north, becanse that aspect is the coolest and most temperate. Mr. Worlidge observes, that the best gramaries are built of brick, with quarters of timber wrought in the inside, to which the boards may be nailed, with which the inside of the granary must be lined so close to the bricks, that there mavent be any rome left for verinin to shelter themselves. There may be many stories onc above another, which should be near the one to the other; because the shallower the corn lies, the better it is, and more easily turned. There must inever be a cellar, or any other damp place, under a granary, nor should it ever be built orer stables; for in cither of these cases the corn will certainly suffer br the sapours, and be made damp in one, and ill-tasted in the -other. Mem. Acad. Par. 1708.

Two great cautions to be observed in the erecting of granaries are, to make them sufficienty strong, and to expose them to the most drying winds. The ordering of the corn in many parts of England, particularly in Kent, is thus: To separate it from dust and other impurities after it is thra,hed, they toss it with shovels from one end to the other of a long and large room; the lipher substanecs fall down in the middile of the room, and the corn only is carried from side to side, or ced to end of it. After this they screen the corn, and then bringing it into the gramaries, it is spread about hate 2. thot thick, and turued from tiase to time
about twice in a week; once a week they also repeat the screning it. This sort of management they continue about two months, and atter that they lay it a foot thick for two months more; and in this time they turn it once a week, or twice if the season be damp, and now and then screen it again. After about fire or six months the raise it to two feet thickneos in the heaps, and then they turn it once or twice in a month, and screen it now and then. After a year, they lay it two and a half or three feet decp, and tura it once in three weeks or a month, and screen it proportionably. When it has lain two years or more, they turn it once in two months, and screea it once a quarter ; and how long soever it is kept, the oftener the turning and screening is repkated, the better the grain will be found to keep.-It is proper to leave an area of a yard wide on every side of the heap of corn, and other emply spaces, into which they turn and toss the corn as often as they find orcasion. In Kent they make two square holes at each end of the fioor, and one round in the middle, by means of which they throw the corn out of the upper into the lower rooms, and so up again, to turn and air it the better. Their screens are made with two partitions, to soparate the dust from the corn, which falls into a bag, and when sulficiently full this is thrown away, the pure and greded corn remaining behind. Corn has by these means been kept in our granaries 30 years ; and it is observed, that the longer it is kept the more flour it yields in proportion to the corn, and the purer and whiter the bread is, the superfluous humidity only evaporating in the keeping. At Zurich in Swissefland, they keep corn 80 years, or longer, by the same suri of methods.

M. Du Hamel, and Dr. Hales, have recorn-

 mended yarious contrivances for ventilating, or introxlucing fresh air through corn depesited in gramaries, with a view to preserve it sweet and dry, as well as to secure it from weer ils or other insects. This object is to be effec:ed by constructing granaries with lattice-work, and hair-cloth at the bottom. The ventihaters for supplying fresh air may be atfixed to the wall, either within or on the outside of the gramary, beneath the floor, or in the cciling; Gut, in the former case, it will be necessary to place the handle of the lever externally, as otherwise the person working the machinery would be exposed to suffication, when the corn is fumigated with sulphur for the expulsion of weevils.To prescrve corn in barns or granaries, Dr. Darwin obserres, it is requisite first to make them dry, and, secondly, to keep them in that state; bccause no seeds will regetate without noisture. In order to dry secds, the heaps should be frequently turned over in warm dry weather: hence, in this climate, the doors and windows of granaties should open towards the south, for the reception of the warmeth of the sun, with air-holes round the Luilding, for sulficient ventilation; and which aperrares ought to be sheltered from rain or suaw, wy

G R A

boards placed fo: that purpose on the nutidr. Heaps of corn should be surrounded with planks, in order to prevent them from towichmog either brick or stone walls; because, when north-east winds are succeedied by moist and warm sonth-west winds, such walls frequently precipitate the nowisture from the atmosphete, and commanicate it to those bodies whici) are in contact with them. According to Mr. Tuil, the sifist method of preserving a large quantity of whent is, to dry it gradually in a mak-kiln on a h.iir-cloth, with no other fuel than clan straw, and with a beat scarcely exceeding that produced by the rays of the sun. In this temperature, the grain is in remain from four to twelve hours, in proportion to its previous dampness. The vegctative principle of the corn is not destroned by this pricess; as instances have nccurred of its growing when sown, after it had been thus kept for scren years.

granate. See Granite.

GRANATUM. (granntun, from granum, a grain, because it is iull of secd.) The pomegranate. The fruit of the punica granatum of Linnéus. Punica foliis lanceolatis, caule arbureo. The rind of the fruit, and the flowers (called balaustine flowers), are the parts directed for medicinal use. In their sucll there is nothing remarkable, but to the taste they are very astringent, and have successfully been employed as such in diseases both internal and external.

GRAND. a. (grand, French; prandis, Latin.) 1. Great; illustrious; high in power (Ralcigh). 2. (ireat; splendid; magnifieent (Young). 3. Principai ; chicf (Milion). 4. Eminent; superiour (Milton). 5. Noble; sublime; lofyy; conceived or expressed with great dignity. 6. It is used to signify ascent or descent of consanguinity.

Grand days, are thote days in the several terns which are solemuly kept in the inns of the court of chancery, viz. Candemas-day, Asce:sion-day, St. John the Baptist, and Aill Saints'day.

Grand Jury, is the jury which find bills of indictment before jawiocs of paace and faol-dehery, or of over and terminer, Sir. arjonst any oflenters that may be tried for the fact. Sce Jury.

GRANNAM. s. (gran! and dum or dame.) 1. Grandmother; my father's or mother's mother. 2. An old withered decrepid woman.

GRANDCHILD. s. The son or daughter of a merom's son or danehter.

GRANDAUGHTER. s. The daugher of a son or daughter.

GRANDE'E. s. (grant, French.) 1 man of zreat rank. poserer, or dignity (Holfon).

GRANDE'ITY. s. (from graudavus, Latin.) Great age; length of life.

GRANDE'OUS. a. (grandavus, Lat.)
Long lived; of great age.
GRANDFCR. s. (French.) 1. State; splendour of appearance; magnificence (Son.). 2. Elevation of sentiment, language, or micu.

G R A

(GRANDFATHER. s. (grand and father.) The fuhter ot my father or mother (Bacon).
(iliANDItil k. a. (grandis and jucio, I.د.) Making great.
(iRJNi)INOUS. a. (gramdn, Latin.) Full of hat; comisting of hail.
(iR.'NinTY. s. (irom orandis, Latin.) Greumes, ; grandeur; magnifiectoce (Camden.) GRA'NLMOTHER. s. (grand and mother.) 'line bather's or mother's mother ('Iimo(inis).
(iliA'NDSIPI: s. (grand and sirc.) 1. Grandfather (Prior). 2. Any amestor, petically (Pope).
(iRANDAON. s. (grand and son.) The son oi a son or dawahter (Swift).

GRAN(il. s. (grange, lirench.) A farm: gearerally a farm with a house at a distance t:om neighthurs (Ben Jonson).
GililiciERIA. In botimy, a genus of the class dodecandria, order memonemia. Calyx fire-cleft; petals five; stamens tificen; drupe somewhat threc-sided : nut three-sided, bony, one-seeded. One species: a tree of the isle Howrhon, with alternate, ovate, entire leaves, and race:ned flowers.
(iRANI, in our old writers, mustachoes, or whikers of a beard. The word is formed from the Betish greann, a beard.
GRANiC, a small river of Natolia, which has its source in Mount Ida, near the ruins of ancient Troy, and falls into the sea of Marmora, to the E . of Lampsaco.
GRANITES. In mineralogy, a genus of the class earths, order agregaie. Consisting of parts mostly in the form of crystals, coheriner without any interinediate cement, and mixed withont any determinate order; generally of a granular testure, hard and durable; adninling a fine polish; constituting the principal material and unclens of primitive lofy mountains. Sixte-two species; all, excepting one or two, comitined like gneiss to Europe, and frund chetty in Girmany, and the neighbouring territories ; on the $A l p$, and in the vicinity of Vesuvies, The following are the chief.
i. G. simplex. Consisther of teidspar and quartz. Found in the Subaulia, Swis, Siberian and Scotch monntains, and detached near Geneva. The component parts vary as to their predomination, but the particles of feldspar are sometimes so combined as to resemble Syriac letters.
2. (i. zenuinus. Real granitc. Consisting of fe!depar, guarte, and mica. The most common kind of granite: found in primitive and sometimes in secondary mounni:s in most part of the glabe in intumerable varicies of harduess, proportinu, di-tribution, and coiour of parts. Somerimes fomind mixt with other minerals, as schorl, horn-blemi, cristats of garnet, steatite, and alumine. It metis in a high degree of heat; leaving, hwever, the quirtz unchanged. The feldspar is often lleshcolour; the puartz generally whiee, rately greenin. It t.akes a very high polist, and on this account has for many ajes beco used in ,
the architecture of columns, palaces, and churches.
3. (i. syenites. Syenite. Consisting of feldspar, quartz, and horn-blend. Found in ligypt, (irecee, Norway, and Saxony, \&ic. sondectimes in la rge masses, sometimes in smiller grambations: the component parts vary much; but the horn-blend and fidepar generally predomiate, and the quartz is in cery small proportion: the colour of the feldspar and quartz is generally white, and the horn-blend black, or tanch-green.

GRANI'VOROUS. a. (gramum and varn, Latin.) Eating grain; living upon grain (Arlullinol).

GRANNAM. s. (from grandam.) Grandmother (Gay).

GRANSOUN, a town of Sivisserlad, in the Pays de Vaud, captial of a bailiwic of the same name, with a castle. Lat. 4i. 50 N . Lon. 6. 30 E .

To GRANT. v. a. (frmm gralia, or gratifcor, Latin.) 1. To admit that which is not yet proved; to allow; to yield; to concede (Adilisun). 9. To bestow something which cannot be claimed of right (Pope).

Grait. s. (from the verb.) 1. The act of granting or bestowi-y. 2. The thing granted; a gift; a bomn (Dryarn). 3. (In law.) A gift in writing of such a thing as cannot apily be passed or conveyed by word only (Cumell). 4. Admission of sonnething in dispute (Dryd.).

GRANTABLE. . (from grant.) That may be granted ($A_{i j} l_{i f f r}$).

GRANTE'E. s. (from grant.) He to whom any grant is made (Sirift).

GRANTHAM, a borough in Linenlushire, with a market on Saturdays. It sends two members in parlianent, and has a church famous for its high spire. It continins 14.57 hoises, and 7014 inhabitants. Lat. 52.50 N. Lon. 0.36 W .

GiRA'NTOR. s. (from grant.) He by whom a grant is made.
GRANVILI.E, a seaport of France, in the department of the chamel, and late province of Normandy. Latt. 48.50 N. Lon. 1.32 W .

Granvilef (Gcorge), Ind Lanslowne, was descended from a very ancient family, derived from Rollo the first duke of Normandy. At eleven years of age he was sent to Trinity College in Cambridge, where he remained five jears: but at the age of thirteen was admitted to the degree of master of arts; having, before he was twelve, spoken a copy of verses of his now composition to the duchess of York at his college, when she paid a visit to the university of Cambridge. In $16 y 6$ his comedy called The She-gallants was acted at the theatre-rojal in Lincoln's-inn-ficlis, as his tragedy called Hervic Love was in the year 16ys. In 1702 he trinslated into English the second Olynthian of Demosthenes. He was nember for the county of Cornwall in the parliament which met in 1710; was afterwards secretary at war, comptroller of the housebold, then ereasurer, and sworn one of the privg-council.

G R A

The year following, he iwas created baron Lansdowne. On the accession of king Genrge I. in 1714, he was removed from his treasurer's place; and the next year enterel his protest against the bills for attainting lord Holingbroke and the duke of Ormond. He entered deeply in o the scheme for raising an insurrection in the west of England; and being seized as a sugpected person, was committed to the Toner, where he continued two years. In $171 y$ le marle a speceh in the house of lords, agaiust the bill to prevent occasional conformity. In 1722 he withdrew to France, and continued abroad almost ten years. At his return in 173\%, he published a fine edition of his works in 2 vols. quarto. He died in $1 / 35$, leaving no male issue.

GRANULARIA. In botany, a genur of the class cryptogamia, order fungi. Fungus roundish, filied with granulations immersed in a muciline.

G1R:I'NULARY. a. (from granule.) Small and compact; resembling a small grain or seed (Broume).
To GRA'NULATE. v.a. (granulce, Pr.). To be formed into small grains (Sprat).

To Gránulate. e. a. 1. To break into small masses or granules. 2. To raise into small asperities (Ray).

Granulate root, in botany, beaded, With.-Particulis carnosis adspersa. Consisting of several little tubers or fleshy knobs, resembling grains of corn: as in Saxifraga granulat?.

GRANULATION, in chemistry, the process by which a metal is reduced into grains, which is effected by melting the metal, and then pouring it in a very slender stream into cold water. As sonn as the metal comes in contact with water it diviles into drops, which have a tendency to a spherical shape, and are more or less perfect, according to the thinuess of the stream ; the height from which it falls, and the temperature of the metal. Some of the more fusible metals may be reduced in much finer grains, by pouring it in its melted state into a wooden box, rubbed over with chalk, and shaking it violently befure it has time to lecome solid.

Granulation, in surgery, incarnation, the production of new granules of flesh in a wound.

Granulation, denotes also the mechanical process by which some hard bodies are broken inter simall masses or grains.

GRA'NLLE. s. (froin granum, Lat.) Full of little grains.

GRA'NULOUS. a. (from grauule.) Full of little grains.
GRANUM MOSCHI. See Abzlmosches.

GRAUWACKE, grey wack or waCHEN, in mineralogy, an aggregate argill2ceous earth or rock for which we have no English name, and which coinprises two rarieties, one simpler, and the other inore compound.

The more compound constitutes the com-

G R A

mon graurvacke, and is composed of grains of quarte, siliceous schistus, and pure slate, ardesia or argillate, agglutinated by an aryillaceous cement. The grains vary from the size of a pin's head to that of a hazle nut.
The simpler or slaty grauwacke is mere schisterse reck with so small an intermisture of other materials, that, at first sight, it may easily be confounded with pure argillate or ardesia: but which, on nearer inspection, will be found on diffier in the following mericulars: its colour is of a dirty erey; it is cntircly destitute of lustre; it contains spangles of mica, which true slate never does in its geological situation, and it is never divided by beds of chlorite slate or wetstone slate.
Both varieties are traversed by reins of quartz in varions directions, and contain oceasionally shells of vegetable remains; but neither of them ever contain beds of other kinds of rock. They are never distinctly stratified, though their inclination is never paraliel with that of the rock on winich they rest. Both varieties exhibit, at times, beels of glance-coal, and are rich in metallic ores: the mines of lead and silver in the Hartz, and some of the gold mines in l'ansylvania, lie in this rock. See Basaltes wacca.
GRAPE. See Viris.
Grape (Hyacinth). See Myacinthus.
Grape-shot, in artillery, is a combination of small shot, put into a thick cansass bag, and cordel strongly topether, so as to form a kind of cylinder, whose diameter is cyual to that of the ball adapted to the cannon. The number of shot in a grape varies according to the service, or size of the guns: in sea-service nine is always the number; but by land it is increased to any number or size, from an ounce and a quarter in weight to three or four poinuds. In the sea-service the botoms and pins are made of iron, whereas those used by land are of wend.

GRAPESTONE. s. The stone or seed contained in the grape.

GRaphic (Gold). See Tellurium.
GRA'PHICAL. a. (riaqu.) Well delineated (Bacun).

G, RA'PHICALLY.ad. In a picturesque manner; wi h good description or delineation (Brouri).

GRAldIITES. In mineralogy, a genus of the class iuflammables: consisting principally of carbmo with a link irm, and generally a litile silex or atumine; when fure ie burns with a redlish Alaure, emitting beautiful sparks, and a smell of sulphur, leaving but a little residunu; black, opake, very soft, feels somewhat greasy, and stains the fungers : is brittle, and breaks into indeterminate fragments. Three species.

1. G. pluunbario. Plumbago. Black-lead. Of a metallustic and slaty structure. Fiound in different parts of Great Britain, particularly near Dumfries in Scotland, at Borrowdale and Krswick in Cumberland: in Greenland and various other pars of the continent. Colour blackish or iron grey, blueish-grey when cut with a slight metallic dustre, gields to the impression of the mail, and wakes a black mark

G R A

on paper; texture compact, with a fine grain, and a litle flexible. It is chiefly e:sed for making black-keal pencils; for blackening stores; and, when mixad with a proper propoition of vilex, for crucibles.
e. G. cartes. Of a conchoidal structure, breaking into indeterminate fragments. Found near Schomniz in Hungary, imbedded in thin strata or veins of black indurated alumine; near Zokarweniza rming through a matrix of opal like a vein; in France and Normay.
3. G. fuligo. Deep black internally, making a deep black mark. Found near Duttweiler in Nassovia, alternating in thin strata with coals. It is probable that these three species are only varictics of one common species.
GRAPHOMETER, a mathematical instrment, otherwise called a semi-circle, the ase of which is to observe any angle, whose vertex is at the centre of the instrument in any plane (though it is most commonly horizontal. or nearly so) and to tind how many degrees it contains.

Graphometers of various kinds have been lately contrived by Mr. Bancks and others, to measure the angles of erystals..

GRIPMELS., a sort of anchors with fous flooks, serving for bnats to ride hy.

There is also a kind called fire and chaingrapnels, made with four-barbed claws instrad of flowks, and used to catch hold of the enemiess rigging, or any other part, in order for boarding them. Sce Pl. 76, fiy. 7.
To GRA'PPLE. v. n. (krappeln, German.) 1. To contend by seizing each other (Millon). 2. To contest in close fight (1)ryder).

To Gra'pple. v.a. 1. To fastell; to fix, obsolcte (Sh/ahispeare). 2. To seize; to day fast hold of (IIrylin).

Gra'pfle. so (from the verb.) 1. Coatest, in which the combatants seize each other (Miltou). 2. Close fight (Shakispeure). 3. Iron iustrument by which one ship fustens ou another (Drylen).
GRA'PMLEMENT. s. (from grapple.) Close fight: not in use (Spensir).
GRA'SHOPPER. s. (grass and hop.) A small insect that hops in the summer grass (Addisin). Siee Cicada.
GRasier. Sec Giazzier.
To GRASP. v. a. (graspare, Italian) 1. To hold in the hand; to gripe (Sidpey). 2. To seize; to catch at (Clarendoz).

Tu Grasp. v. n. I. To catch; to endeavour to scize (Surif). 2. To struggle; to strive : not in use (Shakspeare). 3. To gripe; to encroich (Dryden).

Grasp. s. (from the verb.) 1. The gripe or scizure of the hand (Miltos). 2. Posses. sion ; hold (Shakspeare). 3. Power of seizing (Clarendon).
GRA SPER.s. (from grasp.) One that grasps.
GRASMERE WATER, a small lake of Westmoreland, to the W, of Ambleside. Its margin is hollowed into small bays, with bold eminences, some of rock, some of turf, that half conceal and yary the figure of the lake. From the shore, a low promontory projects far inte
the water; and on it stands a white village. with the parish church rising in the inidst of it.

GRASON, an island in the gulf of Bothnia, near the coast of Siweden. Lat. 60. 12 N . Lom. 18. 12 E.

GRASS, a well-known vegetable food for catte of ail sorts. The grasses are a very numerous family, though all are not equally beneficial in their collure, some animals prefering one sort, and some another. Se Gramina and Husbandry.

The two best species of grass for pastures are, in Miller's opinion, C. Bauhin's gramen pratense, paniculatum majus, angustiore folio, meatow-grase, with large panicles, and a narrower leaf, which is the poa panicula diffisa spiculis, quadrifloribus pubescentibus culano erecto teretri, Flor. Suec. 77. Poa with a diffused panicle, the smaller spikes having four hairy flowers, and a taper crect straw; and C.

- Bauhin's gramen pratense, paniculatum majus, latiore folio, meadow-grass, with a larger panicle, and, broader leaf, which is the poa anicula diffuà, spiculis trifforibus glabris, culino erecto teretri, Fior. Suce. 76. Poa with a diffused panicle, small spikes with three flowers, and an upright straw.

These scem to be the great meadow-grasses, and Stillingfleet observes, that they are common in our best meadow-grounds. He has also met with them frequently on banks by the road-side, and near ditches, even where they were not to be found in the adjoining meadows and pastures.

If the seeds of these two sorts were carefuily collected and sown separately, without any mixture of the seed of other grass, they would not only affiord a greater quantity of fodder on the sanie space of land, but the grass would also be better, the hav sweeter, and the verdure more lasting, than that of any other apecies.

The amuil meadow-grass makes the finest of turfs. It grows every where hy way-sides, and on rich sound commons. It is called in some parts the Sinfollk grass. Stillinghlect says, he has scen whole fiededs of it in High Sutfoik, without any mixture of other grases; ;and, as come of the best salt butter we have in London comes from that country, it is most likely to be the best grass for the diriry.

As the next best to meadow-grass, Miller recommends Rav's dramen avenaceum pratense elatius, panicula flavescente, locustis parvis, taller meadow oat-grass, with a yeliowish panicle and small husks, which is the avena panicula laxà, calycibus trifloris brevibus flosculis omnibus aristatis, Proct. Leyd. 66. Oatgrass with a loose panicle, three fiowers in each impalement, which is short, and all the flowers having awns. Mr. Ray likewise recommends the smooth mountain oit-grass, which he calls gramen avenaceum montanum spical simplici, aristis recurvic, found by Mr. Dale יypon Bart-low-hills in Essex, on the edge of Cambridgeshire, in the borders of the corn-ficlds between Newmarket and Exniag, and on the chalkhills between Northfleet and Gravesend; and
the rough or hairy oat-grass, which he distinguishes by the appellation of gramen avenaceum hirsutum, panicula purpureo argenteà splendente, and which abounds in the pastures about the earl of Cardigan's house at Twickenham, in Middleses. He also includes under this genus all the festuca kinds, of which Mr. Stillingfleet gives an account in his Observation on Grasses, subjoined to his translations of sereral ingenious tracts, selected from the Transactions of the Academy of Cpsal. Our business, however, is not with the culture of grass, but with its properties as an article of food.

Grasses and the other green herbage, of which our fields afford sufficient store of various kinds, are in general the most natural food of horess, as well as of many other brute creatures; yet grass alone is not sufficiently nourishing for a horse destined to hard labour, without an addition of dry provender. Most spare horses in the country, however, are kept at grass, both to save charge and trouble, and for the moct part do well, esplecially those that are habituated to that kind of living. Many gentlemen keep their hunters abroad all the year, where there is a stable in some convenient dry field, with hay at all times for them to come to when they please, and where they ean shelter themselves from the inclemency of the weather. These horses are seldom sick or diseased; and as they more and rest themselves at pleasure, so their limbs are always clean and dry; and, with a feed or two of corn, they will do their morning's work, and go through a chace as well, and frequently better, than those that are kept coustantly in the house, and have a great deal of airing and dressing bestowed on them.

Farmers lieep most of their horses abroad in the winter, where they take their chance till the frost and snow come on, or very raing weather, when the grounds grow patchy, and then they fodder them in their yards, or near their honise;, so as they can come into the stables or under shades, which some build for the convenience of their cattle.

But those who have not such conveniences of their now ought to be at some pains in procuring erass for their horses, and proper places for them to run in during the winter, when they have no use for them, especially such as live in London or other great towns. But it is necessary that the grass be sweet; for rank sour grass is rather worse than the hay that comes off the same ground, provided it happens to be well got and in a good season, the noxions qualities in the herb being in some measure evaporated in drying. That grass is always reckoned the best which is short, thick, and on dry but on fertile ground that needs little manure, especially such as has always been made use of only as pasture. Therefore most horses thrive better on commons, or on the grass that grows near commons, than on meadows that have been often mowed, and have had great crops of hay taken of them from time to time, and therefore must cither be manured or sowed

G R A

afresh with clover. For though horses will grow fast upon such gounds when they have good water, yet they are not apt to hold their flesh, nor to stand so well afterwards, unless in very dry seasons, when they feed altosether on the ron, on which bare pasture horses will grow extremely fat.

Giibson thinks the fiedds which lic near great towns, and that are much dunged, cannot be so proper either for hay or pinture, as those that lie more in the country, and are not so much forced or exianisted witio heary crops; and he says he has often observed, where the grounds were naturaliy prone, that though they are made to yield phe:tuful crops to the owner, yet it often proves minarines to the horses that feed upon them, espectaily if they mon the whole summer. We canot, hawever, see any good reason for this supposition.
In another phace this julicious writer notices more particularly the adrantares which horses usually receive from feeling on grass, and points out which of these stand ninst in need of, and are most benefited by it. Suci, he observes, as have stood long in the stable, gluted with food, suffocated with heat and wans of air, and enervated for want of exercise, though clean fed, are nevertheless apt to grow full of humours; and these require a conviderable run at grass before they are fit for business. Indeed, grass, as it is their most natural food, is a great benefit to them; and, when horses do not thrive at grass, it is often owing to some mismanagement, which requires to be lowised into and recified. We have, however, alread; moticed this part of the subject nader the article Food.
This writer's observations enncerning the use of grass, as a remedy in morbid c.ses, are very judicious. He says, that erase gaves great relicf to broken-windel horses while they continue abroad, " not only becanse they are always in the open free air, and ranging at pleasare about the fields, but because their diet is also both soft and cooling, and passes more easily through them thau hard meat, besides that grass does not so much excite them to drink;" so that those persons who can conveniently keep such horses always abroad, an:t only take them up when they have oceation to use them, and atter that turn them out again directly, may thus preserve them in tokerable healh, and they will continue, under prudent manazement, to do good service for many vears. Such, however, as send their horses in grass with a riew to cure them of broken wind will find themselves greatly disappminted, especially if they are left to remain abroad after the spring grass; for, in that case, as soon as a horse is brought back to stand in the stable, being deprived of the pure air and his natural diet, he will become nuch more oppresied and short-breathed than before. "l instances of this kind," says Gihson, " are frequent, as also of horses that have been sent to grass to cure an obstinate cough, and have returned from thence onmpleteis broken-winded, eapecially where they have been turned into a sureculent rich pasture, and have grown fat, and

G R A

had their bellies always full; and the oftener such horwes are tuand out, the worse they always become: and therefore those who have moi the convenicnce of grass near their houses will find it more tor their interest to keep such horses always at hume, under some proper and exact manugement, especially if they are young, and oiherwise worth the care and expence that may te necessiry to preserve them; and il a coul open diet should be ju! ye: wanting, they may be fed a montia or six weeks in the spring with green barkey, tires, or any other kind of herbage fit for soiling, especially while it is yomg and fall of juice."

To Grass. v. n. To brecd grass (Tusser).
Grass-hopper, in eatumology. See Cicada and Gryelus.

Grass-plot. (grass and plot.). A small level covered with slomt grass (1 Murlimer).
(iRASSl:, a town of France, in the department of Var. It was lately a bishop's see. Lat. 43.39 N . Lon. j. 56 E .

Grasse, a town of France, in the department of Aude, scated on the river Othicu, is miles S.E. of Carcassone.

GRA'SSI NESS. s. (from grassy.) The state of abounding in grass.

GRA'SSY. a. (from grass.) Covered with grass; abmuadirir with grass (Dryden).
(;RATE. s. (crutes, Latin.) 1. A partition made with bars placed near to one another, or crossing each other (Adidison). 2. The range of bars within which fires are made ($S_{j} / c e l$.).

T'o Grate. e.u. (graller, French.) I. To rub or wear any thang by the attition of a rough body (Spenser). 2. Tu offead by any thing harsh or vexatious (Surff). 3. To forut a sound by collision of asperities or hard bodics (.Dil!on).

To Grate.v.n. 1. To rub so as to injuro or offiend (LEstrunge). 2. To make a harsh nowe (Hionler):

GRAMEMLL a. (grahus, Latin.) 1: Having a due sense of benelits (Millon). 2. Plessing; acceptable; delightful; delicious (B, com).

GRA'PEFLLLY. ad. 1. With willinanes, to ackunoledye and repay bencfits; with due sense of obligation (Dryden). 2. In a pleasing manaer ($\mathrm{H}_{\mathrm{a}} \mathrm{a} / \mathrm{s}$).

GRATEFULNESS.s. (from gratcful.) 1 Graitale; duty to bencfactors (lierlert). 2. Quality of being arceptable ; pleasantness.
(iRA'TiER. s. («ratoir, lirench.) A kind of coarse file with which soft bodies are rubbed to pnowder (A. Hill).
(iRATIAN, father of the emperor Valentinam I. was a mative of lamnonia, which now bears the naner of Hungary. He was celebrated for his perconal strengit anal his conrace, and rase by degrecs to the command of the Roman army in Africa. Having excited jcaloury at Rome, by his comity to the pagan superatitions, he retired to (Gan), where he fell in tighting :lgainst his rebellious subjects A.D. 383.

Gratian, son of Valentinion by the empress Severa, succeeded to the conpire in 375.

G R A

He was an accomplibhed prince. He was the first Roman emperor who refuced the titie of fombites Masimas. He was as-asinated by Antragathus in the 24 th varer of his age.

I;:aidan, a famous Beacdictine monk, in the 12 th cembry, wars horn at Chiusi, and employed :ecar twente-four years in composing a work, entited Decretuin, or Concordantia 1)iveordan:ium (anonum, because he here endesunaed to reconcile the canons which seemad coutradietory to cach otiser. This work he publiched in 1151. A: he is frepuently mistaken in taking one canon of one conncil, or one passage of one father for another, and has ofien cited false decretals, several anthors have endeavoured to correct his fatmis; and chiefly Anthony Augustine, ia his cacellent work, emitled Ine cmendatione Gratiani. To the decretals of Gratian the popes principally nowed the great anthority they excreised in the thirreenth and fillowiors centuries.

GRATIFICA'TION. s. (gratificatio, Lat.) 1. The act of pleasing (Smas $/ i$). 2. Pleasure; delight (hagers). 3. Reward; reconpense.

Ti, GRAMIFY. v. a. (gratificor, Latin.) 1. To indu!ce ; to please by compliance (Dryden). 2. Todelight; to pifase (Adelison). 3. To requite with a recompense.

GRATINGLY. ad. (from grati.) Harslly; offensively.

GRATINGS, in a ship, are small ledges of sawed plank, framed one intw another like a lattice or prison grate, lying on the upper deck, between the main-mast and fore-mast, scrving for desence in a close light, and also for the coolness, light, and conveniency of the ship’s rompany.

GRATIOLA. Helge-hyssop. In botany, a genus of the class diandria, order monogyna. Corol irregular, reversed; catiys mostly seven-leaved, the two outer ones expanded; stanens two, steril; capsule two-celled. Fifteen species; clicfly Indian and American plants; but a few Europeau. The only species worthy of notice is \mathbf{G}. oflicinalis, a native of the south of Europe, with lanceolate, serrate, opposite, sessile leaves; flowers pedmeled, solitary, axillary. This plant was formerly a favourite article in many pharmacoperias; and is atill employed in Germany as a violent cathartic and emetic, especially in hydropic cases, in which it is said to be peculiarly suceessful. It hasalso been recommended as an antisiphilitic.

GRA'TIS. ad. (I.atin.) For nothing; without a recompence (Artuthnot).

GRA'IITUDE. s. (gratitudo, low Latin.) A pleasant affection excited by a lively sense of benefits received or intended, or even by the desirc of being beneficial. In its strength it is the powerful re-action of a well disposed mind, upon whom benevolence has conferred some important gool. It is always connected with an impressive sense of the amiable disposition of the person by whom the benefit is conferred, and it immediately produces a personal affection toward him. When the affection operates according to the natural course of influence, it will be correspondent to the in-

G R A

portance of the gond obtained, the distance in station between the reripient and his benefactor, the smallness of his clains, perhays the consciousness of deserving very opposite treatment. These circumstances unite to warm the heart into raptures. The grateful mind is impatient of a silent and passive recertion of the blessing. It cannot be restraiurd from ace knowledging its obligations, cither by expressions or deeds. It considers every return in its power as an act of the strictest justice; nor is is deterred by difficulties or dangers from making the attempt. The term most familiariy emp.oved was originally suggested by this idea. The ouligation is perceired and felt; and the person benefited considers himself as bound in honour and justice, cither to repay or acknowledge the deht, by a bond that cannot be cancelled. We shall not wonder at the preuhiar strength and energy of this affection, when we consiler that it is conrpounded of love placed upon the good communicated, affertion for the donor, and joy at the reception. Thus it has goodness for its object, and the most pleasing, perhaps unexpected, exertions of goodness for its immediate callse. (Cogan on the I'ussinns).
There is a species of grateful remorse, which sometimes has been known in operate forcibly on the minds of the most hardened in impudence. Of this Mr. Andrews, who makes the remark, gives an instance in the fi:lowing ancelote, said to have been a favourite one with the late I)r. Camplell: "Towarls the beginning of this century, an actor, celebrated for mimicry, was to have been employed by a comic author, io take off the person, the manner, and the singularly awkward delivery of the celcbrated 1)r. Wondward, who was intended to be introduced on the stage in a laughable character (viz. in that of Dr. Fossile, in Three Hours after Marriage.) The miunic dressed himself as a countryman, anel waited on the doctor with a long citalogue of ailments, which he suid attended on his wife. The physician heard with amazenemt diseases and pains of the most opposite nature, repeated and redoubled on the wretched patient. For, since the actor's greatest wish was to keep. 1)r. Woorlward in his company as long as possible, that he might make the more observations mon his gestures, he loaded his poor imaginary spouse with every infirmity which had any probable chance of prolonging the interview. At length, having beconic coinpletely master of his errand, he drew from his purse a guinea, and, with a scrape, made an uncouth offer of it. ' Put up thy money, poor fellow;' (cried the doctor); ' Mou hast need of all thy cash and all thy patience $\mathbf{t o n}$, with sucin a bundle of diseases tied to thy back.' The actor returned to his employer, and recounted the whole conversation, with such true feeling of the phesician's character, that the author sereamed with approbation. His raptures were soon checked; for the mimic told him. with the emphasis of sensibility, that he would soones die than prostitute his talents to the rendering such geluuine

G R A

humanity a puhlic laughing-stock. The player's name was Griffin."

GRATZ, a town of Germany, capital of Stiria, with a castle, and a university. It is seated on the Muehr. Lat. 47. ev N. Lon. 15. 30 E .

GRATUITOUS. a. (gratuiks, Latin.) 1. Voluntary; granted without claim of merit (L'Estrangr). 2. Asserted without proof(Ray.) GRATE'ITUUSI.Y. ad. 1. Withurt claim or merit. 2. Without pronf (Cheryne).

GRATUITY. s. (grafuite, Fr.) A present or acknowledgront: a free gift (Skeift).

To GRATULATE. v. a. (graluidur, latin.) 1. To congratulate ; in salute with declarations of joy (Shaks.) 2. To declare joy for (Bcn Jonson).

GRatulation. s. (gratulatio, Lat.) Salutations made by expressing joy (Ilooker). GRATULATORY. a. (frin gratulute.) Conerratulator-; expressing coneratulation.

GRAUDENTK, a town of Poland, in the palatinate of Culin, with a castle, seated on the Vistula. Lat. 53.36 iv Lon. 18.52 E .

GRAVE, a strong town of Dutch Brabant, seated on the Macse, berond which there is a fort. Lat. 51. 47 N. Lon. 5. 45 E.

Grate, in grammar, a species of accent opposite to acute. The grave accent is expressed thus (${ }^{\circ}$), and shows that the voice is to be depressed, and the syllable over which it is placed pronnunced in a low deep tone.

Grave, in music, is apidied cither in tone or time. 1. Grave when applied to tone denotes that it is low or deep in comparison with sonne other. 2. In time it denotes a movement between laryo and adiav:o.

Geave, a final syllab!e in the names of places, is froin the Saxon zroes, a grove or care (Gil:son).

Grave. : (ontr, Saxon.) The place in the ground in which the dead are reposited (Milion).

Grave-clothes. s. (grave and clolhes.)
The dress of the dead (Spenser).
Grave-stone.s. (erareand stone.) The stone that is laid over the grave (Shuksperare).

To Grave. v. u. preter. graved; part. pass. graven. (graver, French; rimpu) 1. To insculp; to carve a figure or inscription in any hard substance (Prior). 2. To carve or form (Helreces). 3. (from the noun.) To entomb (Shak:peare). 4. To clean, caulk, and sheath a ship (Ainsworth).
To Grave.v.n. Tó write or delineate on hard subslances (Exodus).
Grave. a. (grave, French.) 1. Solemn; serious; sober (More). 2. Not futile; credible (Greio). 3. Not showy; not tawdry.

GRAVEL, in oryctology. See Sand.
Gravel, a disorder. Sce Medicine.
To Grável. v.a. (from the noun.) 1 . To pave or cover with gravel (Bacon). 2. To stick in the sand (Cameden). 3. To puzzle; to stop; to put to a stand (Shakspeare).
GRAVELLED, in the manage, is affirmed of a horse when fragnents of flints, or small pebbles, have insinuated themselves between

G R A

the outcr sole of the foot and the web of the shoc. This injury seldom occurs, but when the shoe is forated too flit upon the inner surface, wihhout its proper concality; and consequently eonfines by its close pressure whatever extraneous substance prains admission. The shoe should in such case be tenderly taken off, by one nail at a time, in preference to tearing it off by main and sudden furce, as is mosst usual; the sole should be well fomented with gexd hot ailk and water, then covered with an cmollient poultice of linseed powder, milk, and two table sponssful of olive oil, leting the same be repeased daily, till the inflamaation has subsided, and the terderness gone off; when the bottoon of the hoof may be hardened hy two or three applications of a sponge dipt in rinemer builing hot before the shoce is replaced.

GRA'VELESS a. (froingrave.) Wanting a tomb; unberied (Statsprare).

GRAVELINEX, a sifong seaport of France, in the departinent of the North. It is scated on the Aa. Lat. 50.5 g N. Lon. 2. 13 E.
GRA'VELLY. a. (gravelen. French.) Full of gravel; abounding with gravel (Hara vry).
GRA'VELY. ad. (irom grave.) 1. Solemnly; scriously; soberly; without lightness or niirth (Sppectator). 2. Without gaudiness or show.
GRAVENAC, a town of Suabia, capital of a county of the sause name. Lat. 48.22 N . Lon. 9. 28 E.
(GRA'VENESS. s. (from grave.) Seriousness; solemnity and sobricty of behaviour (I)enliant).
(iRA'VEOLENT. a. (gravcolens, Latin.) String seented.

GRA'VER. s. (graveut, French.) 1. One whose husiness is to inscribe or carre upon hard substances; one who copirs pictures upon wood or metal to be impressed on paper (Dryden). 2. The style or tool used in graving (Bnyle).
GRAVFSANDE (William James), colebrated for his knowledge of the mathematics and astronomy, was born in 1688, at Delft in Holland. He was educated to the profession of the civil law; and practised some time at the Hagive. He was one of the authors of the Journal Littéraire, published there. But he was afierwards made professor of mathematics and astronomy at Leyden; and was the first who taught the Newtonian philosophy at that university. He died in 17+2.
Gravesande was a man amiable in his private character, and respectable in his public one; for few men of letters have rendered more eminent services to their country. The ministers of the republic consulted him on all occasions when his talents were requisite to assist them, which his skill in calculation often enabled him to do in money matters. He was of great service as a deeypherer, in detecting the sceret correspondence of their enemies. And in his own profession none ever applied the powers of nature with more success, or to more useful purposes.

G R A

Of his publications the principal are, 1. An Introduction to the Newtonian Philosophy. 2. The Elements of Alrebra. 3. An Fssay on Perspective. 4. A new Theory of Collision. 5. A Course of Logic and Metaphysics. Professor Allamand published an edtion of his Mathematical and Philosophical Woris, in 2 vols. $4 t 0$.

GRAVESEND, a town of Fugland, in the county of kent, on the south side of the Thanaes, and the first port on that river. In the time of Richard II., this town was taken and burned be the French and Spaniards, on which account, perhaps, as a compensation, the inhabitunts, with those of Milton, obtained the exclusive privilege of conseying passengers from tience to Loudon, on condition that they should provide boats on purpose, and carry all persons, cither at two-pence per head, with his bundle, or the whole lxat's fare should be four shillings. This chatter has been confirmed by succeeding princes, and under proper regulations they still enjov this advantigents privilege. The fare is now eighteca-pence each passenger. The boats are large and commodious, and much improved within these fow years; they are obliged to depart on the ringing of a bell a quarter of an hour; they go to London with every flood, and return from Billinguate on the like sigual with every ebb. For its better security, Henry VIII. raised a platform of guns the the east of the town, and erected a fort dirccily opposite, at Tilbury, on the Essex shore, which is a regular fortification, has a battery commanding the friver mounted with above 100 pieces of cannon, carrying balls from twenty-four to forty-six pound weight. Queen Elizabeth ordered the lord mayor of London, the aldermen, and all the companies, to receive all eminent strangers and ambassadors at (rravesend, in their formalities; and attend them to London in their barges, if they went by water; if they went by land, they were to meet them on horseback, in their gowns, on Blackheath.

Gravesend is a corporation town, and, together with Milton, governed be a mayor, jurate, and common-council men. The town-house, where all public business is transacted, was built in the year 1764. There are two markets weekly, Wednesday and Saturday, and a fish-market every Sunday morning. All outward bound ships are obliged to cast anchor before the town, till they have been examined by, and obtained proper clearances from, searchers, appointed for that purpose, who have an office near the town quay: a centinel is also stationed at the block-honse, helow the town, to give notice by the firing of a musket, when ships are coming up the river, who are obliged to receive on board officers from the customs, a number of which are constantly waiting here for that purpose. Lat. 51.25 N . Lon. 0.27 E.

GRA'VIDITY. s. (graridus, Int.) Pregnarrey; state of being with child (Arbuthont).
GRAVIMETER, the name given by M. Guyton to an instrument for measaring speci-

G R A

fic gravities: he adopits this name rather tha either aremeter or hydrometer, becanse these latter terms are grounded u;on the supposition that a fluid is always the thing wephed; whereas, with regard to solids, the lijuid is the known term of comparison to which the unknown weight is referred. Guyton's gravimeter is executed in glass, and is of a cyhadic form, being that which requires the suallest gramity of Huid, and is on that account preferable, except so far as it is necessary to deviate for the security of a vertical position. It carries two basins, one of them superior, at the extremity of a thin stem, towaris the middle of whish the fixed poiat of immersion is marked. The other, or lower basin, teminates in a point; it contains the balls, and is attached to the cylinder by two branches. The moveable suspension, by means of a hook, has the inconvenience of shortening the level which is to secure the vertical position. The cylin-der is three fourths of an inch in diameter, and 6.85 inches in length. It carries in the upper basin an addutional constant weight of the grammes, or one hundred and fifteen grains. These dimensions might be increased so as to render it capable of receiving a much more considerable weight; but this is unnecessary. M. Guyton has added a piece which he calls the plonguer, because, in fact, it is placed in the lower basin when used, and is con equently entirely immersed in the fluid. Jtis a bulio of glass loaded with a sufficient quantity of mercury, in order that its total weight may be equal to the constant additional weight added to the weight of the volume of water displaced by this piece. It will be readily understood that the weight being determined at the same temperature at which the instrument was orizinally aljusted, it will sink to the same mark on the stem, whether it is loaded with a constant additional weight in the upper basin, or whether the effect of this weight be produced by the additional piece in the lower dish. From this explanation there will be no difliculty in seeing how this iustrument may be adapted to every case in practice. It may be used, 1. For solids. The unly condition will be, that the absolute weight of the body to the examined shall be rather less than the constant additional weight, which in this instrument is ahout 115 grains. 2. For liquids of less specific gravity than water, the instrument, without the aiditional weight above-mentioned, weighs about four huidred and fifis-nine grains, in the dimensions before laid down. It would be easy to limit its weizht to the utmost accuracy. We have therefore the range of one-fifthof booyancy, and consequently the means of ascertaining all the intermediate dersitiess from water to the most highly rectified spirit of wine, which is known to bear in this respect the ratio of cight to ten with. regard to water. 3: When liquids of greater specific gravity than water are to he tried, the constant weight being applied below hy means of the additional piece, which weighs atonut one hundred and thirty-eight grains, the i

G R A

G R A

- strument can reccive in the upjer basin more than four times the usual additional weight, whonot losing the equilibrium of its vertical postion. In this state it is capable of shewing the sjexific gravity of the most concentrated acids. 4. It possesses another property, nanciv, that it niay be used as a balance to determine the absolute weight of such bodies as do uct exceed its additional loarl. 5. l.astiv, the purity of the water leing known, it will indicate the degrees of rarefaction and condensation in proportion to its nwrr bulk. To find the sjecific gravity of any solid by the gravmeter, observe this rule: "From the weight in the upper dish, when the instrue ment is properly immersed in the unknown Guid, take the weigit which is placed with the body in the same scale at the like adjustinent. The remainder is the absolute weight of the solid. Multiply this by the specilic gravity of the flaid, and reserve the product. From the additional weight, when the body is placed in the lower basin, take the weight when it was placed in the upper. The remainder will be the loss of wei; ht by imunersion. Divide the reserved product biy the loss loy inmersion, and the quotient will be the opecific gravity of the solid with regard to distiled water at the standard temperature and pressure." To find the specitic gravity of a fluid, proceed thus: "To the weight of the gravimeter add the weight required in the upper basin to sink it in the unknown fluid." Afain, "'lo the weight of the gravimeter add the weight required in the same manner to siuk it in distilled water. Divide the first sum by the latter, and the quotient will he the specific gravity of the fluid in question." Sce Specificgravity, Hydrostatics, and HyDrompter.

GRIDVINA, a town of Italy, in the kingdom of Naples. Lat. 41. N. Lon. 17. E.

GilaviN(;. See Engraving. Insea afinirs the word graving !is ued for the act of cleaning a sinip's botom, when she is laid aground during the recess of the tide. See Beeaming and Careening.

To GRA'VITATI.. v. n. (from graris, I.atin.) To tend to the centre of attraction (Bentlen).

GRAVITATION. s. (from gravitate.) Act of tending to the contre (Pope).

GRA'VITY.s. (gravilas, Latin.) I. Weight; beaviness; lemlency to the centre (Brourn). 2. Atrocionsuess; weight of guilt (Huohor). 3. Seriousness; solemnity (Bucon).

Gravity, in physics, the natural tendency or inclination of buxdics towards the centre. And in this sense gravity agrees with centripetal furce.

Particalar Gravity, is that which respects the
 the contic cot ter catti; the pisencmena or projertics of wioct anc a.f thon:
:. An cheonarm-that todies du hereby tend

 gine. N any vitury or cianatia the puint called the centre,
by which it attracts bodies; but because this is the result of the gravitation of bo ties tuwards all the part: of which the carth consiste.
9. This puint or centre is tised within the earth, or at least has been, so far as any authentic history reaches.
3. In all places equidistant from the centre of the earth, the force of gravity is equal, catiris paribus. The force of siavity is not equal on all parte of the earth's surface, for two reasons: 1. All parts of the surface are not equidistant from the centre, the parth being spheroidical: 9. The gravity is different in different la itules, by reason of the rariation in the centrifusal force, occasioned by the earth's rotation: the increment of gravity on this acceunt beine as the square of the cosine of the latitude. M. Kiatit's formula for the proportion of gravity in different latitudes was given under the article EAllth.
4. Glavity equally affects all bodies, without regard cither to the ir bulk, firure, or matter; so that, abstracting from the resistance of the medium, the most compact and toose, ihe greatest and smallest bodies would all descend through an equal space in the sam time: as sppears from thequick dce scent of very light bulies in an exhatisted receiver. The space which iodics do actuslly fall, in varuo, is $16_{\mathrm{I}} \frac{1}{2}$ feet in the first scrond of time, in the latitude of Lamdon; and tior other times, eithergreater or leas than that, the spaces descended from rest are directly propurimual to the squares of the times, while the falling body is not far from the earth's surface.
5. This power is the greatent at the earth's sarface, fion whence it decreases buth uptwarde and downwards, but not both ways in the same proportion; fur upwards the force of gravity is less, or decreases, as the square of the dintance from the centre increase's; but below the surface, the power decreases in such surt that its intensity is in the direct ratio of the distance from the centre.
6. As all thodies gravitate towards the earth, so does the carth equally yravitate towards all bodies; as well as all buaides towards particular parts of the earth, as hills, \&c. whirh has been proved by the attraction a hill has upou a plumbl line, insensibly drawing it aside. Hence the eravitating force of cutire bodics consists of th:ose of all their parts: for by alding or tahinu anay any part of the matter of a bondy, its qrawity is increased or decreasod in the priportion of the quantity of such portion to the whole mass. Hence also the gravitating powers of bodirs, at tie same distance from the centic, are propurtional to the quantities of matter in the bodies.

General or universal Gravity, is that in consequence of whicin ath the plancts tend to one another, and indeed all the bodies and particles of matter in the universe tend towards one another. .

The proress by which the mind of sir Isaac Newton was led to the conclusion respecting universal gravity, has beea described in the fullowing mauner. Having marle the great discovery of an universal and mutual dethection of all the matter in the solar systom, he was one dar specula:ing on this subject, and cowparing it with other deDections which he observed among bodies, such as ma;nets, \&e. H: considered terresthial eravity as a force of this kind. By the weipht of terrestrial bodies tirey ke;t united with the earth. Hy its weiglit was the water of the ocean formed in:to a whore. This force evtended, withont any remakabice diminutiun, to the tups of the highest mututains. Might it not reach much farther?

GRAVITY.

May it not operate eren at the distance of the mom? In the same manner that the planctary force deflects the momon from the tangent to ber orbit, and canses her to deseribe an ellipse, the weight of a caunon ball dellects it from the line of its direction, and makes it desaribe a perabola. What if the deflecting force which incurvates her path towards the earth be the simple weight of the moon? If the weight of a bolly be the same with the seneral planetary forer, it will dinhinish as the square of its distance from the carth increases. Therefore, said be, since the distanee of the meon from the centric of the earth is about 50 times greater than the distance of the stone which I throw from my hand, and which is deflected 10 feet in one second, the weight of this stome, if taken up to the height of the moun, should be relluced to the 25!0th part, and should there deflect $\left.{ }^{3}\right)^{3}$ th of ic feet in a second; and the moon should detlect as nuch from the tangent in a second. Haviug the diunensions, as he thought, of the moon's orbit, he immediately cumputed the inoon'r deflection in a second; but he found it considerably different from what he wished it to be. He thercfore concluded that the planetary force was not the weight of the planct. For some years he thought no more of it: but one day, in the Royal Suciety, he heard an account read of measurcments of a degree of the meridian, which showed him that the radius of the earth abil the clistance of the incon were very diftierent from what he had believed then to be. When he went home be ropeated his esmputation, and formd, that the deflection of a stonc was to the simultancuns deflection of the moon af the square of the moon's distance from the centre of the earth to the sifuare of the stone's distance. Therefore the incon is deffected by its weight; and the fall of a stone is just a particular iustance of the exertion of the universil planctary force. This computation was but roughly made at first; but it was this coiucidence that excited the philosopher to a more attentive reriew of the whole subject. When every circumstance which can affect the result is taken into account, the coincidence is found to be most accurate. The fall of the stone is not the full effect of its weight; for it is ciiminished by the motation of the earth round its axis: it is also diminislied by the weisht of the air which it displaces: it is also diministied by its tendency to the moon. On the uther hand, the moon does not revolve round the earth, but round a common centre of the carth and inoun, and its period is about ; ${ }^{\prime}$ th shorterthan if it revolved round the earth; and the moon's deflection is affected by the sun's disturbing force. But all these correctious can be accurately made, and the ratio of the full weight of the stone to the full deflection of the moon ascertained. This has been done.

Terrestrial gravity therefore, or that power hy thich bodies fall or press on their supports, is only - particular instance of that gemeral tendency by which the planets are retained in their orbits. Bodies may be said to gravitate when they give indications of their being gravis or heavy, that is, when they fall or press on their supports; therefore the planets may be said to gravitate when they give similar indicatiuns of the same tendeney by their curvilineal motions. The general fact, that the bodies of the solar system are mutually defected tuward each other, may be expressed by the verbul noun gravitation. Gravitation does not express a quality, but un event, a deflection, or a presulure.

The weight of a terrostrial body,"or its pressuge on its support, is the rfiece of the acenmulated gravitation of all its particles; for bodies of every kion of matter fall iqually fast. This has bect: ascertained with the utinost accuracy by sir Isaac Newten, by cuniparing the vibrations of pendulunns made of ciery kind of matter. Therefore their united gravitation is proportional to the ir quantity of matter; and we have concladed, that every atom of terrextrial matter is heavy, aud equally heavy. We exund this conclusion to the sun and planets, and say that the ubserved gravitationof a planet is the united gravitation of every particle. Therefore sir 1s:ac. Newton inferred, from a collective view of all the phenomena, that all matter gravitates to all matter with a furce in the inrerse duplicate ratio of the distance.

But we do ust thiuk that this inference is absolutely certain: though we acknonlerlge that the experiments on pendufunis, consisting of a rast varicty of tervestrial matter, all of whici performed their oscillations in equal tines, demonstrate that the acceleration of gravity on thuse peodulums was propurtionul to their quantities of matter, and that equal gravitatiou may be afirmed of all terrestrial miatter.

The elliptical inution of a planet is full proof that the accelerating power of its gravity varies in the inrerse duplicate ratio of the distance; and the proportion:ality of the squaves of the periods to the cuben of the distance;, shows that the whole gravitations of the plancts vary by the same law. Bat this third observation of Kepler might have been the same, although the gravitation of a particle of matter in Jupiter had been cqual to that of a particle of terrestrial matter, proviled that all the matter in Jupiter did not cravitate. If ${ }_{1}{ }^{1}$ th of Jupiter had been such gravitatiug matter, his deflection from the tangent of his orbit would have been the some as at present, and the time of his revolution would have been what we observe. In order that the third law of Kepler may hold true of the plantary motions, no more is required than that the uccumulated gravitation of the planct be proportional to its quantity of matter, and thus the mutter which dors not gravitate wili be compensated by the superior gravitation of the rest.

But because we have no authority for saying that there is matter which gravitates differenily from the rest, or which docs not graritate, we are entitled to suppowe that gravity operates alike on all matter.

And this is the ultimatum of the Newtonian philusophy, that the sular system consists of wodies couposed of matter, cvery particle of which is, in fact, continually deflected by its weight to ward erery uther particle in the system; and that this deffection, or actual deviation, or actual piersure, tending to deviation from uniform rectilineal motion, is in the inverse duplicate ratio of their distance.

This doetrine is called the syatem of universal gravitation; but it has been blamed as introducing an unphilosophical principle into science. Gravitation is said to be an occult quality; and thercfore as unfit for the explanation of phenomena as any of the occult qualities of Aristotie. But this reproach is unfounded; gravitation does not express any quality whatever, but a matter of fact, an event, on actual deflection, or an actonl pressure, producing an actual deflection of the body prefsed. These are not occult, but matters of continual observation. Truc, indeed, Newton

G R A VITY.

does not deny, although he dues not positively eny, that this detlection, pressure or gravitation, is anefliert having ncanse. Gravity is said to be this canse. Gravity is the being gravis or hiavy, and gras itation is the giving indirations of being heary. Heaviness therefore is the word which enpecses gravitas, and our notion of the cause of the phanerary detteretions is the same with our nosion of hearivess. This may be indistinct aud unentisfictory to a mind fantidionsly curious; bite nolhing ean be more familiar. The phanet is deSicted, because it is heavg. We are supposed to explain the fall of a atoue throurt water very sal eis'actorily, and without havius recourse to any ocruk quality, when we say that it is heavier than the water; and we explain the rise of a piece of cork, when we say that it is not so heavy as the watere The explatations of the mutual actions of the planets are equally satisfactory, funaded on the same principley, and equally free frum all sophistry or employment of occult causes. The weisht of a burly is not its heaviness, but the effect of its heaviness. It is a gravitation, an acqual pressure, indicated by its balaocing the supposed heaviness of another burly, or by its bialancing the known elasticity of a spring, or by balazaing any otber atatural power. Ic is similar to the pieskune which a magnet exerts on a piece of irous. Whetber either of linese be produced by the innpulse of a strean of tuid, is a question with Which we nead nut conccru ourselves. We gain a most extensire and impurtant kuowledice, by car acquaintunce with this universal law ; for we can now explain every phanomenon, hy pointing on bow it is conatained in this law; and we can predict the events of the solar system almost within the beat of a clock. This, one would think, ought to ratisfy the most inquisitive mind. But, Nitimar, in sectilum, semper cupimusque negata. Tbere seems to be a fatal and ruinous dispusition in the human mind, a sort of priapism of the ullo derstandiag, that is irritated by every iuterdict of natural imperfection. We nould take a mieroscupe to louk at light; we would know what knowing is, and we would weigh beavinesi.

From thic time of Aristotke duwn to the present day, the worid has berol entertained with raricas philosephical whimsies ou this subject. As an historical account of them would be of no real advantare to science, we shall not atteupt nay thine of the kiud. We shall mere:'y remark, that, of late, mang attemupts liave been made to trace the planetary ekeffections to their origin in the snotion of sithe impelling matuer; yet these atrempes could not be successful, becrause they are all built apon lyppotheses. Much has been said -arspecting an zetherial unctiun (wee 開THER), orich adis inthing to our real knowlerge. Even if the lesitimate consequences of this setherial bypoticesis were consistert with the phanomena, we have not obtained any explanation. We have only learned that the appearances are such as they would hare been, had an etherial matter so existed and so acted. The whecried laws of the plicwowena are as extencive as those of the hypothesis ; therefore it teaches ns nothing but what we knew without it.

Indeed it appears to us useless, if not impro per, ta searci for any mechanical cause of aravity. Int the language of Newton be recolleried: "Whatever the cause is," says he, "that canse penctrates even to the centers of the sun and planeti, without any diminution of its virtue; and it ecteth ubt iccording to the maperficies of bodtes,
(as uechanical causes do) but in propertion to the gravity of solid matter." If we admit the penetration of parts it impenctrable substance, wo lose the nution of budes: tay, we concere and admit a contradiction. Let us also recoll c: that gravity is incessant in its uperativns; biet the permanerat effect of a transtent, simaitameons impression. And since this is the case, nad none scruple to accanuwledge tiat sravity was impriuted upon all matter by the Creatorst iat, at tae crem ation, why may it not le said that gravity is an in lesinent effect of an immaterial canse. It would imply no contaadiction; and what has been formerly said by in author of mis simall taleuts might be again ur, e:l in its farour: " We have then an effect worthy of onniproteace, and to be performed only by the immediate operation of the Deity. And from this we may sec, with inexprossible satisfaction, the power of the Creator constantly exerted through ull nature."

On this subject the reader will do well to consalt an interesting essay on the hypothesces which have been inveuted to account fur gravitacion, by professor Vince, of Cambridge, au essny which has been published siace the preceding: article was propared fur the prese.

Graviry, in music, is all aticetion of sound, whereby it becunes denominated grave, low, of flat.

Gravity stanis in opposition to acuteress, Which is that affection of sound, whereby it is deuominated acute, sharp. or high. The krarity of sounds depends on the thekiness and distension of the chords, or the length and diameter of the pipes, and in genernt on the mass, extent, and tension. of the sminorous budies. The laryer and more lax are the bodies, the slower will be the vibrations. and the nraver the sounds.

It must be observerl, that acureness and gravity. as also loudncss and lowness, are but relative things. We commonly call a sombl acute and loud, in respect to another which is srave, or low with respect to the former; so that the same sound may be both grave and acuic, and also loud and luw. in different comparisons.

Gravity (Specific), is the relative, comparation, or apparent: ravity of any body, in respect of that of an equal butk or maguitude of anotiner body: denuting that gravity or weisht which is peculiar to each specie:" or kind of body, and by which it is distinguished from all other kinds.

In this senve a body is said to be specifically heavier than another, when under the xame bulk it coriains a greater weinht than that cther; and reciprocally the laterr is said to be specifically lighter than the former. Thus, if there are two equal opheres, ench one foot in diameter; the one of lead, zad the other of wood: since the leadin one is fuond heavier than the wooden one, it is said to be specitically, or in specie, heavier; and the wooten one specilically lighter.

This hind of gravity is by some called relative; in opposition to absolute gravity, which increases in proportion to the quantity or mass of the borly.

Lures of the specific gravity of bodics.-I. If two bodies are equal in bulk, their specitic gravities are to each other as their weight, or as their densitics.
II. If two bodies are of the came specific gravity or density, their aholute weights will be as their magnitides or bulks.
III. In budies of the same weight, the specific gravitirs are reciprocally as their bulks.
15. Tle speciic gravities of all bodus are in a

G R A V I T Y.

talin compounded of the direct riti, of their veights dad reciprocal ratio of their masnitules. And honce again the specilic gravities are as the densities.
V. The absolute gravities or weights of bodies are in the compound ratio of their specitic gravikies and magnitudes or bulks.
VI. The magnitudes of bodies are directly as their weights, and reciprocally as their specitic sravities.
VII. A body specifically heavier than a naid, loses as much of its weight when immersed in it, as is equal to the weight of a quantity of the Huid of the same bulk or magnitude.
Hence, since the specific gravities are as the absolute gravities under the same bulk; the specific gravity of the thuid, will be to that of the body immerged, as the part of ti:e weight lost by the colid, is to the wholc "eisht.

And hence the specifie sravitios of fluids are as the weights lust by the same solid immerged in them.
VIII. To find the specific gravily of a fuid or of a solid.-On one arm of a balance suspend a glute of lead by a fine thread, and to the other fasten an equal weight, which may just balance it in the epen air. Immerge the glube into the fluid, and observe what weight balances it then, and consequently what weicht is lost, which in proportional to the specitic gravity as above. And thins the propurtion of the specitic gravity of oid thuid to auother is determined by immeasing the globe saccessively in all the fluids, and observing the weights lost in each, which will be the proportions of the specific gravities of the fuids sought.
This same operation determines also the specific gravity of the solid immerged, whether it is a ylobe, or of any other shape or bulk, supprosing that of the fluid known. For the specitic gravity of the tluid is to that of the solid, as the weigat lost is to the whole weight.

Hence also may be found the specific gravity of a body that is lighter than the fluid, as iollows.
IX. To find the specific gravily of a solid that is lighter than the fluid, as werker, in wiikh it is prit. Aunex to the lighter body ancther that is much heavier than the fluid, so that the compond mass may siuk in the fluid. Weigh the heavier body and the compuma mass separately, buth in water and out of it ; then find how much each loses in water, by sultracting its weizht in water fiom its weight in air; and subtract the less of these remuinders from the greater.

Then, as this last remaindur,
Is to the weight of the light body in air,
So is the specific gravity of the fluid,
To the specific gravity of that body.
X. The specitic gravities of budies of equal weight, are reciprocally proportional to the quantities of weight lost in the same fluid. And hence is found the ratio of the specific gravities of solids, by weighing in the same fluid masses of them that weigh equally in air, and noting the weights lust by each.

The spec;ific gravities of many kinds of bodics, both solid and liuid, have beendetermined by various anthors. It will be sufficient here to give those of some of the most usual bodies that have beeu determined with the greater certainty. The numbers in this able express the number of avoirdupoise ounces in a cubic foot of each body, that of common water being just 1000 ounces, or 624 db .

A TABLE

OE THE SPECIFIC GIAAVITIES OF DIFFERNT DODLES, AlRRANULD ALPMABETICALII.
M.tals.

- trinket standard, 20 car. not ham-

mered	-	$15: 09$
the same hammered	-	-
Jrun, cast	-	-

- bar, either hardened or not - 7788

Steel, neither tempered nor hardened - 7533

| - handened, but not tempered | - $\quad 78 \div 0$ |
| :--- | :--- | :--- |

—_ditto sperular ditto lenticular $\quad-$	-	5218

Lead, molten		
ore of, cubic	-	11352

Silvgr, virgin, 12 deuiers, fine not ham-
mered ditto hammered - . 10511

G. R A V I T Y.

G R A V I T Y.

G R A

Azotie gas	1.182	
Nitrous gas	$\mathbf{1 . 4 5 4 4}$	$\mathbf{5 1 7 . 1 2 5}$
Atmmoniac. gas	.7311	$\mathbf{6 3 6 . 5 3 3}$
Sulphur. acid gas. 2.7611	319.834	
		1207.978

In this table the weight and specific gravities of the principal gasis are given, as they correspond to a state of the barometer and thernometer which may be chosen for a medium. The specific gravity of any one gas to that of another will not conform to exactly the same ratio under different degrees ot heat and other pressares of the atmosphere, bocause the various expansions by no means follow the same law.

These numbers being the weight of a cubic foot, or 1728 cubic iuches, of each of the bodies, in avoirdupois ounces, by proportion the quantity in any other weight, or the weight of any other quantity, may be readily known.

For example. Required the content of an iro regular block of millstone which weighs 1 cwt. or 1121b. or 1792 ounces. Here, as 2500:1792:: 1728: 12:84 cubic inches the content.

Ex. 2. To find the weight of a block of granite, whose length is 69 feet, and breadth and thickness each 12 feet; being the dimensions of one of the stones of grenite in the walls of Balbec. Here $63 \times 12 \times 12=0.072$ fret is the content of the stone; therefure as $1: 9072:: 3500 \mathrm{oz}, 31752010$ oz. or 885 tons 18 cwt .3 grs . the weight of the stone.
XI. A body descends in a fluid specifically lighter, or ascends in a fluid specifically heavier, with - force equal to the difference between its weight and that of an equal bulk of the fluid.
XII. A body sinks in a fluid specifically heavier, * far as that the weight of the body is cqual to the weight of a quantity of the Guid of the same bulk as the part immersed. Hence, as the specitic gravity of the quid, is to that of the body, so is the whole magnitude of the body, to the magnitude of the part immersed.
XIII. The specific gravities of equal solids are as their parts immeryed in the fluid.

The several theorems here delivered are both Eemonstrable from the principles of mechanics, and are also equally confurmable to experiment, which answers exaotly to the calculation. See fydrostatice.

GRA'VY. s. The serous juice that runs from flesh not much dried by the fire (Arbuthnot).

GRAY. a. (zпxes. Saxon; grau, Danish.) 2. White with a mixture of black (Newlon). e. White or hoary with old age (Wallon). 3. Dark like the opening or close of day; of the colour of ashes (Gay).

Gray (Thomas), an eminent English poet, was the son of a reputable citizen, and born in Cornhill in 1716. He received his education at Eton school, and the university of Cant bridge. He was originatly intended for the law ; but had not sufficient fortune to enable him to prirsue the sturly. After making the tour of France and Italy with Mr. Horace Walpole, he resided chiefly at the university of Cambridge, where he was appointed professor of modern history. He died of the gout in 1771. He was profound in his erudition; and his genius was of the highest order ; though his prems are but few. He has been often called, we, think not improperly, the English Pindar.

G R A

An edition of his poems, with memoirs of the life and writings, was published in 1775, by Mr. Mason. This genteman, however, isstead of employing his own pen in drawing Mr. Gray's character, has adopted one drawn by the Rev. Mr. 'Temple, rector of Marnhead in Devonshire, in a letter to Mr. Boswell; to whoon the public are indebted for communicating it. "Perhaps (says Mr. Temple) he was the most learned man in Europe. He was equally acquaimed with the elegant and profound parts of science, and that not superficially but thoroughly. He knew every branch of history, both natural and civil; had read all the original historians of England, Fravce, and Italy: aud was a great antiquarian. Criticism. metaphysics, morals, politics, made a principal part of hie plan of study; voyages and trarels of all sorts were his favourite amusement; and he had a fine taste in painting, prints, architecture, and gardening. With such a fund of knowledge, his conversation must have been equally instrncting and entertaining; but he was also a good man, a well-bred man, a man of virtue and humanity. There is no character without some speck, some imperfection; and I think the greatest defect in his was an affectation of delicacy, or rather effeminacy, and a visible fastidiousness, or contempt and disdain of his inferiors in science. He also had, in sone degree, that weakness which disgnsted Voltaire so much in Mr. Congreve: though he seemed to value others chiefly according to the progress they had made in knowledge, yet he could not bear to be considered limself merely as a man of letters; and though without birth, or fortune, or station, his desire was to be looked upon as a private independent gentleman, who read for his amusement. Perhaps it may be said, What signifies so much knowledge, when it produces so little? Is it worth taking so much pains to leave no memorial but a few poems? But let it be considered, that Mr. Gray was, to others, at least innocently employed; to himself, certainly beneficially. His time passed agreeably; he was every day making some new acquisition in science; his mind was enlarged, his heart softened, and his virtue strengthened; the world and mankind were shown to him without a mask; and he was taught to consider every thing as trifling, and unworthy the attention of a wise inan, except the pursuit of knowledge, and the practice of virtue in that stato wherein (God hath placed us."
GRAY, a town of France, in the department of Upper Saone. Its trade is in iron Lat 47. 28 N. Lon. 5.41 E.

Gray's Thurrock, a cown in Essex, with a market on Thursdays. Lat. 51.26 N. Lon. 0. 24 E.
Grap. s. A badger (Ainswooth).
GRAYBEARD. s. (gray and bcard.) As old man (Shekspeare).

GRAYLING, in ichthyology, a species of Salmo (which see), as to its zoological arrangement and specific oharacter. In this country it is oficen fished for. Its haunts are

GRE

Wieariy the same as those of the tmut; and in fishing for cither of them you may catch both. They spawn the begiuning of April, when they lie mostly in sharp streans; in December the gravling is in his prime, at which time his head and gills are blackish, and his belly dark grey, studuted with black spots. He bites rery fric. ly, but is often lost when struck, his mouth being very tender. Angle for him about midwater, he being much more apt to rise than clescend; and when you angle for him alone and not for the trout also, use a guill-float, with the bait about six or seven inches from the ground. He takes brandlings, gilt-tails, nieadow-worms, geutles, \&ic. but the most excellent bait for him in March or April is the tag-tail.

The grayling is found in great plenty in many rivers in the north, particularly the Humber, and in the Wye, which runs through Herefordshire and Monmouthshire into the Severn.

GRA'YNESS. s. (from gray.) The quality of being gray.

To (ikAZ.E. v. n. (from grass.) 1. To eat grass; to feed on grass (Shahispeare). \%. To supply with grass (Bucon). 3. 'To move on devoliring (Bucon). 4. (from raser, Fr.) 'Io tonch lightly (Bacon).

To Graze. o. a. 1. To tend grazing cattle (Daniel). 2. To feed upon (Milion). 3. To supply with grass (Swift).

GRA'ZIKR. s. (from graze.) One that feeds en grass (Philips).

GRA'ZIER. s. (from grazc.) One who feerls cattle (IIowel).

GREASE. s. (graisse, French.) The soft part of the fat (Shatsprare).
(irease, an inflammation and swelling of the heels of horses, sometimes annfined to the neighbourhood of the fetlocks, at other times spreading considerably farther up the legs, and secreting an oily matter, to which the distase is properly indebted for its name. The discharge has a particular odour, owing, we imagine, to the secretion of the heels lecing of a nature peculiar to them, as in the instance of the axilla of the human subject. Horses of the heavy class, with round fleshy legs, are the nosst liable to grease, and the white legred more than the rest. The disease is almost exclusively found in the posterior extremities.

Grease is brought on by sudden changes from a cold to a hot temperature: such as removing horses from grass into hot stables; from hastily substituring a generous for an impoverishing diet; from the neglizence of grooms, in leaving the heels wet and full of sand; and from constitutional debility. The reason which has been assigned for the hindleg of the horse being particularly the seat of this complaint is, the distance being greatest between that and the heart, in consequence of which the blond's circulation is weakest in these parts, and the pressure of its column overcome with the greatest difliculty by the vessels.

On the approach of this discase, and for seweral days previously to any striking apperar-

GRE

ances of arrelling and inflammation, considerable pain seems to be experienced by the animal in the affected heel, as he is continually raising it from the ground, and cannot rest apod is without much uneasiness.
The intlammation and enlargement increase, and a great multitude of littie exulcerations follow, throwing furth a perpetual discharge of fetid sanies. To these filluw, from the irritating nature of the discharge, a great number of warty excrescences, vesicles filled with ar acrimonious fluid and cadaverous ulcerations, the caustic sanies from which hangs in the hair as it flows, producing a chain of fresh ulcers, or corrodes and destroys the hair altogether, still adhering to the superincumbens cuticle.

A horse, in such a state, should be separated from others, lest a miasm so excessively noxious should lay the foundation of this or some other disease among horses perfectly sound.

In the incipient state of the disease, the inflammation may be often removed with case by linseed poultices and purgatives. If ulceration ensue, to remove the inflammation the poultices should still be applicd, and the ulcers washed clean and dressed with digestive ointment: when the inflammation has subsided, solutions of alum or borax should be applied liberally, and the horse ridden frequently into the sea, or turned into salt marshes, If the disease, by neglect, become altogether constio tutional, it is not easy to exterminate it; and the death of the animal will be generally found the cheapest remedy.

T'o Grease. v. u. (from the noum.) 1. To smear or anoint with grease. 2. To bribe; to corrupt with presents (Dryden).

GRE'ASI NESS. s. (from grease.) Oiliness; fatness (Bryly).

GRE'ASY'. a. (from greuse.) 1. Oily; fat; unctuous (Shatspare). 2. Smeared with grease (Mortimer). 3. Fat of body; bulhy (.Whuspoare).
(GlRI:A'T. a. (znear, Saxon.) 1. Large in bulk or number (Looclie). 2. Having any quality in a high degree ('Tillotson). 3. Consider able in extent or duration (Sam.). 4. linportant; weighty (Shakspeare). 5. Chief; principal (Shacispeare). 6. Of high rank; of large power (Popr). 7. Illustrious; eminent; noble (Jeremiah). 8. Grand of aspect; of elevated mien (Dryden). 9. Maqnaaimous; gencrous (Sidney). 10. Swelling; proud (Ḱnollcs). II. Familiar; muoh acquainted (Bacon). 12. Pregnant; teeming (May). 13. It is added in every step of asceuding or descending consanguinity: as, great grandson is the son of my grandson (Addison). 14. Hard; difficult; gricvous (Taylor).

Great. s. (from the adjective.) The whole; the gross; the whole in a lump (Raleigh).

GILE.'ATBELLIED. a. (great and lelly.) Pregnant; tceming (Wilhins).

To (iRE'ATEN. v. a. (from grcat.) To aggrandize ; to enlarge (Ralcigh).
(iREATHEA'R'TY:I). a. (great and hcart.)
High-spirited; undrjected (Clarcndon).

GRE'ATLY. ad. (from great.) 1. In a great degree (Milton). 2. Nobly; illustriously (Dryderi). 3. Magnanimously ; generously; bravely (Alidision).

GRE'ATNEDS. s. (from great.) 1. Largeness of quantity or number. 2, Comparative quantity (Locke). 3. High degree of any qualive (Rogers). 4. Higit place ; dignity ; power ; influence; empire (Siwift). 5. Swelling pride; affiected state (Bacon). 6. Merit; magnamimity; nobleness of mind (Millon).* 7. Grandeur: state: magniticence (Pope).

GREAVE. s. (дnxaf, Suxon.) (Spcinser).

GRitaVES. s. (from greves, French.) Armour for the leg; ; a sort of boots (Samuel).

Greaves (Juhn), a celebrated mathẹmatician and anticuary, was born at Colminre in Hampshire, in 1602 ; and educated at Oxford. After visiting several parts of the continent he went first to Constantinople and afterwards to Egypt, and returned home through Italy, stored with manuscripts, gems, coins, and other antiquities. After his return he was made professor of astronomer at Oxford; but he was obliged to resign the professorship by the persecution of the parliamentary visitors. He died in $16: 52$. He was the author of several learued works.

GREBE, in ornithology. See Colymbus.
GRECISM. s. (gracismus, Latin.) An idiom of the Greek language.

GRIEE. s. Good-will; favour (Spenser).
GRELECE. s. (corrupted from degrees.) Aflight of steps: obsolete (Shakspeare).

Greece, the present Rumelia, and in many respects one of the most deservedly celcbrated countries in the world, was anciently bounded on the north by Maccedonia and the river Strymon ; on the west by the Ionian sea ; on the south by the Mediterranean, on the east by the Ægean Sca, and Archipelago. It extended from the Strymon, by which it was parted from Thrace, to the promontory of Te narus, the snuthmost point of the Peloponnesus, now the Morea, nearly 440 Enclish miles, and in breadth from east to west about 359 miles.

The general names by which the inhabitants of this country were known to the ancients were those of Graioi, or Graicoi, from whence the naine of Greece is plainly derived. These names are thought to come from Gracus, the father, or (according to snme) the son, of Thessaius, who gave name to Thessaly; but some modern critics choose to derive it from Ragau, the same with Reu, the son of Pdeg, by the transposition of a letter to soften the sound. These names were afierwards cianged for Acheci and Heilenes; the first, as is supposed, from Achrus, the son of Xuthus, the son of Hellen, and father of Ion; or, according to the fable, the son of Jupiter: the other from Hellers above-mentioned, the son of Deucalion, and father of Dorus, from whom came the Dores, afterwards a famous nation among the Greeks. Another name by w!ich the Gircehs wecre known in some parts of the coun-
try was that of Pelasgi, which the Areadians, the most ancient people in Greece, deduced from their pretended founder Pelasgis; who is said to have got such footing in Pcioponnesus, that the whole peninsula from him was called Pelasgia. But the most ancient name of all is universally allowed to have been that of Iones, which the Greeks thenselics derived from Ion abnie; or, as the fable hath it, the son of Apollo, by Creusa, the daughter of Erichtheus. Josephus, however, affirans that their original is of much older date, and that Javan, the son of Japhat, and grandson of Noah, was the first who peopled these countries. It is true, indeed, that among the Greeks themselves, oniy the Athentans, and .such colonies as sprung from them, were called Iones: but it is also plain, beyond exception, that other nations gave this name to all the inhabitants.

We cannot attempt within the bounds of this article to give even a sketch of the Grecian history and manners; we must therefore refer to the standard aurhors upon these subjects, Gillies, Goldsmith, Mitford, Potter, De Pauw, \&c. We merely remark that after their conquest by the Romans they made no united offort to recover their liberty. They continued in quiet subjection till the beginning of the 15th century. About that time they began to suffer muder the tyranny of the Turks, and their sufferings were completed by the taking of Constantinople in 1453. Since that time, they have groaned under the yoke of a most despotic yovernment ; so that all traces of their former valour, ingenuity, and learning, are now in a manner otally extinct.

Modern Grecce comprehends Macedonia; Albania, now called Arnaut; Epirus: Thessaly, now Jana; Achaia, now Livadia; the Peloponnesus, now Morea; together with the islands on its coast, and in the Archipelago. The continent of Greece is seated betwixt the 3uth and 43d degrees of north latitude; and hetween the 19 th and 27 th degrees of longitude, east of London. To the north it is bounded by Buigaria and Scrvia, from which it is divided by a ridge of mountains; to the south by the Mediterranean sea; to the east by Romania and the Archipelam, and to the west by the Adriatic, or gulf of Venice. Its length is said to be about 400 miles, and its utmost breadth about 3.50 miles. The air is extremely temperate and healthr; and the soil fruitful, though badly cultivated, vielding corn, wine, delicious fruits, and abounding whth cattie, fowls, and venison. As to religion, Christianity was planted in Grecce soon after the deatio of our Saviour, and flourished there for many ages in great purity; but since the Greeks beame suhject to the Turki-h yoke, they hare sunk into the most deplarable ignorance, in consequence of the slavery and thraldom under which they groan, and their religion is now greatly corripted. See Greek church.
As to the character of the modern Greeks, they are said to be very covetous, hypocritical. treacherous, zerat pederats, and at the same time revengeful to the highest digric, but very

G R E

saperstitious. The Turks are remarkable for their taciturnity; they never use any unnecessary words: but the Greeks, on the contrary, are very talkative and lively. The Turks generally practise what their religion enjoins, but the Greeks do not ; and their misery puts them upon a thousand mean shifts and scandalous practices, authorized by bad example, and perpetuated from father to son. The Greek women have fine features and beautiful complexions: their countenances still very much resemble those of the ancient Greek statues.

GRE'EDILY. ad. (from greedy.) Eagerly; ravenously; voraciously (Denham).

GRE'EDINESS. s. (from greedy.) Ravenousness; voracity; hunger ; eagerness of appetite or desire (Denham).

GRE'EDY. a. (дпх๖וз, Saxon.) 1. Ravenous; voracious; hungry (King Charles). 2. Eager; vehemently desirous (Fuirfa.v).

GREEK, or Grecian, any thing belonging to ancient Greece. The Greek language, as preserved in the writings of the celebrated authors of antiquity, as Homer, Hesiod, Demosthenes, Aristote, Plato, Xenophon, \&c. has a great varicty of terms and expressions, suitable to the genius and occasions of a polite and learned people, who had a taste for arts and sciences. In it, proper names are significative; which is the reason that the modern languages borrow so many terms from it. When any new invention, instrument, machine, or the like, is discovered, recourse is generally had to the Greek for a name to it ; the facility wherewith words are there compounded, affording such as will be expressive of its use: such are, barometer, hygrometer, microscope, telescop, , thermometer, 8ic. But of all sciences, medicine most abounds with such terms; as diaphoretic, diagnosis, diarrhca, hæinorrhage, hydrophobia, phthisis, atrophy, \&ic. Besides the copiousness and significancy of the Greek, wherein it excels most, if not all, the other languazes, it has also three numbers, viz. a siugular, dual, and plural: also abundance of ten-es in its verbs, which makes a variety in discourse, prevents a certain dryness that a ways accompanies ton great an uniformity, and renders that languge pecoliarly proper for all kinds of vere. The use of the participles, of the anrist and preterite, together with the eompound words alrealy mentioned, give it a peculiar force and brevity, without taking any thing from ite perspicuity.

It is no easy matter to asign the precise difference between the modern and ancient Greek; whien consists in the teminations of the nouns, pronouns, verbs, \&ic. not unlike what obtains between some of the dialects of the Italiarn or Spanith. There are aiso in the modern Greek many new words, not to be met with in the ancient. Wie may distinguish three ages of the Greek tonguc: the first of these ends at the time when Constantinople become the capital oi the Roman empire; the sceond lasted from " at period to the taking of Constantinople by the Turks; and the third from that tiare to the present. For a curious
dissertation on this language, with a fac-simile of a letter written by a modern Grecian, see vol. vii. of the Transactions of the Royal Irish Academy.

Greek chúrch, that part of the Christian church which was first established in Greece, and is now spread over a larger extent of country than any other established chuich. It comprehends in its bosom a considerable part of Grecec, the Grecian isles, Wallachia, Moldavia, Egypt, Abyssinia, Nubia, Lybia, Arabia, Mesopotamia, Syria, Cilicia, and Palestine, which are all under the jurisdiction of the patriarchs of Constantinople, Alexandria, Antioch, and Jerusalem. If to these we add the whole of the Russian empire in Europe, great part of Siberia in Asia, Astracan, Casan, .and Georgia-it will be evident that the Greek church has a wider extent of territory than the latin, with all the branches which have sprung from it; and that it is with great impropriety that the church of Rome is called by her members the catholic or universal church. That in these widely distant countiies the professors of Christianity are agreed in every minute article of belief, it would be rash to assert; but there is certainly such an agrecment among them with respect bout to fuith and to discipline, that they mutually hold communion with each other, and are in fact but one church.
As the Greek church has no public or established articles, like those of the churches of England and Scotland, we can collect what is its doctrine only from its creeds, from the councils whose decrees it receives, from the different offices in its liturgies, and from the catechisms which it authorises to be tat:ght. "The doctriae of the Trinity, and the articles of the Nicenc and Athanasian creeds, are received by the Greeks in common with other Christians. In one particular, indeed, they differ from the othcr churches of Eurupe, whether Romish or refurmed. They believe, that the Holy spirit proceeds from the Father only, and not from the lather and the Son; and in defeace of this opinion they appeal to ecclesiastical history, the acts of councils, the writings of the fathers, ancient manuscrips, and especially to a copy of the creed of Contantinople, engraven on two tables of silver, and hung u ; in the church of St. Peter at Rome, by order of L.co HI. Of the Nicene or Constantinupolitan creed, therefore, as it is received by them, the eighth articie runs in these words; ' 1 bedieve in the Holy Gliost, the Lord and diver of hife, who procerceeth from the Father, and with the lather and the son together is worslipped and gloritied:' and the corresponding article of the cithana ian creed is of cousse, 'The Holy Glost is of the Father, ncither made, nur creaicd, nor begotten, but prucceding:"
Thereh the bohones and cle-ge of the Greck church :blor the we of imese, whin they pretud to he one cause of bleir se paidiona from the ser of Rome, they abmit ines ther churchen the picures of ains, to intact they whe the ran, and twamate the dwoton of viliers. This practice they con, cice as by m. medias cuntrary to the secoud comandment of th. decalogue, which, accoruing to them, prohibits only the wormipp ing of such idel, as the Gentiles beliered tole geds; whereas their picitres, being used merdy as remembrancers of Christ and the saints, have written on each of thein the name of the persos whom it is meant to ruprisent. Dr. King

GREEK CIURCH.

assures us that the more learned of the Russian clergy would wilingly allow no representation whatever of (iod the Father; and that, during the terina of Peter the Grat, the synod not only connured the use of such pictures in churches, but petiionad the emperor that they might be every where taken down. Peter, however, though he fuliy coacurred in opinion with the synod, thought this a mcasure for which the minds of his subjects were not ripe, and dreaded, that if carried iato execution it would occasion a general invurrection. Such pictures, therefore, though not less impious than absurd, are still in use

In the (ieek as well as in the Roman church, the invocation of saints is practised, but they are not invoked in either as deities, but merely as intercessors with the supreme God, "it being more modest (say the Greeks), as well as more available, to apply to them to irtercede with God, than to address ourselves immediately to the Almighty.' Plausille as this reasoning may at first sicht appear, it ascribes to the saints the divine ataribite or ubiquity, and is likewise in direct ontr:adiction to the doctrine of St. Panl, who hath tallght us, that as "there is one God, so there is buione mediator between God and man, the man Christ Jesus."

The (ireck church, at the colcbration of the Lord's Supper, commemorates the faithful de parted, and cuen prays for the remission of their si's; but she allows not of purgatory, nor preteads o determine dogmaticaily eoncerning the state or condition of departed souls. She must, howner, believe that no final judgment is passed upon the yecat body of mankind till the consummation of all things, csherwise such prayers could not be offered withont absurdity. The editors of the Encyclopredia Eritannica assert, that in this part of her doctrine, the Greek church is counpenanced $b j$ all the writers of the promitive churh ; and they adiace some passages of Scripcure (:as Matt. xxv. io el.31. 34. 2 Tim. i. is. iv. d. which they think countenance the same doctrane; but every candid reader will sec that the application of these passages to the point in hard is very far fromobinus and natural. These learned gentenicn say, \cdots Ihe practice of praying for the dead is lo:aty concemned in every protestant country, al, yet there is no Christian who does not in effect pray for his departed friencs." They support this assertion by arguments for the colifutation of wich. they say in another place, they are under no apprehenoton. ". This (way they, may a pear a paradox, but it is an obvions and a certain truth; for where is the man who beieves i. a general judgment, and duen $n \cdot t$ wish that his dicce.sed wite, or parent, or chisd, or friend, ' $\mathrm{m}: \mathrm{y}$ tind mercy of the Lord in that day?' Such a wish is the essence of 2 prayer; which consists not of the sounds in which our seatiments are clothed, lut in the aspirations of a devout heart." We are ever ready to give our suffrage in faveur of the excellent work from which this passage is extracted, and in general we pay grat def:rence to the opinion of its learned conductors. but in the present instance, we see littie force in their argaments, and, as their authority may persuate, where their reasonings do not convince; we beg, in a point of such importFuc to protestant, as that before us, to state concisely our reasons for rejecting the opinion of these gentlemen. We do not deivy that a devout wish is of the essence of a prayer; but we conceive if is not all that is cssenpial. Where, we would
say, is the good and bencrolent man, who sfmpathizes with the distresses of his fellow creatures, who, on witnessing the execution of a young man that had been seduced into vicious and criminal conduct by base and ensnaring company, docs not wish that this youth had been proof against the enticements of vice, ard so lived as to have ended his days in peace? But this wish is widely different irom ti:e prayer of the Christian: it produces no change in the state of the unhappr youth, it availeth not in arresting the approach of death; while the " ferrent prayer of a righteous man availeth much." Unkes prayer be accompanied with a humble expectation that it will be heard and answered, that it will prevail with the father of our opirits (as we are assured it always will if we pray in faith tor spiritual blessinge to descend upon ourselves), it lones its life's blowl, if we may so speak, and degencrates into an nore "furm of godiness without the pouer." We helieve, in opiosition to the upinion in the Encyclopadia Britannica, that few, very few, Christians pray fortheir d-parted fricinds. Dr. Johuson, with the caution natural to that great man, after the death of his wife writes thus in his journal: "In the cuening I prased fur her conditionally, if it werc lawful." But in general, we conceive, the good man is not vainly hoping for any change in the linal state of his departed friend, in consequence of his prayers, but fervently wishing, that, previous to his death he might, though une known to the survivors, have recunciled bimself unto Gut, and so have died under the hopes of the gospel. But we must return from this digression; the impurtance of the subject discussed will, we trust, plend our excusè.
Superorogation with its consequent indulgencies and dispeucations, which were once so profitable, and afterwards so fatal to the interests of the court of Rome, are utterly disallowed in the Greet church, which likewise lays no claitn to the character of infallibility. She is inded, like some other churches, very inconsistent on this last topic; for whilst she pretends not to anl absolute exemption frum crror, her clergy seem to consider their own particular inode of worbhip as that which alone is acceptable to Goxl.

Predratination is a dogma of the Greek church, and a vily presailing opinion amongst the people of Russia; " and I must do the justice (says Dr. King) to those who have written upon it, especially the latest autiors of that country, to say that they have treated it, as depending on the attribute of prescienes in the divine nature, with a much better kind of lugic than that with which such points are generally discussed."

In the Greck church there are serm sacraments; or, as they are terined, mysteries, viz. baptism; the chrism, or baptisinal unction; the rucharist ; cunfession; ordination; marriage; and the mystery of the hily oil, or enchelaion. By the Grecks a mystery is detined to be "a ceremony or act appointed by God, in which God giveth or signitieth his grace; and of the seven which they celebrate, four are to be received by all Christians, viz. baptism, the baptismal unction, the eucharist, confession. Of these, baptism and the cucharist are decmed the chief; and of the other threc, none, not even the cuchelaion, is considered as obligatory upon all.

With respect to baptism, we know not thah they hold any peculiar opinions. They consider it indeed as so absolutely necessory to salvation,

GREEK CHURCH.

that in cases of extremity, when a priest or deacon cannot be had, it may be administered by a mideife or any other person, and is not to be repeated oll any occasion whaterer. In this opinion, as well as in the practice founded on it, they are in perfect harmony with the church of Rome, which, as every person knows, has for many ages allowed the validity of lay baptism in cases of neceasity.

The daily scrvice of the Greek chureh is sn long and complicated, that it is impossible to sive an adeynate account of it without swelling this article far beyond its due pioportion. Of this the reader will be convinced, when he is informed that the several bouks cuntaining the church service for all the days in the year amount to more than twenty volumes in folio, besides one large volume called the Rrgulation, which contains the directions how the rest are to be used.

The four gospels make one volume by themselres; and whenever the gospel is read in any service, the deacon exclaims; "Wisdom, stand up. Let us hear the holy gospel." The priest then saith, "The lesson from the gospel arcording to St. Matthem, St. Mark, \&e." The dracon says again, "Let us stand." The choir, at the berinning and end of the gospel, always says, "Glury be to thee, \mathbf{O} Lurd, glury be to thee." Fron the old testament and the epistles extracts only are used in the service; and when they are to be read, the deacon calls out, "Attencl."

The service of this church as it now stands, and was at first drawn up in writing, is calculated for the use of monasteries; and when it was afterwards applied to parochial churches, many of the offices or forms, which ware connposed for different hours of the day and night, were used as one service, without the slightest alterition being made to aroid repetitions. Something of this kind has taken place in the church of Englanl, where the matins, the litany, and the communion, which were formerly three distinct services, read at different times of the day, are now run into one service; which by those not accustomed to it is therefore deemed long, as well as defurmed by needles os repetitions.

The service of every dar, whether it has a vigil or not, begins in the evening of what we wrould call the preceding day, as among the Jews; and for the same reacon, berance it is saill in the Nosaic account of the creation, that "the evenins and the moning were the first day." The several services, according to the original or monkish in. stitution, are. 1. The vespers, which used to be eclebrated a little before sun-set ; 2 . The after- vespers, answering to the completorium of the Latin chureh, which used to be celebratel after the monks had supped, and before ther went to bed; 3. The mesonyecticen, or midnight service; 4. The matius at break of day, answering to the latudes of the Romish cburch; 5. The first hour of prayer, or prima, at sun-rise; 6 . The third hour, or tertia, at. the third hour of the day; 7. The sixth hour, or sexta, at noon; 8. The ninth hour, or nona, in the afternoon at the nintl hour of the day. These are called the canonical hours; but it is to be observed, that the after-vespers were not added till a late periond, before which the re:son assigned fur the number of services being seven, was, that David saith, "Seven times a day will I praive thee." When all the psalms and hymns wert sung, these daily services could not possibly have ben performed in less than twelve or fourteen hours. In the church of Russia, and probably in other
branches of the Greek church, there are at present but three scrvices in the day: the ninth hour, the vespers, and the after-vespers making one; the mesunyecticon, the matins, and prima, another; and the third and sixth hour, with the communion, the last. In all the services, except the commanion, prayers and praises are offered to some saint, and to the Virvin Mary, alinost as often as to God; and in some of the services, after erery short prayer uttered by the deacon or the priest, the choir chauts "Lord have mercy upon us," thirty, forty, or fifty times successively.

Though the number of services is the same every day, the services themselves are constautly varying in some particular or other, as there is not a dar which, in the Greck church, is not cither a fast or a festiral. For these days there are particular hymns and sprvices, in two volumes folio, to which there is a supplement containing services for the saints and festivals, as they occur in the calendar throughuut the year. These services are adjusted by the directions contained in the Book of Regulation; but the adjustment is very difficult and intricate.

The Greeks, as we have already ohserved, have no peculiar opinions respecting the nature of baptism: but the rites and ceremonies with which that ordinance is administered are very childish and ridiculous; a relation of them would give pain to every one who considers religion as a reasonable scrvice. It may be observed, however, that alnid all their trifling rites, they practise trine imencrsion, which is unquestionably the primitire mauner.

For the celebration of the Lord's Supper they have three liturgics that are occasionally userl, viz. that of St. Chrysostom, which is in ordinary daily une; that of St. Basil, used on particular days; and that of the presanctified, as is called. which is used on the Wedneslays and Fridays during the great fast before Easter. Between the liturgies of St. Chrysostom and St. Baxil there is no essential difference; and the office of the presanctified is merrly a torm of dispensing the communion with elements which had been esnsecrated on the preceding Sunday. In the offortory thero is a stranze cercmony, called the slaying of the Holy Lamb, when the priest, taking intu his left hamil one of the five loaves which are to be consecratel, thrists a spear into the right side of it; sayins," He was led as a lamb to the slanghter; ${ }^{\circ}$ then into the letit side, adding, "And as a blameless lambl bifore lis shearers is dumb, so he openeth not lis mouth:" then into the upper part of the loaf; saying, "In his humiliation his judgment was takin avar:"' and into the lower part; adding, "And who shall declare his generation?" He' then thrust the spear obliguely into the loaf, liftiog it up, and saying, "Fur his life wras takers away fron the earth". After this he lays down the losf, and cutting it crusswise, says, "The Lamb of Coxl, which taketh awny the sins of the world, is slatin for the life and salvation of the world." All this, and more to the same purpose, is unquestionably modern; but we liave no doubt but that the pricst uses the words of Chrysustom himself, when, in the consecration of the elements, be says, "We offer unto thee this reasonable, this unbloody sacritice; and we implore, we pray thee, we humbly besech thee, to sund down thy Holy Spirit upou us, and those oblations presented unto thee; aud make this bread the precious body of thy Christ and that whiçh is in this cup the precives bloont

GREEK CHURCH.

of thy Clurist, changing them by thy Holy Spirit."

In the present Greek church transubstantiation is as much an article of faith as in the church of Rome; for now every bishop at his consecration declares, in the must solemn manuer, that he believes and " understands that the transubstantiation of the bodly and blood of Cbrist, in the holy supper, is cffected by the influence and operation of the Holy Ghost, when the bishop or priest invokes God the Father in these words, "and make this bread the precions body of thy Christ, \&c." This is indeed a different account from that of the Latin church of the time at which this portentous change is wrought; but such difference is a matter of very little importance. If the change itself be admitted, the consequences must be the same, whether it be supposed to take place when the priest pronounces the words of institution, or after he has invoked the descent of the Holy Ghost; in either case it leads to idolatry. It may be proper to mention, that in the Greek church it is deemed essential to the validity of this holy sacrament, that a little warm water be mixed with the wine; that the napkin, which is spread over the holy table, and answers to the corporale of the church of Kome, be consecrated by a bishop, and that it have small particles of the reliques of a martyr mixed in the web, otherwise the eucharist cannut be administered. In this church children may receive the communion inmediately after baptism; and this, indecd, however absurd, appears to us the ouly way of making the principles of Pedo-baptism cousistent with themselves. The Iay communicants, of whatever age, receive both the elements tugether, the bread being sopped in the cup: the clergy receive them separately.

We have observed, that one of the seven inysteries or sacraments of the Greek Church is confession; but anong the Greeks it is a much more rational and edifying service than in the chureb of Rome. In the Greek church the cad of confession is the amendment of the penitent; in the church of Rome it is to marnify the glory of the priest. In the former church, the confessors pretend only to abate or remit the penance, declaring the pardon fiom God alone; in the latter, they tale upon them to forgive the sin itself. The Greek church peeseribes confession four times a year to all her members; but the laity, for the most part, confess only once a year previous to recciving the holy conmunion; and to this they are in Russia ubliged by the laws of the cmpire.

The cermonics with which unatrimony is performed in the Greek church comsist of three distinct ofices, formerly cel-brated at different times, after certain intervals, which now make but one service. First, tiere was a solemn service, when the paitics betrothed themselses to cach other, by giving and receiving rines or vilure presents, as pledges of their mutual fidclity and attachment. The ancient usage was for the man to reveive a gold ring and the woman a silver one, which is still alluded to in the rubric, though in the present practice, the rings are gencrally buth of sold. At this time the duwry was paid, and certan obligations were contered into to f.rfeit sums in prom portion to it, if either party shombld rafe io ratify the rugazement. At this ceromony, called the pergient, or recor:lin! of the pliches before or thesses, the priest gives lizhted tapers to the parties tu be contranted, making the sizn of the cros: on the forehead of each wiblacent of the taper lectore he detivers it. Tue secuad evetuony, wises is pro-
periy the marriage, is called the office of matrimonial coronation, from a singular circumstance in it, that of crowning the parties. This is done in token of the triumph of continence; and therefore it has, in some places, been omitted at second marringes. Formerly these crowns were garlands made of flowers or shrubs; but now there are kept, in most churches, crowns of silver or some other metal for the celebration of matrimony. At the putting of them on, the priest says, " N, the servant of God, is crowned for the handmaid of God;" and " N, handmaid of God, is crowned for the servant of God, in the name of the Father, and of the Son, and of the Holy Gbost;" adding thrice, "O Lord our God, crown them with glory and bonour."

The third ceremony is that of dissolving the crowns on the eighth day; after which the bride is conducted to the bridegroom's house, immediately to enter on the cares of his family.

With respect to discipline and government, the Greek church bears a stribiug resemblance to that of Rome. In both there is the same division of the clergy into regular and secuiar; the same spiritual jurisdiction of bishops and their officials, and the saune distinction of ranks and offices. In some poiuts the discipline of the Greeks differs from that of the Romans. Alt orders of secular clergy in the Greek church inferior to bishops are permitted to marry; but celibacy, and the assumption of the monastic habits, are indispensably requisite in those who are candidates for the mitre. The regular clergy, says Mr. Dallaway, are generally men of a certain education; whereas the seculars are of the meaner sort, and illiterate in the extreme.

In the Greek church there are five orders of clergy promoted by the imposition of hands; but it does not appear that the ordination of the reader, or of the subleacon, is considered as a sacrament. The forms used in the ordination of deacons, presbyters, and bishops, are seriousand significant, braring in themselves evidence of great antiquity. The candidate for the deaconate or priesthood kneels before the holy table, and the bishop. laying his right hand on his read, saith, "The divine grace, which bealeth our infimitics, and supplicth our defects, promoteth N , the most pious sub-deacon, to the order of deacon;" or, in the case of the priestliound, "The must pious deacon to the order of a presbyter; let us pray for him, that the rrace of the Holy Spirit may come upon him.' It dues not appea:, from Dr. King's account of these offirers, that in the Greek church the attending piesbyters lay on their hands tuzcther with the bishop, at the ordination of a pres. byter, as is practised in the chureh of Encland; but several bishops lay on their hams together with the archbis!up, at the consecration of a bi hop. Indeed the whole of the consecration of a bishop is a solemn and impressive ceremony. It conclades with a prayer, that Cinrist will make the new bishop an imitation of himseif, the trae shepherd ; that be will make him a leater of the blind, a light t: those who walk in darkness, and a teacher of imfaits; that he may shine in the world, dud reccive at last the great reward prepared for thuse who contend bold!y for the preteching of the gospel. After this the pasioral-staff is deivered to the new bishop, with a very proper and solemn exhortation from the aschbishop, to feed the flock of Christ committed to his care.

The last sacrament of the Greek church is that of the boly vil or cuchelaion, whici is uot cun-

G•REK CHURCII.

fineI to persons "periculose xgrotantibus, et mortis periculo imminente," like the extreme unction of the Rumish church; but is admimstered. if required, to derout persons upon the slightest malady. Though this ordinance is derived from St. James, clap. v. ver. 14, 15. it is by no means de ewed necersary to salvation, or obligatory upon all Cbristians; and it is well that it is not, ton s ven priests are required to administer it rewularly, and it cannot be administered at all by less than three. The win is consecrated with much solemnity; after which cach priest, in his turn, takes a twig, and dippiuk it in the oil now made boly, anuints the suck person cross-wise, on the forethad, on the nostrils, on the paps, the mouth, the breast, and bith sides of the hands, praying that he may be delivered from the todily infirmiif under which he latours, and raised up by the grace of Jesus Christ.

In the Greck, as well as in the Latin church, there is a service, called the divine lavipedium, observed on the Thurslay of Passion-week, in imitation of our Saviour's bumility. At Constantinople Jesus Christ is, on this occasion, personitied ty the patriarch, and every where else by the bisionp of the diuccse, and the twelve apostles by twelve regular priests, when a ludicrous contest arises who shall represent Judas; for tie name .ttaches for life. This office is perfurmed at the west end of the church, where an arm-chair is set at the buttom, faciug the cast, for the bichop; and ou earh side are placed twelve chairs for the twelve prisest, who are to represint the twelve apostlec. The prayers and hymns used on this occasion are exceelingly beautiful and appropriate; and when the first gespel, relating our Saviour's wathing of his disciples feet, begins to be read, the bishop; or patriarch rises up, and takes off his pontifical vestuments by himself without assistance. He then girds himself with a towel, and taking a bason of water in his hand, kneels down and washev one foot of each pricst, beginninz with the younget; and atier having wasied it he kisses it. All this is done as the several circumstances are read; and when be comes to the last priest, who is supposed to represent Peter, that priest rises up and saith, "Lord, d,st thou wash my fert ?" \&c. The bishop answers in the words of our Saviour; and having finisised the whole, puts on his garments again, and sits down; and as the second gospel is read, repeats the worts of our Sariour, "Know ye what I have done unto you?" \&r. The of fice is certainly ancient, and if decently perfurmed may be affecting.

Among the Russian festivals, the King's day, or the benediction of the waters, is very singular. It is celebrated at the begimning of the ycar, and is thus decribed by Chantreau. "On the Neva, then froze:, there is raised for this ceremuny a kind of temple, of an octagonal figure, on the top of which is a St. Join the baptist, aul the iuside is d corated with pictures, reareenting the bap: iom of J-sus, his tran ficuratic.n, and some cotier parts of his life. There your attention is drawn to an enarmous Holy gimot, appear:ng to d serud irum heaven, a dectoration comanon to all the Greck churches, which intrulices the If:ly Ginot e:ery *here. lu the midilte of the sanctuary is a syuare space, where the broken ice leaves a commun cafion with the waters running below, and the rest is ornaunented with rich tipestry. Arou:d this temple there is crected a kind oi gallery, whicia
communicates with one of the windows of the imperial palace, at which the empress and her fanily come out to attend the ceremony, which begins as soon as the regiments of guards have taken post on the river. Then the archbishup, at the sound of the bells, and of the artillery of the fortress, comes out of the palace, and walks in procession, with all his clergy, to the little temple we have just mentioned. When arrived at the place where the ice is broken, he descends, by means of a ladder, to the side of the water. Tiacre be dips lus cross thice or four times, aferwards says som:e prayers, an orisinn to the great St. Nichulas, and the waters are then thought bessed. The prelate sprivkles the water on the company around him, and on the co:ours of all the regiments that happen to be at St Petersburg. After this benediction, the archbishop retires. Then the people crowd towards tie hole, by which this prelate has blessed the wat:rs. They drink of then with a holy avidity. Notwithstanding the cold, the mothers plunge their infauts, and the old inen their heads, into them. Every body makes it a duty to carry away some for the purification of their hoaves, and curing certain distumpers, against which the good Russians pretend this holy water is a powertul specific. While exery one proceeds to this useful provision, fuur popes, who are at the four corners of the sanctuary, sing a kind of litany in which they rehearse all the titles of the empress, and to which the perple answer by these
 Since the death of the enpress, this part of the strvice nas, we doubt not, received a correspondent aiteration.

Anong the Giefk clergy, the next person to a bishopican arch mandrite, who it the director of one or mure courents, which are called ina adren; then come the abbut, the arch-priest, the priest, the deacon, the uader-d acon, the chanter, and the lecturer. The secular ch res are sabjected to no rules, and never rise higher than lighopriest. They are allowe 1 to marry once; but it must be with a virgin, ard bciore they are ordainel, Therg have ineither alebe nor tythes, but depend on the perquisites that arime from their office ; and they seddom priach bu: in Lemt. The head of the Greck churoh is tire patraich of Constantinople; who is cirson by tif nethbouring archbishops and motropulitans, nind confimed by the emperor or grand visir. He is a ;erson of grat disnity, beiug the head and director of the eastern church. The other patriarchs are those of Jerusal $\cdot \mathrm{m}$, Aulioch, and Alevandria. Mr. Tournetort tolls us, that the patriacthats are new generally set to shie, and beetowel upin those who are the highest in thers. It may be proper to add here, that after the taxine of C intantinep'e by Mahommed II. he continucl in the patrarich of that city the same precent wind, the Geek minierars had been accustomel to m: br-1 patcral staff. a white horse, aud frur humbel ducats in so'd. To the Grek conech and the mantenance of its
 have graduaily sacrised to their inconstancy, theor aminiini, an 1 their private jealonsy. Stiil. however, the patriarch of Constantime fills a very lurrative and lieis office. "Besides the puwer of nomating the oher three patriarchs, and all cpreephad dientatios (hays Mr. Datiaxay), he cung a most exte sive jurishethon, comais-
 Muldasia, and tie istands of the Aichipetayo.

Since the rlose of the sixtecuth century, the Rus. sian church has claimed a jurisdiction intependent of the see of Constantinople; though appols liave Ireen made to that see in caser of extraordinar:importance. The influence of the patriarch with the Porte is rery extensive as far as his own nation is concernerl. His memorials are never denied; and he can, in fact, command the death, the exile, imprisonment for life, deposition from offices, or pecuniary fine, of any Greek whom he may be inclined to punish with rizour, or who has treated his anthority with contempt. On the death of the patriarch the most eager competition is exerted to fill the vacant throne; which, as it is obtained by bribery and intrigue, is of course a very unstable seat to the succe:sful candidate, should snother offier to acerpt the appointment at a lower salary." For a fullir accuint of the doctrines, disciphne, and worship of the Greck church at present, we refer the reader to Kins's Rites and Ceremonies of the Greek Church in Russia, and to Dallaway's Constantinople ancient and modern (published in 1797); from which two works this abstract has been mostly taken.

Greex orders, in architecture. See Doric, Ionic, and Corinthian.

Greekvalerian, ia botany. Sce PoLEMONIUM.

GREEN. a. (grun, German; groen, Dutch.) 1. Having a colour formed by compounding blue and yellow (1'ope). 2. Pale; sickly (Shak:pearc). 3. Flourishing; fresh; undecajed (Dryden). 4. New; fresh: as, a green wound (Shatispeare). 5. Not dry (Hooker). 6. Not roasted; half raw (Wutls). 7. Unripe ; immature; young (Shakspeare).

Green. 3. 1. The green colour (Dry.). 2. A grassy plain (Milton). 3. Leaves; branches; wreathes (Dryden).

To Green. v. a. (from the noun.) Tomake green (Thomson).

Green-cloth, a board, or court of justice, held in the compting-house of the king's houshold, for the taking cognizance of all matters of government and justice within the king's court royal ; and for correcting all the servants therein that shall any way offend.

To this court also belongs the authority of maintaining the peace for twelve miles round the king's court, wherever it shall be, exeepting at London.

The judge of this court is the loril steward, assisted by the treasurer, comptroller, cofferer, clerks of the green-cloth, \&e. It takes its name, green-cloth, from a green cloth spread over the board where they sit, whercon are the arms of the compting-house.

Green-earth. Terre rerte, Brochart; grüncrde, Emmerling. A satillitic earth of amygdalites or alnond-stone. It is found wherever this stone occurs, as in Saxony, Bohemia, Monte Baldo, near Verona, Scotland, \&c. The colour of this mineral is celandinegreen, passing into mountain and blackishgreen, rarely into olive-green : when of a gnod colour it is sometimes cmployed by painters. It occurs in mass, in angular or ghobular pieces, or disseminated. It is also found lining balls of agate with a sujerficial covering, as well
as giving an interior coating to the eavilits of amycrdaloids. Its fracture is finc-grained carthy, passing into indeterminate, blunt-edged fragnients. It gives a shining streak; is smooth and somewhat unctuous to the touch; very soft ; opase; adheres slimhty to the tongue; is light and casily frangible. When exposed to the blow-pipe it blackens, but does not melt by itsclf; with borax it gives a brownisinblack opake glass; when immersed in water it aboorbs a considerable quantity, tut does not break down in it or become pliastic.

Gisen finch, in ornitholog. Seo

Loxia.

Gheen-house, or Conservatory, a house in a garden contrived for sheliering and preserving the most tender and curious exotic plants, which, in our climate, will not bear to be exposed to the open air during tho winter season. These are generally large and beautiful structures, equally ormamental and useful. The length of these houses, says Mr. Miller, must be proportioned to the number of plants they are to contain; but their depth should never be greater than their height in the clear; which in small or mirldling houses may be sixteen or eighteen feet, and in large oncs from twenty to twenty-four. The windows in front should extend from ahout one foot and a half above the pavement, to within the sama distance of the ceiling, which will admit of a cornice round the building, over the heads of the windows. In a small green-house, the sashes should not be less than four or five feet broad, and in a large one they should not exceed seven and a half; the shutters of which ought to fall back close to the piers on the inside, that when open, they may not prevent any of the rays of light from reaching the plants. The piers between these windows, which support the building, should be as narrow as possible for which reason they should either be of stone or of well-burnt brick. If of stone, they ought not to exceed two feet and a half in front, awd should be sloped off backwards about cighteen inches broad, by which means the rays of the sun will not be obstructed by the corners of the piers; which they would be, if they were square: but if built with brick, it will be proper to make them near three feet in front, otherwise they will be too weak to support the building: these ought also to be sloped off in the manner directed for those of stone. Over the greenhouse there may be romens for drying and prescrving seeds, roots, Sec. and behínd it, a houso fur tools and other purposes, which will prerent the frost from entering that way, so that the wall between them neel not be more than two bricks and a half in thickness.

The floor of the green-house, which should be either laid with marble, common stone, or broad tiles, must be raised two feet above the surface of the ground on which the house is placed; or, if the sitmation be moist, at least three feet: and if the whole be raised upon low brick arches under the floor, it will be of great service in preventing the dainps rising in winter. Under the floor, about three fot
from the front, it will be adviseable to make a flue of about ten inches in width, and two feet deep, to be extended the whole length of the house, which may be returned along the back part, and the smoke be carried up into funnels adjoining the trol-house. The fireplace may be contrived at one end of the house; and the door at which the fuel is introduced, as also the ash-grate, should enter into the toolbouse; where the fuel being likewise laid, the whole will be out of sight. Fires, however, must be very sparingly used in this place: not one winter in three or four will require them to be lighted, since this ought never to be done but when the frost cannot well be kept out any other way. Indeed the coldest weather cannot make it necessary for the green-house to be shut up close for a long time together, which would be attended with very ill consequences; for as it frequently happens, that in continued frosts we have an hour or two of sun-shine in the middle of the day, it will be of great service to the plants if they be allowed to enjoy its rays through the glasses; but the window-shutters should be closed again as soon as it is clonded. The inside of the house should either be whitewashed or painted white; for this colour reflects the rays of light in a greater quantity than any other. In this green-house there should be trussels, upon which rows of planks should be fixed, in order to hold the pots or tubs of plants, the foremost of which should be placed four feet from the window, and the rows behind rise graduaily from the first, in such a manner, that the heads of the second row be entirely adranced above the first, the stems only being hid by it: and at the back part there sliould be allowed at least a space of five feet, for the conveniency of watering the plants, and admuitting a current of air around them : care should also be taken not to place the plants too close to each other, nor ever to place eluphorbiums, sedams, torchthistles, and other tender succulent plants, amongst oranges, myrtes, and other evergrecus. To avoid the inconvenience of placing plants of sery different natures in the same house, it will be proper to have two wingsadded to the main green-house, which may largely add to the beauty of the building, and also collect a greater share of heat. Lpon this plan the green-house is supposed exactly to front the south, one of the wings to face the south.east, and the other the somith-west: so that from the time of the sun's first appearance upoll any part of the building, till his departure at night, be will be constantly refected from one part to the other, and the cold winds will be also kept off from the front of the main green-house. In the area may be placed many of the tender exotic plants, that will bear to be exposed in the summer season: and in the spring, before the weather will permit the plants to be set out. the beds and barders of this area may be filled with anemoasies, ranunculuses, tulips, \&ic.

In the center of this area may be infroduced a small bason for water, which will be very eonstuient for watering the plants; and the
two wings of the building should be so come trived as to maintain plants of different degrees of hardiness, which should be effected by the situation and extent of the fire-place, and the manner of conducting the flues. If the wings le sixty feet in length they may be conveniently divided in the niddle by partitions of glass. with glass doors, and to each of them should be a fire-place, with flues carried up against the back wall. The sloping glasses of theso houses should be made to slide and take off as pleasure, so as to adinit air to the plants, according to lie temperature of the external atmosphere.
(iRIEENE (Dr. Maurice), an eminent musician, and professor of music at Cambridge, was a native of Londun. He began the work of correcting and reforming the church music, greatly corrupted by transcribers; which undertaking was completed by his friend Dr. Boyce. He died in 1755.

GRE'ENEYED. a. (green and cye.) Having eyes coloured with green.
GRE'ENISH. a. (from green.) Somewhat green; tending to green.
GREENSHANK, in ornitholog. See Scopolax.

GREENLAND, a general name by which are denoted the most easterly parts of America, stretching towards the north pole, and likewisa sone islands to the north of the continent of Lurope, lying in very high latitudes. This country is divided into West and East Greenland. West Greenland was discovered in the ninth century, by the Norwegians, who planted colonies there. The communication with that country, after a long interruption, was renewed in the last century. From the I.utheran and Moravian missionaries, who settled in this frozen and ancultivated region, we learn that the N. W. coast of Gireenland is separated from America by a very narrow strait; that, at the bottom of the bay into which this strait conducts, it is highly probable they are united; that the inlabitants of the two countrics have some intercourse; and that the Eskimaux of America much resemble the Greenlanders in their aspect, dress, mode of living, and language. Fiast Greenland was, for a long time, considered as a part of the continent of West Greenland, hat is now ascertained to be an assemblage of islands lying between 9 . and 20 E. Lon. and 76.40 and 80 . 30 N . lat. It was discoverod, in 1533, by Sir Hugh Willourliby, who called it Greenland, supposing it to be a part of the Western Continent. In 1595, it was visited by Barentz, and Cornelius, who pretended to be the original discoverers, and called it Spitzbergen, or sharp mountains, from the many sharp-pointed anul rocky mountains with which it abounds. The only quadrupeds of either West or East Greenland are deer, white bears, and foxes. To its frozen seas the English, and other nations, repais anoually in the proper season, to fish for whaleq. SceSpitzebegen.
Early in the last century, llans Fgede, minister of Vogen, in Norway, prompted by a

G R E

laudable zeal to promote the knowledge of Christ among the savage Greenlanders, made some proposals for renewing the intercourse between Denmark and Norway, and Greenland, which had been discontinued for some centuries. Most of the friends and acquaintance of this worthy divine, when they heard of his project, looked upon it as a chimerical undertaking. However, in the year 1718, he resigned his benefice in the south part of Norway, and renoved with his wife and children to Bergen. His proposals did not meet with a favourable reception either from the merchants or clergy of that city. He therefore went to Copenhagen, in 1719 , and laid his plan before the king; who sent an order to the magistracy of Bergen, to propose to the citizens the erecting of a Greenland company. This, after many difficulties, was at last effected in the gear 1721, and a capitul of 10,000 rix dollars was saised for that purpose. The new established eompany fitted out three ships for Greenland; and the indefatigable Egede was sent thither as missionary, and furnished with 300 guilders by the society for propagating the gospel at Copenhagen. It was not without great danger and difficulty that the single ship which had the missionary on board at length arrived off a place called Baal's-River, on the west side of Greenland, in latitude sixty-four degrees, and wintered on an island there. M. Egede, and forty men who remained with him, immediately set about building a house, in which the natives readily lent them a helping hand. This new colony was, from year to year, carefully supplied with necessaries by the company; but the trade carried on with Greenland brought in no great profit. In the mean while, the missionary employed his time in learning the Gruenland language; and by his liberality and sweetness of manners so endeared himself to the inhabitants, that the respect they showed him in some particulars far exceeded his wishes; for they entertianed such an exalted idea of his piety and virtue, that all the sick flocked about him, imploring him to heal them, being persuaded that lis breathing on them would resture them to health. In 1731, a royal edict was published, eujoining all the king sulyects in Greenland to return home, and the culonies were thereby dissolved. But M. Eigede, being zealous for the salvation of the inhabitants, stiid behind, together with his family, and some others who chose to follow his fortunes. In 1733, the Greenland trade was re-issiuned with great vigour ; and the king granted a pension of 2000 rix-dollars a ye.rr to the missimaries. In the year 1736, M. Eevede returned to Denmark, after a residence of tifteen years, which he had spent in a zealous endeasour to do good, and lett behind him a great number of converts.

GRILENLAW, the county town of Berwickshire, seated on a river that joins the Tweed, before it reaches Berwick. Lat. 5j. 43 N . Lon. 2.18 W .

GRE'ENLY. ad. (from grern.) 1. With a greenish colour. 2. Newly; freshly. 3.

G R E

Immaturely. 4. Wanly; timidly: not in use (Shaksprare).

GRE'ENNESS. s. (fom green.) 1. The quality of being green; viridity. 2. Immaturity; unripeness (Sidncy.) 3. Freshness; vigour (South.) 4. Newness.
GREENOCK, a seaport in Renfrewshire, at the mouth of the Clyde. It is a place of great resort for shipping, and has a great share in the herring fishery. Here is a sugar house, also a rope and sail manufactory. Its inhabitants amount to 17458 . Lat. 55.54 N . Lon. 4.99 W .

GREENSBURG, the county town of Westmoreland, in Pennsylvania. Lat. 40.8 N. Lon. 78.36 W .

GRE'ENSICKNESS. See Chlorosis. GRE'ENSWARD. Greensword. s. (green and stward.) The turf on which grass grows (Shakspeare. Swift).

GRE'ENWEED. s. (green and weed.) Died weed.
GREENWICH, a town of England, in the county of Kent, situated on the banks of the Thames, anciently called East Greenwich. It formerly belonged to the abbot of Ghent, from whom it was seized by Henry V. and given to Shene; at the dissolution it came to the crown. Here was formerly a palace, in which queen Mary and queen Elizabeth were born, and Edward VI. died. This palace was first erected by Humphry, duke of Gloucester, enlarged by Henry VII. and completed by Henry VIII.; but being afterwards suffered to run to ruin, was pulled down by king Charies II. who began another, a most magnificent edifice, and lived to see the first wing finished. King Charles II. also enlarged the park, walled it round, planted it, and caused a royal observatory to be erected on the top of the steep of the hill. This edifice was erected for the use of the celebrated Mr. Flamsteed, and it still retains the name of that great astronomer: it was likewise furnished with mathematical instruments for astronomical observatious, and a deep dry well for observing the stars in the day-time. Here is likewise an excellent camera obscura, so contrived as to present successively the pictures of surrounding objects, upon a table of plaister of Paris, about 3 feet in diameter. British navigators look upon the meridian of Greenwich as the first meridian from whence the longitudes are estimated; and the tables in the Nautical Almanac, and Requisite Tables, are adopted to the meridian of Greenwich: but in gazetteers, \&c. the longitudes are now generally reckoned froin London, as the first meridian, which is 5.37 W . of that of Greenwich. In this work we always estimate the longitudes from London, unless the contrary is expressed.

The parish church of Greenwich, which was rebuilt last century by the commissioners for erecting the fifty new churches, is a very handsome structure, dedicated to St. Alphage, archbishop of Canterbury, who is said to have been slain by the Danes, in the year 1012, on the spot where the church now stands. The

G R E

Thames is here very broad, and the chanuel deep; and at some very high tides the water is salt, though it is usually sweet and fresh. Greenwich Hospital stands on the spot where stood the palace of several of our kings. The first wing of this noble and superb edifice, ereeted by king Charles II. was designed to be applied to the same use. William III. erected another wing, and adopted the plan of applying it to the use of English seamen incapable of service either through age or infirmity, but the whole was not finished till the reign of George II. Besides the seamen who are provided for, there are 140 boys, the sons of seamen, instructed in navigation, and bred up for the service of the royal navy: but there are no out-pensioners as at Chelsea. Each of the mariners has a weekly allowance of seven loaves, weighing sixteen ounces each; three pounds of beef; two of mutton; a pint of peas; a pound and a quarter of cheese; two ounces of butter; fourteen quarts of beer, and one shilling a week tobaccu-money: the tobacco-money of boatswains is \%s. 6 d . a week each, and that of their mates 1s. 6 d . and the other officers in proportion to their rank. Besides which, each common pensioner receives once in two yearsa suit of blue clothes, a hat, three pair of stockings, two pair of shoes, five neckcloths, three shirts, and two night-caps. This hospital has about 100 governors, composed of the nobility, great officers of state, and persons in high posts. For the better support of this hospital, every seaman in the royal navy, and in the service of the merchants, pays $6 d$. . every month. This is stopped out of the pay of all szilors, and delivered in the Sixpenny Receiver's office, Tower Hill; and, therefore, a seaman who can produce an anthentic certificate of his being disabled and rendered unfit for the sea service by defending any ship belonging to British subjects, or in taking any ship from the encmy, may be admitted into this hospital, and receive the same benefit from it as if he had been in the king's service. Greenwich is a populous town; it contains 2121 houses, and 14339 inhabitants. Its markets are on Wednesclavs and Saturdays.

GRE'ENWOOD. s. (green and wood.) A wood considered as it appears in the spring or summer (D ryden).
To GREETT. v. a. (gratcr, Iat. дnezan, Sax.) 1. To address at meeting (Dinne). 2. To address in whatever manuer (Shahspeare). 3. To salute in kindness or respect (D ryden). 4. To congratulate (Spenser.) 5. To pay empliments at a distance (Shahspeare). 6. To meet, as those do who go to pay congratulations ($P_{\text {ope }}$).

To Greer. v.n. To mect and salute (Shak.)
GREETER. s. (from the verb.) He who greets.

GREETING. s. (from grcet.) Salutation at meeting, or compliments at a distance (Shirkspeare).

GREEZH. s. A flight of steps ; a step.
GRE'GAL. a. (grex, gregis, Latin.) Belonging to a flock:

- G R E

GREGA'RIOUS. a. (gregarius, Latin.) Going in flocks or herds (fiay).

GREGORIAN CALENIAR, that which shows the new and full moon, with the time of Easter, and the moveable feasts depending thereon, by means of epacts, disposed though the several months of the Gregorian year.
Gregorian epoch, the epocha, or tine whence the Gregorian calendar or coniputation trok place. The year 1809 was the $\mathbf{2 2 7}$ th year of that epocha.

Gregorian year, the Julian year corrected, or modelled, in such a manner as that three secular years, which in the Julian account are bissextile, are here common years, and only every fourth secular year is made a bissextile year.

The Julian computation is more than the solar year by eleven minutes, which in ono hundred and thirty-one years amounts to a whole day. By this calculation, the vernal equinox was anticipated ten days from the time of the general council of Nice, held in the year 325 of the christian æra, to the time of pope Gregory XIII. who therefure caused ten days to be taken out of the month of Oc tober, in 1582, to make the equinox fall on the twenty-first of March, as it did at the time of that council ; and to prevent the like variation for the future, he ordered that three days should be abated in every four hundred years by reducing the leap year at the close of each century for three successive centuries to common years, and retaining the leap year at the close of each fourth century only.
This was at that time esteemed as exactly conformable to the true solar year, but it is found not to be strictly just, because that in four hundred years it gains one hour and twenty minutes, and consequently in 7200 years, a whole day.
The greatest part of Eurone have long used the Gregorian style : but Great Britain retained the Julian till the year 1752, when by act of parliament this style was adjusted to the Gregorian; since which time Sweten, Denmark, and other European states, who computed time by the Julian account, have followed this example.

GREGORY (Nazianzen), an illustrious bishop of Constantinople, was born in 324, not far from Nazianzum, a town of the second Cappadocia, of which place his father was bishop. In his youth he visited munst of the celebrated schonls of the times: When the emperor Julian prohibited the Christians from reading the books of the Gentiles, Nazianzen wrote poems to furnish the christian youth with subjects of entertainment and study. On the death of Julian he publisted two orations against that emperor, replete with wit and eloquence. In 378 he was appointed, by the council of Antioch, to repair to Constantinople to suppress Arianism, and was chosen bishop there ty the catholic congreation. He afieriwards resigned that sce and retired to his native country; where he died in his (i6th year. He was one of the ablest champions of the

G R E G O R Y.

woctrine of the trinity, and was a° man not only of an acute but a sublime genius.
Gregory, the first pope of Rome of that. name, and who acyuired the title of the Great, was descended from an illustrious patrician family at Rome, where he was born about the year 544 . He was appointed pratict of the city, and held other civil dignities; but, being inclined to a religious life, he retired to the monastery of St. Andrew, which he himself had founded. From this retreat he was drawn by pope Pelagius II. who employed him in his affairs, and made him his secretary. Ile, however, obtained leave to retire again to his monastery, of which he was made abbot. On the death of Pelagius, in syo, he was elected pope. He conducted the affiairs of the pontificate with great ability and success till the year 604, when he died. It deserves to be inentioned that this pope converted the English to Christianity.
There were fourteen other popes named Gregory, the last of whom, Alexander Ludovisco, was clected pontiff in 1621, and died in 1683:

Gregory (James), one of the most eminent nathematicians of the last century, was a son of the Rev. Mr. John Gregory, minister of Drumoak in the county of Aberdeen, and was born at Aberdeen in 1638. His mother was a daughter of Mr. David Anderson of Finzaugh, a gentleman who possessel a singular turn for mathematical and mechanical lnowlelge. This mathematical genius was hereditary in the fanily of the Andersons, and from them seems to have been transmitted to their descendants of the name of Giregory. Alexander Anderson was cousin-german of the above-mentioned David. The mother of James Gregory inherited the genius of her family; and observing in ber son, while yet a child, a strong propensity to mathematics, she instructed him herself in the elements of that science. He received his education in the languages at the grammar school of Aberdeen, and went through the usual course of acialemical studies in the Marischal college. At the age of twenty-four he published his treatise, intitled Optica Promota, seu abdita radioruin seflexorum et refractorum mysteria, geometrice enucleata; cui subnectitur appendix subtilissimorum astrononix problematon resolutionem exhibens, London 1063: a work of great genius, in which he gave the world an invenfion of his own, and one of the most raluable of the modern discoveries, the construction of the reflecting telescope. This discovery iunmediately attracted the attention of the mathematicians, both of our own and foreign countries, who werc soon convinced of its great importance to the sciences of optics and astronomy.
The university of Padua being at that time in high reputation for mathematical studies, James Gregury went thither soon after the publication of his first work; and fixing his residence there for some ycars, he published in ${ }^{166} 67$. Vera Circuli et Hyperboles quadratura; in which he propounded anotber discovery of
his own, the invention of an infinitely converging scries for the areas of the circle and hypertwola. 'To this treatise, when published iin 1688 , he added a new work, intiled, Geometrix pars universalis, iuserviens quansitatum curyarum transmutationi et mensura; in which he is allowed to have shown, for the first time, a method for the transmutation of curves. 'These works engaged the notice, and procured Mr. Gregory the correspondence, of the greatest mathematicians of the age, Newton, Huygens, Halley, and Wallis; and their author being soon after chosen a fellow of the Royal Society of London, contributed to enrich the Philosophical Transactions at that time by many excelleut papers. Through this channel, in particular, he carried on a dispute with Mr. Huygens, upon the occasion of his treatise on the quadrature of the circle and hyperbolas, to which that able mathematician had started some objections. Of this controversy, it is unnecessary to enter into particulars. It is sufficient to say, that, in the opinion of Leibuitz, who allows Mr. Gregory the highest merit for his genins and discoveries, Mr. Huygens has pointed out, though not errors, some considerable deficiencies in the treatise above mentioned, and shown a much simpler method of attaining the end in view. In 1603 Mr . James Gregory published at Iondun another work, intiled Exercitationes Geometricx, which contributed still more to extend his reputation. About this time he was elected professor of mathematics in the university of St. Andrew's ; an office which he held for six years. During his residence there, he married in 166 M Mary, the daughter of George Jameson, the ceirbrated painter, whom Mr. Walpole has tenned the Vandyke of Scotland, and who was fellowdisciple with that great artist in the school of Rubens at Autwerp. In 1672, he published, "The Great and New Art of Weighing Vanity: or a Discovery of the Ignorance and A rrogance of the Great and New Artist, in his 1'scudo-philosophical Writings. By M. Patrick Mathers, Arch-bedal to the University of St. Andrews. To which are annexed sone Tentamina de Mintu Penduli et Projectorum." Under this asumed name, our author wrote this little piece to expose the ignorance of Mr . Sinclare, professor at Glasgow, in his hydrostatical writings, and in returu for some ill usage of that author to a colleague of Mr. Gregory's The same year, Newton, on his wonderfu discoveries in the nature of light, haring contrived a new reflecting telcscope, and made several objections to Mr. Gregory's, this gare birth to a dispute between those two philosmphers, which was carried on during this and the following year, in the most amicable manner on both sides; Mr. Gregory defending his own construction so far, as to give his antagonist the whole honour of having made the catoptric telescopes preferable to the dioptric; and shewing, that the imperfections in these instruments were not so much owing to a defect in the object speculun, as to the differens refrangibility of the rays of light. In the course

GREGORY.

of this dispote, our anthor described a burning concave nitror, which was approved by Newzon, and is still in good esteen. Several Irtiers ahat passed in this dispute are printed by Dr. Desaguliers, in an Appendix to the English edition of Dr. David Gregory's Elemenis of Catoptrics and Dioptrica,

In 1674. Mr. Grezory was called to Edinburgh, to fill the chair of mathematics in that university. This place he had held but little more than a year, when, in Octuber 1675, being employed in shewing the satellites of Jupiter through a telescope to some of his pupils, he was suddenly struck with total blindness, and died a féw days after, to the great loss of the mathematical world, at only 37 years of age.

As to his character, Mr. Jaines Grezory was a man of a very acute and penetrating genios. His temper scems to have bren warm, as appears froun his conduct in the dispute with Huygens; and, conscious perhaps of his own merits as a discoverer, he scems to have been jealous of losing any portion of his reputation by the inprovements of others apon his invertions. He possessed one of the most amiable characters of a true philosopher, that of being content with bis fortune in bis situation. But the most brilliant part of his chasacter is that of his mathematical genius as an inventor, which was of the firct order; as will appear by the following list of his inventions and discoveries. Among many others may be reckoned, his Reflectíng Telescope ; Burining Concave Mirror ; Quadrature of the Circle and Hyperbola, by an infinite converging series; his method for the Transformation of Curves; a Geometrical Demonstration of Lord Brounker's Series for Squaring the H yperbolahis Demonstration that the Meridian Line is analogons to a scale of Lugarithmic Tangents of the Half Complements of the Latitude; he also invented and demonstrated geometrically, by beip of the hyperbola, a very simple couverging series for making the logarithms; he sent to Mr. Collins the solution of the famous Keplerian problem by an inEuite series; he d:scovered a method of drawing Tangents to Curves geometrically, without any previous calculations; 2 rule for the Direct and Inverse method of Tangents, which stands upon the same principle (of exhaustions) with that of fluxions, and differs not much from it in the amsnier of application; a Series for the lengit of the Are of a Circle from the Tangent, atid wice versa; as also for the Secant and Logarithmie Tangent and Secant, and vice versa : These, with others, for measuring the length of the elliptie and hyperbolic.curves, were sent to Mr. Collins, in return for some received from hins of Newton's, in which he followed she elegant example of this author, in delivering his series in simple terms, independent of each other.

Grecory (David), was a son of the Rev. John Gregory, minisicr of Drumoak, in the scounty of Aberdeen, and elder broher to Mr. James Gresory, the inrentor of the most foppY 9 ,
mon reflecting telescnpe. He was born about the year 1627 or 1628 ; and though he pos-se-seid all the genius of the other branches of his family, he was educated by his father for trade, and served an apprenticeship to a mercantile house in Holland Hasing a stronger passion, however, for kuowledge than for monev, he abandoned trade in 1655 ; and returning to his own country, he succeeded, upon the death of an elder brother, to the estate of Kinardie, situated about forty miles north from Aberdeen, where he lived many vears, and where thirty-two children were born to him by two wives. Of there, three sons made a conspicuous figure in the republic of letters, being all profesors of mathematics at the same time in three of the British universities, viz. David at Oxford, Janges as Elinburgh, and Charles at St. Audrews.

Mr. Gregory, the subject of this nemonir, while he lived at Kinardie, was a jest among the neighbouring gentlemen for his ignorance of what was doing about his own farm, but an oracle in matters of learning and philosophy, and particularly in medicine, which he had studied for his amusement, and began to practise among his ponr neighbours. He aequired such a reputation in that science, that he was emprojed by the nobility and gentlemen of that county, but took no fess. His hours of study were singular. Being much occupied through the day with those who applied to him as a physician, he went early to led, rose about two or three in the morning, and, after applying to his sudies for some hours, went to bed again and stept an hour or two before breakfast.
He was the first man in that country who had a barometer ; and having paid great attention to the changes in it, and the corresponding changes in the weather, he was once in danger of beine tried by the preshytery for witch. craft or conjuration, A deputation. of that body waited upon him to enquire into the ground of certain reports that had come to their ears; but he satisfied thein 80 far as to prevent the prosecution of a man known to be so extenswely useful by his tnowledge of medlicine.

About the heginning of the last century he semoved with his family to Aberdeen, and in the time of Queen Anne's war employed his thoughts upou an improvement in artillery, in order to make the shot of great guns more der structive to the enemy, and executed a model of the engine he had conceived. Dr. Rcid ine forms us, that the conversed with a clock-maker in Λ berdeen, who had been employed in making this model; but having made many different pieces ty direction without knowing their intention, or how they were to be put together, be could give no account of the whole. After making some experiments with this model; which satisfied him, the ofd genr Heman was so sanguine in the hope of being useful to the allies in the war against France, that he set about preparing a field equipage with a yiew to ulate a campaign in Flander!,

GREGORY.

and in the mean timesent his model to his son wretcics, were ignominiously studying the the Savilime professor, that he might have his and sir Isaac Newton's opinion of it. His son shewed it to Newton, without letting him know that his own father was the inventor. Sir I sac was much displeased with it, saying, tinat if it had tended as minch to the preservation of mankind as to their desernction, the inentor would have deserved a great reward; but as it was contrived solely for destruction, and would soon be hnown by the enieny, he rather deserved to be pumshed, and urged the profeswor very strongly to destroy it, and if prossible to suppress the invention. It is probabic the piofissor followed this advice. He died soon after, and the model was never found.

If this be a just account of the matter, and Dr. Reid's seracity is unquestionable, we cannot help thinking that Newton's usual sagacily had, on that occasion, forsaken him. Were the implements of war much more destructure than they are, it by no means follows that more men would be killed in battle than at perent. Muskets and cannons are surcly more destructive weapons than javelines and brws and arrows; and yet, it is a well known fact, that since the invention of gunpowder battles are not half so bloody as they were before that period The opposite armies now seldour cone to close quarters, a few rounds of musketry and artillery commonly decide the fate of the day; and had Mr. Gregory's improvement been carried into effect, still fewer rounds would have decided it than at present, and the carnage would consequently have been less.

When the rebellion broke out in 1715 , the old genteman went a second time to Holland, and returned when it was over to Aberdeen, where he died about 1720, aged 93, leaving behind him a history of his own time and country, which was never published.
Gregory (Dr. David), Savilian professor of astronomy at .Oxford, whom Dr. Smith has termed subtilissimi ingenii wathematicus, was the eldest son of Mr. Gregory of Kinnairdy, brother of the abovementioned Mr. James Gregory. He was born at Aberdeen, in 1661 , and received the earlicr parts of his ellucation in that city. He completed his studies at Eiinburgh ; and, being possessed of the mathemitical papers of his uncle, soon distinguished himself likewise as the heir of his genius. In the 23 d year of his age he was elected professor of mathematics in the unversity of Edinburgh ; and published, in the same year, Exercitatio Geonetrica de dimensione figurarum, sive specimen methodi generalis dimetiendi quasvis figuras, Edinhurgh, 1684, 4to. He saw very early the excellence of the Newtonian philosophy; and had the merit of being the first who interduced it into the schools by his public lectures at Edinburgh. "He had (savs Mr. Whiston) aiready caused several of his scholars to keep acts, as we call them, upon several branches of the Newtonian philusophy; while we at Cambridge, poor
wretcines, were iynominiously studying the
fictions hypotheses of the Cartesian."
In ligit, on the report of Dr. Bernard's intention of resigning the Savilian professorship of astronomy at Oxford, Disid Gregory went (1) London; and being patronised by sir Isaac Newton, and warmly becriended by Mr. Flanstead, the astronomer royal, he obtained the vacant profesorship, for which Dr. Halley was a competitor. This rivalship, however, instead of animosity, laid the foundation of friendship between these eminent men ; and Halley soon after became the colleague of Gregory, by obtaining the professor,hip of geometry io the same university. Soon after his arrival in London, Mr. Gregory had been elected a fellow of the Royal Society ; and, previously to his election into the Savilian professorship, had the degree of doctor of physic conferred on him by the university of Oxford.

In 16y3, he published in the Philosophical Transactions a resolution of the Florentine problem de 'Testudine veliformi quadribili; and he continued to communicate to the public, from time to time, many ingevious mathematical papers by the same chaunel. In 1699 he printed at Oxford, Catoptricx et Dioptrice Sphericx Elementa; a work which, as he informs us in his preface, contains the substance of some of his public lectures read, cleven years before, at Edmburgh. This valuable treatise was republished first with additions by Dr. William Brown, with the recommendation of Mr. Jones, and Dr. Desaguliers; and afterwards by the latter of these gentlemen, with an appendix containing an account of the Gregorian and Newtonian telescopes, together with Mr. Hadley's tables for the construction of both those instruments. It is not unworthy of remark, that, in the end of this treatise, there is an observation which shows, that what is generally believed to be a discovery of a nuuch later date, the construction of achromatic telescopes, which has been carried to great perfection by Mr. Dollond and Mr. Ramsden, had suggested itself to the mind of David Gregory, from the reflection on the admirable contrivance of nature, in combining the different humours of the eye. The passage is as follows: "Qund si ob difficultates physicas in speculis idoneis torno claburandis et poliendis, etianınum lentibus uti oporteat, fortassis media diverse densitatis ad lenten objectivam componendam adhibere utile foret, ut a natura factum observamas in oculi fabrica, ubi cristallinus humor (fere ejusdem cum vitro virtutis ad radios lucis refringendos) aqueo et vitreo (aque quoad refractionem haud absimilibus) conjungitur, ad imaginem quam distincte fieri poterit, a natura nihil frustra moliente, in oculi fundo depingendam." Catopt. et Diopt. Sphær. Elem. Oxon. 1695, p. 08.

In 1702 our author published at Oxform, Astronomix Physice et Geometricae Elementa: a work which is accounted his masterpiece. It is founded on the Newtonian doctrines, and was cetcemed by sir Isaac Newtoa

GREGORY.

himself as a most excellent explanation and defence of his philosophy. In the following year he gave to the world an edition in folio of the works of Euclid in Greek and Latin; in prosecution of a design of his predecessor Dr. Bernard, of printing the works of all the ancient mathematicians. In this work, although it contains all the treatises atrributed to Euclid, 1)r. Gregory has been careful to point out such as he found reason, from internal evidence, to believe to be the productions of some inferior geometrician. In prosecution of Dr. Bernard's plan, Dr. Grezory engaged soon atier, with his colleague Halley, in the publication of the Conics of Apollonius ; but he had procceded but a little way in this undertaking when he died, in the 4yth year of his aje, at Maidenhead in Berksinire, A. D. 1710. To the genius and abilitics of David Gregory, the most celebrated mathematicians of the age, sir Isaac Newton, Dr. Halley, and Dr. Keill, have give? ample testimonies. Resides those works published in inis lifetine, he left in manuscript, A short Treatise of the Ninure and Arithmetic of L angrithms, which is printed at the end of D). Killis tranlation of Commandine's Euchd; and a Treatise of Praclical Geometry, which was afterwards tramlated, and published in 1745, by Mr. Maclaurin.

Dr. David Gregory nirrica in 16ys Elizabeth, the daughter of Mr. Oliphant of Langtown in Scotland. By this lady he had four sons, of whom, the ellest, David, was appointed regius professor of modern history at Oxford by king George I . and died in 1707, in an adranced age, after enjoying for many years the dignity of dean of Christ church in that miversity.

Dr. David Gregory was a most intimate and contidential friend of sir Isaac Newton, and was intrusted with a manuscript copy of the Principia, for the purpoce of making observations on it. Of these Newton avaled himbelf in the second edition, they haring come too late for bis first publication, which was exceedingly hurried by Dr. Halley, from fears that Newton's hack wardness would not let it appear at all. There is a complete copy of these observations preserved in the library of the university of Edinburgh, presented to it by Dr . James Gregory, the present professor of the practice of medicine. These contain many sublime mathematical discussions, many valuable commentarics on the Principia, and many interesting anecdotes.

Gregory (1)r John), a celebrated physician, was the grandson of Mr. James Gregory above-mentioned; the time of his birth we have not been able to ascertain. He completed his studies in King's college, Aberdeen; and after altending lectures at Edinburgh, he went (in 1745) for the same purpose to Levden : while here he received from Aberdeen an unsolicited degree in medicine. In 1747 he was clected professor of philosophy in the same university: this professorship he resigned in 1749, and directed his views entirely to the practice of physic, settling as a physician at Aberdeen. In

1752 he married Elizabeth daughter of William lord Furber; and soon after removed to London, where he obtained much repitation in his profession. Here he published the comparative View of the State and Faculies of Man, by which he was first known as an author. In 1755, on the death of his brother, he obtained the professorship of physic in King's college, Aberdeen : here he continued till 1760, when he obtained the professorial chair at Eduburgh. As a lecturer his manner was simple, natural, and animated. His lectures were delivered in great measure without notes; but he always expressed his ideas with uncommon perspicuity, and in a style happily attompered between the formality of studiced cumposition and the ease of conversation. The omly lectures which be committed fully to writing were those introductory discourses which he read at the beginning of his annual course, and which in $17 \% 0$ were published under the title of Lectures on the Duties and Quaitications of a Physician. In the year 177^{2} Dr. Grefory pubhished Elenents of the Prictice of Phycic, for the use of students; a work intended solely for his own pryils, and to be uset ty himself as a text-book w be commented upon in his conrse of lectures. In an advertisement prefixed to this work, he signitied his intention of comprehending in it the whole series of diseases of which he treated in his lecures on the practice of phy-ic; but tinis intention he did not live to accomplish, having brought cown the work no further than to the end of the class of febrile diseases.

Soon after the death of his wife, and, as he bimself says, "f for the amusement of tiis solitary hours,"" our author employed himself in the compusition of that adminable tract, intitled, A Father's Le_acy to his Dangiters; a work which, though certainly never intended by its author for the public eyc, it would have been an unwarrantable diminution of his fame, and a capricious refusal of a geveral bencfit to manhind, to have limited to the sole purnose for which it was origindly de-igned. 'These letters to his daughters were evidently written under the impression of an early death, which Dr. Gregory had reason to apprehend from a constitution subject to the grout, which had begun to show itself at irregular intervals even from the 18th year of his ape. His nother. from whom he inherited that discase, died suddenly in 1770, while sitting at table; and Dr. Gregory had prognosticated for himself a similar death. The prediction, indeed, was too true; for having gone to bed on the ninth of February 1773, with no apparent disorder, he was found dead in the morning. His death had been instantaneous, and probably in his sleep; for there was not the smallest discomposure of limb or feature, a per:ect Euthanasia. Some time after bis death, the professorship of the Theory of Medicine was bestowed upon his eldest son, the present Dr. Janes Gregory; who has since succeeded to the practical chair of the late D r. Cullen.

The celebrated Dr. Reid, author of what is

G R E

commonly called the Common sense system of Metaphysics, was a nephew of Dr. David Gregory of Oxford, and inherited the mathematical genius of the familv, as is evident from his truly valuable Disquisition on Quantity. published in vol. 45. of the Philosophical Transactions of London.

It may farther be observed of this extraordiuary family, that Dr. James Gregory, the present learned professor of physic and meticine in the university of Edinburgh, is the son of the late Dr. John Gregory ; the said James has lately published a most ingenious work, intisled, Philosophical and Literary Essays, in 2 volumes 8vo. Eliab. 1792; and he seems to be another worthy inheritor of the singular genius of his fanily.

There have also been some very able authors of the saine name in England: as the late Dr. George Gregory of West Ham, and others; but whether they trace up their origin to the same family, or whether they apprehend they have not talent sufficient to keep up the family credit, supposing they should attempt it, are points into which we cannot here enquire.

Gregory (St. Vincent), 2 very respectable Flemish geometrician, was born at Bruges in 1584, and became a Jesuit at Rome at 20 years of age. He studied nathematics under Whe learned Jesuit Clavius. He afterward became a reputable professor of those sciences himself, and his instructions were solicited by ecyeral princes: he was called to Prague by the emperor Ferdinand the Second ; and Philip the Fourth, king of Spain, was desirons of having him to teach mathematics to his son the young prince John of Austria. He was not less estimable for his virtues than his skill in the sciences. His well-meant endeavours were very conmendable, when his holy zeal, though for a false religion, led him to follow the arıny in Flanders one campaign, to confess the wounded and dying soldiers, in which he received several wounds himself. He died of an apoplexy at Ghent, in 1657 , at 83 years of age. As a writer, Gregory St. Vincent was very diffise and voluminous, but he was an excellent genmetrician. He published, in Latin, three mathennatical works, the principal of which was his Opus Geomnetricum Quadraturx Circuli, eiSectionum Coni, Antwerp, 1647, 8 vols. folio.

GRE-HOUND. See Canis and GreyHound.

GREIN, a town of the archduchy of Austria, situate on the Danube. Lat, 48. 16 N . Lon. 18. 5 E.

GRI:MIAL. a. (gremium, Latin.) Pertaining to the lap.

GREN (Frederick Albrecht Charlen), an eminent German chemist, was born at Burnberg, May 1st, 176%. We have not been able toobtain any information respecting the place and manmer of his education : but we find that he scon attained preat celebrity, and that at a very early period he became editor of the Journal der Physik, or Journal of Natural Philosophy, a work which commenced in 1770. At lengta his reputation became so completely

G R E

established that he was chosen Public Professor of Medicine, and Member of the Sociely of the Searchers into Nature; at Halle. Among his works are: Observations on Fermentalions and the Products thence obtained, 8vo. Systematic Manual of Chemistry, 9 vols. 8vo. Principles of Natural Knowledge, 8yo. Obeervationes et Experimenta circa Ge nesin Aéris fixi et phlogisticati, 8vo. Principles of Pharmacology and the Materia Medica, two parts. He was the concributor also to tho Allzemein-Literatur-Zeitung of Jena, and author of various papers in Crell's Chemical Annals. This very able philosopher died Nor. 26, 1798, in his 39th year.

GRENADA. See Granada.
GRENADE. See Granado.
GRENADIER. Sec Granadier.
GRENADILLOES. See Gramadilloes.

GRENAILLE, a name given by the French writers to a prejaration of copper, which the Chinese use as a red colour in some of their finest china, particularly for that colour which is called oil-red, or red in oil.

GRENOBLE, an ancient town of France, in the department of Isere, with a bishop's see. It contaius many handsome structures, particularly churches. The cathedral is a fine ancient building. Lat. 45. 12 N. Lon. 5. 49 E

GRESHAM (Sir Thomas), descended from an ancient family in Norfolk, was born in 1519 at London. He'was bred to trade, but was some time at Caius college, Cambridge. He amassed a large fortune, being successively agent to king Edward VI. queen Mary, and queen Elizabeth. for their money and mercantile transactions. He built the Royal Exchantro at his own expence; founded a college in Bi-shopsgate-street for lectures in divinity, law, physic, astronomy, geometry, nusic, and rhetoric ; besides endowing many public charities. He died suddenly in his own house in 1579. He was buried in a sumptuous manner in the church of St. Helen's, Bishopsgate-street.

GRESSORIAL, in ornithology, a term applied to the feet of birds formed for walking. having three toes forward and one behind.

GRETNA, a village in Dumfriesthire, nea? the mouth of the Esk, and on the borders of Cumberland, nine niles N.W. of Carlisle. Being out of the jurisdiction of the marriage act, it has been long noted as the resort of young people in lingland, who choose to bo married notwithstanding the prohibitions of their parents and guardians, or in opposition to the ecclesiastical laws of Eugland, as they relate to consanguinity.

GREVILLE (Fulk or Foulk), Lord Brooke, a patron of letters and an ingenious writor, was the eldest son of sir Fulk Greville, of Beauchamp-court, in Warwickshire, where he was born in 1554. He was in great farour with queen Elizabell, and was created lord Bronke of Beauchamp-court by king James, who also made him a grant of Warwick castle, He founded a history-lecture in the university of Cambridge. 'I'bis accoupplished noblewan

Was killed by a domestic whom he hadd serevely reproved for an insolent expostulation on the subject of a neglect which the man attributed to his lordship. This happened in $16 \div 8$.

GREVIN (James), a French poet and physician, was born in 1538. He was in the ser*ice of Margaret of France, duchess of Savoy, tand died at Turim at the age of 32 . There are three plays extant of his, and he had a share in writing the ingenions poem entitied The Temple, aimed at Ronsarl, who had abused the Calvinists.

GREW. The preterit of grour.
Grew (Nehemiah), a learned English writer, in the 17 th century, hatd a considerable practice as a physician in London, and suceeeded Mr. Oldenburgh in the office of secretary to the Royal Sosciety. In this capacity, pursuant to an order of council, he drew up a catalogue of the natural and artificial rarities belonging to the society, under the title of Musæun Regalis Societatis, \&c. 1631. He alio wrote, besides several pieces in the Philosophical Transactions, 1. The Comparative A natony of the Stomach and Guts, folio. 2. The A natomy of Plants, folio. 3. Tractatus de salis cathartici natura et usu. 4. Cosmologia Sacra, or a Discourse of the Universe as it is the Creature and Kingdom of Gorl, folio. I He died suddenly in 1721 .

GREWIA, in botany, a genus of the class polyandria, order monogynia. Calyx fiveleaved; petals with a nectariferous scale at the base of each; drupe four-loberl, four-celled, with a one or two-seeded nut. Eleren speeies: chiefly natives of Africa and Asia. Of these the most common is G. occidentalis, with roundish-orate, obtuse, toothed, glabrous Jeaves; solitary, one-flowered peduncles: a native of the Cape, the varieties of which are either slirubs or trees of a near resemblance to the elm.

GREY, a colour. See Gray.

Grey (Lady Jane), an illustrious lady, was of the blood royal of Englanel hy both parents. She was born in 15.37, at Broadgate, her father's seat in Leicestershire. She was one of the most accomplished and learned women of her age, and one of the most unfortunate. Her father, the duke of Suffolk, and her father-inlaw, the duke of Northumberland, caused her to be proclaimed queen, on the death of Edward VI. for which, on the prevalence of queen Mary's party, she and her husband lord Guildford Dudley, with others, were sentenced to die. She was beheaded on Tower-hill in 1554. Her husband, lord Guildfurd Dudkey, was beheaded on the same spot about an hour before, lady Jane having seen himn pass by her apartments in the Tower, and beheld his body convered back, wrapped up in a linen cloth. On the evening previous to her death, she wrote a letter in the Greek langnage to het sister, Pady Cartiarine Grey. She had writtell a letter a few days before to her father to reconcite him to her fare, and in every respect she conducted herself with the mosi perfect foritude and the móst refined semsititility.

G•RI

Her *ritings are, 1. Four Latin Epistles; three to Bullenger, and one to ber sister lady Catharine. The last was written, the night before her execution, in à blank leafof a Greek testament. Printed in a book intilled Epistolx. Helvetice Reformatoribus, vel ad coo scripta, \&c. Tiguri, 1742, 8vo. 2. Her Conference with Fleckenham. (Ballard.) 3. A letter to Dr. Harding, her father's cliaplain. Printed in the Phoenix, vel. ii. p. 28. 4. A Prayer for her own use doring her comfinement. In Fox's Acts and Monuments. 5. Four Latin verses; written in prisorn with ${ }^{5}$. pin.' They are as follows:

Non aliena putes, homini que obtingere possant:

Sors hodierna mihi, tunc erit illa tibi.
Jane Dudley;
Den juvante, nil nocet livor malus :
Et non juvante, nil jurat labor gravis.
Posi tenebras spero locem:
6. Her Speech on the Scaffold. (Ballard) It began thus: "My lords, and you goorl Christian people who come to see me die; I am under a law, and by that law, as a never-erring julge, 1 am condemned to die: not for any thing I have offended the queen's majeity; for 1 will wash my handyguilless thereof, and deliver to my God a some as pure from such trespass as innocence from injustice; but only for that I consented to the thing I was enforced umto, constraint making the law believe I did that which 1 never onderstoond," $\&$ ece. -Hollinshed, sir Richard Baker, Bale, and Fox, tell us that she wrote several other things, but do not mention where they are to be found.

GREYHOUND, a variety of the canis familiaris, employed in the field-sport called coursing. (See Canis and Coursting.) It is at present an undecided point among sportsmen, whether greyhounds should be left wild to their own native powers till of age for the field, or should be regularly trained from a few. months old. It seems generally agreed, however, that the best and even the handsomest greyhounds proceed from the most oncouthly formed paps. The age at which they are supposed to have attained their full powers for coursing is when two sears old: and to be perfect in form, they stonld then, in the language of an old but well-turned hexastick. possess a

> Head like a sunke,
> Neck like a drake,
> Back like a beam,
> Side like a bream,
> Tail like a nat,
> And foot like a cat.

For the rest, see Cxivis.

GRIAS. Anchory pear. In botany, a genus of the class polyandría, order motiogynia. Colyx four-cleft; pecals, foor ; stigma sespile, hollowed out cross-wise; drope winh an eightgrooved shell. Onve species: a Jamaica tree fifty fete high i keives penduloust; very long,

G R I

wedge-shaped at the base; peduncles manyGowered; fruit pear-shaped, and esculent.

GRICE. s. 1. A little pig (Gouldman). 2. A step or grcese (Shakspeare).

To GRIDE. v. n. (gridare, Italian.) To cut: 10 make way by cutting (Milton).

GRI'DELIN. s. A colour mixed of white and rei (Drychens).

GRI'I)iRON. s. (grind, Ishandick, a grate, and iron.) A portable grate on which meat is laid to be broiled upon the fire ($S p$ pctator).
(iRIEF. s. (from grieve.) Is sometimes considered as synonymous with sorrow; and in this case we speak of the transports of gief. At other times it expresses a more silent, deep, and painful affection, such as is inspired by domestic calamities: particularly by the loss of friendis and relatives; or by the distress either of body or mind, experienced by those we love and value.

In grief the sensation experienced is not wholly painful: there is, if we may so speak, a kind of delight derived from contemplating the cause of the affliction; from ennmerating all the excellencies and advantages, real or imaginary, of that which was once possessed, or inight have been possessed, and fondly dwelling upon each. Thus the original emotion subsides into a permanent affection. Shakspeare gives us a fine example of this, when depictung the grief of a nosther for the loss of a child, in The Life and Death of King John. He first describes her ravings.
" I am not mad; this hair I tear, is mine;
My name is Constance, I was Geffrey's wife:
Young Arthur is my son, and he is lost:
I am not mad-I would to heaven I were!
For then 'is like I should forget myself:
O, if I could, what grief should I forget!
Preach some philosophy to make me mad,
And thou shalt be canoniz'd, cardinal;
Fur being not mad, but sensible of grief,
My reasonable part produces reason

- How I may be delivered of these woes,

And teachics me to kill or hang myself.
If I were mad, I should forget my son,
Or madly think, a babe of clouts were he:
I am not mad; too well, too well I feel,
The diff'rent plague of each calamity."
The manner in which these emotions sink Into a permanent affection, is thus touched:
© Const. Father cardinal, I have heard you say,
That we shall see and know our friends in heaven :
If that be true, I shall see my boy again;
For, since the birth of Cain, the first malecbild,
To him that did but yesterday suspire,
There was not such a gracious creature born.
But now will canket sorrow eat my bud,
And chase the native beauty from his cheek,
And he will look as hollow as a ghost;
As dim and meagre as an ague's fit;
And so he'll die; and rising 50 again,

G R 1

When' I shall meet him in the court of heas ven,
I shali not know him; therefore, never, never,
Must I behold my pretty Arthur more.
Pand. You hold too heinous a respect of grief.
Const. He talks to me that never had a son.
K. Piitl. You are as fond of grief, as of your child.
Const. Grief fills the room up of my absent child,
Lies in his bed, walks up and down with me,
Puts on his pretty looks, repeats his words,
Remembers me of all his gracious parts,
Stuffs out his vacant garments with his form;
Then have I reason to be fond of grief."
Shakspeare also pourtrays in a most striking manner, in his play of Macbeth, the powerful inward operation of grief, on receiviug unexpectedly the news of a heavy calamity. Nacduff, while at the English court, is told by Rosse of the murder of his wife and children by order of Macbeth.

Rosse. Your castle is surpris'd; your wife, and babes,
Savagcly slanghter'd : to relate the manner,
Were, on the quarry of these murder'd deer
To add the death of you.
Malcolm. Merciful hearen!
What, man! ne'er pull your hat upon your brows;
Give sorrow words: the grief that does not speak,
Whispers the o'er-fraught heart, and bids is break.
Macduff: My children too?
Rosse. Wife, children, servants, all
That could be found.
Macduff. And I must be from thence!
My wife kill'd too?
Rosse. I have said.
Malcolm. Be comforted:
Let's make us med'cines of our great revenge,
To cure his deadly grief.
Mucduff. He has no children.-All my pretty ones?
Did you say all?-Oh, hell-kite! all!
What all my pretty chickens, and their dam,
At one fell swoop?
Malcolm. Dispute it like a man.
Macduff. I shall do so;
But I must also feel it as a man:
I cannot but remember such thicgs were,
That were most precious to me.

$$
\text { Macleth, Aet } 4 .
$$

GRIELUM. In botany, a genus of the class decandria, order pentagynia. Calyx firecleft; petals five; filaments permanent; pericarps five, one-seeded. One species: a shrub of Ethiopia, with hairy, villous, alteraate leaves.

GRIERSON (Constantia), a woman of es-

G R I

Imordinary attainments, was descendel of very poor and illiterate parents in the comity of kilkemng, in Ireland. She was well acquainted with Greek and Roman literature, and puhlished editions of Tacitus and Terence. She addicessed a Greck epizram to the son of lord Carteret, which aobleman procured her husland a patent to be the king's printer in Ireland; and, as a nark of distinction, caused her life t be inseried in it. She died in 173.3, at the age of 27.

GRIEVVANCE. s. (from gricf.) 1. A state of uneasiness (South). \&. Trie cause of uneasiness (Suift).

Tn GRIEVE. v. a. (grever, French.) 1. To afflict; to hurt. 2. To make sorrowful.

To Gribve. v. n. To be in pain for something past; to mourn; to sorrow, as for the deati of friends (Shakspeare. Dryden).

GRIE'VINGLY. ad. (from gieve.) In sorrow ; sorrowlully (.Shakspeare).

GRIE'VOUS.a. (gravis, Latin.) 1. Afflictive; painful; hard to be horn (Iluolier). 2. Such as causes sorrow (Watts). 3. Expressing a great degree of uneasiness (Shatispeare). 4. Atrocious; heavy (Shakspcare).

GRIE'VOLSLY. ad. 1. Painfully; with pain (Spenser). 2. With discuntent; with ill-wil! (Knolles). 3. Calanutously; miserably (Honher). 4. Vexatiously (Ray).

GrimévoUsiness. s. (tron grievous.) Sorrow: pain; calanity (Isuiah).

GRIFFLNHAKLN, a town of Prussian Pomerania, in the duchv of Stetin, seated on the Oder. Lat. 53.25 N . Lon. 14. 42 E .

GIRIFFON, Gryfhus, $\gamma_{i} \psi \downarrow$, in the natural history of the ancients, the name of an imaginary bird of prey, of the cagle kind. They represented it with four legs, wings, and a beak; the upper part representing an eagle, and the lower a lion; they supposed it to watch over pold mines, hidde:i treasures, \&ic. Tius animal was consecrated to the sun; and the ancient painters represented the chariot of the sun as drawn by griffons. M. Spanheim observes the same of those of Jupiter and Neneesis. The grition in Scripture is that species of the eagle called in Latin assifraga, the osprey : and U*, of the verb 0 , paras, to break. The grifion is freguently seen on ancient medals: and is still borne in coat-armour. Guilhim blazons it rampant; alleging, that any very fierce anitnal may le so blazoned as well as the lion. Sylvester, Morgan, and whers, use the terms segreiant instead of rampant. The griffon is also an ornament of architecture in constant use among the Greeks, and was copied from them, with other elegancies of architectural enrichments, by the Romans. See Sphymx.

GRIG. s. (kricke, Bavarian, a little duck.) 1. A small eel. 2. A merry creature (Swifi). To GRILL. v. n. (grille, a grate, French.) To broil on a gridiron.

GRI'LLADE. s. (from grill.) Any thing broiled on the gridirou.

To GRI'LLY. v. a. (from grill.) To harass; to hurt (Hudibras).

G R I

GRIM. a. (nmma, Saxon.) 1. Having a countenance of terrour; horibile; hideots; fri,htif!l (1)crham). 2. Ugls; ill-lowhing (Sinahippare).

GKi'MACE. s. (French; from grim.) 1. A disturtion of the countenance from habit, afictation, or insolence (South). 2. Air of aflectation (Grancille).

GRIMALDI (J,ion Francis), surnamed the Bulognese, was Lorn at Bologna in 1600^{\prime}, and studied under the Caraci. He was employed by Iunocent X. in painting the Vatican, and by cardinal Mazarin in adorning his own palace and the Louvre. He also understood architecture and engraving. He was of an amiable and generous di, position. He died at Rome in 1600 .

GRIMA'LKIN. s. (gris, gray, and malkin.) The name of an old cat (P hilips).

GRIMBELRGEN, a town of Aus'rian Brabont, with an abber and a castle. I at. 50. 57 N . Lnin. 4.97 E.

GRIME. s. (from grim.) Dirt decply insinuaterl (Wooducard).
To Grime.v.a. (from the noun.) To dirt; to sully deeply (Shahspeare).

GRI'MLY. ud. (from grim.) 1. Horribly; hideously (Shakispeare). 2. Sourly; sullenly (Shahsperare).
GRIMM, a town in the electorate of Saxony, with a citadel, seated on the Muldaw. Lat. 51. 15 N . Ion. 12. 35 E .

GRI'MNESS. s. (from grim.) Horrour; frichtfulness of visage.

GRIMNIA. In botany, a genus of the class cryptogamia, order musci. Capsule ovate; fringe simple, of sixteen undivided teeth; veil campanulate, inflated, lax. Six species: all indigenous to our own country, as well as to other parta of Europe.

GRIMSBY (Great), a large borough in Lincolnshire, with a market on Wednesdays and Sasurdays. It has now only one church. a large handsome structure, like a cathedral. The harbour is now almost choaked up. Lat. 53. 34 N . Lon. 0.6 E.

Tn GRIN. v. n. (ठnennian, Saxnn.) 1. To set the teeth together and withdraw the lips (Shakspeare). 2. To fix the tecth as in anguish (Shakspeare).

Grin. s. (from the verb.) The act of closing the teeth and showing them (Walts).

Grin. s. (ठnyin, Saxon.) A snare; a trap (Job).

To GRIND. v. a. preter. I ground; part. pass. ground. (Bmmoan, Saxon.) 1. To reduce any thing to powder by friction; to comminute by attrition (Bent.). 2. To sharpen or smooth by rubbing on something hard (IIerlert). 3. 'To rub one against another (Bacon). 4. To harass; to oppress (Addison).

To Grind. v. n. 1. To perform the act of grinding (Mitton). 2. To be moved as in the act of grinding.

GRINDELWALD, a town of Swisserland, in the canton of Bern. Lat. 46. 27 N. Lon. 7. 43 E.

GRI'NDER. s. (from grind.) 1. One that

GRI

grinds. 2. The instrument of grinding (Sandys). 3. The back tooth (Bacon).

GRINDERS, in anatomy. Sce Teeth.
GRINDING, the reducing hard substances to fine powders, either by the mortar, or by way of levigation upon a marble.

Guinding. in cutlery, is the operation by which edge tools. re sharpenell: As commonly practised, such grinding is attended with greal inconveniency arising from the developement of theat by friction. The fact of sparks flying from a dry gritedsione when a picce of irion or steel is applied to its surface during the rotation, has been seen hy every one. The heat produced during this process is such that the steel very shon becomes ignited, and hard tons are very frequently sofiened and spoiled, for want of care during the grinding. When a cylindrical stone is partly immersed in a trough of water; the rotation must be moderate and the werk slow, otherwise the water would sonn be thrown off by the centrifugal force; and when this fluid is applied by a cock from above, the quantity is tor small to preserve the requisiie low temperature. It is even found, that the print of a hard tome, ground under a considerable mass of water, will be softened, if it Le not held so as $1 /$ meet the stream; s;ar!s being frequently atiorded even under the water.

To find a remedy for this, Mr. Nicholson was lidd, by some accomts which he received ol German cutiery, to make the following experiment. He procured a Newcastle griudstone of a fine grit and ten inches in diameter, and also a block of mahogany to be used with entery on its face. Both the stone and the wooden block were mounted on an axis, to be occasionally applied between the centres of a strong lathe. In this situdition both were turned truly cylindrical, and of the same diameter. The face of the wood wav gronved obliquely in opposite direciinns, to afliord a lodgment for the emery. The face of the stone was left smonth, and there was a trough of proper size applied beneath the stone to hold water. The grindstone was then used with water, and the wooden cylinder was faced with emery and oil. The instrument ground was a file, out of which it was proposed to grind all the teeth. The rotation was produced by the mechanism of the lathe; the velocity being such as to turn the grinding apparatus about five revolutions in a second: The stone operated bitt slowily, and the water from the trough was soon ex: hausted, with inconvenience to the workman, who could scarcely be defended from it but by slackening the selocity. The emery cylinder cot rather faster. But notwithstanding the friction was made to operate successively and by quick changes on the whole surface of the file, it soon became tion riuch heated to be held with any convenience; and when a cloth was used to defend the hand, the work not only became atukward; but the heat increased to such a degree that the oil began to be decomposed, and emitted an empyreumatic simell. The stone was then suffered to drys and the
file tried upon its face. It alnost immediatefy became blue, and soon afterwards ret-linet Both the cylinders were then covered with uilow, by applying the end of a candle to each while reoolving, and emery was syrinkiled uym the cylinder of wood. The same toot was then applied to the grindstone in mapid mothor. At the first instant the friction was scarecty perceptible; but very speedily alterwards the zone of tallow pressed by the woul became fued, and the stone cevt very fast. The tool was scareely at all heated for a long tine; and when it began to feel warm its temperature was imasediately lowered by removing it to a new zone of the cylinder. The saine effect took place when the experiment was repeated with the trooden cylinder.

GRI'NDLESTONE. Gri'ndstoxe. s. (from grind and stone.) The stone on which edged instruments are sharpeneci.

Grindstone, in oryctology. See Arenariús.

GRINDON-RIGG, a river in Northumberland, near Berwick, famous for the rictory which was rained over the Scuts in 1558 hy the earl of Northumberland and his brother, whea many of the Scots were drowned in tris fiser.

GRI'NNER. s. (from gin.) He that griss (Addison).

GRI'NNINGLY. ad. (from grin.) With a grinniyg laugh.

GRINSTEAD (East), a borough in Sussex, with a market on Thursdays. The assizes are sometimes held here. Lat. 51.12 N . Loa. 0.2 E .

GRIP. s. A small ditch (Ainstcorth).

To GRIPE. v.a. (griepan, Gothic.) 1. To hold with the fingers closed (Draylua). 9 . To hold hard (Dryden). 3. (gripper, Fr.) Ta catch eagerly; to seize (Shanspeare).) 4. Te close ; to clutch (Pope). 5. To pinch: to press; to squeeze (Dryden). 6. To give a pais in the bowels (Dryden).
To Gripe, v. n. 1. To fetl the colic (Lockey. 2. To pinch; to catch at monery meanly (Fell).
GRipe. s. (from the vetb.) 1. Grasp; hold; seizure of the hand or paw. 2. Squeeze; pressare Dryden). 3. Oppression ; crushing power (Shahspearr). 4. Affliction; pinching distress (Otray). 5. (In the plural.) Bellyache; colic (Floyer).
Gripe, in the sea-language, is a piece of timber fayed against the lower piece of the stern, from the fore-mast end of the keel, foining with the knee of the head: its use is to defend the lower part of the stern from any injurv; but it is often made the larget, to make the ship keep a good wind.
GRIPt is also a sea-term, for a ship"s tarm ing her head more to the wind than she shonld: this is caused either by over-londing her a-bead, the weight of which presses her down, so that she will not readily fall off from the wiod; or by staying or setting her masts too mach aff; which is always a fault in shore shipe that drew much water, since it caitses them to be conoinually running lato the wind : flyough in

Ing ships, if the masts be not stayed very far aft, the: will never keep a good wind.

GIR'PER. s. (iroin gripe.) Oppressor; usurer: ex'nf:inner (Burtun.).
(iRlPINGLY. ad. (ftom griping.) With Fain in the guts (bacon).

GRI'PLIE.. s. A griping miser (Spenser).
GiliPSHI ALD. a strong town of Swedish Ponicrania, fotmerly imperial, with a good harbotr, and a university. Lat. 54. 4 N . Lan. 1.3. 44 E.
(i? $\left.\right|^{\prime}-$ A. MnER. s. A mbergrise (.Miltnn).
CilliAE. s. A step, or scale of steps (Shakspenrel.

GRISGRIS, a superstition greatly prevalent among tae nagt es in the interior parts of Afriea. The grampls are certain eastern characters mixed nitio maxical fogures drawn by the Maiabuts, or pritsis, upmn paper. The words are protaitly of the Daidingolanguage, though the characters are an attempt to imitate the A rabic. 'I he poorest negro never goes to war without his grisgris, as a charm against wounr's; and if it proves ineffectual, the priest transfers the blame on the immorality of his conduct. These priests invent griggris agaikst all kinds of ctangers, and in favour of all desires and appetites; by virtue of which the possessrors may obtain or avoid whatever they like or distike. They detend them from storms; enemies, diseases, pains, and misfortunes; and preserve health, long lite, wealth, honour, and merit, according to the Marabuts. No clergy in the world are more honoured and revered by the people than these impostors are by the negroes; nor are any people in the world more imporerished by their priests than these negroes are, a grisgris being frequently sold at three slaves and four and five oxen. The grisgris intended for the head is made in the forin of a cross, reaching from the forehead to the neck behind, and from ear to ear; nor are the arms and shoulders neylected.

GRISKIN. s. (grisgin, roast meat, Irish.) The vertebres of a hog broiled.

GRISLEA. In botany, a genus of the claes octandria, order menogynia. Calyx fourcleft ; petals four, from the incissures of the calyx; filaments very long, ascending; capsule globular, superior une-celled, many seeded. I'wo species :

1. G. secunda: with petioled, glabrous leaves: and axillary onryinhe pointing tone way. A tree of South Ainerica, with leaves like the bay.
2. G. tomentosa. An East Indian shrub, with lanrenlate leaves, and red calyx.

GRI'SLY. a. (з horrible; hideous; frightful (Addison).

GRISONS, a people in alliance with the Swiss, divided into three leagues, which form one republic. The country which they inhabit is bounded on the nurth by the canton of Glaris; and the counties of Sargans and Pludentz, on the east by the Tyrolese, on the south by the states of Venice and the duchy of Milan, and on the west by the Swiss Italian pailiwiekey and the axpentof Uri، The whole
country wask nown to the ancierits by the name of Rhoetia: Under this name likewise was comprised a part of Swabia, and was distinguished into Uppet and Lower Rhoetia This country was what constituted Upper Rhoetia; and, at the decline of the Roman empire, fell under the power of the Ostrugoths, who governed it by dukes. Towards the sirth century, it passert under the dominion of the Franks, and in the ninth was united to Germany. The leagues, or alliances, were originally formed on aecount of the tyranny of the great barons. The most ancient began abous the year 1400, and in 1419, in the bishopric of Coire, against the secular power of the bishop, and took the name of The Caddee, or League of God's House. The second was formed in the year 1424, and was called the Grise; or Gray League. The other was formed in the year 1436, which is the Ieague of the Ten Jus risdictions. The two formet entered into an alliance in the year 1495, and was joined by the last in the year 1471. This general confederation was renewed in the year 1544, and ugain in 1712. By this treaty of union, these people reciprocally engage not to make any new alliance, nor declare war, nor make peace, but by common consent. They agree to succour each other at their own expence, guarantee each other's privileges, \&c. Their government is perfectly democratic, subdivided into a great number of small deunceracies totally independent of each other in their particular police. A diet, or assembly of the thres leagues, is held ycarly, composed of sixty-three deputies, and three chiefs, of which each league sends its respective share. In the elec-* tion of these deputies, every male of yixteen years of age has a voice, and in some commanities they are allowed to vote at the age of fonrteen. The country is, in general, very elevated and mountainous; it contains several ralleys, to some of which the passages are shut upduring great part of the year. Towards the south lie the chief of these valleys, sunk in the Alps, which at last terminate in inaccessible glaciers, or elevated rocks, capable of affording no kirid of vegetable whatever. From these glaciery the principal rivers take their source; as the Rhine, the $\ln n$, and the Adda. The inhabitants cultivate some grain in the valleys, and the less steep hills, but not sufficient for the wants of half the people; the rest they obtain from Lombardy. Their principal objeet, as farmers, is the care of their sheep and cattle, from which they obtain excellent butter and cheese. The mountains afford good pasture, the valleys produce fruit, and the hills chesnuts: The principal part of the mountains abound in metals, minerals, fossits, and mineral springey salt is obtained from Tyml ; most of the Grison peasants wear woollen and linen cloth of theit own manufacture. The number of inhabitants of the Phree Leagues is estimated at 150,000 su-uls; and of their subject countrics, the Valteline, Bonnio, and Chiavenna, it 100,000. The inhabitants are partly Romata Catholics, and partly Protestants; the peasantit

G R 0

speak a corrupt Italian, but the German language is chicfly matie uie of in the towns, and in all public acts.
GRIST. s. (zurre, Saxon.) 1. Corn to be ground (Tusser.) 2. Supply; provision (Suift).

GRISTLE. s. (zmrinle, Sax.) A cartilage (Ray).

GRI'STLY. a. (from gristle.) Cartilaginous; made of gristle (Harvey).

GRIT. s. (zlyzza, Saxon.) 1. The coarse part of netal. 2 . Oats husked, or coarsely pround. 3. Sand; rough hard particles. (Plitips).
Grit, in orvetology. Sec Arena.
GRITTTINESS. s. (from gritly.) Sandiness; the quality of abounding in grit (Mortimer).

GRITTY. a. (from grit.) Full of hard particles; consisting of grit (Newton).

GRI'ZELIN. s. (more properly gridelin.) A pale red colour ($7^{\circ} \mathrm{cmp} / \mathrm{\rho}$).

GRI'ZZLE. s. (from gris, gray; grisaille, Fr.) $\boldsymbol{\Lambda}$ mixture of white and black; gray (Shalispearc).

GRI'ZZLLED. a. (from grizzle.) Interspersed with gray (Dryden).

GRI'ZZLY. a. (from gris, gray, French.) Somewhat gray (Bacon).

To GROAN. v. n. (дnanan, Sax.) To breathe with a hoarse noise, as in pain or agony (Pope).

Gronn. s. (from the verb.) 1. Breath expired with noise and difliculty. 2. Any hoarse dead sound (Shakspeare).

GRO'ANFUL. a. (groan and full.) Sad; agonizing: not used (Spensere).

GROÃT. s. (groot, Dutch.) 1. A piece valued at four-pence. 2. A proverbial name for a small sum (Suift.) 3. Groats. Oats that have the hulls taken of (Ainswort/i).

GRO'CER. s. (from gross, a large quantity.) A man who buys and sells tea, sugar, and plums, and spices for gain (Watts).

Grocer's Company. See Company.

GROCERY. s. (from grocer.) Grocers ware, such as tea, sugar, spice (Clarendun).

GRODNO, the principal town, though not the capital, of Lithuania. It is a large and strageling piace, but contains no more than three hundred Christians, excluding the persons employed in the manufactures, and one thousand Jews. It has greatly the appearance of a decayed town; containing a mixture of wretched hovels, falling houses, and ruined palaces, with magnificent gateways, remains of its ancient splendour. A few habitations in good repair make the contrast more striking. Some remains still exist of the old palace in which the kings used to reside during the holding of the diets. Here is a college, and a physic garden. Grodno is now subject to Russia. It is seated on the river Niemen. Lat. 53. 23 N. Lon. 24.15 E.

Grógeram. Grógram. Grógran. 8. (gros grain, French.) Stuff woven with a large woof and a rough pile.

G R 0

GROGGINESS, in the manage, a stiffness prosuced in the foot of a horse, by its having been loigg battered on hard ground. Swelling of the legs and stiffness of the sinews generally follow. A horse bearing entirely upon his heels in a trot, is styled groggy ; and this defeet is scldum curable.

GROIN, that part of the leelly next the thigh. (See Ingurn.) In vol. 67 of the Philosophical Transactions is an account of a remarkable casc, where a peg of wond was extracted from the groin of a young woman of twents-one, after it had remianed sixteen years in the stomach and intertines, haring been accidentally swallowed when ste was about five years of age.

Groin, among builders, is the angular curve made by the intersection of two semicylinders, or arches, and is either regular or irregular. A regular groin is whell the intersecting arches, whether seminicrcular or semielliptical, are of the same diameters and heights. An irregular groin is where one of the arches is semicircular and the other senielliptical.

GROMWELL, in botany. See Lithaspermum.

GRONINGEN, one of Seven United Provinces, bounded on the E. by the river Enibs, which separates it from East Friesland, on the W. by Friesland, on the N. by the German ocean, and on the S. by Overyssel. It is divided into two parts, of which the town of Groningen and its district are one, and the Ommerlands the other. These two bodies assembled by their deputies, whithe states of the province, make the sovereignty. The chief town is of the same name. It is rich, populous, and handsome. It is seated on the rivers Hunes and $A a$, and has a university. Lat. 53. 10 N. Lon. 6.31 E.

GRONOVIA. In botany, a eenus of the class pentandria, order monogynia. Petalh tive, and with the stamens inserted into the canpanulate calyx : berry dry, one-seeded inferior: one sprecies : a plant of Vera Cruz, climbing by the tendrils; leaves stinging; fowers small.

GRON()VIUS (Iohn Fretierick), an illustrious civilian, histrrian, and critic, was hoin at Hamburgh in 1613. After traveling through Germany, Italy, and liance, he was made professor of polite learning at Daventer, and afterwards at Leydell, where the died in 1072.

Gronovius (James), son of the preceding, was born in 1645, at Daventer. He made a tour to England in 10i0, where he acquired the friendship of several learned neen. He was professor at Pisa, and afterwards at Leyden, where he died in 1716 . He was editor of many of the classics, but his chief work is, Thesaurus Antiquatum Gracarum, 13 vols. folio.

GROOM. s. (grom, Dutch.) 1. A boy; a waiter; a servant (Spenser). 2. A young man (Fairfax). 3. A man newly married (Dryden).

Groon, in the manage, a servant hired

G R 0

to take care of horses, and who professes a thorough knowledge of this business. This knowledge, though seldom suiticiently possessed, is the first requisite in making choice of such a person : the accessories should be obedience, tidelity, great cleanliness and neatness, patience, diligence, and good temper.

GROOVE. s. (from grave.) 1. A deep caver., or hollow in mines (Boyle). 2. A chamel or hollow cut with a toul (Mor.).

T', Groove. v. a. (from the noun.) To cut hollow (Svift).

To GllOPE. v. n. (ठrapan, Sixon.) To feel where one cannot see (Sianilys).

To Grcper. \boldsymbol{v}.a. To search by feeling in the d.rp (Suift).
GRU'i'ER. s. (from grope.) One that searches in the dark.

GROSiLEAK, in ornithology. See Loxia.
GFOSE (Francis), an eminent English antiquary. He illus:raied the Antiquities of Eugland and Wales, in 4 vols. and of Scotland, in 2 wols. He was executing a work of the same kind relative to Ireland, when he died at Dublia, in 1791, at the age of 52 . He was an incenious and pleasant writer, and a remarkabiy grod natured and facetious man. His works are as follow:

1. The Anticuitics of England and Wales, 8 vols. 4to and 8ro. 2. The Antiquities of Scotland, 2 vols. 410 and sro. 3. The Antiquities of Ireland, 2 vols. to and 8vo. 4. A Treatise on ancient Armour and Weapons, 4 tn. 1785. 5. A Classical Dictionary of the Vulgar Tongue, 8vo. 1785. 6. Military Antiquities; being a History of the E:iglish Army from the Conquest to the present Time, 2 vols. $4 t 0,1786,1788$. 7. The History of Dover Castle, by the Rev. Willian Dauell, 4to, 1786. 8. A Provincial Glossary, with a Collection of local Proverbs, and popular Superstitions, 8vo, 1788. 9. Rules for drawing Caricatures, 8vo. 1788. 10. Supplement to the Treatise on Ancient Armnur and Weapons, 4to, 1789. 11. A Guide to Health, Beauty, Honour, and Riches; being a Collection of humorous Advertisements, pointing out the Means to obtain those Biessings; with a suitable introductory Preface, 8vo. 12. The Olio; being a Collection of Fssays, in 8ro. 1793.

GROSS. a. (gros, French; grosso, Italian.) 1. Thick; bulky (Baker.) \&. Shameful; unseemly; enormous (Hooker.) 3. Intellectually coarse; palpable; impure; unrefined (Smal.) 4. Inelegant ; disproportionate in bulk (Thom.) 5. Dense ; not reinned ; not pure (Bacon.) 6. Stupid; dull (Watts.) 7. Coarse; rough; not delicate (Wott.). 8. Thick; fat; bulky (Fell).

Gross. s. (from the adjective.) 1. The main body; the main force (Addison.) 2. The bulk; the whole not divided into its several parts (Hook.). 3. Not individual, but a body together (Shak.). 4. The chief part; the main mass (Bacon.) 5. The number of twelve dozen (Locke).

Gross weigrt, the whole weight of merrhandizes, with their dust and dross: as also the bag or chest wherein they are contained.

G R 0

An allowance is usually made out of the grosen weizht for tare aud tret. Siee Tare.
GROSSA, an island of Dalmatia, in the Gulph of Venice, near the coast of the country of Zara. It is fifty miles in circumfereace. and belongs to the Venetians.

GROYSLY. ad. (from gross.) 1. Bulkily; in bulky parts; carefully. 2. Without subtily; without art; without delicacy; coarsely; palpably (Nerrtin).
GRO'SSNFっs. s. (from gross.) 1. Coarseness; thickness; dusity (Shakspeare). 2. Inelegant fatucss; unwieldy corpulence. 3. Want of refinement; want of delicacy (Sh.).

GROSSULARIA, the gooseberry. Sie Ribes.

GROT. s. (grotte, French; grotta, Italian.) A cave; a cavern for coolneos and pleasure (Prior).
GROTESQUE. a. (grotcsque, French.) Distorted of tyure; unnatural (Pope).

GROTICS (Hugo), or more properly Hugo dediroot, one of the greatesi men in Europe of his time, was born at Delft, in 1583. He made so rapid a progress in his studies, that at the age of fifteen he had attained a great knowledge in philosophy, divinity, and civil law; and yet a greater profici, ency in polite literature, as appeared by the commentary he had made at that age on Martianus Capella. In 1598, he accompanied the Dutch ambassador into France, and was honoured with several marks of esteem by Henry IV. He took his degree of doctor of laws in that kingdom; and at his return to his native country devoted himself to the bar, and plead-, ed before he was seventeen years of age. He was not twenty-four when he was appointed attorney-general. In 1613 he settled in Rotterdam, and was nowinated syndic of that city; but did not accept of the office, till 2 promise was made him that he should not be removed from it. This prudent precaution he took from his foreseeing that the quarrels of the divines on the doctrine of grace, which had already given rise to many factions in the state, would occasion revolutions in the chief cities. The same year he was sent into England, on account of the divisions that reigned between the traders of the two nations, on the right of fishing in the northern seas; but he could obtain no satisfaction. He was afterwards sent to England, as it is thought, to persuade the king and the principal divines to favour the Arminians; and he had several con; ferences with killg James on that subject. On his return to Holland, his attachment to Barnevelt involved him in great trouble; for he was seized, and sentenced to perpetual imsonment in 1619, and to forfeit all his goods and chattels. But after having been treated with great rigour for above a year and a half in his confinement, he was delivered by the advice and artifice of his wife, who having observed that his keepers had often fatigued themselves with searching and examining a great trunk-full of foul linen, which used to be washed at Gorkum, but now let it pass

GRO

whout opening it, she advised him to bore holes in it to prevent his heing stifled, and then to get into it. He complied with this advice, and was carried to a friend's house in Corkun; where dressing himself like a mason, and taking a rule and trowel, he passed through the market-place, and stepping into a boat went to Valret in Brabant. Here he made himself known to some Arminians, and hired a carriase to Antwerp. At firat there tras a design of prosecoting his wife, who staid in the prison; and some judges were of opinien that she ought to be kept there in her husband's stead: however, she was released by a plarality of voiees, and universally applaudd for her behaviout. He now relired mio France, where he net with a gracinus sceeption from that court, and Lonis XIII. settled a pension upon him. Having resided there eleven years, he returned to Holland, on his recciving a very kind letter from Prederic Henry prince of Orange: bat his enemies tenewing their persectition, he went to Hamburgh; where, in 1634, queen Christina of Sweden made him her counsellor, and sent him ambassador into France. After having discharged the duties of this office above eleten years, he returned, in order to give an account to queen Christina of this embassy: when he wook Holland in his way, and received many hmnours at Amsterdam. He *as introduced to her Swerlish majesty at Stockholm, and there begged that she would gront his dismission, in order that he might feturn to Holland. This he obtained with difficulty: and the queen gave him many marks of her esteem, though he harl many enemies at this court. As he was retorning, the sthip in which he embarked was cast away on the coast of Pomerania : and being now sick, he continued his journey by land; but was forced to stop at Rostock, where he died, on the 28th of August, 1645. His body was carsied to Delft, to be interred in the sepalchre of his ancestors. Notwithstanding the embassics in which he was employed, he composed a great number of excellent works; the principal of which are, 1. A treatise De jure belli et pacis, which is esteemed a master-piece. 2. A treatise on the Truth of the Christian ReFrion. 3. Commentaries on the Holy Scrip. tares. 4. The History and Annals of Holland. 5. A great number of Letters. All which are written in Latin: the piece on the Christian Religion has been translated into Endish, first by Dr. John Clarke, and afterwards by Dr. Spencer Madan, the present amiable and venerable bishop of Peterborough.

The most able and discriminating sketch of the intellectual powers of Grotius with which te are acquainted, is that given by sir James Macintosh, in the Introluction to his Course of Lectures delivered at Lincoln's Inn.

GROTSKAW, a town of Yilesia, capital of a province of the same name. Lat. 80.37 N. Lon. 17.25. E.

Grotskaw, a cown of Servia, Lat. 45, TON: ton. 27. No \&

GROTTO, or,Grott a, a latge deep catert or den in a mountain or rock. The word \&c, is Italian, grotta, formed according to Menage, sec. from the Latin crypta. Du Cange observes that grota was used in the same sense in the corrupt Latin. The ancient anchoritet retired into dens and grotios, to apply theinsclves the more attentively to meditation. Okey-hole, Elden-hole, Yeake's-hole, and Pooke's are famous among the natural caverns or grotins of our counery.

In grottos are frequently found erystals of the rock, stalactites, and other natural conglaciations, and those often of an amazing beauty.
Grotio delCani, a lithe earern mear Pozzuoli, four leagues from Naples, the reams whereof are of a meptitic or noxious quality? whence also it is colled bocce venenosa, the poisonoms month. There are other celebrated grotooes in Italy; as the grmto of Toligna, and the groto del Sierpi. There is likewise a very entions grotio in the isk of Antiparos. It appears to be about 80 yards high, and 100 brnads; and the ruof forms a pretty good arch, which entertains the cye with a vast variety of figures, of a white transparent crystaline substance, very naturally resenbling vegetables, marble pillars, and a sutperb marble pyramid.

Grotro. In picturesque gardening, $=$ building in representation of a natural grotto. Its situation should be fow, retired, and overarched, with dark shady trees, or superincumbent rock, with a rushy brook, bubbling withirs the reach of the ear. The archinecture should be of the simplest and even rukest charaeter consistent with classical taste; and it is generally and not inappositely lined with sbell work, fossils and moss, united to the walls by a cement of rosin, bees-wax, and powdered freestone, or fine sand of a greyish thue.

GROVE. s. (from grave.) A wafk covered by trees meeting abore (Glanville).

Grove, In gardening, a small wood growing wild, or purposely planted, intersected with paths and oceasional seats.

Groves are not onty a great ornament to gardens, but also the greatest relief against violene heats of the sun, afforting shade in the hottest parts of the day. They ate of cwo sorts, open and close. Open groves have large shady trees planted at such distanees, that their branches approach just near enough to each other to prevent the rays of the sun from pee netrating through them. Most of the grovet that hare been planted eithier in England or is the celebrated gardens of France are only a few regular lines of trees; many of which are avenues to the habitation, or lead to some building or other objeet : but these are by no means so grand as those that have been made in natural woods; where the trees have grownt at irregukar distances: where they have larged spreading heads, and are left so for asonder ast to permit the grass to grow under them': for nothing is more noble thau fine sprearfing trees. with large stems, growing through grass, es: pecially if the grate be well kept, end hat and
sood verdure; most of these planted grovee moreover have gravel walks in straight lines between the trees, most formal and offensive, instead of graceful and elegant curves. In planting groves we should dispose the trees irregularly, which will give them a move maggaificent and noble appearance, and also form a shate sooner than when they are planted in lines. When, in planting a garden, full grown trees are iffound upon the spot, they should, if possible, remain inviolate; for it witl be better to put up with many inconveniencies than to destroy what will require an age so retrieve; so that nothing but offendirg the hebitation, by being so near as to occasion great dampa, should cempt us to cut them down. Clowe groves have frequently large arees standing in them; but the ground under these is giled with shrubs or underwood; so that their walks are private, and screened from winds: by which means they are rendered agreeable for exercise when the air is either too hot or too cold for walking in the more exposed parts of the garden. These are often contrived No as to bound the open groves, and frequently to hide the walls or other inclosures of the garden; and when properly laid out, with dry walks winding through themo with sweet smelling sbrubs and flowers irregularly planted on sheir sides, they have a charming effiect, and are of real utility.

To GRO'VEL. v. n. (grufde, Islandick, flat on the face.) 1. To lic prone; to creep low on the ground. To be nesa; to be without dignity (Addison).

GROU ND. s. (znunt, Saxon,) 1. The earth, considered as superficially extended (Millon). 2. The earth as distinguiehed from air or water. 3. Land; country (Hudilirus). 4. Region; territory (Millon). 5. Estate; possession (Dryden). 6. The floor or level of the place (Matithew). 7. Dregs; lies; feces (Shurp). 8. The first stratum of paint upon which the figures are afierwards painted (Hakevill). . 9. The fundemental substance; that by which the additional or accidental parts are supported. 10. The plain song ; the tane on which descants are raised (Shaks). 11. Firat hiat ; first traces of an invention. 1%. The first principles of knowledge (Milton). 13. The fundamental cause (Sidney). 14. The field or place of action (Daniel). 15. The epace occupier by an army as they fight, adwance, or retire ($D_{\text {ryden }}$). 16. The intervening space between the flyer and pursuer (Addisos). 17. The state in which one is with respeet to opponents or competitors (Atherlury). 18. Siate of progress or recession (Dryden). 19. The fuil to eet a shing off (Shakspeare).

Ground, in music, a composition in which the bass consisting of a few bars of independent notes, is perpetually repeated to a continually varwing melody. Of this kind of composition, Purcell and Pepuseh have published celebroted pioces.

To Ground. v. a. (from the noun.) 1. To fix.on the ground. 8. To found, as upon
cause or principle Dryden). 9. To setule ha first principles or ruciuments of knowledg; (EPhesians).

Ground. The pret. and part. pass. of grind.

Groumd-asi. s. A saplin of ash taken from the giound (Hortimer).

Gbound-bait. s. a bait made of barley or malt boiled, thrown where you angle (Wallon).
Ground-floor. s. The lower part of a bouse.

Groundily, in botany. See Gleснома.
Groundoant, a sapling ozk.
Ground-pine, in bolany. See. Tevcrivm.

Ground-platr. s. (In architecture.) The outermost pieces of timber lying on or near the ground, and framed into one another with mortises and tenons (Mortimer).

Ground-plot. s. 1. The ground on which any building is placed (Sidney). \&. The ichnography of a building.

Ground-rent. s. Rent paid for the pris vilege of building on another mari's ground.

Ground-room. s. A room on the tevel with the ground (Tatler).

GRO'UNDEDLY. ad. (from grownded.) Upon firm principles (Glunville).
GRO'UNDLESS. a. (from groused.) Void of reason; wanting ground (Preeholder).

GROUNDLESSLY.ad. Wibhout reatons withnut cause ($B, y l e$).

GROUNDLESSNESS. s. (from groand less.) Want of just reason (7illotson).

GROUNDLING. s. (from ground.) A fish which keeps at the bottom of the water: hence one of the low vulgar (S/ukspeare).

Groumding, is iahthyology. Siee Cositis.

GROUNDLY. ad. (from ground.) Upon principles ; solidly: not in use (Aschase).

GROUNDSEL. s. (zpuns, and rite, the basis, Saxon.) The timber or raised pavement next the ground (Muron).

Grousdsel, in butany. See Senecio Groundseltree. See Baccharis. GRO'UNDWORK. s. (ground and work.) 1. The ground; the first stratum (Dryden). 2. The first part of an undertaking ; the fundamentals (Milton.) 3. First principle; orio ginal reason (Spenser).

Group. s. (grouppe, French.) Acrowd; a cluster; a huddle (Swift).

ToGroup. v. a. (groupper, French.) Ta put into a crowd; to huddle tonether (P rior).

Group, in music, a kind of diminution or breaking of long notes, whereby they are reduced to a cluster of shorter ones.

In architecture we sometimes say, a group of columns, speaking of three or four columns joined cogether on the same pedestal. Whep there are but two together, we say, a couple, not a group, of columns.

Groupe's Islandes, tryo gromps, op clusters, of islands in the Soush Pacific Ocean, exterdiug for she space of nine leagues. The

G R 0

two largest are separated by a strait, about 400 fathouss wide, and cach surrounded by a number of small ones, as it were chained together by rocks under water, and placed in all sorts of directions; thev are all covered with cocostrecs. The inhiabitants are well proportioned, almost naked, and painted brown, with black hair, tied in a kind of net-work. These islands were probably discovered by Roggewin. Lon. 142. 45. to 142. 54. W. Greenwich. Lat. 17. 58. to 18.6.S.

GROUSE, or RED GAME: a species of the genus Tetrao (which see,) forming a frequent object of the sportsman's attention, and peculiarly protected by the laws of this country.

It is enacted by the 13 th George III. c. Iv. s. 2, That no person shall kill, destroy, carry, sell, buy, or have in his possession any grouse, commonly called red game, between the tenth day of December and the twelfith day of August in any year, upoll pain of forfeiting, for the first offence, a sum not exceeding 20l. nor less than 101 . and fur the second, and every subsequent offence, a sum not exceeding 30l. nor less than 201. one moiely thereof to go to the informer, and the other moiety to the poor of the parish: and in case the penalty be not paid, and there be no distress to be had, the offender be committed to prison, to be kept to hard labour for any time not exceeding six, nor less than three wonths.

And for the further prescration of both black game and grouse, or red game, it is enacted, That any person who shall, between the second day of February and the twentyfourth day of June, in any year, burn any grig, ling, heath, furze, goss, or firn, on any mountains, hills, heaths, moors, forests, chases, or other wastes, shall be committed to the house of correction for any time not excerding one month, nor less than ten days; there to be whipped, and kept to hard labour.

The black grous are fond of woody and mountainous situations, and perch like the pheasant. Their food is various; the billerry, and in winter the tops of heath, and in summer they sometiones feed on corn. The length af the male is from one foot ten inches to two feet nine. It weighs nearly four pounds; the bill is dusky black, the eyes dark-blue: below each cye is a spot of a dirty white, and above, a larger one, of a bright scarlet. The plumage of the body black, glossed over the neck and rump, with a shining blue: the covers of the wings are of a dusky brown ; the tail consists of sixteen black feathers, and is much forked; the feathers under the tail, and inner covers of the wings, are of a pure white. The female is only one foot six inches long, breadth two feet six; the eye has the dusky white spot under it like the male, the head and neck are marked, alternately, with bars of dull red and black ; the breast with dusky black and white; the back covers of the wings and tail are similar in colour to the neck, except the red being deeper; the tail is slightly forked, and cousists of eighteen feathers, variegated with

G R 0

red and black; under the tail the feathers are white, marked with a few spots of black and orange. These birds never pair; but in spring the males assemble at their accustomed resorts, when they crow and clap their wings; the females, at this sigual, resort to them. They will fight like gane-cocks; and at that time are so careless of their safety, that two or three have been killed at a shot; and have sometimes even been knocked down with a stick. The fond of the red grous is nearly similiar to that of the black. The male weighs nincteen ounces, and is in length fifteen inches; the bill is black; nostrils covered with small red and black feathers : the throat is red; each eye is arched with a spot of a bright scarlet; the plumage on the head and neek is of a light tawny red; each feather is marked with transverse bars of black; the back and scapula ieathers are of a deeper red, and on th: miduie of each feather is a large black speck; breast and belly dull purplis!s brown, crossed with numerous raven dusky lines; tail even, consisting of sixteen feathers; the four middle ones barred, all the others biack;'the thichs are of a pale red, barred obscurely with black: the legs and feet clotted to the very claws, with thick, soft, white feathers. The female only wcighs fifteen ounces; the colours are less bricht, and the naked red part over the eye is less conspicuous, and the edycs of it not si) deeply fringed as that of the male.

The flesh of both species soon taints, and they should be drawn as soon as killed; but that of the black grous is most liable to corrupt. Though the red game is not found in any part of England. south of the river Trent, the mail coaches will convey it, in good preservation, to London, if put up carcfully; but it was with great difficulty the late carl Delawar could send the black same in a state fit to be caten, by a special messenger, from the New Forest to their majestics, at Windsor. The flesh of it, even if dressed as sonn as killed, is hardly of a firmer texture than potted meat.

GROUT. s. (ठnur, Saxnn.) 1. Coarse meal; pollard ($K_{i} n_{g}$). 2. That which purges off (Iryden). 3. A kind of wild apple. 4. A thin onarse mortar used in building.

TU GROW. v. n. pret. grew ; part. pass. grown (Jnupan, Saxon.) 1.To vegretate; to have vecretable motion; to increase by vegetation (Wisdom). 2. To be produced by vegetation (Allint). 3. To shoot in any particular form (Dryden). 4. To increase in stature (Samuel). 5. To come to manhood from infancy (Wake.). 6. To issue, as plants from a soil (Dryden). 7. Toincrease in bulk; to become greater. 8. To improve; to make progress (Pope). 9. To adrance to anv state (Shakspeare). 10. To come by degrees (Rog.). 11. To come forward; to gather ground (Spenser). 12. To be changed from one step to another; to become either better or worse (Dryderu). 13. To proceed as from a cause (Houker). 14. To accrue ; to be forthcoming (Shakspcare). 16. To adhere; to stick to-
gether (Wallon). 16. To swell: a sea term (Rater_h.

GROIVER. s. (from grow.) An increaser.
To (iROWL. v. n. (grollen, Flemish.) 1. To snarl like an angry cur (Ellis). 2. To murmur; to gremble (Gay).
GROWN. The participle passive of grou. 1. Adranced in growth. 2. Covered or tilled by the growth of any thing (Proverls). 3. Arrived at full growth or stature (Loche).
GROWTis. s. (from grow.) 1. Vegetation; vegetable life (Alterbury). 2. Product; shing produced (Milton). 3. Increased number, buik, or frequency. 4. Increase of itature; advance to maturity. 5. Improvement ; adrancement (Hooker).
GRO'IVTHEAD. Grówtnol. s. (from gross or great head.) 1. A kind of tish (Ains.).玉. An idle lazy fellow : obsolete (Tusser).

GROINE, a river of Spain, in Galicia, which enters the Bay of Biscay, at Corunna. Hence our sailors frequently call the town by the name of the river-the Groyne.

GRUAJIRES, a town of Swisserland, in the canton of liriburg, with a castle where the bailiff resides. Lat. 40.35 N. Lon. 6. 43 E.

GRUARII, in our old writers, the principal officers of the forest in general.

GRUB, the name of worms produced from the egeg of beetles, which are at length transformed into winged insects of the same species with their parents. See larna.

To Grub. v. a. (gralan, preterit grol, to dig, Gothic.) To dig up ; to destroy by digging ; to root out of the gromad (Dryden).
Girus. s. A short thick man; a dwarf (Carere).

GRLBBIA, in botany, a genus of the class octandria, order monogynia. Involucre twovalved, three-Howered; corol four-petalled, superior; berry oue-celled; stigma notched. One species: an-African shrub, with opposite ovate-linear leaves, and lateral flowers.

T", GRLBBLE. v. n. (grubelen, German.) To ferl in the dark (Dryden).

GRUBENHAGEN, a town and caste of Lower Saxony, and the chicf place of a principility of the same name, belonging to the house of Hanover. Lat. 51.31 N. Lon. 10. 3 E.

To GRUDGE. v. a. (grognach, Welsh.) I. To envy; to see any advantage of another with discontent (Sidney). 2. To give or take unwillingly (Addison).

To Grudge. v. n. 1. To murmur; to repine (Houker). \&. To be unwilling; to be reluctant (Raleigh). 3. To be envious (James). 4. To wish in secret (Dryden). 5. To give or have any uneasy remains (Dryden).

Grudge. s. (from the verb.) 1. Old quarrel; inveterate malevolence (Shaks.). 2. Anper ; ill will (Suift). 3. Unwillingress to benefit (Ben Johnson). 4. Envy; odium; invidious censure. 5. Remorse of conscience (Ainsworth). 6. Some little commotion, or \{orerunner of a disease (Ainswirth).
GRU'DGLNGLY. ad. (from grudge.)

G R U

Unwillingly; maligisantly; reluctantly ($D_{r y}$ den).

GRU'EL. s. (grielle, French.) Food made by boiling oatmeal in water (Arbuthnot).

GRLEF. a. (groff, Dutch.) Sour of aspect; harsh of manners (Addison).
GRU'FFLY. ad. Harshly ; ruggedly (Dr.).
GRU'FFNESS. s. (from gruff:) Ruggedness of mien ; harshness of lock or voice.
GliLINALES, in botany, the name of the fourtecuth order of Linéus:- Fragments. • This order furnishes both herbaceous and woorly plants. The ronts are sometimes fibrous, and sometimes tuberons. In some species of the oxalis, wood-sorrel, they are jointed; the stems are cylindric, and the joung branches in some nearly square ; the buds are of a conic for:n, covered with scales; the leaves in some genera are simple, in others compound; the fowers are hermaphrodite; the calyx consists eitiner of five distinct leaves, or of one leaf divided almost to the botom into five parts; it generally accompanics the seed-bud to its maturity: the petalis are five, spreading, and are frequently tumel-shaped; there are gencrally ten stamens, the anthers oblong, and frequently attached to the filaments by the midule; the seed-vessel is commouly a five-corncred capsule, with one; three, five, or ten cells, with one seed in each cell. In this order are the geranium, crane'sbill ; linum, flax ; oxalis, wood-sorrel ; guiacum, lignum-vitæ.
GiRCM. a. (contracted from grumble.) Sour; surly; severe (Arluthnot).

To GRUMBLE. v. n (grummelen, Dutch.) 1. To murmur with discontent (Prior). 2. 'To growl; to guarl (Dryden). 3. To make a hoarse rattle (Rowe).
GRU'Mislekr. s. (from grumple.) One that grumbles; a murmurer (Swift).

GKU'MBIING. s. (from f.um? le.) A murmuring through discontent (Sikahspeare). GRUME: s. (grumsau, Fr. grumus, Latin.) A thick viseid consistence of a fluid (Quincy). GRU'MLY. ad. (from grum.) Sultenly; morosely.

GRE'IOCS. a. (from grume.) Thick; clotted (Arcuthnot).

GRU'MOUSNESS. s. (from gramous.)
Thickness of a congulated liquor (IViseman).
GRUNERDE, in mineralogy. See Greer
earth.
GRUNINGEN, a town of Lower Saxony, in the principality of Halberstadt. Lat. 52. \& N. Lon. 11.41E.

Grunincen, a town of Swisserland, in the canton of Zuric, capital of a bailiwic of the same name. Lat. 47. 14 N. Lon. 8. 43 E. GRUNSEL, in architecture. See Groundsel.

GRUNSTEIN, in mincralogy, a particular kind of trap, coloured green or greenish, in consequence of its containing olivin. Se Basaites trapezum.

To GRUNT. To Gru'ntie. v. n.(grunio, Latin.) To murmur likea hog (Gay).

Grunt. s. (from the retb.) The noise of a hog (Dryden).

GR Y

GRUNTER. 3. (from grunc.) 1. He that grunts. 2. A kind of fish.

GRU'DILLING. s. (from grunt.) A young hog.

GRUPRO, in music, a shake : it consists in the alternate reiteration of two notes in juxta-position to each other, with a cluse on the note innmediately beneath the lower, or above the upper of them.

GRUS, in ornithology. See Ardea.
Grus, in astronomy, the Crane, a new southern constellation not visible in our latitude. It consiats of 14 stars of the first six magnitudes, siz. 0. 2. 1. 2.9. 0. The Arabians give the name of Grus to the constcllation which we all Ophiuchus.

Grus, in antiquity, a dance performed gearly by the young Athenians around the cemple of Apollo, on the day of the Delia.

To GBUTCH. v. n. (corrupted from grudge). To envy; to repine; not used (Ben Jonson).

Grntch. s. (from the verb.) Malice; illwill (Hudil.ras).

GRUTERUS (Janus), an illustrious phidologis, was horn in 1560 at Antwerp. His fatier, who was a burgomaster of Antwerp, wook refuge in England on account of his reiigion, he being a protestant, when Gruterus was but anl infant. He received his education ander the eye of his mother, who was a very accomplished woman; after which he was ecnt first to Cambridge, and then to Leyden, where he took the degree of doctor in civil law. He was professor of history in the university of Wirtemberg, and afterwards filled the professor's chair at Heidelberg. He published warious useful works; the enost important of which is bis collection of Inscriptions. He died in 1627.

GRUTUM. (grutum, i. n.). Milium. A hand white ubercle of the skin, resembling in cize and appearance a millet-seed.

GRY, a measure of leagth, being 1000th -part of a foot.

Hence, any very little thing, or one of small value, is often callerl a gry.

GRYLLUS. Locust. Cricket. Grasshopper. In zoology, a genus of the class insecta, order hemiptera. Head inflated, armed with jaws; fecters filiform; antennas setaceous, or filiform; wings four, deflected, convolute; the lower ones plaited; Hindless; formell for leaping; claws double on all the feet. This is an exteusive genus, consisting of not less than two bundred and one species which contain sections of Fabricius.
A. Anteunas ensiform; head conic, longer than the thorax ; decominated truxalis.
B. Thorax carinate: antennas filiform, shorter than the thorax; feelers equal: demominated acrydium.
C. Antennas setaceons; feelers unequal; thorax rounded; tail with uwo bristles: denominated acheta.

1. Antemnas setaceous; feelers uncqual ; male with an ovellate spot at the base of eech wing-case; tail of the female aroued

G R \mathbf{Y}

with a sword-like projection: denominato ed locusta.
E. Anternas filiform; tentacles sinple; tail simple; ;hroat with a horn-like protuberance. The gryllus of Fabricius.
The insects of this family ferd on plants and herbs; except those of the section truaaiis, which prey on other insects. Tine larves and pupes resemble the perfoct insects, reside chicfly under ground, and are six-footed, sיracious and active: they were the only animals of this class of which Moses permitted the Israelites to cat; and are at present used as an article of fuorl by the natives of Africa and India.

We shall instance a few of the chief species.

1. G. grylotalipa. Mulererickict. Win:es terminating in sleuder tails longer than the abdomen ; fore-feet palmate. Bidy Jark chic-nut-brown, hairy; wing-cases shorier th.14 :he body, veined; antemnas shorter than the bialy. Inhabits gardens and cultivated places oi Lillrope and America, where it burrows trelow the surface of the earth, and is yery destructive, eating and consuming the roots of trees.
2. G, domesticus, House-cricket. Wings tailed, longer than the wing-cases: body glaucous. An inhabitant of almost every hoise, about orens and kitchen-chimneys; wanden about during the whole night, naintainug a continual cliirping, especially before rain: is said to forsake houses infected with the enck roach, and is destroyed by pills of arsenic, and the fresh mot of the daucus mixt with flour, or the root of the nymphæa boiled in milk.
3. G. campestris. Field cricket. Wings shorter than the wing-cases; body blachisth; style linear. Inhabits Europe: chirps frow the beginning of May till the equinox, and is said, when domesticated, to drive out the house. cricket.
4. G. verrucivorus. Wings green, spotted with brown; antennas as long as the borly. Inhabits England, and nost parts of Europe; and is colleoted ty the common people of Sweden for the purpose of destroying warts on the hauds, which it is said to perform by biting of the excrescence, and discharging on the wound a corrosive liquor.
5. G. viridissimus. Head, thorax, and wing-cases green, immaculate: antennas sery long; legs yclowish; a lancet or swordlike process straight and serrate terminal to the body.
This sword-like process is larger and more powerful in the femaie than in the malc. With this she excarates a number of holes in the dried branch of a tree; into each of these boles eight or ten of her eggs are dropped; there they are surrounderl with the kind of food which is most suitable for them in their larve state. The disposition of the eggs is in rows, and placed in the middle of the trees; the soft substance of which is she fipst food of the insect after it leaves the ovum. The insect that proceeds from each of these engs, after it has grown for some time, and before reaching a size incompatible with escaping by

NATIRAH. HISTORX.

the narrow mouth of the hole, takes a final departure from the place of its birth.

The larves having thus left their egg state, and acquired the use of their limbs, the two anterior of which are formed for digging the ground, soon apply them to that purpose, and excavate for theinselves a subterraneous retreat among the roots of plants, which they gnaw, and support themselres upon the juices that thence exude. In this state they remain till they are ready to undergo another transformation, which introduces them into the open air in the form of winged insects.
6. G. migratorius. Travelling locust. Thosax subcarimate, of a single seginent; mandibles blue : bodies brownish, varied with darker spots; legs blue; hind-thighs and shanks yellowish. Inhabits Tartary, and migrates in incredible swarms into various parts of Europe. The mischief these voracious creatures do, when they appear in vast legions, far exceeds the calamities occasioned by any other tribes of animals. By suddenly destroying all yegetation they change the most fertile provinces into barren deserts, leaving behind them desolation and famine, and diseases of various kinds. They have occasionally appeared in small flights in Fingland, but have perished by the cold in a short time. This is probably the species which is related to have constituted one of the plagues of Esypt, Numbers chap. \mathbf{x}.

When the locusts take the field, they have, as it is said, a leader at their head, whose flight they observe, and pay a strict attention to all his motions. They appear at a distance as a black cloud, which, as it approaches, gathers upon the horizon, and almost hides the light of day. It often happens that the husbandman sees this imminent calamity pass away wi:hout doing him any mischief, and the whole swarm press forward, to settle upon the labours of some less fortunate cultivator: but wretched is the district upon which they alight. They ravage the meadow and the pasture ground, strip the trees of their leaves, and the gardens of every vegetable. It is said that their mere bite also, even when they do not devour a plant, so contaminates it, that it is sure to wither away; which adds largely to the devastation which would otherwise be produced by them.
Yet when dead they prove still more noxious, by infecting the air with a most intolerable stench. Orosius tells us that in the year of the world 3800 , an incredible number of these insects infested Africa; which after having eaten up every thing that was green, flew off and were drowned in the Red Sea, where they caused a more pestilential effluvium than would have proceeded from the putrescent bodies of many thousands of mankind.
The eastern borders of the Russian empire are subjected sometimes to the awful visitations of this insect. That which happened in 16:30, which extended from Russia over a great part of Poland and Lithuania, was singularly destructive. In some places the locusts were seen lying dead, heaped upon each other VOL. V.
four feet deep; in others they covered the surface like a black cloth; the trees were seen bending beneath their weight, and the damage which the inhabitants sustained was beyond computation.

In Barbary their numbers are also formidable, and their visits more frequent: during the year 1794, a traveller from Britain, remarkable for the accuracy of his observations (Dr. Shaw), witnessed the havoc they committed in that ill-fated country. Towards the end of March they began to appear with a southerly wind: through the succeeding months, their numbers continued to increase so prodigiously, that during the heat of the day they rose in swarms so large as to darken the sun. In the middle of May they began to retire, for the purpose of depositing their eggs in the drier plains of the interior country.
About the middle of summer the young, already ripe for devastation, made another incursion, in several bodies of a vast extent; although then in the form of worms they crawled forward, climbed the trees, walls and houses, devouring every plant in their way: it was in vain that the inhabitants dug trenches through their fields and filled them with water, in vain they collected large rows of heath, stubble, and other combustible matter to set them on fire on the approach of the locusts. The trenches were soon filled, and the fires extinguished by the inmense swarms that succeerled each other.
The locusts which are thus active in their larva state, remain only abrut a month in that form ; after having completed their growth, they cast that skin which gives them their vermicular shape; and, in order to prepare themselves for this transformation, they attach their hind legs to some twig, where, after some laborinus efforts, and several undulating motions, they at last burst the skin; at first, the head only appears, but soon after the rest of the body is disengaged, the whole operation occupying only seven or eight minutes. After casting their covering they remain for a little in a languishing state, till the air hardens their wings, and the heat of the sun again invigorates them, when they resume their former voracious habits, with an increase both of strength and agility.
In some parts of the world the inhabitants convert what so generally is considered as a plague to an advantage, by making the locusts an article of diet. It is for this purpose, that in many parts of the east they are caught in small nets, which are constructed for entangling them. When a sutficient quantity is thus procured, they are roasted over the fire in an earthen pan till the wings and legs drop off: when thus prepared they are reckoned tolerable food, and are said to taste like crayfish. See Nat. Hist. PI. CXXI.

GRYN AEUS (Simon), soll to a peasant of Suabia, born in 1493, was Greek professor at Heidelberg in 1523. He took a tour into England, and received great civility from the lord chancellor Sir Thoras More, to whoms

EE

GUA

Erasmus had recommended him. He was a learned and laborions man, and did great service to the commonwealth of letters. He uas the first who published the Almagest of Ptolemy in Greek. He also published a Greek Euclid, and Plato's works, with some commentaries of Proclus.

GRYPHOSIS. (kryphosis, yiupucsf; from y_{i} unsw, to incurvate.) A disease of the nails, which turn inwards, and irritate the soft parts below.

GUADAGNOLO (Philip), a learned orientalist of Italy, was born about 1596, at Magliano; and died at Rome in 1056 . He translated the Bible into Arabic, for the eastern churches; and addressed Christina, queen of Sweden, in an oration in the same language. He wrote an excellent grammar of the Arabic in Latin; and compiled an Arabic dictionary, the manuscript of which is preserved in the convent of San Lorenzo, in Lusina.

GUADALAJARA, or Guadalaxara,a town of New Castle, in Spain, 30 miles N.E. of Madrid. Lat. 40.36 N . Lon. 2. 47 W .

Guadalajara, the capital of a province of the same name, in North America. It is the ste of a bishop. Lat. 20.50 N . Lon. 104. 49 WV .

GUADALOUPE, a town of Estremadura, in Spain. Lat. 39. 12 N. Lon. 5. 3 E.

Guadaloupe, one of the Leeward Islands in the W. Indies, lying hetween Antigua and Dominica. It is divided into two parts by a narrow strait, called the Salt River. At this place the land on each side is not above four miles broad, and by this strait the sea on the N.W. communicates with that on the S.E. The N.W. part is 60 miles in length, and 24 in breadth. The S.E. part, in extent, is much the same. The French began to settle this island in 1632. It was taken by the English in 1759, but restored in 1763 . It is said to be the best of all the Caribbee Islands, the soil being exceedingly good, and well watered near the sea, by rivulets which fall from the mountains. On this island is a volcano called the Mountain of Sulphur.

GUADALQUIVER, one of the most famous rivers of Spain, which rises in Andalusia, and falls into the gulf of Cadiz.

GUADIANA, a river of Spain, which rises in New Castile, separates Algarve frem Andalusia, and falls into the bay of Cadiz, between Castro Marino and Agramonte.

GUADIX, a town of Spain, in the kingdom of Granada, with a bishop's see. Lat. 37. 4 N . Lon. 2. 47 W .

GUAIACUM. (guaiacum, from the Spanish guayacan, which is formed from the $1 n-$ dian hoaxacan.) In botany, a genus of the class decandria, order monogynia. Calyx five-cleft, unequal; petals fire, inserted into the calyx; capsule angular, three or fivecelled. Three species, as follow:

1. G. dubium. One pair of leaflets, ob-long-lanceolate, obtuse. A native of Tongatabu.

G U A

2. G. sanctum. Leaflets many pairs, acuteA native of the West Indies.
3. G. officinale. Lignum vita. Leaflets two or three pairs, obtuse. A native of the West Indies. The wood, gum, bark, fruit, and even the flowers, have been found to possess medicinal qualities. The wood is brought principally from Jamaica, in large pieces of four or five hundred weight each, and from its hardness and beauty is used for various articles of turnery ware. It scarcely discovers any smell, unless heated, or while rasping, in which circumstance it yields a light aromatic one: chewed, it impresses a slight acrimony, biting the palate and fauces. The gum, or rather resin, is obtained by wounding the bark in different parts of the body of the tree, or by what has been called jagging. It exudes copiously from the wounds, though gradually; and when a quantity is found accumulated upon the several wounded trees, hardeued by exposure to the sun, it is gathered and packed up in small kegs for exportation: it is of a friable texture, of a dcep greenish colour, and sometimes of a reddish hue; it has a pungent acrid taste, but little or no smell, unless heated. The bark contains less resinous matter than the wood, and is consequently a less powerful medicine, though in a recent state it is strongly cathartic. The flowers or blossoms are laxative, and in Jamaica are commonly given to children in the form of egrup. It is only the wood and resin of guaiacum which are now in general medicinal use in Europe; and as the efficacy of the former is supposed to be derived merely from the quantity of resinous matter which it contains, they may be considered indiscriminately as the same medicine. Guaiacum was first introduced into the materia medica soon after the discovery of A merica; and previous to the use of mercury in the lues venerea, it was the principal remedy employed in the cure of that disease; its great success brought it into such repute, that it is said to have been sold for seven gold crowns a pound: yet notwithstanding this, its failure was such that it soon became quite superseded by mercury; and though it be still occasionally employed in siphilis, yet it is rather with a view to correct other diseases in the habit, than for its effects as an antivenereal. It is now more generally employed for its rirtues in curing gonty and rheumatic pains, and some cutaneous diseases.

In the Philosophical Transactions for 1806, we have a very complete analysis of this substance : by distillation 100 paris gielded

Acidulous water	-	5.5
Thick brown oil	-	24.5
Thin empyreumatic oil	-	29.0
Charcoal		
Gases consisting of carbonic acid and carbureted hydrogen	$\mathbf{3 0 . 5}$	
		10.5

Hence it is inferred that guaiacum agrees in many respects with the resing, but it differs
from thern, 1 . in the quantity of charcoal it leares when distilled in close vessels; 2 . in the action that nitric acid has upon it; and, 3. in the changes of col-ur that it undergnes when its solutions are treated with nitric and oxymuriated acids. Its properties may be thus enumerated: it is a solid substance re:emtling a resin; its colour varies, but is generally greenish; it is readily dissolved in alcohol; alkaline solutions dissolve it with ease: most of the acids act upon it with considerable energy ; if digested in water, a portion is dissolved, the water acquiring a greenish-brown colour: the liquid being evaporated, leaves a brown substance which poossesse3 the properties of an extract, being soluble in hot water and alcohol, but scarcely at all in sulphuric ether, and Sorming precipitates with the muriates of alumina, tin, and silver.

GUALIDO, a town of Italy, in Alscona, eight miles N.W. of Nocera. Lat. 43.6 N . Lon. 12.43 E .

GUaleor, Gualior, or Govalier, a large town of Hindustan in Asia, and capital of a province of the same name, with an ancient and celebrated fortress of great strength. It is situated in the very heart of Hindustan Proper, being about 80 miles to the siouth of Agra, the ancient capital of the empire, and 130 from the nearest part of the Ganges. From Calcutta it is, by the nearest route, upwards of 800 miles, and 910 bv the ordinary one; and about 280 from the British frontiers. Its latitude is 26.14 , and longitude 78.26 from Greenwich.
GUALTHE'RIA. In botany, a genus of the class decandria, order monogynia. Calyx double; the outer two-leaved, inner five-cleft; corol ovate; nectary ten erect points; capsule five-celled, covered by the inner berried callyx. Two species: natives of Canada and New Zealand.
GUAM, the principal of the Ladrone Islands, in the South Sea. Lat. 13. 5 N . Lon. 145. 15 E.
GUANA, in amphibiology. See LacerTA.

GUANAHARIA, or St. Salvadore, now called Cat Island, one of the Babaina Islands, in America. It was discovered by Christopher Columbus on the day that the ship's crew designed to have murdered him, in 14!!2. Lat. 24. 25 N. Lon. 75. 3 W.
GUANO, a substance found on many of the small islands in the South Sea, which are the resort of numerous focks of birds, particularly of the ardea and phoenicopterus genus. It is dug from beds fifty or sixty feet thick, and used as a valuable manure in Peru, chiefly for Indian corn. It is of a dirty yellow colour. nearly insipid to the taste, but has a powerful smell, partaking of castor and valerian. According to the analyous of Fourcroy and Vanquelin, ebout one-fourth of it is uric acid, partly saturated with ammonia and lime. It contains likewise oxalic acid, partly saturated with ammonia and potash; phosphoric acid combined with the same bases and with lime;
small quantities of sulphate and muriate of potash and ammonia; a small portion of fat matter; and sand, partly quartzose, partly ferruginous. (Brit. Ency.).
GUANUGU, the capital of a district of the sane name in S. America. Lat. 9. 55 S . Lon. 74. 55 W .

GUANZAVELCA, a town of Peru, in S. America. Its neighbuurhood abounds in mines of quicksilver. Lat. 12.36 S. Lon. 79. 39 W .

GÜARaNTEE, or Warrantee, in law, a term relative to warrant or warranter, properly signifying him whon the warranter undertakes to indemnify or secure from damage. Guarantee, however, is more frequeuly used for a warranter, or a person who undertakes and obliges himself to see a wecond person perform what he has stipulated wo the thicl. See Warrantify.
To GUA'RANTY. v. a. (guarantir, Fr.) To undertake to secure the performance of any articles.
To GUARD. v. a. (garder, French; from our word ward.) 1. To watch by way of defence and security. 2. To protect ; to defend (IFaller). 3. To preserve by caution (Addison). 4. To provide against objections (Br .). 5. To adorn with lists, laces, or oruamental borders: obsolete (Shuhspeare).
To Guard. v. n. To be in a state of caution or defence (Collier).
Guard. s. (garde, Fit. ward, Tcut.) 1. A man, or hody of men whoce business is to watch by way of defence (Milton). 2. A state of caution, or vigilance (Smalridge). 3. Limitation; anticipation of objection (Atter.). 4. An ornamental hem, lace, or border. 5. Part of the hilt of a sword.
Guard, in the military art, is a duty performed by a body of men, to secure an army or place from being surprised by an enemy. In garrison the guards are relieved every day: hence it comes that every stiditier munts guard once every three or four days in t'nie of peace, and much oftener in time of war. See Honours.
Guard (Adranced), called also Van guard, is a party of either horse or foot that marches before a more concidit rable body, to give notice of any approachiig daiger. These guards are either made stronger or weaker, accordiag to situation, the danger to be apprehended from the enemy, or the nature of the con try.

Guird (Artillery), is a detachment from the army to secure the artillery when in the field. Their corpis de garde is in the front of the artillery park, and their se:m :s dispersed round the same. This is ge .eral'v a forty-eight-hours guard; a:d upon a march, titis guard marchee in the from and rear of the artiliery, and must be sure to leane nothing behind: if a gun or wargon breaks Jown, the officer that commands the gu יed is to leave a sufficient number of anen to aisist the gumers in zetting it up again. Artilicry Q:urterGuard, is frequently a non-commissioned

EE 8

GUA

officer's guard from the royal regiment of artillery, whose corps de garde is always in the front of their incampment. Artillery Rear Guard, consists of a corporal and six men, posted in the rear of the park.

Guard (Grand), three or four squadrons of horse, commanded by a field ofticer, posted at about a mile or a mile and a half from the camp, on the right and left wings, towards the enemy, for the better security of the cainp.

Guard (Forage), a detachment sent out to secure the foragers, and who are posted at all places, where either the enemy's party may come to disturb the furagers, or where they may be spread too near the enemy, so as to be in danger of being taken. This guard consists both of horse and foot, and must remain on their posts till the foragers are all come off the ground.

Guard (Main), is that from which all other guards are detached.

Guard (Picquet), a good number of horse and foot, always in readiness in case of an alarm: the horsiss are generally saddled all the time, and the riders booted. The foot draw up at the head of the battalions frequently at the beating of the tat-too; but afterwards return to their tents, where they hold themselves in readiness to march upon any sudden alarm. This guard is to make resistance in case of an attack, until the army can get ready.
Guard (Baggage), is usually an officer's guard, who has the care of the baggage on a march.
Guard (Quarter), is a small guard commanded by a subaltern officer, posited in the front of each battalion, at 422 feet before the front of the regiment.
Guard (Rear), that part of the army which brings up the rear on a march, generally composed of all the old grand guards of the camp. The rear-guard of a party is frequently eight or ten horse, about 500 paces behind the party.
Guard (Yeomen of the), first raised by Henry VII. in the year 1485. They are a kind of ponspous foot-guards to the king's person, and are generally called by a nickname the Beef Eaters. They were anciently 250 men of the first rank under gentry, and of larger stature than ordinary, each being required to be six feet high. At present there are but 100 in constant duty, and 70 more not on duty; and when any one of the 100 dies, his place is supplied out of the 70. They go dressed after the manner of king Henry VIIl's time. Their first commander or captain was the earl of Ox ford, and their pay is 2s. 6 d . per day.

Guard, in fencing, implies a posture proper to defend the body from the sword of an antagonist.

Guards, also imply the troops kept to guard the king's person, and consist both of horse and foot.

GUARDS, in astronomy, a name sometimes applied to the two stars in Ursa Minor, nearest the north pole, one of which is called the polestar.

G U A

(Guards (Horse), in England, were gentlemen chosen for their bravery, to be entrusted with the guard of the king's person; and were divided into four troops, called the first, second, third, and fourth troops of horse guards. The first troop was raised in the year $16 i 60$, and the command given to lord Gerard; the second in 1661, and the command given to sir Philip Howard; the third in Ition 3, and the cominand given to earl Fevershain; the fourth in 1792, and the command given to carl Newburgh.

Guards (Horse-Grenadier), are divided into two troops, called the first and second troops of horse-grenadier guards. The first troop was raised in 1593, and the command given to lieutenant-general Cholmondeley; the secund in 1702, and the command given to lord Forbes.

Guards (Foot), are regiments of foot appointed for the guard of his majesty and his palace. There are three regiments of them, called the first, second, and third regiments of foot-guards. They were raised in the year 1660; and the command of the first given to colonel Russel, that of the second to general Monk, and the third to the carl of Lialithgow.

Guard-boat, a boat appointed to row the rounds amongst the ships of war which are laid up in any harbour, \&ec. to observe that their officers keep a good look-out, calling to the guard-boat as she passes, and not suffering her crew to come on board, without having previously communicated the watch-word of the night.

Guard-shif, a vessel of war-appointed to superintend the marine affairs in a harbour or river, and to see that the ships which are not commissioned have their proper watch-word kept duly, by sending her guard-boats around them every night. She is also to receive seamen who are impressed in the time of war.

GUARDAFU, a cape of Abyssinia in Africa, at the entrance of the strait of Babel Mandel. Lat. 11. 46 N. Lon. 52.5 E .

GUA'RI)AGE. s. (from guard.) State of wardship : obsolete (Shakspeare).
GUA'RDER. s. One who guards.
GUARDIA, or Guarda, an episcopal town of Beira, in Portugal. Lat. 40.22 N. Lon. 6. 37 W.

Guardia Alperez, an episcopal town of Naples, in Italy. Lat. 41.39 N. Lon. 14. 56 E.

GUARDIAN, one appointed by the wisdom and policy of the law, to take care of a person and his affairs, who by reason of his imbecility and want of understanding is incapable of acting for his own interest; and it seems by our law, that his office originally was to instruct the ward in the arts of war, as well as those of husbandry and tillage, that when he came of age he might be the better able to perform those services to his lord, whereby he held his own land. 2 Bac. Abr. 672.

There are several kinds of guardians, as, guardian by nature, guardian by the common Law, guardian by statute, guardian by custom,

G U A R DIAN.

guardian in chivalry, guardian in socage, and guardian by appointment of the lord chancelfor.

Guardian ly nature is the father or mother; and by the coinmon law every father hath a right of guardians!ip of the body of his son and heir until he attains to the age of twentyone years. This guardianship extends no further than the custody of the infant's perion. The fatier may disappoint the mother, and other ancestors, of the guardianship by nature, by appointing a testamentary guardian under the statites 4 and 5 Phil. and Mary, and 12 Char. II. A guardian by nature hath only the care of the person and education of the infant, and hath nothing to do with his lands, merely in virtue of his office; for such guarcian may be, though the infant have no lands at all, which a guardian in socage cannot.

Guardian ty the common lau, or Guardian in Socage. If a tenant in socage die, his heir being under fourteen, whether he be his issue or cousin, male or female, the next of blood to the heir, to whom the inheritance cannot descend, shall be guardian of his body and land till fourteen; and although the nature of socage tenure is in some measure changed from what it originally was, yet it is still called socage tenure, and the guardian in socage is still only where lands of that kind, as most of the lands in England now are, descend to the heir within age; and though the heir after fourteen may choose his own gitardian, who shall continue till he is twenty-one, yet as well the guardian before fourteen, as he whom the infant shall think fit to choose after fourteen, are both of the same nature, and have the same office, without any intervention or direction of the infant himself; they are to transact all affairs in their own name, and not in the name of the infant, which they would he obliged to do if their authority were derived from him.

This guardianship is so little resorted to, although all lands are now of socage tenure, that it is needless to enquire further into it here.

Guardian ly slatute, or Testamentary Guardian. By the common law, no person could appoint a guardian, because the law had appointed one, whether the father were tenant by knight service, or in socage.

The first statute that gave the father a power of appointing, was the 4 and 5 Philip and Mary, c. 8, which provides, under severe penalties, such as fine and imprisoument for years, against taking any maid, or woman child unmarried, being within the age of sixteen years, out of or from the possession, custody, or kovernance, and against the will of the father of such maid, or woman child, or of such person or persons, to whom the father of such maid, or woman child, by his last will and testament, or by any other act in his lifetime, shall grant the education and governance of such child.

But the principal guardianship is now by the statute 12 Car. II. c. 24, by which any
father, under or of full age, may by deed or will, attested by two withesses, appoint, dispose of the custody of his child born or unborn to any person except a popish recusant convict, either in possession or reversion till such child attain twenty-one. This guardian supersedes the guardian in socage, und has all actions which that guardian might have had. Besides which he has the care of the estate, real and personal. A father cannot under this statute appoint one to his natural child, and a case has been decided upon the marriage act, in which a marriage with consent of a guardian applied to a natural child was held void. The chancellor, however, will upon application appoint the same person guardian.

Guardians l'y cuslom, are appointed in the city of London, in the county of Kent, and with respect to copyhold lands in some manors.

Guardians l'y appointment of the ecclesiaslical court, were appointed to take care of the infant's personal estate, till fourteen in males, and twelve in females; but their authority over the person is now denied, and they are only confined to guardianship for the purpose of a suit in an ecclesiastical court.

Guardian in chivalry, is obsolete, but extended to twenty-one years.

Guardian, by appointment of the lord chancellor. It is not easy to state how this jurisdiction was acquired; for it is certainly of no very ancient date, though now indisputable: for it is clearly agreed, that the king, as pater patrix, is universal guardian of all infants, idiots, and lunatics, who cannot take care of themselves; and as this care cannot be exercised otherwise than by appointing them proper curarors or committees, it scems also agreed, that the king may, as he has done, delegate the authority to his chancellor; and that therefore at this day, the court of chancery is the only proper court that has jurisdiction in appointing and removing guardians, and in preventing them and others from abusing their persons or estates. 2 Inst. 14. And as the court of chancery is now vested with this authority, hence in every day's praclice we find that court determining, as to the right of guardianship, who is the next of kin, and who the most proper guardian; as also orders are made by that court on petition or motion, for the provision of infants during any dispute therein; as likewise guardians removed or compelled to give security; they and others punished for abuses committed on infants, \&ic.

Guardian of the spirtualitics, the person to whom the spiritual juriodiction of any diocese is committed during the time the see is vacant. A guardian of the spiritualities may likewise be either suci in law, as the archbishop is of anv diocese within his province: or by delegation, as he whom the archbishop or vicar-general for the time appoints. Any such guardian has power to hold courts, grant liceuces, dispensations, probates of wills, \&cc.

Gua'rdiax.a. Performing the office of a kind protectur or superintende:il (Dryden).

GUA'RD)IANitilP. s. (from guardian.) The oflice of a quardian (LiEstrange).

GUA'liD)LESS. a. (rom gard.) Without defence (W inliter).
(GL A'R1) illlP. s. (from guard.) 1. Care; protection (Swift). 2. (Euard and ship.) A Ling's ship to guand the coast.

GUd RLA, it botiny, a genus of the class octandria, order monogynia. Calyx fourtoobhed; petals four: nectary cylindirical, bearing the anthers at its mouth; capsule four-celled, four-valved; seeds solitary. One species: a West Indian tree, with lax, axillary racemes, and musky odour.

GUARIBA, in zoology. Sce Simia.
GUARINI, celebrated for being the first who taurht Greck in Italy, was descended of an illustrious fanily of Verona, and died in 14 (i).

Guarini (John Baptist), an illustrious Itaiian peet, great grandson of the preceding, w.es born at Ferrara, in 1537. He passed the gre:cst part of his life in courts; being in the service of A phionso 11. duke of Ferrara, and other prince, in which he seems to have been a prey to continual diognists. Notwithstanding the celebrity of his Paator Fido, he contenned the citle of poet, which he thought beneath the dignity of a gentleman. He died at Venice in 1612.

GUARMA, a maritime town of Peru, in Sourh America. Lat. 10. 10 S. Lon. 77. 49 W.

GUASTALLA, a strong town of Mlantua, in Italy, 20 miles S. of Mantua. Lat. 44. 50 N. Lon. 10. 38 E.

GUATIMALA, an audience of New Spain, in North America, in winch are included twelve provinces.

Guatimala, a province of the above audience.

Guatimala, the principal town of the above province, and of the whole audience. It is the see of a bishop, and the seat of an university. On June 7, 1773, this town was swallowed up by an earthquake, together with about 8000 families. Snon after this dreadful catastrophe a hew town was built at a little distance from the site of the old one, and is at present well peopled. Lat. 13. 40 N . Lon. 90. 30 W .

GUAVA. in botany. See Pisidium.
Guava (French). See Cassia.
GUAXACA, a province of New Spain, in North America. It contains mines of gold, silver, and crystal.

Guaxaca, the capital of the above province, and the see of a bishop. Lat. 17.45 N . Lon, 100. 0 W.

GUAW, in ornithology. See PeneLOPE.

GUAYAQUIL, a seaport town of South A nerica, in the audience of Quito, situated on a river near the Pacific Ocean, founded in the year 1533. The town is defended by three forts, two on the river, and one behind the town;

150 miles SSW. Quito, and 330 N. Truxillo. Lom. 50. 20 W. Lat. 2. 12 S .

GUBEN, a town of Lusatia, in Germany, scated on the river Neisse. Lat. 51. $58 \mathbf{N}$. Lon. 14. 39 E .

GUBliR, a hingdom of Africa, in Negroland; seated on the banks of the Niger. Las. 18. 15 N. Lon. 8. 30 E. The inhabitants are numerous; among them are many ariticers and linen-weaters, who send their commodities to 'Jombuto.
(iCBERNA"IION. s. (gulernatio, Lat.) Government ; superintendency ($W^{\prime} u / t s$).

GUBIO, an episcopal town of the Ecclesiastical State, in Italy, 28 miles N. of Rome. Lat. +3. 16 N. Lon. 12. 38 E.

GL'DELLON, in ichthol, D. See CrPRiNus.

This fish, though small, is of so pleasant a taste, that it is very little inferior to a smelt. Gucigeons spawn twice in the summer season, and their feeding is much like the barbels, in streams and on gravel, slighting all manner of flies; but they are easily a ation with a smaih red worm, fishing near the ground; and being a leathern-mouthed fish, will not casily get off the hook when strack.

They are usually scattered up and down every river in the shallows in the heat of summer; but in autumn, when the weeds begin to grow sour, or rot, and the weather colder, they gather together, and get into the deeper parts of the water; and are to be fished for there, with your hook always touching the ground, if you fish with a float, or with cork; but many will fish for the gulgeon by hand, with a running-line upon the ground, without a cork, as a trout is fished for; and it is an excellent way, if you have a gentle rod, and as gentle a hand.

But alttough the small. red worm is the best bait for this fish, yet wasps, geutles, and cadbaits, will do very well: you may also fish for gudgeons with two or three hooks at once, and find very pleasant sport, where they rise any thing large; when you angie for them, stir up the sand, or gravel, with a long pole; this will make them gather to that place, and bite faster and with more cagerness.

Gudgeon (Sea). See Gobius.
Gudgeon, signifies farther, 2. A man easily cheated (Sicift). 3. Something to be caught in a man's own disadvantage; a bait (Sinatispeare). 4. A pirot, on which something turns.

In vol. XI. of the Trausactions of the Society for the Encouragement of Arts, \&ic. we have the following account of a gudgeon on an improved construction for the upright shafts of mills. "This gudgeon is formed of hard steel, and works on a hard steel bed; is circular, three inches in diameter, and threefourths of an inch thick : from its upper side a rib projects, which being fixed in the bottom of an upright shoft, the gudgeon works horizontally on a square bed: and that now in the possession of the society has worked in a mill

GUE

whose whecl and shaft weighed nearly six onus; and though it had continued to work seven years, had lost very little of its surface. It ran in a square box of cast iron, having oil therein : and a notch along the whole of the face of the guicion admits the oil to insinuate itself between the gudgeon and the bed."

GUELDER ROUSE, in botany. See ViBERNUM.

Guelder rose (Currant-leaved). See Spirefa.

Guelderrose(Virginian). See Spirta.
GUELDERLAND, a territory of the Netherlands, bounded on the \mathbf{N}. by Overissel and the Zuyder Sea, on the E. by the bishopric of Munster and the duchy of Cleves, on the S. by the duchy of Juliers and Brabant, and on the W. by the state of Ctrecht and Holland. It was erected into a duchy in 1339. The town of Gueldres and its district belong to the king of Prussia; Ruremonde, and its dependencies, to the house of Austria; and Venlo and Stevenswaert to the Lnited Provinces.

GLELDRES, a town of the duchy of Guelderland, ceded, with a considerable district, to Prussia. It is advantageously seated among marshes, on the riser Niers, whose waters fill the ditches, and was formerly so ztrongly fortitied as hardly to be taken except by famine. Lat. 51.26 N . Lon. 6. 0 E .

GUELPHS, or Guelfs, a celebrated faction in Italy, antagnists of the Gibelins With respect to the origin of the name Guclpins, nothing satisfactory hav get been produced that twe are a ware of.

GUERDON. s. (guerdon, French.) A reward; a recompense: not used (Knolles).

GUERET, a town of France, in the department of Creuse, and late prosince of Marche, seated on the river Gartampe. Lat. 46.10 N . Lon. 1.56 E .

GUERICKE (Otto or Gtho), counsellor to the elector of Brandenburg and burgomaster of Magdeburg, was born in 1602, and died in 16860° at Hamburg. He was one of the greatest philowophers of his time. It was Guericke that invented the air-pump; the two brass beinispheres, which being applied to each other, and the air exhausted, 16 horses were not ible to draw them asunder; the marmouset of glass which descended in a tube in rainy weather, and rose again on the return of serene weather. This last machine fell into disuse on the invention of the barometer, especially after Huygens and Amontons gave theirs to the world. Guericke made use of his marmouset to foretell storms; from whence he was looked upon as a sorecrer by the people :-Guericke was, author of several works in natural philosophy, the principal of which was his Experimenta Magdeburgica, in folio, which contains his experiments on a vacuum.

GUERNSEY, an island in the English Channel, about thirty miles in circumference; still governed by the laws of Normandy, of which it was anciently a part; and though subject to England, and declared to be in the county of Hants, and diocese of Wiuchester, the French
languge is miversally made use of. The air is pure, and the inhabitants in general healthy and long livet. The snil is rich and ferile, the cora raised is enough for the inland, and cattie are bred in sufficient quantities to victual their ships, with plenty of game and fowl. A lake, about a mile in circmaference, situased in the north-west part of the island, is stored with excellent carp, and sea fish of various kinds are caught in plenty. The island is defended by a ridge of rocks, rugged and steep, from one of \because :hich is collected eneery, or enieril, used by lapidaries and cutlers, to polish precious stoner, steel, \&ic. The proncipal drink of the nicher class is wine from Prance; of the inferior, cider, great quantities of which are made yearly from the abuadant orchards in every part of the island. Coals are imported from England, and, through the scarcity of wool and fuel, the poor are compelled to burn sea-weed. When the reformation was first introduced into the island, the Genevan ritual was observed, but for a long time a translation of the Liturgy of the Church of England has been used universally. It is divided into ten parishes, with only eight churches. The convention of the states consists of a governor, coroners, jurats, clergy, and constable, The inhabitants carry on a considerable trade to Newfoundland and the Mediterranean. The staple manufacture is knit stecking. Port St. Pierre is the chief town. Lon. 2.56 W . Lat. 49.30 N .
Guerney lily. Sce Amaryilis.
To GUESS. v. n. (ghis cen, Dutch.). 1. To conjecture ; to judge without any certain principles of judgment (Raleigh). 2. To conjecture righly (Stilling fleet).
To Guess. v. a. To hit upon by accident.
Guess. s. (from the verb.) Conjecture; judgment without any positive or certain grounds (P rior).

GUESSER. s. (from guess.) Conjecturer; one who judges without certain knowledge.

GUESSINGLY. ad. (from guessing.) Conjecturally; uncertainly: not used (Shahspeare).

GLLST. s. (zerr, sirt, Saxon.) 1. One entertained in the house or at the table of another (Luke). 2. A stranger; one who comes newly to reside (Sidney).
GUESTCHAMBER. s. Chamber of entertainment (Mark).

GUETTA'RDA. In botany, a genus of the class monoecia, order hexandria. Calyx cylindrical, very entire ; corol funnel-form, six or seven-cleft: pistil one; drupe dry. Four species : natives of the West ludies.

To GU'GGLE. v. n. (gorgolaire, Italian.) To sound as water running with iutermissions out of a narrow-mnuthed vessel.

GUGLIELAINI (Dominic), an eminent Italian mathennatician and civil engineer, was descended from an honourable family, and born at Bologna in the year 1655. His favourite studies were the mathematics and medicine, in the former of which he had for tutor the celebrated M. Germ. Montanari; and in the latter, the illustrious Malpighi. He entered into the dispute between M. Montauari and M. Cavina,

G U G

concerning the extraordinary luminous meteor which was observed in most parts of Italy in 1676 , and supported the opinions of his master. In the year 1078 he was admitted to the degree of doctor of medicine by the university of 13ologna. Upon the appearance of the remarkable comet in the years 1680 and 1681 , he published a treatise "d De Cometarum Natura et Ortec," \&ic. 1681, in which he proposed a new system on the subject, which he thought would serve to explain all the phenomena of those heavenly bodies; but it did not meet with the approbation of the scientific world. His next astronomical treatise, containing remarks on the solar celipse which took place on the 12th of July, 1684, and which he published in Latin, at Bologna, in the same year, reflected greater credit on his knowledge and accuracy of observation. Soon afterwards the senate of Bologna appointed him principal professor of mathematics in the university of that city, and, in the year 1686 , created him intendant-general of the rivers of the Bolognese. The office last mentioned engaged him to pay more particular attention to the study of hydrostatics and hydraulics; in consequence of which, in the year 1690 , he published the first part, and in the following year the second part, of an excellent hydrostatical treatise, entitled "Aquarum Fluentium Mensurn, Novo Methodo Inquisita." Some of his observations in this work were attacked by M. Papin, who also entered into a contest with the author on the subject of syphons. Their difference in opinion gave rise to two letters by Gugliclmini, which were printed under the title of "Epistolse Duæ Hydrostaticæ." He was engaged in settling the differences which arose between the cities of Bologua and Ferrara respecting the management of the embankments and sluices in their contiguous districts; and received a reward of his services, from his native city, the appointment to a new oflice in the university, which was that of professor of hydrometry. In the year 1695 he assisted M. Cassini in repairing the famous meridian line which he had constructed forty years before in the church of St. Petronius, at Bologna; on which occasion our author published a memoir, descriptive of the method pursued in laying it down, and establishing its claims to correctness and accuracy. In the year 1097 he published his grand physico-nathematical treatise on the nature of rivers, entitled "Della Natura de Fiumi," which raised his reputation to the highest pitch, for correct scientific knowledge, ingenuity, and judgment in hydraulics. Montucla commends it in warm terms, and says that it ought to be carefully studied by every person who would wish to become thoroughly master of this branch of science. The reputation which Guglielmini acquired by this performance occasioned his being employed by the dukes of Mantua, of Parma, and Modena, the grand duke of Tuscany, pope Clement XI. the republics of Venice and Lucca, \&c. in the invention and construction of the necessary hydraulic works in their respective
territories. In the year 1698 he was induced, by the republic of Venice, to accept of the mathematical chair in the university of Padua; but the senate of Bologna decreed that he should still retain, notwithstanding his new employment, the title of professor in their university, and the emoluments annexed to it. In the year 1702, he exchanged his mathematical chair at Padua for the more lucrative nue of medicine; after which he published different treatises on medical and cheinical subjects, fic. He died at Padua in 1710 , in the fifty-fifth year of his age. He had been admitted a member of the Academy of Sciences at Paris, in the year 1696 , and was also associate, or corresponding member of the Academies of Berlin and Vienna, and of the Royal Society at London. The best edition of his treatise on the nature of rivers was publisher at Bologna in 1756, with the notes of Manfredi; and the whole of his works were printed in a collective form at Geneva, in 1719 , in two volumes quarto. (Bril. Ency.).

GUGLINGEN, a town of Suabia, in the duchy of Wirtemberg, situate on the Zaber. Lat. 49.2 N. Lon. 8. 56 E .

GUIAN A, a country of South America, between the rivers Oronoko and Amazon, and to the E. of Peru. The interior parts of the country are inhabited by savages, who have different languages and customs; and some of thein build their houses on trees, to be secure from the inundations of the rivers. The French possess a part of the coast, which is called Equinuctial France, and the Dutch another. Here is a perpetual spring, and it produces large quantities of sugar canes. It is between the equator and eight degrees of \mathbf{N}. lat. See Cayenne and Surinam.

GUHDA, in music, the leading voice, or instrument, in fugues.

GUI'I)AGE. s. (from guide.) The reward given to a guide (Ainsworth).

GUI'DiNCE. s. (from guide.) Direction; government (Rogers).

To GUII)E. v. a. (guider, French.) 1. To direct in a way (South). 2. To influence (Kettleweli). 3. To govern by counsel; io instruct ($P_{\text {salms }}$). 4. To regulate; to superintend (Decay of Piety).

Guide. s. (guide, French.) 1. One who directs another in his way (Wisdom). 2. One who directs another in his conduct. 3. Director; regulator (Hooker).

Guide, in music, the name given to that note in a fugue which leads off and announces the subject.

GUl'DELESS. a. (from guide.) Having no guide; wanting a governour (Dryden).

GUIDER. s. (from guide.) Director; regulator; guide: obsolete (Soulh).

GUIDO (Beni), an illustrious Italian painter, was born at Bologna in 1575. His father being a musician, intended him for the same profession; but conceiving an early attachment to the art of painting, he was placed under the tuition of Dennis Calvert, a Flemish master. He afterwards studied under the Cav

G U I

racci, and soon acquired greater repute than any of his contemporaries. Honours were heaped upon him by several crowned heads, and riches flowed in upon him in abundance. He was unfortunate only in an immoderate love of gaming, which reduced him at length to such distress, that a languishing disease ensued, of which he died in $16+2$.

Guido, the musician. Sec Aretin.
GUIION, in music, a direct.
GUIENNE, a late province of France, which now forms the department of Gironde, and that of Lot and Garome.

GUILANDINA, in botany, bonduc or nicker-tree, a genus of the decandria monogynia class and order. Natural order of lomentacex. Leguminose, Jussieu. Essential character: calyx one-leafed; salver-shaped; petals Give inserted into the neck of the calyx, nearly equal; seed vessel a legume. There are six species. The nost remarkable are,

1. Bonduc, or yellow nickar.
2. Bonducella, or grey nickar. These are climbing plants, native, of the Wegt Indies, where they rise to the height of twelve or fourteen feet : the flowers come out at the wings of the stalks, and are composed of five concave yellow petals. They are succeeded by pods about three inches long and two broad, closely armed with slender spines, opening with two valves, each inclosing two hard seeds, about the size of children's marbles, of a jellowish colour.
3. Moringa, or morunga nickar, is a native of the island of Ceylon, and some places on the Malabar coast. It rises to the height of twenty-five or thirty feet, having flowers produced in loose bunches from the sides of the branches, and composed of an unequal number of petals.

GUILD (from the Saxon guildan, to pay), signifies a fraternity or company, because every one was gildare, i.e. to pay something towards the charge and support of the company. As to the original of these guilds or companies : it was a law among the Saxons, that every freeman of fourteen years of age should find sureties to keep the peace, or be committed; upon which certain neighbours, consisting of ten families, entered into an association, and became bound for each other, either to produce him who committed an offence, or to make satisfaction to the injured party. That they might the better do this, they raised a sum of money among themselves, which they put into a common stock; and when one of their pledges had committed an offence, and was fled, then the other nine made satisfaction out of this stock, by payment of money, according to the offience. Because this association consisted of ten families, it was called a decennary: and from hence proceeded later kinds of fraternities.

Guild, in the royal horoughs of Scotand, is still used for a company of merchants, who are freemen of the borough. (See Borough). Every royal borough has a dean of guild, who is the next magistrate below the bailiff.

Guild, gild, or gelp, is also used among

G U I

our ancient writers for a compensation or mulct for a fault committed.

Guild-hale, the great hall of judicature for the city of London. In it are kept the mayor's court, the sherif's court, the court of hustings, court of conscience, court of common council, chamberlain's court, \&c. Here also the judges sit upon nisi prius, \&c.

GUlLE. s. (guille, old French.) Deceitful cunning; insidious artifice (Milton).

GUP'LEFUL. a. (guile and full.) 1. Wily ; insidious; mischievously artful (Dryden). 8. Treacherous; secretly mischierous (Shakspeare).

GU1'LEFULLY. ad. (from grileful.) Insidiously ; treacherously (Milton).

GUI'LEFU LNESS. s. (from guileful.) Secret treachery; tricking cunning.

GUI'LELESS. a. (from guile.) Free from deceit ; void of insidiousness; simply honest.

GUI'LER. s. (from guile.) One that betrays into danger by insidious practices (Spenser).

GUILFORD, a borough in Surry, with a market on Saturday. It is seated on the ruver Wey, and on the declivity of a hill. It had 2 large castle, of which some of the walls are still standing. The summer assizes for the county are alternately held here and at Croydon. Guilford contains 483 houses, and 2634 inhabitants. Lat. 51.15 N. Lon. 0. 29 W.

GUILLEMOT, in ornithology. Sce Coiymbus.

GUILLOTINE, an instrument calculated for the expeditious decapitation of criminals, and much used during the revolutionary murders committed lately in France. This machine ennsists of two upright posts, ten feet high, joined at the top by an horizontal piece of timber. At four feet from the bottom is a crossbar, on which the neck of the criminal is laid, and over that there falls a similar bar, shaped to receive the neck like the front board of our pillory. On the inner faces of the frame are grooves, along which the extreme edges of an axe slide up and down. The axe is in shape somewhat like the italic capital letter V, the oblique stroke representing the sharp, edge, which in falling, with a heavy mass of lead affixed to its upper part, severs the culprit's head from his body by a sliding cut. The upright side of the axe is wholly included in the groove which guides it, by means of a cord and pulley, up to a catch or pin, to which a separate cord is connected. The criminal is prepared for his fate by the executioner, who, having first cut off his hair, ties hiin in a standing posture to a board, which he afterwards inclines, so as to lay the body horizontally with the face downwards, and with the head advanced over a basket placed for its reception. The string being pulled by the executioner, the axe descends, and the head is severed in an instant. Louis XVI, his queen and aunt, and multitudes of persons of both sexes, and of all ranks, who were attached to the royal cause in France, suffered death in this way.

G U I

A similar machine once existed in England, bit was confined in its use to the province of Hardwick, or the places within its precinct. The exccution was generally at Ha!:fax. This machine is now destroyed; but one of the same -kind is in a room under the parliament-house at Elinburf, where the use of it was introduced by the earl of Morton, who took a model of it as he passed through Halifax, and had the misfortunce at lenath to sufier by it himself. In England and Scotland it is called a Maicien. Its name, La Guillotine, is talien from the uame of the person who brought it into use in Paris, as at lisle it is called Louisoln, for the same reason.
There are several engravings of this instrument to be seen; one in wood in 1520; another to a German translation of the works of Petrarch in 1520, and sonie others: in all which, the axe is straight or semicircular, but always horizontal. - The sloping position of the French axe appcars the best for celerity of execution.
The guillotine, it farther appears, was an instrument used by the Romans under the name of Tympanum. Euphorion, of Chalcis, quoted by Athenæus, p. 154, tells us, that to be tympanized was to have vour head cut off by an axe. According to Photius, the tympanum was a machine of wood, with which the criminal was struck and decollated.

Lequinio, the sentimental novelist of France, whom Mercier compares with the tender, the heart-touching Sterne-Lequinio, commissioner, sent by the National Assembly to regenerate Normandy and Brittany, wrote to his masters, that "he was very successful in conversions from superstition to sound reason." He opposed to the Bible and the relicts of the saints the constitution and the guillotine. "And you would wonder (says he) at my successThe wise (but they are few) give up their prejudices at once; but the multitude, the stupid worshippers of Notre Dame, look at our lady the guillotine; are silent, become serious, and their doubts vanish; -they are converted. This is your labarum-in hoc signo vinces" ! ! !

GUILT. s. (zılr, Saxon.) 1. The state of a man justly charged with a crime (Hammond). 2. A crime ; an offence (Shakspeare).

GUI'LTILY. ad. (from guilty.) Without innocence (Shalisppare).

GUl'LTINESS. s. (from guilly.) The atate of being guilty; consciousness of crime (Sidney).

GUl'LTLESS. a. (from guilt.) Innocent; free from crime ($P_{o p e}$).
GUI'LTLESSLY. ad. (from guiltless.) Without guilt; innocently.

GUI'LTLEESNESS. s. (from guillless.) Innocence; freedom from crime (King Charles).
GUILTY. a. (дilzı, Saxon.) 1. Justly chargeable with a crime; not innocent (Shakspeure). 2. Wicked; corrupt (Thomson).

GUINCAMP, a town of France, in the departunent of the North Coast Lat. 48. 36 N. Lon. 38 W.

G U I

GUINEA, a country of Africa, of which little is known except the coast, thenec called the coast of Guinca. It is divided into the Lower and Upper. This last comprehends the Malaguetta coast, the Tooth coast, the Gold coast, Whidah, Great Adra, and Benin. The lower part is commenly called Congo. It is very unhealthy for Europrais, though the negroes live a consideratle time. The water is so bad, that it often occasions worms, of a white silver colour, to breed between the skin and the fle:h. The inhabitants in general go almost naked, and there scems to be little religion or honesty among them. The commodities purchased there are gum-scueca at Senegal; grain upon the Grain coast; elephant's lecth upon the Tooth coast; the greatest plenty of gold upon the Gold coast; and all, in general, furnish slaves, more or less : indeed, some of all these commodities are to be had in all parts of it. The Euglish, Dutch, French, Danes, and other nations, have factorites upon this coast, and purchase slaves and other commodities. There are abundance of little states, whose chicfis the sailors have dignified with the name of kings; but there are very few who deserve that title. When they are at war with each other, as they often are, the people taken, on both sides, are sold for slaves; and it is not uncommon for the nearest of kin to sell each other. These unnatural and horrid practices will probably continue, so long as guilty Eurnpeans persevere in their odious traffic in human tiesh.

Guinea (New), an island of the S. Pacific occan, to the N. of New Holland, from which it is separated by Endeavour Sirait. The length of this strait, from N.E. to S.W. is ten leagnes, and its breadth about five, except at the N.E. entrance, where it is contracted to somewhat less than two miles by the islands called Prince of Walcs' Islands. Except this strait and the land of Cape Deliverance, the whole coast and the circuryacent islands seem to have been minutely esaninied both by the Dutch and Spaniards. Some traces of a paissage between New Holland and New Gumea are also to be found in the accounts of firiner voyages; but captain Cook, in 17\%0, had the merit of establishing the fact beyond dispute. New Guinea was thus found to be a long warrow ishand, extending S.E. from the equator to 12 S . lat. and from 181 to 153 E . lnn . The land in general is low, but covered with such luxuriance of wood and herbage as can scarcely be conceived. The cocoa-nut, the bread fruit, and the plantain-tree, beside most of the trees, shrubs, and plants, that are common to all the South Sca islands, are found here in the greatest perfection. The inhabitants make much the same appearance ts the New Hollanders.

Guines, an English gold coin, value twenty-one shillings. Its statute weight is $118 \cdot 651$ Troy grains. This coin took its denomination guinea, because the gold whereof the first was struck was brought from that part of Africa called Guinea; for which reason it

G U I

likewise at first bore the impression of an elephant.

Guinea-droprer, one who cheats by dropping guineas.

Guinea-hen, in ornithology. See Numidia.
Guinea pepper. See Piper Indicum.
Guinea-pig, in mastiology. See Civia.
Guinea-worm, in helainthology. See Filagia.

GUINIAD, Gwiniad. This fish is excellent foorl, and is only found in a large water, called Pemble-mere : but the nost remarkable circumstance is this, that the river which runs by Chester, has its head or fountaiu in Merionethshire, and its course runs through this Pemble-mere, which abounds as much with guiniads as the river Dee does with salmon, of each both affording great plenty; and yet it was never known that any salmon was ever caught in the Mere, or any guiniads taken in the river. See Salmo.

GUISE s. (guise, French.) 1. Manner; mien; habit (pairfax). 2. Practice; custom; property (Ben Jonson). 3. External appearance; dress (Temple).

Guise, a town of Prance, in the department of Aisne, with a strong castle, seated on the river Oise. Lat. 49. 54 N . Lon. 3 . 42 E.

Guise (Henry, duke of), was born in $\mathbf{1 5 5 0}$. He was a good soldier; but of a haughty and turbulent temper. He formed the rebellious association called the League, the plan of which was projected by his uncle, the cardinal of Lorrain. The league was formed on the pretence of defending the Roman catholic religion, and the liberty of the state. With its aid, the duke of Guise long controlled Henry 111. and was even in open rebellion against him. On the celebrated day of the Barriciales, Henry having escaped from the hands of the duke to Blois, convened the states there; and the duke of Guise liaving the boldness to appear to a summons sent him on the occasion, was assassinated.

Guise (Charles, duke of), eldest son of the preceding, was born in 1571. He was arrested on the day of his father's death, and shut up in the castle of Tours, from which he escaped in 15y2. Proceeding to Paris, he was received with the greatest demonstrations of joy by the partisans of the league. He finally made his peace with the king; but cardinal Richelieu long after, dreading his power, compelled him to quit France. He died at Cuna, in Italy, in 1640.

GUitar, or Guitarra. A stringed instrument, the body of which is of an oval-like form, and the neck similar to that of a violin. The strings, which are distended in parallel Tines from the head to the lower end, passing over the sounding-hole and bridge, are tuned to the \mathbf{C} above fildle \mathbf{G}, E its third, \mathbf{G} its fifth, and their octaves. The intermediate intervals are produced by bringing the striugs, by the pressure of the fingers of the left-hand, into contact with the frets fixed on the key-board,

G U M

while those of the right agitate the strings, and mark the measure.
This iustrument was first used in Spain and Italy. The Spaniaris are so ford of the guitar, that there is scarcely an artificer who camot play it; and the men of almost all orders make use of this instrument in the evenings to serenade their mistresses:

GULA, in architecture, the same as cymatium and ogce.

Gula, in anatomy. See CEsophagus.
GU LBE, in architecture, the same as gorge.
GLLCH. Gu'lehin. s. (from gulo, Lat.) A little glution (Shinner).
GULES, in heraldry, signifies the colour red, which is expressed in engraving by perpeudicular lines falling from the top of the ecutcheon to the bottom.
GULPH, or Gulf, in geography, an arm or part of the ocean, running up with the land, and forming a capacious bay between two promontories. The word comes from the French golfe, and that from the Italian golfo, which signify the same. This word is also applied in other senses, as, 2. An abyss; an immeasureable depth (Spenscr). 3. A whirlpool; a sucking eddy (Shakspeare). 4. Any thing insatiable (Shahspeare).
GU'LFY. a. (from gulf.) Full of gulfs or whirlpools (Pope).

To GULL. v. a. (guiller, Fr.) To trick; to cheat ; to defraud; to deceive (Dryden).

Guli. s. (from the verb.) 1. A sea birl. (See Larus). 2. A cheat; a fraud; a trick (Shathspeare). 3. A stupid animal; one easily cheated (Shakspeare).
GU'LLCATCHER. s. (gull and catch.) A cheat ; a man of trick (Shakspeare).

GU'LLER. s. (from gull.) A cheat; an impostor.

GU'LLERY. s. (from gull.) Cheat ; imposture (Ainsworth).

GU'LLET. s. (goulet, French.) 1. The throat; the œsophagus (Denham). 2. A small stream or lake (Heylin).

To GU'LLY. $v . n$. To run with noise.
GU'LLYHOLE. s. The hole where the gutters empty themselves in the subterraneous sewer.
GULO'SITY. s. (gulosus, Lat.) Greediness; gluttony; voracity (Brown).
To GULP. v. a. (golpen, Dut.) To swallow eagerly; to suck down without intermission (Gay).
Guip. s. (from the verb.) As much as car be swallowed at once (More).

GUM. (gummi.) Mucilage. This substance is very abundant in the vegetable kingdom : it is found in a great number of roots; and the shoots of plants and new leaves contain it in great abundance. It may be known by its viscous and adhesive quality when pressed between the fingers. At the time of the year when the juices of plants are the most abundant, it naturally exudes through the barks of trees, and thickens on the surface into gum. The characters of gum are, 1. Solubility ip water, to which it gives a thick and viscous

G U M

consistence. This solution, known by the nanic of mucilage, becomes dry, transparent, and brittle, by craporation. 2. Insolubility in alcohol. 3. Coagulation by the action of weak acids. There are only two gums in use in medicine, viz. gummi arabicum, and tragacantha. Mucilages, of the same nature as gums, are obtained also from many plants, as mallows, quince-seeds, linseed, \&c.

Gum is truly a vegetable production : the only instance in which it is found secreted by animals, being the poison discharged from the hollow tusk of the viper and other serpents. Gum lac is also an animal secretion; but then as the plaso, and one or two other trees on which the coccus ficus, from whose labours we oblain it, fixes itself, produce by incision a lac of a similar kind, it seems rather already prepared for the iusect than an original preparation of its own.

Gumelemi, in botany. See Amyris.
Gum tree, in botany. See Pistachia.
Gum (Sweet), in botany. See LiquidamBAR.

Gum tragacanth, in botany. Sce Astragalus and Tragacantha.

Gum arabic, in botany. See Mrmosa.

Gum galbanum, in botany, See BuBon.

To Gum. v. a. To close with gum.
Gumboil. Sce Parulis.
Gum-resin. This also, like pure gum, is an exudation from a great variety of plants, yet chiefly of tropical climates. It constitutes a very considerable proportion of their juices; and onzes out from natural cracks in the bark, or artificial incisions; and hardens, like the purer gums, into irregular roundish masses, under the influence of the sun and air. A similar juice to that which is thus thrown forth naturally from the surface may be obtained, but inferior in its quality, by macerating some plants in water ; the whole plant being employed, or that part of it which yields the gumsesinous matter, the water being afterwards evaporated to an extract.

Gum-resius are almost exclusively confined to medical practice; and amongst the most important of them may be enumerated myrrh, galbanum, assafoetida, ammoniacum, olibanum, sagapenum, and perhaps opium. The general or characteristic properties of a gumresin, are (as its name indeed imports) such as may be expected to be produced by a natural mixture of gum and resin. To the resinous part they chiefly owe the property of burning with much flame, melting in drops by the heat; of giving by distillation a large portion of volatile oil, and some ammonia. To the gummy part they owe their partial solubility in water, so that when rubbed with this fuid they form an emulsion, generally whitish, which remains a considerable time turbid; and even when by rest the gum-resin has subsided, the clear liquor always retains some of the taste and smell of the substance employed.

Several of the gum-resinous juices are also

G U M

mixed with a kind of extractive, or a coloured and bitter substance, soluble in water and alcohol. Tar is also frequently combined with them, sometimes in very considerable quantities.

GUMMI ACA'NTHIUM, an obsolete name of the gum arabic.

Gummi adstringens. See Kino.
Gummi ammoníacum. See Ammoniacum.

Gummi a'nime, in botang. See Anime and Hymenfa.

Gummi ara'bicum. See Arabicum GUMMI.

Gummi bdéthium. See Bdeleium.
Gummicaránne. See Caranna.
Gummi Ceraso'rum, the juice which exudes from cherry-trees. It is very similar to gum arabic, for which it may be substituted.

Gummi снi'bou, a spurious kind of gimm elemi.

Gummi cou'rbaril. An epithet sometimes applied to the juice of the hymenaea courbaril. See Avime.

Gummi euphórbil. See Euphorbium.

Gummigálda. See Galda.
Gummi gambiénse. See Kino.
Gummi gu'tter. See Gambogia.
Gummi he'derar. Ivy gum. The resinous juice of the hedera helix of Linnéus, or ivy. It is imported from the East Indies, though it may be collected from trees in this country. It is brought over in hard compact masses, externally of a reddish brown colour, internally of a bright brownish gellow, with reddish specks or veins. It has a strong, resinous, agreeable smell, and an adstringent taste. Though never used in the practice of the present day, it possesses corroborant, adstringent, and antispasmodic virtues.

Gummi juniperinum. See Sandarack.

Gummi xikeiune'malo. See KifekUNEMALO.

Gummi ki'no. See Kino.
Gummi la'cces. See Lacca.
Gummimy'rrhes. See Myrraa.
Gummi saga'penum. See SagapeNUM.

Gummi senegale'nse. This is a true gum, brought from the island of Senegal on the coast of Africa, where it exudes in large pieces from the mimosa senegal of Linnéus. It is similar in virtue and quality to the gum arabic, and the gum which exudes in this climate from the cherry-trees.

Gummitragaca'nther. See Tragacantha and Astragalus.

GU'MMINESS. s. The state of being gummy; accumulation of gum (Fisemar $^{\text {a }}$).

GUMMO'SITY. s. (from gummous.) The nature of gum ; gumminess (Floyer).

GU'MMOUS. a. (from gum.) Of the nature of gum (Woodward).

GU'MMY. a. (from gum.) 1. Consisting of gum; of the natare of gum (Dryden). i.

G U N

Productive of gum (Milton). S. Overgrown with guin (Dryden).

GUMS. (gingina.) In anatomy, the very vascular and elastic substance that covers the alveolar arches of the upper and under jaws, and embraces the necks of the teeth.

GCN, a fire arm or weapon of offence, which forcibly discharges a ball, shot, or other offensive natier, through a cylindrical barrel, by means of gunpowder. Gun is a general name, under which are included divers or even most species of fire arms. 'They may be divided into great and small.

Great guns, called also by the general name cannons, make what we also call ordnance or artillery; under which come the several sorts of cainon. (See Cannon, Artillery, \&ec.) For small guns, see Fowling-fiece and Museet.

Gus is also a name given to an instrument used by mi:sers in cleaving rocks with gunpowder. It is an iron eylinder of an inch and a half thick, and about six inches long; and having a flat side to receive the side of a wedge; and a hole drilled through it to communicate with the inside of the hole in the rock : this hole is made about eight inches deep, and in the bottom of it is put about two or three ounces of gunpowder: then this gun is driven forcibly in, so as to fill up the hole, and the wedge is driven in on its flat side to secure it. The priming at the hole is then fired by a train, and the oritice being so well stopped by this gun, the force of the powder is determined to the circumadjacent parts of the rock, which it splits.

GUNDE'LIA, in botany, a genus of the class svngenesia, order polygamia segregata. Calyclecess; but the cells of the receptacle five finwered; florets tubular, male, and hermaphrodite; receptacle chaffy; downless. One species : a milky plant of Armenia, wih alter:ate, prickly leaves, and terminal flowers.

GUNFLINTS. For an interesting memoir on the art of making gunfints, by M. Dilomicu, much too long for our limits, see Nicholsun's Journal, No. 2. N.S.

GUNNEL. Sec Gunwale.
GUNNER, an officer appointed for the service of the cannon; or one skilled to fire the guns. In the Tower of Londun, and other garrisons, as well as in the field, this officer carries a field staff, and a large powder horn in a string over his left shoulder; he marches ly the guns, and when there is any apprehension of danger, his field staff is armed with match; his business is to lay the gun to pass, and to help to load and traverse her.

Gunser op a ship, or Master-gunNER, has the charge of all the ordnance the ship carries, to see that they be serviceably mounted, and sufficiently supplied with sponges, ladles, and rammers; that in foul weather they be traversed within board, especially those of the lowertier, and that the parts be shut, and caulked up; and that at all times they may be well lashed, and made fast, lest any of them break loose, to the imminent
danger of foundering the ship. In the time of an engagement, the gunner is to see that every piece be sufficiently manned; he is antswerable to give an account of all his charge upon demand. He has a mate and quartergunners for his assistance.

Gunner (Master), a patent-officer of the ordnance, who is appointed to teach all such as learn the art of gumnery, and to certify to the master-general the ability of any person rocommended to be one of the king's' gunners. To every scholar he administers an oath, not to serve, without leave, any other prince or state; or teach any one the art of gunnery, but such as have taken the said oath. The present master-cunner of England is brigadier-general Macteod.
GUNNERA, in botany, a genus of the class gymnandria, order diandria. Calyx twotooticd; corolless; drupe somewhat fleshy. crowned with the calyx growing to it. Three species ; Cape, Magellan's Straits, Chili.

GUNNERY, the art of charging, directing. and explocting all kinds of firc-arms, as cannon, mortars, muskets, \&c. to the best advantage. Gunuery is sometimes considered as a part of the militaryart, andsumetimes as a part of pyrotechny. To the art of gunnery too belongs the knowledge of the force and effect of gunpowder, the dimensions of the pieces, and the proportions of the powder and ball they carry, with the methods of managing, clarging, pointing, sponging, \&c. Also some parts of gunnery are brougit under mathematical consideration, which among mathematicians are called absolutely by the name Gunnery, viz. the rules and inc thol of computing the range, elevation, quantity of powder, \&c. so as to hit a mark or object proposed, and is more particularly called projectiles. See Projectues.

Lons before the invention of gunpowder, and of gunncry properly so called, the art of artillery, or projectics, was actually in practice. For not to mention the use of spears, javelins, or of stones tirown with the hand, or of bows and arrows, all which are fuund among the most barbarous and ignorant people, accounts of the larger machines for thruwing ston's, darts, \&c. are recorded by the most ancient writers. Thus one of the kings of Judah, 800 ycarsbefore the Christian ara, erected engin's of war on the towers and bulwarks of Jerasalicm, for shooting arrows and great stones for the defence of the city. 2 Chron. xxvi.15. Such mael:incs were afterwards known among the Greeks and Rumansby the names of Ballista,Catapulta, \&c. which produced effects by the action of a springofa strungly twisted cordage, formed of tough and elastic animal substances, no less terrible-than the artillery of the noderns. Such warlike instruments cuntimed in use down to the 12th and 13 th centuries, and the use of bows still longer; nor is it probable that they were totally laid aside till they were superseded by gunpunder and the modern ordnance.

The first application of gunpowder to military affurs, it seems, was made soon after the year 1300, for which the proposal of friar Bacon about the year 1280, for applying its enormous explosion to the destruction of aimies, might give the first hint; and Schwartz might have been the fist who actually applicd it in this way, that is, in Europe; for as to At:a, it is probable that the Chinese and Indi-

G UN N ERY.

ans had something of this kind many ages before. Thus, only to mention the probibition of fire-arms in the code of Gentro laws, printed og the East ndia Cumpany in $17 \pi 6$, which seems to confirm the suspicion suggested by a passage in Quintus Curtins, that Alexander the Great fuund some weapons of that kindin India : cammon in the Shanserst idion is called Shelagince, or the weapon that kills a bundred men at once.

However, the first pieces of artillery, which were charged with gunpuwider and stone bullets of a prodigious size, were of very clumsy and inconvenient structure and weisht. Thus winen Mahomet the Second besieged Cinstantinople in 1453, he battered the walls with stoncs of this kind, and with pieces of the calibre of 1200 pounds; which could not be fired more than four times a day. It was however soon discovered that iron bullets, of much less we.ght than stone ones, would be more efficacious if impelled by greater quantities of stronger powder. This occasioned an alteration in the matter and form of the cannon, whichwere now cast of brass. These were lighter and more manaseable than the former, at the same time that they were stronger in proportion to their bore. This change took place about the cluse of the fifteenth century.

By this means came first into use such powler as is now employed all over Europe, by varying the proportion of the materials. But this change of the proportion "as nut the only improsement it received. The pactice of graining is duabters of considerable adivantage. At first the powder had been always used in the $f \mathrm{rm}$ of tinc mala, such as it was reduced to by grinding the mater:als together. And it is doubtful whether the tirst giaining of the powder was intended to increase its strength, or only to render it more convenient for flling into sma! charges and the charging of small arms, to which alone it was applied for iuany years, whilst meal powder was still used for cannon. But at last the additional strength which the grained powder was found to possess, duabtiess from the fiee passase of the air between the grains, occasioned the meal powder to be entire ly laid aside.

For the last 200 ycars, the furmation of cannun has been very little improved; the best pieces of modern artillery differing little in the ir proportion from those used in the time of Charles the Fifth. Indeed lighter and shorter picees have been often proposed and tried; but though tlecy have their advantages in particular cases, it is agreed they are not sufficient for general service. Yet the size of the pieces has been much decreased ; the same purposes being now accomplished by smaller pirces than what were formerly thought necessary. Thus the battering cannon now approved are those that formerly were called demis. cannon, carrying a ball of 24 pounds acight, this weight having been found fully sulficient. The method also of making a breach, by first cutting off the whole wallas low as possible befure its apper part is attempted to be beaton down, seems to be a considerable modern improvenent in the practical part of gunnery. But the most considerable improvement in the practice is the method of firing with mall quantities of powder, and elevating the piece but a little, so tisat the bullet may just go clear of the parapet of the enemy, and drup into their works, called ricochet firing: for by this means the ball coming to the ground at a small angle, and with a small veiocity, dors not bury itself, but bounds or rolls aloug a great way, destroying all before.it. This method was first practised by
M. Vauhan at the siege of Aetl, in the year 1692. A practice of this kind was successfully practised by the king of Prussia at the battle of Rostach in 1757. He lad sevecal six-inch mortars, made with trumions, and mounted on travelling carriages, which were fired obliquely on the enemy's lines, and amone their horse. These being chaiged "ith only 8 ounces of powder, and elevated at one degree bid a quarter, did great execution: for these shells rolling along the lines with burning fuses, made the stoutest of the enemy not wait for their bursting.

The use of tire-arms was horrever long knomn bcfure any thuory of projectiles was formed. The Italians were the first prople that made any attempts at the theory, which they did about the begiuning of thie 16 th century, and amongst them it seems the first who wrote professtedly on the Alight of canuon sbot was Nicholas Tartalia, of Brescia. the same author who bad so great a share in the invention of the rules for cubic eqaztions. In 1537 he publisherl at Venice his Nicsa Scientia, and in 1546 his Quesiti et Indentioni doers, in both which he treats prufessedly on these motions, as well as in another work, translated ifto Enclish with additions by Cyprian Lucar, under the titie of Colloquies concerning the Ant of Shootiny in great and small Pieces of Artillers, and published at London in 1588. He deterained that the gicatest range of a shot was when discharged at an elevation of 4.5° : and be assened, contray to the opinion of bis conteraporaris, that no part of the path described by a ball is a right line; although the curvature iu the first part of it is so small that it need not be attentien to. He compared it to the surface of the sea; which, though it appears to be a plane, is yet doubtless incurrated round the centre of the eartli. He says he inrented the gurner's quadrant, for laying a piece of ordnaure to any point or degree of elevation; and thourb he had but little opportunity of acquiring any practical hinowledge by experiments, be get gave shrewd guesses at the event of some untried metheds.

The philos phers of those times also tock part in the questuins atising upon this subject; and mauy disputes on motion were held, especiaily in Italy, which continued till the time of Gaileo, and prubably gave rise to his celebrated Dialogues on Motion. These were not published till the yar 1638 ; and in the interval there were published many theories of the motion of military projectiles as well as many tables of their comparative ranges; though for the most part very fatlacious, and inconsistent with the motious of these bodies.

It is remarkable however that, during these contests, so few of those who were intrusted with the care of artillery thought it worth bile to bring their theorics to the test of experiment Mr. Rubins informs us, in his preface to his New Principles of Gunnery, that he had met with no more than four authors who had treated experimentaliy on this subject. The first of these is Collado in 1642, who has given the ranges of a falconet, carrying a three-pound shot, to evers point of the gunner's quadrant, each point being the 12 th part, or 7° and half. Bat from his numbers it is manifest that the piere was not charged with its usual allotment of powder. The result of his trials shews the ranges at the puint-blanc, and the averal points of elerations as below.

Colladu's Experiments.

		Range in
Point.	${ }^{\text {Deg. }}$	- ${ }^{\text {picsee* }}$
1	71	- - 394
2	13	- - 794
3	$2 \cdot 1$	- 95b
4	¢0	- 1010
5		- 1040
6	45	- 1053
7	5 53	between the 3d and 4th
8	60	betwen the 21.1 and 3 d
	$67 \frac{1}{2}$	between the 1st and 2 d
10	75	between the 0 and 1st
11	821	fell very near the piece.

The next was by Wm. Bourne, in 1613, in his Art of Shooting in great Orduance. His elevations were not regulated by the points of the Ennuer's quadrant, but by degrees; and he gives the proportions between the ranges at different elevations and the extent of the point-blanc shot, thus: if the extent of the point-blanc shot be represented by 1 , then the propurtians of the ranges at several elevations will be as below, viz.

Which greatext random, he says, in a calm day is at 42° elevation; but according to the strength of the wind, and as it favours or opposes the light of the shot, the elevation may be from 43° to 36°. He does not say with what piece he made his trials, though from his proportion it seems to have been a small one. This however ought to have been mentioned, as the relation between the extent of different ranges varies extremely accordiug to the velocity and density of the buillet.

After him Eldred and Anderson, both Englishmen, also published treatises on this sulject. The former of these was many years guntuer of IDover castle, where most of his experiments were made, the earliest of which are dated 1611, though his book was not published till 1616 , and was entitled The Gunner's Glass. His principles vecre sufficieutly simple, and within certain haits very near the truth, though they were not rizorously so. He has given the actual ranges of different pieces of artillery at small elevations, all under 10 dc grees. His experiments are numerous, and appear to be made with great care and caution; and he has honestly ect down some, which were nut reconcileable to his method: upon the whole he seems to have taken more pains, and to have had a juster knowledge of his jusiDess, than is to be found in most of his practical brethrell.

Galileo printed his Dialogues on Motion in the year 1646. In these he pointed out the general laws ubserved by nature in the production and compositiou of mution, and was the first who deccribed the actions and effects of gravity on falling bodies: on these principles he determined, that the flight of a cannou shot, or of any other projectile, would be in the curve of a parabola, unless so far as it should be diverted from that track
by the resistance of the air. He also proposed the means of examining the nequalities which arise from thence; and of discovering what sensibie effects that resistance would produce in the motion of a bullet at sume given distance from the piece.

Notwithstanding these determinations and hints of Galiteo, it seems that those who came after him never imagined that it was necessary to consider how far the operatiors of gunnery were affected by this risistance. Instead of this, they boldly asserted, without making the experiment, that no great variation could rise from the resistance of the air in the fight of shells or cannon-stiot. In this persuasion they supported themselves chiefly by considering the exireme rarity of the air, compared with those dense and ponderous buiites; and at last it became an almust generally established maxim, that the flight of these bodies was nearly in the curve of a parabola.
Thus Robert Anderson, in his Gemuine $U_{\text {se }}$ and Effects of the Gunne publ'shed in 1674, and agaiu in his book To hit a Mark in 1690, re!ates a great many expcriments; but proceciing on the principles of Galileo, he strenuuusly asserts that the flight of a!l bullets is in the curve of a parabola; undertaking to answer all objections that could be brought to the contrary. The same thing was also undertaken by iliondel, in his Art de jefter les Bormber, published in 1683; where. after long discussions, he conciudes, that the variations from the air's resistance are so slight as not to deserve any noiice. The same subject is trented of in the Philos. Trans. No. 216, p. 68, by Dr. Halley, who also, swayed by the very great disproportion between the density of the air and that of iron or lead, thought it reasonable to belicve that the opposition of the air to largo metal-shot is scarcely discernible; although in small and light shot he owns that it must be accounted for.

But though this hypothesis went on smoothly in speculation, yct Aulerson, who made a great number of trials, found it impossible to support it without some new morlificatiou. For theugh it does not appear that he ever examined the comparative ranges of either cannon or musket shot when fired with their usual velocity, yet his experiments on the ranges of shells thrown with velocities that were but small in comparison of those above mentioned, convinect him that their whole track was not parabolical. But instead of uaking the proper interences from hence, and concluding that the resist nce of the air was of considerable efficacy, he framed a new hypothesis; which was, that the shell or bullet at its first discharge Hew to a certain distance in a right line, from the end of which line only it began to describe a parabola : and this right line, which he calls the line of the inspulse of the fire, he supposes is the same for all clevations. So that, by assiguing a proper length to this line of impulse, it was always in his power to reconcile any two shots made at any two different angles; though the same method could not succeed with three shots; nor indeed does he ever inform us of the event of his experiments when three ranges were trieci at one time.

But after the publication of Newton's Principia, it might have been expected that the defects of the theory would be ascribed to their
true cause, which is the great resistance of the air to such swift mutions; as in that wurk he particularIs cousidered the subject of such mutions, and related the result of experiments, made on slow motions at least ; by which it appeared, that in such mutions the resistance increases as the square of the velocities, and he even hints a suspicion that it will increase above that law in swifter motions, as is now known to be the case. So far however were those who treated this subject scientincally from making a proper allowance fur the resistance of the atmosphere, that they still neglected it, or rather opposed it, and their theorics still differed must egregiously from the truth. Huygens alone seems to have attended to this primeiple: for in the year 1590 he published a treatise on gravity, in which he gave an account of some experiments tending to prove that the track of all projectiles, moving with very swift motions, was widely different from that of a parabola. The rest of the learned generally acquiesced in the justness and sufficiency of Galileo's doctrine, and accordingly very ertoneous calculations concerning the ranges of cannon were given. Nor was any farther notice taken of these errors till the year 1716, at which time Mr. Ressons, a French officer of artillery, of great merit and exprrience, gave in a memoir to the Royal Acade$m y$, importing that, "although it was agreed that tieury joined with practice did constitute the perfection of every art; yot experience had taught him that theory was of vory little service in the use of mortars: that the works of M. Blondel had justly enough described the seyeral parabulic lines according to the different degrees of the elevation of the piece: but that practice bad convinced him there was no theory in the effect of gunpowder; for having endeavoured, with the greatest precision, to point a mortar according to these calculations, he had never been able to establish any solid foundation upon them." One instance ouly occurs, in which D. Bernoulli applies the doctrine of Newton to the motions of projectiles, in the $\mathbf{C o m}$. Acad. Petro;tom. \&. p. 338, \&c. Besides which nothing farther was done in this busincss till the time of Mr. Benjamin Robins, who pubiished a treatise in 1742, intitled New Principles of Gunnery, in Which be treated particularly not ouly of the resistance of the atmosphere, but also of the force of gunpowder, the nature and effects of different guns, and almost every thing clae relating to the flight of military projeceiles; and indeed be carried the theory of gunnery nearly to its utmost perfection.

The first thing considered by Mr. Robius, and which is indeed the foundation of all other particulars relating to gunnery, is the explosive force of gunpowder. M. de la Hire, in his Hist. of the Acad. of Sciences for the sear 1702, supposed that this force may be owing to the incricased elasticity of the air contained in and between the grains, in consequence of the heat and fire produced at the time of the explosion: a cause not adequate to the 200 th part of the effect. On the other hand, Mr. Rubins deterinined, by irrefragable ex;eriments, that this force was owing to an dastic fluid similar to our atmosphere, existing in the powder in an extremely condensed state, which being suddenly freed from the powder by the combustion, expanded with an amazing force, and violently impelled the bullet, or whatever might oppose its expansion.

The intensity of th:s force of exploded gonn powder Mr. Robins asceriained in different ways, after the example of Mr. Hawksbee, related in the l'hilus. Trans. No. 295, and in his Physico-Mchan. Exiter. p. 81. One of these is by firing the powder in the air thus: A small quantity of the powder is placed in the upper part of a glass tubc, and the lower part of the tube is immerged in water, the water being made to rise so near the top, that only a small portion of air is left in that part where the powder is placed: then in this situation the communication between the upper part of the tube and the external air being closed, the powder is fired by means of a burning glass, or otherwise; the water descends upon the explosion, and stands lower in the tube than before, by a space proportioned to the quautity of powder fired.
Another way was by firing the powder in vacuo, viz. in an exhausted receiver, by dropping the grains of powder upon a bot iron included in the receiver. By this means a permanent elastic fluid was generatel from the fired powder, and the quantity of it was always in proportion to the quantity of powder that was used, as was found by the proportional sinking of the mercurial gage annexed to the air pump. The result of these experiments was, that the weight of the elastic air thasgenerated was equal to to of the compound inass of the gronpowder which yielded it, and that its bulk when cold and expanded to the rarity of the common air, was aboat 240 times the buik of the powder ; and consequently in the same proportion word such fluid at first if it were cold exceed the farce or elasticity of the atmosphere. But as Mr Rubins found by another ingenious experiment, that air heated to the extreme degree of the white heat of iron has its elasticity quadrupled, or is 4 times as strong; he thence inferred that the furce of the clastic air generated as above, at the mument of the explosion, is at least 4 times 240 , or 960 , or in round numbers about 1000 times as strong as the elasticity or pressure of the atmosphere on the same space.
Having thus determined the force of the gumporrder, or intensity of the agent by which the projectile is to be urged, Mr. Robins next prom cceds to determine the effects it will produce, or the velocity with which it will impel a shot of a given weight from a piece of ordıance of giren dimensions; which is a problem strictly limited, and periectly so!uble by mathematical ralts, and is in general this: Given the first farce, and the law of its variation, to determine the velocity with which it will impel a given body, in passing through a given space which is the length of the bore of the gun.

In the solution of this problem Mr. Robins assumes these two postulates, viz. 1, That the action of the powder on the bullet ceases as soon as the bullet is out of the piece; and 2d, That all the powder of the charge is fired and converted into elastic fluid before the bullet is sensibly moved from its place: assumptions which for good reasons are found to be in many cases rery near the truth. It is to be noted also, that the law by which the force of the elastic fluid raries is this, viz. that its intensity is directly as its density, or reciprocally proportional to the space it occupies, being so much the stronger as the space is less: a principle well known, and common to all elastic flaids. Upon theve principles then Mr. Robins resolves this problem, by means of the 39th prop. of Newton's Priucipia,

in a direct way, and- the result is equivalent to this theorem, when the quantities are expressed by algebraic symbols; viz. the velocity of the ball.

$$
\begin{aligned}
& 0=27130 \sqrt{\frac{10 a}{c d} \times \log \cdot \frac{b}{a}} \\
& \text { or }=100 \sqrt{\frac{223 a t^{2}}{w} \times \log \cdot \frac{b}{a}} ;
\end{aligned}
$$

Where v is the relocity of the ball,
a the lenth of the charge of powder,
b the whole length of the bore,
c the spec. grav. of the ball, or wt. of a cubic foot, of the same matter in ounces,
d the dia:n. of the bore,
w the wt. of the ball in ounces.
For example, suppose $a=2 \frac{1}{6}$ inc., $b=45$ inches, $c=11345 \mathrm{oz}$. for a ball of lead, and $d=$ $\frac{1}{4}$ inches; then $0=27150 \sqrt{\frac{7}{2269} \times \log \cdot \frac{120}{7}}$
$=1674$ feet per second, the vclocity of the ball.
Or, if the wt. of the bullet be $x=1_{\frac{\circ}{2 j} 02}^{\circ} .=$
zat oz. Then $v=100 \sqrt{\frac{1115 \times 149}{29 \times 32} \times \log \cdot \frac{120}{7}}$
$=1674$ feet, as before.
"Having in this proposition (says Mr. Robins) shewn how the velocity which any builet acquires from the force of powder, may be computed upon the principles of the theory laid down in the preceding propositions, we shall next shew that the actual velocities with which bullets of different magnitudes are impelled from different pieces with different quantities of powder, are really the same with the velocities assigned by these computations, and conse. quently that this theory of the force of powder, here delivered, does unquestionably ascertain the true action and modification of this enormous power,
"But in order to compare the velocities communicated to bullets by the explosion with the velucities resulting from the theory by computation, it is necessary that the actual velocities with which builets move should be capable of being discovered, which yet is impossible to be done by any methuds bitherto made public. The only means hitherto practised by others for that purpose have been either by observing the time of the flight of the shot through a given space, or by measuring the range of the shot at a given elevation, and thence computing on the parubolic bypothesis what velocity would produce this range. The first method labours under this insurmountable difficulty, that the velocities of these bodies are often so swift, and consequently the time observed is so short, that an imperceptible error in that time may occasion an error in the velocity thus found, of $2,3,4,5$, or 610 feet in a second. The other method is so fallacions by reason of the resistance of the air (to which inequality the firf is also liable), that the velocities thus assigned may not be perhaps the 10 th part of the actual velocities songht.
" To remedy then these inconveniences I have invented a new method of finding the real velocities of bullets of all kinds; and this to such a degree of exactness (which may be ang. mented tor at pleasure), that in a bullet moving
VOL. V.
with the velocity of 1700 feet in $1^{\prime \prime}$, the ers ror in the estimation of it need never amount to its 500th part; and this without any extraordinary nicety in the construction of the machine."

Mr. Robins then gives an account of the machine by which he measures the velocities of the balls, which machine is simply this, viz. a pendulous block of wood suspended freely by a horizontal axis, against which block are to be fired the balls whose velocities are to be dea termined.
" This instrument thus fitted, if the weight of the pendulum be known, and likewise the respective distances of its centre of gravity and of its centre of oscillation from its axis of suspension, it will thence be known what motion will be communicated to this pendulum by the percussion of a body of a known weight moving with a known degree of celerity, and striking it in a given point; that is, if the pendulum be supposed at rest before the percussion, it will be known what ribration it onght to make in consequence of such a determined blow; and on the contrary, if the peudilum, being at rest, is struck by a body of a known weight, and the Vibration a hich the pendulum m :kes after the blow is known, the velocity of the striking body may from thence be determined
"Hence then, if a ballet of a ktomn weight strikes the pendulum, and the ruman which the pendulum makes in coiseretace of the stroke be ascertained, the ver y with which the ball moved is theuce to be known."
Mr. Rohins tuen explains his method of computing volucitios from experiments with this machine; which method is rather troublesome and perplexed, as well as the rules of Euler and Antoli, who followed him in this business; but a much plainer rule is given in Hutton's Tracts, vol. i. p. I19, where such experiments are explained at full length, and this rule is expressed by either of the two fullowing formulas,

$$
=5.6727 \mathrm{cg} \times \frac{p+6}{b i r}=614.58 \mathrm{gg} \times \frac{p+b}{b i{ }^{\prime} n},
$$

the velocity; where 0 denotes the velocity of the bull when it strikes the pendulum, p the weizht of the pendulum, 6 the weight of the ball, c the chord of the arc described by the vibration to the radias, r, g the distance below the axis of motion to the centre of gravity, othe distance to the centre of oscillation, i the distance to the point of impact, and n the number of uscillations the pendulum will perform in one minnte, when made to oscillate in small arcs. The latter of these two theorems is much the easicst, buth because it is free of radicals and because the value of the radical $\sqrt{ } 0$, in the former, is to be first computed from the number n or number of oscillations the pendulum is observed to make.

With such machines Mr. Robins made a great number of experiments with musket barrels of different lengths, with balli of various weights and with different charges or quantities of powder. He has set down the results of 61 of these experiments, which neariy a:ree with the curresponding velocities as computed by his theory of the furce of powder, and which therefure establish that theory on a sure foundation.

From these experiments, as well as from the preceding theory, many important conclusiuns

GUNNERY.

were deduced by Mr. Robins; and indeed by mealls of these it is obvious that every thing may be determined relative buth to the true theory of projectices, and to the practice of artillery : for, by liring a piece of ordnance charged in a similar manner apainst such a ballistic pendulum from different distances, the velocity lost by passing through such spaces of sir will be found, and const quently the resistance of the air, the only circumstance that was wanting to complete the theory of qunnery or military projectiles; and of this kind D_{1}. Huttun has made a great number of experiments with cannon balls, aud has thereby obtained the whole scries of resistances to such a ball when moving with every degree of velocit y from 0 up to 2000 feet per second of time. la the structure of artillery they may likewise be of the createst use : for hence may be determined the best lengths of guns; the proportions of the shoot and powder to the scveral lengths; the thickness of a piece, so as it may be able to confine, without bursting, any given charge of powder; as also the effect of wads, chambers, placing of the vent, ramming the powiler, \&c. For the many other curious circumstances relating to this subject, and the various otherimp rovements in the theory and practice of gunnery made by Mr. Robins, consult the first vol. of his Tracts collected and published by Dr. Wilson in the year 1761, where ample information may be found.

Soon after the first publication of Robins's New Principles of Gunnery in 1742, the learned in several other nations, treading in his ateps, repeated aud further extended the same subjec ${ }^{+}$, sometimes varying and enlarging the machinery 3 particularly Euler in Germany, D'Antoui in Italy, and Messrs. D'Arcy and Le Roy in France. Bul most of these, like Mr. Robins, withemall firearms, such as muskets and fusils.
"But (siys Dr. Hutton, in his Phil. Dict. p. 5.56) in the year :755, in conjunction with several able officers of the Royal Artillery and other ingenious gentic men, 1 undertook a course of experinents with the ballistic peudulum, in which we rentured to extend the machinery to eannon shot of 1,2 , and 3 pounds weight. An account of these experiments was published in the Philos. Trans. for 1778, and for which the Royal Society honoured me with the prize of the gold medal. These were the only experiments that I know of which had been made with cannon balls for this puipose, although the conclisions to be deduced from such are of the greatest importance to those parts of natural philosophy which are deppencent on the effic ets of fired gunpowder; nor do I know of any other practical method of asoertainias: the initial velocities within any tolerable degre of truth. Tbe knowledge of this velocity is of the utmost confequence in gunnery; by means of it, together with the law of the resistance of the medium, every thing is determinable relative to that business; for, besides its being an excellent method of trying the sirength of different sorts of powder, it gives us the law relatise to the different quantitics of powder, to the different neights of shor, and to the differcnt lengti:s and pizes of suns. Besules these, there does nut stein to be any thing wanting to answer any inguiny that can be nade concerning the A.gl:t and ranges of shots except the effects arisiug fiom the resistance of the modium. In these experinuents the wrights of the pendulums employed were irom 300 to near 600 pounds. In that pa-
par is described the method of constracting the machines, of finding the centres of grapity and oscillation of the pendulum, and of making the experimento, wbich are all set down in the form of a journal, with all the minute and concomitant circumstances; also the investigation of the pew and easy rule set down just above, for compating the velocity of the ball from the experiments. The charges of powder were varied from 2 to 8 ounces, and the shot from 1 to near 3 pounds. And from the whole were clearly deduced these principal inferences, viz.
" First, That gunpowder fires almost instapta neously. 2. That the velocities communicated to balls or shot of the same weight, by differeme quantities of powder, are nearly in the sulduplicate ratio of thuse quantities: a smail variatiun, in defect, taking place when the quantities of powder became great. 3. And when shot of different weights are employed, with the same quantity of powder, the velocities communicated to then are uearly in the reciprocal subduplicate ratio of their weights. 4. So that, universally, sbot which are of different weights, and impelied by the firing of different quantilies of powder, uequire relocities which are directly as the syuare roots of the quantities of powder, and inversely as the square roots of the weights of the shot, pearly. 5. It would therefore be a great impiuvenneot is artillery to make use of shot of a long form or of heavier matter; for thus the momeatum of a shot, when fired with the same weight of powder, would be increased in the rato of the square root of the weight of the shot. 6. It would also be an improvement to diminish the windage; for by so doing, one-third or more of the quantity uf powder might be saved. 7. When the improvenents mentioned in the last two artices are considered as both taking place, it is evident that about half the quantity of powder might be saved, which is a very considerable object. But important as this saving may be, it seems to be still excueded by that of the article of the guns; for thus a suall gun may be made to bare the effect and execution of another of two or three timesits size in the present mode, by discharging a shot of two or three times the weight of its natural bell or round shot. And thus a small ship might discharge a shot as heavy as those of the greatest now made use of.
"Fiaa!ly, as the above experiments exhibit the regulations with regard to the weights of powder and balls when fired from the same piece of ordnance, \&c. so by nuaking similar experiments with a gun, varied in its length by cutting off from it a certain part before each course of experiments. the effects aud general rules for the different lengthe of guns may be certainly deterinined by them. In short, the principles on which these experiments were made are so fruitful in consequences, that, in conjunction with the effects resulting from the resistance of the medium, they seem to be sufficient for answering all the enquiries of the specuiative philosupher, as well as those of the practical artillerist."

In the year 1785 was published the Girst volume of Dr. Hutton's Tracts, in which is detailed, at great length, another very extensive currse of experiments which were cariied on at Woolwich in the years 1783, 1784, and 1785, by order of the Duke of Richmond, master general of the ordo nance. The objects of this course were very noaverous, but the principal of them were the following:

GUNNERY.

1. The velocities with which balls are projecto td by equal charges of powder, from pieces of the same weight and calibre, but of different leugt bs.
" 2. The velocities with differetit charges of yowder, the weight and length of the gun being the same.
" 3. The greatest velocity due to the different lengthe of guns, to be obtained by increasing the charge as far as the tesistance of the piece is capable of sustaining.

4 4. The effert of varying the weight of the piece; every thing else being the same.
© 5 . The penetration of balls into blocks of wood.
ct 6. The ranges and times of flight of balls; to eompare them with their initial velocities for determining fhe resistance of the medium.
$\alpha 7$. The effect of wads;
of different degrees of ramming;
of different degrees of windage;
of different positions of the rent;
of chambers, and trunnions; and every other circumstance necessary to be known for the improvement of artillery."
All these objects were oftained in a very perFect and accurate manner; excepting only the article of ranges, which were not quite so regular and iniform as might be wished. The balls tow were most of them of one pound weight ; but the powder was increased from 1 ounce up till the bore was quite full; and the pendulum was from 600 to 8001 b . weight. The conclusions from the whole were as follow :
© 1. That the former law, between the charge and velocity of ball, is again confirmed, viz. that the velocity is directly as the square root of the weight of powder, as far as to about the charge of 8 sunces: and so it would enntirue for all charges, were the guns of an indefinite length. But as the length of the charge is increased, and bears a more considerable proportion to the length of the bore, the velocity falls the more short of that proportion.
" 2 . That the velocity of the ball increases with the charge to a cersain point, which is pecufiar to earh gun; where it is greatest; and that by farther increasing the charge, the velority gradually diminishes till the bote is quite full of powder. That this charge for the greatest velocity is greater as the gun is longer, but not greater however in so bigh a proportion as the Jenoth of the gun is; so that the part of the bore filled with powder bears a less proportion to the Whole in the long guns, than it does in the short ones; the part of the whole which is flled being indeed nearly in the reciprocal subduplicate ratio of the length of the empty part. And the other circumstances are as in this table.

Table of Charges producing the greatest Velocity.

$\begin{aligned} & \text { Gun. } \\ & \text { Num. } \end{aligned}$	Lenxt\| of the bore.	Length gilled.	Part ol the whole.	Weight of the powder.
1	$\left\lvert\, \begin{gathered} \text { inches } \\ 28 \cdot 2 \end{gathered}\right.$	inches $8 \cdot 8$		$\mathbf{o z} .$
9	38.1	$9 \cdot 5$	1	14
3	57.4	10.7	If	16
4	79.9	$12 \cdot 1$	${ }^{3}$	18

* S. It appears that the volocity continually
increases as the gun is longer, though the increase in velacity is but very small in respect of the increase in length, the velocities being in a ratid somewhat less than that of the square routs of the length of the bore, but somewhat greater than that of the cube roots of the !ength, and is indeed nearly in the middle ratio between the two.
"4. The range increases in a much less ratio than the velocity, and indced is nearly as the iquare root of the velocity, the gun and clevation being the same. And when this is compared with the property of the velocity and length of gunin the furegoing paragraph, we perceive that very little is gained in the range by a great increase in the length of the gun, the charge being the same. And indeed the range is nearly as the 5 th rool of the length of the bore, which is so small an increase as to amount ouly to about ith part more range for a double length of gun.
" 5 . It also appears that the time of the ball's fight is nearly as the range; the gun and elevation beiug the same.
" 6. It appears that there is no sensible difference caused in the velocity or range, by varying the weight of the gun, nor by the use of wads, nor by different degrees of ramining, nor by firing the charge of powder in different parts of it.
" 7 . But a great difference in the relocity arises from a small degree of windage. Indeed with the usual established windage only, ramely, about ksth of the calibre, no leas than between $\frac{1}{9}$ and $\frac{1}{6}$ of the power escapes aud is lost. And as the balls are often smaller than that size, it frequently happens that half the powdet is lost by unnecessary windage.
" 8. It appears that the resisting force of wood to halls fired into it is not constant. And that the depths penetrated by different velocities or chargesare nearly as the logarithms of the charges; instead of being as the charges thernsclies; or which is the same thing, as the square of the velocity.
" 9. These, and most other experiments, show that balls are greatly deficeted from the direction they are projected in; and that so much as 300 or $\mathbf{4 0 0}$ yards in a range of a mile, or alnost th of the range, which is nearly a deflection of an angle of 15 degrees.
" 10. Finally, these experiments furnish ns with the following concomitant data, to a tolerable degree of accuracy, namely the dimensions and elevatiou of the gim, the weight and dimensions of the powder and shot, with the range and time of fight, and the first velocity of the ball. From which it is to be hoped, that the measure of the resistance of the air to projectiles may be determined, and thereby lay the fonndation for a true and practical system of gunnery, which may be at well useful in service as in theory."
" Since the publication of those Tracts (says Dr. Hutton), we have pros ${ }^{\circ}$ cuted the experiments atill fartber from year to year, gradually extending our aim to more objects, and enlarging the guns and machinery, till we have arrived at experiments with the 6 pounder guns, and peodulums of 1800 pounds weight. One of the new objecte of enquiry was the resiotance the atmosphere makes to military projectiles; to obtain which, the guns have been placed at many different disd tances from the pendulum, against which they are fired, to get the velocity lost in pasing throunh those spaces of air; by which and the use of the whirling machine, described near the end if the

GUNNERY.

Let. vol. of Rubins's Tracts, for the slower motions, 1 have investigated the resistance of the air to given balls noving with all degrces of velocity from oup to 2000 feet per second; as well as the resistance for many degrees of velocity to planes and figures of other shapes, and inclined to their path in all varieties of angles; from which 1 bave deduced general laws and formulas for all such motions.
" Mr. Robins made also similar experiments on the resistance of the air, but being only with musket bullets, on account of their sniallness and of their change of tigure by the explosion of the powder, If tind they are very inaccurate, and con-iderably different from those above inentioned, which were accurately made with pretty considerable camon balis of iron. For this reason we may onnit here the rules and theorydeduced from them by Mr. Robins, tilluthers more correct shall have been established. All these exporiments indeed agree in evincing the rery enomous resintance the air makes to the swift motions of military projectiles, amounting in some cases to 80 or 31 times the wight of the ball itsclf; on which aceount the common rules for projectiles deduced fiom the parabolic theory, are of little or no use in real practice; for from these expeniments, it is clearly proved that the track described by the flizht evell of the heaviest shot is neither a parabula, nor yet approaching any thing ncar it, excopt when they are projected witis very small velucities; insomuch that some balls, which in the air range only to the distance of one mi.., would, in racuo, when projected with the same velocity, range above 10 or 20 times as far." For the common rules of the parabolic theory, see Prodectiles; and for a small specimen of experiments on resistances, see the 2d vo!. of the Edinburgh Philos. 'Irans.; as also Hutwn's Conic Sections and Sclect Exercisis.

Mir. Benjamin Thempson (now count Rumford) instituted a viry considerable course of experiments of the same kind as those of Mr. Robins, with muslet barrels, which was published in the Philis. Trans. vol. 71, for the year 1781. In these expcrimerits the conclusions of Mr. Robins are generally contirmed, and sceval other curious circumstances in this business are remarked by Mr. Thumpson. This geuteman also pursues a hint thrown out by Mr. Robins, relative to the determining the velority of a hail from the recoil of the pendulous gun itself. Mr. Rubinis, in prop. 11. semarks, that the effect of the exploxed powder upon the recoil of a gon is the same whether the gun is charged whh a ball or without one; and that the chord, or vllueity, of recuil with the pouder alone, being subtracted from that of the recoil when charged with buth powder and ball, leaves the velocity which is due to the ball alone. From thence Mr. Thompson observes, that the infercnce is obvious, viz. that the mometitum thus commenicated to the gun by the ball alone, being equal th the mumentum of the ball, this becomes L:arwn; and the raose leing divided by the known werizht of the ball, t!e queticnt will be its velocity. 'Mr. Thompson sets a great value on this new mke the velorities by the ans of which he fuond to astree 1 :asly with seseral of those deduced from the miotan of the pendulum; and in the other cases in which they ditiered greatly from these, he very inconsistent y supposec that these latter ones are erroncous in the experiments how ever contajued
in Dr. Huttons's Tracts, a great multitude of those cases are compared together, and the inaccuracy of that new rule is fully proved.

Having in the 9th prop. compared together a number of computed and experimented velocities of balls to verify his theory; Mr. Robins, in the 10 th prop. assigns the changes in the force of powder, which arise from the different state of the atmosphere, as to heat and moisture, both which he finds have some effect on it, butespecially the latter. In prop. 11. be investigates the velocity which the flame of gunporider acquires by expandiug itself, supposing it fired in a given piece of artillery, withont either a bullet or any other body befure it. This velocity he finds is upwards of 7000 feet per second. But the celcebrated Euler, in his commentary on this part of Mr. Robius's book, thinks it may be still much greater, and in this prop. too it is that Mr. Robins declares his opinion above alluded to, viz. that the effect of the powder upon the recoil of the gun is the same in all cases, whether fired with a ball or withcuz one. In prop. 12. he ascertains the manner in which the flame of powder impels a ball which is laid at a considerable distance from the charge ; showing here that the sudden accumulation amd density of the fluid against the ball is the reason that the barrel is so often burst in those cases. In prop. 13. he er,umerates the various kinds of puwder, and describes the proporest methods of examining its goodness. He here shews that the best proportion of the ingredients is when the saltpetre is 3 of the whole compound mass of the powder, and the sulphur and charcoal the otber $\frac{1}{2}$ between them, in equal quantities. In this prop. Mr. Robins takes occasion to remark upon the use of eprouvettes, or methods of trying powder; condemning the practice of the English in using what is calied the vertical eprouvette; as well as that of the French, in using a small mortar with a very large ball, and a small charge of purder, and instead of these he strongly recominends the use of his ballistic pendulum, fur its great accuracy. Bor for still more dispatch, he says he should nise another methen, which however be reserves to himself without riving any particular description of it.

The other or 2 d chapter of Mr. Ruhins's rork, in 8 propositions, treats " of the resistance of the air, and of the track described by the flight of shot and shols." And of these prop. 1. describes the gencral principles of the resistance of fluids to solid bulies moving in them. Here Mr. Rubinadiscriminates between continued and compresed Auids, which immediately ush into the spa e qaitted by a borly in them, and whose parts yield totie impuise of the borly without condensing and accumblativg before it; and such fuids as are imperfectly compressed, rushing into a void space, with a limited velucity, as in the case of our atmosplicre. which condensey more and more befire the ball as this moves quicker, and also prosses the less bel:ind it, by following it always with only a giren velucity: hence it happens, that the furmer fluid will resist moving bodies in proportion to the square of the velucity, while the latier resints in a higher proportion. Prop. 9 is " to determine $\boldsymbol{v} \in$ resintance of the air to projectiles by expriments." One of the inethois for this pirpose is by the balistic pendulum, piacing the gan at difti-rent distances from it, by which he finds the velocity lost in passing through certain spaces of air, and
eonsequently the force of resistance to such velocities as the body moves with in the several parts of its path. And another way was by firing balis with a known given velocity, over a large piece of water, in which the fall and plunge of the ball could be seen, and consequently the space it passed over in a given time. By these means Mr. Robins determined the resistance of the air to several different velocities, all which showed that there was a gradual increase of the resistance, over the law of the square of the velocity, as the body moved quicker. In the remaining propositions of this chapter, be proceeds a little farther in this subject of the resistance of the air ; in which he lays down a rule for the proportion of the resistance between two assigned velocities; and he shows, that when a 24 pound ball, fired with its full charge of powder, first issues from the piece, the resistance it meets with from the air is more than 20 times its weight. He farther shows, that "the track described by the flight of shot or shells is neither a parab,la, nor nearly a parabola, utiless they are prijected with small velocities;" and that "bullets in their gight are not only depressed beneath their original direction, by the action of gravity, but are also frequently driven to the right or left of that : direction by the action of some other force: and in the 8ih or last proposit on, he pretends to show that the depths of penetration of balls into firm substances are as the squares of the velocities. But this is a mistake; for ncither dors it appear that his trials were sufficiently numerous or rarious, nor were his small leaden holls fit for this purpose; and it has appeared from a number of trials with iron cannon balls, that the penetrations are in a much lower proportion, and that the resisting force of wood is nut uniform. See Dr. Huttons Tracts.
In the fol'owing small tracts, added to the prineiples. in this volunie, Mr. Robins prosecutes the eubiert of the reristance of the air much farther, and lays down rules for cump nting ranges mate in the sir. But these must be far from accurate, as tiey are founded on the two following principles; which are known, from numerous experiments, to be erruncous: viz. 1 st , "That till the velocity of the projectile surpasses that of 1100 feet in a second, the resi tance may be estermed to be in the duplicate proportion of the velocity. 2d, That if the velocity be greater tian that of 11 or 1200 feet in a second, then theabsolute quantity of that resistaoce in these greater velocitics will be near thrce times as great as it should be by a comparisin with the smaller velocities." For, instead of leaping at once from the law of the square of the yelocities, and ever after being about three times as much, experiments prove that the increase of the resistance abore the law of the square of the velocity takes place at first in the smallest motions, and increases gradually, more and more, to a certain point, bnt never rises on high as to be three times that quantity, after which it decreases again. To render this evident, Dr. Hutton has inserted the following table of the actual quantities of reaistances, which are deduced from accurate experiments, and which shew also the nature of the Law of the variations by means of the columns of differences annexed, reserving the detail of the experiments themselves to another occasion. These pesistances are, upon a ball of $19 \cdot 65$ inc. diameter, in avoirdapois ounces, and are for all velocitics frem 0 up to that of 2000 feet per second of time.

The gwantity of the resistance of the air to e ball of 1.965 inc. diameter.

Veluc. in feet	Resist. it. ounces.	1st Differences.	2d Diferences.
0	0.000		
5	0.006		
10	0.025		
15	0.054		
20	$0 \cdot 100$		
25	$0 \cdot 155$		
30	0.23		
40	0.48		
30	0.67		
100	23	84	54
- 200	11	14	6
300	25	20	7
400	45	27	8
5 CO	72	55	9
600	107	44	10
700	151	54	12
800	205	66	13
900	271	79	13
1000	350	92	18
1100	442	104	11
1200	546	115	9
1300	661	124	7
1400	785	131	4
$1510)$	916	135	0
1600	1051	135	2
1700	1186	153	5
1800	1319	- 128	6
1900	14+7	122	
2000	1569		

If the terms of any arithmetical series be squared, the $2 d$ differences will be equal : hence this table proves the truth of the furmer part of Dr. Hutton's assertion. The additional tracts of Mr. Rubius, in the latier part of this volume; which contain many useful and inportant matters, are nambered and titled as follows, riz. Number 1, "Of the resistance of the air. Number 2 , Of the resistance of the air; tugether with the methot of computing the motiuns wi bodi•s projected in that mecilum. Number 3, An Account of the experiments relating to the resistance of the air; exhibited at differmat times before the Rnyal Society, in the year 17i6. Number 4, Onthe forc: uf Gred gunpowder, together with the computation of the velocities thereby communicated to mutitary projectiles. Number.5, A comparison of the experimental ranges of callion and moitars, with the theory contained in the preceding papers. Practical maxims relating to the effects and management of artillery, and tiac flight of shells and shot. A proposal for increasing the stength of the British nary, by chambing all the sens, from the 18 pouadery riownward, into others of equal weight, but of a greater bore." With several letters, and other papers, "On pointing, or the directing of the canmon to strike distant objects; Of the nature aud advantage of rifled barrel pieces," \&c.
"I nave (continues Dr. Huttoin) dwelt thus long on Mr. Robiua's New Pruciples of Gunatry, because it is the first work that can be considered as attempting to establish a practical systom of gunnery, and projectiles, on good experiments, on the force of gunpowider, on the resistauce of the air, and on the effects of different pieces of artillery. . Those experiments are not however suf. ficiently prifcet, both on account of the smaliwess of the bultels, and fur want of goud ranges to

GUNPOWDER,

Gorm a proper theory upon. I have supplied some of the necessary desiderate for this purpose, viz. the resistance of the air to cannon balls moving with all degress of velocity, and the velocities communicated by given charges of powder, to different balls, and from different pieces of artillery. But there are still wanting good experiments with different pieces of orduance, giving the ranges and times of flight, with all varieties of charges, and at all different angles of elevation. A few however of those I have obtained, as in the following small table, which are derived from experiments made with a medium one-pounder gun, the iron ball being nearly 2 inches in diameter:

Yowder.	Eler. of gun.	Veloc. of Kange. ball.	Time of flight.	
oz.	0	feet	feet	$\prime 1$
2	15	860	4100	9
4	15	1230	5100	12
8	15	1640	6600	144
12	15	1680	6700	151
2	45	860	5100	21

The celebrated Mr. Euler added many excellent dissertations on the subject of gunnery, in his sranslation of Robins's Gunnery into the German language; which were again farther improved in Brown's translation of the same into English, in the year 1777. See also Antoni's Examen de la Poudre; the experiments of MM. D'Arcy and Le Roy, in the Memoirs of the Academy in 1751; and D'Arcy's Essni d'une theorie d'artillerie in 1760: Dr. Hutton's Tracts, and paper on the force of fired gunpowder in the Philos. Trans. for 1778; and Thompson's Paper on the same subject in 1781. Dr. Hutton has also in his possession ieveral interesting papers containing descriptions of other courses of experiments, from which are deduced many highly valuable results; these we e:arnestly hope he will publish in the collection of bis oricinal works, now preparing for the press. The consideration of the situation he so long and so honourably illed, of bis talents, and of his remarkable perseverance, canses us to be persuaded that he can yet furnish more important informstion ou the subject of gunnery than any philosapher now lising.

Of the common or parabolic theory of gunnery, Mr. Simpson gives a very neat and concise treatise in his Select Exercises, and Dr. Gregory another In the J!st volume of his Mechanics. Other authors on this part of the subject are Starrat, Gray, Burrow, Williams, Glenie, \&c.

GUNPOWDER. (poudre d̀ canon, Pr, das scheisspu/ver, Germ.) A mechanical mixture of nitre, charcoal, and sulphur, for the purpose of communicating to guns of erery calibre prodigions projectile power.

The first person who appears to have been acquainted with the nature and effects of a combination of these three materials in a certain proportion to each other, was Roger Bacon. In histreatise De Secretis Operibus artis et Natura et de Nullitate Magiæ, cap. 6, published at Oxford, probably in 1216, he tells us, that from salt-petre and other ingredients "we are able to thake a fire that shall burn at what distance we please:" and from some manuscript writings of the same philopopher, and a well known anagram under which \{he secret was enveloped, we bare pretty tolerable
proof that "these other ingrodienta" were ehars coal and sulphur.

The mode of manufacturing gumpowder does not essentially vary in any country; though there is some difference in the relative proportion of the ingredients employed. In the time of Taraglia, cannon powder was made of four parts of nitre, one of sulphur, one of charcoal: and the musket powder of forty-eight parts of nitre, seven of sutphur, and eight of charcoal. The proportions and method employed at the present day in our own country oannot be better described than from the account given by Mr. Colemap, of the royal powder mills of Waltham Abbey. Gunpowder, according to this gentleman (see Philos. Mag, vol. ix.) should consist of seventy-five parts of nitre or saltpetre, fifteen of chareod, and ten of sulphur. The saltpetre made use of is chielly that brought in a ruugh state from the East Indies, and refined by solutiop, evaporation, and crystallization; by which means the deliquescent salts, so frequently combined with it, are gotien rid of ; and it will keep without growing damp. The sulphur used is imported from Sicily and Italy, where it is collected in its native state in abundance. It is refined by melting and skimming; and when very impure, by sublimation. The sulphur obtained from some of our own copper nines in abundance is too impure for this purpose, as its refinement cannot be conducted without a very heavy and unnecessary expence. The charcoal, in order to ensure its being of an muiformly good quality, has of late years been obtained by inclosing the woud, cut into billets, about nine inches long, in iran cylinders placed horizontally, and buruing them gradually to a red beat. the fire being continued till every thing volatile is driven off, and the wood is completely charred. The pyroligneous acid bereby eliminated is collected by pipes, passing out of the iron cylinder, and dipping into casks where the liquor condensex. The acid is employed as a mordant in ca-lico-printing, especially in fixing colours obtained from iron. It is of no consequence what wood is employed, hut ouly that it be thoroughly charred: alder, willow, and dog-wood, are the sorts commonly unade choice of.

The above ingredients being duly prepared, they are first separately ground to a fine powder, then mixed in the proper proportions; after which the mixture is fit for the important operation of thoruughly incorporating the component parts in the mill; upon a close attention ta which the elastic furce of the powder chiefly depends.

A powder-mill is a slight wooden building with a boarded roof, so that in the event of any moderate explosion the roof may fly off without diffeculty and the sudden expansion may take place in the least mischievous direction. Stamping mills were furmerly used, consisting of a large wooden mortar. with a very ponderons wooden pestle, commonly made of lignum vitre, and worked, according to ite size, by the power of mep or of horses. This method is still continued at the fine powder mills at Battle in Sussex; where, howerer, only a few pounds of the materials are porked at a time. The only objection to stamping mills is the great danger of their taking tire; and on this account, in most large manufactories, the process of incor poration is performed by two stopes placod vertigally, and rupning on a bod-stone or troagb. Om this trough the ingredients are placed in quantitien not exceeding forty or fifty pourds at a time, and

GUNPOWDER.

worked for about sevet or eight hours, with just so much water as will bring the mass in the grinding to a consistence considerably stiffer then that of paste; in which state it is found by experience that the incorporation of the ingredients proceeds with most ease and accuracy. These mills are worked either by water or with horses.

When takea from the mills, the composition is sent to the corniag-house, to be corned or grained: a process which gives to gunpowder, not indeed additional streagth, but great facility of keeping dry, and of convenience in the use of it than if in Iine dust. Here the stiff paste is frst pressed into hard lumps, which are put intu circular sieves with parchment bottoms, perforated with holes of different sizes, and fixed in a frame connected with a horizontal wheel. Each of these sieves is also furnished with a runner, or oblate spheroid of lignam vitz, which being set in motion by the action of the wheel, squrezes the paste through the boles of the parchment bottom, forming grains of different sizes. The grains are then corted and soparated from the dust by sieves of progressive dimensions in their aperturis. After this they are glazed or hardened, and the rough edges taken off, by being put into casks filled about half full, and fixed to the axis of a water-wheel; by which means the grains are shaken against each other in sepid revolution, become rounded, and receive a elighe gloss or glazing. This process of glazing is found to lessen the force of the powder from a fifth to a fourth, but the powder keeps hereby much better, and is less liable to grow damp.

Being thus corned, glaze:I, and separated from dust, the powder is next sent to the stove-house to be dried; a part of the geveral process which requires very great precaution in urder to avoid explosion, which in this state would be much more dangerous than before a clore incorporation of the ingredients. The stove-house is a square apartment, three sides of which are furnished with chelves or cases on proper supports arranged round the room; and the fourth contains a large cast-iron vessel, called a gloom, which projects into the room, and is strongly heated from the outside, so that it is impossible that any of the fuel can come into contact with the powder. For greater security against sparks by accidental friction, the glooms are covered with shert copper, and are albays cool when the powder is put in or taken out of the room. Here the grains are thoroughly dried, losing in the process all that remains of the water by which the composition had been proviously bronght into a working stiffuess. Mr. Coleman calculates this to be from three to five parts in a hundred of the compound material. The powder thus dried is complete.

The specific gravity of gunpowder is estimated by count Rumford to be about 1.868 .

The atrength and goodnese of powder is judged of in the following ways. Bythe colour and feel; by the finme when a small pinch is fired; by measaring the actual projectile force by the sprowatto ; and by the distance to which a given weight will projoct a ball of given dimensions under circumstances in all cases exactly similar.

When powder, rubbed between the fingers, easily breaks down into an impalpable dust, it is a mark of containing too much charcoal; and the same if it readily soil white paper when gently drawn over it. The colour should not be absolutely black, bat of a dark blue, with a little cast of red. The trial by firing is thus mapayed. Jidy twu or
three small heaps of about a dram each on clean writing paper, about three or four inclies asuuder, and fire one of them by a red-hot iron-wire: if the fame ascends quickly with a good report, sending up a ring of white sunoke; leariug the paper free from white specks and not burnt into hules; and if no sparks fly off from it, setting fire to the cuntiguous heaps, the powder is judger ts be very goud, but if otherwise, either the ingredients are badly mixed or impure.
The common eprouvettes, or powder triers, are small strong barrels, in which a determinatequautity of the porrder is firud. and the force of expansion measured by the actiou excited ou a strong spring or a great weight.

Another method often adopted, is to fire a very heavy ball from a short mortar with a given weight of the powder, and to find the range of projection. The French eprouvette for government powder is a mortar of seven uaches (Prench) in calibre, which with thrie ounces of powder, shouid throw a copper globe of sixty pounds weight to the distance of 300 feet. No powder is adinitted which does not answer this trial.

Both thesc rarthods liave been objected to: the former because the spring is moved oy the instantaneous stroke of the flame and not by its coutinued pressure, which is sumewhat different; and the other on accuont of the terlousness attending its use, when a large number of barrols of piwder are to be tried. Another method which nuites accuracy with dispatch, is to suspend a small caunon as a pendulum, to fire it with powder unly, and to judge of the force of explusiou by that of the recoil, which in this circumstance is a grenter or less are of a circle. Tnat which Dr. Hutton einploys on this principle is a suall callnon about one inch in the bore, the charge of which is two ounces of powder.

The cause and measure of the explosive force of fired gunpowder has beed much investignted. It is generally allowed to be chietly owing to the sudden generation of a quantity of eass or el.stic rapour, the chemical constitution of which will be presently mentioned.

To determine the elasticity and quantity of this elantic vapour, produced from a given quantits of powder, Mr. Rubins premises that its elasticity is equally increased by heat, and diminished by colid; as that of common air (which is contir:ned by Mr. Dalton's late experiments) : and consiequently its weight is the same witl, the weight of uncqual bulas of air at the sume elasticity and tempurature. Hence. and from direct experiments, he con ludes that the elastic fiuid produced by the firing of sunpowder is nearly tnree-tenths of the wembit of the powder itself, which expanded to the rarity of common air, is about 244 times the bulk of the powder. Hence it would follow, that the mere conversion of confined powder into elastic vapour, would exert against the sides of the containing veasel on expansive furce $8+4$ times griater than the elasticity of common air, or in other words, than the pressure of the atmosphere. Bilt $\%$ this is to be superadded all the increase of expansive power produced by the heat generaterl, which is certainly very intense, though its exa t de: ree cannot be ascertained. Suppusing it to be equal to the full heat of red hot iron, this would increase the expansion of common air (and also of all gassex) abont four times, which in the presi:!t instance would increase the 814 to nearly low. 0 ; so that in a gencrad way it may be assumed that the

GUNPOWDER.

expansire force of closely confined powder at the justant of firing is 1000 times greater than the pressure of common air: and as this latter is known to press with the weight of fourteen pounds and a quarter on every square inch, the force of explosion of grapowder is 1000 times this, or 14750 punads, or about six tons and a half onevery square inch. This enormous force, however, diminishes in proportion as the elastic fluid dilates, being unly half the strencth when it ocrupies a double space, one-third of the strength when in a triple space, and so on.

Mr. Robins found that the strength of powder is the same in a! variations of the density of the atmosphere, but uot so in every state of moisture, being much impaired by a damp air, or with powder damped with careless keeping, or any other cause; so that the same powder which will discharge a bullet at the rate of 1700 feet in a second in dry air, will only propel it about 1200 feet when the air is fully moist; and a similar difference holds between dry and moist powder.

A very considerable variation is found in the proportions of the ingredients of the powder of different nations and different inanufactories; nor is it exactly ascertained whether there is any one proportion which ought always to be adhered to, and for every purpose. The government powder made in this country is the same for cannon as for sinall arms, the difference being only in the size cf the grain; but in Prance it appears that there were formerly six different sorts manufactured; namely, the strong and the weak caunon powder, the strong and the weal: musquet powder, and the strong and the weak pistol powder. The following are the proportions in each, thongh the reason of this nicty of distinction is not very obvious. For the string cannon powder, the nitre, sulptar, and char nal, were in the proportions of Jol of the first, 25 of the second, and 25 of the third: for the wak cannon powder, 100,20 , and 24: for the strong musquet powder, 100, 18, and 20 ; for the weak, 100,15 , and 18 : for the strong pistol powder, 100,12 , and 15 ; for the weak, 100 , 10, and 18.
The Ctinese pourder appears, by the analysis of Mr. Napier, to be nearly in the proportions of ' 100 of nitre, 18 of charcual, and 11 of sulphur: This powder, which was procured from Canton, was large frained, not very strong but hard, well coloured, and in very good preservation. The sulphur is nut (properly speaking) a necessary ingredient in gunpowder, since nitre and charecal alone well mixad will explode; but the use of the culphur seems to be to diffuse the fire instantaneously through the whole mass of powder. But fif the foilowing experiments are correct, it should seem that the adrantace gained by using sulphur in incrasing the force of explosion, only applies to small charges; bitt in quantities of a few ounces, the explosive, or at least the projecting force of powder without sulphur, is full as great as with suiphur.
The following are a few out of many trials made at the rnyal manufactory at Essone, near Paris, in 1756, to determine the best proportions of all the ingredients. Of powder made with nitre and charcoal alone, 16 of nitre, and 4 of charcoal, was the stroncest, and gave a power of 9 in the eprouvette. With all three ingredients, 16 of nitre, 4 of charroal, and I of sulphur, raised the eprouvette to 15 ; and both a less and a greater quantity of palphur produced a spaller efiect. Then dimi.
nishing the charcoal, a powder of 16 of nitre, $\mathbf{3}$ of charcoal, and I of sulphur, gave a power of 17 im the eprouvette, which was the highest produced by any mixture. This last was also tried in the mortar eprourette against the common proof powder, and was found to maintain a small superiority. The powder made without sulpiar in the proportions above indicated was also tricd in the mortar eprouvette, and nith the following singular result. When the charge was only two ounces, it projected a sixty prund copper ball 213 feet, and the strongest piwder with st:lphur projected it 249 feet ; bat in a charce of three ounces, the former projected the bail 475 feet, and the latter only 470 feet: and on the other hand, the great inferiority of force in the smaller eprouvette of the powder withoat sub phur, has bcen just noticed.
Gunpowder is reckoned to explode at about 600° Fahrenheit; but if heated to a degrec just below that of faint redness, the sulphur will mostly bura off, leaving the nitie and charcoal unaltered. The gasses produced by the explosion of powder, have not been analyzed with accuracy si ce the diveorery of all the varieties of gasscs with the basis of carbon; but they are certainly carbonic acid, sulphureous acid gass, and carburetted hydrogen. The residue is chiefly a sulphuret of potash, formed by a part of the sulphur uniting with some of the at kali of the nitre; and hence the hepatic smell of a foul and damp gun barrel.
'The analysis of gunpowder, performed with sufficient accuacy for most practical purpors, is very easy and simple: but an absolutely accurato analysis is more difficult. The usual way is first to boil the powder with three or four times its weight of water, edulcorating it with more bot water till wo saline taste remains. This extracta the nitre only, the quantity of which may be eitber ascertained by drying the residue, and estimating as nitre all the loss of weight, or more directly by evaporating the watery solution. If the residue, consisting of the sulphur and charcoal, is now spread on an earthen plate of any kind and slowly heatel, the sulphur takes fire and burns off stadually, whilst the cbarcoal remains untoucbed, when the heat is kept down sufficiently. Beaume found, however, that when all the sulphur is expelled which will be driven off in this heat, a certain portion will still remain, and will not burn away at a lower temperature than will consume the charcoal; so that to the last the burning raidue will smell strongly sulphureous. This retained portion of sulphur, he finds by the results of many other experiments, to be very uniformly about one twenty-fourth part of the whole sulphur employed; whence for all common purposes an adequate correction may he made, by estimating that the slow weak combustion of the residue, after the nitre has been got out, destroys only $\frac{4}{2} 4$ of the sulphur instead of the whole. On trying to separase them by an alkaline solution, he found some of the sulphur to remain undissolved, and still adhering to the charcoal. The way to insure perfect accod racy in analysis, would be first to separate the nitre by hot water, then to acidify all the sulphur by the nitvic acid, to dissolve and to precipitate it by a solution of nitrat or muriat of baryte; and from the known constituents of this salt, to find the quantity of sulphur, whilst the charcoal bere remains perfectly untouched:

Besides the Nitric acid, there are various other acids, as the Oxymuriatic, the Hypiroive mubiatic, the Arainic, Tengestic, Molis?
sic, and Cozombic, that are porerful supporters of combustion. Of these the most easy of access is the oxymuriatic; and this has in consequence been tried either instead of, or in conjunction with, the nitric acid, to ascertain whetier it be possesed of more power. The effect is found to Le very singular in the furm of oxymuriat of potash, the only form under which it has been tried; it acts with considerably more energy so far as its range extends; but this range is far short of that produced by saltpetre or nitrat of potash: it produces also a much more violent explosion. It has been denominated Fulminating powder; and we have already treated of it under this name.

GUNSHOT-WOUNDS. See Surgery.
GUN-SMITH, a maker of small fire-arms, as muskets, fowling-pieces, pistols, \&c.

GUN-SMITHERY, the business of a gunsmith, or the art of making fire-arms of the smaller sort, as muskets, fowling-pieces, pistols, \&ic. The principal part of these instruments is the barrel, which ought to have the following propertie3. 1. Lightness, that it may incommode the person who carries it as little as possible. 2. Sufficient strength and other properties requisite to prevent its bursting by a discharge. 3. It ought to be constructed in such a manner as not to recoil with violence. And, 4. it ought to be of sufficieut length to carry the shot to as great a distance as the force of the power employed is capaible of doing. See on this subject our article FowlingPIECE.

GU'NSTICK. s. (gun and stick.) The rammer of a gun (Steuart).

GU'NSTOCK. s. (run and stock.) The wood to which the barrel of the gun is fixed.

GU'NSTONE. s. (gun and stone.) The shot of cannon (Shakspeare).

GUNTER (Edınund), an excellent English mathematician and astronomer, was born in Hertfordshire in 1581, and studied at West-minster-school; from whence he removed to Oxford, where he took the degree of inaster of arts in 1606, and afterwards entered into holy orders. In 1615 he took the degree of bachelor of divinity : but being peculiarly eminent for his knowledge in the mathematics, he had two years before been chosen professor of astronomy in Gresham-college, Lontion; where he distinguished himself by his lectures and writings. He invented a small portable quadrant; and also the famous line of proportions, which, after the inventor, is called Gunter's scale. He was the first who observed the variation of the magnetic needle. He likewise published Canon Triangulorum ; and a work, intitled, Of the Sector, Cross-staff, and other Instruments. This last was published, with an English translation of his Canon Triangulorum, in 4to. by Samuel Foster, professor of Gresham-college. Mr. Gunter died at that college in 1026 .

Gunter's chain, the chain in common use for measuring land, according to the true or statute measure ; so called from Mr. Gunter, its reputed inventor.

The length of the chain is 66 feet, or $\mathbf{2 2}$ yards; or four poles of five yards and a half
each; and it is divided into 100 link3, of 7.02 inches each.

Gunter's line, a logarithmic line, usually graduated upon scales, sectors, \&ic.

It is also called the line of lines, and line of numbers; being only the logaritimns graduated upon a ruler, which therelore serves to solve problems instrumentally in the same manner as $1 \cdot$ rithms do aritrimetically. It is usually divited into a hundred parts, every tenth of which is numbered, beginning with 1 , and ending with 10 ; so that if the tirst great division, marked 1, stand for one-tenth of any integer, the next division, marked 2 , will stand for two-tenths; 3, three-tenths, and so on; and the intermediate divisions will, in like manner, represent $100: 1$ parts of some integer. If each of the great divisions represent 10 integers, then will the lesser divisions stand for integers; and if the great divisions be supposed each 100, the subdivisions will be each 10 .

USE OF CUNTER'S LINE.

1. To find the product of two numlers.From 1 extend the compasses to the multiplier; and the same extent, applied the same way from the muliplicand, will reach to the product. Thus if the product of 4 and δ be required, extend the compasses from 1 to 4 , and that extent laid from 8 the same way, will reach to 32 , their product. 2. To divide one number l'y another.- The extent from the divisor to unity will reach from the dividend to the quotient: thas to divide 36 by 4 , extend the compasses from 4 to 1 , and the same extent will reach from 36 to 9 , the quotient sought. 3. To three given numliers, to find a fourth pro-portional.-Suppose the numbers $6,8,9$; extend the compasses from 6 to 8, and this extent, laid from 9 the same way, will reach to 12, the fourth proportional required. 4. To find a mea? proportional letween any two given numlects.-Suppose 8 and 32 : exiend the compasses from 8 in the left-hand part of the line to 32 in the right ; then bisecting this distance, its half will reach from 8 forward, or from 32 backward, to 16 , the mean proportional sought. 5. To extract the square ront of any num'er.Suppose 25: bisect the distance between one on the scale and the point representing 25; then the half of this distance, set off from 1, will give the point representing the root 5 . In the same manner the cube root, or that of any higher power, may be found by dividing the distance on the line, between 1 and the given number, into as many equal parts as the index of the power expresses; then one of those parts, set from 1, will find the point representing the root required.

GUNTER's Quadrant, is a quadrant made of wood, brass, or some other substance; being a kind of stereographic projection on the plane of the equinoctial, the eye being supjosed in one of the poles: so that the tropic, ecliptic, and horizon, form the arches of circles, but the hour cireles other curvea, drawn by means of sereral altitudes of the sun, for some particular latitude every day iu the year.

This instrument is used to find the hour of the day, the sun's azinuth, \&c. and other counmon problems of the sphere or globe; as also to take the altitude of an object in degrees.

Gunter's scale, usually called by seamen the Gunter, is a large plain scale, having various lines upon it, of great use in working the cases or questions in navigation. This scale is usually two fect long, and about an inch and a half broad, with various lines upon it, both natural and logarithmic, relating to trigonometry, navigation, \&c. On the one side are the natural lines, and on the other the artificial or logarithmic ones. The former side is first divided into inches and tenths, and numbered from one to twenty-four inches, running the whole length near one edge. One half the length of this side consists of two plain diagomal scales, for taking off dimensions to three places of figures. Oin the other half or foot of this side are contained various lines relating to arigonometry, in the natural numbers, and marked thus, viz.

Rumb, the rumbs or points of the compass;
Chord, the line of chords;
Sine, the line of sines;
Tang. the tangents;
S. T. the semi-tangents; and at the other and of this half are,

Leag. leagucs, or equal parts;
Ruabl, another line of rumbs;
M. L. miles of longitude;

Chor. another line of cliords.
Also in the middle of this fort are L, and P, two other lines of equal parts: and all these lines on this side of the scale serve for drawing or laying down the figures to the cases in trigonometry and navigation. On the other side of the scale are the following artificial or logarithmic lines, which serve for working or resolving those cases; viz.
S. R. the sine rumbs;
T. R. the tangent rumbs;

Numb. line of numbers;
Sine, sines;
V. S. the versed sines;

Tang. the tangents;
Meri. Meridion. 1 parts;
E. P. Equal parts.

GUNTOOR, one of the northern circars in the peniasula of Hindustan. The maritime parts of this cirear are flat and cpen, but the interior parts contain some very strong fortresses and posts.
GUNTZBERG, a town of Suabia, in the margravate of Burgaw, with a castle, seated on the Danule. Lat. 48.35 N. Lon. 10 $2 ; 5$.

GUN-WALE. or Gunnel, is the uppermost wale of a ship, or that piece of timber which reaches on either side from the quarterdeck to the forecastle, being the uppermost brid which finishes the upper works of the hall, in that part in which are put the stanchions which support the waste-trees.

GURGE. s. (gurges, Latin.) Whitlpool; sulf (Milton).

GU'RGION. s. The coarser part of he meal, sifted from the bran.
To GU'RGLE. v. n. (gorgogliare, Ital.) To fall or gush with a noise, as water from a boule (Pope).

GURIEF, a town of Rusia, in the goremment of Astracan, seated near the Caspian me. Lat. 46. 32 N. Lon. 52.50 E .

GURNARD, in ichthyology. See TriGLA.

GURRAH, a town of Hindustan Proper, situate near the river Nerbuddah. Lat. 23. 9 N . Lon. 80. 23 E.

GCRRAMCONDA, a town of the peninsula of Hindustan, in the king Jom of Myore. Lat. 13. 47 N. Lon. 78. 36 E.

To GUSH. v. n. (gostelen, Dutch.) 1. To flow or rush out with volence; not to spring in a small stream, but in a larger body (Thesson). 2. Tu emit in a copious effluxion (Pope):
Gush. s. (from the verb.) An enission of liquor in a large quantity at once; the liquor so emitted.

GU'SSET. s. (gousset, Freach.) Any pice seived on cloth, in order $t n$ strengthen it.

GUST. s. (goust, French ; gustus, Latin.)

1. Sense of tasting (Pope). 2. Height of pera
ception (Milton). 3. Love; liking (Tillotson). 4. Turn of fancy; intelloctual taste (Dryden). 5. (from guster. Islandick.) A sudden violent blast of wind (Addison).
GUSTABLE. a. (guslo, Latin.) 1. To be tasted (Harvey). 2. Pleasant to the taste (Derham).

GUSTATION. s. (gusto, Latin.) The at of tasting (Broun).

GUSTAVIA. In botany, a genus of the class monadelphia, order polyandria. Calyx fuir or six-cleft ; petals fous or six; beny dy. four or tive-celled. Two species: tress of Guiana and Surinam, from twenty to thirty feet high; the tallest with large, whice flowers, the petals tipt with red.

GUSTAVUS ADOLPPUS, surnamed the Great, king of Sweden, was horn at Slockholm in 1504, and succeeded his father Chartes iu 1611. He zealously espoused the cause of the Protestants in Gernaany, who were sally oppressed and persecuted by the emperor Ferdinand. He was a great warrior, and hiu share in the German conlests forms one of the most interesting passages in the history of Europe. Many of these are detailed in Coxe's History of the House of Austria. This illustrious protestant hern yielded up the breath of life, just as he grasped the palun of victory, at the haule of Lutzen, being then only in the 3sth year of his age. He was, doubiless, one of the greasest monarchs that ever adorned a throur. The following character of him is given by Mr. Coxe in the interesting work before inentioned. "As an individual, he was religious without bigotry or affectation, temperate, and a pattern of conjugal fidelity and domestic af: fection. Though unable to conquer at all times a constitutional warmth of iemper, he possessed all the social virtwes, and the cooctr

Riation of courtesy, in so high a degree, that no individual was ever admitted to his converse without being charmed, or left his presence diseatisfied. To all these amiable qualities, be united the leaming of a scholar, and the accomplishments of a genteman. As a statesman he was firm, sagacious, and provident, embracing equally the grand features and minute details of the most extensive plans. As a general, he surpassed his contemporaries in his knowledge of all the branches of the military art, in a bold, inventive, and fertile genius. This intuitive sagacity, undisturberl presence of mind, and extensive foresight, were warmed and animated by an intrepidity more than heroic. No commander was ever more ready to expose his person to dangers, or more willing to share the fatigues and hardships of his troops : he was accustomed to say, 'Cities are taken by keeping in tents; as scholars, in the absence of the master, shut their books, so my troops, without my presence, would slacken their blows.' Like many other great men he was a predestinarian, from a pious submission to the inevitable decrees of an all-wise Providence : to those who urged him to spare his person, he replied, 'My hour is written in hearen, and cannot be reversed on earth.'
"He created a new system of tactics, and formed an army which was without a parallel for its excellent discipline, and for its singular yigour, procision, and unity in action. He conquered, not by dint of numbers, or the impulse of a fortunate rashness, but hy the wisdom and profoundness of his combinations, by his irresistible yet bridled spirit of enterprize, by that coufidence and heroism which he infused into his troops, Since the days of Alexander, the progress of no conqueror had been equally rapid siuce the time of Casar, no individual had united, in so consummate a degree, all the qualities of the gentleman, the statesman, and the soldier."

GUSTPUL. a. (gust and full.) Tasteful; well-tasted (Decay of Piely):

GU'STO. s. (Italian.) i. The relish of any thing; the power by which any thing excites sensations in the palate (Derham). 2. Intellectual taste; liking (Dryden).

Gusto (Con), in music, with taste.
GUSTROW, a city of Germany, in the duchy of Mecklenburg-Schwerin, and capital of the circle of Winden. Here is an elegant palace, in which the dukes sometimes reside. Lat. 53.57 N. Lon. 12. 13 E.
GU'STY. a. (from gust.) Stornyy; tempestuous (Shakppeare).

GUT. s. (kutteln, German.) 1. The long pipe reaching, with many convolutions, from the stomach to the vent (Bucon). 2, The stomach; the receptacle of food: proverbially (Hudilras). 3, Gluttony; love of gormandizing (Hakewill):

To Gut. v. a. (from the noun.) 1. To eviscerate; to draw ; to exenterate. 2. To plunder of contents (Dryden).

GUTSKOW, a town of Swedish Pomera-
nia, capital of a county of the same names Lat. 54. 0 N. Lon. 13.39 E .

GUTTA, the Latin term for a drop.
Guttacamba. See Gambogia.
Gutta serena. See Amaurosis.
Gutteronacer. Red spots upon the face and nose.

Gutte, in architecture, ornaments used in the Doric corniche, or in the architrave underneath the triglyphs, representing six conical drops or hells.

GUTHRIE (William), a natire of Scotland, was born in 1701, and educated at Aberdeen. His nost esteemed work is his Geographical Grammar. He died in 176y.

GUTTATED. a. (from gutta, Latin, a drop.) Besprinkled with drops ; bedropped.

GUTTEELLBERG (John); one of thuse to whom the inver:ion of the art of printing is attributed, was a German, descended of a noble family, and born at Mentz in 1408. If he did not absolutely invent printing, it is probable he was the first who conceived the idea of printing a book; which he executed, first with blocks of wood engraved, and afterwards with separate letters cut iu wowd. He died as Mentz in 1468.

GUTTER. s. (from guttur, a throat ; Lat.) 1. A passage for water. \&. A small longitudinal hollow.

To Gu'tier. v. e. (from the noun.) $\mathbf{T o}_{0}$ cut in suall hollows.

Gutrers, in building, a kind of canals in the roofs of buildings, serving to drain, receive, and carry off the rain-waters. They are generally lined with sheet-lead. They should always be with a slope sufficient to prevent the water from standing in plashes.

To GUTTLE. v. n. (from gut.) To feed luxuriously; to gornandize (Dryden).

To Gu'tile. v. a. (from gul.) To sivallow. A low word (L'Estrange).

GUTTLER. s. (from gutile.) A greedy eater.
GU'TTULOUS. a. (from gultula, Latin.) In the form of a sinall drop (Broon).

GU/TTURAL. a. (gutluralis, Latin.) Pronounced in the throat ; belouging to the throat (Holder).
Gutturalabetery. The superior thyroideal artery. The first brauch of the external carotid.

GUTTURALNESS. s. (from guttural.) The quality of being guttural.

GUTTY, in heraldy, a term used when any thing is charged or sprinkled with draps. In blazoning, the colour of the drops is to be named, as gutty of sable, of gules, \&cc.

GUY ('Thoinas), the founder of Gay's Hospital, was the son of Thomas Guy, lighterman and coal-dealer in Horsley-down, Southwark. He was bred a bookseller, and he.ran trade wi:h no larger a stock than 2001.; but the bulk of his fortune was made by purchasing seainen's tickets during queen Anne's wars, and by speculations in South-Sea stock, in the memorable year 1720. Besides Guy's Hospital, be erected

G Y M

an alms-house at Tamworth. He died in 1724, aged 81 , worth 300,0001 .

Guy, in a ship, is any rope used for keeping of things from bearing or falling arainst the ship's cides when they are hoisting in. That rope which at one end is made fast to the foremast, and scized to a siig.g.e block at the pendant of the garnet, is called the guy of the garnet.

GUYON (Johanna Mary Bouriers de la Moithe, a Firnch laty, memorable for her writiogs, and ion ser sumeroms in the cause of Quietism, was dosended irum a noble family, and born at Montarsis in $1(6+8$. She shewed some extrondiuary sympi.mes of illumination from her carlest infincy, and tried to take tiac veil befure she was of age todispmese of herself; but her parents obliged her to marry a gentleman to whom they hadi pron: sed ter. She was a widow at the ape of 28 ; when, dutinguishing herseif in the way of contemplation and prayer known by the name of Quietism, complaints were nade of her spirituatisin, and she was conained by order of the king. and severely examined for eight mont ths. Sine was discharged; but was afterward: involod in the persecution of the archbisnop of Cambray, and thrown into the Bastile, where she underwent many exammations; but nothing teine made out oguinst her, the once nore obtained her liberty, and lived private til! her death, in 1717. She spent her later years in mystical reveries; eoverng her tables, ceilings, and every thang that woud reccive them, with the traces of a visionary mangination. Her pious verses were collected after her death in 5 vols. intitled Camiqnes spiritucls, ou d'Eultemes sur l'Amour Divin. Her publications were, Le meyen conrt et tres facile de faire Oraisons; and Le Cantique des Cantiques de Saiomon interpreté selon le sens mystigne ; which were condemnel by the archbishop of Paris. Several of her poems were translated by the late Mr. W. Cowper; since the death of that admirable poet they have been published by the Rev. Mr. Bull of Newport-Pazael.

GUZES, in herakirv, roundles of a sanguine or murry colour. These, from their bloody hue, are by some supposed to represent wounds.

GLZREAT, a peninsula of Hinductan Proper, $8(0)$ miles long, and 140 broarl, formed by the Arabian sea, and the gulfs of Cambay and Cutch. Amedal at is the capital.

To GLCZLF. v. n. (fron sut or gust.) To gormandize; to feed impoderately (Gay).

To Gu'zzle. v. a. To swallow with immoderate cist (Dryden).

GU'LZL.ER' s. (from guzzle.) A gormandizer; an immolerate eater or drinker (Dry$d e n)$.

GiVALIOR, an ancient fortress of Hindus\tan Proper, in the province of Gehud. It stands on a vast rock, about four miles in length, but narrow and of unequal brealth, and nearly flat on the top. The sides are so stcep as to appear almost perpendicular in cerery
part; for where it was not naturally so, it has been scraped away; and the height from the plain below is from 200 to 300 feet. The rampart conforms to the edge of the precipice all around; and the only entrance is by steps running up the side of the rock, defended on the side next the country by a wall and bastions. The area within is full of noble buildings, reservoirs of water, wells, and cultivated land; so that it is a little district within itself. At the N.W. foot of the mountain is the town, prety larec, and well built, the houses all of stone. This place is considered as the Gibraltar of the East; but, in 1780, major Popham took it by an unexpected nocturnal escalade. It is 80 miles S . of Agra. Lat. 26.9 N . Lon. 78. 30 E .

GWINIAD, in ichthyology. See Salno.
GYARILS, in the ancient gecgraphy, one of the Cyclades, 12 miles in compass, lying to the east of Delos. It was a dearrt islaid, and alloted for a place of banishment by the Romans.
GYBE. s. (See Gibe.) A sneer; a taunt; a sarcasm (Shakspeare).
To Gybe.v. n. To sueer; to taunt (Spenser).
GYFHORN, a nown of Lower Saxony, in the duchy of Laneaberg. seated on the rivers Aller and Iser. Lat. 52.49 N. Lon. 10.49 E.
GYMNANTHES. In botany, a genus of the class moneecia, order monadelphia. Male: ament naked ; perianthless ; corolless; stamens, pedicels two-parted or three-forked, beating the anthers. Fem.: ament or germ pedicelled; corrolless; style three-cleft; capsule tbreegrained, three-celled. Two species: shrubs of Jamaica and Hispaniola.
GYMNASIARCH, in antipuity, the director of the eymaasium. He had two doputies under him; the one called xystarch, who presided over the a thetex, and had the oversight of wresting; the other was gymnastes, who had the direction of all other exercises.
GYMNDSICM, from gupes, nulus, be cause the ahletes were usually naked, was a place among the (ireeks, where all the public exercises were performad, and where not ouly wrestlers and dancers exhibited, but also phiInsophers, peets, and rhetoricians repeated their conipositions. The laborious exercises of the gymmasium were rimning, kaping, throwivis the quoit, wrestling, and boxing, which was called by the Greeks merrastion, and by the Romans quinquerlia.
The gymrasia were not single edifices, but a knot of buildings united, being sufficienty capacious to ho!d many thousands of penple at once; and having room enough for philosophers, rhetoricians, and the professors of all other sciences to read their lectures; and wrestlers, dancers, and all others who had a mind to exercise; at the same time withont the least disturbance or interruption. They musisted of a great many parts. Vitruvius recites no less than twelve, the chief of which were the Cn. riceum, the Ephebeum, the Alipterian, tho

G Y M

Pakstra, the Sphxristerium, the Stadium, and the Xisti. See Coriceum, \&e.
GYMNaStej. See Gymnasiarch.
GYMNA'STIC. a. (yourasixos.) Pertaining to athletic exercises (Arluthnot).

GYMNA'SIICALLY. ad. (from kymnastic.) Athletically; titly for strong exercise (Broun).

GYMNASTICON, the name given to a machine invented by Mr. Lowndes, which enables persons to exercise themselves in any degree wished for, in their own chambers, in all parts of the body at once, or pariaills, as the case may require. For this invention Mr. Lowndes has obtained letiers patent; and it appears well calculated to afiord suritable degrees of exercise to sick people ; in whicin case, it may be of the highest importance and utility.

GYMNASTICS, Gynnastice, or the Gymnastic art, the aft of performing excrcises of the budy, whether for defence, health, or diversion. See (Gyanasium.) Several inodern w.riters have treated of this art. M. Burette has given the history of gymnastics in the Memoirs of the Royal Acadenty of Inscriptions. On the first establishment of society, men, being apprised of the necessity of military exercises for repelling the insults of their neighbours, instituted gauncs and proposed prizes to animate their youth to conbats of divers hinds. And as ruaning, leaping, strengh and dexterity of arm in throwing the javelin, driving a ball, or tossing a quoit, together with wresting, \$c. were exerciies supposed to be suited to the manner of fighting in those days, onthe youth vied to excel in them, in the presence of the aged, who sat as their judyes, and dispensed prizes to the conquerors; till what was oririnally only amusement becane at length a matter of such importance as to interest great citics and entire nations in its practice.

Acenrding to Plato, one Herodicus, prior a littie time to Hippocrates, was the first who intmonced this art into physic; and his succesors, convinced by experience of its usefulness, applied themstives in earuest to improve it. Mippocrates, in his book of Regimen, has given instances of it, where he treati of exercise in gencral, and of the particular effects of walking, with regard to health; also of the different sorts of races, either on foot or horseLack; leaping, wrestling, the excrecise of the suspended ball, called corycus, chironomy, unctions, frictions, rolling in the sand, ©ic. But as phissicians did not adopt all the exercises of the gymnastic art in their practice, it came to be divided hetween them and the nasters of martial and athletic exercises, who kept schools, the number of which was sreatly increased in Grece. The Roman, at kengh, canght the same taste; and advanced the gemnasties to a ereat pitci of ragnificence. There is no doubt that, under proper requlations, the gymnastic art might comsidcrably improve the human strength and constitution; but in the
way it was practised by the ancients it frequently produced deformity. See Athlbta.
Real or supposed improvenments in the customs of the Luropean natons have now nearly abolished or altered almost all of the ancient g) muastic exercises; active feats and sudten turns of the Louy, or tumbling, are torally despised, and confined to the most patiful public exhibitions; playing with the ball is ser; little practised; leaping and foct races are limited to a few wagers; pitching the quit selfon extends bejond the apprentice and the labuurer; throwng the javelan is entirely discontanued; wresting, long a favourite ablictic exercise in Eneland, belongs almost exclusively io, the wanton school-boy; boxing, (thanh's to our morals) to the lowest wretches in socicty; the tournament, evilently derived from the L.ulus Troje, is nearly formitten; the chariot race is in the same state of distise; and we have nothing which resembles the military pyrhic; and eren the faint similarits of the games cnumerated are supported by the caprice of a few individuads, wito are often condemned for emplyying their time to so little purpose.

On the other hand, if we turn our attention to the rest of the world, we shall find that many of the gymmastic sports are in full use at this monent, without the inhabitants suspecting that nations very remote from them had similar some thousand years past. Two instances of this fact are so exactly in point, that we camot refrain from giving them. Mr. Cordiner, who very lately presented the public with a work descriptive of the islaud of Ceylon, relates the particulars of a Cingalese play, in the following words:
" Gay and noisy amusements do not often interrupt the predominant repose of the genuinc Ceyloncse; but a sort of conical representation is sometimes attempted, to gratify a man of elevated rank, or to ceicbrate an occasinn of extraordinary festivity. On the 2sth of December, 1803, while lord viscount Valentia was visiting governor North at Columbo, a numerous company of the British inhabitants were firoured, after dinner, with the sight of an extaibition, called by the natires a Cyngalese play, although from the rude mature of the perforapimee it can hardly be ranked among the producitions of the dramatic art. The stage was the green lawn betore his excelicacy's villa at St. S.bistian, and the open theatre was li,hted with happs stipported on posits, and thambeas held in men's hands. The entertainmeat commenced with he feats of a set of active tumblers, whose nakel bodics were paimed all over with white crosies. They walled on their hands, and tirew themselves round, over head and heeds, three or four times succesively, without a pause. Two boys embracian one another, witli heal opposed in feet, tumbled round like a witeel, but necessarily with a slower motion, as a monemtary stop was required when each peoson toinched the gromad. The young pertormers, sibely, wisted their bodies with a quichness anu incolitity

G $\mathbf{Y} \mathbf{M}$

which it would be difficult to imitate in a less relaxing climate. Some of the movements produced sensations by no means agreeable, as they conveyed the idea of occasioning uneasipess to the actors. After this, six or seven professed dancers appeared on the stage. They were dressed like the gay damsels on the coast of Coromandel; but the greater part of them appeared not to be females, and an inferiority of gesticulation was visible in the style of their performance. Two men, raised upon stilts, walked in amongst them, exhibiting a most gigantic stature; pieces of bamboo were tied round their legs, reaching only a little athove the knee, and elevating them three feet from the ground : they moved slowly, without much ease, and had nothing to support them but the equipoise of their own bolies: a man then appeared, masked, armed with a sword and switch, and habited in the old Portuguese dress; two others, resembling Dutchmen, and masked, preceded, who skipped about and drove all before them in an imperative manner; groupes of horrible masks, set with teeth, one of which had the head and proboscis of an elcphant, followed; the persons who bore them carried lighted torches in each hand, those they whirled rapidly round, alternately lighting and extinguishing them in the course of their revolutions; these personified devils, and sometimes laughed to excess, but said little; imitations of wild animals next appeared; "but the prettiest part of the entertainment was a circular dance, by twelve children about ten years of age; they danced opposite to one another, two and two, all couretsied at one time down to the ground, shook their whole bodies with their hands fixed in their sides, and kept time to the music with two little clattering aticks, one in each hand. Going swiftly round, heing neatly dressed, of one size, and perfect in the performance, this youthful dance produced a very pleasing effect, and brought to remembrance the pictures of the fleeting hours."

Captain Cook relates, in the second rolume of the account of his voyage to the Pacific Ocean and the Sandwich Islands, that the natives play at bowls with pieces of whetstone, in shape resembling a small cheese, rounded at the edges, highly polished, and weighing about a pound. "They also use, in the manner that we throw quoits, small, flat, munded pieces of the writing-slate, of the diameter of the bowls, but scarcely a quarter of an inch thick, also well polished."

GYMNETRUS. In zoology, a genus of the class pisces, order thuracica. Body extrenely long, compressed; teeth numerous, subulate; gill-membrane four or five-rayed; anal fin wanting. Four species: inhabiants of European and Asiatic seas. We have made this fisi) a distinct genus principally on the authority of Dr. Shaw, for it is not so arranged ly many, respectable ichthyologists: and even 1) S. Shiaw himself admits that two out of the four opecies at least are doubtfu!. (Sce Nat. Hist.

P1. CXXVIII.) The other two are as fold lows.

1. G. ascanii. Silvery gymnetrus. Speckled longitudinally with brown points; the rentral cirri dilated at the tips. "This extraordinary fish," observes Dr. Shaw, "seems to have been unknown till within the space of a few years past; nor are its character and history yet $\mathbf{s i}_{0}$ distinctly ascertained as might be wished. It is a native of the northern seas, and seems to have been first described by professor Ascanios in his work, intitled Icones rerum naturalium. The length of the specimen was ten feet, and the diameter, which was equal throughout the whole length, about six inches : tho head short, the mouth small, and the eyes rather large : on the upper part of the head, before the commencement of the dorsal fin, were situated seven or eight upright, naked rays, or processes; of moderate length; the dorsal fin, which was rather shallow, commenced at a small distance beyond these; and running along the whole leingth of the back, formed, by its continuation, the tail fin, which was carried to a very small distance beneath the body, there being. properly sjeaking, no vent-fin : the peetoral fins were very small, of a slightily ovate, or rounded shape, and situated at a small distance from the head: the ventral fins, if they can be said to deserve the name, consisted of a pair of extrensely long sitgle rays or processes terminated by a sinall ovate expanded tip or finny extremity; the gill-covers appeared to consist of five or six radiated laminas; the colour of the whole body was bright silver, with a blue-ish-cast diffused over the upper part of the back; the lateral line was strongly marked, and ran from the gill-covers to the tail, and the sides of the body were marked by several lougitudinal double rows of slightly extant, very small, dusky specks; the forehead was white, the fins palc brown. This fish is said to be generally seen either preceding or accompanying the shoals of herrings in the northern seas, for which reason it is populatly known by the title of King of the Merrings."
2. G. Blochii. Bluish-silvery with oblique linear, brown bands; rounded spots, red fins; and four ventral rays. A native of the Indian seas; but occasionally met with in the seas of Europe. In its general appearance nearly allied to the preceding species. A specimen of this fish appears to have been found in Feb. 1798, on the coast of Cornwall. Length eight feet six inches; breadth in the widest part ten inches and a half; thickness two inches and three quarters: tailless.

GY'MNIC. a. (yunrixos) Such as practise the athletic or gymnastic exercises (Milton).

GYMNOPOGUM. In botany, a genus of the class pentandria, order monogynia. Corol twisted; stigma two-lipped, villous at the tip; drupe with a half, two-celled nor. Three specirs, natives of the Polynesian isles.

GYMNOSOPHISTS, a sect of philosophers who cluthed themselves no farther than modesty required. There were some of these

[^2]Digitized by GoOgle

NATURAK HISTORY。
PL. CXXVIII

Efymnetrus Cllecticicres, or

liaraper fipmnote.

Ciepedian Prometrus.

sages in Africa ; but the most celebrated clan of them was in India. The African gymnosophists dwelt upon a mountain in Ethiopia, near the Nile, without the accommodation either of house or cell. They did not form themselves into societies like those of India, but each had his private retirement, where he studied and performed his devotions by himself. If any person had killed another by chance, he applied to these sages for aboolution, and submitted to whaterer penances they enjoined. They observed an extraordinary frugality, and lived only upon the fruits of the earth. Lurcan ascribes to these gymnooophists several new discoveries in astronomy.

The Indian gymnosophists dwelt in the woods, where they lived upon the wild products of the earth, and never drank wine, nor married. Some of them practised physic, and travelled frum one place to another: these were particularly famous for their remedies against barrenness. Sone of them, likewise, pretended to practise magic, and to foretel future events.

GYMNOSPERMIA. The name of the first order in the class didynamia, in Linnéus's Artificial Arrangement; comprehending those plants which have four stamens, of which the two middle ones are shorter than the two outer ones, within a ringent flower, succeeded by four naked seeds.- These are the same with the labiati of Tournefort; and the verticillatze of Ray, and of Linnéus in his Natural Orders.-See Didynamia angiospermia, and Botany.

GYMNOSPERMOUS. (rumws naked, and oregua seed.) In botauy, a term applied to a plant bearing naked seeds; in opposition to that which has seeds inclosed in a capsule or other vessel.

GYMNOSTOMUM, in botany, a genus of the class cryptogamia, order musci. Capsule with the mouth naked; lid deciduous; veil entire, separating from the base; flowers terminal. Serenteen species; all but one indieennus to our nwn country.

GYMNOTTHORAX, in zology, a genus of the class pisces, order apodalia. Body eelshaped; without pectoral fin; spiracle single on each side, small, oval, uncovered; mouth armed with numerous sharp teeth; nostrils zubular. Four species, inbabitants of the American or Mediterranean scas. The largest is G. echidra; with head depressed; body varied with brown and black, and inmediately behind the head very turgid: mouth large, with two cirri near the nostrils; eyes vivacious; gape large: flesh very good. Inhabits Palmerston Island: from four to five feet lonz: from ten to twelve inches thick : has a horrid aspect, and much resembles a serpent.

GYMNO'TUS, in zoology, a genus of the class pisces, order apodal. Head with lateral opercules: twon tentacles at the upper lip; eyes covered with the common skin : gill-menbrane Give-rajed; body compressed, carinate beneath with a fin. Nine specics, chicfly inhabitants of the South American coasts: one, of the

G Y M

Mediteranean sea. The following are tho chief:

1. G. electricus. Electrid eel or gymnote. Blackish, without dorsal fin; caudal fin very obtuse and joined to the anal. Head sprinkled with perforated dots ; around the boxiy a number of small annular bands or rather wrinkkes, by which it has a power of contracting or extending its length : nostrils two on each side; the first large, tubular, and elevated, the othera small and level with the skin; teeth small, prickly; tonque broad, and warty, as is also the palate. Inhabits various parts of South Aracrica; from three to four feet loug; has a remarkable power of inflicting an electrical shock whenever it is touched. This may be conveyed even through a ssick to the person who holds it, and is so severe as to benumb the limbs of such as are exprosed to it. By this power it stupefics and then seizes such smaller fishes and animals as have ventured to approach it, and thus makes theus its prey. This extraordinary power in the electric gymnote was first ascertained by M. Richer, in 1671: but the principle upon which it'depends not having been detected, the discovery was at first regarided with a considerable portion of general scepticism. Subsequent experiments, however, and especially those of Condamine and Ingram, and more recently those of Dr. Bancroft, have removed every doube and traced this peculiar endowment to its true source. See Nat. Hitt. PI. CXXVIII.
2. G. albifrous. White-shnuldered gymnote. Fore-part of the back snowy; head with a deeper mouth than the rest of its tribe; very obtuse, fleshy, and sprinkled with minute pores: upier lip very thick, including the lower; tonateless; gill-cover with a semilunar opening before the lleshy base of the pectoral fins, black prominent, with a small double bone at the base of the first ray: palate beset with papilla: anal fin beginning from the throat: fore-part of the back convex, with 2 brown, soft, Hechy cirrus behind the middle, posteriorly to which it is destitute of scales: tail compressed, flat, with an oral fin; from the tip of the lower jaw to the middle of the back a snowy band. Inhabits Surinam ; about a foot long. It is uncertain whether this or the ensuing possess any electric power: their general character should rather induce us to suppose that they do.
3. G. carapo. American gymnote, naked brown, without dorsal tin: tail tapering to a point; lower jaws shorter : back blackish, spotted with brown ; anal fin not reaching to the tip of the tail, but terminating hefore the caudal. Inhabits the fresh water rivers of America; from one to two feet long: flesh very good. See Nat. Hist. PI. CXXVIII.
GYMSOPHILA, in botany, a genus of the class decandria, order digynia. Calyx oneleafed, campanulate, ancolar; petals five, ovate sessile; capsule globular, one-celled. Thirteen species ; chiefly plants of the south of Europe; and one of which, G. struthium, from its saponaceous property, is used by the Spa-

G $\mathbf{Y} \mathbf{P}$

niarils for the purpose of soap. It is a native of pain, with linear, fleyhy leaves, the axillary ones crowcied and round.
GYNACELM, in antiquity, a separate roon where the women employ themselves.
 The menstrial discharje. Sometimes the lochia.

GYNAECOCRACY, the government of women; or a state where they are capable of the suprene comimand.

GYNACOCRATCMENI, an ancient penple of Sarmatia Europoe, inhabiting the eastern banks of the river Tanais, near its opening into the Palus Maotis. They were thus called, because under the dominion of women. They who take the Amazons for a fabulous people, have generally concluded the same of the Gymnacocratumeni.
 quity, Athenian magistrates, whose busiuess it was to regulate the women's apparel and manners, according to the rules of niodesty and deeency. Of these magistrates there were ten; and they were sometimes called Gynæconomi.
GYN ECOMASTOS. (of $\gamma \cdot m$, woman, and \quad opı $\zeta \omega$, I bear.) A term used by the ancients, to express a man whose breasts are large and turgid like those of women, and afford nilk.
GYN'ANDRIA. (yum, a woman, and amp, a man.) In botany, the name of the twentieth class in the Linnéan Artificial System, containing all plants with hermaphrodite flowers, which have the stamens growing upon the style; or else having an elongate receptacle bearing both stamens and styles. This class has been considerably reduced by some molern reformers, and the plants referred to other classes. Others have entirely dismissed it from the sexual srstem. The reduction appears reasonable; but the singularity of the order diandria surely may demand a separate class for itself. See Botany.
GYI'SIES, or Egyptians, a strange outlandish tribe of ragalonds, impostors, and jugglers, who disguise themselves in uncouth habits, smearing their faces and bodies, and framing to themselves a canting language, wander up and down, and under pretence of telling fortunes, curing diseases, \&.c. abuse the common people, trick them of their money, and staal all that they can come at. There are several statutes made against them.
Egyptians coming into England are to depart the realm in fitteen days, or be imprisoned, by 9 ? Heary VIII.cap. 10. And by 1 and 2 P. and N. cap. 4. any person importing them into this kinedom shall forfeit forty pounds; and if they remain here above one month; or if any persen, fourteen years old, consort with then, they are guilte of felony, without be:ecitit of clergy. 5 Eliz. cap. 20. And we are informed by sir M1. Hale, that at one Suffolk assizes no less than thirteen gypsies were executed upon these statutes, a few years beiore the Restoration. Sce also 39 Eliz. cap. 4. § 9. 17 Geo. II. cap. 5. § 8.

G Y P

The origin of this tribe is somewhat oh. scure ; at least, the reason of the denomination is so. It is certain, the ancient Esyptans had the character of great cheats, and were famous for the subtilty of their impustures; whence the name might afterwards pass proverbially into other la:guages, as it is pretty certain it did into the G:eek and Latin; or else, tie ancient Egypians, being nuch versed in astionomy, which in those days was little eise but astrology, the name was on that score assumed by these tellers of good fortune.

Be this as it will, there is scare any country of Europe but has its Egyptians, though not all of them under that denomination: the Latins call them $\begin{aligned} & \text { gryptii ; the Italians, Cin- }\end{aligned}$ gani and Cingari ; the Germans, Ziscuner; the French, Bohemiens; others, Saracens; and others, Tartars, \&c.
Munster, Georg. lib. iii cap. 5. relates, that they made their first appearance in Girmany, in 1417, exceedingly tawny and suuburnt, and in pitiful array, though theg affected quality, and travelled with a train of hunting-dogs after them, like nobles. The above date should probably have been 1517 , as Munster himself owns he never saw any till 15\%4. He adds, that they had passpris from king Sigismund of Bohemia, and other princes. Ten years afterwards, they came into France, and thence passed into England.
A very circumstantial account of this singular race of vagrants has been lately giren in an express enquiry concerning them, written in German by H. M. G. Grellman, and translated by Mr. Raper. It is incredible to think how this regular swarm of banditti has spread itself over the face of the earth. They wandet about in Asia, in the interior parts of Africa, and, like locusts, have overrun most of the Eurspean nations. In the reigns of Henry VIII. and queen Elizabeth, they were set up as a inark of general persecution in England; yet their numbers do not appear to hare much diminished. Spain is supposed by Mr. Twiss to contain 40,000 of these vagrants; but ty others 60,0001 ; and by some even double that number. They became less numerous in France in consequence of the strictness of the police. In Italy they abound, especially in the dominions of the church, on acceunt of the bad police and the prevalence of superstition, which permit and entice them to deceive the ignorant. They are scattered, though not ingreat numbers, through Germany, Denmark, Siweden, and Russia; but their chicf population is in the south-east parts of Europe, which seem to be the general rendearous of the gypsy nation. At a moderate compuataion Europe contains more than scren hundred thousand of these vagabonds. For near four centuries they have wandered through the world; and in every region, and amonz erery people, whether barbarous or civilized, they have continued equally unchanged by the lape of time, the variation of climate, and the fore of example. Their singular physiognomy and particular manncrs are the same in every cous-

G Y P

2ry. Their swarthy complexion derives no daiker shade from the burning sun of Africa, nor any farrer tincture from the temperate clinates of Jurope; they contract no additional bazincess in spain, nor acquire any new indusrey in England; in Turkey they behold the nooque and the crescent with equal indifierence as the do the reformed and the catholic chureh in Europe. In the veighbourhood of civilized lite they comtinue barbarons; and, behodlug around them cities and setted inhabionts, they live in tenis or holes in the earth, and wander irom place to place as fugitises and vaghonds.

They are passionately fond of ornaments; in which, however, they consuli neither propricty nor consistency; they will wear an old laced coat, while the rest of the garments scarctiy hang together. In Hungry and Transylvania their summir habitations are tents; their winter ones, holes ten or twelve feet deep in the earth ; except such as keep inns, or exercise trades. They are fond of plate, particu. Jariy silver cups, which they bury under the earih for security. Their principal occupartons are, smith's work, or tinkers, or worden ware, and horse-dealing: and in Hungary and Transy/wania they are executioners of crinimals, flayers of dead beasts, and wahers of pold. The women deal in old clo hes, prostitution, warten dances, and forturetelling. Nutwith tand!ng these occupations, the najority of this perple are lazy, beggars, and theves. They bring up their children to their own professions, and are very foud of them. They have few disorders, execpt the meables and sinall pox, and weaknesses in their cyes, occasinned by the smone, and live to an advanced agr , with a strong attachment to life. Their physic is sititron in their soups, or bleeding.

The gypsies have, at least in Transylvania, a sort of regular governinent, rather nominal than real or effective. They have their leaders or chiefs, whom they distinguish by the Sclavonian title, wayworle. To this dignity every person is eligible who is of a family descended form a former waywoie : but the preference is general!y given to those who have the best cloties and the mot wealth, who are of a larse stature, and not past the meridian of life. Of religion, huwever, they have no sense; thonsis, with their usnal cmming and hypocris:, they profess the eetablished faith of every country ill which they live. They also speak the la:guages of the respective countries, yet have a languate of their own; from whence derived, authurs differ. Mr. Whiter, the author of the Ftvmologicon Magnum, is of opinion that the gypsy language may be considered as the most ancient form of speech now extant in the world. It has been imagined that this language is a dialect of the Sanscrit; and Mr. W. reards it as the important link by which the Sanscrit is connected with the Coptic, or the Fgyptian.

Their general character and capacities are thus described: Imagine people of a childish

G Y P

wav of thinking ; their minds filled with raw, undigested conceptions; guided more by serise than seaon; using understateding and rettection so far only as they promote the gratitication of any pirrticular appetite; and you have a perfect sketh of the gypsy character. They are lively, uncommonly loquacious and chattering; fickle in the extreme, consequently inconstant in their pursuits; faithless to every loody, even their own cast; void of the least emotion of gratitude, frequently rewarding benefits with the most insidious matice. Fitar malyes them slavishly compliant when under subjection ; but, having nothins to apprehend, like other timorous people, they are cruel. Desire of revenge ofen cause them to take the most desperate resolutions. They are so addicted to drinking, as to sacrifice w hat is most necessary to them, that they may feast their palates with spirits.
GYPSLM, in mineralogy, a genus of the class earths, order calcareous: consisting of carbonat of lime united to sulphoric acid; lioht, very soft, a little frigid : not commonly eftervescing with nitric acid, metting with difficuly in the fire, but raily comin!ing to powder; which produces no eballation in wate, but forms a paste hardening and distendins by exposure to the air. Lighteen species, found chicfly in Furnpe, but one or two species in Asia, especially in the Persian territories. The following are the chief.

1. G. terreum. Farinaceous gypsum. Powdery, of a white colour. Found in the fissures of gepseous rocks in Saxony in the form of a white friable, loose, powdery substance, and secm:s to originate from crystallized seilenite, aud will not concrete without being manstened; feels dry and meagre, hardly sink's in water, is not gritiy between the teeth; when heated below redness it becomes of a dazzling white; has no lustre or transparency.
2. G. alabastrum. Alabaster. Compact, dry and meayre; a little shining; breaking into indeterminate fragments, of a common form, receiving a polish. Found in Derbyshire, Persia, and various parts of Russia, Spain, Tuscany, Sicily and other places, in stratified monntains: colour various, sometimes spotted, intersected with veins and depicted with various colours : does not effervesce with acids; when pure is softer than marble, and does not take a yond polish.
3. G. fibrosum. Sulphat of lime. Plaister of Paris. Meayre and dry ; brittle; breaking into long splintery fragments; of a common form.
f. There is another variety very transparent, fixed, united.
r. A third variety. Obscure, fixed, with decussate ramentations.
liound in various parts of Britain and Europe in general ; and according to Mr. Sowerhy is formed by the decomposition of sulphur of iron or pyrite, the sulphur of which combining with oxygen forms sulphuric acid; which again coming in contact with lime forms this gypsum in various fanciful modes of a texture fibrous, filamentous, or radiate,

G G

G Y R

flexuous or straight, parallel or scattered; colour white, grey, ycllowish, red, or honeyhued, with the colours sometimes meeting in stripes.
4. G. usuale. Lamellated gypsum. Foliated zypsum. Meagre and dry, lamellar, with the fliations generally spherical; breaking into indeterminate fragments.
6. Another variety gliticring internally.
\boldsymbol{r}. A third without internal lustre. Found in Britain and various other parts of Europe in vast masses, and sometımes in lenticular crystals : colour yellowish, or blackishgrey, cinereous, ochraceous, flcsh-colour, rarely honey-colour.
5. G. selenites. Selenite. Selenitic spar. Sulphat of lime. Pellucid, shining, rhombic, lamcllar, with straight parallel foliations, breaking into rhomboidal iragments. Found in most places in whica the two preceding sprecies exist, with the crystals generally in six-si- . 1 prisms, terminated by two-sided or foursiced unnmits; it commonly produces double refracu.n ; polour white or greg.

GYR-FALCON, in ornithology. See Falco.

GYRATION. s. (gyro, Lat.) The act of turning any thing about.

Gyration. (Centre of.) See Centre.
GYRE. s. (gyrus, Latin.) A circle described by any thing moving in an orbit (Sandys).

GY'RED. a. Falling in rings (Shakspeare).
GY'RINUS. Water flea. In zoology, a genus of the class insecta, orderycolenplera. Antennas cylindric; jaws horny, one-toothed, sharp.pointed; eyes four, two above and two

G Y V
beneath: thorax and shells margined, the latter shorter than the body; legs foraied for swimming. Fleven species, scatiered over the four quarters of the globe. They are fruid on the surface of watern, on which they run and describe circles with great celerity ; when attempted to be tahen they plange to the bottom, drawing after tiiem a bubble restmbing a globule of quicksilver.

The only species found in our own country is G. natator, which is oval, faintly striate, black. It inhabits the surface of our staznant pools. It is extrenely active cien in its laria state, in'which it evinces six leg- and a lengtinened body; it preys on the smaller and weaker water-insets, minute worms, \&ic. On the approach of its further metamorphosis it forms for inself a smah oval cell or case on a sedqu-l.af or other water-pilant, and cating its skit: becones a chrysalis: this chanqe usualit takes place in the nonth of August, and the a:r:-wha is completely entomized iu Sepri aber. These insects, when largely assembled together on the surface of the water in lint weather, bave been observed to diffuse a strong or disagrecable smell to a considerable distance. Like the hydmphil and dytiscus, they fly onls by night. Their eggs are small, white, and cylindric; and are deposited on the leaves of water-plants: the heat of the sun hatches them in the space of about eight days, when the young larva instantly begins to swim about in pursuit of its prey.

GYVES. s. (gevyn, Welsh.) Fetters; chains for the legs (Ben Jonson).

To Gyve. v. a. To fetter; to shackle (Shakspeare).

HAB

H,THE: eighth letter'and sixth ennsonant in our alphabet; though some grammarians will have it to be only an appiration, or breathing. But nothing can be mure ridiculous than codispute its being a distinct sound, and formed in a particular mamer by the organs of :peech, at least in our l.nguage: witness the words eat and heat, arm and harm, eur and hear, then and ten, \&c. as pronounced with or without the h. It is prouounced by a strong exspiration of the breatio between the lips, closins, as it were, by a gentie motion of the lower jaw to the upper, and the tongue nearly approaciaing the palate.

The latins have taken their H from the Greek nen, as the Greeks had it of the Phoenieians, and tie Phonicims of the Syrians, who pronsunced formerly Hetha instead of Heth: which plainly shews, that we ought to pronounce Etitu in Greek and not Iia.

But in the begiming this H was only used for an aspiration, wheretore thry wrote hepoa
 instead oi inacor centurn : from whence it comes, that the H formerly devoted one huadred in namber.
H was also joined with weak consonants insteal of an aspiration; for the aypirated co:1snnants were found out since by Palamedes, they using to write theor instead of eros, and the like.
The F is often written instead of the H , as fadum instead of hacdun, fircum instead of hircuin, farivlum instead of haniulum, fostem instead of hortem, hemilias instead of fominas, hel r is iustead of felris.

Anciently the h was put for $c h$; thus Chloduveus was formed Hluloricus, as it is read on all the coins of the nimth and temh centuries; Shd it was on this account that they wrote HIludocicus with an h. In course of time, the sou'd of the 4 being much weakened, or entirely suppressed, the h was dropt, and the word wa written Ludovicus. In like manner we read IIlotairc, Hllocis, \&ic. F. Lokineau will tase this difference to have risen from the differetice, in the pronunciation. Such, says he, as could not pronounce the guttural, wherewith these two words begin, substituted a c for it; and they who promounced it so, wrote it after the same manner; but such as were accastomed in pronounce the guttural, wonte it likewise. He might have added, that such as could not pronounce it at length absolutely rejected it, and both wrote and spoke Louis, Lotaire, \&c. Some learned men have conjec:ured that the h should have been detached from the name; and that it signified
lord, from the Latin herus, or the German herr. Much as the D, which the Spaniards prefix to their proper names, as D. Phelipe, for Don Philip. But as it is likewise found before the names of several cities, it is more probable the letter was there used to denote the rough, harsh pronunciation of the ancient Franks.

In reslity, the most ancient way of writing the names of these French kings, was not by h, but by ch; where the c seems to have stomil for koning, hing, and the $/ 4$ was inserted to give the c a gittural sound.
The h is sometimes also found prefixed to the c; as Hcarolus, hcalender, \&c. for Carolus, calendia, ace.

H, when it bexins the first syllable of a word, is generally sounded with a full breath: the exceptions are heir, herb, hostler, honour, humble, honest, and their derivatives. It is now customary with many of our best speakers to pronounce several words beginning with $h u$, as though they were spelt yu, as human, humilily, humour, and their derivatives. The Enolish anciently aspirated less than at present, as is manifest from the directions given by the grammarians of the seventh century to use an universally before \boldsymbol{H}.
H , used as a numeral, denotes 200 ; and witi) a dash over it, $\bar{H}, 200,000$.
As an abbreviation, H was used by the ancients. to denote homo, heres, hor a, \&c. Thus H.B. stood for hares bonorum; and H. S. corruptly for LLS. sesterce ; and H. A. for Hadrunus.
HA. interjection. (ha, Latin.) 1. An expression of wonder, surprise, sudden question, or sudden exertion (Sihahspeare). 2. An expression of laughter (Dryden).
HABAKKCK, one of the twelve lesser propincts, whose prophecies are taken into the canon of the Old Testament. The name is written in the Hebrew with the n heth, and signifies "a wrestler.". There is no preci time mentioned in Scripture when this Habakkuk lived; but from his predicting the ruin of the Jews by the Chaldeans, it may be concluded that he prophesied before Zedekiah, or about the time of Manasseh. He is reported to have been the author of several prophesies which are not extant: but those that are indisputably his are contained in three chapters. His style is very grand and beautiful.
HABAT, a province of Africa, in Barbary, and in the kingdons of Fez. It is bonnded by the Mediterranean, the Straits of Gibraltar, aud the Atlantic Ocean.
HABDALA, a cercmony of the Jews, observed on the evening of the sabbath, and G G 2

HABEASCORPUS.

by which is intended that the sabbath is over, and the day of habour begun.
HABEAS COKPLS, a writ, of various unes, and of differen imporance. It was originally a writ, which a man indicted of a trespass before justices of the perce, or in a court of franenise, and being anpresended for it, may have out of the cimy's isench, to remove himelf thiticer at his own cost, and th answer the canse there. In its more ustal sense it is the most cellernted writ in the l:n. glicis law. This writ formed part of the ancicm common law, but was much more restrained in its operation and effeets : for the julges arr yeted to themselves the power of granting on denvin! it: and the gaolers did not pay a proper attention to it, often putting the sablerer to the expence of an alias and plaries habeas eurpus before they oheyen. 'i hese inconvenieaces produced the fanous statnte 31 Car II c. e.

Tiss great buiwark of English liberty, which may tairly be pat upon a level with the celeHated Mazna Charta, was oceasioned be the unjust oppression of an insienificant individual in the reisn of Charles the Second. The statute enacts,
ist. That the lord chancellor, or any of the judges in vacation, on complant or written request of anv berson committed for anycrime (except feloiv, or treason, or as accessary, or suspected of being aree ary before the fict, to anv petty treamon, or fillony, or charged in execution by lepal process), upon scense a copy of the warrant, or aifidavit that cops is de:ied, shall award a habeas corms for such prioner, returnable immediately before himself, or any other of the judees (unless the party has suffered two terms to clapse beforeapplsing to the court for his liberation), aad shali discharge the party, if bailable, on luis giving proper security to appear.

Qdly. That the writ shall be i::dorsed, as gramed in pursiance of this act, and signed by the nerson awarding it.

3 dly. That the wit shall be returned, and the prismer b:ought up in a limitud time, according to the distance, never exceeding 20 days.

4thly. That officers and keepers not making due returus, or not delivering to the party or his agent, within six hours after demand, a copy of the warrant of cmmmitment, or shifting the custody of a prisomer without proper authority (as mentioned i:: the act), shall forfeit 1001 . for the first offence, and 2001 . for the second, to the suffierer, and be disabled from holding such office.
sthly. That any one detaining a person once delivered by habeas corpus for the same offence, shall forfeit 5001 .

6 ihly. That every person committed for treason or felony shall, if he desires it, the first week of the next term, or the first day of the next session of oyer and terminer, be indicted in that term or session, or else admitted to bail, unless the witnesses for the crown cannot be produced at that time; and if acquitted, or
not indicted, and tried in the second tern or sersion, shatl be discharged; but no person after the commencement of assizes for the county where the is detained, shall be renoved by hatheas corpus till they are ended.
7 hhly. That a prisoner can obtain his habeus corpus out of the chancery, and excliequer, as well as out of tlie king's hench and com. mon pleas: and if the chancellor and judyes shall refuse the same on sight of the warratt or oath that it is denied, shall forfcit seerally 500) to the party arieved.

8 thly. 'That this writ of habeas corpus shall run into the counties palatme, and ail other privileged piaces, and the islands of Guensey and Jersey.
gihlv. That no inhabitants of England (onless at their uesire, or having committed some capitai oflence in the place to which ther are sent), sla!! be sent prisoners to Ireland, Soutland. (Guernsey, and Jersey, or any places beyond the seas, w thin or withont his un jesty's dominions, on pain that the person committing, and his ausisers and abettors, shall forteit to the injured party a suin not less than 5001. to be recovered with reble costs, shail be disabled from holding any office, shall inuur the ponaltics of promunire, and be incapabic of the king's pardon.

The writs in use under this act are rarinus. Many kinds are used for remoring prioniers from one court to another. Such are the hnlisav corpus ad respontit ndum, when a man has callse of ac ion against one who is confined by process of an inferior court, in order to remore the prisencr. and charge him with this new action in the court above. Ad satisfaciendun is when judywent has, in an aclinn, been given againt a prisener; and the planuff brings him up to a superior court to charre him with proress of execution. Aiso the writs adprosequendum, teslificandum, delikeandsw: which issue when it is leecessaryto remove a prisoner, in crder to prosecute, or bear te immon:, or to be tried in the proper jurisdiction wherein the fact was committed. And, lastly, the common writ au faclendum al recipirndum, which issues out of ary of the couris above. when a perion is sued in some interior jurisdiction, and desires to remore the action into the superior court, conmanding the inferion judges to produce the body of the defendan:, with the day and cause of his detainer, to do and recerie what the king's court shail determine. This writ is grantable of common right. without moving the court, and supersedes all inferior proceedings. But to prevent the surreptitious discharge of prisoners, the statute 1 and : P. and M. c. 13, enacts, that no habeas corpus shall issue to remove any prisoner out of gool, unless signed by some judge of the court out of which it is awarded. And by a statute of the present reign it is enacted, that no cause uniter the value of 10 l . shall be removed into a superior court, unless the defendant, on remorima the saine, gives security for payment of debt and costs.
But the writ which forms so great a part of
the liberty of the subjec ${ }^{t}$ in all manner of illegal continement, is the haleas corpus ad suljiciendum, commanding the person detainung a prisoner to produce hin, with the day and cause of his detention, to submit to whatever the judice or court awarding such writ shall determine. This is a high prerogative writ, and thereiore, by the common law, issuing out of the coart of king's bench, not ouly in term time, but vacation, by a fiat from any of the judges, and running into all the king's dominious. And a man has now the bencfit of the common law writ, either in the king's bench or common pleas, as he chooses; and in both those courts it is necessary to apply for it by motion, as it does not issue of course, without shewing some reason for the granting it. But if good grounds be shewn that the party is imprisoned without just cause, it becomes a writ of common right, and must not be denied, even though a man is detained by the highest authority.

This celebrated act has been subject to temporary suspensions, by authority oi parlament, in times of riot or rebelion: and the late minister subjected himself to considerable unpopularity by that measure during the last war.

HABENIDUM, in a deed, that formal part of it which is to determine what estate or interest is granted by it, the certanty thereof, for what time, and to what use. It is expresed by the words " in have and to hold for such a term," \&c. It sometimes qualifies the estate, so that the general extent which, by construction of law, passes by the words wed in the premises, may by the habendum be controlled. Tise habendum may, therefore, lessen or enlarge the cstate previously granted, but it cannot totally contradict or be repugnant to it. As if a grant be to one, and the heir, of his body, habendum, to have to him and his heirs for ever, here he has an estate tail by the grant ; and by the habendum a fee-simple expectant thereon. But if it had been in the premises to him and his hecirs to have for life, the habendum would be utterly void ; for an estute of inheritance is vested in him betore the habendum comes, and shall not afterwards be akien away, or divested by it. The habendum camont pass any thing that is not expressly mentioned, or contained by implication, in the premises of the deed : because the premises being part of the deed by which the thing is granted, and consequeatly that nuakes the gift ; it fullows, that the hatendum, which only limits the certainty and extent of the estate in the thing given, cannot increase or muliply the gith, because it were absurd to say, that the grantee shall hold a thing which was never given him. See Deed.

HABERDASHER, in commerce, a seller of hats, and other small wares This word is probably derived from Berdash.
habergeon, Haubekgeon, or HaBERGETUM, a coat of mail. An ancient piece of armonar, in form of a coat, descending from the neck to the middle, and formed of
little iron rings or plates, linked into each other.
HABI'LIMENT. s. (hal:/ement, French.) Dress ; clotices : garment (S_{u}; f).

To HABILITATE. $v . n$. (naliziter, Fr.). To quality; to entitle : not in ue (Bacor).

HABILITA'TION. s. (from habilitate.) Qualification (Bacsn).

HABI'LITY.s. (habilit'r, French.) Faculty ; power: trow alility.

HA'BIT. s. (halitus. Latin.) 1. State of any thing: as, holit of bexty. 2. Dress; accoutrement (Dryden). 3. Halit is a power in man of doing any thing, when it has been acquired by frequent doing the same thing (Lockr). 4. Custom ; inveterate use ($\mathrm{S}_{\text {outhi }}$).
 to accoulre; to array (Ciarendor).

Habit, may be defined on aptitude or disposition eitier of mind or boly, acq iired by a frequent repetition of the came act.

Sunilar to the customs (see Custom) which pervade large boties of men, is the power of habit over individuals. The mind frequently acquires a strong and invincible attachment to whatever has been far iliar to it for any length of time. Hat its primarily introduced by accident or necessity, will inspire an affection for peculiarities which have the reverse of intrinsic merit to recommend 'iens. These become, as it were, assimulate! iro our natures; we contemplate them as belong: og to ourselves so intimately, that we ferlan irksome vacuity in their absence, and enjoy a great degree of satisfaction in their benig replaced; merely because we have !een habituated to them. How frequently does it happen that the most trifing corcumesances in early life will decide the lot of our fulure years; creating affections and aversions which have the most lasting influence! It is this canse which so frequently inqpies a prefererice for one traic, pursuit, or procession, rather than another. Thus we percet:e that childr:n stmenes make choice of the emplownents of their parents or their ne:ghbours, because it had agreeably engazed the attention of their jusenile hours. They love to imitate and play the man, till in affec: :on is acquired for the occupation itseif. This is generally the care witere the occupation is of an active nitture, and most adipted to the vivacity of youth. If, on the other hand, their mitids are strongly impressed with the confinenment, slavery, or any other disagreeable circum-tance attending the employment to which they are daily winesses, they are inclined to the contrary extrome, enntract an aversion, and give the prefirence to any other pursuit, the inconveniences of which are unknown to them.

It is neciless to enlarge farther upon these particulars; as every individial must be conscinus of their truth. There is no one who does not feel the force of nabit, buth as the source of pleasure and of aisleasure. It is experienced in every atation and connection in life; it is experienced in what we eat, or drink, or wherewith we are clothed; in our habita-
tions and their furniture; and in our own characterstic peculiarities. (Cogan on the Passions, p. 237.)

Habit of plants, their air, port, or general external appearance. Linnéas defines it to be, a certain conformity which kindred or congenerous vegetables have in their placentation, rooting, branching, intorsion, budding, leating, stipulation, pubescence, glandulation, laclewence, florescence, \&e.

Hence sucin characters are called characteres habituales. And these, though not sutficient of themselves to distinguish vegetables, yet frequentily make them known at first sight. Many of the natural classes are directly apparent from this general similitude, as the caryophyllex, verticillata, asperifoliæ, umbellata, leguminosæ, siliquose, columnifera, filices. In forming the characters of the genus these have been neglected, since the fructification has been thought amply suificient for the purpose.

HA'BI'TABLE: a. (hatitable, Fr.) Capable of being dwelt in (I)onne).

HANBI'ABLENESS. s. (from halitable.) Capacity of beines divelt in (More).

HA'BITAN(EE. s. (halitatio, Latin.) Dwelling; abode (Spenser).

HA'BITANT. s. (halitant, Fr.) Dweller; one that lives in any place (P ope).

Habita TiON. s. (halilation, Prench.) 1. The state of a place recciving dwellers (Milton). 2. Act of mhabiting; state of dwelling. 3. Place of abode; dwelling (Millon).

Habitation of plants. In botany. Locus ubi sponte prognascuntur. Their native place of growth. Called by some, barbarously and vulgarly, their habitat.

HABITA'TOR. s. (Latin.) Dweller ; inhabitant (Broome).

HABl"IUAL. a. (halituel, French.) Customary; accustomed; inveterate (Sou/h).

HABITUALLY. ad. (from habilual.) Customarily: by habit (Arluthnot).

To HABI"TCATE. \%. a. (talitcur, Fr.). To accustom ; to use one's self by frequent repetition ('T'illetson).

HA'BITUDE. s. (halitudo, Latin.) 1. Relation; respect; state with regard to something else (Hale). 2. Faniliarity; converse; frequent intercourse (Drydert). 3. Long custom ; habit (Prior). 4. The power of doing any thing acquired by frequent repetition (Dryden).

HA'BNAB. ad. (hap ne hap.) At random; at the mercy of chance (IIudiliras).

HABSBURG, or Hapsburg, a castle of Swisserland, in the canton of Berne, advantageously situated on the right bank of the Aar, about a league above the town of Bruck, built by count Vernor, bishop of Strasburg, in the eleventh century, and by him given to his brother Raclbad. The son of Radbad, sirnamed Verner, after his uncle, was the first of the house who took the title of the count of Halssburg, which his descendants always bore till the elevation of Rodolph I. to the einpire of Germany, aud archduchy of Austria. It was

HAC

then given as a fief to the lords of Wildeck, and after them to the lords of Wholen. When the Bernois conquered the Argow, in 1415, this castle came under their dominion. An oflicer is stationed here to give the alarm, in case a fire should break out in the neighbourhood: five miles N. Leazburz.

HACHA, the capital of Kio-de-la-Hacha, a small province of 'l'erra Firma. It is scated at the mouth of a river of the same name. Lat. 11.30 N . Lon. 72. 34 W .

To HACK. v. a. (haccan, Saxon.) 1. To cut into stuall pieces; to chop (Sianey). 9. To speak unreadily, or with hesitation (Shakspeare).

To Hack. v.n. To turn hackney or prostitute (Shaksjeare).

HACK, applied to horses, means a horse appropriated to every kind of drudgery, and upon which no great estimation or value is placed. The term also implies a hired horse; the property of a hackney-man, job or postmaster, who lets out horses by the day, week, or month, and who is obliged to take out an annual licence for permission so to do, paying five shillings for the same; without which licence he is liable to a penalty of ten pounds.

Hack-horses, whether for riding or dravins post, are chargeable with a duty of one penny halfpenny per mile, for as many miles as such horse shall be engaged to travel within a dap, or any less time; but where the distance cannot be ascertained, one shilling and nine-pence is charged in the gross. This duty is demanded by the person letting the horse or horses to hire, who, upon receiving such payment, is compellable to deliver to the person so hiring one or more stamp-uffice tickets, under a pknalty of ten pounds.

HA'CKLE. s. Raw silk; any flimsy substance unspun (Walton).

To Ha'cкle. v. a. To dress flax.
HACKNEY, a parish in Middlesex, on the N.E. side of London, containing no less than 12 hamlets. The old church was built, we believe, in the reign of Edward II. Near it there has been a large church lately erected. That part of Hackney next London is called Mare-street, the middle Church-street, and the north part Clapton. Dorleston and Shacklewell are on the west, and Hommerton, which leads to the marsh, on the east. Hackney coaches first obtained their name from this place: for in the begiuning of the seventeenth century, Londoners who went on visits to their friends at Hackney often hired horses or carriages, so that in time it became a common name for such horses, chaises, and coacnes, as were let to the people of London; and the name is now general.

Hackney, among sportsmen, a road-horse stiperior to all others upon the score of utility. and employed to save the drudgery and labour of the more pampered racer, the hunter, and the charger. It is the peculiar province of the hackney to carry his master twelve or fifteen miles in an hour to covert, when the bunter

H A C

is in waiting; and sometimes to bring back the groom whih s:ll grater expedition. His constitution, therefore, is required to be good, and his spirit invincible; he must be elabled to ao five and twenty or thirty miles at a stage without drawing bit, or the least respect to the state of the roads or the weather.

Hackney, is used to denote, further, 9. A lireling; a prostitute (R.scommon). 3. Any thing let out for hire (Pope). 4. Much uscel; common (Harrey).

To Ha'ckney.v.a. (from the noun.) To practise in one thing; to accustom, as to the oad (Shakspente).
Hackneycoaches, those exposed to hire in the streets of London, and some other great towns and cities, as Edinburgh, Liverpool, Brist.1), \&c. at certain rates fixed by authority. (ice coach.) These first beenan to ply in the streets of Loudon, or rather waited at inns, in the year 1625, and were originally no more than twenty in number. The following is a correct table of the present fares.

FARES ACCORDING TO DISTANCE.

Not excecding one mile E. s. d.
One mile and a half 0 1 6 T:oomiles . . 0 Two miles and a half 030 Three miles . . . 036 Three miles and a half $0 \quad 4 \quad 0$ Four miles . . . 046 Four miles and a half o 56 live miles. . . . 060 Five miles and a half 066 Six miles. . . . 070 Six ni:iles and a half 088 Seven miles . . . 088 Seren miles and a halfo 90 Fight miles . . . 096 Eight miles and a half 0 to 6 Nine miles . . . 01110 Nine miles and a half 01116 Ten miles. . . . 0120 Ten miles and a half 0130 Eleven niles. . . 0136 Eleven miles and a half 0140 Twelve miles . . . 0150
And so on at the rate of 6 d . for every half anile, and an additional 6d. for every two miles completed.

PARES ACCORDING TO TIME.

HAC

Not exceeding two hours and forty
minutes. . . . 070

Thiree hours . . . 080
Three hours and twenty minutes . . . 090
Three hours and forty
minutes. . . . 0100
Four hours . . . 0110
And so on at the rate of sixpence for every fifteen minutes further time.

The fares are to be taken by the hour or mile onls, and tiot by the day.
The sun-set hours, after which coaches are obliged to go on the lighted roads, shall be atter eight between Ludy Dar and Miciaselmas, and after five between itichaclmas and Lady Day; and coaches discharged after sucb hours beyond the carriage-way pavement, shallb besides the above fares, have the "ll fare to the extremity of such pavement; or if inired a stand beyond the sume, the full fare back such extreunity or standing, at the option the party.

For coaches hircd to go into the country in the day-time and there discharged, a atditioral fares are to be taken for their reluru empte to the pavement or next stand where hired frinn, as follows: for ten miles, five stillings ; eieht miles, four shillings; six miles, three shillings; and four miles, two shillings. If under iour mile, nothing.

Coachmen are not compellable to tale more than four adult persons inside and a servant out; but if they agree to tike more, then one shilling in addition to the tare must be paid ior cach extra person; and if the coach, is hired for the country, and to return, ne shilliug for such extra person going, and ouc shilling for his returning.

Vinitors of Vaushall, and other places of public resort, ordering coaches to wait, must pay a reasonable sum in hand, to be accounted for when the coach is discharged.
Coachmen summoned for refusing to go with fares, who can prove that they have been twelve hours at work, or were at the time actually hired, and it appearing that they did not use any uncivil language, or mis-conduct themselves, are not to be punished for such refusal; but, on the contrary, reccive from the party complaining a compensation for loss of time, not exceeding five shiilings, nor less than three shillings.

Every coach shall have its number on each side; and if any proprietor shall presume to alter his number he shall forfeit 51 . half to the king, and half to the informer. The horses to be used with hackney-coaches shall not be under fourleen hands high.

Any coachman refusing to go at, or exnctirg more for his hire than according to the foregoing rates, shall forteit a sum not excteding three pounds or under ten shillings; and in case of misbehaviour by abusive language or otherwise, the commissioners may revolse

HAD

his licence, or inflict a penality not exceeding tince pounds to the poor, and on non-payment, to be committed and kept to hard labour for thirty days.

Any person refuing to pay the fare, or defaciug the coach, may be brought by warrant b corre any justice, who, on proof upon oath, may analid satisfaction to the party; and in rase of refusal to pay, may bind him over to the next sersions.
Rents and penalies to be levied by distesss, and, in default thereof, imprisonment till paid; and if any rent is fourteen days unpaid, the licence may be withdrawn.
A coach should be taken possessinn of before the coachman is told where 10 drive; if he then refuses to proceed he, is liable to be punished; and if at any time you apprehend that more than the proper fare is demanded, you may oficr whatever is asked, but charge the coachman to take no more than is due; and if he then persists in the overcharge and takes it, you may take his number and apply for redress at the Hackney-Coach Office, in Somersetplace; though the penalties are equally recoverable before the alderman of every ward of the city, or any justice of peace.
HA'CQUETON. s. (haquet, old French.) Some piece of armour (Spenser).
HA1). The preterit and part. pass. of have.
HADBOTE, in our old writers, a recompence or amends for violence offered to persons in holy orders.
HADDINGTON, a bornugh of Scotland, in a county of the same name. Part of a monastery here is occupied as a parish church; and at a small distance are the ruins of a nunnery. Lat. 55. 50 N . Lon. 2. 35 W .
HADDINGTONSHIRE, or East LothiAn, a county of scotland, bounded on the \mathbf{W}. by Edinburghishire, on the \mathbf{N}. by the frith of Forth, on the E. by the German (Ocean, and on the S. by the county of Berwick. It is abmut twenty-five miles long from E to W . and fifteen miles where broadest. A great tract of this county, extending to the S. and \mathbf{E}. is for the most part chanpaign, and very fertile and beautiful. The soil is, in many places, doubly productive. Rich crops are raised on the surface; and the mines of coal are inexhaustible. The southern part of this county is very mountainous. In 1801 this county contained 29986 inhavitants.
HADDOCK, in ichthyology. See GA_{A} Dis.
HADDON (Dr. Walter), a learned Englishman, born in Buckinghamshire in 1516. and educated at Eton school, from whence he was sent to King's colleze, Canbridre, where he took his doctor's degree in civil law. He was one of the most zealous pronnters of the reformation. which brought him into some danger in the reign of queen Mary. On the accession of Elizabeth, he was made master of the court of requests. He was also emploved on state affairs. He died in 1571. His miscellaneous works were printed in 1567, in 4to. under the title of Lucubrations.

H

IIADESS, the Greek term used in Scripture for the unseen state. See Ades.
HidDlit', or Hadleigh, a borough in Suffilk, with a market on Mondays. It is governed by a mayor, and has a very handsome church. Large quantities of yarm are spun here for the Norwich manufacture. Lat. is. 10 N . Lon. 1. 6 E .

hadminn. Sce Adrian.

HADRIANEA, iu antiquity, games observed at Puzzuoli, in honour of the emperor Adrian.
haldsjar, or lachsa, a province of A rabia, bounded on the north by Arabia Deserta, on the east by the Persian Gulf, on the south by Oman, and on the west by Nedsjed. The asses and camels of this country are much valued, and some thousands of the latter annually sold into Syria. In the interior parts of the country daies form a principal branch of the food of the inhabitants. Pearl-fishing on the coasts produces considerable advantage. and there is some foreign trade. Lachsa is the capital.

HIEMA. ($\alpha, \mu z$, from aviw, to burn, because of its heat.) Blood. This word forms the commencement of a great variety of compound terms in medicine.
HABMAGUGOS, : (of ater, blood, and arc, I draw away.) The name of a medicinal comper sition described in Myrepsus, and intended to bring away the lochia, or forward the menstrual discharges. It consists of black hellebore and the fatid gums, with honey.

HEMANTHUS. Blood-flower. In botany, a genus of the class hexandria, order monozynia. Involucre many-leaved, many-fowered; corol superior, six-parted; berry threecelled. Fourteen species: all Cape plants, excepting one, which is indigenous to Sierra Leone. The following are the chief.

1. H. concineus. Leaves tongue-shaped, flat, smooth, pressed close to the ground : wimbel contracted, fastigiate, shorter than the involucre ; border of the corol spreading. The leaves are proluced in the autumn, continue through the winter, and decay in the spring; the plant through the summer being leates: The flowers precede the leaves in the autumnal season.
2. H. multiforus. Leaves elliptic, lanceolate, acute, concave, erect; umbel many-flowered, longer than the involucre; peduncles jowted; border spreading; stamens ascending. This is the only species of the genus which has hitherto been found wild in any other part than the Cape. It is described by Seba as a native of Sierra Lcone.
3. H. carinatus. Leares linear, and hollowed like the keel of a boat: stalk taller and flowers paler than those of H . coccineus, or the cochineal blood-flower.

HЖMATE'MASIS. (hremalgmasis, from arpe, blood, and rusw, to vomit.) Vomitus cruentius. A vomiting of blood. This disease is mostly symptonatic of some other. and generally arises from plethora, obstructed catamenia, or scurv s.

HEMATITES. in orjctology. See Fere brous herb of Austualasia, with a scarlet infloRua.
II.EMATOCE'LE. (hamalucele, from wisa, blood, and xrin, a tunour.) A collecthon of blowed in the rumica vaginalis, testis, or in the cellular memberine of the scrotum. It gencrally takes piace fiom puncturing a bloodvesel in the operation for remoring the water of hydrocele. If the quantity be grea:, and the efflux be not stopped by cold ap, lications, the bleeding vessel should be secured.

H无MATOLOGY. (hamatoly; ia, aıматоλ resa; from arma, blood, and λ goss, a discourse.) The doctrine of the blowd.

HAMATOMPHALOCELE. (hematom-
 oste? $\mathfrak{3}$, the navel, and xnnn, a tumour). A species of ecchymosis. A tumor about the navel from an extravasation of bloorl. It is mostly absorbed, but, if too considerable, a puncture may be made to evacuate the blood, as in ecchymosis. See Есснymosis.

HAMATOPUS. Sea-pie. Picd oystercatcher. In zowlogy, a genus of the class aves, order grallx. Bill compressed, the tip an equal wedge; nostrils linear; tongue a third part as loug as the bill; feet formed for runnilg. thre-toed, cleft. One species. H. ostralegus, with red bill, eyelids and legs, the former sometimes tipt with black; scarlet irids; body sometimes totaliy black; frequently head, neck, and borly above black, beneath white. Inhabits almost every sea-shore; and is, of course, found on the coasts of our own country; sixteen and a half iuches long; feeds on marme worms and insects, but chiefly on oysters and limpets, which it extracts from the shells with geeat dexterity: egss four or five, olive-yellow, with irregular purplish spots. See Niat. Hist. P. CXXIV.

HEMATOXYLON. Lngwood. Campechy. In botany, a genus of the class decantiria, order monogynia. Calyx five-parted; petals five; capsule lanceolate, one-celled, twovalved; the valves boat-shaped. One species, a native of the bay of Campechy, at Honduras; a tree rising from eighteen to twenty or five and twenty feet, with crooked spinous branches; leares abruptly pinnate; leaflets inversely heartshaped, fowers racemed. It is stll in frequent use in medicine under the name of Lignum Compichiense, which see for its medicinal powers.

In dyeing many of the darker colours, logwood is of very essential use, and a very common ingredient. It is', of especial use in dyeing biack, adding a permanency as weli as a depth of colour to the black of galls me vitriol, when internixed with them, which they never possess of themselves.

HAMATC'RIA. (hemaluria, aıмaтw:a: from auma, blood, and n;or, urine.) Bloondy urine: mostly symptomatic of some other disease.

HXMODORUM. In botany, a ger.ue of the class triandria, order monginnia. Petals six; the interior ones bearing the stamens atore the middle: stigma obtuse; capsule inferior, three-celled. One species only; a gla-
re vence.

HLAMO'PTYSIS. (haomop!ysis, acmsm?
 toe. A spiting of biond. A genus or disease, arralocd by Cullen in the class pyrixia, and order haenorrhazia. It is charactenized by conisiing up thonid or frothy blood, heat or pani i: , whe chest, irritation in the larynx, and a sallish taste in the mouth. There are five species of this disease: 1. Hamoptysis plethorica, from fulluess of the vessels. \&. Hzmoptysis violenta, from seme external vioience. 3. Hxmoptysi, phahisica, from ulcers corroding the sundl resell. 4. Hicmopitesis calculisa, from calculous matter in the lungs. 5. Hæmopissis vicaria, foom the supprestion of sume customary evaciation.
HEMORRHAGIA. (hamorhagire, nusp-
 out.) Hamorrhage, or afflux of blood. An order in the class pyrexia of Cullen's nosology is so called. It is characterized by pyrexia with a discharge of blood, without any external injury; the blood on venasection exhibiting the buffy cout. The order hemorrhagix contains the following genera of diseases, viz. epistaxis. hirmoptysis, phthisis, hemorrhois, and menorringia.

HAEMORRHOLDAL ARTFRIES. Arteris hemorrhoidales. The arteries of the rectum: they are sometimes two, and at other tiases three in number. 1. The upper haxmorrhoilal artery, which is the great brancin of the lower mesenteric continued into the pulvis. 2. The midille hamorinoidal, which sunctimes comes off from the hypugatric artery, and very often from the pidical artery. It is sometines wanting. 3. The kower or external hemorrhoidal is almost always a branch of the mudical artery, or that artery which geve to the penis.

Hemorrhoidal veins. Venx hommorrho idites. These are two. 1. The ext.raal, which evacuates itself into the vena ilica interna. 2. The internal, which conveys its thood into the vena porta.

HALMORRLIOIS. (hamorrhois, armoos:s, fro : acran, blowd, and ow, to How). Aimorriois. The fries. A genus' of disease in the class pyrexia and order hamorthagix of Cullen. They are varicose excrescences arising about the verge of the anus, or the inferior part of the intestinum rectum. The rectuin, as well as the colon, is composed of several muscular membranes, connected to each other by an intervening cellular substance; and as the muscular fibres of this intestine always tend by their contraction to lessen its cavity, the internal membrane, which is very lax, forms itself into several ruge or folds. In this construction nature respects the use of the part, which occasionally gives passage to, or allows the retention of, the excrements, the hardness and bulk of which niqhelt produce considerable lacerations if this intestine were not capablo of dilatation. The arteries and veins subservient to this part are called hxmorrhoidal,

H \mathbb{E} M ORRHOIS.

and the blond that returns hence is carried to the meseraic vains. The intestinum rectum is particularly sulyect to the hre:norriogids, from its situation, structure, and use; for whilst the course of the blood is assisted in almost all the other veins of the body by the distension of the adjacent muscles, and the pressure of the neighbouring parts, the blood in the hemorrhoidal veins which is to ascend against the natural tendency of its own weight, is not only destitute of these assistances, but is impeded in its passage: for, tirist, the large excrements which lodqe in this intestine dilate its sides, and the difierent resistances which they form there are so many impeliments to the return of the bhood; not in the large veins, for they are phaced along the external surface of the intestine, but in all the capilliries which enter into its composition. Secondly, as ofien as these large excrements, protruded by others, approach near the anus, their successive pressure upon the internal coats of the intestine, which they dilate, drives back the hlood into the veins, and so far tend to susperud its course; the necessary consequence of which is, a distension of the veins in proportion to the quantity of blood that fills then. 'Thirdly, in every effort we make, either in going to strol, or upon any other occasion, the contraction of the addominal muscles, and the diaphragm presising the contents of the ablomen downwards, and these pressing upon the parts contained in the pelvis, another obstruction is thereby opposed to the return of the blond, not only in the large veins, but also in the capillaries, which bei $:!g$ of too weak a texture to resist the impalse of the blood, that always tends to dilate them, mav thereby lecome varicose.
The dilatation of all these vessels is the primary cause of the hamorrhoids; for the internal coat of the intestine, and the cellular meinbrane which connects that to the muscular coat, are enlarged in proportion to the distension of the vessels of which they are composed. This distension, not being equal in every part, produces separate tumosirs in the gut, or at the verge of the anus, which increases acconding as the venal blood is obstructed in them, or circulates there more slowly.
Whatever, then, is capable of retarding the course of the blood in the hæniorrioidal veins may occasion this disease. Thus, persons that are generally costive, who are accustomed to sit long at stool, and strain hard; pregnant women, or such as have had dificult labours; and likewise persons who have an obstruction in their liver, are for the most part afflicted with the piles; yet every one has not the hemorrhoids, the different causes which are mentioned above not being common to all, or at least not having in all the same effects. When the heemorrhoide are once formed, they seldom disappear entirely, and we may judge of those within the rectum by those which, heing at the verge of the anus. are plainlv to we seen. A small pile, that has been painful
for some days, may cease to be sn, and dry up; but the skin does not afierwards retain it, former firmness, being more lax and wriniled, like the empty shin of a grape. If this external pile swell and wink acrain setcral times, we may perceive, wher each riturn, the remainy of each pile, though shrivelled and decayed, get still lefit larger tian before. The case is the same with those that are sitnated within the rectum; they may happen indeed never to return again, if the cause that produced them be removed; but it is protable that the excrements in pasisinz out occasion a return of the swelling, to which the external ones are less liable: for the internal piles make a sort of knots or tumnurs in the intestine, which straimhtening the passage, the excrements in pussing nut occasion irritations there that are more or less painfel in proportion to the efforts which the perion makes in moing to stool ; and it is thus the:e tumours become gradually larger. The hemorrhoids are sabject to many variations; they may become inflamed from the above irritations to which they are exposed, and this inflammation cannot always be removed by art. In some, the inflammation terminates in an abscess, which arises in the mididle of the tumour, and degenerates into a fistula. Thece piles are very painful ith the abscess is formed. In others, the inflammation terminates by induration of the hamorrhoid, which remains in a manner schirrus. These never lessen, hut inust necessarily grow larger. This schirrus sometimes ulcernes, and onntinually discharges a san:ies, which the patient perceives ty stains on his shirt, and by its nocasinning a very troublenome itching about the verge of the anus. These kinds of hromorrhoids sometimes turn cancerous. There are some hemorrboids, and those of different sizes, which are covered with so fine a shin as frequently to admit blived to pass through. This fine skin is only the internal coat of the rectum, greatly attenuated by the varicose distension of its vessels. The hermorrhave may proceed from two causes manely, either from an excoriation produced by the hardizess of the excrements, or from the rupture of the tumefied vessels, which break by their ton great distension. In some of these, the patient voids hlool almost every time he gors to stool; in others not so constantly. We sometimes meet with men who have a periodical bleeding by the piles, not unlike the menses in women; and as this evacuation, if moderate, does not weaken the constitution, we may infer that it supplies some other evacuation which nature cither ceases to carry on, or does not furnish in due quantity; and hence also we may explain why the suppression of this discharge, to which nature had been accustomed, is frequenily atteaded with dangerous diseases. The hamorrhoids are sometimes distended to sweh a degree as to fill the rectum, so that if the excrements are at all hard they cannot pass. In this case the excrements force the hemorrhoids out of the anus to procure a free passage,

H A G

consequently the internal coat of the rectum, to which they are connected, yields to exteusion, and upon examining these patients immediately after having been at stool, a part of the internal mat of that gut is perceived forming a sort of ligature or stricture round the harmorrhoids. A diticulty will occur in the return of these, in proportion to their size, and as the verge of the anus is more or less contracted. If the bleeding piles come out in the same manner upon going to stool, it is then they void most blood, because the verge of the anus forms a kind of ligature above them.
HERETICO COMBURENDO, a writ which anciently lay against an heretic, who, having once been convicted of heresy by his bishop, and having abjured it, afterwards falling into it again, or into some other, is thereupon committed to the secular power. See Heresy.
haERLEM, or Harlem, a populous city of the United Provinces, in Holland. In the year 1732, it enntained 7963 houses, and about 40,000 inhabitants. The church, which is the largest in Holland, is adorned with a very fine organ. It consists of 8000 pipes, the largest 38 fect long, and 16 inches in diameter: it has 68 stops, of which the most curious is the vox humuna. Hacrlem is situated near a lake of the same name; and to the S. of the town is a wood, cut into delightful walks and vistas. At this city there are considerable manufactories of linen, tapes, and ribbands. Here is also a noted Philosophical Society. Lat. 52. at N. lon. 4. S. E E.

HERUCO. In zoology, a genus of the class vermes, order intestina. Body round, the fore part two-necked, and surrounded with a single row of prickles; without proboscis : one species only, with a greyish white and wrinkled body. Inhabits the intestines of the mouse; and is distinguished from the genus echinorhynchus by its wanting the retractile proboscis.
HAFT. s. (hæfz, Saxon.) A handle; that part of any instrument that is taken into the hand (Dryden).
ToHaft.v.a. (from the noun.) To set in a haft.
HAG. s. (hrzepre, a goblin, Saxon.) 1. A fury; a she monster (Crashau). 2. A witch; an enchantress (Shakspeare). 3. An ugly old woman (Dryden).
To Hag. v. a. (from the noun.) To torment; to harass with vain terrour (Indilirus).

Hag. Hag-pish. In ichthyology. See Gastrobranchus.
HAGARENS, the descendants of Ishmael. They are called also Ishmaelites and Saracens; and lasly, by the general name of Arabians. As to the Hagarens, they dwelt in Arabia the Happy, according to Pliny. In the Chronicles it is said (1 Chron. v. 10.) that the sons of Reuben, in the time of Saul, made war against the Hagarens, and became masters of their country eastward of the mountains of Gilead;
which was the true and ancient country of the Hagare os.

HAGGAI (pleasnnt), the tenth of the minor prophets, and of those three prophets who were sent to the Jews after their return from the Babylonian captivity, was born at Babylon about A. M. 3.5.57, and prophesied about 520 years before the Christian wra. The occasion of his prophecy was the stop which was put to the building of the Temple, cluring many years after the foundation of it had been laid. The people had applied themselves to the building of their own houses, and neglected the house of God; till moved at length by the earnest exhortations of the prophets they resumed the work, and completed it in a few years. The style of this prophet is for the most part plain and prosaic; interspersed, however, with several passages of much sublimity and pathos.

HA'GGAKD. a. (hagard, French.) 1. Wild; untamed; irreclaimable (Spenser). 2. (hager, Ger.) Lean; rugged; ugly (L'Est.). 3. Deformed with passion (Smith).

Hággard. s. 1. Any thing wild or irreclaimable (Shaspeare). 2. A species of hawk (Sandys).
HA'GGARI)I,Y. ad. (from haggard.) Deformedly; ualily (Dryden).

HA'GGIESS. s. (from horg or hack.) A mass of meat enclosed in a membrane.

HA'GGISH. a. (from hag.) of the nature of a harr ; deformed; horrid (Shakspeare).

To HA'GGLE. v. a. (corrupted from hacile or hack.) 'To cut ; to chop; to mangle (Shatspeare).

T'o Hággle. v. n. To be tedious in a bargain; to be long in coming to the price.

HA'GGLER. s. (from haggle.) 1. One that cuts. 2. One that is cardy in bargaining.

HAGIOGRAPHA, a name given to part of the books in scripture, called by the Jews Cetuvim. The word is compounded of ayior, " holy;" and $\gamma_{j} a p, \nu, ~ " I ~ w r i t e . " ~ T h e ~ n a m e ~ i s ~$ very ancient: St. Jerom makes frequent mention of it: before him, St. Epiphanius called these books simply rerquir. The Jews divide the sacred writings into three classes: The Law, which comprehends the five books of Moses: the Prophets, winch they call Nevisin: and the Cetuvim באוכים, called by the Greeks, \&c. Hagingrapha: comprehending the book of Psalms, Proverbs, Job, Daniel, Ezra, including also the book of Neheniah, Chronicles, Canticles, Ruth, the Lamcutations, Ecclesiastes, and Esther. The Jews sometimes call these books the Writings, by way of eminence, as being written by inmediate inspiration of the Holy Spirit. Thus says Kimeli, in his preface to the Psalms, Maimonides, in More Nevoch, and Elias Levita in his Thisbi, under the word 2. They distinguish the hagiographers, however, from the Prophets; in that the authors of the former did not receive the matters contained in then by the way called Prophecy, which consists in dreams, visions, whispers, ecstasies,
\&-c. but by mere inspiration and direction of the Spirit.

HiAGUE, a town of Holland, situated about half a league from the sea, ineretofore the residence of the stadtholiler, the statesgeneral, and the states of the province. In the year 176d, it was supposed to contain 4(), (k) souls. It was litic known till William 11. king of the Romans, and comte of Holland, removed his court thither from Gravesande, in the year 1250: from which time it has always beein the seat of goverument, and siuce the establishment of the republic, it might be reckoned the capital of the seven provinces. It stands in a dry soil, something higher than the rest of the country; the air is pure, and the environs delightful. The houses are goorl, and the strects large and long; several of them adorned with rows of trees. There are several squares, and many magnificent public buildinss, the court, the priace's palace, the town-house, \&ic. In the prince's palace was a very valuable cabinet of natural history, ${ }^{\text {l }}$ coins, medals, \&c. and excellent pictures in all. It is governed by its own magistrates, which are a baily, whose office is for life; three burgomasters, changed every year; seven echevins, and twelve common council; a pensioner, a secretary, and a tueasurer: thirty-two miles S.W. Amsterdan, and twelve N.W. Roterdam. Lat. 52. 4 N. Lon. 4. 23 E .

HAGUENAU, a town of France, and principal place of a district, in the departunent of the Lower Khine, situatell on the Motter, in the midlle of a forest, which bears its name, fortified by Frederick the First, who made it ant Imperial town, and cailed it the chunter of the Empire, because in it were preserved the Imperial ornaments, under the bouse of Suabia. Here was a palace, in which the emperors sometimes resided, but, in consequence of the frequent wars, it is now almost destroyed. The number of inthatbitants is about 3400 . The surrounding land is sandy and unproductive, and the commerce is inconsiderable; the principal articles are madder and tobacco. Lat. 48.47 N. Lon. 7. 53 E
HAGEUIA. In botany, a genns of the class octandria, order monogynia. Calyx twoleaved; corol five-petalled, flat; neciary five leaflets, four times as short as the pitals; capsule: a tree of Al,yssinia described by Mr. Bruce in his travels; leaves crowded at the top of the branches, interruptedly pinnate with an odd one; leafets ovate lanceolate, sharply serrate; panicle nodding, flesuous.
HAII. interj. An expression of sudden effort.
HA-HA, or Aha, a wall and sloping bank, serving as a fence about parks. pleasuregrounds, \&c. The name is probably derived from the expression of surprise, aha! semetimes uttered on arriving at the deciivity and finding a fence where none was expected.
HAIL, in natural history, a meteor generally defined frozen rain, but differing from it, in that the hailstones are not formed if
single pieces of ice, but of many little spherules aystutiated together; neither are these spherules all of the same consistence; some of them being nard and solid, like perfect iec; others snft, and mostly like snow hardenel by a severe frost. Haibsone has a kind of core of this soft matter; but more frequently the core is solid and hard, while the omside is formed of a solier mater. Hablitones assume various figures, being sometinies round, at other times pyramital, cremated, angular, thin, and flat, and sometimes steflated with six radii, like the small cristals of snow. Their cause is probably eleciricul. Natural historians furnish us with various account of surprising showers of hail, in which the hailstones were of extraordinary magnituile. Of these we mention one or two, soid to hare happened in our own country.
"i i)r. Halley, and others also, relate, that in Cheshire, Lancashire, \&c. April !oth, 1697, a thick, black coond, coning from Carnarvonshire, disprsed the wiopors to congeal in such a manner, that, for about the breadth of two miles, which was the linitit of the cloud, in its progress for the space of sixly miles, it did inconccivable damage; not only killing all sorts of fowls and other small animals, but sphitting trees, knocking down horses and mer:, and eren plowehini; up the earth; sn that the hailitones butied themselves under ground an inch or an inch and a half deep. The hailstones, many ot which weighed five ounces, and some hali a pourd, and being five or six inches about, were of rarious figures; some round, others half round; some sinnot' $'$, others embossed and crenated; the icy substance of them was very transparent and hard, but there was a snowy kernel in the middle of them.
" In Hertfordshire, May 4, the same year, after a scevere storin of thunder and lightring, 2 shower of hail succeeded, which lar exceeded the former: some persons were hilled bo it and their bodies beaten all black and blue; vast oaks were split, and fields of rye cut down as with a scythe. The stones mazasured from ten to thirteen or fourteen inches about. Their fieures were varions, some oval, others piched, and some that." Phil. Trans. Number 2?y. Sec Meteofulogy.

To Haile. v.n. To pour down hail (Isaiah).
Hail. interj. (hoel, heaith, Saxou) A term of sillutation; health (Milton).

To Hail. v. n. (from the noun.) To salutf; to call to (Dryden).

HA'ILSHÖT. s.(hail and shot.) Smail shor scattered like hail (Hayrard).

HA'LLS'IONE. s. (hail and stone.) A par ticle or single ball of hail (Shakspeare).

HALLBizON, a free imperial cown of Suabia, in the duchy of Wirtemburg. It in seased on the Neckar. Lat. 49. 9 N. Lon. 9 15 H.

HAILIN(;), in naval language, the slatation or accosting a ship at a distance, which is ustally performed with a speaking-trumpet: the first exclamation is, "hoa, the ship, "

H A I

hnay," to which she replies " holloa;" then folloiv the requisite questions and replies.

HA'ILY. a. (from hail.) Consisting of hail
HAINAN, a considerable islan: of Asia, belonging to China, to the N . of the gulf of Coclin-China, and to the S . of the province of Catton, from which it is 12 miles distant. It is $t(x)$ miles in circumference. The soil of the \mathcal{N}. part is level; bit in the S.and E. are monatains, among w'ifin are valleys that produce two crops of rice every year. The inhabitunts:ure nov:ly a wild sort of people, and grest cowards, for soChinese will put a thousand of them to Higet. In zeneral, they ane a short and defiermet people, and the colour of their skins is redhsh.

HAINAULT, a province of the Netherlands; boarded on the N. by Brabant, on the N. W. by Flanders, on the W. by Artois, on the S. by Cmbresis, Picardy, and Champagne, ais. J on the E by the territory of Liege, and the county of Namur. It is divided into Austrian Haimault, of which the capital is Alons: and French Hainault, which is incladed in the departmeat of the North.

Hainault, a forest of Essex, lying to the S. E. of Fiping Forest, and supposed to be so cailed from onve of the deer, with which it was stock-1, having been brought from the province of the sane name io the Netherlands. Inthis forest is a ceiebrated onk, known through miny centurics by the name of Fairlop. Beneath its sitade, which overspreads an arca of $3(0)$ reet in circuit, an anntal fair has been loner held on the esed of Jule.
H.MIR. Pili. Capilli The hairs of the human body are thin, clatic, dry filments, arising from the skin. They consist of the Ifull, situated moder the skin, whicn is a vascular and nervous vesicle: and a $t r$ nnt, which perforates the skin and cuticle, and is covered with a peculiar vagina. The colour of hair varies; its seat, however, is in the medullary juice. The hair, according to its situation, is difarently named; thus, on the head it is called capill! ; over the cues, supercilia; cilia, on the marain of the cyclids; ri/rissa, in the foramina of the nostrils; pili auriculares, in the external auditory prissage. mystar, on the upper lip; and larla, on the lower jow.

As tor the hair of the beard, the Romans for a long time wore it without shaving or cuting, and the time is not exactly known when they began to do it. Titus Livius seems to tell us, that this custom was in use from the year.3if; for, speaking of Manlius Capitolinus who was taken prisoner, he relates that "the greatest part of the prople being troubled at his imprisonment, changed their clothes, and let their beards and hair grow." If this were so, then we may infer that out of times of mourning they had their harr cut and their beards sl:aved.

Nevertheless Varro speaks clearly, that the first barbers came out of Sicily to Rome in the year 454, and that a man called Ticinius Menas brought thein. From that time the young men began to have their beards cut, and

HAI

hair, till they came to be 49 years old; but it was not allowed to be done above that age, savs Pliny. Scipio Africanus had himself shiaved all his days, and Augustus did the same in inntation of him.

The young men did not begin to shave themselves till they were twenty or twentyone years of are, as did Nero and Caligula; but Augustus did not do it till he was twenty-five sears old.

The day wherein they were shaved the first time was a day of rejoicing, and they were carcful to put the hair of their beasd inth a silver or gold box, and make an oflerino of it tosone gend, particularly to. Jupiter Capituliaus, as Nero did, according to the testimony of Suetonius.

Only the philosophers let their beards grow, and wore them very lony, without cuting, or shaving.

Halr as an ormament, or as an ensign of dignity or of religion. By the Jews !avir was worn naturally long, just as it grew; but the priests had thicirs cut every fortnignt, white they were in waiting at the temple; they made use of no razurs, however, but scissars only. The Nazarites, while their yow continucd, were forbidden to touch their heads with a mazor. Sce Nazarite.

The failing of the hair, or a chaige of its colour, was regarded amongst the Hebrews as a sign of the leprosy. Black hair was esteemed by them as the most becautiful. Absalon's bair was cut onec a year, and is suid to have weighed 200 ?slickels, by the king's weight, which is about 31 ounces. The law of God hath left no partcular ordinances with regard to the hair.

The hair of both Jewish and Grecian women engaged a priacipal share of their attention, and the Ronam ladies seem to have been no lees curions with respect to theirs. They eqenerally wore it long, and dressed it in a varicty of ways, ormamenting it with gold, silver, pearls, \&ic. On the contrary, the men amonest the Greeks and Romans, and amongst the later Jews, wore their hair short, as may be collected from Lxooks, medals, statues, \&c. This formed a principal distinction in dress betwixt the sexce. This observation illustrates 2 passuce in 1 Cor. xi. 14, 15. St. Patal forhids the Corinthian women, when praying by divine inspiration, to have their hair dishevelied; probably because this made them recmbie the heathen priestesses, when actuated ty the pretended influence of their gods.
It was estecmed a notable tronour among the ancient Gauls to have long hair, and hence came the appellation Gallia comata. For this rason Julius Cxsar, upon subduing the Gauls, made then cut off their hair as a token of submission. It was with a view to this, that such as afterwards quitted the world to go and live in cloisters procured their hair to be shaven off; to show that they bid adieu to all carthly ornanents, and made a vow of perpetual subjection to their superiors.
'The French historians and_antiquaries have

HAIR.

been very exact in recording particulars of the hair of their several kings. Charlemague wore it very shurt, his son shorter; Charles the Bald had anme at all. Under Hugh Capet it began to appear again; this the ecclesiastics took in dudgeon, ani excomamuicated all who let their hair grow. Piter Lombard expest nlated the matter so wamly with Charles the Young, that he cut off his hair: and his succesors for same generations wore it very short. A protessor of Uitrecht, in 1600, wrote expresly on the quastion, Whether it be lawfulfor inen to wear long hair? and cuncluded for the negative. Another divine, named Reves, who had written for the affirmative, replied to him.

The ancient Bitons were extremely prond of the length and beaty of their hair, and were at much pains in dres-ing and adorning their heads. Some of them carried their fondness for and admiration of thar bi.ir to an extravazant he ght. It is said to have been the last and most carnest request of a youne warrior, who was taken prisoner and condcmed to be beheaded, that no slave might be permitted to touch his hair, which was remarkably long and beau:in, and that it might not be stained with his bluond. We hardly ever mect wih a description of a fine wonnm or beaatiful man, in the poems of Ossian, but their hair is mentioned as one of their greatest beauties. Not contented with the natural colour of their hair, which was commouly fair or veliow, they made use of certain washes to render it still brizhter. One of these washes was a compusition of lime, the ashes of certain regetables, and tallow. They made use of various arts aloo to make the niair of their heads grow thick aid long; which lase was not ouly esteenacd a great beaiuy, hut was considered as a mark of dignity and noble birth. Boadicea queen of the leeni is described by Dio with very bonk hair, flowing over her shoulders, and reachi.g down below the middle of her back. The Britons shaved all their beards, except their upper lips; the hair of which they, as well as the Gauls, allowed to grow to a very inconvenient lnoigth.
The Greeks and Romans often wore false hair.

Hair has not escaped the researches of modern chemistry; it has been examined by Hatchett, Berthollet, and others: from the analysis of it by Vauquelin it appears to be formed of nine different substances, viz.

1. An animal matter, which constitutes the greater part.
2. A white concrete oil in small quantity.
3. Another oil, of a darkish green culour, more abundant than the former.
4. Iron, the state of which in the hair is uncertain.
5. A few particles of oxyd of manganese.
6. Phosphat of lime.
7. Very snall quantity of carbonat of lime.
8. Silex in a conspicuous quantity.
9. A considerable quantity of sulphur. The hair from which these results were obtained
was black; but it appears from similar experiments that red hair differs from black only in containiag a red oil, instead of a dark-coloured one; and that white hair differs from both these only in the oil being nearly colvurless, and in containine phosphat of magnesia, which the others do not. Carroty and flaxen hair will be occasioned by a red or yellow oil, which, when cerpest, and mixed with a small quantity of brown oil, produces the dark red hair. And so for other coluer- and shades, which vary with the colour of the contained oil. To this oily matter Vauquelin projerly atuributes the supple.css, elasticing, and other propertics of the hair, especially those which occasion it to burn so rapiuily, and to form soap with alkalies. The arrunal matter first mentioned in the above enumeration appars to bear a very exact resemblance to that which plys ciologists have designated by the name of mucus.
HAIR, in commerce, constitutes a very considerible article, espectially since the fidhion of wearing wigs has pretailed among all ranks, and has lateiy ben extende! to both sexes. The hair of this and other northern countries is preferred to that of the southern climates of luily, France, Sic. She chief quality of hair consists in is being vell.fed, as it is termed by hair. ${ }^{2}$ ressers, so that in be neither two coarse nor too slender. Hence thick hair is las siss ceptible of the artificial curl, and is cisposed to frizzle; but, if it be too delicate, "t will retain the curl only for a short time. The length of good hair is usually estimated at 95 inches; and, in proportion as it is shorter, it becomes less valuable. There appears to be no stated price for this anticle; as, according to its quality, it is sold at from js. to si. per nunce: it pays, wh:n impoited, a duty of 2s. 1_{2} ? ; ;er 1 b . With respect to the various operations which hair uncerroes previou iy to being manufactured into wigs, we trus: the reader will excuse our silence.
The hair of beavers, hares, and nther animals, is used in various manafa tures, especialiy that of hits, of which they constitute the principal material.
If the refuse of the short hair of hides be scatered on arable land, and left there to putrify, it proves one of the most fertilizing and dur:ble manures.
Hair (Horse), likewise forms aconsiderable article of trade; it pays on importation a duty of about 11d. per lb . and is parly employed for weaving the covers of the seats of chairs, sofas, \&ic. but principally for the stufli:g of bolsters and inattrasses. For the last mentioned purposes, the hair is previously baked, and. in that state, forms one of the most elastic couches, which is incomparably superior to the softest, but enervating, feather-beds.
Hair, in the manage, and among farriers, is popularly called the coat, and makes an object of principal consideration in respect of horses, \&c.

If the hair of a horse, especially that about the neck, and parts uncovered, be sleek and

H A I

smooth, and close, it is an inaication of his being in health, and good case: if rough and staring, or any way discoloured, it denotes a cotlincess, poverty, or some inward defect. To make the hair smooth, sleek, and soft, he must be hept warm, swcated often, and when sweated, the coat must be well scraped, and subbed down.

Hair-cloths, in military affairs, are large pieces of cloth mate with horse hair. They are used for covering the powder in wagens, or upon baterics; as aiso for covering charged bonibs or hand grenaies, and many other uses in magazines.

Haik-powder is generally prepared from starch, which, afier being thoroughly dried, is ground and passed through the finest sieves. In its pure state, it shoula ve perfectly white, and possess no s:nell. But in order to conceal hase adul'erations, or to please the votaries of the toilette, perfumers studv the art of communicaties to it various artucial oiours from swect-scutid flowers, such as violets, jessamiacs, Sic.
Dr. Darwin observes, that alum is sometimes used in the manufacture of hair-powder; aud we understand from creditable persons, that even lime is frequently mixed with fine tlour: it is thereiore not surprising that so mang persons wno cirploy hair-dressers display bald heads, aad are under the necessity of wearning wigs; but, if the latter were aware of the injury they inflict on themselves by whaling such pernicious substances, in eonsequence of which n -:v who excreise that tratle pine away of pulmonary complaints, they would never use any other but enenvine powder. And though conimon fla, is is not in itself pernicious, when used as a substitute for hair-powder, yet by the mucilage it sonums the hatr is apt to be cahed to ectiser when the head is sensibly perspiring, or is accidenally wetted by a shower of rain ; an effect which may be irequenily noticed in a whole regiment of solliers. Hair-powider pais, on importation, the prohibitory duty of s / l. 16 is. 2 2! d. per cwt.

Those pursons who carnot be dissuaded from the ure of artificial means to strengthen hair injured by the above or other oauses, may with safety employ a mixture consisting of equal parts of olive oil and spirits of rosemary, to which may be added a fee drops of oil of nutney. If the hair be rubbed every night with a little of this liniment, and the proportion be very gradually increased, it will answer every purpose to be attained by those boasted preparations which are sold by empirics.

Hair-salt, in orgetology. See Alumen.
Hair-worm, in helminthology. See

Gordius.

HA'IRBRAINED. a. (rather harelrained.) Wifd, irregular (Shakspeare).
HA'IRBREADTH. s. A very small distange, athe diameter of a hair (Judges).

H \leq ! RCLOTH. s. Stuff made of hair, very mugh.and prickly, worn sometimes in mortification (Grew).

HAL

HA'IRINESS. s. The state of being covered with hair, or abounding with hair.
HAlRLA'CE. s. The nillet with which the women ue up their hair (Siwifl).
HA'IRLESS. a. Wamting hair (Shatspaite).

HA'IRY. a. (from hair.) 1. Overgrown with inair (Shahspeare). 2. Consisting of hatr (Dryden).
HaliE, in ichchyology. See Gadus and Blennies.

HAKLLIT (Richard), an English writer, born in Herefordshise, atbout 1553, and educated at Westmiuster schaol, from whence he was removed io Christ-church college, Oxiord. He ditingnished himeself by his skili in cosmography, aind published a curious collection of Voyajes, in 3 vols. folio. He was in orders, and in i60s was made a prebendary of Westminster, which, with the living of Wetheringset in Sufiolk, was all the church preferment he ever obtained. He died in 1614 . His faithful countrymen, out of respect to his labours, named a promontory, lying in 80 degrees of N . latitude, on the coast of Greculand, Hakluyt's hearlland. (Walhins).

HAL, in local names, is derived like al from the Saxon healle, i. e. a hall (Gilson).
HA'LBERDIER. s. One who is armed with a halberd.

HALBERSTADT, a handome town of German!, in the circle of Lower Sayony, and capital of a principality of the same name. It was tormerly capital of the biehopric of Halberstadt, now secularized. The cathedral is a superb, structure, with a fine peal of bells; and there are two regular abbeys within the town, and one without. There are also two nu:tieries. Thie Jews are tolcrated inere, and carry on a great trade. Lat. 52.6 N . Lon. 11 . 24 E .

Hillbert, or Halbard, in the art of war, a well-known weapun, carried by the sergeauts of marching regiments. It is a sort of spear, the shaft of which is about five feet long, and made of ash or other wood. Its head is armed with a steel point, not unlike the point of a two-edged sword. But, besides this sharp point which is in a line with the shaft, there is a cross piece of steel, flat and pointed at both ends; but genterally with a cutting edge at one extreanity, and a bent sharp point at the other; so that it serves equally to cut down or to push withal. It is also useful in determining the ground between the ranks, and adjusting the files of a battalion. The word is formed of the German hul, hall, and lard, an hatchet. Vossius derives it from the German hallel uert; of hel, clarus, splendens, and l-part, ax. The halbert was anciently a common weapon in the arny, where there were companies of halberdiers.

Halbert-shaped, in botang. See Hastate.

HALCYON, a name given by the ancients to the alcello, or kingtisher. See Alcedo.

Halcyondays, in antiquity, a namegiven to seren days before and as many after the
winter solstice ; by reason the halegon, inrited by the caluness of the weather, laidits regs in nests buit in the rocks, close by the brink of th. sea, at this season. Hence the term is now frempentiy used for days of peace and tranquillisy; and the word hateyon is often used ats an alice:ive, signilying placid, quict, still, or pectil.

HALDENSTEIN, a free and independent banony of the country of the Grisons. It consists of a suall semicirentar plain, which lies between the Rhine and the foot of Mount Calendar, about hive miles in length, and scarcely one in brearth. It occupies aliso part of the mountain, which is so steep as not to be inhabited. I: contains only two villages, Haldenstein and Sewils; and the whole number of the baron's suljicte does not excecd 400 .

HALE(Sir Mathew), an excellent English judxe, was born at Aldersley in Gloucestershire, in lico, and elucated at Magdalen-hall, Oxford, from whence he removed to Lincoln'sinn, where he followed the study of the law with great application, and though he had been before of a gy turn, he now became as grave and religinus. He was one of archbishop Land's comsel, and acted in the same capacity to several other illustrions sufferers in the great rebellion, and even for the king himself. Howeser he took the covenant and engagement, and accepted of a judze's place in the common-bench from Cromwell. On the death of Oliver, he refused to act under his son Richard, and even retused the mnurning which was sent to hin on the occision. In the parliament which recalled the king, he sat as knight of the shire for his native county; and soon after the restoration, which he had greatly promoted, he was made chief baron of the exchequer, in which place he continned eleven years, and was then advanced to the chief justice h hip of the king's-bench. In 1675 he resigned his oflice, and died a few inoriths afterwards. His remains were interred in the church-yard of Aldersley. II was twice marsied, and had by his tirst wife ten children. Sir Mathew was a very learned man, a sound lawyer, an upright judge, and an excmplary christian. His writings are numerous on theological, philosophical, and legal subjects. The best known of his works are; 1. The primitive Origiation of Mankind considered and explained according to the Light of Nature, \&c. folio. 2. The Inistory of the Pleas of the Crown, folio. 3. The original Institution, Power, and Jurisdiction of Parliaments. 4. Contemplations, Moral and Divine, three vols. 8 vo . The inflexible integrity with which this great man acted as a judge, will be seen from the following. A noted peer went once to his chamber and told him, "That having a suit in law to be tried before him, he was then to aequaint him with it, that he might the better understand it when it should come to be tried in court." Upon which the lord chief baron interrupted him, and said," He did not deal fairly to come to his chambers about such affails; for he never received information of
such causes but in open court, where hoth partues were to be heard alike." Upon when his grace (fior it was a dike) went duay not a lite dissatisfied, and conjpratued of it to the king as a rudeness that was not to te empured: but his majesty bid hinı content himseit that he was used no worse; and said, "That he verily believed he would have used him no better if he had gone to solicit him in any of his owa cances." Another remarkable incident happened in one of his circuis. A genticman who had a trial at the assuzts had sent hima buck tor his table. When julge Hale therefore heard his name, he asked "it he was not the same person who had sent him the renison?" and finding that he was the same, wild him, that " he c:uld not sutier the trial to σ on till he had paid him for his buck." Thie gentleman answered, that " he never sold his venisnn; and that he had done nothing to him which he did not do to every judge who had gone that circuit:" which was confirmed by several gentemen present. The lord chisf baron, lowever, would not suffer the trial to proceed till he had paid for the present : upon which the gentleman withdrew the record.

Hale. a. Healthy; sound; hearty (Spens.).
To Hale.v.a. (halen, Dutch.) To drag by furce; to pull violently and rudely (Brourn).

HA'LER. s. (from hale.) He who pulls and hales.

HALES (John), commonly called the " ever memorable," was born at Bath in 1584, and educated at Corpus Christiconlle-, Ox ford, from whence he removed to Merion on being elected to a fellowship. In 1613 he was admitted a follow of E:mo collese, and in 1618 he attended sir Dudley Carleton, am:taseador to Holland, as his chaplain. While these he wa- present at the synod of Dordt, an account of which he wrote to his patron in a series of letters, which are printed in his Remains. In 1638 archbishop Land appointed tim his chaplain, and procured for him a catirery of Windoor. He suffered rieat hardsbies ia the great rcheilion, and was almons reducil to the want of liread. He died in ! $6: 56$. He w?a man of great learsing and skill in argument. as appears from his work;, which have beca several times printed.

Hales (Steplen), an eminent divine and philompher, was born in Kent in 1677, and brought up at Benedict-colise, Cambrisze. where he was elected fellow in 1700 j . He timk great pains in the study of botauv and experimental philosophy, which by his means trecame fashionable pursuits at Cambridze. He also invented a machine for demonstrating the motions of the planets, which was nearly similur to what was afterwards called the orrers.

In Marrh 1718, he was elected a fellow of the Royal Society, and scon after receival the thanks of the society for his exertions in the cause of science: indeed he was one of the most active members that celebrated snciety ever had. In 1741 he published his inventwa of rentilators; which he afterwards greatly improved, and applied to many useful purposse.

In 1752, on the death of sir Hans Sloane, hé was elected a neember of the Academy of Sciences at Paris in his room. He was a man of a very modest and humble deportment; contenting himself with the rectory of Teddington, near Hampton-court; not would he ever accept higher dignities when they were sendered to him. He was greatly esteenied by Frederic prince of Wales, and was almoner to the princess. He died in 1751. His communicatious to the Philosophical Transactions were numerous and valuable; besides these he published two volumes of Statical Essays.
HALE'SIA, in botany, a genus of the class dodecandria, order monogynia. Calyx fourrowthed, superior corol ; finur-cleft; nut fourangled, two-seded. Two specics, indigenous hertbs of Carolina.
HALES-OWEN, a town in Shropshire, inellosed by Worcestershire, six miles E. of Stourbridge. The poet Shenstone was born and buried here; and near it is the much admired seat of Lesowes, in the decotation of which his whole fortunc was spent.
HALESWORTH, a town in Suffolk, with a market on Tuestiays. It has a trade in linen yarn and sailcloch; and about it much lentp is raised. Lai. 52.25 N , Lon. 1.40 E .
HALF. s. plural halves (healf, Saxon.) I. A moiety; one part of two; an equal part (Ben Jonson). 8. It somectimes hay a plural signification when a number is divided.
Halp. ad. In part; equally (Dryden).
Halp-1lood. s. One not born of the same father and mother (Locke).

Half-blooded: a. Mean; degenerate (Shakspeare).
Half-picep. a. Showing ooly part of the face (Shatispeare).

Halp-heard. a. Imperfectly heard (Pope).
Half-moon. s. 1. The nmon in its appearance when at half increase or decrease. 2. Any thing in the figure of a half-moon.

HALF-MOON, ii fortification, an. uutwork tompnsed of two faces, forming a saliant angle, whose gorge is in form of a crescent, or halfnooon : whence the name.
Halp-pencr. s. plural half-pence. A copper coin, of which two make a penny.
Halr-pixe.s. The small pike catried by officers (Tatler).

Halp-sbas ovrr. A proverbial expression for any one far adranced. It is conmonly used of one half-drunk (Dryden).
Halp-sphere. o. Hemisyphere (Ben Jonion).
Halp-gtrained. a. Half-bred; imperfect (Dryden).
Half-sword. s. Close fight (Shakopeare).
Halp-way. ad. In the midde (Granville).
halp.wit. s. A blockhead; a foolish Qllow (Drydek).
Ha'LIBUT.s. A sort of fish. See
Halibut island, an island in the N. Paeific Ocrair so mamed by captain Cook in his VOL. \mathbf{V}
last rotyige, on account of the number of fislt of that name they caught there, soine of which weighed upward of a hundred pounds, and none less than twenty. It is seven leagues in circumference, and very low and barren. Lat. 54.48 N . Inn. 184.15 W .

HALICARNASSUS, in ancient zeography; 2 principal town of Caria; said to be built by the Argives; and situated betwecn two bays, the Ceramicus and Jasius. It was the royal residence (called Zephyra formerly), especially of Mausolus, made more illustrious by his monument.
HALICACABUS. (n nsxasuefos, froin ato, tho sea, and raxe6o;, night-shade ; so called because it grows upon the banks of the sea.) See AL: abrengi.
HALIFTUS, in ornithology. See Falco.
HAlifix, a town of Nova Scotia, in North America, on Chebucto Bay. It has a good harbour, laree and safe enough to shelter a squadron of ships throughout the winter. The town has an entrenchment, and is strength: ened with frits of timber. Lat. $44.45^{\circ} \mathrm{N}$. Lon. 63.30 W .
Halifax, a handsome town in the west riding of Yorkshire, with a market on Saturday. It is finely seated in a hilly country, of rather dificicult access, but full of peoples It is the great market for stuffs, such as shallionis, calamancos, ererlastings, \&ce. It has a large market-howice, called the New Piece Hall, as well as various others for particular goods. It is a tery large parish, and contains twelve chapels of ease, 1973 houses, and 8886 inhabitants. Lat. 33.45 N . Lon. 1.45 W .

HA'LIMASS. s. (haliz and muss.) The feast of All-Siains (Shakspeare).
HALIOTIS. Sea ear. In zonlogy, a genus of the class vermes, order testacea. Aniunal a limax : shell univalve, dilated, ear-shaped, with a longitudinal row of orifices along the surface: spire lateral and nearly conccaled. Nineten species; scattered through the seas of the diffierent quarters of the globe. The following are the chief.

1. H. mida. Midas eat. Shell roundish; both sides polished: thick within rich pearlcolour; the outside with longitudinal undulate wrinkies, dirty green, and generilly coi vered with marine substances. From eight to ten orifices. Inhabits the Indian Ocean and around the Cape; from seren to wine inches long.
2. H. asinum. Assee ear. Shell smoothish, oblong, with a somewhat falcated margin, and elevated nerves on the outside, varied with green and brown; the inside green nacrenus; orifices elevated about thirty, of which from five to seren are open : all the strix are granulate near the spire, and ofien dotied with red. Inhabits India : hardly three inches long.
3. H: tuberculata. Shell suborate, the outsside transversely grooved, rugged, and tuberculate. Found on our own coasts: inhabits most seas: from four to five inches long.
4. H. iris. Shell ventricose, fulvid-brown, with transerse wrinkles and longitudinal tuben H H

HAL

Tose phaits: the under-side shining with change: able iridescent colours: four and a half inches long. Inhabits New Lealand: extremely sare and valuable.

HA'LITLOUS. a. (halitus, Lat.) Vaporous ; fumous (Boyle).
HA'LITUS, in physiology, breath, aura, vapour, or cass. Sec Giass.
halitz, a town of Poland, in Red Russia, with a castle. Since 1773 it has belunged to the emperor, and is included in the new kingtom of Galicia. Lat. 49. 20 N . Lon. 2.). It E.

HALLL, in architecture, a large room at the entrance of a fine house and palace. Vitruvius mentions three kinds of halls; the tetrastyle, with four columns supporting the platfond or seiling; the Coririthian, with columns all round let into the wall, and vaulted over; and the Egyptian, which had a peristyle of insulated Corinthian columns, bearing a second order with a ceiling. The hall is properly the finest as well as first member of an apartment: and in the houses of ministers of state, magistrates, \&ic. is the place where they despateh business, and give audience. In very magnificent buildings, where the hall is larger aid loftier than orditary, and placed in the nuiddle of the house, it is called a saloon.

Hall is also particularly used for a court of justice ; or an cditice wherein there is oue or more tritunals. In Westmiuster-hall are hekd the great courts of England, viz. the king'sbencl, chancery, common-pleas, and exchequer. In adjoining apartanents is likewise held the high court of parliament. Westmin-ster-hall-was the reyal palace or place of residence of our ancient kings; who ordinarily .held their parliaments and courts of judicature in their dwelling-houses (as is still done by the hings of Spain), and frequently sat in person in the courts of judicature, as they still do in parliament. This hall is reckoned superior in di;mensions to any in Europe; being 300 feet long, and 100 broad.

Hall (Joseph), a celebrated English pre:late, was born in 1574, at Ashby-de-la Zouch :in Leicestershires and educated at Emanuel.collcege, Cambridge, where he obtained a fel-- kovship. In $1: 97$ he publizhed his Virgide-- miarum, or Satires, in six books, which were reprinted in Oxford in 1753. Ahout 1603 he was presented to the rectory of Halstead in Sutiolk, which he resigned on obtaining Wal-- than Holy-Cross in Esex. Through the -friemdhip of kord Denny he was made chaplain to Ienry prince of Wales, who had a -great regard wior him. In 1010 he obtained the danery of Worcester, and two sears after he awa appointed one of the divines at the syund of Dorile, from which, luwever, he was obliged wo return on account of illaess. In 1627 .he was promoted to the bishopric of Exeter, - fr ${ }^{\text {in }}$ whence in $16+1$ he was translated t Norwich. Thiis pious and moderate prelate waa sadly used by the puritanical party at the emmencement of the civil war; and in $16+7$ ihe retired to a small, estate which he had near

H A L

Norwich, and died there in 1656. Being at euemy to burying in ehurches, he directod thas his body should be interred in the church-yard. His works have been collected into three rolumes folio. They abound in fine thoughts, expressed in excellent language. His Meditations on the Histories of the Old and New Testament have been modernized by Mr. Glase of Hanwell, and published in four volumes 12no.
HALLAGE, a fee or toll paid for cloth brought to be sold in Blackwell-hall, London.
HÂLLAMAS, the day of All-Hallows, or All-Saints, viz. November 1.

HALLAND, a province of Gothland, in Sweden, on the W. coast of that kingiom. It is 60 miles along the coast, but not abore is in breadth. Halustadt is the capital.
hallatun, a town of Leicestershire, with a narket on Thursdays. Lat. 52.32 N Lon. 0.50 E.
halle, a dismantled town of Hainault, in the Ausfrian Netherlands. Lat. 50. io N. Lon. 4. 20 E .
Halle, a considerable town of Magdeburg, in Upper Saxony. It is the seat of an university. Lat. $51 . \dot{\circ} 6 \mathrm{~N}$. Lon. 12.8 E .

Halle, a town of Suabia, in Germany. Lat. 49. 90 N. Lon. 9. 52 E.

Halle, a town of Germany, in Tyrod. Lat. 47. 12 N. Lon. 11.33 E.

HALLEIN, a town of Germany, in the archbishopric of Salizburg; seated on the river Saltza, ainong the mountains, wherein are mines of salt, which are the chief riches of the town and country. Lat, 47.33 N. Lon. 13. 12 E.

HALLELUJAH, a term of rejoicing, sometimes sung, or rehearsed, at the end af verses. The word is formed of two Hebrew words joined together : one of then ther, hatlelu, and the other r jall; an abridgment of the name of God, mo Jehovah. The first sznifies laudate, praise ye; and the other $D_{\text {cmisi- }}$ num, the Lord.

St. Austin says, that in some churches it was sung only on Easter-day, and the fifty cars of Pentecost ; but that it \mathbf{n} as never used duing the time of Lent. St. Jerome informs us in his epitaph of Fabiola, that it was commonily sung at funerali, and speaks of the whole muititude joining in the hallelujah, and makne the golden roof of the church shake with the peal of the chorus.

Hali.ER (Albert Vmm, a celebratel physician and poet, was born at Berne in Swilzerland, and obtained the professorship of medieine at Gottingen. He greatly inproved the nedical science: his Elementa Physiologia, and Bithlioticea Medicina, will afford to the latest posterity underiable proofs of his indefatizable industry; penétrating genius, and solid judgenent. He also wrote elegantly as a monlist, and as a poet : and he was not more eminent for his literary attaiuments than for tho piety to God, and his benetolence to his fellow--creatures. He died in $1 / 77$, aged 75 years.

HALLE'RIA. Fly boney-suckle. In bo

Cany, a genus of the class didynamia, order an: giospermia. Calyx three or four-leaved; corul four-cleft; berry superior, two-celled, manyseeded. Two species; natives of the Cape; one of them with a wooly stem, ever-green leaves, solitary red flowers: the other herbaceous.

HALLEY (Edmund), a famous English astronomer, was born in Iondon in 1656 , and educated at St. Paul's school, from whence he was sent to Queen's-colleze, Oxford, where he chiefly applied himself to the mathematics, particularly astronomy. He made a great number of accurate observations, and having formed the design of completing the scheme of the heavens by the addition of the stars near the south pole, he went to St. Helena in 1676, and completed his catalogue, which at his return he presented to king Charles II. who gave hin a mandamus to the university of Oxford for the degree of M.A. At the same time he was chosen a fellow of the Royal Society. In 1679 he went to Dantzic to confer with Hevelius about the dispute between him and Dr. Hooke, respecting the preference of plain or glass sights in astronomical instruments. In 1680 appeared the great comet which Mr. Halley first observed in his passage from Dover to Calais. He afterwards completed his observations upon it at the Royal Observatory at Paris. From thence he went to Italy with his odd schoolfellow, the famous Mr. Robert Nelson, and in 1681 he returned to England. He sull continued his favourite pursuit, and so highly were his abilities appreciated, that Mr. Newton committed to his care, in 1686, the publication of his imuortal Principia, to which Mr. Halley prefixed a copy of verses in Latin. In 1698 he was appointed captain of a ship, sent out by king William for the express purpose of establishing the theory of the variation of the compass, which our author had advanced in 1633. He made another voyage on the eame design the following year, and returned to England in September, 1700 , and from his observations in these voyages he was enabled to publish his Geateral Chart, shewing at one view the variation of the compass in all those seas where the English navigators were acquainted. He was sent out again on a third , voyage to ascertain the course of the tides in every part of the British Cliannel, of which, in 1709, be published a large chart. Soon dafter he went, at the request of the emperor of Germany, to view the Adriatic seas, for the ,purpose of exaunining two ports which the empermer intended erecting there. He returned in 1703, and had the degree of LL.D. conferred pn him by the university of Oxford. He was elso appointed professor of geometry, and had a matain's half pay settled on him. In 1713 he was chosen secretary to the Royal Society, and n 1719 appointed astronomer-royal. He died n 1742. Dr. Halley published several papers n the Philosoptrical Transactions, a set of Ayronomical Tables, and an edition of Apollolius's Works in folio, in 1710.
Although. the doctor was in his sixty-fourth

HAL

year when-he entered upon his office at Green s: wich, yet he enjoyed such a course of uninteri rupted health and strength, that he was enabledto watch the heavens with the closest attention fur eighteen years, hardly ever missing an cb. servalion all that time, but, without any as. sistant, performing the whole business of the observatory himself. During this period he made a more complete series of observations: upon the moon during a whole revolution of the line of her nodes, than had ever before, been obtained; which happily led to the per-. feeting and establishing Newton's theory of the motion of that body. Indeed Dr. Halley's exertions in the service of astronomy have all been of the most important nature, and will cause his name to be remembered with gratitude and respect, so long as that sublime science continnes to be admired and cultivated.

Haleey's Quadrant. See QuaDRANT.

Ha'LLIA, in botany, a gernus of the class diadelphia, decandria. Calyx five-parted, regular; legume one-seeded, two-valved. Eighs species ; all natives of India or the Cape, generally with ycllow or violet flowers.

HALLIARDS, the ropes or tackles usually employed to hoist or lower any sail upon ito respective mast or stay. See Jears.

HA'LLOO. interj. (allons, let us ga! Fr.) A word of encouragement when dogi are let loose on the game (Dryden).

To Ha'lloo. v. n. (haler, French.) 1. To cry as after the dogs (Shakispeare). 2. 'To treat as in conteinpt (Sidncy).

To Hálloo. v. a. 1. To encourage with shouts (Prior). 2. 'Io chase with shouts (Shakspeare). 3. To call or shout to (Shakspeare).

Tu H A'LLOW. v. a. (halzıan, halız, Sax.) 1. To consecrate; to make holy (Horker). 2. To reverence as holy: as hallowed be thy name.

HALLUCINATION. s. (ina.iucinatio. Lat.) Errour; blunder; mistake; folly; depraved innagination (Addison).

HALM. s. (healm, Saxon.) Straw.
HALMOTE, or Halimote, is the same with what we now call a court-baron, the word implying a meeting of the tenints of the same hall or nator. The name is still retained at Luston, and otber places in Herefordshire.

HALMSTADT, a strong seaport of Sweden, capital of Halland. Lat. 56.39 N. Lon. 12 : 48 E.

HALO, in physiology, a meteor in form of a luminous ring or circle, of various colvurs, appearing round the bo:lies of the sun, moon, planers, or fixed stars. The word is formed of the Greek ainos, or ainct, area. That round the moon is the most usual, and is also called co. rona, or crown.
The most considerable and generally received theory relating to the generation of Halos is that of Mr. I uygens. This celebrated author supposes Halos, or circles round the sun, to be formed by small round grains of hail, composed of two different parts, the one of which is

HH:

HAL

transparent, inclosing the other, which is opraque; which is the general structure actually oliserved in hail. He farther supposes, that the grains or giobules, that form these Halos, consisted at first of soft snow, and that they have been rounded by a continual agitation in the air, and thawed on their outside by the heat of the sun, xic. And he illustrates his ideas of their formation by geometrical figures.

Mr. Weidler endeavours to refute Huygens's manner of acounting tor Halos, by a vast number of small vapours, each with a snowy nucleus, coated round with a transparent covering. He says, that when the sen paints its image in the atmospinere, and by the force of its tiys puts the vapours in motion, and drives them toward the surface, till they are collected in such a quantity, and at such a distance from the sun on each side, that its rays are twice refracted, and twice reflected; when they reach the ese they exhibit the appearance of a Halo, adorned with the colours of the rainbow; which moy happen in globolar pellucid vapours without snowy nuclei, as appears by the experiment of hollow glass spheres filled with water: therefore, whenever those spherical vapours are situated as before-mentioned, the refractions and refiections will happen every where aline, and the figure of a circular crown, with the usual order of colours, will be the consequence. Philos. 'Trans. Number 458.

Newton's theory of Halos may be seen in his Optics, p. 155. And this curious theory was confirmed by actual observation in June 1692, when the author saw by reflection, in a vessel of stagnated water, three Halos, crowns, or rings of colours, about the sun, like three little rainhows concentric to his body. These crowns inclosed one another immediately, so that their colours proceeded in this continual order from the sun outward: blue, white, red; purple, blue, grcen, pale sellow, and red; pale blue, pale red. The like crowns sometimes appear about the moon. The more equal the globulcs of water or ice are on one another, the more crowns of colours will appear, and the colours will be the more livels. Optics, p. 288.
'There are several ways of exhibiting phanomena simitar to the e. The flame of a candle, placed in the anidat of a steam in cold weather, orplaced at the distance of some feet from a glas window that has been breathed upon, while the apectator is also at the distance of some feet from annther part of the window, or placed behind a glass receirer, when air is adnitted into the vacuum within it to a certain doncite, in each of these rircumstances it will appear to be encompassed by a coloured IHalo. Alo, a quantity of water being thrown up againt the sum, as it breaks and disperses into cirope, forms a kind of Haln ot iris, exhibiting the colours of the natural rainlow. Musschentiroel: ohersed, that when the glass windows of his roon were covered with a thin plate of ire on the inside, the noon eeen through it was surrounded with a large and varinusily coloured Halo; which, upon opening the vindow, he found arose entirely from
that thin plate of ice, because none was see except through this plate. Musschenbroek concludes his account of coronas with observ. ing, that some density of vapour, or some thichness of the plates of ice, divides the light in its transmission either through the small globules or their interstices, into its separate colours; but what that density is, or what the size of the particles which compcse the vapour, he does not pretend to determine. Introd. ad Phil. Nat. p. 1037.

It has often been observed that a Halo abmit the sun or moon does not appear circular and concentric to the luminary, but oval and excentric, with its longest diameter perpordicular to the horizon, and extended from the mons farther downward than upward. Dr. Sinith ascribes this phenomenon to the apparent concave of the sty beink less than a hemisphere. When the angie which the diameter of a Halo subtends at the eye is $4 j^{\circ}$ or 46°, and the bottont of the Halo is near the horizon, and conseguently its apparent figure is most oval, the apparent rertical diameter is divided by the moon in the proportion of about 2103 or 4 , and is to the horizontal diameter drawn throuch the monn, as 4 to 3 , nearly. See farther on the subject of this article, Priestley's Hist. of Discoveries relating to Vision, p. $596-613$; and Smith's Optics, art. 107, 513, 526, 597. $\& 5$.

Hazo. (halo, axay.) In anatomy, the red circle surrounding the nipple, which beconies somewhat brown in old people, and is beses with manv sehaceous glands.

HALORA'GIS, in botany, a genus of the class octandria, order tetragynia. Calyx fourleaved, superior; petals four ; drupe dry, inclosing a four-celled nut. One species: as undershrub of New Zealand, branched, with syuare stem ; rough, opposite, ovate-lancro'ite leaves; and triple axillary flowers at the ends of the branches.
HA'LSENING. a. (hale, Germ.) Snundirz harshly: not in use (Curcar).

HA'LSER. s. (from halr, neek, and reel, a rope.) A rope less than a cable.

HAlSTEAl), a town of Essex, with a market on Friday, and a roanufactory of has: and says. Lat. 51.59. N. Lon. 0. 4.5 E .

T'o IHALT. v. n. (healz, Saxun, lame.) 1. To limp; to le lame (Dryden). 2. To step in a march (.1ddison). 3. To hesitate: !n stand dubious (Kings). 4. To fail; w fauker (.Whakisprure).

Halt. a. (from the verb.) Lame; crippled.
Hait. s. (from the verb.) 1. The aci o! limping; the manner of limping. 2. (cite, Fr.) A stop in a march (Millou).
HA'LTER. s. (from halt.) He who limp.
Halter, in the manoge, a headsiall, in which a horse is fastened to the manger whra contined in a stable. Halters are of wo kind. the one prepared of cord, the other of teather, with throat-straps and buckles, nose-bend, ix. which last are called double-reined huntincollars. These are the safest in erery resper. and although the most expensive as first,

H A L

cheapest in the end. Hempen halters are sometimes injurious, in forming swellings, or lacerations, upon the upper part of the head, behind the ears, by the friction of the hardtwisted cord upon a part naturally tender and susceptible. They are, however, now but very little used, except in the stables of inferior inns, and lower farm-houses.

Halter-cast, in the manage, an accident to which horses are constantly liable; but which generally proceeds from the inadvertency of leaving the rein of the halter of too great a length on one side or the other.

It implies an entanglement of the halter about the horse's pastern, in consequence of his endeanouring to rub his neek with his hinder font, during his struggle; to extricate himself from which struggles, the heel is sometimes so terribly excoriated, as to proluce not only a wound of much trouble, but ofiten to leave a vexatious blemish, never to be removed.

To Ha'lter.v. a. (from the noun.) To bind with a cord (Atterloury).

HALTERISTE, in antiquity, a kind of players at discus; denominated froin a peculiar kind of discus called by the Grecks $\kappa \lambda$ rup, and by the Latins halter. See Discus
The halter was of a cylindrical figure, smaller in the middle (where it was held) by one diameter, than at the two ends. It was about a foot long, and there was one for each hand: it was made either of iron, stone, or leard.
halton, or Haulton, i.e. Higí-Tourn, a town of Cheshire, 186 miles from London. It stands on a hill, where a castle was buile anno 1071, and is a member of the duchy of Lancaster; which maintains a large juristiction in the county round it, bo the name of Halton-Fice, or the honour of Halton, having a court of record, prison, \&c. within the:nselves. About Michaelmas every year, the king's officers of the duchy keep a law-day at che castle, whieh still remains a stately building; once a fortuight a court is kept here, to determine all matters within their jurisdiction; but felons and thieves are carried to the sessions at Chester, to receive their sentence. Lit. 53. 2:3 N. Ion. 2. 47 W .

HALVED HEAD. In botany. Dimidiatum capitulum. Hemispherical, or resembling half a head: round on one side and flat on the uther. A halved spathe: investing the fructification on one side only. A halved involucre: placed wholly on oue side: as in Ethusa.

To HALVE. v. a. (from half, halves.) To divide into two parts.

HALVES. interj. (from half.) An expresgion by which any one lays claim to an equal share.

HALYS, in ancient gengraphy, the noblest siver of the Hither Asia, through which it had a long course, was the boundary of Croesus's kingdom to the east. Running down from the foot of mount Taurus, through Cataonia and Cappadocia, it divided almost the whole of the Lower Asia, from the sea of Cyprus down to the Euxine, according to Herodo-

HAM

tus ; who seems to extend its course too far. According to Strabo, himself a Cappadocian, it had is springs in the Great Cappadocia.
HAM, a Saxon word used for a place of dunelling; a village or town: hence the termination of some of our cowns, Nottinghain, Buckingham, \&c. Also a home close, or little narrow meadow, is called a ham.
HAM, is also a part of the leg of an animal; being the inner or hind part of the knee, or the ply or angle in which the log and thigh, .when bent, incline to each other. See Hock and Hough.

HAM, in commerce, the thigh of a hog or bear, dried, seasoned and prepared, so as to proserve it in a state possessing a pungent and agreeable fla our.

Hams may be cured, in order to resemble in taste those of West, halia, by the foliowing process : Corer a young ham of pork with dry salt, let it lie for $\varepsilon+$ hours to drain of the bloonl, then wipe it perfectly dry, and take one pound of brown sugar, a guartier of a pound of seltpetre, half a pint of bay salt, and ihree pinty of common salt; incorporate these ingredie:ts in an irou pan over the fire, and stit them continually will they acquire a mederate degree of heat. In this piekle the ham must be sulifered to remain for three week:, frequently turning it, when it should be suspended in a chimney for drying, by means of smioke from wo other but a wood-fire.

Smoked hans (says Dr. Willich) are a very strong food, which is not easily digested. If eaten in proper time, and in small guantities, they may be a cordial to some vigorous stomachs, especially in the morning, as a substitute for the pernicions hot and butcerel rolls; but boiling renders their digestion still more difiticult. See Smoxing.

Hain pays on importation a duty of 21.11 s . 81/d. per. cwi.

HAM, a strong town of Westphalia, capital of the county of Marck. It is reated on the Lippe, and is a place of ennsiderable trade. Lat. 51.36 N. Lon. 7.50 F.

Ham, a town of France, in the department of Somme, with a strong castle. Lat. 49. 4 j N. Lon. 3. 6 E .

Ham (West), a village of Esscx, where gre the remains of an opulent abbey, founded in 1135. This village is seated on the river Led, about four miles F . hy N. of Indion.

Ham (East), a village in Essex, adjoining to West Ham.

HAMAH, a town of Asiatic Turkev. in Syria, on the Orontey. It is the residence of the scheik, with the tite of emir. The grozrapher, Abulfeda, was prince of Haneh from the year 1348 to 134j. Numbers of wild anes are found in the country between this place and Aleppo: 124 miles N . of Damascus, and sixty-eight S.S.W. Aleppo.

HAMAMELIS. Witeb-hazel. In hatenv, a genus of the class tetrandria, order digenia. Involucre three-leaved; proper rilly finm:leaved; petals four; nut two-horived; two
eclled. One species: a Virginian shruh, with oval, indented, alternate leaves.

MAMA'TED. a. (hamutus, Latin.) Hooked; set with hooks.
hamanobil, Hamaxobians, in the ancicni geography, a people who had no houses, but hed in casriages. The word is formeal from ${ }^{\prime} \mu u t=$, a carriage or chariot, and $\varepsilon_{1} \otimes$, lifc. 'ithe Hamaxobii were an ancient people of Sarmatia Europæa, iuhabiting the southern part of Muscovy.

HAMBACH, a town of Westphalia, in the duchy of Juliers. Lat. 50.54 N. Lon. 6. 38 E.

To Ha'MBLE. v. a. (from ham.) To cut the sinews of the thigh; to hamstring.

HAMBURGII, one of the largest towns in Germany, consisting of the Old Town and the New Town; both nearly of an equal size. Most of the houses are built after the manner of the Dutch, and richly furnished within. The principal streets of the Old Town have long arid broad canals, which are filled twiee every 24 hours by the tide. These are not only useful for trade, but serve to keep the houses and the streets clean. It is seated on the river Elbe, whict is of vast advantage to the inhabitants; and on the side of Holstein is the Alster, which, bef, re it enters the town by sluices, forms a fue basin that cannot be equialled in Germany. Hamburgh is well fortified, and on the ramparts are handsome walks. The burghers mount guard themselres, and are divided inte ser eral companies. The streets are well lighted every night ; and there is a guard which patroies all over the city. The scnate of this town is composed of four burgomasters, of whon one only is a tradesman; tour sindies; twenty-four senators, of whom eleven are men of letters, and the rest tradesmen; four secretarics, one of whom is a prothonotary, and anomer belongs to the archives; so that the whole st nate consists of thirty-six persons. The town is divided into five parishes; and out of cacin are formed several colleges, or companies who take care of pubiic afiairs, unless liere is any thing too high for their delermination, and then it is judged by a sort of general assembly. Humburgh, from its situation, has all prossible adrantages for foreign and domestic trade ; particularly from its communication by the Elbe, with some of the principal navigable ricers in Germany. • There are gencrally not less than 800 ships at a time belonging to fureign merchants before the city, and there is a handome exchange. The inhabitants are chiefly lutherans, and none but the English have the liberty of performing divine service ih a chapel of their own. Other religions are tolerated at Altena, a large town neat the harbour of Hamburgh: except the Jews, who have no synagogue. Beside the five principal churches, they have 11 smaller ones for particular occusions, some of which belong to hotpitals. The eathedral of Our Lady is a very fine struciure, and has a chapter consisting of 12 canons, who are all Protestants, Lat 53. 24 N. Lon. 9.55 E.

HAM
HAME. s. (hama, Saxon.) The collar by which a horse draws in a waggon.
HAMEL (John Baptiste du), a very learned French pinilosopher and writer in the 17th century. At is he wrote a treatise, in winich he explained in a very simple manner Theodosius's three book- of Spherics; to which he added a Tract upen Trigonometry, extremeby perspicuous, and desigued as an introduction to astronomy. Natural philosophy, as it was then taught, was only a collection of vague, knotty, and barren questions; when our autnor undertook to estabish it upon right principles, and published his Astronomia Physica. In 1666 Mr. Colbert proposed to Louis XIV. a scheme, which was approved of by his majesty, for establishing a royal academy of sciences; and appointed our author secretary of it. He published a great many books; and died at Paris in 1706, of mere old age, being almost 83. He was regius professor of philosol hy, in which office he was succeeled by M. Varignon. He wrote Latin wilh purity and elogance.
HAMELIN, a strong town of Germany, is the duchy of Calenburgh, situate at the confluence of the Hamel and Weser. Lat. 52. 6 N. Lon. 9. 36 E.

HAMELLLIA. In botany, a genus of the class pentandria, order monogyna. Corol firecleft; berry five celled; inferior manv-seeded. Five species: natives of the West Indics or South America. Of these, howeser, the flowers of H . sessiflora are not thorougaly known; whence its genus is in some neasure doubtful. Gencrally trees or shrubs ; nue species, however. H. axillatis, subherbaceous. The wood of H . ventricosa, with terminal and axillary racemes; canupanulate swelling corols; and triplet leaves, is of a fille soft grain, anu is called by the cabinet-makers Spanish elm or prince-wond.
HAMESOCKEN, the name in the ancient English law for burglary, or nocturnal housebreaking.

HA-MII, a country situate to the N.E. of China. Though surrounded by deserts, it is accuunted one of the most delightful countries in the world. Its rice and fruits, paricularly the metons and dried raisins, are in hizh esteem in China. It is a kingdom tributary to that country, and its capital is of the sane uame. Lat. 4 を. 55 N . Lon. 93. 44 E .
HAMIICAR: Sce Amilcar.
HAMIL'ION, a town iu Lancrkshire, with the ruins of a collegiate church, founded in 1451. It is situate on the Clyde. Lat. 35.58 N Lon. 4. 16 W .
: Hamiliton (Dr. Hugh), a very respectable divine, mathematician, and philosopher, was born at Knock, in the county of Dublin, March 26, 1799. He entered Trinity cols lege, Dublin, in November 1742; and obtained a fellowship in that college in 1751, when he was only 22 years of age. In the jear 1738 he publislied his well known and much ad. mired Treatise on Conic Sections; and the hext year was elected Erasmus Smich's peas
fessor of natural philosophy. In the discharge of his duty as professor, he composed and puiblished four lectures introductory to the study of natural philosophy; and in the year 1762 he wrote three philosophical essays, on the ascent of vapours, the formation of clouds, rain, \&c.; on the nature of the aurora borealis, and the tails of comets; and on the principles of mechanics. Dr. Hamilton resigned his fellowship in 1764, having accepted the living of Kilmacrenan, in the gift of the college : in 1767 he was collated to the parish of St. Anne's, Dublin. This latter preferment was soon exchanged for the deanery of Armagh. In 1772 he married: and soon after published his essay on the existence and attributes of the Supreme Being. He also partly prepared an essay on the permission of evil. In the year 1792 he made some important inprovements in the construction of the barometer ; and in 1704 drew up a paper on the power of fixed caustic alkaline salts to preserve the fiesh of animal, fiom putrefaction. Ail this time he atterded seduimely and conscientiously to his duties as a parish priest. In January rogis, he was consecrated bishop of Clonfeat; and about three years afterwarts he was translated to the see of Ossory, of which he continned bichop nearly seven years. He died Dec. 1st, 180.5, in the 77th yeir of his age.

The principal trait in the disposition of bishop Hamilton was unaffected humility: his chief umellectual charac:eristic, a patient manner of thinking. His theory of the solution of water in air is now explodelel, and his theory of tise aurora borealis has gidded to that of M. Libey. (Sce Aurora borealis, and Evaporation.) But his mechanical essays, though containing ove or two slight mistakes, may till be read with pleasure and advantage. In his essay on the existence and attributes of Goxd, he preverves a un; formity of argument, deducing both the physical and moral attributes from the principle of necessity; whereass Dr. Clarke, after proving the physical attributes synthetically or a priari, when he comes to prove the moral (as inteilifence) quits his first process and uses that a froteriori. Dr. Hamilion's works have been lately collected and published by his son Alexander Hamiton, in 2 vols. 8 vo . ; of which the firit contains the I atin edition of the Conic Sections; we shouldhave been more plea ed, had he given these in English from the edition of 17%, as the two volunnes would then have been uniformly in one language throughout.
HAMLET, Hamel, or Hampsel, (from the Saxon ham, i.e. domus; and the German let, i. e. membrum), signifies a little villaze, or part of a village or parish; of which three words the first is now only used, though Kitchen mentions the two last. By Spelman there is a difference between villam integram, villam dimidiam, and hamletam; and Stow expmunds it to be the scat of a freeholder. Several county towns heve hamlets, as there may be several hamlets jnit parish; and conse particular places may

H A M
be out of a town or hamlet, though not out of the county.
HAMMER, a well known tool used by mechanics, consisting of an iron head, fixed cross-wise upon a hatadle of wood.
There are several sorts of hammers used by blacksmiths; as, 1. The hand-hammer, which is of such weight that it may be wielded or ginverned with one hand at the anvil. 2. The up-hand sledge, used with both hands, and seldom lifterl above the head. 3. The aboutsledge, which is the bigrest hammer of all, and held by both hands at the farthest end of the handle, and being swunj at arms-leinth over the head, is made to ball upon the work with as heavy a blow as possible. There is also: another hammer used by smiths, called a rivet-ting-hanmer, which is the smallest of all, and is seldon used at the for re, unks, upon smant work. In large iron-works the forge-hammer is often worked by machinery.

To Ha'mmer. \boldsymbol{v}. a. (froin the noun.) 1 . To beat with a haminer (Sandi/s). 2. To. forge or form with a ha:nmer (Dryilen). 3. To work in the mind; to contrive by intellectual iabour (Shahspeare).

To Ha'mmer. v. n. 1. To work; to be. busy (Shakspeare). 2. To be in agitution (Stiahispeare).

HA'MMERER. s. (from hammer.) He who works with a hammer.

HA'MMERHARD. s. (hammer and hard.) Hammerhard is when you harden iron or steel with much hamanering on it (Moton).

HAMMERSMITH, a large village of Middlesex, in the parish of Fulham, four milis W. of London, and on the N. side of thoThames.
HAMMOCK, or HAMAC, a kind of haneing bed, suspended between two trees, pasi's, hiooks, or the like, much used throughout the West Indies, as also on board of ships. The Indians hang their hammocks to trees, and thus secure themselves from wild beasts andinsects, which render lying on the ground there very dangerous. According to F. Pluinier, who has otien made use of the hammock. in the Indies, it consists of a large strong coverlet or shicet of coarse cotton, ulmut six fieet square : on two opposite sides are loops of the. same stuff, through which a string is run, and thereof other loops are formed, all which are cied together with a cord; and thus is the whole fastened to two neighbouring trees in the tee:i, or two hooks in housee. This kiad of conch serves at the same time for bed, quilts, sherets, pillow, \&ic. The hammock used on boart of ships is made of a piece of canras six feet long and three feet wide, gathered or driwn ing ther at the two ends. There are uscally fennifinio teen to twenty inches in breadth :ationed bevo tween decks for every hammock in a ship of war; but this space must in some measure depend on the number of the crew. $\delta \cdot C$. In lime of batile the haminocks and bedding are firmiy corded and fixed in the nettisis on the puarterded, or wherever the men are two nutich

H A M

exposed to the view or fire of the eneIIy.
IIAMMOND (Henry), D.D. one of the most learaed English divines of the 17th cenzury, was born in 1605 . He studied at Oxford, and in 1029 entered into holy orders. In 1033 he was inducted into the rectory of Penshurat in Kent. In 1043 he was made archdeacon of Chichester. In the beginning of $16+5$ he was made one of the canons of Christ-church, $\mathbf{O x}$ ford, and chaplain in ordinary $t 0$ king Charles I. who was then in that city; and he was also chosen public orator of the university. In 164π he attended the king in his confinement at Wooburı, Cavesham, Hampton-Court, and the Isle of Wight; where he continued till his majesty's attendauts were again put from him. He then returned to Oxford, where he was chosen sub-dean ; and continued there till the parliament-visitors first ejected him, and then imprisoned him for several weeks in a private house in Oxford. During this confinement he began his Annotations on the New Testament. At the opening of the year 1600 , when every thing visible tended to the restoration of the yoyal family, the doctor was desired by the bishop; to repair to London to assist there in the composure of the breaches of the church, his station in which was designed to be the bishopric of Worcester; but on the 4th of April he was seized by a fit of the stone, of which he died on the 35 th of that month, aged 55 . Besides the above work he wrote many others; all of 'which have been published together in four volumes folin.

Hammond (Anthody), an English poct, was born at Somersham in Huatingdonshire, and educated at St. John's college, Cambridge. He sas a mounber of parliament, and coinmissioner of the nayy. He published a voluine of pocins, and wrote the Life of Mr. Moyle. He died about 1796, aged 59.

Hammond (James), the son of the above, was korn in 1710 , and educated at Westroinster school. He was equerry to the prince of Wales, and member of parliament for'Truro in Connwall. Lord Chesterfield published a small volume of Love Elegies written by Mr. Hammond, with whoin he had a great intimacy. He died in 1743, literally of a broken heart. because Miss Dashwood, the lady he andressed, was persuaded by her guardian, lord Harrey, to reject his suit. Miss Dashwood lived some years after him ; but continued unmarried, and could never hear his name mentioned without evincing great agitation and the deepest grief.

HAMOUS. In natural history. Hooked. A bristle curved at the end, either in animals or vegetables.

HAMPDEN (Iohn), a famous English patrint, was descended of an ancient family in Buckinghanishire, and born at London in 1594. He was cousin to Oliver Cromwell, and educated at Magdalen college, Oxford, which he left without taking a degree, and entered himself of one of the inns of court, but pever fullowed the law as a profession, In

H A M

1036 he distinguished himself hy his opporition to the payment of ship-norere by which he he acquired great popularity. He now became a leading man in the house of commons, and at the cominencement of the civil war he took up arms against the king, but was cut off by a pistol shot in a skirmish in Oxfordshire in 1643. Lord Clarendon, after drawing his character at great lengh, concludes in these. remarkable terms: " in a word, what was said of Cinna might well be applied to him : he haid a head to contrive, a tongue to persuade, and a heart to execute any mischief." On the contrary, his panegyrists say, "He was a very wise man and of great paris; and possessed of the most absolute spirit of popularity to govern the people that ever was in any country: he was master over all his appetites and passions, and had thereby a yery great ascendant over other men's: he was of an industry and vigilance never to be tired out, of parts not to be imposed upon by the most subtile, and of courage equal to his best parts."

HA'MPER, s. (hanaperiam, low Latin.) A larye basket for carriage ($S_{x} f f$).
To Hámper.v.a. I. To shackte; to entangle, as in nets (Herl.). . 2 . To ensnare ; to inveigle (Shakspeare). 3. To complicate; to tangle (Blachonorr). 4. To perplex : to embarrass by many lets and troubles (Hudiliras).
hampshire, Hants, or SouthampTon, a county of England, hounded on the N. by Berks. on the E bv Surry and Sussex, on the K . by the English Channel, and (an the W. by Dorsetshire and Wilts. It extends. exclusive of the Isle of Wizhli, 42 miles frmm N. to S. and iof from E. to W. It is divided into 39 hundreds, and contains one city, su market-towns, and 253 parishes; and sends. with the Isle of Wight, 26 members to parliament. It is one of the monst agreeable, ferilie. and populous counties in Eugland. The air, in the higher parts, is clear and pure; toward the sea, mild, and inclined to moisture. Ia products are the finest corn (especially wheat), hops, cattle, shecp, wool, excellent bacon, tho ney, and timber. For the last it has been particularly fannous, on account of its great woode, of which the principal are the New Fores. and the forest of East Bere. The principal rivers are the Avon, Test, Itchen, and Simur. This county contains $1,112,000$ acres of land. of which about 210,000 are uncultivated. in: cluding woodlands. The houses, in 186π. amounted to 39,257, aud the inhabitants to 219, 056.

Hampshire (New), one of the United States of North America, bounded on the \mathbf{N}. hy Canada : on the N.E. by the province of Main; on the S.E. by the Ailantic Ocean ; on the S. by Massachusets; and on the IV. and N.W. by the river Connecticht, which :erurates it from Vermonis. It is divided inso tise five counties of Rockingham, Slafiord, Hill. Lo sough, Cheshire, and Grafion. The land inas the sca is generally low, but adrancing incu the country it rises into hills. The air is in

H A N

HAN

reve and healthful : the weather not 80 subject to variation as in the more southern climes. From the vicinity of some mountains, whose summits are covered with snow three quarters of the year, this country is intensely cold in winter. In summer the heat is great, but of short duration. The capital is Portsmouth.

HAMPSTEAD, a village of Middlesex, formerly famous for its medicinal waters. It is seated on the declivity of a hill, on the top of which is a fine heath that commands a delightful prospect of the metropolis and all the adjacent country. It is four miles N.N.W. of London.

HAMSTER, in mastiology. See Mus.
HA'MSTRING. s. (ham and string.) The tendon of the ham (Shakspeare).
To Ha'mstring. v. a. preter. and part. pass. hamstrung. To larne by cutting the teudon of the ham (Dryden).

HAMPTON, or Minching Hamptox, a town in Gloucestershire, with a market on Tuesdays. Lat. 51.36 N . Lon. 2. 15 W .

Hampton, a town of Middlesex, famous for a royal palace, called Hampton Court, built by cardinal Wolsey, who gave it to Henry VIII. The buildings, gardens, and parks to Which king William made many additions, are four niles in circumference, and seated on the N. side of the Thames, 14 miles S.W. of London.

Hampton, a seaport of Virginia, near the mouth of James River. Lat. 37.5 N. Lon. 76.28 W .

HAMPTON, a seaport of New Hampehire. I.at. 43. 5 N . Lon. 74. 0 W .

HAMULUS. (harmulus, of hamus, a hook.) A term in anatomy, applied to any hook-like process, as the hamulus of the pterygoid process of the sphænoid tone.

HANAPER OFFICE, in the court of chancery, is that out of which all original writs issue that pass under the great seal, and all comarissions of charitable uses, sewers, bankrupts, idiocy, lunacy, and the like. These writs, relating to the business of the subject, and the returns to them, were originally kept in a hamper, in hamaperio; the other writs, relating to such matters wherein the crown is immediately or mediately concerned, were preserved in a little sack or bag, in parva buga; and thence arises the distinction of the hanaper otfice, and petty bag oflice; both of which belong to the comnion law court in chancery.

HANAU, a county and principality of Germany, situated principally on the Maine, between the electorate of Mentz, bishopric of Fulda, and principality of Hesse Homburg, about fifteen leagues long, and five wide. It is esteemed one of the most fertile and rich countries in Germany, producing grain, lcgumes, exquisite wine, and delicious fruits. It contains magnificent forests, a rich salt mine, a copper mine, a silver mine, and a mine of cobalt. It was erected into a county in the year 14\%9. By the extinction of its hepeditary counts it fell by compact to the landgrave of Hesse Cassel in 1736. Its assessment
for a Roman month is two handred and thirty florins, and taxed to the chamber of Wetzlar a hundred and sixty rixdollars twenty-five kruiters. The principal town is of the same name, and is situated in lat. 49. 56 N. Lon. 8.55 E.
$H A^{\prime}$ NCES. s. (in a ship.) Falls of the fiferails placed on banisters on the poop and quarterdeck down to the gangway.

Hances, or Hanches, in architecture. small parts of arches between the crown and the spring at the bottom, being perhaps about onc-third of the arches, and situated neares the bottom than the crown.

HAND, a part or member of the body of man, making the extremity of the arm. The hand is composed of the carpus or wrist, metacarpus, and fingers. The arteries of the hand are the palmary arch and the digital arteries. The veins are the digital, the cephalic of the thumb, and the salvatella. The werves are the cutaneus externus and internus.

The mechani'sm of the hand is excellently contrived to fit it for various uses and vecasions. It consists of a compages of muscles, rendons, and little bones connected with each other, which give it a great degree of strength. and at the same time an unusual flexibility, to enable it to handle adjacent borlies, lay hold of them, and grasp them, in order either to draw them wwards us or thrust them off. Anaxagoras is represented by ancient authors, as maintaining, that man owes all his wisdom. knowledge, and superiority over other animals. to the use of his hands. Galen represents the matter otherwise: man, according to him, is not the wisest creature, because he has hand's; but he had hands given him because he was the wisest creature. He truly said it was not our hands that taught us arts, but our reason which directed us in the use of our hands.

Hand, in the manaze, the measure of a fist clenched, by which the height of a horse is computed. This measure is four inches, and three hands are consequently one foot; a horse of fifteen hands is exactly five feet high; and so above or below in proportion. This point at the entrance of horses for give-and-take plates, is regulated with a scrupulous nicety by means of a standard, so curiously constructed as to ascertain the exact height to the eighth of an inch where horses are matched to carry weight for inches.

Bridle-liand: the left hand is so termed, in distinction to the right; which is called the whip-hand; and the most experienced jockeys in racing, always take the whip-hand, if pose sible; it being considered a point in their favour; inasmuch as they have not only an advantage in the turns of the course, their adversaries being compelled to circumscribe a larger circle of nany lengths in a four miles race, but are unrestrained in the use of the whip, should it come to a severe push at the run-in.

The word hand is employed technically in various phrases of the same science. To say a horse is light in band, implieg that he is playful, lively, champs his bit, is iarm upup his
haunches, and dwells not upon the ground with his fore feet: A horse is heary in hand, when, hearing his weight upon the bit, and lifting his foie legs with unwillingness, he proce - ls ploddingly and reluctantly, exciting the fear of his tumbliag. A vicious horse, breaking away with his ride:, seems a dre idful sight to a spectator, but can never be attended with mischief if the rider be a good horseman, and has him "well in hand," which is, in fact, the power of "gathering him together," or stopping his carcer at pleacire.

Althoush the left is technially termed the bridle-hand, yet a goond horseman, or experienced sportsman, will use cither right or left with the most perfect casc and dexterity : to effect which with the greater ireetom, joung horsemen should comstantly practice an exchange of the reins from one hand to the otiter in their daily excursions. The hand should he delicancly alive to every motion of the horse; for it is a judicious management of this tind that constitutes eatirely a gond or bad mouth. A horse is supposed to galiop awkwardly (if not unnaturally) when he strikes into that pace with his lefi leg forenost; to prevent which, bear the rein to the left, with the bridle-hand, and he will invariably set off with the right leg.
Hand-gallop is that easy kind of pacing achapted to the aged and infirm, who wish to obtain every considerable motion with considerable ease. It is ncarly synonymous with the canter. Sec Canter aid Galiop.

A co!t said to be "taken in hand," implies his teing brought from his wild state of nature, to be handled, quieted, led about, ard stabled, prerious to his being broke in for the saddle or harness.

A horse's fore-hand includes the fore quarters, from the withers upwarts to the tip of the ears; the principal beauty and attraction of which depend entirely upon the length and eurve of the neck, which increases or diminishes his marketable value, in proportion as $i x$ is well or ill formed.
Hands (Impocition or laying on of), signifies the conferiing of holy orders; a cereunony wherein the hands are laid on the head of another, as a sign of a mission, or of a power given him to exercive the furctions of the ministry belonging to the order. The apostles began to appoint missionaries by the impositoln of hands. Sec Imposition.
HAND, in falconry, is uscd for the foot of the hawk. To have a clean, strong, slemder, glatinous hand, well clawed, are some of the good qualities of a hawk or falcon.
Other meanings of the word hand, with its etymology, as given by Dr. Johuson, are as below.
Hand. s. (hanb, hont, Saxon.) 1. The palin with the fingers (Berkley). 2. Measure of four inches; a palun. 3. Side, right or left (Exodus). 4. Part; quarter; side (Sirift). 5. Ready payment (Tillutson). (6. Rate; price (Bacun). 7. Terms; conditions; rate (Tay.). 8. Act ${ }^{\text {deed }}$; external actiqn (K. Charles).
9. Labour; act of the hand (Addison). 10: Performance (Shakspeare). 11. Power of performance (Addison). 12. Attempt; nidertaking (Spenser). 13. Manner of gathering or taking (Bacon). 14. Workmansiip; priver or act of nanufacturing or making (Clieyne). 15. Mamner of acting or perforiaing (Dryden). 16. Agency; part in action (South). 17. The act of giving or presenting (Samuel). 18. Act of receiving any thing ready to one's hand (Locke). 19. Care: necessity of managing (Pupe). 20. Discharge of duty (Hooker). 21. Reach; neasness: 28, at hand, within reach, near, approaching (Boytc). 22. Manual management (Dryd.;. 23. Siate of beins in preparation (Shak.peare) 24. State of being in present agitation (Shat.). 25. Cards held at a game (Bacon). 20. Thas which is used in oppositiou to another (Hu uijbras). 27. Scheme of action (Ben Jonsora). 28. Advantage; gain; superinity (Huywardi). 89. Competition; comtest (Shahspeare). 30. Transmission; conveyance (Colossiuns). 31. Possession; power (Hooker). 32. Pressure of the bridle (Nhakspeare). 33. Method of $20-$ vernment; discipline; restraint (Jacon). 34. Influence; management (Daniel). 35. That which performs the office of a hand in pointing (Locke). 36. Agent; person employed (Ssoift). 37. Giver and receiver (7illotson). 38. An actor; a workman; a soldier (Dryden). 39. Catch or reach without choice (Million). 40. Form or cast of writing (Felfon). 41. Hano over head. Negligently; rashly; without sceing what one does (L-Estrange). 42. Hand to Hand. Close fight (Shakspeare). 43. Hand in Hand. In union; conjointly (Suifi). 44. Hand in Hasd. Fit; pat (Siukispcarc). 4j. Hand to Mouth. As wan: requires. 40. To lear in Hand. To keep in expectation; to elude (Shakispeare). 47. To he Hand and Glove. To be intimate and familiar; to suit one ainther.

To Hand. v. a. (from the noun) 1. To give or sransmit witia the hand (Bruern). 9. To guide or lead by the hand (Dosue). 3. To scize; to lay hands on (Shahspieare). 4. To manage ; to move with the hand (Prior). 5. To transmit in suecession; to deliver froan one to another (I ivoducurd).

HAND is nuch used in composition for that which is manageable by the hand, as a haudsaw ; or born in the hand, as a handlayrrow.

Hand (Harmonical). See Ganmut.

Ha'ndebarrour. s. A frame on which any thing is carried by the hands of two men, without wheeling on the ground (Tusser).

HAND-BAsKET. s. A portable basket.
Hand-beli. s. A bell rutg by the hand.

Hand-breadth. 2. A space equal to the breadth of the hand; a palm (dicutimot).
Hand-CuFFS, an instrument furmed of two cireular pieces of iron, each fixed on a hinge at the ends of a very short iron bar. which being locked over the wrists of a malefactor precents his using his hands.

HA'NDED. a. (from kard.) 1. Having:
the use of the hand left or right (Brown). With hands joined (. Milton).

HANDEL (George Frederic), an illustrious inusician, was torn at Hall in Upper Saxony in 1084. . His father, who intended him for the law, perceiving his propensity to music, strictly prohibited all instruments from his house. The son, however, contrived to have a small clavichord concealed in the garret, where he used to amnse himself when the family was asleep. At the arre of seven years he went with his father to the court of the duke of Saxe Weissenfeis, to whom Handel's brother-in-law was valet. While there he got into the church one morning, and began to play on the organ. 'The duine, who was in the church, surprised at the playing, asked who it was, and on being informed, expostulated with the old gentleman for restraining his son's inclination; in consequence of which nusic was not only tolerated, but a master provided for him, who was Zackav, the organist of the cathedral at Hall. Handel made so great a progress under this inaster, as shortly to become his assistant, and at the age of nine he actualin composed the church service. In lfigs he went to Berlin, "here he was greally noticed by the king of Prussia. From Berlin he went to Hamburgh, and while there had a dispute with another musician, who basely made a push at him with his sword as they were coming out of the orckestra, but a music book being in his bosom prevented the weapon from piercing his heart. Here he composed, at the age of tourtcen, his opera of Almeria, which had a great run. Sonn after he visited ltaly, and at Florence proluced the opera of Rodrigo, for which he received a purse of a hundred sequins, and a service of plate. After travelling through the greatest part of laly he returned to Germany, and 1710 came over to England; but being under an engagement to the elector of Hanover, his stay was short. However in $17!2$ he came hither again, and obtained a pension of two hundred pounds a year from queen Anne, which was afterwards doubled by Genrye 1. Some of the nobility projected a plan for erecting an academy in the Haymarket, which was to secure a constant supply of operas to be composed by Handel, and to be under his direction. This plan was carried into effect, and succeeded for almut ten years, and then fell to the ground. The rage for Itaitian music prevailed, and the divine Handel could not stop the progress of the delusion. He then went to Ireland, where he met with a favourable reception. But in 1748 his popularify returned, and he retained his glory to the last. He died April 14th, 1759, and was buried in Westminster-abbey, where there is an clegant monument to his memory. This most eminent buisician is" universally allowed to have beet ' 2 great epicure: in his temper he was very haughty; bat was seldom or never guilty of mean actions. His pride was uniform; he was not by turns a tyrant and a slave. He appears to have had a most exfravagant love for liberty and independence;
insomuch, that he would, for the sake of liberty, do things wtherwise the most projudicial to his own interest. He was liberal even when pour, and remembered his former friends when he was rich. His musical powers can perhaps be best expressed by Arbuthnot's reply to Po^{2} e, who seriously asked his opinion of him as a nusician; "Conceive (said he) the highest you can of his abilities, and they are much beyond any thing you can conceive."

A musical exhibition uxik place in West-minster-abbey some years ago, under the name of the Commemoration of H:udel. It may justly be considered tie grandest of the kind ever attempted in any nation. Of the rise and progress of the design, together with the manner in which the first celebration was executed, an accurate and amusing detail is given in the fourth volume of the Itistory of Music, by Dr. Burney, who cloges his observations on this memorable occasion with these words: "As this commemoration is not only the first instance of a hand of such magnitude being assembled together, but of any band at all numerous, performing in a similar situation without the assistance of a manuductor to regulate the measure, the performances in Westuin-ster-abhey may be safely pronounced no less remarkabile for the multiplicity of voices and instruments employed, than for accuracy and precision. When all the wheels of that hugo inachine, the orchestra, were in motion, the effect resembled clock-work in every thing but want of fecling and expression. And as the power of gravity and attraction in bodies is proportioned to their mass and density, so it seems as if the maruitude of this band had commanded and in:pelled adhesion and obedience bevond that of any other of inferior force. The pulsations in every limb, and manifications of veins and arteries in an animal, could not be more reciprocal, isochronous, and under the requlation of the heart, than the members of this body of musicians under that of the conductor and leader.' The totality of sound seemed to proceed from one voice and one instrument; and its powers pmoduced not only new and exquisite sensations in judges and lovers of the art, but were felt by those who never received pleasure from music beforc. These effects, which will loug be remenbered by the present public, perhaps to the disadvantage of all other choral performances, run the risk of being doabted by all but those who heard them, and the present description of being pronounced fabulous if it should survive the present reneration."

HA'NDER. s. (from hand.) Transmitter; conveyor in succession (Dryden).

HA'NDFAsT. s. (hand and fast.) Hold; ausiody : obsolete (Shakspeare).

HA'NDFUL. s. (hand and full.) 1. As much as the hand can gripe or contain (Addieon). . . A palm; a hand's breadth (Bucori). 3. A small number or quantity (Clarendon). 4. As much as can be doue (Raleigh).

HAND-GUN. s. A gun wielded by the hand.

HAN

MANDICAP, a term in the sportsman's diatect, applicable to match, plate, or aweepeakes, in the following way:

First as to a haudicap match. A, B, and C, put an equal sum into a hat. C, who is the handicapper, makes a match for A and B , who, when they have perused it, put their hands ino their pockets, and draw them out ctored; then they open them together, and if both have money in their hands, the match is confirmed; if neither have money, it is no autch: in either of these cases, the handicapper C draws all the money out of the hat to his own use; but if one have money in his band, and the other none, alihough it is no match, he that has the money in his hand is entitled to the whole deposit in the hat inalead of the handicapper.

A bandicap plate is the gift of an individual, or raised by subscription, for which horses are generally declared the day lefore running, at a certain hour, by written information privately delivered to the clerk of the course. whose prorince it is to make out the list, and hand it to the steward of the race; when the weight each horse must carry is irrevocably fixed, by whomsoever the steward may appoint, and appears in the primted lists of the following morning. Horses thas entered, and declining the weight appointed for them to carry, are of course permitted to be withdrawn, without any forfeit or loss.

HANDICRAFT. s. (hand and craft.) i. Manual occupation (Addison). 2. A man who lives by manual labour (Suift.)
HANIDICRA'FISMAN. s. A manufacturer; one employed in manual occupation (Surfi).
Ha'NDILY. ad. (from handy.) With skill; with dexterity.

HANDINESS. s. (from handy.) Readiness ; dexterity.

HANDING, is sometimes used to express the taking hold of a cock during his battle in the pit. This, however, is a mere provincial term, the hander of the cocks being now more generally bnown by the denomination of a seter-to. Sce Cockpit Royal.

HA'NDIWORK. s. (handy and work.) Work of the hand; product of labour ; manufacture (L Estrance).

HANDKERCHIEF. s. (hand and herclief.) A picce of silk or linen used to wipe the face, or cover the neek (Arbuthnot).

To HA ${ }^{\top}$ NDLE. v. a. (iaundelen, Dutch.) 1. To touch; to feel with the hand (Locie). 2. To manage; to wield (Shatispeare). 3. To make familiar to the hand by frequent touching (Temple). 4. To treat; to mention in writing or talk (Atlerlury). 5. To deal with; in practise (Jeremiaih). 6. To treat well or ill (Clurendon). 7. To practise upon; to transact with (Shakspeare).

Ha'ndie. s. (hamole, Saxon.) 1. That part of any thing by which it is held in the hand; a haft ('laylor). 2. That of which use io marle (South).
HA'NDLESS. a. Without a hand (S/uhs,

HAN

HANDILNG, a term applied by cockers to the judicious examination of a cock by the hand when brought in from his walk, to ascertain whether he is in proper condition to be placed in the pens, and prepared to fight in either the main battles or the byes. This is done by a particular mode of taking the girt of the body by grasp, to discover the shape and substance, the bone, and strength, as well as the firmuess or flaccidity of the flesh; upon the aggregate of which so much depends, that in proportion to these qualinications he is accepted or reiected.

HANDMAID. s. A maid that waits at hand.

HA'NDMILL, s. A mill nooved by the hand.

HAND-RAIL, in arebitecture, the rail running along the tops of the ballusters by the sides of open galleries, staircases, 8 c . Handrails are not merely ornaments, they are often absolutely necessary ; hand-rails to staircases generally begin from the ground by 2 twisted scrall, which, when skilfully managed, produces a very good efiect.

HANDS off: A vulgar phrase for keep off; forbear (L E'Estrange).

HA'NDSAILS. s. Sails managed by the hand.

HA'NDSAW. s. A sew manageable by the hand (Mortimer).

HA'NDSEL. s. (hansel, Dutch.) The first act of using any thing; the first act of sale.

To Ha'n dsel. v. a. To use or do any thing the first time (Cowley).

HA'NDSOME. a. (handsaem, Dutch.) 1. Ready; gainly; convenient (Spenser). 2. Beantiful with dignity; graceful (Addison). 3. Elegaut; graceful (Felfon). 4. Ample; liberal: as, a handsome fortune. 5. Genernus; noble: as, a handsone action.

To Ha^ndsome. v. a. (from the adjectire.) To render elegant or neat (Donne).

HA'NDSOMELI. ad. (from handsome.) 1. Conveniently; dexterously (Spenser). 2. Beauifully; gracefully, 3. Elegantly; neatly (Wisdom). 4. Liberally ; generously (Adisun).

HA'NDSOMENESS. s. (from haxdsome) Beanty: grace; elegance (Boyle).

IIANI).SPIKL:, or HaND-spec, a lever, or piece of ash, elm, or other sirong wool, fire or six fect long, cut thin like a wedge at one end, that it may get the easier betwixt things which are to be separated, or under any thing that is to be raised; it is better than a crow of iron, because its length allows a better poise.

Hand-spikes are used in ships, to traverse the ordnance, to heave with in a windlass, to weigh up the auchor, lxc. The gumners haudspike is shorter and flater than the other, and armed with two elaws, for the purpose of managing the artillery in hatte, \&c.

HA'NDVICE. s. (hand and vice.) A vice to hold smatl work in (Mo.iou).

HA'NDW RITING. s. A cast of form of swriting peculiar to each hand (Corliwin).

HA'NDY. a. (from hard). 1. Executd of

Performed by the hand. 2. Ready; dexterous; skilful (Dryden). 3. Convenient; ready to the hand (M ux $/ m$).

HA'NDYIDANDY. s. A play in which children change hands and places (Shak.).
To HANG. o. a. preter. and part. pass. hanged, or hung, anciently hong. (hanzan, Saxon.) 1. To suspend ; to fasten in such a manner as to be sustained, not below, but above (South). 2. To place without any solid support (Nandys). 3. To choke and kill by suspending by the neek (N/inkspeare). 4. To display; to show aloft (Adidion). 5. To let fall below the proper situation (D rydrn). 6. To fix in such a manner as in sonte directions to be moveable (Maccaliees). 7. To cover or charge by any thing suspended (D :den). 8. To furnish with ornaments or draperies fastened to the wall (Dacon).

To Hang. e. n. 1. To be suspended; to be supported above, not below (Spenset). 2. To depiend; to fall loosely on the lower part; to dangle (Dryden). 3. To bend forward (Addison). 4. To foat; to play (Prior). 5. To be supported by something raised above the ground (Addison). (i. To rest upon by embracing (Peacham). 7. To hover; to impend (Altertury). 8. To be loosely joined (Shakspeare). 9. To drag ; to be incommodiously joined. 10. To be compact or united (Addison). 11. To adhere, unwelcomely or incommodiously (Addis(n). 12. To rest; to reside (Shakspeare). 13. To be in suspense; to be in a state of uncertainty (Deuteronomy). 14. To be delayed; to linger (Milton). 15. To be dependant on (Shatispeare). 16. To be fixed or suspended with attention. 17. To have a steep declivity (:M,rtimer). 18. To be executed by the halter (Pape). 19. To desline ; to tend down (Pope).

HANG-TCHEOU-FOU, the metropolis of the province of Tche-kiang in China. It is, according to the Chinese, the paradise of the e:arth; aud may be considered as one of the richest, best situated, and largest cities of the empire. It is four leagues in circumference, exclusive of its suburb; and the number of its inhabitants amounts in more than a million. It is computed, that there are a thousand workmen within its walls employed in manafacturing silk. What renders ithis city delighoful is a small lake, called Si-hou, which washes the boteom of its walls on the western side; its water is pure and limpid, and its banks are almost every where covered with flower: This city has under its juriadiction seven ciries of the second and third class. Lat. 30. 21 N. Lon. 120.90 E .

HANGER.s. (from huelg.) That by which any thing hangs- as, the pot hangers.

Ha'nGer. s. (from lavg.) A short broad sword.

Ha'nger-on.s. (from hang.) A dependant (Bronrn. Swift).

HA'NGING. s. (from hang.) Drapery hung or fastened against the walls of rooms ($\boldsymbol{D}_{\text {ry }}$ den).

Ha'mginc. participial a. (from lang.)

HAN

Foreboding death by the halter (Shakspeare); 2. Requiring to be punished by the halter.

Hanging leaf. In botany, a leaf pointing directly to the ground.
HANGING:S, denote any kind of drapery hung up against the walls, or wainscot of a roon: : there are also window-hangings, bod. hangings, \&c.
HA'NGMAN. s. (hand and mam.) The public executioner (Sidncy).

HANK. s. (hank, Istandick.) 1. A skein of thread. e. A ie; a cliects; an influence (Decall of Picty).
To HA'NKER. v. n. (hankeren, Dutch.) To long importunately (Addison).

HANNibal, or Annibal, a celebrated Carthaginian gencral, son of Amilcar. He was educated in his father's camp, and inured from his early years to the labours of the field. He passed into Spain when nine yeare old, and at the request of his father took a solemn oath he never would be at peace with the Romans. After his father's death he was appointed over the cavalry in Spain; and some time after, upon the death of Asdrubal, he way invested with the command of all the armies of Ciarthaye, though not yet in the twenty-fifth year of his aze. In three years of continual success, he subdued all the nations of Spain which opposed the Carthaginian power, and wook Saguntum after a siege of eight months. This was the cause of the second Punic war. He levied three large armies, one of which he sent to Africa, he left another in Spain, and marchel at the head of the third towards laly. He came to the Alps , deemed almost inaccessible, and gained the top in nine days, having softened the rocks with fire and vinegar. After he had defeated P. Corn. Scipio and Sempronius, ne ir the Rhone, the Po, and the Trebia, he crossed the Apennines, and invaded Etruria. He defeated the consul Flaminius near the lake Trasimenus, and suon after met the two consuls C. Terentius and L. AEmilius at Canne. His army consisted of 40,000 foot, and 10,000 horit, when he engaged the Romans at the celehmied battle of Canur. No less than 40,000) Romanss were killed, and as a sign of his victory, he sent to Carthage three bushels of gold rings which had been taken from 5630 Roman knights slain in the hattle. He did not make a proper ue of his victory, by not marching immediutely to Rome, which gave the eneny some respite, and contributed to renovate their spirits, but retired to Capua, which, on account of its pleasures and luxury, liecame a Cannx to him. After the battle of Canna the Romans became more cautious, and afier many important debates in the senate, it was decreed, that war should be carried into Africa, to remove Hannibal from the gates of Rome, and Scipio, who proposel the plan, was empowered of put it into execution. This recalled Hannibal from Italy. The seat of war beinz thus transferred, he and Scipio met near Carthage, and detcrmined to come to a general engagement. The batule was fousht near Zama: Scipio made a great slaughter of

H A N

the enemy; 20,000 were killed, and the same number made prisoners. Hinnibal, after he had lost the day, fled to Adrumetum, afterwaris to Syria, to king Antiochns, whom he advised to make war against Rome. Antiochus being conquered by the Romans, and distrusting llanuibal, agreed todeliver him up to them; being apprized of this, Hannibal left the court of Autiochus, and fled to Prasias, king of Bithyuia, whom he encouraged to declare war against Rome. The senate having received inteligence that Hannibal was in Bithynia, inmediately sent ambassadors to demand him of Prusias. The king was unwilling to betray Hannibal, though he dreaded the power of Rome; but Hannibal extricated him from his embarrassment, by taking a dose of poison, which he always carried wiih him in a ring on his finger. As he breathed his last, he exclaiined, Solvamus diuturna cura populum Romanum, quando mortem senis expectare longum censet. He died in his 70th year, according to some, about 188 years B. C. 'That year was famous for the death of the three greatest generals of the age, Haunibal, Scipio, and Philopermen. Livy bas painted the character of Hannibal like an enemy, and it is much to be lamented that a great historian has withheld the tribute due to the merit and virtues of the greatest gencral. (Livy).

HANOVER, a town of Germany, capital of the king of Great Britain's German dominions, before they were wrested from him by the French. The electors resided here before George I. ascended the British throne. The regency was administered in the same manner as if the sovereign were present. It is a large well-built town, and well fortified. The established religion is the Lutherat ; but the Roman Catholics are tolerated, and have a handsome church. Hanover is seated on the river Leina. Latt. 52.25 N . Lon. 10. 5 E .
Hanover, an electorate of Germany, which comprehended, at first, nothing but the county of Lawenroad; but now it contains the duchy of Zell, Saxe-Lawenburg, Bremen, Lunenburg, the principaity of Verden, Crubenhagen, and Oberwald. George I. king of Great Britain was the first that gained possession of all these states, which lie mostly between the rivers Weser and Elbe, and extend 200 miles in length from S. W.; but the breadth is different, being in soure places 150 miles, and in others but 50 . Their produce is timber, cattle, hogs, mum, beer, and bacon; a little silver, copper, lead, iron, vitriol, brimstone, quicksi!ver, and copperas.

Hanover (New), an island in the Pacific Ocean, seen by captain Carteret, in the year 1767, about ten leagues in length. The south. west part situated in lon. 148. 27 E . Greenwich; lat. 2. 49 S.
HANOVER, a town in the state of Virginia, situated on the York River. Lat. 37.47 N . Lon. 77.25 W. There are three other towns in America bearing the same name, but of sinaller mote.
HANSE, or HANs, an ancient name for a

HAN

society or company of merchants ; particularls that of certain cities in Germany, \&c. hence called Hanse-towns. The word hanse is obsolete High Dutct or Teutoaic ; and signifies " alliance, confederacy, association," \&c.
Hanse-towns. The hanseatic society was a league between several maritime cilies in Germany, for the motual protection of their commerce. Bremen and Amsterdam were the two first that formed it; whose trade received such adrantage by their fitting out two men of war in each to convoy their ship:s, that more cities continually entered into the league: even kings and princes made treaties with them, and were often glad of their assistance and protection ; by which means they grew so power-f-1 both ly sea and land, that they raised armies as well as navies, enjoged countries in sovereignty, and made peace or war, though always in defence of their trade, as if they had been an united state or commonwealth.

At this time also abundance of cities, though they had no great interest in trade, or intercourse with the ocean, came into their alliance for the preservation of their liberties : so that in the ycar 1200 we find no less than 72 cities in the list of the towns of the Hanse; particularly Bremen, Austerdam, Antwerp, Roterdam, Dort, Bruges, Ostend, Dunkirk, Mirdleburgh, Calais, Rouen, Rochelle, Bourdeaux, St. Malo, Bayoune, Bilboa, Lisbon, Seville, Cadiz, Carthagena, Barcelona, Marseilles, Leghorn, Naples, Messina, Loudon, Lubec, Rostock, Stralsund, Stetin, Wismar, Konizsberg, Dantziz, Elbing, Marienburg. But this hanse or union has for some time been dissolved; and now every one of the cities carries on a trade separately for itself, according to the stipulation in such treaties of peace, \&c. as are made for the empire betwixt the emperor and other potentates.
HAN'T, for has not or have not (Ad dis, n).
HAN-TCHONG-TOU, a large and populouscity of China, in the province of Chensi. It has 16 cities of the $2 d$ and $3 d$ class under its jurisdiction, and is seated on the river Han. Lat. 32.45 N. Lon. 106.55 E.

HANUYE, a town of Austrian Brabant. Lat. 50.41 N. Lon. 5. 16 E .

HANWAY (Jonas), an English philan: thropist, was born at Portsmouth in 1719, and being bred a merchant, formed a connexion witha conunercial house at Petersburgh, by which means he trok a journey to Persia, of which he afterwards published an account. On settling in London, Mr. Hanway devoted a considerable portion of his time to benevolent purposes, and perhaps was concerned in projecting more charitable institutions than any man that ever lived. Of this number, were the marine snciety, and the Magdalen hospitah For these exertions he was made a commissioner of the nary; and when he resigned his seat at the board his salary was continued. He died in 1780 . His works are sery nunaroum but those which we have mentioned are the best. One curious publication of his the aature
of the subject induces us to mention a little more particularly: it was entitled "Eight Letters to - Duhe of - on the Custom of Vails-giving in England," 8vo. This practice of giving vails had arrived at a very extravagant firch, especially among the servants of the great. It was Mr. Hanway who answered the kind reproach of a friend in a high station for not coming oftener to dine with him, by saying, "Indeed I cannot afford it." The nobleman to whom the above letters were addressed was the duke of Newcastle. The letters are written in that hunorous style which is most attractive of general notice, and was best adapted to the sulject. Sir Timothy Waldo first put Mr. Hauway on this plan. Sir Timothy had dined with the dake of N-, and, on his leaving the house, was contributing to the support and insolence of a train of servants who lised the hali; and at last put a crown into the hand of the cook, who returned it, saying, "Sir, I do not take silver."-" Don't you indeed?" said the worthy baronet, putting it in his pocket; " then 1 do not give goid." Among the ludicrous circumstances in Mr. Hanway's tetters is one which happened to himself. He was paying the servants of a respectable friend for a dinner which their master had invited him to, one by one as they appeared; "Sir, your greatcoat ;" a shilling-" Your hat ;" a shilling " Stick ;" a shilling-"، Umbrella ;" a shil-ling-" Sir, your gloves;" "W hy, friend, you may keep the gloves; they are not worth a shilling."

HAP. s. (anhap. in Weish, is misfortune.) 1. Chance; fortune (Spenser). 2. That which happens by chance (Sidiney). 3. Accident; casual event (Fuirfax).

Hap-hazard. s. Chance; accident (Locke).

To Hap. v. n. (from the noun.) To come by acrident: to fall out; to happen (Bucon).

HAPAEE, the name of four of the Friendly Islands in the S. Pacific Occan. They are of a similiar height and appearance, and connected by a reef of coral rocks, dry at low water. The plantations are very numerous and extensive.

His PLESS. a. (from hap.) Unhappy; unfortunate; luckless ($S_{m i t h}$).

HAPLY. ad. (from hap.) 1. Perhaps; peradventure ; it may be (Roue). 2. By chance; by accident (Mifton).

To HA'PPEN. 0. n. (from hap.) 1. To fall out ; to chance ; to come to pass (Tillots.). 9. To light ; to fall by chance (Graunt).
 cunately; luckily; successfally ($D_{\text {ry }}$ den). 2. Addressfully; gracefully: without labour (Pope). 3. In a state of felicity : as, he lives boppi:y.

HA'PPINESS. s. (from happy.) 1. Felicitr; state in which the desires are satisfied (Horker). \&. Good luck ; geod fortune. 3. Fortuitous elegance (Denhaim).

- The words happy, content, satisfied, pleased. meppiness, cunteniment, satisfaction, pleasure,
all denote the state of a man who has what he . wishes.

The difference of their several meaninge. arises from the duration of this state, and irom the degree of enjoyment afforded by the object of a man's wishes.

Satisfaction and contentment denote only that situation in which we have no more. wishes that we should like to sce gratified. This situation is the opposite of that inquietude. which unaccomplished wishes occasion. No wishes disquiet as any longer; what we have Gills or suffices us.

But saisfaction and satisfied, denote mercly a situation of short duration ; that situatiorn, uatiely, which follows immodiately aiter the fiiibiment of a wihh or of a desire. Content and contentment mak an habitual situation uninterrupted by any fresh wist:es. Hence contentment refors to the whole desiring fa, culty; satisfaction simply to one particular desire. We say of a wish, a desire, a passions that they are saitsjed ; of the heart, that it is content.
The miser who sees bis wish, his desire, his anxiety, his passion, to increase his beap of gold satisfied, is nevertheless not content; his heart and soul feel no contentment; he still forms fresh wishes, and his passion has uever enough.
The satisfying of our wishes frequently excites fresh ones, and tends rather to impede than to promote contentment.

We ought not to satisfy every desire of our children, that they may be early accustomed to be content.

No person can have all that he wishes, says Seneca, but every one may do without that which he has not, by quietly enjoying what falls to his share. Ouir desires are never satiofied; but nature is content with litule.
The difference of sati.ificd and content, from plrased and kappy is this: satisfaction and contentusent denote merely the being freed from unaccomplished wishes, either by the possession of the wished-for ohject, or of some equiralent. Pleasure and happiness denote the enjoyment of the object, or the joy which the consciousness of possessing it causes, whether we have wished and procured it ourselves, or whether we have got it without cither wishing for it, or doing any thing to obtain it.

Happiness differs from pleasure by its duration. A single pleasure, or even several plea* sures, may be scattered over the whole dark picture of life, as rare luminous points, and yet the whole life, or the person to whose share these pleasures fall, cannot be called happy. Hence, it is justly asserted, that the man who spends his life in sensual pleasures is not to be reckoned happy. Sensual pleasurcis, if we adtict ourselves to them alone, are attended with dissureeable and painful consequences; and should they even not be immediately followed by such disagreeable and painful circumstances, he who hunts after scusual pleasures only, is, however, debarred from the enjoyment

H A P

of more refined and nobler pleasures. Hapginess is the uninterrupted enjoyment of the lest pleasures. The rude joy of the savage gives him at times the sensation of pleasure: but he is not happier than the member of a civilized community. The constant alternative of intemperance and want frequently disturbs his pleasure, and his modeness deprives him of the more refined pleasures enjoyed by man in a etate of civilization.

If happiness be superior to pleasure in duration, it is superinr to conten/ment in intensity. All men may be equally content, either becanse ignorance precludes them from wishing for more than they possess, or because they know bow to limit their wishes. But all men are not equally happy. They cannot all possess an equal share of yood things : and if they did, they are not all equally capable of enjoying them. Hume's assertion, tbat all who are equally content, the little girl in her new gown, the commander at the head of a victorious army, the orator after having delivered a brilliant speech in a large assembly, are equally happy, must be pronounced erroneous. Happiness consists, farther, in the variety of the agreealile sensations of which we are conscious. A peasant has not the capacity of enjoying equal happiness with a philosopher. A large glass and a small one may both be filled to the brim, yet the larger one holds more liquor than the small one.

Were the savage even content in his situation, it would still be wrong to infer from thence, with Rousseau, that he ought to be left in that situation. Man's vocation is haps piness. So true it is that the most splendid paradoxes are frequently built upon undefined ideas; and that, in the investigation of philosophical subjects, the accurate discrimination of the terms employed is of the highest importance. (Elerhard).

The result of Dr. Paley's enquiry into the nature of happiness in his Moral and Political Philosophy, is comprised in the following propositions.

1. Happiness does not consist in

1st. Pleasures of sense,
Because they are of short duration at the time;
Beenuse they cloy by repetition;
Because eagerness for intense delights takes away relish for others.
These objections are valid, independent of loss of health, \&ce.

2d. In exemption from evits which are without, as labour, Sce.
Because the mind must be employed.
Hence pain is sometimes a relief to the uneasiness of vacuity.
3d. In greatness, or elerated station.
Because the highest in rank are not happiest, and so in proportion.
Becanse superiority, where there is no competition, is selilom contemplated.
11. Happiness is to be judged of by the apparent happiness of mankiud, which consists in

HAR

1st. The exercise of the social affections.
2d. The exercise of the faculites of body or mind for an engaging end,
Because there is no happiness without something to hope for.
Those pleasures are most valuable which are most productive of engagement in the pursuit.
Therefore endeavouts after happincss in 6 future state produce grcatest happincss in this world.
3d. In a prudent constitution of habits.
Habits of themselves are much the same, berause what is habitual becoures nearly indifferent;
Therefore those habits are hest which allow of indulgence in the deviation from them.
Hence that should not bechosern as a habit, which ought to be a refreshinent.
Hence by a perpetwal change the stock of happiness is soon exhausted.
4th. In health of borly and gond spirits.
Because necessary for the full enjoyment of every pleasure.
Because itself is a pleasure, perhaps the sole happiness of some animals.
From the above, Dr. Paley deduces two conclusions:

Ist. Happiness appears to be pretty equally distributed.
2d. Vice has no advantage over rirtue with respect to this world's happiness. -Paley. Book i. chap. 6.
We are old-fashioned enough to add, that nothing in our estimation can tend more to the production of genuine happiness than the cultivation of the dispositions of mind and heart recommended by our Lord in Matthew chap. v. verses 3-12.
lindeed the word happy answers more exactly to parapms, than the word bleseed retained in the received version; and Jesus Christ seems manifestly to intimate by it, not only that the dispositions there recommended would lead the way to future blessedness, but that they would immediately be attended with the trucst happiness, and the noblest pleasures.

HA'PPY. a. (ifrom hap.) 1. In a state of felicity (Sidney). 2. Lacky; successfal ; fortunate (Boyle). 3. Addressiul ; ready (Surift)-

HAPSAL, a seaport of Russia, in the govermment of Revel, seated on the Baltic. Latd 59. 4 N . I.on. 29. 47 E .

HA'QUETON. s. A coat of mail (Sper. ser).

HaraM. See Seraglio.

HARANGUE, a modern Fiench name for a speech or oration made by an orator in putslic. Menage derives the word from the Italian crencs, which signifies the same; formed, according to Ferrari, from arringo, "a just, or place of justing." Others derive it from the Latin ara, "caltar;" by reason the first hatrangues were made before altars: whence ilict verse of Juvenal, "Aut Lugdumensis phelow dicturus ad aran." Harangues were usually made by the generals previons to an engagen
ment both amongst the Greeks and Romans. An harangue un such occasious was called allocutio. The word is also frequently used in a ludicrous sense, viz. for a too pompous, prolix, or unseasonable speech or declamation.

To Hara'ngue. v. n. (haranguer, Fr.) To make a sperech : to pronounce anl oration. HARA'N(iUER. s. (from harargue.) An orator; a public sueaker.

To HANASS. v. a. (harasser, French.) To weary; to fatigue (Addison).

Ma'rass. s. (from the verb.) Waste; disturbance (Mil!on).

HA'RISINGER. s. (herlerger, Dutch.) A forerunner; a precursor (Dryden).

Harboloough, or Market MarBOROUGH, a town in Leicestershire, with a market on Tuesdays. It is seated on the W'elland. Lat. 52.28 N . Lon. 0. 59 W.

HARBOUR, a place where ships may ride safe at anchor, chiefly used in speaking of those secured by a boom and chain, and furmished with a mole. The bottom of a good harbour should be frec from rocks and shallows: the entrance should be of sullicient extent to arlmit large ships: it should have good anchoring ground, and be easy of access: it should have room and convenience to receive the shipping of difierent nations: it should be furnished with a good light-house, and have at command pienty of wood and other materials for firing, besides hemp, iron, \&r.

Harbour master, an officer appointed to inspect the moorings, and to see that the laws and regulations of the harbour are atrictly attended to by the different ships.

HARBOUR, among sportsmen, is a term applicable solely to deer, and used alone in stag hunting. The harbour of a deer implies his covert; and hence upon drawing for an outlying deer he is said, upon being found, to be uniinarloured, as the hare is said to be slarled, and the fox unkennclled.

Ha'r bour. s. (herlierge, French.) 1. A lodging; a place of entertaiument ($D_{r y d}$). 2. An asylum; a shelter.

To Hírbour. v.n. (from the noun.) To receive entertainmeut ; to sojourn (Dryden).

To Ha'rbour. v. a. l. Po entertaiu; to permit to reside (Ruue). 2. To sheiter; to secure (Sidney).

HA'RBOURAGE. s. (herlergage, French.) Shelter; entertainment (Shakspeare).

HA'RBOURER. s. (from harlour.) One that entertains another.

HA'RBOURLESS. a. (from harlour.) Wanting harbour ; being without lodying.

HARD. a. (heant, Saxon; hard, Dutch.)

1. Firm ; resisting penetration or separation; not soft (Shakspeare). 2. Difficult; not easy to the intellect (Arluthnot). 3. Difficult of accomplishment (Dryden). 4. Painful ; distressful; laturious (Clarendon). 5. Cruel; oppressive; rignrous (Atterlury). 6. Sour; rough; severe (Shakspeare). 7. Unfavourable; unkind (Dryden). 8. Insensible; inflexible (Dryden). g. Unhappy; vezatious VOL. V.

H A R
(Temple). 10. Vehement; keen; severe : as, a hard uin!er; hard weuther. 11. Unreasonable ; unjust (Suift). 12. Forced ; not casily granted (Burnct). 13. Powerful; forcible (Hat/s). 14. Austere; rounh, as liquide (Bacon). 15. Harsh; stiff ; constrained (DH\%). 1ij. Not plentiful; not prosperous (Dryden). 17. Avaricious ; fanhtily sparing.

Hard. ad. (hardo, German.) 1. Close; near (Julgrs). 2. Diligently; laboriously; incessantly (Dryden). 3. Lneasily; vexatiously (Shahoniare). 4. Distressfuliv (L 'Esi.) 5. Fast; nintly; vehementy ($1: \dot{L} \cdot \operatorname{tr}$ ngc). 6. With diflicuhty (Bacon). 7. Tempestu• ously ; boiterouly ('I'aylor).

Hard-beam tree. Sce Carpines.
HA'RIDBOUND. a. (hurd and bound.) Costive ($P($ pir)

To HARI)EN. v. a. (fro:n hard.) 1. To make hard; to indurate (Foodward.) 2. To confirm in eflrontery; to make impudent. 3. To confirm in wickedness; to make obdurate (Addion). 4. To make insensible; to stupify (S:cift). 5. To make firm; to endue with constancy (Dryden).

To IAArdex. $v . n$. To grow hard (Bacon).
HA'RINENER. s. (from harden.) One that makes any thing hard.

IIARDERWYCK, a town of Dutch Guelderland, with a universitg. It is seated on the Zuyder Zee. Lat. 52. 93 N. Lon. 5. 40 E. HaRI)!SIA. See Lapis Hibernicus.
HARDFA'VOURED). a. (hard and javour.) Coarse of feature (Dryden).

HARDHA'NDEI). a. (hard and hand.) Coarse; mechanic (Shakspcare).

HA'RI)HEAD. s. (hard and hcad.) Clash of heads (Dryden).

HARDHE'ARTED. a. (hard and heart.) Cruel; inexorable; merciless; pitiless (.Arluthnol).

HARDHE'ARTEDNESS. s. (from hardhearted.) (ruelty; want of tenderness ($S_{0, u} / h$). HáridiHEAD. Hárdihood.s. (from hardy.) Stoutness; bravery: obsolete (Milton).

IIA'RDIMENT. s. (from hardy.) Courage; stoutness; bravery: not in use (fiuirfa.!).

HA'RDINFSS. s. (from hardy.) 1. Hardship; fatigue (Sipenser). 2. Stoutness; cninrage; bravery (Shahspeare). 3. Effrontery; confilence.

HARDIIA'BOURED. a. (lard and ls-l-uur.) Elaborate ; studied (Surift).

HA'RDIX. ad. (from hurd.) 1. Wils difficulty; not easily (South). 2. Scarcely; scant; not lightly (Suift). 3. Grudangly, as an injury (S/akispeare). 4. Severely i unfavourably (Hooker). 5. Rigorously ; opprescivea Jy (Suift). 6. Unwelcomely; harshly (Locke). 7. Not soflly; not tenderly (Druden).

HA'RDMOUTHED. a. (hard and mouth.) Disobedient to the rein; not sensible of the bit (Druden).

HA'RDNESS. s. (from hard.) 1. Durity; power of resistance in bodies. \&. Difficulty to be understood (Shakspeare).
3. Ditlicul. 11

H A R

ty to be accomplished (Sidney). 4. Scarcity; penury (Suift). 5. Obluracy ; profigateness ($S_{1, u t h}$). 0. Coarseness; harshness of look (Ray). 7. Keenuess ; vehemence of weather (Mor.). 8. Cruelty of temper; savageness (Shaks.). 9. Stifiness; harshness (Dryden). 10. Faulty parsimony; stinginess.

Hardiess, or Rigidity, that quality in Uodies by which their parts so cohere as not to yield inward, or give way to an external impulse, without instantly going beyond the distance of their mutual attraction ; and therefore are not subject to any motion in respect of ouch other without breaking the body.

Newton conjectures that the primary particles of all bodies, whether solid or fluid, are perfectly hard; and are not capable of being broken or divided by any power in nature. These particles, he maintains, are connected together by an attractive power ; and according to the circumstances of this attraction, the body is either hard, or soft, or even tluid. If the particles be so disposed or fitted for each other as to touch in large surfaces, the hody will be hard ; and the more so as those surfaces are the larger. If, on the contrary, they only touch in small surfaces, the body, by the weakness of the attraction, will remain soft.
Hardness appears to diminish the cohesion of bodies, in some degree, though their fringibility or brittleness does not by any means keep pace with their hardness. 'Thus, though glass he very hard and very brittle; yet flint is still harder, though less brittle. Among the metals, these two pr perties seem to be nore connected, though even here the connection is by no means complete; for though steel be both the hardest and most brittle of all the metals; yet lead, which is the softest. is not the most ductile. Neither is hardness connected with the specific gravity of bodies; for a diamond, the hardest substance in nature, is little more than half the weight of the lightest metal. And as little is it connected with the coldness, or electrical properties, or any other quality with which we are acquainted. Some bodies are rendered hard by cold, and others by different degrees of heat.

Mr. Quist and others have constructed tables of the hardness of different substances. And the manner of constructing these tables was by observing the order in which they were able to cut or make any impression upon one another. The following table, extracted from Magellan's edition of Cronstedt's Mineralogy, was taken fron Quist, Bergman, and Kirwan. The first column shews the hardness, and the sccond the specific gravity.

HAR

Sce, farther, Hatiy's Natural Philosophy, vol. i. page 38.

HARDOLIN (John), a learned French Jesuit in the beginning of the 18th century, known by the remarkable paradoxes he advanced in his writings; this in particular, that all the works of the ancient profane writer, except Cicero's works, Virgil's Georgics, Horace's satires and epistles, and Pliny's natural history, are mere forgeries. He died at Panis in 1729, aged 83. His principal works are, 1. An edition of Pliny's natural history, with notes, which is much esteemed. 2. Au edition of the Councils, which made much noite. 3. Chronology restored by medals, 410. 4. A Commentary on the New Testament, folio; in which he pretends that our Saviour and his apostles preached in Latin, \&c.

HARDS. s. The refuse or coarser part of fax.
IIA'RDSHIP. s. (from hard.) 1. Injury; oppression ($S_{u} u f f$). \boldsymbol{z}. Inconvenience ; fatigue (Sprat).

HA RDWAKE. s. (hard and ware.) Ms. nufactures of metal.

HA'RDWAREMAN. s. A maker or seller of metalline manufactures ($S w i f t$).

HARDWICKE (Philip Yorkc, earl of, a great English lawyer, was born at Dover in Kent, in 16 igo. In 1718 he was elected into parliament for Lewes in Sussex, and in 1700 was appointed solicitor-general. In the same year he was made attorney-general, which office he discharged with great candour and lenity. In 1733 he was appointed lord chief justice of the king's-bench, and created a peer. On the decease of lord Talbot, in 1736, he w3s called to the office of lord chancellor, which he held twenty years. In 1754 he was created earl of Hardwicke. His lordship died in $17{ }^{6 t}$. In all his offices, particularly the last lord Hardwicke distinguished himself in such 2 manner as to acquire the esteem of all partios, and the veneration of posterity.

HA'RDY. a. (hardi, French.) J. Buld; brave; stout; daring (Bacon). 2. Strong; hard; firm (South). 3. Coufident; impudept ; vitiously stubborn.

HARE and Here, differing in pronunciation only, signify both an army and a lord.

Hare. s. (hapa, Saxon.) In natural history, See Lepus and Hyaus.

Hare (Java). See Mus.
Hare (Prancis), an English prelate, was educated at Eton school, and King's college, Cambridge, of which he was chosen fellow. He was afterwards made dean of Worcester, from whence he was raised to the bishopric of Chichester, which he held, with the deanery of St. Paul's, to his death, in 1740. This bishop wrote against Dr. Hoadly, in the famous Bangorian controversy: he also edited Terence's comedies, and published the book of Psalms, reduced to a metrical order. But his notions on the Hebrew metre were afterwards refuted by bishop Lowth.

To Hare. v. n. (harier, French.) To fright ; to hurry with terror (Locke).

Hare-bell, in botang. See HyacinThus.

Hare-brained. a. (from hare, the verb, and brain.) Volatile; unsettled; wild (Bacon).

Hare'sear, in botany. See BupleuRUM.

Hare'sear (Bastard). Sce Phyilis.

Hare-huntino, a well known field sport, of high antiquity, and said by its amateurs to have existed for nearly three thousand years antecedently to the christian era. Such sporting paleolegists, bowever should first overcome the difficulty of proving that Nimrod, the mighty hunter to whom they refer, was acquainted with the hare or the harrier, neither of which would be very easy : and it is probable that the task would not be much facilitated, if they were to limit the origin of the sport to the epoch of Esau, who is also referred to by them. However, from the reference to it by Xenophon, there can be no doubt that it has a real claim to remote antiquity.

Hare-hunting, though universal in every part of England, Ireiand, Scotiand, and Wales, is in the highest estimation in thuse open and ctampaign counties where, for want of covert, a stag or fox is never seen. Here the hares are stouter, more accustomed to long nightly excreise, more frequently disturbed, more inured to severe courses before greyhounds, and hard runs before hounds; and consequently, calculated to afford much better sport than can be expected in either an inclosed or woorlland country. There are three varieties of the hound, with which this particular chase is pursucd, according to the soil and natural face of the district. The large, siow, southern hound adapted to the low, awampy, marshy lands, so couspicuous in many parts of Lancashire, Norfolk, aud some other counties bordering the sea. The small, busy, indefatigable beagle, appropriated by nature to those steep, hilly, and mountainous parts, where it is impossible for the best horse and boldest rider to keep constantly with the hounds: and the bounds now called harriers, and originally produced by a cross between the soutbern hounid and sbe dwarf fox; which are ooly fitted to succed in those open countries, wiele, for want of covert, the hare goes five or sir miles all end without a turn ; as is frequently the case in many parts of Oxfordshire, Narthaunptunshire, Wiltshire, aud Hampshire, constituting ctoses sometines supe-
rior to those of fox hounds, when bunting beechea coverts and woodland districts.

Hare-hunting is the most common of all our hunts; but there is less fire, and incident, less energy and activity, and far less power of showing a capital hunter to indiantage thau in stag or fozhunting: and hence our boidest spoitsmen are seldom hare-huntcrs by inclination. Such, Mr. Berkford, the must scientitic spurtsman of the day, assures us has ever been his own feeling upun the subject: adding, however, at the same time, that he respects hunting in whatever shape it appears; that it is a manly and wholesome exercise, and seems by nature derigued to be the amusement of a Briton. He is of opinion that more than twenty couple of hounds should never be brought into the field; supposing it difficult for a greater number to run well together; and a pack of harriers can never be complete that runs otherwise. He thinks tno that the fewer hounds we have, the less we foil the ground, which sumetimes proves a hindiance to the chase.
Custom has greatly varitd the hour of commencing this diversiun witbin the last thirty years. Before this periud the hounds left the kennel at day-light, took trail upon being thrown off, and soon went up to their game; and finding it by their own intinct, they pursued it with the more determined alacrity; a brace or leash of hates were theu killed, and the sport of the day concluded by the hour it is now the fashion for the company to take the tield. As the trail of a hare liss both partialiy and imperfectly when the sport opens late in the day, so the difficuity of finding is increased, in proportionto the lateness of the hour at which the huunds are thrown off; hence it is that hare-finders, but little known formerly, are now become truly instrumental to the sport of the day. Yet althuush theservices of the hare-finder are welcome to the eager and expectant aportsman, it is on all bands aduitted that they are prejudical to the discopine of the houncis; for having such assistance, the latter become habitually idle and wind; expecting the gatre to be readity found for them, they seem indiff.rent to the lask of finding it for themselves. Hounds of this description know the hare-tinder as well as they know the huntman, and will not on! y, upon sight, eet off to meet him, but have their licads continualiy thrown up in the air, in expectation of a vew Halioo!
Well-managed parks are quietly bmught up to the place of meeting; and when thrown off, a general silence should pr. va.l, that every hound may be permitted to do his own work. Hounds well bred, and well brukin to their business, seldom want assistance. Officious intiusions do more harm than sood: notling riquires greater judgment or nicer observation in speaking to a hound, than to know the critical time whin a word is wanting.
Whenever a hare is turned out of her form, or jumps up before the hounds, the loud and ge woral shout that too frequentiy preva:ls not un'r quently breake off the har 's intended course, and she is headed, or turned into the body of the hounds to certain death; when, on the contrary, were she permitted to go uff with less alarm, and to break view withuut being so closely prosed at starting, there is no deubt that much betser runs would be more generally obtained. Individual omulation, again, two frequen'ly occasion- horsemen in hare-hunting to be too near the hounds; Which being naturally urged by the rattling of the

H A R

horsec, and the exulting zeal of the riders, are apt at tines to over-run the scent, and have no alternative but to turn and divide amidst the lexs of the tories, as soon as they find that they have lost it; and to this circumstance may be justly attributed many of the long and terlious fautis which so frequently orcur, and render this kind of chase the less attracting.

G: ntlemen "ho keep harriers vary much in their modes of hunting them; but the irne sportsman nerer deviates from the strict impartiality of the chase. If a hare be fuund sittills, and the honnds too near at hand, they are inmediately drawn offi, to prevent her being chopped in her form: the hare is then silently walked up by the individual who previonsly found h.r, and is permitted to go off at her own pace, and to take her own course. The hounds are then drawn over the spot wincnce she started, where taking the scent, they go offin a style of uniformity, constituting what may be fairly termed the beauty of the chase. Others there are who can never resist the temptation of giving the hounds a view, and never fail to tell you boith bare and hounds run the better for it. In addition to this humane method of beginning the chase, every advantage is taken of the poor affiriehted animal's clistress, amidst all its little instinctive effirts for the preservation of life. The hounds, instead of being permitted to run the foil, and kill the hare by dint of their own peritevering labour, are constantly eapped from chase to view; and the object of the eport is most wantonly and illiberal'y destroyed.

When hounds come to a check, not a horse should move, not a voice be heard: everv hound shouid be eagerly employed, exerting all his powers for a recovery of the scent, in which, if not officiously obstructed, they will most probably soon succeed. "When in the field," says Mr. Bechet, "I never desire to hear any other tongue than a hound's." Whenever assistance to hounds is become unavoidably necessary, and the chase eaunot be carried on without, sound judgment and experience are necessary to speedy success. Casts cannot be marle byany fixed, certain, or invariable rules, but must, at diffirent times, be differently dependent upon the chase, the soil, the weather, and the kind of country you are hunting in. It may, in one instance, be prudent to try forward first; in another, to try back; as it may be judicious, or necessary, to make a small circular cast at one time, and a much larger at another; and although to one of the field circumstances may appear, in either instance, to have been ueally the same, yet they may not have been so in the "mind's eye" of the huntsuan (or the person hunting the hounds), upon whose superior knowledge or circumspection the good or ill effect of the experiment should depend.

Hare nets: nets for snaing bares. They are of two sorts, one of which. termed gate-nets, has been already described under that name; the other are called purse-nets, and are exactly in the form of cabbage-nets, but of larger and stronger construction, are merely auxiliaries in the same mischief to the gate-net, and are fixed either to the paling or the hedges, at the different meuses through which hares are expected to pass, when the ground has heen scoured by a mute lurcher. The success of such villainous poaching is almost certain, and sure of being extensive.

Harx-pipes, instruments so curious'y constructed as to imitate the whining whimper of a
hare, and formerly in common use among poachery, hs a certain tatar of drawing the hare within their range. On this account it has bien lung prohibited by the legisiature.
 lalina leporina.) A natural derect ia some part of the upper or under lip, so nabsed from some fancied resemblance in the diseased lip to that of an hare. In some the division is large, and a great part of the lip appears th he defective. The fissure is single, double, or complicated; the single has an angular point somewhat like the Poman letter $\boldsymbol{\Lambda}$ reversed, except that the sides and points are not regular; the double is more inclined to the form of the letter M; the complicated, is when either of the former is attended with a division of the palate on each side, in part, or extending to the back nostrils and uvila, in which case the latter ofien proves defective.

HARESBURY, a town of Wiltstire, on the Willy, near Warminster, 94 miles from London, is in old records called Heightsbury, or Heytsbury ; and now it is written Hatebbury. It was once the scat of the eupress Maud. Here are fairs May 14 th, and September 15 th; and it has sent members to parliament ever since Henry V1. it being an ancient borough by prescription. There is an alms-house nere for 12 poor men and a woman. Here is a coliegiate church with four prebendaries, and a free school, and the place is goserned by a bailiff and burgesses.

HAREWOOL, a small but pretty town in the West Riding of Yorkshire, with a stone bridge of 11 arches over the Wherfe, which runs in a bed of stone, and is as clear as rock-water. Near it are the ruins of a castle which was built soon after the conquest : as also an extensive park and noble house belonging to the family of Lascelles. Lat. 53. 55 N. Lon. 1. 25 W.

HARFLEUR, a town of France, in the department of Lower Scine and late province of Normaudy. Its fortifications have lien long demolished, and its harbour choked :i;. It stands at the mouth of the Seine. Lat. ty. 30 N. Lon 0. 19 E.

HA'RIER. s. (from hare.) A dog for hunting hares (dinsworth.)
hariot, or Heriot, in law, a due belonging to a lord at the death of his temant, consisting of the best beast, either horie, ox, or cow, which he had at the time of his death; and in some manors, the best goods, piece of plate, \&c. are called hariots.

There is both bariot-service, and hariotcustom: when a tenant hoids by service to pay a hariot at his decease, which is expressly reserved in the deed of feofiment, this is a hariot service; and where hariots have been customarily paid time out of mind after the death of a tenant for life, this is termed hariot custom. For harint-service, the lord may distrain any beast belonging to the tenant that is on the land. For hariot-custom, the lord is to seize, not distrain ; but he may seize the best, beast that belonged to the tenant, though

$\mathbf{H A R}$

it be out of the manor, or in the king's highway, because he cloins it as his proper goods by the death of his tenant. Nevertheless where a woman marries and dies, the lord shall have no hariot-custom, because a femecovert has no grods to pay as a hariot.

To HARK. v. a. (coniracted from hearken.) To listen (Huditras).

HARK. intcrj. (lt is originally the imperative of the verb kark.) List! hear! fisten! (Rowe).

Hark forward!-a shout common among huntsmen to announce that the hounds are a-head, and going on witi the chase. It sometimes happens, in very large and thick coverts, that neither mann mor horse can be in with the hounds. The best sportsinen are often thrown out for miles, and not unfrequently for the day, by various turns of the chase in covert, and by breaking up the wind on a contrary side, the enthusiastic cry of hark forward! however as it is technically pronounced hoic forward! relieves their anxiety, and directs them to the right course.

HARL. s. 1. The filaments of fax. 2. Any filamentous substance (Mfurtimer).

MARLECH, a town in Merionethshire, with a market on Saturday. It is seated on a rock, on Cardigan Bay, and but a poor place, though the county town, and governed by a mavor. Lat. ag. 54 N. Lon. 4. 6 W .
harleian collection. a most valuable collection of usetul and curions manuscripts, begun near the cod of the last century, by Robert Harley, of Brampton Bryan, Esq. in Herefordshire, -afterwards earl of Oxford and lord high-treasurer: and which was eonducted upon the plan of the great sir Robert Coton. He published his first considerable collection in August 1705, and in less than ten years he got tweether near 9500 rare and curious MSS. Somin after this, the celebrated Dr. George Hicks, Mr. Anstis garter king at arms, bishop Nicolson, and many other eminent antiqnarics, not only offered him their assistance in procuring MSis. but presented him with several that were very valuable. Being thus encouraged to perseverance by his suceess, he kept many persons employed in purchasing MSS. for him abroad, giving them written instructions for their conduct. By these means the MiSS. library was, in the year 1781 , increased to near 6000 books, 14,000 orivinal charters, and 500 rolls. On the 21 st of May, 172+, lord Oxford lied: but his son Edward, who succeeded to his honours and estate, still farther enlarged the collcetion; so that when he died, June 16th, 1741 , it consisted of 8000 volutnes, several of them containing distinct and independent treatises, besides many loose papers which have been since sorted and tround up in volumes; and above 40,0$) 0$ original rolls, charters, letters patent, grants, and other deeds and instruments of great antiquity. The principal design of making this collection was the establishment of a MS. English historical library, and the rescuing from destruction such national records as had eluded the diligence of preceding col-

HAR

lectors: but lord Oxford's plan was more extensive; for his collection aboundy also with curious MSS. in every science. This collection is now in the British Museum; and an cnameration of its contents may be seen in the Aunual Register, vol. vi. p. i40, \&c.

Harlili. Sce Haerlem.
HARLEQUIN, in the Italian comedr, a buffion, dressed in party-coloured cloines; answering much the same purpese as a merryaudrew or jack-pudding in our drolls, on mountebanks' stages, \&ic. We have also iatroduced the hariequin upon our theatres; and this is one of tue standing characters in the modern grotesque or pantomime entertainments. The term took its rise from a famous Italian comedian who came to Paris under Henry 1II. and who frequenting the house of M. de Harlay, his companions used to call him Harlequino, q. d. litule Harlay; a name which has descended to all those of the same rank and profession
halkLESTON, a town in Norfolk, with a market on Wednesdays. It is seated on the river Waveney. Lat. 52.26 N. Lon. 1.20 E .
HARLEY (Robert), earl of Oxford and Mortimer, was the eldest son of sir Edward Harley, and born in 1661. At the Revolution, sir Edward and his son raised a troop of horse at their own expence; and after the accession of king Willians and queen Mary he obtained a seat in parliament. His promotions were rapid: in 1702 he was chosen speaker of the house of commons; in 170+ he was sworn of queen Amne's prity comeil, and the same year made secretary of state; in 1706 he acted as one of the commissioners for the treaty of union; and in 1710 was appointed a cornmissioner of the treasury, and chancellor and under-treasurer of the exchequer. A daring atiempt was made on his life, March 8, 1711, by the maryuis of Guiscard, a French papist; who, when under an examination before a committee of the privy council, stabbed him with a penknife. Of this wound, however, he soon recovered; and was the same year created earl of Oxford, and lord high-treasurer, which office he re-igned just before the queen's death. He was impearhed of high treason in 1715, and committed to the Tow cr ; but was cleared by trial, and died in 17%. His character has been variuusly represented, but cannot be here discussed. He was nos only an encourager of litcrature, but the greatest collector in his time of curious books and MSS. his collection of whici makes a capital part of the British Museum.
HARLING, a town in Norfolk, with a market on Tuesdays. It has a manufactory of linen cloth. Lat. 52.27 N . Lon. 0. 58 E .
HARLINGEN, a large and pop:lous seaport of Friesland, in the United Provinces. Lat. 53.9 N. Lon. 5. 14E.
HA'RLOT. s. (herlodes. Welsh, a girl.) A whore; a strumpet (Drydien).
HA'RLOTRY. s. (frow hurlet.) 1. The trade of a harlot; fornication ($D_{\text {raf }}$! ρn). 2. A pame of contempt for a woman (Sikal.).

H A R

HARLOW, a small town in Essex, whose market is disused. It is 23 miles N. E. of Loudon. On a common two miles from the town is a famous anneal fair on the 9 th of September, for horses, catule, \&c. called Harlour Rush Fair.

HARM. s. (heanm, Saxon.) 1. Injury; crime: wickedness. 2. Nischict; detriment; hurt (Suift).

To Harm. v. a. To hirt ; to injnre (Wul.).
HARMATTAN, the name given to a singular wind which blows periodicality from the interior parts of Africa towards the Atlantic ncean. It prevails in Dicember, January, and February, and is generaliy accompanted with a fog or haze that ennceals the sun for whole days together. Extreme dryness is the characteristic of this wind: no dew falls during its continuance, which is sometimes for a formight or more. The whole vegetable creation is withered, and the grass becomes at once like hay. The natives take the opportunity which this wind gives them of clearing the land by setting fire to trees and plants in this their exhausted state. The dryness is so extreme that hemsehold furniture is danaged, and the wainsent of the rmoms tics to pieces. The human body is aiso atiected by it, so as to caluse the skin to peel off, but in other respectsit is deemed salutary to the constitution, by stopping the progeress of fifection, and coring almost all cutaneous discaics.

For a more detailed account of this wind, see Mr. Norris's paper in vol. Ixxi. of the Philosophicil Transactions.
HARMER (Thomas), a very able dissenting minister aid biblical critic, was born at Norwich in 1715. The christian ministry among the dissenters was the object of bis own choice; and after a course of preparatory studics, under the direction of Mr. Eames, he setuled, at the age of 20 , with a small congregation of the independent denomination at Wittiesfield, Suffiolk, over which he presided till his death, Nov. 27:h, 1788. He appears to have been not only an industrious student, but a pious and diligent minister, and a most exenplary member of civil society. Dr. Symonily says, "there is not probably a single " instance of an individual to be found, who, "c by a mild and scasonable interference, pre"t vented nore law-suits than Mr. Harmer." He is most known by the public for his truly valuable Observations on various Passages of Scripture; a work in which he has very happily pursued the idea of employing the accounts of modern travellers in the East to illustrate the incidents and allusions that occur in scripture. This is a very fertile species of evidence in favnur of the christian religien. The fourth edition of Mr. Harmer's work, with manv important additions and corrections by Dr. Adan Clarke, was published in 1808, in 4 vols. 8ro.

HA'RMFUL. a. (harm and full.) Hurtful; mischicvous (Raleigh).

HA'RMFULLY. ad. (from harmful.) Hurtfully; noxiously (Ascham).

HAR

HARMFULNESS. s. (from harmful.) Hurffulness; mischievousness ; noxiousness.
HA'RMLESS. a. (from harm.) 1. Ionocent; innoxious; not hurfful (Shakspeare). 2. Unhurt; undamaged (Raleigh).
HA'RMLESSLY. ad. In nocently; without hurt ; without crime (Wallon).
HA'RMLESSNESS.s. Innocence; fredom from tendency to injury or hurt (D onne).
HARMONIA, in fabulous history, a daughter of Mars and Venus, who married Cadmus. Vulcan, to revenge the infidelity of her mother, made her a present of a vesta.ent dyed in all sorts of crines, which inspired all the childtens of Cadmus with inpicts. (Pauz.)

Harmonia, (afmorice, from apw, to fit engether). Harmony. A species of synarthiosis, or immoveable connexion of bones, in which bones are connected together by means of rough margins, not dentiform: in this manucr most of the bones of the face are united together.

harmonica. See Armonica.

HARMONIC, as an adjective, signifes in general any thing belonging to harmony; though in our language the adjective is more properly written harmonical. In this case it may be applied to the harmonical divisions of a monochord; or, in a word, to consonances in general. As a substantive neuter, it imports all the concomitant or accessary sounds which, upon the principles resulting from the experiments made on sonorous bodies, attend any given sound whatever, and reader it appretiable.
HARMONICAL CURVE, a fancied kind of curve, into which it was supposed a musical chord would be inflected when it was put into such a vibratory motion as excited sound. It has heen asserted by Dr. Bronk Taylor, and others, that if a chord be inflected into any other form than that of the harmonic curre, it will, since those parts which are without this figure are impeelled towards it by an excess of furce, and those within it by a deficiencr, in a very short time arrive at or very near the form of this precise curve. But, as Dr. TT. Young very properly remarks, "it would be easy to prove, if this reasoning wert allowed, that the form of the curve can be no other than that of the axis, since the tending force is continually impelling the chord towarde this line. Phil. Trans. 1800. pt. 1. In theory a musical chord is conceived to be a mathematical line, flexible by the least force, and clastic; and when such chord at the limit of its vibraion assumes the form of this harmonical curre, it will vibrate to and fro in curves of the same species. Aceording to the investigation of Dr_{0} Smith, the figure contained under the haro monical curve and its base, is of the same species as the figure of sines. From the investigation it follows: 1. That the force by which any smatl particle of an elastic string is impelled towards the centre of its curvature is to the tending force, as the length of the particle, to the radius of corvature. 2. The

HARMONIC.

perpendicular distance of a particle frum the string in its quiescent position, is to the string's length, as the same length to the radius of curvature into the square of 3.14159 . Hence, if any perpendicular distance DH be put $=d$, the string's length $=\mathrm{L}, \mathrm{s} .14159=p$, we shall have the radius of curvature at $\mathbf{D}=\frac{L}{d p} p^{2}$ 3. Each particle of the string will arrive at the axis at the same instant of time. But it is all along supposed that the greatest distance of the string from the axis bears no sensible proportion to its length. Smith's Harmon. pa. 2-18. \&re. Notes to Jesuit's Newicn, tom. is. pa. 348.
harmonical proportion, or MusiCALPROPORTION, is that in which the first cerm is to the third, as the difference of the first and second is to the difference of the 2d and 3 d ; or when the first, the third, and the said two differences, are in geonetrical proportion. Or, four terms are in harmonical proportion, when the lst is to the 4 th , as the difference of the 1 st and $2 d$ is to the difference of the 3d and 4th. Thus, 2, 3, 6, are in harmonical proportion, because $2: 6:: 1: 3$. And the four terms 9, 12, 16, 24 are in harmonical jroportion, because $9: 24:: 3: 8$.-If the proportional terms be continued in the former case they will form an harmonical progression, or series.

1. The reciprocals of an arithmetical progression are in harmonical progression ; and, conversely, the reciprocals of harmonicals are arithmeticals. Thus, the reciprocals of the harmonicals $2,3,6$, are $\frac{1}{2}, \frac{1}{3}, \frac{1}{6}$, which are arithmeticals; for $\frac{1}{2}-\frac{1}{3}=\frac{1}{0}$, and $\frac{1}{3}-\frac{i}{6}=\frac{1}{6}$ also : and the reciprocals of the arithmeticals 1, 2, 3, 4, \&rc. are $\frac{1}{1}, \frac{1}{2},-\frac{1}{3}, \frac{1}{4}, 8$. . which are harmonicals for $\frac{1}{1}: \frac{1}{3}:: \frac{1}{1}-\frac{1}{2}: \frac{1}{2}-\frac{1}{3}$; and so on. And, in general, the reciprocals of the arithmeticals $a, a+d, a+2 d, a+3 d$, \&x. viz. $\frac{1}{a}, \frac{1}{a+d}, \frac{1}{a+2 d}, \frac{1}{a+3 d}, \& c$. are harmonicals; et e contra.
2. If three or four numbers in harmonical proportion be either multiplied or divided by some number, the products, or the quotients, will still be in harmonical proportion. Thus, the harmonicals - $6,8,12{ }_{2}$ multiplied by 2 give $12,16,24$, or divided by 2 give
which are also harmonicals.
3. To find a harmonical mean proportional between two terms: Divide double their product by their sum.
4. To find a $3 d$ term in harmonical proportion to two given terms: Divide their
product by the difference between double the ist term and the 2d term.
5. To find a 4th term in harmonical proportion to three terms given: Divide the product of the lat and 3 d by the difference between double the 1 st and the $2 d$ term.
Hence, of the two terms a and b;
the harmonical mean is $\frac{2 a b}{a+b}$,
the 3 d harmonical propor. is $\frac{a b}{2 a-l}$,
also to a, b, c, the 4 th harm. is $\frac{a c}{2 a-b}$.
6. If there be taken an arithmetical mean, and a harmonical mean, between any two terms, the four terms will be in geometrical proportion. Thus, between 9 and 6 ,
the arithmetical mean is 4 , and
the harmonical mean is 3 ;
and hence $2: 3:: 4: 6$.
Also, between a and b,
the arithmetical mean is $\frac{a+i}{2}$, and
the harmonical mean is $\frac{2 a b}{a+b}$;
but $a: \frac{2 a b}{a+b}:: \frac{a+b}{2}: b$.
7. Although a series of numbers in DECreasing geometrical progression can never exceed a determinable finite number; yet this is not the case with a decreasing harmonical progression : for it is demonstrable that the series $1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{5}, \&$ c. may be continued in such a manner as to exceed any finite number whatever.

HARMONICS, as the term is'now understool, open a wide field for investigation. Formerly the relations of sounds had only been considered in the series of numbers, $1: 2,2$: $3,3: 4,4: 5,8 x$. which produced the intervals called octave, fifih, fourth, third, \&ic. M. Sauveur first considered them in the natural series, 1, 2, 3, 4, \&c. and examined the relations of the sounds arising therefrom. The result is, that the first interval, $1: 2$, is an octave; the second, $1: 3$, a twelfth; the third, $1: 4$, a fifteenth, or double octave ; the fourth, $1: 5$, a seventeenth; the fifth, $1: 6$, a nineteenth, \&cc. This new consideration of the relations of sounds is more natural than the old one: it expresses and represents the whole of music, and is, in effect, all the music that nature gives without the assistance of art : for numerous experiments prove clearly, that these relations are not merely theoretic, but exist actually in nature. In addition to what has been said under the articles Chord and Generator, we may now advance other proofs of these harmonical combinations; in the sound of large bells, for instance, one who listens attentively will distinguish not only the fundamental tone, but the twelfth, and seventeenth major, and sometimes other concords. If a sounding body of any kind, as a rod of

$\mathrm{H} \mathbf{A} \mathbf{R}$

irnn, a poker, a piece of thick wire, a flat piece of brass, \&ec. be hang froma string, one end of which is brought to our car, and the lody struck upon by any proper object, we shall not only near a leod fundmemtal sound, but a surprisitg combination of various toncs, in which an attentive ear will distinguish several of the natural harmonics. Again, if wealfust seveal stimos to the ectase, the twelfith, and the sevententh, of the determinate sound emitted ley another string, both ascencing and descendirg; as often as we make that which gives the determinate sound to resound stronsly, we shall immediately se all the rest put the elves in a state of ribration: we shall even hear those sound which are tuned lower, if we take care to damp or stifle suldenly the snund of the former by the application of a soft body. Experiaionts nearly simiiar have been tried upen ghases and other somoding hedics. Now, it is matural to enguire, whether these harmonics have their suarce immediately in the sonorous body, or exist in the air, or the organ of hearing. Philosophers of eminence have endearoured to discover whether, independently of the total vibrations mads by a body, there are partial ones; but hitherto this has not been totally decided. M1. Despian is of opinion that these harmonical soundo are cither in the air or the organ: both suppositions he thinks are probable; for "since a determinsie sound has the property of putting into a state of vibration bodies diaposed to give its octare, its twelfith, \&c. we must allow that this sound may put in motion the particles of the air, susecputble of vibrations of double, triple, quadruple, and quintuple velocity. What however appears most probable in this respect is, that these vibrations exist only in the ear: it seems indeed to be proved by the anatomy of this organ, that sound is transmited to the sool only by the vibrations of those nervous fibres which cover the interior part of the ear; and as they are of different lengihs, there are always some of them which perform their vibrations isochronous to those of a given sound. But, at the same time, and in consequence of the property atove neentioned, this sound must gut in motion those fibres susceptible of jsochronous vibrationa, and even those which can make vibrations of double, triple, quadruple, \&c. velocity." Píilos. Amusements, p. 213.

It must be observed, howeser, that Dr. T. Young is of a contrary opinion, and that the fact adduced by him (sec Elastic string) tends very qreaily to contirm the sentiments he has advanced.

Harmonics, on the German flute and other wind instruments, are produced by increasing the velocity of the air, or blowing with greater and greater degrees of strength: thus, if the degrees of force wherewith the air is impciled through the instrument be as $1,2,3,4$, 5 , and 6 , the corresponding sounds will be the generating sound, the octave, twelfih, fifteenth, oeventh, a:ud ninetecnth.
$\mathrm{H}_{\mathrm{AR}} \mathrm{HO} \mathrm{NiOL} \mathrm{S}$. a. (harinonieux, Fr .)

H A R

1. Adapted to each other; having the parts proportioned to each other (Corltry). 2. Mustal ; sumphonious (D ryd (n).
hamilo adaptation and proportion of parts to each otiier (Bcntlcit). 2. Musical ; with concord of sound (Stil!ing flect)

Halimo Niotishess. s. (from hermoniow..) Praportion ; musicalness.

To IIA'RMONIZE. \boldsymbol{r}. a. (from harmony.) To aljust in fit proportions (Dryden).

HARMONY. s. (ri; Mria; harmonie, Fr.) 1. The just adaptation of one part to another (Bacon). 2. Just proportion of sound (Fatts). 3. Coneord; correspondent sentiment (Milt).

Harmony, in music, the agree:ble revalt of an union of sereral musical sound, heard at one and the same time ; or, the nixiture of divers sounds, whet together have an agrecable effect to the car. The word is ciy, mora, formed of the verb ijper?iv, concenire, congruer, to agece, quadraie, match, \&cc. As a continued succession of musical sounds produces melody; so docs a continued combination of them pioduce harmony.
Harnovy is either natural or artificial. Natural harmony is such as results from the relations of the concomitant sounds which attend any given fundamental tone. Artificial harmony is such a just and judicious combination of the graver and aciter sounds, as approaches most nearly to the natural harmonic generation of ag'ecable intervals. The rules which are now made use of in order to render harmouy compatible with itself, or to produce such a union of pleasing melodies as sh:ll, when heard together, accord with the experimental principles of modulation, are too conplex and multifarious to be comprised within narror bounds. We shall, therefore, omit then, rather than render them obscure by abridement; and proceed to explain the different acceprations which have been generally given to the term harmony by practical musicians.

Harmony is divided into simple and compound; simple is that where there is no con. cord to the fundamental abore an octare, the ingredients of simple harmony are the seven simple original concords, of which there can be but eighteen different combinations that are harmony, as may be seen in the following table:

Fifth, octave	
Fourth, octave	
Sixth greater, octave	
Third greater, octave	
Third lesser, octave	
Sixth lesser, octave	
Third greater, 5th	
Third lesser, 5th	-
Fourth, 6th greater	
Third greater, 6th greater	
Third lesser, 6th lesser	
Fourth, bith lesser	
Third greater, 5th	
ird, lesser, 5th	

H A R

Fourth, 6th greater
Third gre.ter, Gith greater
Third leoser, Gith lesser
Fourth lesser, Gih lesser

H A \boldsymbol{R}

The octave is composed of a fifth and fourth, or a sixth and third, which have a variety of greater and less; out of these are the first six harmonies composed: then the fifth being componed of the greater third and less third, and the sixth of the fourth and third; from these arise the next six of the taine, then an octave, joined to each of these six, make the last six. Of the first six in the tuble each has an octave, and their preffreace is according to their perfection of the other lesser concord joined to the octave. In the next six the preference is given to the two combinations with the fiith, whereof that which has the third greater is best ; then to these two combinations with the sixth greater, of which that which has the fourth is best. The last six are not phaced last as the least perfect, but as the most complex, being the mixtures of the preceding twelve.

Compound harmony adds to the simple harmony of one octave that of another octare. The variety of this is easily found out of the combinations of the simple harmonies of sereral octaves. Harmony may also be divided into that of enncorids, where nothing but these are admitted; and into that of discords, where they are mixed with the concorls.

Besides these, we have only to notice figured harmony, or that in which, for the purpose of melody; one or more of the parts of a composition move during the continuance of a chord, through certuin notes which do not form any of the constituent parts of that chord: in this apecies considerable judgment is required.

Harmony of the spheres, or Celestialharmony, a sort of music much talked of by many of the ancient philoiophers and fathers, supposed to be produced by the sweetly tuned motions of the stars and planets. This harmony they attributed to the sarions proportionate impressions of the heavenly globes upon one another, acting at proper intervals. It is impossible, according to them, that such prodigious large bodies, moving with so much rapidity, should be silent : on the contrary, the atmosphere, continually impelled by them, must yield a set of sounds proportionate to the impression it receives; consequently, as they do not all run the same circuit, nor with one and the same velocity, the different towes arising from the diversity of motions, directed by the hand of the Almighty, must form an admirable symphony or concert. They therefore supposed, that the moon, as being the lowest of the planets, corresponded to mi; Mercury to fa; Venus to sol; the Surf to la; Mars to $s i$; Jupiter to $u t$; Saturn to re; and the orb of the fixed stars, as being the highest of all, to mi, or the octave. See Plin. lib. ii. cap. 22; Kepler's Harmonics ; and Macharin's View of Newton's Discoveries, book i. c. 2.

Harmony (Pre-established), a celebrated readers in attempting to refutc it. tion between the parts of a building. citadels, forts, \&c. den). their traces (Hale). judre.
ssstem of M. I.cibnitz, by means whereof he attempts to account for the union or communication between the soul and the body. A soul, or spirit, lie observes, is on have a certain scries of thoughts, devires, and wills; a body, whech is only a machine, is to have a cercain series of motions, to he determined by the combination of its mechanical disposition with the impressions of external ubjects. If, now, there be found a soul and a body so framed, that the whole series of wills of the soul, and the whole series of motions of the badi, exactly correspoud; and at the same time, fir instance, when the soul desires to ge to any place, the two feet move mechanically that w.y; this soul and body will have a relation to one another, not by any actual union between them, but by the constant and perpetual correspondence of the several actions of both. Now, God puis together this soul and body, which had such a correspondence antecedent to their mion; such a pre-established harmony. And the same is to be understiond of all the other souls and bedies that have been or ever will be joined. This curions system the ingenions author extends much farther: as it, though appearing to explain much, in fact explains nothing; it would be ridiculous to waste our time and that of our

Harmony, in architecture, agreeable rela-
HARMOSTES, in antiquity, a magistrate atnong the Spartans, who superintended the

HA'RNESS. s. (harnois, French.) I. Armour; defensive furniture of war (Shakspeare). 2. The traces of draught horses, particularly of carriages of pleasure or state ($D_{r y}$ -

To Hírness. \boldsymbol{v}. a. (from the noun.) 1 . To dress in armour (Ruwe). 2. To fix horses in
haro, Harou, or Harol, in the Norman customs, clamour de haro is a cry or formula of invoking the assistance of justice against the violence of some offender, who, upon hearing the word haro, is oblized io desist, on pain of being severely punished for his outrage, and to go with the party before tho

HARP, a stringed musical instrument, consisting of a triangular fraue, and the chords of which are distended in parallel directions from the upper part to one of its sides. Its scale extends through the common compass, and the strin'ss are tuned by semitonic intervals. It stands erect, and when used is placed at the feet of the performer, who produces its tones by the action of the thumb and fingers of both hands on the strings. That the harp is anong the unost ancient of musical instruments, the frequent mention of it in scripture, and the sylendid account transmitted to us of the Theban harp, both as to the beauty of its decorations and extent of scale, are sufficient eridences. There is some diversity in the structure of harps. That called the triple harp has ninety-seven strings or chords, in three rows,
extending from C in the tenor cliff, to double \mathbf{G} in alt, which nake five octaves: the middle sow is for the semitones, and the two outside rows are perfect unisons. On the bass side, whicls is played with the right hand, there are thirty-six strings ; on the treble side twentysix ; and in the middle row thirty-five strings. There are two rows of pins or screws on the right side, serving to keep the strings tight in their holes, which are fastened at the other end to three rows of pins on the upper side.
The Irish and Welsh practised the harp long before the gammut of Guido was invented; it is, indeed, their national instrument. In England also it was early introduced to general use, and the most ancient poems were sung to it on Sundays and all public festivals.
There are many different opinions respecting the derivation of this word. Some deduce it from arpi, others from the Latin carpo, others from the German herp. But Dr. Hickes and Dr. Johnson say it comes from the AngloSaxon hearpa; we are inclined to adopt their opinion.
Harp (Bell), a musical stringed instrument, so called from its being generally swung about in performance like a bell. The bell harp is abrut three feet long; its strings, which are of no determinate number, are of brass or stecl wire, distended over the sounding board, fixed at one end, and held at the other by screws. It includes fouf octaves, and is performed by atriking the strings with the thumbs, the right haud playing the treble and the left the bass.

Harp (Eolus's). Sce Æolus'sharp.
To Hakp. v.n. (harper, French.) 1. To play on the harp (Corinthians). 2. To touch any passion (Shat prare).

HARPAGINES, in antiquity, were hooks of iron, hanging on the top of a pole, which, being secured with chains to the masts of ships, and then let down with great velocity into the enemy's vessels, canght them up into the air.

HARPE (Jean François de la), a celebrated Prench poet, dramatist, and critic, was born at Paris, November 20th, 1739. His father, who was a captain of artillery, died while he was young, and left him in a state of extreme poverty. But he was patronized by M. Asselin, principal of the college of Harcourt, who received him among his prupils.

La Harpe commenced his public career in letters by poems called Heroides, which were then much in vogue. The Epistle of Eloise to Abelard, by Colordeau; of Barnavelt to Traman his friend, by Dorat; and that of a monk of La Trappe to the abbe de Rance, by La Harpe, were very popular. The suffrages were at first divided between La Harpe and Dorat. The world gave the palm to the latter, pleased with the tinsel of his style; but men of taste to the former, who was soon the acknowledged conqueror.

These trifles were but the prelude to a nobler success. To a young man who had destined himself to a literary life, two enviable paths were open-the honours of the academy, and those of the theatre. A prize obtained at the

French academy, or a successful drama, would remove the first difficulties, admit him into the higher circles, and procure hina elevated protectors. La Harpe presented himself wilh courage, and aluost in the same moment, in both, and his first efforts in each were successful. The first topic of eloquence he essayed was his Eulogy on Charles V. king of France. His other most celebrated eulogies were those on Fenelon, Catinat, and Racine; the latter was esteemed his chef d'cuute in these compositions. Among his tragedies, Warwick, Coriolanus, Pliiloctetes, Barmecides, Johanua of Naples, and Menzicoff, display the wost genius.
To render the homage due from him to Voltaire, he wrote a piece, in which, alluding to the universality of his master's talents, he supposes the whole of the Muses in a contest which shall decree the greatest honours to him. This plan, common as it may be, is executed with much delicacy of conception. It will be fett that Melpomene must be distinguished abore the rest; and the author here found no difficulty. But what to make Thalia say, was not so easy to conceive. The author has very dexterously withdrawn himself from this embarrassment; the Muse of Comedy contenting herself with observing, " When he visited me, it was for pastime; but I do not pay a homage the less sincere to his merit." This, expresed in elegant poetry, is not one of the smallest beauties of the piece.
M. de la Harpe also wiote a comedy for the inanguration of the new French theatre, istitled, Molicre at the New Theatre. It is distinguished by a native and genuine gaiety, which affords no snall reason to beliere that our author would have succeeded in comedy had he early attached himself to it.
M. Gaillard, in drawing a parallel between the tragic productions of M. de la Harpe and M. de Dubclloy, gives the preference to the latier for effect, and to the former for style. "I know not (he says), what rank posterity will assign to M. de la Harpe among our danatic pocts: it will not, however, be denied, that his pieces are written in a style superior to any except the fine tragedies of Racine and Voltaire; and how many beauties are supposed in acknowledging that of style!"
M. de la Harpe was himself asked, a litte before his death, how he would have spoken of his tragedies in the Cours de Littérature, had it been within his plan to have criticised living authors. He replied, "I would have done myself this justice, to say, that if 1 have not contributed to the success of the dramatic art, I cannot be accused of accelerating its fall." It is not possible for any one to judge himself with more truth or modesty.
It is some proof of the richness of M. de h Harpe's talents, that, almost always occupied with serious and eloquent discourses, or the grandeur of tragio subjects. he neverthelem could obtain success in lighter productions, usually the fruit of a love of life and society. Among these are two epistles, one to Tasso,

H A R P E.

and the other from Horace to Voltaire, written with ease and elegance. We will not pass in review his odes, although some enjoyed reputation in their time. It appears to us that the author did not possess that fire of imagination necessary to success in the ode. But we now quit all the minor productions of M. de la Harpe, to consider another great feature of his literary character. "Let us suppose hiu stripped (says M. Gaillard), of his other works, his tragedies, his poetry of various kinds, his acadenncal discourses; let hiin no longer be deemed a poet or orator; let us now vicw alone the critic :-How great will the space be, how splendid the fame be will yet enjoy in literature! How has he graced and ennobled that function of journalist, which so many before and after him have degraded!"

We are now come to the work which places the seal on the literary reputation of M. de la Harpe, his Cours de Littérature, Ancienne et Moderne, which justly entitles him, in the beginning of the nineteenth century, to the honourable appellation of the French Quintilian! M. Petitot, after having examined and analyzed the plan which Marnontel has adopted for his Elémens de Littérature, continues thus: "The career of M. de la Harpe is more vast and brilliant. He unt only labours to give to persons of no great knowledge competent information on the topics of his work, but arrests the attention of the most learned. In his plan, the outine of which alone amounces an inmense stock of science and learning, he embraces all ages in which literature has flourished. Every celebrated work is analyzed and discussed. The beauties of the several writers are happily displayed, their faults pointed out, with all the ability of the most lively and sonnd criticism. It is in reading the Cours de Litter rature that we behold the peculiar talent he possessed of appreciating the exact value of every work in every species. We feel nothing of that fatigue so natural in the perusal of extensive and labosious prodictions. M. de la Harpe examines the enormous multitude of subjects belonging to his plan with all the charmos of freshness and novelty.
"That which eminently distinguishes M. de la Harpe from other moderns who have treated of literature, is, that he always assumes the tone of the work he criticises; a merit we find in none of the ancients except Cicero, Quintilian, and Longinus. If he apeaks of the lliad, you behold him borrow all the rich colours of the father of poetry to decorate his discourse: the ungracious air of criticism disappears: nothing remains but the effect of one of the sublime works of the human mind on the imagination of a poet. If he treats of De mosthemes and Cicero, all the great interests of Athens and Rome are reproduced under his eloquent pen. If Tacitus is his theme, you are instantly transported to the age of the emperors: you enter into all the mysteries of the dark policy of Tiberius, and tremble at the sight of Nero. Is M. de la Harpe arrived at the ages of Francis I. and Louis XIV. he sports
with Marot, rises with Malherbe, sheds the sweet perfunie of Racine's poetry, reasons with Pascal, imitates the insinuating graces of Fe nelon, melts at the touching extiortations of Massillou, and, if he cannot assume all the grandeur of Bossuet, approaches at least, by a more elevated style, the energy and vigour of the greatest of Christian orators."

We shall have no reader who will not participate in our regret that our author did not live to finish so fine a work. There remains indeed little to do to terminate the examination of the poetry of the eighteenth century; but the department of eloquence is scarcely entered upon; and we have nuthing of those of history and miscellaneous literature.

At the conclusion of the examination of modern literature, M. de la Harpe proposed to give sufficient details to appreciate the great writers of foreign literature; but this he had not begun. Finally, he intended to dedicate the conclusion of his Cours to the philosophy of the eighteenth century. He had it much at heart to execute this. Some fragments are all that is formed of it. The must remarkable is relative to Rousseau, whom he seems disposed to attack without restraint; and it cannot be dissembled that his animosity to that eloquent writer is directed rather against his personal character, than what is reprehensible in his works. In the chapter respecting philosophers, he contrasts them with sophists, and it is here that he employs all the vigour of his logic. We are deprived, by the incomplete state of this article, of a subject of great interest, because he had to attack authors of the higliest rank in literature and science. It is sufficient to name Voltaire, Rousseau, Condorcet, and Mably, to give an idea of the extent of the task M. de la Harpe had here imposed on himself.

He left behind him, in inanuscript, a Commentary on the tragedies of Racine, and another on those of Voltaire.

The qualities which distinguish M. de la Harpe as a writer, are, an immense erudition: a mind nourished by a love of the fine models of antiquity, and of the great writers of the age of Louns XIV.; the art of identifying himself with his subject ; a colouring that may be almost felt ; luninous views; a clearness of expression, resulting from the distinct and natural order of his ideas; a style vigoroun and impressive in criticism, and eloquent in discourse; and, above all, the vehemence of his pen when inspired by indignation. When thus moved, he seizes upon the avenues of passion by his delineation of injustice ; he overwhelms by accumulation of proof, by the rapidity of his arguments; or renders opposition ridiculoum by the keenness of his irony.
It would be natural to suppose that \mathbf{M}. de \boldsymbol{h} Harpe must have secluded himself almost entirely from the world in order to execute so many literary enterprizes; but we learn the contrary from himself. He was much in company, and his visits were eagerly courted. Doubtless he owed the favour in which be was with polite circles to his earty and brillieat

II A R

enceess in letters, which at once balanced the prejuticers created by the unfortunate adrenrure of his youth, and the resentment often excited by the severity of his criticisms. From the first essay of his talents he was patronized by Volasire and I) Alambert, who were at the head of liserature and sciences; and it is well known what influcuee those two celebrated nen possensed over the public opinion. Voltaire accorded him the emviable title of his favourite pupil. Married, while get very young, t1) a woman of wit and beauty, madanie de la Ilape and he mutuall; shone with unumal Eralliancy in the most tashon.ble assemblies.
M. de la Harye, eraecd wiht the personal favour of sovereign prineres, and covered with literary honours, inherited afier the death of Voliaire part of the remown of that great man; and when Roussau, D'Alembert, and afterwards Buffon, and other persons of distinguished merit died, he occupied, almost without a rival, one of the first ranks in the repablic of letters. All eyes secmied then to be turned upon him, to console themselves for the losses they had sustained. He had arrived at the moment of receiving the fruit of all his labours. The public esteem was expressed loudly when the adminictrators of the Lyceum appointed him to deliver the lectures of that institution ; and this school of taste became the most disinguished theatre of his glory. The magnitude and importance of the course of lectures he had undertaken, and the infirm state of his health, now induced him to dedicate himself wholly to that lahour, to which he in fact had confined himself for several years preceding the Revolution. That terrible monent arrived; and in vain did M. de la Harpe endeavour to attract still to the Lyccum the numerous partizans of literature. At this memorable epoch he participated, with other well-disposed minds, sentiments the most unequivocally formed for the happiness of his country; but die continued in the discharge of his literary functions, and would accept of no public office. He has been reproached with not having foreseen the dreadful march of the progressive horrors we have since beheld. What innocent man could have foreseen them? He has been reproached also with changing his opinion. Who is there that has not modified his during these unhappy convulsions? Can any one raise his voice to say, that M. de la Harpe ever applateded these horrors; he who would have arrested the torrent; he, in a word, who, for having unmasked the ferocious madness of lobespierre, was thrown into a dungeon, where long he remained between the living and the dead, uncertain each hour to which he should belong? It was there that he had leisure to groan over the follifs of the human race; there, that religinn offered to him her happy consolations; there, that be adopted the resolution of consecrating the remainder of his days to her service; and shewing to the world that even he who had been a contemner of Christianity, a ridiculer of its mysteries, and a bosom companion of those who sat "in the
chair of the scorner," had been chosen as a monument of nercy, and converted from the error of his way.

La Harje had the happiness to be forgntten in his prison, from which he was liverated shortly after the gth Therinidor. He re-appeared at the Iyceum, where it was uhserved that mistormne and piety had added new enersy to his eloquence; and it was in the midst of a numerous andience that he boldly and ingennously renounced his errors!

Scarccly was he restored to his fellow-citizens, than he placed himself courageously as 2 sentinel to guard against the return of so many calamities. It was this spirit that dictated to him various works respecting projects of laws which had renewed alirms. One of the greatest scourers propluced by the ceneral disorder was that gross and ferocious language which began to cast France back with rapid strides towards ages of barbarism. M. de la Harpe repelled the innovators in style with the arms of reason, taste, and eloçuence. Ignorance did not pardon that zeal which displayed her in just colours.

A new storm arose, and M. de la Harpe was driven to seek an asylum in a spotimpeneratile tn all but a faithfil friendship. He was deprived of exercise; and the effect on bis healh was prereeptible when he again appeared in puiblic after the 1 sth Brumaire. His health thenceforth sensibly declined; and he expired on the 11th of February 1803, in his 0ish year.

HA'RPER. s. (from harp.) A player on the harp ('rickiel).

HARPILS, or HARPY天, in antiquity, a fabled kind of wingel monsters, daughters of Neptune and Terra, who had the face of 3 woman, the body of a vulture, and had their feet and fingers armed with sharp claws. They were three in number, Aello, Ocypete, and Celenn. Ther were sent by Juno to plunder the tables of Phinens, whence they were driven to the islands called Strophades, by Zetines and Calais. They emitted an infectious smell. and similed whatever they touched by their filth. They plundered Fineas during his vovae towards Italy, and Celeno predicted many of the calamities which attended him.

HARPINGIRON. See IIarpoon.

HARPINGS, in a ship, properly denote her breadth at the bow. Some also give the sime name to the ends of the bends that are fasteued into the stern.

HARPOCRATES, in mythology, the son of Isis and Osiris. This is an Ezyptian deitr, whose distinguishing attribute is, that he is represented with his fingers applied to his month, denoting that he is the god of silence. The statue of this idol was fixed in the entrance of most of the Egyptian temples, and he was commonly exhibited under the figure of a young man naked, crowned with an Egyptian mitr, holding in one hand a cormucopia, and in the other the flower of lotus, and sometimes bearing a quiver.

Harpoon, or Harping-iran, a spear

HAR

or javelin used to strike the whales in the Greenland fishery. The harpoon, which is sometimes called the harping-iron, is furnihhed with a long staff, haring at one end a broad and flat triangular head, sharpened at both eiges, so as to penetrate the whale with facility: to the head of this weapon is fastened a long cord, called the whale line, which lies carciully coiled in the brat, in such a manner as to run out without being interrupted or entangled. See Balena, lihalefighery.

Harpoon (Gun), a kind of fre-arm for discharging harpoons at whales, and thereby killing them more easily and expelitiously than formerly when the harpoons were thrown by the hand. Though this method was projected a good many years ago, it has but lately come into use; and premiums have been annually oficred by the society for encouraging arts, sic. w the persons who first struck a fish in this manner. In the Tramsactions of that Society for 1780 , we have an account of the first fish struck in this manuer in 1784. The gun was of the blunderbuss construction, luaded with four common tobaceo-pipes full of glazed powder; the fish was shot at the distance of ten fathoms, the harpoon going imto her back up to the ring; and she was killed in about an hour. In 1785 three whales were killed in this manner; four in 1786, and three in 1787. Since that time the gun harpoon has come more into use, and will probably soou supersede the other method entirely.

HARPSICHORD, a musical stringed inatrument, consisting of a case formed of mahogany or waluut-tree wood, and containing the belly or sounding-board, over which the wires are distended, supported by bridges. In the front the keys are disposed, the long ones of which are the uaturals, and the short ones the sharps and thats. These keys being pressed by the fingers, their inclosed extremitics raise hutle upriglat oblong slips of wood called jacks, farnished with crow-quill plectrums, which strike the wires. This instrument has of late years given place in cur drawing-rooms to the pham-tiente.
harpy. Sce Harpies.
By an olvious appuication the term harpy is now often used to deate a ravenous wretion, an extortioner.

HARQULEBC'SS, a hand-gun, or a fire-arm of a proper lenesth and wegght to be borne in the ar.... Hanielet prescribes its proper lengh to 'je 40 calibres, or diameters of its bore; and the weight of its ball 1 oz . and ? ; its charge of pow ler as unch.

HA'RQUERBCSSIER.s.(from harquetuss.) Ore armed with a harquebuss (Kuolies).

H 4RRII)A'A. s. (corsupted liom inaridelle, French, a worn-out worthless horse.) A decayed strumpet (Surift).

HARRIER, or Common hound, a variety of the canis familiaris, appropriated solely to tie punsuit of the hare, and thence deriving its appellation. Repeated experiments have proved satisfictorily that the best brect of the harrier is ubwined from crossiag the old south-

H A \boldsymbol{R}
ern and the dwarf fox hound. Mr. Beckford, whose opinion is decisive, allirms that his hounds were a cross of both these kinds, in which it was his endeavour to get as much bone and strength, in as sinall a compass as possible. It was a difiicult undertaking. He bred mang years, and a great multitude of hounds, befure he could get what he wanted, and had at last the pleasure to see them very havisome; small, yet very bony: they ram remarkably well rogether, and fast enough; had all the alacrity that could be desired, and would humt the coldest seent. When they were thus perfect, he tells us, he did as many others de-he parted with them. 'The best pack of harriers existing in the present day is, as it ought to be, that of his majesty. See also beagle and Hound.

HARRINGTON (James), a most emmens E:ghioh writer in the seventeenth century, bred at Oxford, travelled into Holland, france, Deumark, and Germany, and learned the languayes of those countries. Upon his return to England, he was admitted one of the privychamber extraurdinary to king Charles I. He served the king with great ficielity, and made use of his interest with his friends in parliament to procure matters to be accommodated with all parties. The king loved his company, except when the conversation happened to turn upon commonwealihs. He found means to see the kiag at St. James's; and attended him on the scationil, where, or a litule before he received a twken of his majesty's affiction. After the death of bing Charles, he wrote his Occana; a kind of political romance, in imitation of Plato's Commonwcaith, which he dedicated to Oliver Cromwell. It is said, that when Oliver perused it, he declared, that " the gentieman had wrute very well, but must not think to cheat him out of his power and authority; for that what he had won by the sword, he would not suffer himself to be scribbled out of." "This work was attacked by several writers, against whom be defended it. Beside his writings to promote republican principles, he instituted likewise a nirthly meeting of sereral ingenious men in the New Palaceyard, Westminster; which club was called the Rota, and continued till the sechuded members of parliament were restored by peneral Monk. In 16061 he was committed to the Tower for treasmabie designs and practices; and chancellor Hyde, at a conference with the lords and commons, charged him with being concerned in a plot. Buta committec of lords and commous could make nothing of that plot. He was conveyed to St. Nicolas's island, and from thence to Plymouth, where he fell into an uncommon disortice of the imarination. Having obtained his liberty by means of the carl of Bath, he was carricd to Londen, and died in 1077 . He published, besides the above werks, several others, which were firt collected by Toland, in one volume folio, in 1700; but a more complete edition was published, in 17:37, by the reverend Dr. Birch.
HARRIOT' ('Thomas), a celcbrated a!gebraist, was born at Uxford in 1500, where he
was also educated. In 1579 he completed his bachelor's degree; and, being already distinguished for his mathematical learning, was soon after recommended to sir Walter lialeigh as a proper person to instruct him in that science. He was accordingly received into the family of that gentleman; who, in 1585, sent him with the colony, under sir Richard Grenville, to Virginia; of which cuuntry, having remained there abont a year, he afterwards published a topographical description. About the year 1588 Mr. Harriot was introduced, by his patron sir Walter Raleigh, to Henry Percy earl of Northumberland, who allowed him a pension of a hundred and twenty pounds per annum. He spent many years of his life in Sion college; where he died in July 1621, of a cancer in his lip, and was buried in the church of St. Christopher, where a handsome monument was erected to his memory. Anthony Wood tells us he was a deist, and that the divines looked upon his death as a judgment. Be his religious opinions what they might, he was doubtless one of the first mathematiciass of the age in which he lived, and will always be remembered as the inventor of the present improved method of algebraical calculation. His improvements in algebra were adopted by Des Cartes, and for a considerable time imposed upon the French bation as his own invention; but the theft was at last detected, and exposed by Dr. Wallis, in his History of Algebra, where the reader will find our author's invention accurately specified. His works are, 1. A brief and true report of the new-found land of Virginia; of the commodities there found, and to be raised, \&c. $\&$. Artis analyticæ praxis ad æquationes algebraicas nova expedita, et generali methodo resolvendas, e posthumis Thoinæ Harriot. 3. Ephemeris Chyrometrica, a manuscript in the library of Sion college. Besides these works, a great number of MSS. composed by Harriot, were found by the able astronomer Dr. Zach of Saxe Gotha, in the year 1784, at the seat of the earl of Egremont, at Petworth in Sussex; they naturally descended into the hands of this nobleman, from a predecessor Henry Percy the noble earl of Northumberland, who was a patron of Harriot and other learned men. From these manuscripts it appears that Harriot was not only a celebrated analyst, but an eminent astronomer, both theoretical and practical: he was the first observer of the solar spots, on which he made a hundred and ninety-nine observations; he also marle many excellent observations on the satellites of Jupiter, and indeed it is probable that he discovered them as early, if not earlier than Galileo; he likewise made several observations upon the moon, the planet Mars, the solstices, and comets. His observations of the comet of 1607 , says Dr. Zaoh, "are of the moreimportance even now for modern astronomy, as this is the same comet that fulfilled Dr. Halley's prediction of its return in the year 1759. That prediction was only grounded upon the elements affiorded him by these coaree observations; for which
reason he only assigned the time of its retum to the space of a year. The very intricate calculations of the perturbations of this comet, afterwards made by M. Clairaut, reduced the limits to a month's space. But a greater light may now be thrown upon this matter by the more accurate observations on this coniet by Mr. Harriot. In the month of October 1785, when I conversed upon the subject of Harriot's papers, and especially on this comet, with the very celebrated mathematician M. dela Grange, director of the Royal Academy of Sciences at Berlin; he then suggested to me an idea, which, if brought into execution, will clear up an inportant point in astronomy. It is well known to astronomers how difficult a matter it is, to determine the mass, or quantity of matter, in the planet Saturn; and how little satisfactory the notions of it are that have hitherto been formed. The whole theory of the perturbstions of comets depending upon this uncertain datum, several attempts and trials have been made towards a more exact determination of it by the most eminent geometricians of this age, and particularly by la Grange himself; but never having been satisfied with the few and uncertain data heretofore obtained for the resolution of this problem, he thought that Harriot's observations on the comet of 1607 , and the modern ones of the same comet in 1759, would suggest a way of resolving the problein a posteriori; that of determining by them the elements of its ellipisis. The retardation of the comet compared to its period, may clearly be laid to the account of the attraction and perturbation it has suffered in the region of Jupiter and Saturn; and as the part of it belonging to Jupiter is very well known, the remainder must be the share which is due to Saturn; from whence the mass of the latter may be inferred. In consequence of this consideration I have already begun to reduce most of Harriot's observations of this comet, in order to calculate by them the true elements of its orbit on an elliptical hypothesis, to complete M. la Grange's idea upon this matter."

We conclude this article with observing, that these papers of Harriot are in a fair train for publication, and will, we hope, ere long make their appearance.

HARRIS (James, Esq) a very learned English gentleman, was the som of a gentleman of the same naine, of the Close, Salisbury, and was born July 20, 1709. He received the earlier part of his education under the reverend Mr. Hill, at the grammar school, Salisbury, and at the age of sixteen was entered as a gentleman comuoner at Wadham college, Oxford. From hence he removed to Lincolu's-inn, with a view of making the study of the law a part of his education. When he had reached his twenty-fourth year his father died, and our author immeriately retired from London to the family house at the Close of Salishury, where he applied himself with great avidity to the study of his favourite authors among the Greek and Latin classics. During fourteen or fifteen years his application tothe best writers of
antiquity continued to be almost unremitting, and his industry was such as is very seldon exceeded. His first literary production was printed in the year 1744, and contained three (reatises; 1st. concerving Arts. 2d. Music, Painting, and Poetry ; and 3d. On Happiness. In July 1745, Mr. Harris married a daughter of John Clarke, esq. of Sandford near Bridgewater, by whom he had five children; three of them, viz. James, now earl of Malmsbury, and two daughters, have survived their father. In 1751 he published his elaborate work, Hermes, or A Philosophical Inquiry concerning Universal Grammar. Our opinion of this work coincides with that of the learned bishop Lowth: "Those," says he, " who would enter deeply into the subject of universal grammar, will find it fully and accurately handled, with the greatest acuteness of investigation, perspicuity of explanatuon, and elegance of meihod, in a treatise entitled Herines, by James Harris, esq. the most beautiful example of analysis that has been exhibited since the days of Aristotle." In the year $1761, \mathrm{Mr}$. Harris obtained a seat in parliament for the borough of Christchurch; this seat he retained so the clay of his death.

From 1752 to 1774 he became successively, one of the lords of the admiralty, a lord of the treasury, and secretary and comptroller to the queen : he was very assidunus in the discharge of all his public duties. In 1775, he published another very learned and masterly work entited Philosophical Arrangements. The last work which proceeded from his pen was his excellent Philological Enquiries, which contuins a summary of the conclusions to which the philosophy of the ancients had conducted then in their critical enquiries, Mr. Harris died December 22, 1781, in his 72 d year.

This very learned man possessed a profound knowledge of the Greck language, and he applied it, we think, more successfully than any other writer to the study and explanation of ancient philosophy. But his attainments were not confined to ancient philosophy and chassical learning: he possessed, likewise, a general knowledge of modern history, with a very distinguishing taste in the fine arts, in one of which, namely music, he was an eminent proficient. His singular industry and talents empowered him to make these various acquisitions without neglecting any of the duties which he owed to his fanily, his friends, or his country: so that, at the same tine that he was admired and revered as a profound philo.sopher and classic, he was beloved by his fanniis and friends, and entrusted with the dis. charge of several important ottices in the state. His son the earl of Malinsbury has lately published an edition of his works, with an account of his life and character; to which we refer the reader for more particulars.

HARRISBURG, a town of Pennsylvania, capital of the county of Dauphin, situate on the E. branch of the Susquehannah. Lat. 40. .15 N . Lon. 76.55 W .

HARRISON (John), an ingenious me-
chanic, was born at Foulby in Yorkshire, in 1693, and bred to his father's business, which was that of a carpenter. Having a turn for wheel work, he constructed some wooden clocks, the accuracy of which was so much admired, that he came to London in 1725, with a timekeeper, which he shewed to Dr. Halley, who recommended him to Mr. Graham, and received great encouragement from him to prosecute his design. In 1735 he visited London again, with a complete machine, and was sent by the board of longitude to Lisbon, $t \frac{1}{}$ make a trial of its properties. From that time he went on improving his invention, and at length received the reward of twenty thousand pounds allowed by parliament. He died in 1776.

Like many other mere mechanics, Mr. Harrison found a difficulty in delivering his sentiments in writing (at least in the latter periods of his life, when his faculties were much impaired) in which he adhered to a peculiar and uncouth phraseology. This was but too evident in his Description concerning such Mechanism as will aflord a nice or true Mensuration of Time, \&c. 8vo, 1775. This small work includes also an account of his new musical scale; being a mechanical division of the octave, according to the proportion which the radius and diameter of the circle have respectively to the circuinference. He had in his youth been the leader of a band of church-singers; had a very delicate ear for music; and his experiments on sound, with a curious monochord of his own improvement, it has been said were not less accurate than those be was engazed in for the mensuration of tise.
HARROGATE, a village in the W. Rid ing of Yorkshire, three miles W. of Knaresborough. It is famous for thres medicinal springs, and particularly for one which is more strongly impregnated with sulphur than any ia Great Britain. The season is from May to Michaelmas. The company assemble and lodge in five or six large inns; of which some are at the upper village called High Harrogate, the others at the nether one near the sulphur and chalybeate wells, and called Low Harrogate: the two being nearly a aile asunder-
When first drawn, the water from the sulphur well, which is by way of distinction called the Harrogate water, is transparent, and cmits a few air-bubbles. It possesses a strong, ly fetid sulphureous smell, similar to that of bilge-water; and is of a bitter, nauseous, and strongly saline taste. After being exposed for several hours to the open air, it becomes turbid, assumes a greenish colour, loses its sulphurenus smell, and deposits sulphur at the bottom and sides of the vessel.

When first drunk, this water canses a slight giddiness and headach, but is speedily attended with a mild purgative effect, and its laxative properties continue, even after being kept for a moderate length of time.

Harrogate water is used in various disorders of the alimentary canal, and in those affiections of the biliary system from which the former

H A R

are generated. Its chief internal use, however, is in scrophulous and cutaneous disorders; though it is also of cousiderable service when applied externally to leprous eruptions, and other obstinate diseases of the skin . It is likewise a safe and often a powerful remedy for the piles, as well as against the round worm and ascarides, if such a quantity be drunk as will prove a brisk purgative. In general, such draughts are taken as will produce a sensible effect on the bowels: for this purporse, three or four glasses, containing somewhat more than half a pint each, should be swallowed in the morning, at moderate intervals. The water ought to be used cold and fresh from the spring, if the stomach can support it. In order to correct the nauseous flavour, Dr. Garnett judiciously advises patients to cat a small portion of sea-biscuit, or coarse bread, instead of taking aromatic secds, sugar-conifits, \&c. By the former expedient, the officnsive taste will be speedily removed, and the stomach not be cloyed; a circumstance of the first consequence to invalids.
HA RROW. s. (charroue, $\mathrm{Fr}_{\mathrm{I} .)}$ A frame of timbers crossing each other, and set with teeth, drawn over sowed ground to throw the earth over the seed. See Husbandry.
To Ha'rrow. v. a. (from the noun.) 1 . To cover with earth by the harrow (Tusser). 2. To break with the harrow (Shat:peare). 3. To tear up; to rip up (Rouce). 4. To pillage; to strip; to lay waste (Bacon). 3. (from lienzian, Saxon.) To invade; to harass with incursions: obsolete (Speniser). 6. To disturb; to put into commotion (Shakspeare).
Ha'rrow. interj. An exclamation of sudden distress; out of use (Spenser).
Harrow, a village in Middlesex, on the lighest hill in the county, on the summit of which is the church. Here is a celebrated free school, founded by John Lyous in the reign of queen Elizabeth.
HARROWER. s. (from harrow.) 1. He who harrows. 2. A kind of hawk (Ainsu'.).

To HA'RRY. v. a. (harer, Fr.) 1. To teaze; to hare; to ruffle (Shahspieare). 2. In Scotland it signifies to rol) or plunder.
HARSH. a. (hervische, German. Skinner.) 1. Austere; roughly sour (Denham). 2. Rough to the ear (D :yden). 3. Crabbed; morose ; pecvish (Taylor). 4. Ruged to the touch; rough (Boyle). 5. Unpleasing'; rigorous (Dryden).
$H^{\prime} \mathrm{R}^{\prime}$ SHLY. ad. 1. Sourly; austerely to the palate. 2. With violence; not gently (Millon). 3. Severely; morosely; crabibedly (Addison). 4. Unpleasantly to the ear (Shakspeare).
HA'RSHNFSS. s. (from harsh.) 1. Sourness; austere taste (IBacon). 2. Roughness to the ear (Pupe). 3. Ruggedness to the touch (Bacun). 4. Crabbedness; peevishness (Shakspeare).
HART, in natural history, an obsolete term for stag. (Sec Cervus). It has long been distsed among sportsmen, but still exists in eur forest law

HAR

Hart-royal. A stag hunted in formee times by king or queen, and which had prored victorious in the chase. In conjunction with this titular honour, he also obtained the superior privilege of perfect freedom, proclamation being made through the towns and villages adjoining the spot where he had escaped that no farther molestation or atteupt on his life should take place, and that he should be allowed to return in safety to his native chase, or forest. Scereal instances, however, have occurred in modern times which ton fully prove that this ancient privilege is no longer held sacred.
HARTFELL WATER. A chalgbeate water, which has been found particulatly serviceable in disorders of the stomach and bowels, bloody flux, bloody urine, immoderate flow of the menses, or their suppression, fluor albus, glects, \&c. It has also been applied externally to old and languid ulcers.
HARTFORD, a commercial town of Cone necticut, in the United States of America. Lat. 41.50 N. Lon. 72. 35. W.
Hartford. See Hertford.
HARTLANi), a town in Deronshire, with a market on Saturdays. It is seated on the Bristol Channel. Lat. 51. 12 N. Lon. 4. 31 W.
HARTLEPOOL, a seaport in the county of Durham, with a market on Mondays. Lat. 54.47 N. Lon. 1. 4 W.

HARTLEY, a seaport of England, on the east coast of the county of Northumberland, with a good and convenient harbour, in which vessels may lie secure. The exports in the year 1776 were 70,000 dozen bottles, 300 tons of salt, and 100 tons of copperas manufactured in the place, 18,000 chaldrons of coals : twelre miles N.E. of Newcastle-upon-Tyne.
Hartiey (David), was bornat Ilingworth, where his father was curate; he reccived his academical education at Jesus college, Cam. bridge, of which he was a fellow. He first began to pracise physic at Newark, in Nottinghamshire; fron whence he removed to St . Edmund's Bury, in Suffolk. After this he settled for some time in London; and lastly went to live at Bath, where he died in 1757, aged 53, leaving two sons and a daughter. He published a View of the present Evidence for and against Mrs. Stephen's. Medicine as a Solvent for the Stone, containing 155 Cases, with some Experiments and Observations ; London, 1739. He is said to have also written against Dr. Warren, of St. Edmund's Bury, in Defence of Inoculation; and some letters of his are to be met with in the Philosophical Transactions. But his most considerable literary pro. duction is a work intitled, Observations on Man, his Frame, his Duty, and his Expectations, in two parts; London, 1749,2 vols. 8so. The first part contains observations on the frame of the human body and mind, and on their mutual connections and influences. The second part contains observations on the duty and expectations of mankind.
The philosophical character of Dr. Hartleg

H A R

s delineated in his last mentioned work; the features of his private and personal character were of the same complexion. His thoughts were not immersed in worldly pursuits or contentions, and therefore his life was not eventful or turbulent, but placid and undisturbed by passion or violent ambition. Indeed, he appeared to have subdued all his vices, and to be himself entirely under the dominion of reason and religion: he was lively and sociable in his disposition, benevolent and kind in his conduct, and his whoie department, as well as his great work on Man, clearly evince that he entertained the most profound reverence for the Supreme Being, at the same time that he enjoyed all those consolations which the Gospel imparts: for this philosopher also was an unfeigned believer in the great truths of Revelation, at the same time that he avoided every important doctrinal error, except that which respects the limited duration of future punishment.

HARTOGIA. In botany, a genus of the class tetrandria, order monogynia. Petals four, spreading; calyx five-cleft ; clrupe ovate : nut two-seeded. A tree of the Cape, with oblong, obtuse, serrate, glabrous leaves; flowers axillary, minute. peduncled.
hartihorn. See Cornu cervi.
Hartshorn shavings. Rasurd cornu cervi. Sec Cornu cervi.

Hartshorn (Salt of). See Carronat opammonta.

HARTSOEKER (Nicholas), a Dutch philosopher, born at Guada, in 1lij6. After receiving a liberal ellucation under his father, who was a minister among the remonstrants, he applied himself as idionsly to mathematics and natural philosophy, and became so eminent that Peter the Great invited him to Moscow, but he declined the honour. He became professor of philosophy at Heidelburg, and mathematician to the elector Palatine. He died in 1795. Hartsoeker wrote a Course of Natural Pniloonphy, in + to, and some small pieces.

HARTWORT (Shrubby), in botany. See Bupleurum.

HARTZGERODE, a town of Upper Saxony, in the principality of Anhalt Bernburg, situate near a mountain called the Hartz mountain. Lat. 51.46 N. Lon. 11.2 E .

HA'RVEST. s. (hænfere, Saxon.) 1. The season of ripening and gathering the corn ($L \cdot$ Estrange). 2. The corn ripened, gathered, and inned (Shakspeare). 3. The product of labour (D ryden).
Harvest-home.s. 1. The song which reapers sing at the feast made for having inned the harvest (Dryden). 2. The time of gathering harvest (Dryden). 3. The opportunity of gathering treasure (Shakspeare).
Harvest-lord.s. The head reaper at the harvest (Tusser).

Harvest moon. See Moon.
HA'RVESTER. s. (from harvest.) One whn works at the harvest.

HA'RVESTMAN. s. A labourer in harvest.
VOL. V.

HARVEY (William), a celebrated English physician, was born at Folkstone in 1578 . He received bis acadernical education at Cambridge, and then went to Padua in Italy, where he took his doctor's degree in physic, and on his return to England was incorporated M. D. at Cambridge. In 1607 he was admitted fellow of the college of physicians, and in 1615 anatomical reader there, on which occasion be discovered the circulation of the blood, of which he published an account in 1628, entitled, Exercitatio Anatomica, de Motu cordis et sanguinis. This discovery made a great revolution in the science of physic, and many foreign practitioners endeavoured to rob the author of his due honour, by ascribing it to other persons, and among the rest to father Paul of Venice. But the right of our learned countryman has long since been fully established. In 1632 he was made physician to Charles I. and adhered faithfully to the king in the civil wars, who in 1645 got him chosen warden of Merton college, Oxford; but when the parliamentary visitors came there, he left it and went to London, where he was chosen president of the college, which office, on account of his infirmities, he declined. He died in 1657, leaving his estate to the college, for which he had before built a library, museum, and a combination-room. A handsome edition of his works was printed in 1766, in 2 vols, 4 to. (Watkins).

HARUSPEX, a soothsayer at Rome, who drew omens by consulting the entrails of beasts that were sacrificed. He received the name of Arusper, ab aris aspiciendis, and that of Extispex, ab extis inspiciendis. The order of Aruspices was first established at Rone by Romulus. The first Aruspices were Tuscans, who received all their knowlelge from a boy named Tages, who, as was commonly reported, sprang from a clod of earth. (Vid.Tages.)For a minute description of the office of the Aruspices, and the manner in which they collected the omens, \&cc. the young student is referred to Lempriere's Dictionary, or Kennet's Antiquities.
HARWICII, a seaport town of England, in the county of Essex, situated at the mouths of the Stour and Orwell, where they unite and form a large bay, soon after falling into the German Ocean, by a strait near three miles wide at high water, but not in every part deep enough for ships of burden; the east side is defended by Landguard Fort. Harwich was formerly fortified, but in the reign of Charles I. the fortifications were demolished. It is not large, but populous, and being the chief port for packets to Holland, is a place of considerable trade, and many vessels are emploved in the North sea fishery; and the harbour, independent of the bay, is safe and convenient. Here is a very good dock-yard for building ships; and great conveniences for sea-bathing both hot and cold. It is a borough town, and sends two memhers to the British parliament; and is governed by a mayor and aldermen. K

Here are two markets weekly, on Tuesday and Fridav; ant in time of peace packets sail requluill, if wind and weather do not prevent, everv Weduestay and Suturday, with the mail to Helvoetsluys. Lat. 52. 0 N. Lon. 1. 25 E.

HARWOOD (Edward), a dissenting minister of considerable lararning, was born in Lancashire in 1799. He was pastor of a congregation at Bristol, from whence he was obliged to remove, on account of his violence in the Arian controversy. He then removed to London, where he subsisted by teaching the classics, and correcting the press. He died in 1794. Dr. Herwood published a great number of books and pamphlets, and anong the rest a translation of the New Testament, and a View of the various editions of the Greek and Roman clastics.

To HASH. v. n. (hacher, Fr.) To mince; to chop into small picces and ningle (Garth).

HASK. s. This seems to signify a case or habitation mad: of rushes or flags (Spenser).

HASLEMERE, a small borough in Surrey, with a market on Tuesdays. Lat. 51. 6 N . Lon. 0. 38 W .

HA'SLET'. Ha'r siet. s. (hasla, Islandick, a bundle; hastier, Fr.) The heart, liver, and lighis of a hog, with the windpipe and part of the throat to it.

Hatiliniden, a town in Lancashire, with a market no Wednesdays. Lat. 53. 40 N. Lon. 2. 1f W.

HASP. s. (hierp, Saxon.) A clasp folded over a stople, and fastened on with a padlock (Mortimer.)

To Hasp. v.n. (from the noun.) To shut with a ha-p.

HASSELQUIST (Frederick), a Swedish phi ician, was born in 1722, at Toumalla, in East (iothia, and educated at Upsal, where he attended the botanical lectures of Linnæus, afier which he went to Palestine, and collected a great mumber of natural curiosities, but died ai Smy rna, ou his return in 1752. Linnæus arranged and publisined his observations.

HASSELQUISTIA, in botany, a genus of the class pentandria, order digynia. Flowers radiate; florets of the circumference hermaphroline; those of the centre male; seeds of the circumference double, with a crenate margin : those of the centre solitary, pitchers'lape:l, hemispherical. Two species, herbaceous plants of A rabia and Esypt.

HA'SSOCK. s. (huzeck, German.) A thick mat or cushion, on which persons kneel at church.

HAST. the second person singular of have.
HASTA, among medallists, a kind of spear, not shod or headed with iron; or rather an ancient sceptre, the symbol of the goodness of the geds.

HASTATE LEAF. In botany, a leaf regembibling the head of a halbert. Triangular, hollowed at the base, and on the sides, with the angles spreading.-Exemplified in rumex and scutellaria histifolia.

HASTE. s. (haste, Fr.) 1. Hurry ; speed;
nimbleness ; precipitation (Dryden). 2. Pas siou; vehemence (Psa/ms).

To Haste. To Ha'stey. v. n. (hastet, French) 1. To make haste; to be in a hurry (Jerem.). 2. To move with swiftness. (Denium).

To Haste. To Ha'sten. v.a. To push forward; to urge on ; to precipitate; to drive a swifier pace (Dryden).

HA'STENER. s. (from hasten.) One that hastens or hurries.

HAS'TILY. ad. (from hasty.) 1. In a hurry ; speedily; nimbly; quickly. 2. Rabhly; precipitately (Suifi). 3. Passionately; with vehemence.

HASTINESS. s. (from hasly.) 1. Haste; speed. 2. Hurry; precipitation (Sidncy). 3 Kish eagerness (Dryden). 4. Angry testiness; passionate vehenence.
HA'STINGS. s. (from hasty.) Peas that come early (Mortimer).

Hastings, a town of England, in the county of Sussex, and the first of those calied the Cinque Ports; said to have been so called from one Hastings, a Dane, who landed here to pillage the country, and built a fort to secure his retreat. The harbour, formerly of considerable consequence, is now only an indifferent road for small vessels, having been ruined by storms, like the port of Winchelsea. As chief of the Cinque-Ports, it was oblized to provide twenty-one vessels for the kug's service, on forty days' notice, with provisions, arms, and men, fit for warlike service, and continue a fortnight at their own charge; if at the end of that time their farther service was required, the expences were defrayed by the crown. Hastings contains three parihes, but only two churches; the number of houses is about 600 , and the inhabitants estimatel at 3000. This port received charters from Edward the Confessor, William I. Charles II. and several other of our kings; and have sent members to the British parliament ever since the reign of Edward III. There is a considerable fishery carried on here, particularly herrings and mackarel, and sereral hoys trade regularly, to and from London. There are two markets weekly, on Wednesday and Saturday. Lat. 50.52 N. Lon. 0.46 E .

HASTY. a. (hastif, French.) 1. Quich; speedy (Shakspeare). 2. P'assionate; vcliement (Proverls). 3. Rash ; precipitate (Eccles.) 4 Early ripe (Isaiah).

Hasty-pudding. s. A pudding made of milk and flower, boiled quick tore ther.

HAT, a covering for the head, worn by men throughout the western part of Europe. Hats are said to have been first seen about the year 1400, at which time they becane of $\mathbf{0 x}$ for country wear, riding, \&c. F. Daniel relates, that when Charles II. made his pubiki entry into Rouen, in 1449, he had on a hat lined with red velvet, and surmounted with 3 plume or tuft of feathers: he adds, that it is from this entry, or at least under this reign, that the use of hats and caps is to be daicd,

HAT-MARING.

which henceforward began to take place of the chaperons and hoods that had been worn before. In process of time, from the laity, the clergy also took this part of the habit; but it was looked on as a great abuse, and several regulations were published, forbidding any priest or religious person to appear abroad in a hat without coronets, and enjoining them to keep to the use of chaperons, made of black cloth, with decent coronets; if they were poor, they were at least to have coronets fastened to their hats, and this upon penalty of suspension and excommunication. Indeed the use of hats is said to have been of a longer standing among the ecclesiastics of Brittany, by two hundred years, and especially 2 mong the canons; but these were no other than a kind of caps, and from hence arose the square caps worn in colleges, \&c. Lobineau observes, that a bishop of Dol, in the 12th century, zealous for good order, allowed the canons alone to wear such hats; enjoining, that if any other person come with them to church, divine service should immediately be suspended. Hats make a very considerable article in commerce: the finest, and those most valued, are made of pure hair of an amphibious animal, called the castor or beaver, frequent in Canada and other provinces of North America. See

Beaver.

Hat-making, a mechanical process by which wool, hair, fur, and other substances, are formed into the well known covering for the bead mentioned in the preceding article.

The best information we have been able to obtain respecting this important subject is given in Mr. Nicholson's Philosophical Journal. Our readers will be indebted to this ingenious journalist, and his able correspondent Mr. John Clennell, of Newcastle-upon-Tyne, for whatever instruction they may derive from this article; and as we wish not to deck ourselves in borrowed plumes, we shall communicate that instruction in the words of its authors.
Having visited the manufactory of Messrs. Collinsons, hatters in Gravel-lane, Southwark, Mr. Nicholson gives the following account of their
procedure: procedure:
" The materials for making hats are rabbits for out off f om the skin, after the hairs have been pluckid out, together with wool and beaver. The two former are mixed in various proportions, and of different qualities. according to the value of the article intended to be made; and the latter our author believes to be universally used for facing the finer articles, and never for the body or main stuff. Experience has shewn, that these materials cannot be evenly and well felted together, unless all the fibres be firit separated, or put into the same state with regard to each other. This is the object of the first process, called booving. The material, without any previous preparation, is laid upon a platform of wood, or of wire, somewhat more than four feet square, called a hurdle, which is fixed against the wall of the work-shop, and is enlightened by a small window, and separated by two side partitions from other hurdles, which occupy the rest of the space aloug the wall. The hurdie, if of wood, is made of deal planks, nut quitr three inches wide, disposed parallel to the wall, and at the distance of hat.
one-fortieth or one-fiftieth of an inch from each other, for the purpose of suffering the dusf, and other impurities of the stuff, to pass through; a purpose still more effectually answered by the hurdlc of wire.
"The workman is provided with a bow, a bow pin, a basket, and reveral cloths. The bow is a pole of yollow deal wosd, between scven and eight feet long, to which are fixed two bridges, sonewhat like that which receives the hair in the bow of the violin*. Over thrse is stretched a catgut, about one-twelfth part of an inch in thickness. The bow-pin is a stizk with a knob, and is used for plucking the bow-string. The basket is a square picce of ozier work, consisting of open strait bars with no crossing or interwearing. Its length across the bars may be about two feet, and its breadth eightcen inches. The sides into which the bars are fixcd are slightly bended into a circular curve, so that the basket may be set upright on one of these edges near the right hand end of the hurile, where it usually stands. The cloths are linen. Besides these implements, the workman is also provided with brown paper.
"The bowing commences by shovelling the material towards the right hand partition with the basket, upon which, the workman holding the bow horizontally in his left hand, and the bow-pin in his right, lightly places the bow-string, and xives it a pluck with the pin. The string, in its return, strikes part of the fur, and causes it to rise, and fly partly across the hurdle in a light open form. By repeated strokec, the whole is thus subjerted to the bow; and this beating is repeated till all the original clots or masses of the filaments are perfectly opened and obliterated. The quantity thus treated at once is called a leatt, and nevor exceeds half the quantity required to make one
" When the batt is sufficientlv bowed, it is ready for bardening; which term denotes the first commencement of felting. Tie prepared material bring evenly disposed on the hurdle, is firat pressed down by the consex side of the bavkrt, then covered with a cloth, and pressed successively in its various parts by the hauds of the workman. The pressure is gentle, and the hands are very slightly moved back and forwards at the same time through a space of perhaps a quarter of an inch, to favour the hardening or entangling of the fibres. (See Pblting in this work.) In a very short time, indeed, the stuff arquires sufficient firmness to bear car ful handling. The cloth is then taken off, and a sheet of paper, with ite corners doubled in, so as to give it a triangular outline, is laid upon the batt, which last is folded over the paper as it lies, and its edges, meeting one uver the other, form a conical cap. The joining is soun made grood by pressure with the hands on the cloth. thother batt. ready hardened, is in the next place laid on the hurile, and the cap here mentioned placed upon it, with the joining downwards. This last batt being also

[^3]
HAT-MAKING.

folded up, will consequently have its place of junction dianetrically opposite to that of the inner felt, which it must taerefore gienly tend to strengthe n. The principal part of the hat is thus pit toge:her, and now reynures to be worked with the hamls a con-iderale tine upon the hurde, the cluth teng ulso occasionally sprinkled with elew water. During the whens of this operaiton, whic!, is called basoning*, the articte becomes firmer and firmor, and contracts in its dimensions. It may easily be uniterstuod, that the chief use of the paper is to prevent the sides from feiting together.
"The basoning is followed by a still more effectual continuation of the felting, called workingt. This is dune in anotion shop, at an apparatus called a battery, consisting of a kettle (containing water siiphtly acidulated with sulphuric acid, to which, for beaver hats, a quantity of the grou:ads of beer is added, or else plain water for rinsing out), and eight planks of wood joined together in the furm of a frustum of a pyramid, and mecting in the kettle at the middle. The outer or upper edge of each plank is about two feet broad, and rises a little more than two feet and a half above the ground; and the slope towards the kettle is considerably rapid, so that the whole battery is little more than six feet in diameter. The quantity of sulpburic acid added to the liquor is not sufficient to give a sour taste, but only renders it rough to the tongue. In this liquor, heated rather higher than unpractised hands could bear, the article is dipped from time to time, and then worked on the planks with a roller, and also by folding or rolling it up, and opening it again; in all which, a certain degree

* Mr. Nicholson's correspond nt says, that after bowing, and previous to the basoning, a hardening skin, that is, a large piece of skin, about four fect long and three feet broad, of leather alumed or half tanned, is pressed upon the bat, to bring it by an easier grarlation to a compact appearance; after which it is basoned, being still kept upon the hurdle. This operation, the basoning, derives its name from the process or mode of working, being the same as that practised upon a wool hat after bowing; the last being done upon a piece of cast inetal, four feet across, of a circular shape, called a bason: the joining of each batt is made good here by shuffling the hand, that is, by rubbing the edges of each bati folded over tne other to excite the progressive motion of each of the filaments in felting, and to join the two torether. Many journeymen, to huriy this work, use a quantity of vitriol (sulphuric acid), and then, to make the nap rise and How, they kill the vitriol, and open the body again by throwing in a handfal or two of oatmeal; by this means they get a great many made, though, at the same cime, they leave them quite grainy from the want of labour. This, in handliner the dry grey hat when made, may be in part discovered; but in partorly.
\dagger 'he intelligent writer, who has beenso often quoted, sars, that before this orreration is begrin, the hat is !ipped into the builing kertie, and allowed to lie upon the plank umtil \therefore ld again; this is called soaking, that is, being perfertly saturated with the h it iquor: if the y are put in too hastily in this state, for they ace then only bowed and basoned, they would burst from the edses, each batt not being sufficiently felted into the other.
of care is at first necessary, to prevent the side from teltin: tugether; of which, in the more ado vance stayes of the uperation, there is us danter. The in pafections of the work now present the mselves to the rve of the workinan, whis picks out kuots and other hard substanees with 2 bodkin, and adds more foit upon all such parts as require stringthening. This andel felt is patted down with a wet brush, and soon incorporates with the rest. The beaver is laid on towards the conclusion of this kind of working. Mr. Nicholson could not distructly learn why the beer grounds were used with braver-hats. S me wortmen said, that by reindering the liquor more tenacous, the hat was enabled to bold a greater quantity of it fur a longr time: but others sald, that the mere acid and water w uld not alhere to the beaver facing, but would roll off imuediately when the articie was laid on the plank. It is probable, as he observes, that the manufaeturers who now foilow the estab ished practice, may nol have tried what are the incoreniences this addition is calculated to remove."

Our author's correspondent, however, assizns several reasons for the addition of those dress, which, he says, ought to be thick, and the sourest that can be got. 1. Vitriol (sulphuric acid) would harden the hat too much, which is kept mellow by the dregs. 2. The diegs are said by the workmen to hold or fill the body, whilst alittie vitriol cleanses it of the dirt, \&c. that may be on the rabbit or other wools 3. Another advantage attending the use of dregs, whether of beer, porter, or wine, is, that as the boiine of the dying does not draw out much of the macilaze from rach hat when it comes to be stiffened, the dregs form a body within the hat, sufficiently strong or retentive to kerp the gline from comng through amongst the nap. 4. Vitriol (sulphuric acid) alone purges or weakens the goods too much, consequently half of the quantity does better with the addition of dregs, as it allows the body to be marle closer by more work.

Of these fuur reasons for the use of drezs, the last alone appears to us perspicuous or at all satisfactory. But be this as it may, acid of some kind gives a roukhness to the surface of the hair, which facilitates the mechanical action of felting; and Mr. Collinson infurmed Mr. Nichoson, that in a process, callod carotting, they make use of nitrous acid. In this operation, the material is put into a mixture of the nitrous and sulphunc acids in water, and kept in the digesting beat of a store all night; by which means the hair ac. quires a ruddy or yellow colour, agd loses part of its strength.
" It must be remembered, that our hat stil] possesses the form of a cone, and that the whole of the several actions it has undergone havioply converted it into a soft flexible felt, rapable of being extenied, thongh with some difficults, in every direction. The next thing to be done is to give it the form required by the wearer. For this purpose, the workman turns up the edse of in to the depth of about an inch and a half, and then returns the puint back again through the centre or axis of the cap, so far as ont to tate out this fuld, but to produce ansther inner fod of the same depth. The point being returned back again in the same manner, produces a thid fold; and thus the workman proceeds, until the whole has acquired the appearance of a tat circular piece, consisting of a number of concentric undulations or folds, with the point in the ceutre.

HAT-MAKING.

This is laid upon the plank, where the workman, teepinz the picce wet with the liquer, pulls unt th. pront with his fingers, and ;reses it down with his hand, at the same time turning it round on it, centre in contact wilh the plank, till he has, by this means, rubbed out a flat portion equal to the in'ended crown of the hat. In the next pla ehe :akes a blork, to th cruwn of winich the applies the dat eentral portion of the feit, and by forcone a string down the sides of the block, he rauses the next part tu a sum the ineure of the criwn, which he continues to wet anl work, until it has properly disposed itelf round the block. The rim now appars like a founced or puckered appendage round the edge of the crown; but the block being set upright on the plank, the requisite tisure is sonn giten by working, ruboing, and extending this part. Water only is ustd in this "ieration of fasiononing or blocking; at the conclusion of which it is pressed out by the blunt edge of a copper implement for that purpose.
" Previous to the dyeing, the nap of the hat is raised or lousened out with a wirt brush, or carding instrument. The fitres are too rotten after the dyeing to bear this operation. The dyeing materials are lugwood, and a mixture of the sulphates of iron and of copper, known in the market by the names of green copperas and blue vitriol. As the time of Mr. Collinson was linited, and my at'ention, says Mr. N cholson, was more particularly dire ted to the mechanical processes, 1 did not go into the dye-house; but I have no duubt that the hats are boiled with the logwiod, and afterwards immersed in the saline onlution. I particularly asked whether galls were ased, and was answered in the negative.
" The dyed hats are, in the $n \cdot v$. place, taken to the stiffeuing shop. One workma', assisted by a boy, does this part of the business. He bas ino vessels, or builers, the one containing the grounds of strung brep, which costs seven shiltings per barrel, and the other vessel containing melted glue, a little thinner than it is used by earpenters. Our author particularly asked, whether this last solution contained any other ingredient besides slue, and was assured that it did $\mathrm{n} t$. The beer grounds are applied in the inside of the crown to prevent the glue from coming through to the fare, and also, as he supposes, to give the requisite firmness at a less expence than could be produced by glue alone. If the glue weic to pass throuth the hat in different places, it might, the imagines, be more difficult to produce an even gloss upon the face in the subsequent finishing. The glue stiffening is applied after the beer grounds are dried, and then only upon the lower face of the flap, and the inside of the crown. Fur this purpose, the hat is put into another hat, called a stiffening hat, the crown of which is notched, or slit open in various directions. Theve are then placed in a hole in a deal board, which supports the flap, and the glue is applied with a brush.
" The dry hat, after this operation, is very rigid, and its tigure irregular. The lust dressing is given by the application of moisture and heat, and the use of the brush, and a hot iron, somewhat in the shape of that used by tailors, but shorter and broader on the face. The hat being softened by exposure to steam, is drawn upun a block, to which it is securely applied by the former method of forcing a string duwn from the crown to the commencement of the rim. .The judgment of the workman is employed in moistening,
brushing, and ironing the hat, in order to gire and preserve the proper figure. When the rim of the hat is not intended to be of an equal width throughout, it is cut by mans of a wooden, or perlaps metailic pattern; but as no such hats are now in fastion, Mr. Nicholsun saw ouly the tool for cutting them round. The contrivance is very ingenions and simple. A number of notches are made in one calge of a flat pitce of wood for the rurpose of inserting the point of a knife, and from one side or edg. of this piece of wood there proceds a strait bandle, which lies paraliel to the notched stile, forming an angle somewhat like that of a carp witer's square. When the le rs of this angle are apphed to the outside of the crown, and the board lies flat on the rim of the hat, the notched edge will he nearly in the direction of the radius, or line pointing to the centre of the hat. A knife being therefore inserted in one of the notches, it is easy tudraw it round by leaning the tool agninst the crown, and it will cut the border very rezular and true. This cut is made betore the hat is quite finished, and is not carried entirely through; so that one of the last operati ins consists in tearing off the redundant part, which oy that means leaves an edging of beaver round the external face of the flap. When the hat is completely finished, the crown is tied up in gauze paprer, which is neatly ironed down. It is then rady for the subsequent operations of lining," \&c.

Our author concludes his valuable memoir on the fabrication of hats, with some observations on the probable gain or loss of employing machinery in the manufacture. These observations, as they are stated in the original paper, we recommend to the serious attention of every judicious hat-maker, who carries on his business on a large scale; for he will find them not thereveries of a rash speculatist, but the cool reflections of a real philoopher, who is at the same time no stranger to the arts of life. They surgest the following subjects of enquiry; Whether carding, which is rapidly an I mechanically done, be inferior to bowing, which does not promise much facility for mechanical operation? Whether a succession of batts or cardings might be thrown round a fluted cone, which rapidly revolving, in contact with three or more cylinders, might perform the hardening, and even the working, with much more precision and speed than they are now done by hand? Whether blocking or shaping be not an operation extremely well calculated for the operation of one or more machines? Whether loose weaving and subsequent felting might not produce a lighter, cheaper, and stronger article ? And how far the mechanical felting, which is not confined merely to the hairs of animals, might be applied to this art?

Before we dismiss this subject, it may be worth while to state Mr. Dunnage's method of making zoater-proof bats, in imitation of beaver, for which, in November 1794, he obtained a patent. It is as follows: Let a shag be woven, of such count in the reed, and cut over such sized. wire, as will give the hats to be manufactured from it that degree of richness, or appearance of fur, which may be thought n'cessary. The materials of whick this shag may be cumposed are various, and should be accummidated to different kind of hats, according to the degree of beauty and durability to be given them, and the price at which they are designed to be sold; that is to say, silk, mohair, or any other hair that is capable of being span

HAT-MAKING.

into an end fine enough for the purpose, cotton, inkle, wool, or a mixture of any, or all the above materials, as may suit the different purposes of the manufacturer. Those answer best (says our author,) which are made with two poles, either of Bergam, Piedmont, or Organzine silk, rising alternately, in a reed of about nine hundred count to eighteen iuches wide, with three shoots over each wire. This method of weaving distributes the silk (as it may be put single into the harness), and prevents any riblyy aipearance which it nught have it the silk were passed double, and the whole of the pole cut over each wire. This may be made either on a two or four thread ground of hard iik, shot with fine cotton, which he thinks preterable for shoot, to silk, minle, or any other material, as it furms both a close and fine texture. An inferior kind of hats may be made from any of the before-mentioned materials, and with cheaper silk. This shag should be stretched on a frame, such as dyers use to rack cluth; then (having previously set the pile upright with a coinb, to prevent its being ivjured or stuck together), go over the ground with thin size, laid on with a soft brush. For black, or dark colours, common size will do; with white, or any light colour, use isinglass, or a size made from white kid leather. These, or gum, or any other mucilaginous matter, which, without altering the coluur, will prevent oil from getting through the ground so as to injure the pile, will answer the purpose. Take care not to apply more of any material, as a preparation, than may be fully saturated with oil or varnish, so that water will not discharge it from the ground. The size, or other glutinous matter, being dry, the pile must be teaseled, or carded with a fine card, till the silk is completely taken out of the twist or throwing, when it will lose its coarse shaggy look, and assume the appearance of a very fine fur. It must now be once more set upright with a comb, and you may proceed to lay on your water-proof material; this too may be varied according to circumstances. For black, or any dark colour, linseed oil well hoiled with the usual driers, and thickened with a small quantity of any good drying colour, will do ; for white, or very fine colcurs, puppy or nut oil, or copal or other varnishes, may be used. In this particular the manufacturer must judge what will best answer his purpose, taking cure never to use any thing that will dry haid, or be subject to crack. Mr. Dunnage has frund good drying linseed oil preferable to any other thing which he has used, and, with the precaution of laying on very little the first time, it will not injure the finest colours. When the first coat of oil is dry, go over it a second and a third time, if necessary, till you are convinced the pores, of the ground are fully closed up, and the stuff rendered impervious to water. It should now stand several days, till the smell is sufficiently gone off; and before it is taken from the frame, should be gone over with some ox gall or lime-water, to take off the greasiness, which would otherwise prevent the stiffening from adhering to the oil. The material bring now ready to be formed into hats, should be cut into proper sliapes for that purpose. Tbe crown should be made up over a bluck, with needle and silk, the olled side outwards. The seams should then be rubbed with a piece of hard wood, bone: or ivory, to make them lip flat, and the edges of the stuff pared off very near the stitches, that no
joint may appear on the right side. The seams should then be carefully gone over with the propared oil, till every crevice or bole made by the neerlle is completely filled up, and the crown rendered perfectly water-proof. Tbe crown may then be turned and stiffened, by sticking linen, leather, paper, or any other material that may be found to answer the purpose, to the inner or painted side, till it acquires about the same degree of stiffuess, or resistance to the touch, as a good beaver. The mucilaginuus matter which be used to attach the stiffening to the crowa, and the upper and under parts of the brim to each other, was composed of one pound of gum arabic or senega, one pound of starch, and half a pound of glue, boiled up with as much water as reduced the whole to the consistence of a thick paste. A greater or less proportion of any of these ingredients may be used, and other glutinous and adhesive substances may answer the same purposes; or drying oils may be made use of, instead of this or other mucilage; or any of the resinous gums dissolved in oil or spirits; only it should be observed, in this case, the hats rill require more time in the preparation, as the oily matter, unless exposed to the air, will not readily dry; but he found by experience that the aborementioned composition does not dry bard or brittle, but retains that pleasant flexibility which is agreeable to the touch, while it communicates to the other materials a sufficient degree of elarticity. Befure the brim is perfectly dry, care should be taken to form a neck or rising round the hole where it is to be attached to the cromn, by notching it round with a pair of scissars, and then forcing it over a block something larger than you have made the hole, so that the uncut stuff may turn up, under the lower edge of the crown, about a quarter of an inch. Before you join the crown and brim together, go over the outside of the neck of the brim, and the inside of the crown, as high as the neck will come (which should be about half an inch), with the prepared oil; and when they are nearly dry, 80 as to adhere to the finger on touching them, put the crown over the neck of the brim, and let them be sewed strongly together, taking care to sew down as little of the pile as possible, and using the same precaution of oiling, where the needle has been through, as was observed in making up the crown. The bat is now ready for dressing; which operation may be performed over a block, with a hot iron, brush, \&c. in the same manner as those commonly called felts. When putting in the lining, be very cartful to let the needle only take hold of the under surface of the brim; for should it perforate the upper one, the water will find its way througb, and the hat be of no value. Though we have already declared how little we are acquainted with the operation of hat-making, we cannot help suggesting the enquiry, whether these water proof hats might not be improved both in strensth and beauty, by a slight felting before the applicstion of the size by the brush. Such of them as are composed of wool or hair, or contain a mixture of these materials, are unquestionably susceptible of feltink.

HATS are also made for women's wear, of chips, straw, or cane, by platting, and sewing the plats together; beginning with the centre of the crown, and working round till the whole is finishied. Hats for the same purpose are also wove and nase of horse-hair, silk, \&e. See Straw mat.

HAT

HATBAND. s. (hat and land.) A string tied round the lat (Bacon).

HA'TCASE. s. (hat and case.) A slight box for a tial (Addison).

To HATCH. v. a. (hecken, German.) 1. To produce young from eggs (Milton). 2. To quicken the egs by incubation (Addison). 3. To produce by precelent action (Hooker). 4. To form by meditation ; to contrive. 5. (from hacher, French, to cut.) To shade by lines in drawing or graving (Dryden).

To Нatch. v. n. I. To be in a state of growing quick (Boylc). $\quad 2$. To be in a state of advance toward efiect.

Hatch. s. (from the verb.) 1. A brond excluded from the egg. 2. The act of exclusion from the egy. 3. Disclosure ; discovery (Shatspeare). 4. (heca, Saxim.) A half doer (Shakspeare). 5. (In the plaral.) The doors or openings by which they desccud from one deck or floor of a sinip to anoiher (Dryden). 6. To be under Hatches. To be in a state of ignominy, paverty, or depression (Lucke).

To HATCHEL. v. a. (hachelen, German.) To beat flax so as to separate the fibrous from the britule part (Wooduard).

Ha'rchel.s. (hachel, German.) The instrument with which flax is beaten.

HATCHELLER. s. (from hatchel.) A beater of flax.
HATCHET. s. (hache, hachette, Fremeh.) A small axe (Crashaw).
Hatchet-pace.s. A thin ugly face (Dry.)
Hatchet-form, in botany, Sce Dolabriform.
HATCHING, the maturating fecundated eqgs, whether by the incubation and warmth of the paremt bird, or by artificial heat, so as to produce young chickens alive. For the natural process, see the article Ornithology.
The art of hatciing chickens by means of ovens has long been practised in Egypt; but it is there only known to the inhabitants of a single village named Berme, and to those that live at a small distance from it. Towards the beginning of autumn they scatter themselves all over the country, where each person among them is ready to undertake the management of an oven, each of which is of a difierent size, but in general they are capable of containing from forty to fourscore thousand eggs. The number of these ovens placed up and down the country is about three hundred and eighty-six, and they usually beep them working for about six months. As, therefore, each brood takes up in an oven, as under a hen, only twenty-one days, it is easy in every one of them to hatch eight different broods of chickens. Every Bermean is under the obligation of delivering to the person who intrusts him with an oven, only tavo-thirds of as many chickens as there have been eggs put under his care; and he is a gainer by this bargain, as more than two-thirds of the eggs usually produce chickens. In order to make a calculation of the number of clickens yearly so hatched in Egypt, it has been supposed that only two-thirds of the eggs are hatched, and that each brood consists of at least thirty

HAT

thnusand chickens; and thus it would appear that the ovens of Egypt give life yearly to at least ninety woo millions six hundred and forty thousand of these animals.
This useful and advantageous neethod of hatching eggs has been employed in Frauce by the ingenious Mr. Reaumur, who, by a number of experiments, reduced the art to certain priuciples. He found by experience that the heat necessary for this purpose is nearly the same with that marked 32 on his thermometer, or that marked 06 on Fahrenheit's. This degree of heat is nearly that of the skin of the hen, and what is remarkable, of the skin of all other domestic fowls, and probably of all other kinds of birds. The degree of heat which brings about the developement of the eggnet, the gosling, and the turkey-pout, is the same as that whinch fits for hatching the canary-songster, and, in all probability, the smallest hum-ming-bird: the difference is only in the tume during which this heat ought to be communicated to the eqrys of diffierent birds: it will bring the canary-bird to perfection in eleven or twelve days, while the turkey-pout will require twenty-seven or twenty-eight.

Mr. Reaumur invented a sort of low hoxes, without bottoms, and lined with furs. These, which he calls artificial parents, not only shelter the chicken; from the injuries of the air, but afford a kiadly warmth, so that they presently take the benefit of their shelter as readily as they would bave done under the wings of a hen. After hatching, it will be necessary to keep the chickens for some time in a room artfully heated, and furnished with these boxes; but afterwards they may be safely exposed to the air in the court-yard, in which it may not be amiss to place one of these artificial parents to shelter them if there should be occasion for it.
As to the manner oi feeding the young brood, they are gencrally a whole day after being hatched before they take any food at all; and then a few crumbs of bread may be given them for a day or two, after which they will begin to pick up insects and grass for themselies. But to save the trouble of attending them, capons may be trught to watch them in the same manner as hens do. Mr. Reaumur assures us that he has seen above two hundred chickens at once, all led about and defended only ioy three or four such capons. Nay, cocks may be tuught to perform the same office, which they, as well as the capons, will continue to do all their lives after.
To facilitate the process of hatching, an apparatus called an artificial mother has been recently invented, and the inventor rewarded by the Society of Arts.
HATCHMENT, in heraldry, the marshaling of several coats of arms in an escu cheon.

Hatchment is also a popular name for an achievement.

By these hatchments or funeral escutcheons, it may be known after any person's decease what rank either he or she held when living; and if it be a gentleman's hatchment, whether he was a bachelor, married man, or widower,
with the like distinctions for gentlewomen. Sce Heralidry.

HA"T'HWAY. s. (hatches and way.) The way over or through the hatches.

To IATE. v. a. (hazian, Saxon.) To detest ; to abhor; to abominate (Shakspeare).

Hate. s. (haze, Saxon.) Malignity; detestation; the contrary to love (Broome).
HarTEFLL. a. (hute and full.) 1. That catses abhorrence; odious (1'eacham). 2. Abhinrent; detesting; malignant; malevolent (Dryden).

Ha'TEFLLIY. ad. 1. Odiously; abominathly. 2. Malignantly; maliciously (Chapman).

HA"TEFLLNESS. s. Ollinusness.
HA'TER. s. (from hate.) One that hates; an abhorrer: a detester (Soulh).
hatfifled, or Bishop's Hatpield, a town of England, in the county of Herts. It takes the latter name for having once belonged to the bishops of Ely, who had a palace here, which with the manor became alienated to the crown, in the reign of queen Elizabeth, who occasionally resided here, and was hence conducted to be crowned, at London. Here is a weekly market on Thursdia: seven miles W.S.W. of Hertford, and nineteen and a half N. Loudon. Lat 51. 48. N. Lon. 0 . 10 W .

Hatpield Broad Oak, or Hatpield Regis, a town in Essex, with a market on Saturdave. Lat. 51.48 N. Lon. 0. 20 E.

HATHERLY, a town in Devonshire, with a market on Fridays Lat. 50.52 N . Lon. 4. 9 W .

HaTRED. s (from hate.) Hate; ill-will; malignity: abhorrence (South).

To HA ${ }^{\prime}$ ITER. v. n. To harass; to weary ; to tire out (Dryden).

Ha'tier. s. (from hat.) A maker of hats.
HA"TTOCK. s. (attock, Erse.) A shock of corn.
HATUAN, a town and fortress of Upper Hungary, 28 miles N.E. of Buda. Lat. 47. 44 N. Lon. 18.54 E .

HAVANNA, a seaport on the N.W. part of the island of Cuba, oppnsite Florida. It is famous for its harbour, which is so large that it may hold 1000 ves-els; and yet the mouth is so narrow that only one ship can enter at a time. This is the place where all the ships that come from the Spanish settlements rendezvons on their return to Spain. It is near two miles in circumference, and, in 1700, was computed to contain 26,000 inhabitants, Spaniards, Mulattoes, and Negroes; a number which must have been considerahly increased since. The entrance into the harlour is well detended by forts and platforms of great guns. The buildinzs are elegant, built of stone, and some of them superbly furnithed; and the churches are rich and magnificent. Here is the resiuence of the governor and captain-general of Cuba, and of the roval othicers, as well as of in assessor for the assistance of the governor and captain-general of the West Indies, of the bishop of St. Jago de

Cuba, and of most of the men of fashion and foritune belonging to the island. It was taken by the English in 17ti2, but restored to the Spaniards by the treaty of peace in 1703. It is seated on the W. side of the harbour. Lat 23. 12 N. Lon. 82. 13 W .

MAVANT, a town in Hampshire, with a market on Saturdays. Lat. 50.52 N . Lon. 0.58 F .

HAU'BERK. s. (haulerg, old French.) A coat of mail; a breastplate (Spenser).

To HAVE. v. a. I have, thou hast, he hath; we, ye, they have; pret. and part. pass. kad. (habban, Sixon; hel l/en, Dutch.) I. Not to be without (Acts). 2. To carry; to wear (Sid. ney). 3. To make use of (Judses). 4. To possess (Exodus). 5. To obtain; to enjog (.Joint). 6. To take; to receive (Dryden). 7. To be in any state (Sumuel). 8. T'o put; 10 tahe (Tusser). 9. Tu procure; to find (Loche;. 10. Not to neglect ; not to omit (Shahspare). 11. To hold; to regard (Psa/ms). 19. To maintain; to hold opinion (Bacon). 13. To contain (Shakspeare). 14. To require; to claim (Dryder). 15. To be a husbaud or wife to another (Shakspecre). 16. To be engaged, as in a task (Adidison). 17. To wish; to desire (Psalms). 18. To buy (Collier). 19. It is most used in English, as in other Enropean languages, as an auxiliary verb to make the tenses; have, hast, and hath, or has, the preterperfect ; and had and hast, the preterpluperfect. 20. Have at, or with, is an expression denoting resolution to make some attempt (Dryden).
HAVEL, a river of Brandenburg, which proceeds from a lake in the duchy of Mecklenburg, and falls into the Elbe.

HAVELBERG, a town of Germany, in the electorate of Brandenburg, with a secularised bishop's see. Lat. 53. 5 N. Lon. 12.26E.

HA'VEN. s. (haven, Dutch.) 1. A port; a harbour; a station for ships (Den.). 2. A shelter : an asylum (Shatspeare).

HA'VENER. s. (from haten.) An overseerof a port (Careu').

HA'VER.s. (from have.) Possessor; holjer (Shakspeare).
HAVER is a common word in the northicn counties for nats (Peacham).

HAVERFORD-WEST, a town of Pembrokeshire, with markets on Tuestlays and saturdays. It is a town and county of isself, seated on a creek of Milford-haven, over which is a stone bridge. The town is handsome: it contains three parishes, 613 houses, and 2880 inhabitants. It has a considerable trade, with several vessels belonging to it, and sends one memher to parliament. The assizes and county ganl are kept here. Lat 51. 50 N. Lon. 5.0 W .

HAVERILL, a town of Suffolk, with a market on Wednesdays, and a manufacture of checks, cottons, and fustians. Lat. 52.6 N . Lo․ 0.28 E .

HAU(;HT. a. (haut. French.) I. Haughty; insolent : obsolete (Shakspeare). 2. High; proudly magnauimous (Spenser).

HAU

HA'UGHTILY. ad. (from haughty.) Proualy; arroganty ; contemptuously (Dry.). HA'LCH'1NNSS. s. (from haughty.) Pride; ar.ogance (Dryden).

Haughunes-, says Dr. Cogan, is an overt act of pride, manifesied by some conduct or expression, indicative of unmerited contempt of others. It may be deemed in this case the swelling of pride into an emation.
híáchiry. a. (hautaine, French.) 1. Proud; lotty ; insolent; arrogant; cotemptuous (Clarendon). 2. Proudly great (Prior). 3. Bold; auvcuturous: obsolete (Spenser).

HA'VING. s. (from have.) 1. Possession; estate; fortune (Sinakspeare). 2. The act or state of possessing (Siuney). 3. Behaviour ; regularity (Shuthspeare).

Ha'VIUUK. s. (for leehaviour.) Conduct; manners: not used (Spenser).

To HAUL. v. a. (naler, French, to draw.) To pull; to draw; to drag by violence (Pupe).

Haul the wind, in naval affairs, to direct the ship's course nearer to that point of the compass trom when the wind arises. Example. If a slip sall south-west, with the wind northerly, and it is necessary to haul the wind farther io the westward: to perforin this operation, it is necessary to arrange the sails more obliquely with her keel; to brace the yards more furward, and to haul the lower sheets farther aft, and finally to put the helm over the larbuard-side of the vessel. When her head is turied directly to the westward, and her sails are trimmed accordingly, she is said to have hauled the wind four points, that is to say, from south-west to west.

Haul. s. (from the verb.) Pull; violence in drageng (Thomson).

HAUM.s (healm, Saxon.) Straw (Tusser).
HAUNCH OF A HORSE, the hip of the animal. Tinat part of the hind quarter which extends from the point of the hip-bone, down the thigh to the hock. The phrase " putting a horse upon his haunches," implies making him tix the principal weight of his frame upon his hind quarters, by which he bears less upon the bit, and becomes habitually lizht in haud.
haunch of venison, the hind quarter of a failow deer (buck or doe) cut in a particular furm for the table. The hind quarter of a stag, or hind, passes also under the same denomination ; but it is more correct to call the former a haunch of venison; the latter, a haunch of red deer.

To HAUNT. v. a. (hanter, French.) 1. To frequent; to be much about any place or person (Sidney). 2. It is used frequently in an ill sense of one that comes unwelcome (S_{u} ift). 3. It is eminently used of apparitions that appear in a particular place (Pupe).

To Haunt.v. n. To be much about; to appear frequently (Shukspeare).

Haunt. s. (from the verb.) 1. Place in which one is frequently found. 2. Habit of being in a certain place (Arbuthnot).

HA'UNTER. s. (from haunt.) Frequenter; one that is often found in any place (Wotton).

HAW

HA'VOCK. s. (hafng, Welsh.) Waste; wide and general devastation (Adidison).
$\mathbf{H a}^{\prime} \mathbf{v o c k}$. interi. A word of encouragement to slanghter (Shahspeare).

To $\mathbf{H a}^{\prime}$ vock. v. a. (from the noun.) To waste; to destroy; to lay waste (Millon).

HAVRE, in geography, the same with haven or harbour.

Havre-de-Grace, a considerable seaport of France, in the department of Lower Seme, with a strong citadel and good arienal. Lat. 49.29 N. Lon. 1.11 E.

HAUT, in music, high or shrill.
HAUTBOY. A portable wind instrument of the reed krod, adapted to high or shrill notes, consisting of a tube gradually widening from the top towards the lower end, and furnished with keys and circular holes for modulating its souids. The name is Fiench, haut bois, viz. high-wood, the instrument with which it is compared in the formation of the name being the bassoon, or low wood instrument.

HAUTEFEUILLE (John), an ingenious. mechanic, tworn at Orleans in 1674. He made a great progress in mechanics in general, but had a particular taste for clock-work, and made seceral discoveries in it that were of singular use. It was he it seems who found out the secret of moderating the vibration of the balance by means of a small steel-spring, which has since been made use of. This discovery he laid before the members of the Academy of Sciences in 1694 ; and these watches are, by way of eminence, called pendulumwatches; not that they have real pendulums, but because they nearly approach to the justness of pendulums. M. Huygens perfected this happy invention; but having declared himself the inventor and obtained a patent for making watches with spiral springs, the abbé Feuille opposed the registering of it, and published a piece on the subject against Huygens. He died in 1724, at 50 years of age, Besides the above, he wrote a great many other pieces, most of which are small pamphilets, but very curious: as, 1. His perpetual Pendulum. 2. New Inventions. 3. The Art of Breathing under Water, and the means of preserving a Flame shut up in a sinall Place. 4. Reflections on Machines for raising Water. 5. His Opinion on the different S entiments of Mallebranche and Regis, relating to the Appearance of the Moon when seen in the Horizon. 6. The magnetic Balance. 7. A Placet to the king on the Longitude. 8. Letter on the Sccret of the Longitude. 9. A new System on the Flux and Reflux of the Sea. 10. The means of Making Sensible Experiments that prove the Motion of the Earth : and many other pieees.
HAW, a sort of berry, the fruit of several species of mespilus, thence denominated hawthorns. See Mespilus.

It is among the apuphthegms of lord Bacon, that " store of haws portend a hard winter.":
Haw, in the manage, the membrana nictitans of a horse's eye, common to him with

HAW

several other quadrupeds; but which from its enlargement when in an inflamed state, has induced some farriers to regard it as a morbid production, and to attempt its removal. Gibson himself has given directions for performing so absurd an operation.

Haw sometimes denotes a small parcel of land.

To Haw. v. n. To speak slowly with frequent intermission and hesitation (L'Estran.).

Haw-finch, in ornithology. See Loxia. Haw-moth, in entomology. See Sphinx. HAWK. s. In ornithology. See Falco.
Hawk.s. (hoch, Welsh.) An effort to force phlegm up the throat.

To Hawk. v.n. (from the noun.) 1. To fly hawks at fowls; to catch birds by means of a hawk (Prior). 2. To Hy at; to attack on the wing ($D_{r y d e n) . ~ 3 . ~ T o ~ f o r c e ~ u p ~ p h l e g m ~}^{\text {a }}$ with a noise (Shakspeare). 4. To sell by proclaiming in the streets (from hock, German, a salesman) (Swift).

Hawk-weed, in botany. See Hieracium.
Hawk-werd (Bastard). See Crepis.
H A^{\prime} W KED. a. (from hawk.) Formel like a hawk's bill (Brown).

HAWKERS and Pedlars, are such dealers or itinerary petty chapmen as travel to different fairs or towns with goods or wares, and are placed under the controul of commissioners, by whom they are licensed for that purpose pursuant to stat. 8 and 9 W.III. c. 25. and 29 Geo. 1II. c. 26. Traders in linen and woollen manufactories sending their gooxis to markets and fairs, and selling them by wholesale; manufacturers selling their own manufactures, and makers and sellers of English bone-lace going from house to house, \&c. are excepted out of the acts, and not to be taken as hawkers.

HAWKESWORTH (John), an ingenious writer, was born at Bromley in Kent, in 1715, and bred to the business of a watchmaker. He afterwards applied to literature, with considerable success. The Adventurer is his principal work, for which archbishop Herring conferred on him the degree of LL.1). He was employed to compile an account of the discoveries made in the south seas, for which he received the enormous sum of 60001 . He then became an East-India director, and died in 1773.

HAWKING, the art or exercise of chasing and taking wild fowl, by means of hawks, or birds of prey. Hawking is the same thing with what we otherwise call falconry. The word hawking, in its latitude, also includes the taming and disciplining of hawks, and fitting them for the sport.

In early times, hawking was the principal amusement of the English: a person of rank scarce stirred out without his hawk on his hand; which, in old paintings, is the criterion of nobility. Harold, afterwards king of England, when he went on a most important embassy into Normandy, is painted embarking with a bird on his fist, and a dog under his arm ; and in an ancient picture of the nuptiels

H $\mathbf{A} \mathbf{W}$

of Henry VI. a nobleman is tepresented in much the same manaer ; for ia those days, "it was thought rutficient for noblemen to winde their horn, and to carry their hawk fair, and leave study and learning to the children of mean people." The forniner were the accomplishments of the times; Spenser makes his gallant sir Tristram boast,

Ne is there hawk which mantleth her on pearch,
Whether high towring, or accoasting low, But I the measure of her flight doe search, And all her prey, and all her diet know.
B. vi. Canto 2.

In short, this diversion was, among the old English, the pride of the rich, and the privilege of the poor; no rank of men seems to have been excluded the amusement: we learn from the book of St. Alban's, that every degree had its peculiar hawk, from the emperor down to the holg-water clerk. See Falconay.

HAWKINS (Sir John), an English writer and magistrate, was born in London in 1719. After receiving a good education he was articled to an attorney, in which situation he not only acquired a good knowledge of the law; but paid a particular attention to polite literature, and formed an early intimacy with Dr. Johnson, which lasted through life. He was also greatly attached to music, and belonged to a society of which Dr. Pepusch was the founder. Hawkins wrote several pieces in the periodical publications, particularly the Gentleman's Magazine; and in 1760 printed 2 good edition of Walton's complete Angler, with a Life of the Author and notes. In 1701 he was put into the commission of the peace for Middlesex, and distinguished himself as an active and disinterested magistrat. In 1772 he received the honour of knighthond, on account of his spirit in suppressing a dangerous riot in Morfields. In 1776 he publishied his General History of Music, in five vols. 40. a work which contains much curious information, but which has been superseded by Dr. Burney. After the death of Dr. Johuson he was employed by the booksellers to write his Life, which he executed, but not much to the satisfaction of the public. He died in 1789, and was interred in the cloisters of Westmin-ster-abbey.

HAWSER, in the sea-language, a lange rope or a kind of small cable, serving for rarious uses aboard a ship, as to fasten the main and fore shrouds, to warp a ship as she lies at anchor, and wind her up by a capstern, \&c. The hawser of a man of war may serve for 2 cable to the sheet-anchor of a small ship.

HAWSES, in a ship, are two large holes under the bow, through which the cables ran when she lies at anchor. Thus the hawsepieces are the large pieces of timber in which these holes are made. Hawse- hags, are bags of canvas made tapering, and stuffed fall of oakum; which are generally allowed small ships, te prevent the fee from washing in at
these holes : and hawse-plugs are plugs to stop the hawses, to prevent the water from washing into the manger.

There are also some terms in the sea-language that have an inmediate relation to the hawses. Thus a bold hawse, is when the holes are high above the water. Fresh the hawse, or reer out more cable, is used when part of the cable that lies in the hawse is fretted or chafed, and it is ordered that more cable may be veered out, oo that another part of it may rest in the hawses. Fresh the hawse, that is, lay new pieces upon the cable in the hawses, to preserve it from fretting. Burning in the hawse, is when the cables endure a violent stress. Clearing the hawses, is disentangling two cables that come through different hawses. To ride hawse-full, is when in stress of weather the ship falls with her head deep in the sea, so that the water runs in at the hawses.

HAW SHEAD, a town in Lancashire, with a market on Mundays. Lat. 54. 24 N. Lon. 3. 6 W .
hawthorn. See Crategus.
Hawthorn (Black American). See ViBURNUM.

HAY. Grasses of any kind, mown, tedded, and dried as fodder for cattle. See HusBANDRY.

To dance the Hay. To dance in a ring (Shahspeare).

Hay. s. (from haie, French.) A net which encloses the haunt of an animal (Mortimer).

Hay, a town in Brecknockshire, with a market on Saturdays. It has a castle nearly in the centre of the town; and about two miles distant are the ruins of the once famous Clifiord castle, where fair Rosamond was born. Lat. $51 . \leq 9$ N. Lon. 3. 4 W.

HAYE, a town of France, in the department of Indre and Loire. It is the birth-place of Des Cartes, and seated on the Reuse. Lat. 46. 56 N. Lon. 0. 40 E.

HAYES (Charles, Esq.), a very singular person, whose great erudition was so concealed by his modesty, that his name is known to very few, though his publications are many. He was born in 1678 , and died in 1760 , at 82 years of age. He becanne distinguished in 1704 by a Treatise of Fluxions, in folio, being, we believe, the first treatise on that science ever published in the English language; and the only work to which he ever set his name. In 1710 came out a small 4to pamphlet, in 19 pages, intited, A new and easy Method to find out the Longitude from observing the Altitudes of the Celestial Bodies. Also, in 1723, he published, The Moon, a philosophical Dialogue; tending to shew, that the moon is not an opaque body, but has native light of her own.

To a skill in the Greek and Latin, as well as the modern languages, he added the knowledge of the Hebrew : and he published several pieces relating to the translation and chronology of the scriptures. During a long course of years he had the chief managennent of the late African company, being anuually elected

H A Z
sub-governor. But on the dissolution of that company in 1752 , he retired to Down in Kent, where he gave himself op to study; from whence, however, he returned in 1758 , to chambers in Gray's inn, London, where he died in 1760, as mentioned above. He left a posthumous work, that was published in 8 vo , under the tite of Chronographia Asiatica et Egyptiaca, \&c.

HAYLSHAM, a town in Sussex, with a market on Saturday. Lat. 50. 55 N. Lon. 0. 20 E.

HA'YMAKER. s. (hay and make.) One employed in drying grass for hay (Pope).

HAYNEA. In botany, a genus of the class syngenesia, order polygamia zefualis. Receptacle claffy, fleshy; down simple; calyx ovate, imbricate. One species; an herbaccous plant of Guinea, with blue sessile flowers.

HAYWARD, a manorial officer, appointed to preserve the privileges, and protect the rights, immunities, and cattle, of those who are entitled to commonage of certain lands, wastes, \&c. He also derives from his appointment, authority to drive his district at stated periods; to impound strays, and prevent nuisances of diseased catt!e; as well as to adjudge it the case of tresspasses, in the case of cattle breaking bounds or destroying fences. To all which concerns there are certain local fees attached, according to the custom of the courtry. It is a beneficial office when properly conducted.

HAZARD. s. (hazard, French.) 1: Chance; accident; fortuitous hap (Locke). 2. Danger; chance of danger (Rugers). 3. \mathbf{A} game at dice (Swift).

To Hazard. v. a. (hazarder, French.) To expose to clance (Hayuard).

Tu Hazard. v. n. 1. To try the chance (Shakispeare). 2. To arlventure (Waller).

Hazard, a fashionable and fascinating game of chance, played with a box and pair of dices, and of considerable antiquity, as we know from the following distich in Shakspeare's Richard III.
"Slave, I have set my life upon a cast,
" And I will stand the hazard of the die."
In its decision it is the most rapid of all chancing, and fair enough in itself when played honourably. The person holding the box is called the caster, who having been set as much money by the surrounding company, or by any single individual, as he proposes to throw for, and the stake or stakes being deposited within a centrical circle upon the table, throws the dice from the box, when whatever number appears upon the surface is termed " the main;" and is so vociferated publicly by a person called the gromm porter, who stands above the rest, and whose business it is to call the main and chance, to furnish fresh dice when demanded, and to receive the money for a box-hand when due. As soon as the main is declared, which, in fact, is the number by which the caster's opponents must abide for themselves, the caster throws a second
time, and this number is called the chance, being his own chance against the main previously thrown; and so named, because it is the number of the main of the plavers against the chance of the individual who is the caster, and makes stakes against the whole, or any part of the rest.

The main and chance being proclaimed by the gromm porter, odds are generally laid between the throws upon the termination of the game according to the numbers opposed to each other, and to the scale by which all bets upon the game are regulated, and strictly ouserved. The caster may, or may not, engage in any of these bets, though he very frequently does, as a hedge (or fence) to his own stakes, when the odds are six to four, or two to one, in his favour: at any rate, he continues to throw the dice in succession, till either the main or chance appear: if the main be first thrown, those who "set the caster" draw their money; and the caster is then said to have "thrown out," and passes the box to his next neighbour: on the contrary, shonld be throw his own chance first, he is the winner, and of course not onlydraws all the money he staked and beited, but continues to hold the box, and throw a " new main" for any sum he wishes to be set, in which a caster is never known to be di:appointed.

When a caster has thrown in (that is, has won) three times in succession, it is termed " a box hand," and he then pays half a guinea to the groom porter, for the privilege of playing, the use of the box and dice, negus, Sue. pruvided for the accommodation of the company. The box continues in the caster's possession as long as he continues to throw in (paying an additional half guinea every third tine of winning) ; but on the first time of losing he resigns the box to the player sitting next to him, who proceeds in the same manner as himself, unless he requests, and is permitted to renew his own play, which is then called taking "a b.ck hand."

HA'ZARDABLE. a. (from hazard.) Venturous; liable to chance (Brown).

HA'ZARDER. s. (from hazard.) He who hazards.

HA'ZARDRY. s. (from huzurd.) Temerity ; precipitation ; obsolete (Spenser).

HA'LARDOUS. a. (hazardeux, French.)
Dangerous; exposed to chance (Dryden).
HA'ZARDOUSLY. ad. (from hazardous.) With danger or chance.

HAZE. s. Fog ; mist.
To Haze.v. n. To be foggy or misty.
To Haze.v. a. To frightone (Aiusworth).
Ha'ZEL. s. (harcl, Saxon.) Sec CoryLus.

Hazel witch. See Hamamelis.
HA'zel.a. (from the noul.) Light brown; of the colour of hazel (Mortimer).

HA'ZELLY. a. Of the colour of hazel; of a light brown (Mortimer).

HA'ZY. a. (from haze.) Dark; foggy; misty (Burnet).

HE. pronoun. gen, him; plur. they; gen.
them; (he, Saxon.) 1. The man that was named before (Milton). 2. The man; the person (Danicl). 3. Man, or male bellig (Dryden). 4. Male; as, a he bear, a he goat (Bacon).

HEAI). s. (hearot, hearo, Saxon.) 1. That part of the animal that contains the brain, or the organ of sensation and seat of thought (Diyden). 2. Person as exposed to any danger or penalty: the penalty uas on his head (Meiton). 3. Heab and ears. The whole person (Granville). 4. Denomination of any animals: the head of oxen (Arluthnot). 5. Chief; principal person; one to whom the rest are subordinate (Tillotson). 6. Place of honour; the first place (Addison). 7. Place of command (Addison). 8. Countenance; presence (Dryden). 9. Understanding; faculties of the mind (L^{\prime} Estrange). 10. Face; front; forepart (Dryden). 11. Resistance; hostile opposition (ذouth). 12. Spontanenus resolution (Davies). 13. State of a deer's horns, by which his age is known (Shaks.). 14. Individual (Graunt). 15. The top of any thing bigger than the rest (Watts). 16. The forepart of any thing, as of a ship (Raleigh). 17. That which rises on the top (Mortimer). 18. The blade of an axe (Dculcronamy). 19. Upper part of a bed (Genesis). 20. The brain (Pope). 21. Dress of the head (Surift). 22. l'rincipal topic of discourse (Allerlury). 23. Source of a stream (Raleigh). 84. Crisis; pitch (Addison). 25. Power; influence; force; strength; dominion: they gather head (Milt.). 26. Body; conflux (Bacon.). 27. Power; armed force (Shakspeare). 28. Liberty in running 3 horse (Shakspcare). 20. Licence; freedom from restraint (South). 30. It is very improperly applied to roots: as a head of garlich ($G a y$). 31. HEAD and shoulders. By force; violently (Felton).

Head. (Caput.) In anatomy, the superior part of the body placed upon the neck, containing the cerebrum, cerebellum, and medulla oblongata. It is divided into the face and hairy part. On the latter is observed the vertex, or crown of the head; the sinciput, or fore part; the occiput, or hinder part. For the former, see Face. For the bones and muscles of the head, see Cranium. The common integuments of the head are called the scalp.

Head, in architecture. Heads are used as an ornament of sculpture or carved work, frequently serving as the key of an arch or platband, and on other occasions.

In heraldry, the heads of men, heasts, birds, \&c. are borne in armoury, either full-faced and in front, or side-faced and in profile, which must be distinguished in blazoning.

Among medallists, the different heads on ancient coins are distinguished by the different dresses thereof. See Medal.

Head. Capitulum. In botany, a species of inflorescence, or a manner of flowering, in which several flowers form a kind of ball. As in gomphrena. 'I'his is globular, roundist, or halved. Leafy, or naked.

HEA

Flowers in this case are said to grow in a head. Capitati flores. A stigma round like a ball, is called capititum stigma; headed or head-shaped.
Head of a degr. See Antlers.
head.a. Chief; principal (Clarendon):
To Head. v. a. (from the noun.) 1. To lead: to influence; to direct ; to govern (Pri.). 2. To behead ; to kill by taking away the head (Shakspeare). 3. To fit any thing with a head, or principal part (Spenser). 4. To lop trees (Mortimer).
HE'ADACH. s. Pain in the head (Sidney).
HEADBAND. s. (head and liand.) 1. A fillet for the head; a topknot (Isaiah). 2. The band at each end of a book.
headborrow; or Headborough, the chief of the frankpledge, and he that had the principal government of them within his own pledge. And as he was called headborrow, so was he called burrowhead, bursholder, thirdborrow, tithingman, chief- pledge, or borrow-elder, according to the diversity of terns in several places. The same officer is now occasionally called a constable. The headborough was the chief of the ten pledges; the other nine were called hardboroughs, or inferior pledges.

HE'ADDRESS. s. (head and dress.) 1. The covering of a woman's head (Pope). 2. Any thing resembling a headdress, and prominent on the head (Addison).

HE'ADER. s. (from heud) 1. One that heads nails or pins, or the like. 2. The first brick in the angle (Moron).

HEADFORD, a town of Ireland, in the county of Galway. Lat. 53. 29 N. Lon. 0. 3 W .

HE'ADINESS. s. (from hcady.) Hurry; rashness; stubtornness ; precipitation (S_{p}.).

HE'ADLAND. s. (head and land.) 1. Promontory; cape (Dryden). 2. Ground under hedges ('Tusser).

HE'ADIESS. a (from head.) 1. Without a head; bcheaded (Spertser). 2. Without a chief (Raleigh). 3. Obstinate ; inconsiderate; ixnorant; wanti:g intellects (Spenser).

HE'ADLONG. a. 1. Steep; precipitous. 9. Rash ; thoughtless. 3. Sudden ; precipitate (Sidncy).

He'adlong.ad. (head and long.) 1. With the head foremost (Pupe). 2. Rashly; without thought; precipitately (Dryden). 3. Hastily ; without delay or respite (Dryden).

HEAD-MOULT-SHOT, in veterinary science, is when the sutures of the scull of an aninal and especially the coronal, are equitant, or ride over each other; which is sometimes the case in young animals, and often produces convulsions and death.

HE'ADPIECE. s. (head and piece.) 1. Armour for the head; helmet; miorion (Sus.). 2. Understanding; force of mind (Prideuux).

HE'ADQUARTERS. s. (head and quarters.) The place of general rendezvous, or lorgment for soldiers. Properly two words (Collier).

HEAD-SEA, is when a great wave or billow

HEA

of the sea comes right ahead of the ship, as she is in her course.
HEAD-SAILS, in a ship, those which belong to the fore-mast and boltsprit: fur it is by these that the head of the stiip is governed, and made to fall off and keep out of the wind; and these in quarter-winds are the chief drawing sails.
HE'ADSHIP. s. (from head.) Dignity; anthority: chief place.
HE'ADSMAN. s. (head and man.) Executioner; one that cuts oft heads (Dryden).

HEADSTALL, in antiquity. See Capistrum.
Head-stale of a horse, that part of the caveson, bridle or hunting-rein-halter which passes round and on each side of a horse's head, and to which the reins of either are affixed, for use in the field or on the road, and for safety in the stable.
HE'ADSTONE. s. (head and stone.) The first or capital stone (Psalms).
HE'ABS'TRONG. a. (head and strong.) Unrestrained; violent; ; ingovernable (Hooker).

HE'ADWORKMAN. s. (head and workman.) The foreman. Properly two words (Sicift).

HE'ADY. a. (from head.) 1. Rash; precipitate; hasty; violent (Addison). 2. Apt to affect the head (Boyle). 3. Violent; innpetuous (Shakspeare).
To HEAL. v. a. (hælan, Saxon.) 1. To cure a person ; to restore from hurt or sickness (Watts). 2. To cure a wound or distemper (Wiseman). 3. To perform the act of making a sore to cicatrize (Wiseman). 4.To reeoncile : as, he healed all dissensions.
To Heal.v. n. To grow well (Sharp).
HEALER. s. One who cures or heals (Isaiah).
HEALING, in arehitecture, is sometimes used to denote the covering the roof of a building.
He'aling. participial a. (from heal.) Mild; mollifying ; genile ; assuasive.
HEALTH. s. (from heel, Saxon.) 1. Freedom from bodily pain or sichness. 2. Welfare of mind; purity ; goolvess (Bacon). 3. Salvation spiritual and temporal (Psalms). 4. Wish of happiness used in drinking (Shakspeare.)
HEALTHFUL. a. (iealth and full.) 1. Free from sickness (S_{0} ulth). 2. Well disposed (Shahspeare). 3. Wholesome; salubrious (Bacon). 4. Salutary ; productive of salvation (Common Prayer).
HE'ALTHFULI.Y. ad. (from heallhful.) 1. In health. 2. Wholesomely.

HE'ALTHFULNESS. s. (from heal!hful.) 1. State of being well. 2. Wholesomeness; salubrious qualities ($A d d i s o n$).

HE'ALTHILY. ad. (from healthy.) Without sickness or pain.

HE'ALTHINESS. s. (from healthy.) The state of health.

HE'ALTHLESS. a. (from hicalth.) 1. Weak ; sickly; infirm. 2. Not conducive to health (Taylor).

HEA

HEA
HE'ALTHSOME. a (from health.) Wholesome ; salutary : not used (Shahspeare). HE'AL'IHY. a. (from health.) 1. Enjoying health ; free from sickness; hale ; sound (Arluthnot). 2. Conducive to health; wholesome (Locke).

HEAM. s. In beasts, the same as the afterbirh in women.

HEAP. s. (heap, Saxon.) I. Many single things put together; a pile; an accumulation (Dryden). 2. A crowd; a throng; a rabble (Bacon). 3. Cluster ; number driven together (Dryden).
To Heap. v. a. (from the noun.) 1. To throw on heaps; to pile; to throw together (Lizekiel). 2. To accumulate; to lay up (Job). 3. To add to something else (Shakspeare).

HEAPED PANICLE. In botany, congesta panicula. Abundant in flowers, but not so close as in a dense panicle.

HEA'PER. s. One that makes piles or heaps.

HEA'PY. a. (from heap.) Lying in heaps (Gay).
To HEAR. v. n. (hynan, Saxon.) 1. To enjoy the sense by which sounds are distinguished (Holder). 2. To listen ; to hearken (Denham). 3. To be told; to have an account (Acts).

To Hear. v. a. 1. To perceive by the ear (Chronicles). 2. To give an audience, or allowance \boldsymbol{w} speak. 3. To attend ; to listen to ; to obey (Eze.). 4. To attend favourably (Mat.). 5. To try ; to attend judicially (Deuteron.). 6. To acknowledge a title (Prior).

HEARD signifies a keeper ; as heard-learht, a glorious keeper. Now written herd (Gilhson).

HE'ARER. s. (from hear.) 1. One who hears (Hooker). 2. One who attends to any doctrine or discourse orally delivered by another. 3. One of a collected audience (Ben Jonson).

HE'ARING. s. (from hear.) 1. The sense by which sounds are perceived. 2. Audience (Shakspeare). 3. Judicial trial (Addison). 4. Reach of the ear (Hooker).

Hearing, the art or faculty of perceiving sounds. This sense is placed by physiologists among the animal actions. It is a sensation by which we hear the sound of sonorous bodies. The organ of hearing is the soft portion of the anditory nerve which is distributed on the vestibule, semicircular canals, and cochlea. The curious structure of the labyrinth and cochlea tend to make the weakest sounds audible; for the whole organ of hearing being included in a small space, had the auditory nerve run in a straight line, the impression would only have been made on a very small part of it ; and the strength of the impression being, cateris paribus, always as the number of parts upon which the impression is made, sounds which are now low could not have been heard at all. If the auditory nerve had, like the retina, been expanded into a large web, which had covered or lined some wide cavity, the impression of sounds, even in this
case, had been much weaker than they are now ; for this large cavity had given rooin for the sounds to dilate, and all sounds grow weaker as they dilate.
Both these inconveniences are prevented by the present structure of the labyrinth and cochlea, whose canals, by their winding, contain large portions of the auditory nerve, upon every point of which the smallest sound being at once impressed becomes audible, and by their uarrowness the sonnds are hindered from dilating; and the impressions made upon the nerves by the first dilatations are always the strongest.
When a person exercises great attention in hearing, the membrana tympani is stretched or strained so as to render it more susceptible of sounds, and better prepared to catch even the most feeble agitations and vibrations of the air or other medium.
It must be observed, however, that though the ear be the ordinary organ of hearing, yet the ideas of sounds are often conveyed to the mind by other means, particularly by the teeth. Thus, if a tuning fork, or any other vibrating body, be properly applied to the teeth, the idea of sound will be excited distinctly, whether the ears be open or stopped. It is very probable, notwithstanding, that the ear, even in this case, is in some measure concerned in transmitting the impression to the sensory. The entranoe to the ear in some animala is from the mouth. It is so in frogs. It is so partly in man by means of the Eustachian tube. Fishes were long suspected to be without an auditing organ, but this is now clearly ascertained. In some fishes the bones of the ear are on the outside of the cranium.

Hbaring (Difficulty of). See Deafness.
To HE'ARKEN. v.n. (heancnian, Saxun.) 1. To listen ; to listen curiously (Rogers). 2. To attend; to pay regard (Pope)

HE'ARKENER. s. Listener; one that hearkens.

HE'ARSAY. s. (hear and say.) Report; rumnur (Raleigh).

HEARSE. s. (See Hbrse.) 1. A carriago in which the dead are conveyed to the grave. 2. A temporary monument set over a grave (Shakspeare).

HEART. s. (heone, Saxon.) 1. The muscle which, by its contraction and dilatation, propels the blood through the course of circulation, and is therefore considered as the source of vital motion. 2. The chief part; the vital part (Bacon). 3. The inner part of any thing (All-ot). 4. Person ; character (Shaks.). 5. Courage; spirit (Clarendun). 6. Seat of love (Pope). 7. Affection; inclination (Dry.) 8. Memory (Pope). 9. Gond-will; ardour of zeal (Clarendon). 10. Passions ; anxiety ; conoern (Shakspeare). 11. Secret thoughts; rev cesses of the mind (Davies). 12. Disposition of mind (Sidney). 13. A iarrd heart is cruelty (Rowe). 14. Tofind in the Heart. To be not wholly averse (Sidney). 15. Secret meaning; hidden intention (Shakspeare). 16. Conscience ; sense of good or ill (Hookrr). 17.

HEA

Strength ; power (Bacon). 18. Utmost degree (Shakspeare). 19. It is much used in composition for mind, or affection.

Heart. (Cor.) In anatomy, a hollow muscular viscus, situated in the cavity of the pericardiun for the circulation of the blood. It is divided externally into a base, or its broad part ; a superior, and an inferior surface, and an anterior and posterior margin. Internally it is divided into a right and left ventricle. The situation of the heart is oblique, not transverse; its base being placed on the right of the bodies of the vertebra, and its apex obliquely to the sixth rib on the left side; 20 that the left ventricle is alinost posterior, and the right anterior. Its inferior surface lies upon the diaphragin. There are two cavities adhering to the base of the heart, from their resemblance called auricles. The right auricle is a muscular sac, in which are four apertures, two of the venæ cave, an opening into the right ventricle, and the opening of the coronary vein. The left is a similar sac, in which there are five apertures, viz. those of the four pulmonary veins, and an opening into the left ventricle. The cavities in the base of the heart are called ventricles : these are divided by a fleshy septum, called septum cordis, into a right and left. Each ventricle has two orifices ; the one auricular, through which the blood enters; the other arterions, through which the bloorl passes out. These four orifices are supplied with valves, which are named from their resemblance; those at the arterious orifices are called semilunar; those at the orifice of the right auricle; mitral ; and those at the orifice of the left auricle, tricuspid. The valve of Eustachius is situated at the termination of the vena cava inferior, just within the auricle. The substance of the heart is muscular, its exterior fibres are longitudinal, its middle transverse, and its interior oblique. The internal superficies of the ventricles and auricles of the heart is invested with a strong and smooth membrane, which is extremely irritable. The vessels of the heart are divided into common and proper. The common are, 1. The aorta, which arises from the left ventricle. 2. The pulmonary artery, which originates from the right ventricle. 3. The four pulmonary veins, which terminate in the left auricle. 4. The venæ cavæ, which evacuate themselves into the right auricle. The proper vessels are, 1. The coronary arteries, which arise from the aorta, and are distributed on the heart. 2. The coronary veins, which return the blood into the right auricle. The nerves of the heart are brauches of the eighth and great intercostal pairs. The heart of the fertus differs from that of the adult in having a foramen ovale, through which the blood passes from the right auricle to the left, and a canalis arteriosus, through which it is conveyed from the pulmonary artery to the aorta; a third part of the whole blood passing through this opening into the system at large, without anv communication whaterer with the lungs, and about half the blood that is thrown from the sight ventricle into the pulmonary artery; the
remaining third passing from the right to the left auricle through the medium of the foramen ovale.

Heart of a seed. Corculum. In botany, the corcle or rudiment of the future plant. It consists of the plumule (pluwula) and rostel (rostclium.) Sce Corculum.

Heakt-ach.s. Sorrow ; pang; anguish of mind (Shak:ppare).
Heartbreak. s. Overpowering sorrow (Shak,peare).

Heart-breaker. s. A cant name for a woman's curls (Hudilras).

Heart-breaking. a. Overpowering with sorrow (Spenser).
Heart-breaking. s. Overpowering grief (Hake vill).

Heart-burned. a. Having the heart inflamed (Shakspeare).

Heart-burning. s. 1. Pain at the stomach, commonly from an acrid humour (Woodward). 2. Discontent ; secret enmity (Swift).

Heart-dear.a. Sincerely beloved (Shakspeare).

Heart-base. s.Quiet ; tranquillity (Shakspcare).

Hearts-basb, in botany. See Viola.
Heart-easing.a. Giving quiet (Milton).
Heart-felt. a. Felt in the conscience
Heart-peas.s. A plant (Miller).
Heart-quelling. a. Conquering the affection (Spenser).

Heart-rbnding. a. Killing with an guish (Waller).

Heart-shaprd leaf. In botany, a leaf somewhat ovate, hollowed at the base, without posterior angles. It is often called cordate.

Heart-sick. a. 1. Pained in mind (Taylor). 2. Mortally ill; hurt in the heart (Shahspeare).

Hesrt-sore. s. That which pains the mind (Spenser).

Heart-string. s. The tendons or nerves supposed to brace and sustain the heart (Spenser).

Heart-struck. a. 1. Driven to the heart: infixed for ever in the mind (Shaks.). 2. Shocked with fear or dismay (Milton).

Heart-swelling. a. Kankling in the mind (Spenser).

Heart-tongued prond. In botany, tongue-shaped and hollowed at the base. As in asplenium scolopendrium.

Heart-whole.a. I. With the affections yet unfixed (Dryden). 2. With the vitals yet unimpaired.
Heakt-wounded.a. Filled with passion of love or grief (Pope).

HE'ARTED. a. It is only used in composition: as harrl hearted (Gay).
To HE'ARTEN. r. a. (from lieart.) 1. To encourage; to animate; to stir up (Shah.). 2. To mieliorate with manure (May).

HEARTH. s. That part of the floor of a room on which a fire is made, or where the grate stands.

Hearth-money, orChimeey-moneta
the name appropriated to a dute on houses, first leviod in the regn of Charles 1I. This tax being much complained of, thoush only 2s. per andam, has been since tahen ofll.

HE'ARIILY. at. (fiom hearty.) I. From the heart ; fuilv ($P P_{i}(i, r)$. 2. Sucerelv; actively; dhligen,ly (Alteriury). 3. E.gcrly; with destre (Ad $/ i, \ldots n$).

HIARTINE:S. s. (from hearth). I. Sincerriy; freedom from liypecrisy (Sinaks.). 2. Viguir - enernew (Iay hir).

HE'ARTLESS. a. (from heart.) Without courage : sniribless (Couley).

HEARTLESSLY. ad. Without courage; faintly; timidly.

HE'AR'TLESSNESS. s. (from hearlless.) Want of courage or spirit; dejection of mind.
HE'ARTY. a. (from heart). I. Sincere; undissenbled; warm; zeaious (Sin.). 2. In full health. 3. Vigorous; strong (Pope). 4. Strong ; hard ; durable (Woll $^{\prime} \cdot n$).

Hearty-hale. a. (hearty and hale.) Good for the heart (Spenser).

HEAT. s. (hear, hax, Suxon.) 1. The sensation caused thy the approach or touch of fire (Locke). 2. The cause of the sensation of lurning (Hooker). 3. Hot weather (Addison). 4. State of any body uider the action of the fire (Moxor). 5. Yermentation ; effervescence. 6. One violent action unintermitted (Dryden). 7. The state of being once hot (Dryden). 8. A course at a race (Dryden).9. Pitiples in the face : flush (Addison). 10. Agitation of sudden or violent passion ; vehenience of action (Sidury). 11. Faction ; contest; party rage (K : Charles). 12. Ardour of thought or elocurion (Addison).

To Heat. v.a. (from the noun). 1. To make hot; to endue with the power of burning (Daniel). 2. To cause to ferment (Martimer). 3. To make the constitution feverish (Arl.). 4. To warm with vehemence of passion or desire (Dryden). 5. To agitate the blood and spirits with action (Dryden).

Heat, in natural philosophy and chemistry, one of the effects of tire or caloric, indicated by an increase of tempelature, and the sensation it produces upon the orrans of fecling.

Although in our article Caloric we urged the propriety of using such language, invariably, as would distinguish the cause of heat from the sensation, we yet promised, as the term beat is frequently aployed, especia!ly in the earlier chemical writings, to express both, to exhibit in this article a sketch of the opinions that have been at different times held on this inysterious subji ct.

The two great divisions under which these opinions may properly be arranged a a e, on the one side, that heat is not material, but that it is merely a quality, modification, circumstance or affection of matter, consisting in int rnal vibrations or collisions of its particles, or in some other morle of corpuscular action; aid, on the other side, that heat, and the efficts which accompany it, are protuced by the operation of a peculiar material fluid,
In the list of those who maintain thr former sentiment may be classed, particularly, Aristot'?, and the Peripatetics, among the aneicnts; and Des

Cartes, Iord Bacon, Buyle, Newton, Macquer, count Rumiurd, and among the moderns professor Dary.
Aristotle, and his followers the Peripaltics, as far as the opinions of this phiosopher can be tracedamedst the ubscurities which urround them, aip, ears to have con idered heat ay a quality, or, aiccording to his phrascolky, one of the primary qualities of sensible bodies. Upon the union of these primary qualities with each other, he twunded the oriyin of the fuur elements, as they were ralied : heat and dryness, he supposed, drodiced Gic; heat and moisture, air; cold and moisture, water; cold and dryness, earth.
The Cartesians assert that heat consists in a certain motion of the insensible particles of a body, resembling the motion by which the several parts are agitated by the motion of the heart and blod. Whether this conaparisun was intented to illustrate the ductrine or not it is rather difficult to determine; but independently of this consideration, the opinion itsclf seems to bear some analugs to that of lurd Bacon, of which we now proced to treat.
This extraortinary man, who left no olject of physical or inteliectual enquiry untourhed, wrote a treatise expressly on the nature of heat, De Furma Calidi, in which be delivers his opinuon, deduced from a great number of experiments and considerations, that heat in bodics is 10 other than motion only, a motion so and so crrumstanced; so that to produce heat in a body, no. thing is required but to excite such motion in the parts of the boxly. Nut, as he intimates, that motion generates heat, or heat motion-thoub, in many cass s, this is true-but that the very thing heat is very motion and nothing else. All inotion, however, he argues, is not heat ; since it requires screral peculiar circumstances to render it so: in the first place, it must be expansive; sicondy, it must be directed towards the circum'erence, and at the same time upwards; thirdly, the expansire motion is not equable thronghout the mpole borly, but only affects its smaller particles; and fourthly, this motion must be very rapid. From all these requisites in the formation of lieat lord Bacon infers as a general detininition, that heat is " an expansive undulatory motion in the minute particles of a body, by which they tend with some rapidity towards the circumference, and at the same time incline a little upwarls."
Mr. Boyle, whose experiments were still more numerous and diversified than those of lurd Bacol, argues, from what he calls the producibility of heat, against its materiality.
To the various methods of producing heat, snch as friction, collision, percussion, \&c. we have al. ready adverted in the article Caloric. Now that which may be produced by mechanical means, be observes, cannot be matter; for it is uut oi the power of any human being to create new natter, how much suever he may disguise, increase, or alter the property of any budy or set of bodies by mixture, combination, or any other means. This mode of reasoning he pursued in a number of raluable treatises which he wrote upon the subjecth and exemplifi din a rariety of respects with grat ingenuity and address. He appears to coincide very nearly with Bacon in his opinion of the nature of leat, which, be thinks, seems priucipally to consist ia that mechanical property of mattet ca led mution, but which in this case is sutbject to three curditions, or modifications. Ist. The usitation if the parts of the body must be vehement, for this distinguishes the bodies said to be hot fiom

H E A T.

those which are barely Auid; 2d, that the determination be rarious, and tend all manner of ways; 3d, that the agitated particles, or at least the greatest number of them, be so minute as to be angly insensible.

Sir Issac Newton, as well as most of the mechanical philosophers of that age, may be ranked on the same side of the question, though he maintains an opinion somewhat different from any of the preceding.
"Fire," says he, " is only a body much ignited, i. e. heated hot, so as to emit light copiously; What else," he asks, "is a red hot iron than fire? and what else is a burning coal than red hot wood? or flame itself, than red hot smoke? 'Tis certain that flame is only the volatile part of the fuel heated red hot, that is, so hot as to shine; and hence only such bodies as are volatile, that is, such as emit a copious fume, will flame, nor will they flame longer than they have fume to burn," \&c. \&c. See his Optics.

In like manner, he conceives that "gross bodies may be converted into light, by the agitation of their particles; and light, again, into gruss bodies by being fixed therein." In these cases he appears to consider light as inseparable from fire or flame.

Macquer, although in the article Fire in his excellent Chemical Dictionary, be regards it as "a body essentially fluid"-" the only body essentialIy fluid," and "consequently the cause of the fuidity of other bodies;' and although he speaks of the great facility with which it penetrates other bodies, or separates from them, and infers from these and other facts, the "infinite smallness of the integrant parts of fire,' meaning by this term the cause of heat, or what is now denominated caloric; yet in the appendix to his Dictionary, when treating of the same subject, he expresses an opinion directly the reverse of this, and calls heat conly a mode of existence of a material substance." He carries on the discussion through several pages with much ability; and, among various other modes of argumentation, he institutes an analogy, which he sustains with considerable ingenuity, between the communication of heat and the communication of motion, deducing from the known and acknowledged laws of the latter the similarity of the former, and maintaining consequently that heat is " really nothing else than the motions of the parts of heated bodics." Our limits will not allow us to give an abstract of bis reasoning, which we should otherwise be giad to do; we quote, however, his conclusion.
"I have hitherto," says he, " been of opinion, I confess, with most natural philosophers, that heat was a particular kind of natter, so subtile as to penetrate all bodies, and to separate their parts, When put in action by light, or by percussion; and that this being was the true matter of fire: but the above reflections have suggested a very different opinion. There certainly is a matter of fire; and it is pure light, which is a material substance, whose existence cannot be questioned. But we cannot say the same of heat; the causes which excite it, and the effects which it produces, do not prove, or even suppuse, the existence of a peculiar matter. They all concur, on the contrary, to indicate that it is only an accident, a modification of which some bodies are susceptible, and consisting merely in the intestine motion of their angregant and constituent parts, and which may be produced, not only by the impulse of light, but
also by all frictions and percussions of any bodies."

Count Rumforl, from two considerations, infers the immateriality of heat: 1 st , from his frequent failures in attempting to discover that it had any weight; and 2 d ly, from the possibility, which he conceives he has demonstrated, of obtaining an inexhaustible supply of heat from a given quantity of insulated matter.

It is well known that on the freezing of water, a portion of heat is given unt, sufficient to raise the temperature of an equal quantity of water no less than 14()$^{\circ}$, that is from 32 to 178°. If, therefore, heat were a ponderable substance, it is reasunable to imagine that water would becomo lighter when frozen in a vessel hermetically seated. The count, accordingly, made a number of experiments with a view to determine this point; but could not discern the least difference between the weight of the water before freezing, and that of the ice when frozen. From this he makes his first deduction of the imponderability of heat, and draws the more extensive, but less cautious inference, that all fiv ture attempts " to discover any effect of heat upon the apparent weights of bodies will be fruitless." Phil. Trans. 1799. Part II. or Nich. Jo. 4to. vol. III.

The other deduction, mentioned abnve, was made from the following experiments. The count procured a cylinder of brass, bored like a cannon. By means of the engine used for boring cannon in the arsenal of Munich, a blunt borer, or flat piece of hardened steel, was kept with one of its extremities strongly pressed against the bottum of this hollow cylinder, while the latter was turned swiftIy about its axis. In one experiment, the cylinder was covered on the outside with a coating of thick flannel; in anuther, the borer was made to work through a collar of leathers; in a third, the cylinder was wholly immersed in water, the burer still working through the leathern collar; in a fourth, the leather was removed, and the water had access to the interior of the cylinder, where the friction took place. In all these cases, a very considerable quantity of heat was produced, much more than he conceived it possible for the machinery to supply: and in one experiment heat was generated by the friction in sufficient quantity to cause about $26 \frac{1}{2}$ pounds of ice-culd water to boil in two hours and a half. The capacity of the brass for heat, or its power of produciug it by friction. did not appear to be diminished, and it seemed as if this evolution of heat would have gone on for ever if the friction had been continued. Now, as. any thing which any insulated body, or system of bodies, can coutinue to furnish withuut limitation, eannot possibly be a material substance, the inference of our author is that heat is not of this dcacription: at the same time he acknowledges the difficulty of forming any distinct idea on the subject of heat, capable of being excited and communicated in the manner shewn by these experiments, "exrept it be motion." Essays, vol. II. Leybourn's Tracts, vol. I.
In the prosecution of this important enquiry count Rumford has since made a great uamber of ingenious experiments, from which, if he has failed to determine what heat really is, and has even on some occasions, we think, furnished data for conclusions opposite to those we have stated; he has, notwithstanding, enlarged in a very considerable degree our knowledge of its lews of action, propagation, and economy; and has furnisbed a
L. 4

HE A T.

great number of very valuabie hints and directions for the better management and supply of this wonderful asent, in domestic concerns, commercial undertakngs, and chemical res arches.

With reepect to the relation between heat and light, the comat appears to catertain an opimion nearly similar to that of Macquer, alrcady quoted. In a series of experimental investigations concerning heat, an account of which he communicated, from Mumelo, to tie National lnstitute of France, and to the 12 h wolume of Niwhoten's Journal, he had in siew the detcrmination of this among other particulars: afrer ascertaining that, when a hot bouly is coold in tranquil a:r, a very sman part of the heat, alo et ', th, is communicated to the arr, all the rest bea, communicated by radiation through the air to the surrounding solid bodies, and eontirming, by various results, his hypothesis of the inmateriality of heat, he proceedis to treat of the communication of licat amone solid bodies, and concludes with an enquiry whether the quantity of heat excited by the striking of the solar rays upoian opase body is aluays in proportion to the quant ty of light that has disappeared. This question he answers in the atfirmative; ascribing to light the power of producing heat. This last position, however, has been rendered doubsial, or rather proved erroneous, by Dr. Herschell's distinction in the solar rays between those which prudace heat, and those witich only illuminate.

A further account of Dr. Herscheli's experiments on the solar rays, together with those of Woliaston, Bockman, and others, will be found in the article Sun.

The principal writers on the opposite side of the question, wioh ascribes to heat a distiuct substantial existence, are the following.

Epicurus, Democritus, and most of the Greek philosophers, appear to have considered heat as material, and to inave employed the term in a sense nearly synonymous with our use of the term caloric in the present day. Zent, also, who lived early in the seventh century, has expressed a similar opinion ; and Cicero, who was one of his disciples, has given a curious dissertation on this subject in his book De Natura Deorum: it consists of a dialogue (trialugue ?) between an Epicurean, a Piatonist, and a stoic, respecting the supreme power, \&c. The stoic is made to speak of heat in the fulluwing terms. "That heat is combined with water, its liquefaction itsclf sutficientif proves; nor can it either fresze or congeal into snow or hoar-frost without suffering that heat to escape. Even the air, huweter cold it may be, is iny no means devoid of heat ; indecd, it is combined with a great dual of heat," whih many ott:er expressions, simiar to the languge that has since been so generally used upon this occasion. Indeed this appears to have continued to be the prevailins, and alnost on'y, op:nion, as far as we can learn, respecting the nature of heat, till aboat the time of lord chatsellor Bacon, who thourshed in the sixtenth century, and to whose opinions refereare has leen aiready made. The chemical plilosophers, howerer, of that and the succeding pe jod, seem to have wained a strons nution of tine eparate exictme and ma eriatity of hat.

Hombert, who supposed that sulnur was the indammable principle, coniders fire, usiug the term synnyymutsiy with our calorio, as "one of the simple, prinare, prexistent incredients of all natual hodi s." Essai du Sonllre Principe.

Accurding to Dr. s'Gravesande, it "enters into
the composition of all bodies; is contained in all bodies; and may be separated or procured from al! bodics, by rubbing them against each other, and thus putting therr fire in motion. But fire is hy nu means generated by such motion.' Elem. Phys.

Again; he obseives, "fire naturally unites itself witi bodies; and hence it is that a boly brought near to the fire, grows hot, in which case it also expanils and swells." Ibid. Further, atter alluding to the fact of heating bodies by friction, which, he remarks, "shews that all bodies have fire in them;" ards, that though " fire may be put in motion, and separated by such rabbing, it can never be generated that way." Ihid. It inay be proper to notice, in passing, the distinction that sulisists between these writers and their opponents, with respect to the producibility or generatiun of heat. These who deny the materiality of heat, assert that such a generation actually takes place on the friction or collision of bodies; while those who plead for the existence of heat as a distinct fluid contend that the heat is not geperated by such motion, but only separated, excited, or collected; baving previously existal, thoogh imperceptibly, in the body which yiclds it. 'To proo cced: s'Gravesande, in further explanation of his sentiments, says" Heat in the lot body is an asi tation of the parts of the body made by means of the fire contained io it ; by such agitation a motion is produced in our bodies, which excites the idea of heat in our mind; so that heat in respect of us is nothing but that idea; and in the hot body, nothing but motion." Though the term beat is camployed here in an intermediate sense between the cause and the sensation of heat, or rather as denoting at one time the seasation, and at another the effect on the body previous w the sensation, and productire of it; yet the cause of this series of effects is evidently asserted to be anateria!. Further; " The minute parts of which a body consisss being vehemently argitated by attrition, the applieation of external fire, or the like cause; the fire contained therein is separated from those particles, and turned loose in the body; where, by the attraction between the particles of Gire and of the body, a mutual action arises, by which some parts are borne off from the budy and carried away by the motion of the fire.' Thus far s'Gravesande.

Lemery, the younger, agrecs with the two lat mentioned authors, in assenting the absolute and ingencrable natare of heat ; but he extends hisidea still further. Not contented to claim for it the character of an element to borlies, the endeavours to shew that it is "equally diffused throush all space, is present in all places, in the void spaces betwern bodies, as well as in the insensible interstict between their parts." Mem. de l'Acad. 1715. In this last sentiment he arrecs also with Boerhaave, whose opinions, experiments, and reasonings, deserve to be considered more at lavge.
This excellent chemist and philosopher has appropriated one very long chapter of his Treatise on Chemistry to the discussion of this im ortant subject. In this claborate performance he has taken a more prerise, varied, and extensive view of the oricin, properties, nature, and modifications of licat, than any of his predecessurs. He not ouly attemien to the sentiments of other writers, but finling them inconsistent with each wher, and unsaliffactory in determining the nature of this mysterions agent, be instituted a set of experiaren's entirely uew, and more comprehensive than auy that had before been undertaken for this purpest,

H E A T.

It the zme time bringing into consideration a freat number of facts, more or less known, and a variety of observations which bad been made in different parts of the world.

By the term fire, the subject of his dissertation, Boerbaave evidently intends to denote the same substance which in modern times is denominated caloric; that is, the cause of heat, and of its pbenomena. This fire, however, he divides into two kinds; the pure or elementary, and the vulgar or culinary fire; but as the only difference between these is, according to his own statement, a variation of the circumstances in which they appear, it will be atteoded with no inconvenience, and some advantage, to treat the subject at present only in its clementary signification.

As the result of his enquiries, he infers, 1st. that fire appears to be the general instrument of all the motion in the universe; the universal cause of all the changes in nature. Of this he gives several instances in the effects of fire upon solids and fluids. All natural motion, he observes, is performed either by a separating of parts from each other, or by a rarefying of them, neither of which is done without fire. He remarks the impossibility of separating fire entirely from any body in nature, asserts that the most rarefied air contains a portion of it; and that, if it could be entirely deprived of this portion, it would become solid, perfectly at rest, and incapable of change. He stiles fire (or caloric) the only active and proper instrument of chemistry, without which the chemist would be absolutely incapable of performing or producing any thing.
9. That elementary fire is equally diffused in all places. The proofs he adduces in support of this, though ingeniously applied, a ppear to be ooly decisive as far as they shew that no body has yet been found, or can be conceived, totally destitute of caloric, and that amidst all the changes which are perpetually occurring, and the inequalities observable throughout nature, there is a constant tendency in fire to obtain and preserve an equilibrium amongst the various bodies which cuntain it.
3. That elementary fire is always latent, until wet at liberty by some variation of circumstance; and that it then discovers itself by one or more of these effects, rarefaction, light, colour, heat, and burning.
4. That fire only becomes apparent by being collected, or gathered nearer together; "so that there is $n 0$ exciting, producing, or making of tire, or even putting it in motion; but the whole of What we do is to collect what was before dispersed, and bring it into a narrower compass." From the whole he deduces the 5th or general inference, that fire, or caloric, " is a borly sui generis, not creatable, or producible de noun, by any natural or artificial means;" that "its quantity is fixed and invariable;" and that " the utmost we can do with it, and which has led us to think it producible, is" that, from a state of insensibility, we can "' render it sensible; where, before, there was no sign of it, it may be made manifest. But this is only effected by determining and collecting it; ty bringing it uut of a larger space into a less; and driving or directiag it upon this body or that," \& c.
Kaving iuferred the materiality of bcat, our author proceeds to investigate its properties, which he lays dow in the following manner. As eorporeal, it is coupposed of particles, which arp
extended, impenetrable, moveable, frurable, tac; these corpuscles or molecules are the minutes \boldsymbol{E} and subtilest of bodies; the most solid and iadivisible; the most polished and smooth; the most simple and immutable; and move with greater velocity than any other body we are acquainted with. In the prosecution of his enquiry, our author proceeds to notice the different modes of collecting fire, both elementary and vulrar, such as attrition, burning glasses, the putrefaction of regetables, chemical admixture, contiguity of air, pulverizing, moistening and mixing certain solid hodies, \&s.; the different kinds of pabulam, or food of five, in other words combustible bodies, all the variety of which he reduces radically to two, oil and sulphur; the different effects of fire, according to its different circumstances, degrees, and directions, \&c. \&c.; never failing, as he goes along, to seize and apply fresh arguments as they present themselves, in support of his favourite notion of the materiality of heat.

Notwithstanding, however, the general excellence of Boerhaave's treatise, the attentive reader will discover some examples of inconsistency, and even of paralogisin; some conclusions too hastily drawn, and a few, periaps, even contradicted by the premises themselves. But these occur rarely, and if it be added that some of his reasonings are nullified by subsequent discoveries, the great improvements that have been made in chemical philosophy since he lived, will suggest an ample apology for his stopping short of infallibility and perfection. It deserves to be remarked, in taking leave of this eminent writer, that a passage already quuted, and another which fullows, appear to contain the germ of that doctrine, which was afterwards so beautifully expanded by Dr. Black, under the denomination of lalent heat. "Thougl fire," says he, "be the great cause of fluidity and mqtion, yet is it frequently found in such small quantity, that instead of fusing bodies, or keeping them in a state of fusion, it becomes enclosed and fixed therein, so as to remain, as it were, imprisoned, till some external cause come to its assistance, and open the cells which befure detained it." In what respects Dr. Blach's iden differed from this may be seen stated in the articles Capaciry, Caloric, and latent heat. See alsu PhlogigTON.

Since the time of Boerhasve, other writers have appeared on the same side of the question. The French chemists who succeeded Macquer have almost generally declared themselves in farour of the materiality of heat: we may instance, particularly, Berthollet, Lavósier, Guyton de Morveau, and Fourcroy, to whom we are indebted fir the introduction of the term caloric, as well as fue the formation of the nomenclature itelf. Tu quote these, and other French authors, largely our limits would not admit; and it is the less necessary as most of their writings are easily accessible to those Who make chemistry the object of their pursuit. One extract, however, we may venture to transcribe from Fourcror, because, though it does not reveal for the first time any great discovery, it notices a fact of some consequence in the argament, and which we hare not presented befure. From the phenomena which he has described, it follows, he says, "that caloric has different attractions, or various degrees of affinity for different bodies." And this attraction, he adds, "rarying for cach body, is a direct proof of the existence of caloric, and a refutation of the doctrine
which makes it to consist on'y in 2 modification of bodies.' Chem. Phises.

Pofeson Picte:, Schicele, and others, have shewn that calutic is radiated, refracted, and reflerted, in the same manner as the rays of light, and therefore that if the one be a substance, so must the other likewist.

In our own country many writers have recently appeared, who have thrown much light on this intricate subject. Dr. Herschell discovered that there are rays emitted from the sun which produce heat, but have not the power of illunnat:ng; and that, on the contrary, fiom the same somice proceedd also rays of hight whith do not produce heat. The last fact was indeed known long ago by Dr. Hooke and Mr. Scurele; but Dr. Herschell demonstrated it with more precision: and the first has been confirmed by sir Henry Fingh Geld, who repeated the ductor's experiments with a different apparatus, but with the same results. This divisica of the solar rays into calorific and luminous, estallished as it is unon such undoubted premises, Dr. Thomouls convirers as nearly putting an end to the dispute by dem :astrating the existence of caloric as a pecuilar substance; at least it is puttingit upon the same footine in this respect as light, the materiality of which is not disputed by many who alzue on the other side with regard to heat. Chemistry, I. 249.

Mr. Tilloch, the editor of the Philosophica! Magazine, has inserted in that useful work two very ingemious papers on the subject of caloric; in the first of which he advances several objections against the distinction between sensible and latent heat (see Caloric in this work, $\S V$.); and in the second, with which alone we are concerned at present, he attempts to prove that "the matter of heat, like other substances, possesses not only volume, but gravity.' He brings forward many examples, mist of which are weil known, to shew that in a great number of cases, mixtures of different kinds, of aeriform and thuid bodies among the onselves, with each other, and with solids, are reiuced or increased in volume, without parting with or receiving any thing except heat; and therefore he concludes that heat is matter. Again; with respect to its gravity, he thinks the experiments and facts commonly adduced to prove that it is devoid of weight are liy no means conclusive; indeed, he conceives that many of them are incxplicable without allowing it to possess weight, thongh we are not at present in possession of means to ascertain that weight exactly. For ourselves, we must confess that illoas of this kind have frequentily beren cxeitel in our own minds on the coutemplation of various chemical pheuomena; and we ace not withont hoprs that some future atempt to detormine the weight of heat will be so far successful as to set that part of the question entirely at reat. Nothine that has yet hern dones, withont exceptiner count Rumford's careful experiments, ousht, in our estimation, to be looked umon as derivive, especially on the negative side of the enguirs.

Mr. Tilloch is of opinion that the mothots hitherto ad pted to setlle the point are to:ally unit for the purpuse: they appear to him no more rational the: it would be "for the inhatitants of the ocean to attompt to weish water by cmphovine a balance suspenced in the modinm that surrounds them, and putting into one shell a substance that to them should seem wet, and into the other a sub. stasce which they might call dry." After noticing
the advantazes, in determining the speeific gravities of borlies, of weighing them both in the alrand in water, and comparing their results; he asks, with reic-rnce to heated bodies, "why has the increase of absolute weight not been bitherto obserred) I take the reason," he answers, "to be this: they attempted to determine it in the air; overlooking this plain fact, namely, that air may le considered as bearing the same relation to heat that water does to gold, or rather to a substance many times heavier, if such could be found; that is the air, thourh a rarer substance than the solid boclies weighed in it, is a denser one than heat; and they have been demanding that a substance specifically lichter than air should descend in it." P. M. vol. IX. Without taking upon ourselees to answer for the perfect accuracy of Mr. T.'3 representations and reasonings in all cases, the paper contains so much that is worthy of attention in this enquity, that we cannot but recummend it to the perusal of our readers.

Another correspondent, in the same work, rol. XII. has made some remarks to shew that the hyputhesis which makes all heat to be generated by motion is utteriy inconsistent with many of its phenomena, and especially with the fact discovered by count Rumford, and confirmed thus far by later experiments; that heat is conreyed, especialIy by fluids, with murh greater difficulty downwards than upwards. He allows however the difficulty of explaining count Rumford's experiment with the brass cylinder, consisteutly with the doctrine of materiality, and contends that a single instance of inability to account for a fact oushe not to overturn any doctrine that is otherwise well established; but Mr. Tilloch remaiks, in a note, that the count, with all the care and j, recaution he employed, did not succeed in insulating from the contact of caloric the bodies subjected to friction. "Was not the apparatus," he asks, "wholly immersed in a bath of caloric-the atmosphere?' P. 321.

In the fiftl volume of the Manchester Memoirs, Dr. W. Henry has a paper, entitled "A Revirw of some Experiments which have been supposed to disprove the Materiality of Heat." This paper was written soon after the publication of count Rumford's Enquiry eoncerning the Suurce of Heat evolved by Friction, and of Mr. Davy's intcresting Essays in Dr. Beddoes's Contributious; and the remarks it contained were intended principat ly to apply to the arguments advanced by the two able philosophers, and to the facts which s rred as bases to their reasoning. The materiatity of caloric, Dr. Henry contends, may be maintained without admitting that we have made any sleps tonards determining its quantity in bodes. Avoiding all metaphysical reasoning on the nature of matter, and assuming the generally receired definition of matter as sufficiently characterizing it, he examines how far this general charocter applies to the individual-caloric. "Caloric," be argucs, " occupies space, or is extended, because it enlarges the dimensions of other boxlies; and, for the same reason, it is impenctrable, siuce if it could exist at the same time in the same plare with other budies, their volume would nerer be enlarged by the addition of heat. Of form, is figure, as only a mode of extension, it is uancrissary to prove that caloric is possessed; aod, indeed, there is perhaps only one gencral qualite of matter that will not be allowed it, viz. attractich. That caloric is influenced by the attraction of gral

Fitation, or by cohesive attraction, has never yet been proved; yet the various experiments of Buffon, Whitehurst, Fordyce, Pictet, \&c. cannot be alleged as proofs that it is actually devoid of this property; since they only decide, that the small quantities which can be artificially collected are not to be set in the balance against the grosser kinds of matter. One kind of attraction, that which has lately been termed chemical affinity, may, I think, after a full survey of phenomena, be fairly predicated of caloric; and if its possession of this quality be rendered probable, we shall thence derive a powerful argument in favour of its materiality."
To those who contend that heat is generated by motion, he replies that, if the phenomena of heat can be shewn to take place where matter is not present; that is, we suppose, any thing which is allowed to be matter by the advocates of the immaterial hypothesis; we shall derive from the fact a conclusive argument against that hypothesis. Such a fact, he remarks, is afforded by an experiment of count Rumforl hinisetf, in which heat was observed to pass through a Torricellian vacuum, in which, if heat be not mat:er, there could be nohing to transport or proparate motion; thus proving that heat can exist independently of other matter. and consequently that it is a distinct and peculiar body.
Such are the outlines of the controversy respecting the nature of heat, and such are the principal arguments by which the advocates on each side support their opinions. Thowe who are desirous of pursuing the enquiny further may cmsult Dr. Crawford's Experiments and Observations on Animal Heat and the luflammation of Combustible Bodies; Scheele's Experiments on Air and Fire, mith Mr. Kirwan's notes; Leslic on Heat; Thomson's Chemistry, vol. I ; Doerhaave's Chemistry, and Darg's Essoys, beture reterred to; Rumforu's Essays, and vatious papers of his in the Philosophical Trausactions; seyeral of Dr. Herschell's Papers in the same work; several volumes of the Philosophical Magnzine, and of N:chotson's Journal, to specify which is unneeressary, as those who have sets of those very useful works may easily be directed to those papers which relate to the subject, by cousuiting their respective mdexes.

Meat (Animal). See Physiology.

Heat (Latent). See the end of the article Caloric, also Latent heat. We may just notice here a difference of conception on this point between two eminent philosophers: Dr. Irvine, of Glasgow, ascribes the disappearance of heat, without increase of temperature, to a change of capacity in bodies; while Dr. Black, the great illusitrator of this doctrine, supposes caloric to become latent by a chemical combination with boties. See a letter from the son of 1)r. Irvine, in Nicholson's Journal, New Series, VI. 25.
Heat (Propagation of). See PropagaTION.

HE'ATER. s. (from heat.) An iron made hot, and put into a box-iron to smooth linen.
HEATH. s. (erica, Latin.) 1. A shrub of low stature (Miller). 2. A place overgrown with bieath (Shaksp,eare). 3. A place covered with shrubs of whatever kind (Bacon).

Heath, in butay. Sce Erica.

Meath (Mountain). See Saxifraga. heath (africaiz). See Phybica.
Heath (Berry-bearing). See EmpeTRUM.

Heath (Pea). Sce Orobus.
IIeath-fowl, a variety of grouse denominated black game, specially protected by the game laws. Thus by 13 Geo. HI.c. v. § 2. no person shall kill, destroy, carry, sell, buy, or have in his possession, any heath-fowl, commonly called black game, between the tenth day of I Necember and the twentieth day of August; or any grouse, commonly called red game, between the tenth day of December and the twelfth day of August; or any bustard between the first day of March and the first day of September, in any year, upon pain of forfeiting, for the first oflence, a sum not exceeding twenty, nor less than ten pounds; and for the second, and every subsequent offence, a sum not exceeding thirty, nor less than twenty pounds : one motety thereof to go to the informer, the other to the poor of the parish.

HEATHEN. s. (heyden, German.) The gentiles; the pagans; the nations unacquainted with the corenant of grace (Addison).

Hea'then. a. Gentile; pagan (Addison).
HEATHENISH. a. (from heathen). 1. Belonging to the gentiles (Mooner). \&. Wild; savage; rapacious; cruel (Suuth).

IME'ATHENISHLY. ad. After the manner of heathens.

HE'ATHENISM. s. (from heuthen.) Gentilism; paganism (Hammond).

HE'A'IHY'. a. (from heatl.) Full of heath.
To HEAVE: v. a. pret. heated, ancienty hove; part. heaved or hoven. 1. To lift; to raise from the ground (Ilitton). 2. To carry (Shatispeare). 3. To rase; to lift (I)ryden). 4. To cause to swell (Thomson). 5. To force up from the breast (Sha/ispecire). 6. To exalt; to elerate (Shahspeure). 7. 'o puff; to elate (Hayuard).

Tio Meave. v.n. 1. To pant; to breathe with pain (Dryden). 2. To labour (.Afler.). 3. 'io rise with pain; to swell and iall (Dry.). 4. To keck; to teel a tendency to vomit.

Heave.s. (from the verb.) 1. Lift; exertion or effort upward (Dryden). 2. Risiag of the breast (Siakispeare). 3. Eftort to vomit. 4. Strurgle to rise (IIudiliras).

IIeave offering.s. An offering among the Jews (Niombers).

HE'AVEN. s. (heoron, Saxon.) 1. The regions above ; the expanse of the sky. \%. The habitation of God, good angels, and pure soct!s departed (Milton). 3. The supieme power; the sovereign of heaven (Γ_{c} mp!e). 4. The pagan gods; the celestials (Stiah-peare). 5 . Elevation; sublimity (Shahispecirt).

Heaven is more particularly used, in astronomy, for an orb, or circtilar region, of the ethereal heaven. The ancient astronomers assumed as mavy different heavens as they observed difierent motions therein. These they supposed all to be solid, as thinking they crould not otherwise sustain the bodies fixed in the:n; and spherical, that being the most proper forma

HEA

for motion. Thus we had seven heavens for the seven planets; viz. the heavens of the Moon, Mercury, Venus, the Sun, Mars, Jupiter, and Saturn. The eighth was for the fixed stars, which they particularly called the firmament. Ptoleny adds a ninth heaven, which he called the primum mobile. After hin two crystalline heavens were added, by king Alpho:sus, \&c. to account for some irregularities in the motions of the other heavens: and lastly, an empyrean heaven was drawn over the whole, for the residence of the Deity; which made the number twelve. But others admitted many more heavens, according as their different views and hypotheses required. Eudoxus supposed 23, Calippus 30, Regiomontanus 33, Aristotle 47, and Fracastor no less that 70 .

Meaven-born. Descended from the celestial regions; native of heaven ($D_{r y d e n}$).

Heaven-bred. Produced or cultivated in heaven (Shalispeare).

Heaven-built. Built by the agency of gods (Pope).

Heaven-directed. 1. Raised toward the sky (P ope). 2. Taught by the powers of bearen (1 opioc).

HEAVENLY. a. (from heaven.) 1. Resembling heaven; supremely excellent (Sid.). 2. Celestial: inhabiting heaven (Dryden).

Héavenly. ad. 1. In a manuer resembling that of heaven. 2. By the agency or inflience of heaven.

HE'AVAWARD.ad. (heaven and peapo, Saxm.) Toward heaven (Prior).

HIf:AVIER. A stag deprived of his testicles by castration: an operation occasionally performed, in order that a supply may not be wanting for the chase during the time of ruting; in which the stag is perpetually ranging from one hind to another, for three weeks or longer; not allowing himself the comforts of food, sleep, or rest. Towards the termination of this copulative period he becones lean, languid, and dejected; and withdraws himsclf from society, to seck repose and food. So debilitated and ill-adapted is he for sport, that the operation of castrating has been occasionally employed to prevent him from thus falling a prey to venereal pleasures and to preserve him for the chase.

It is worthy of remark, that if a star undergo the operation when his horns are shed, they never grow again; on the contrary, if it be performed while the horns are in perfection, they will never be shed at all ; and it is equally remarkable, that on being deprived of only one testicle, the horn will not regenerate on that side, but will continue to cro:v, and shed on the other side, in which the testicle remains perfect. Heaviers are of great strength, and stand a long time befure hounds; for which reason the hunting establishment of his mijesety in Windsor forest is never without a regular sucression.
HE'AVILY. ad. (from heary.) 1. With great ponderousness. 2. Grievocisly ; aflicticey (Collier). 3. Sorrowfully; with grief (Clu.

HEB

HE'AVINESS. s. (from heavy.) 1. Ponderousness; the quality of being heavy; weight (Wilhins). 2. Dejection of mind ; depression of spirit (Shakspeare). 3. Inaptitude to motion or thought (Arluthnot). 4. Oppression; crush ; affliction. 5. Deepness or richness of soil (Arbuthnot).

HE'AVY. a. (heariz, Saxon.) 1. Weighty; ponderous; tending strongly to the centre (IWilkins). 8. Sorrowful ; dejected; depressed (Shakspeare). 3. Grievous; oppressive; afflictive (Swift). 4. Wanting alacrity; wanting briskness of appearance (Prior). 5. Wanting spirit or rapidity of sentimeut; unanimated (Swift). 6. Wanting activity; indolent; lazy (Dryden). 7. Drousy; dull; torpid (Luke). 8. Slow; sluggisn (Shakspeare). 9. Stupid; foolish (Knolles). 10. Burdensome; troublesome; tedious (Swift). 11. Loaded; incumbered; burdened (Bacon). 18. Not easily digested (Ar/uthnot). 13. Rich in soil; ferile: as heavy lands. 14. Deep; cumbersome: as heavy roads.

HE'Avy. ad. As an adverb it is only used in composition; heavily (Matthew).

Heaty spar, in oryctology. See Barytes.

HE'BDOMAD. s. (heldomas, Lat.) A week; a space of seven days (Brown).
hebdómadal. Hebdo'madary. a. (from heldomas, Lat.) Weekly; consisting of seven days (Brown).

HEBİOME, a festival observed by the Athenians, on the seventh day of every month, in honour of Λ pollo.

HEBE, in fabulous history, daughter of Jupiter and Juno, and according to some, of Juno only, who conceived her after eating letuces. As she was fair, and always in the bloom of youth, she was called the goddess of youth, and made by her mother cup-bearer to all the gods. Ganymedes, however, succeeded her as cupbearer, in consequence of her having fallea when she was serving the nectar. She wat employed by her mother to prepare her chariot, and to harness her peacooks whenever requisite. When Hercules was raised to the rank of a god, he married Hebe, by whom he had two sons, Alexiares and Anicetus. As Hebe had the power of restoring gods and men to the rigour of youth, she, at the instance of her husband, performed that kind office to Jolas his friend. She is represented as a young virgin crowned with flowers. and arrayed in a variegated garment. In Greece and Rome she was worshippel under the name Dia and Juventas.
To HE'BETATE. v.a. (heleto, Latin.) To dull; to blunt; to stupify (Arbuthnot).

HEBETA'TION. s. (from heletate.) I. The act of dulling. 2. The state of being dulled.

HE'BETLDE. s. (heleturo, Latin.) Dulness; obtuseriess; bluntness (Hurvey).

HE'BRAISM. s. (hebraisme, French; he-l-raismus, Latin.) A Hebrew idiom (Addison).

HE'BRAIST. s. (heltaus, Latio.) A man skilled in Hebrew.

HEBREW.

HEBREW, something relating to the Hebrews or Jews; as Hebrew bible.

Hebrew character. There are two kinds of Hebrew characters: the ancient, called also the square ; and the modern, or rabbinical characters. The square Hebrew takes its denomination from the figure of its characters, which stand more square, and have their angles more exact and precise than the other.

This character is used in the test of holy Scripture, and their other principal and most important writings. When both this and the rabibinical character are used in the same work, the former is for the text, or the fundamental part; and the latter for the accessory part; as the gloss, notes, commentaries, \&c.

The best and most beautiful characters of this kind, are those copied from the characters in the Spanish manuscripts; next, those from the Italian manuscripts; then those from the French; and lastly, those of the Gerinans, whose characters are much the same, with respect to the other genuine square Hebrew characters, that the Gothic, or Dutch characters, are with respect to the Roman.

Several authors contend that the square character is not the real ancient Hebrew character, written from the begimning of the language to the time of the Balylouish captivity; but that it is the Assyrian, or Cibaldee character, which the Jews assumed, and accustomed themselves to, during the captivity, and retained afterwards. They say, that the Jews, during their captivity, had quite disused their ancient character ; so that Ezra found it necessary to have the sacred books transcribed into the Chaddean square character. Those anthors ald, that what we call the Samaritan character is the genuine ancient Hebrew.

Hebrew character (Moklern or rabbinical), is a grod neat character, formed of the square Hebrew, by rounding it, and retrenching most of the angles or conners of the letters, to make it the more casy and Howing. The letters used by the Germans are very difere:nt from the rabbinical character used every where else, though all formed alike from the square charater; but the German in a more slovenly manner than the rest.

The rabbins frequently moke use cither of their own, or the square Hebrew character, to write the modern langwages in. There are even wooks in the rulgar tongues printed in Hebrew characters; instinses whereof are seen in the French king's library.

Hebrew language, that spoken by the Hebrews, and wherein almost all the books of the Old 'festament is written. This appears to be the most ancient of all the languages in the work, at least we know of none oller; and some learned men are of opinion, that this is the language in which Gard spoke to Adam in Paradise. 1)r. Sharpe adopts the opinion that the Hebrew was the original language ; not indeed that the Hebrew is the unvaried language of our firit parents, but that it was the general language of men at the dispersion; and howeter it might have been improved and altered from
the first speech of our first parents, it was the original of all the languages, or alinost all the languages, or rather dialects, that have sime arisen in the world.
The hooks of the Old Testament are the only pieces to be found, in all antiquity, written in pure Hebrew; and the language of many of these is extremely sublime: it appears perfectly regular, and particularly so in its conjugations. Indeed, properly speaking, it has but one conjugation; but this is varied in each seren or eight different ways, which has the effiect of so many different conjingations, and aflords a great variety of expressions to represent by a single word the different modifications of a verb, and many iders which in the modern and in many of the ancient and learned languages camot be expressed without a periphrasis.
The primitive words, which are called roots, have seldom more than three letters or two syllables.

In this language there are twenty-two letters, only five of which are nsually reckioned vowels, which are the same with ours, viz. a, e, i, o, u; but then each vowel is divided into two, a long and a short, the sound of the former being sonewhat grave and long, and that of the latter short and acute : it must however be remarked, that the two last vowels have somods that difit:r in otirer respects besides quantity and a greater or less elecation. To these ten or tweive vowels may be added others, called semi-vowels, which serve to connect the consonants, and to make the ensier transitions fiom one to another. The number of accents in this language are indeed prodigious: of these there are near forty, the use of some of which, notwithsta:ding atl the inquiries of the learned, are not yet perfectly' known. We know, in general, that they serve to distinguish the sentences like the points called commas, semicolons, sce. in our langrage ; to determine the quantity of the sylhables; and to mark the tone with which they are to he opoken or sung. It is no wonder then that there are more accents in the Hebrew than in other languages, since they perform the ofice of three different hinge, which in other languages are called by different mames.

As we have no Helirew hat what is contained in the Seripture, that hnguage to us wants a areat many words; mot only because in those primitive times the languayes were not so copions as at present ; but also on this account, that the inspired writers had no occasion to mention many of the terms that might be in the language.
The Chaldee, Syriac, Fithinpic, \&ec languages, are by some held to be ouly dialects of the Hebrew; as the French, Italian, spanish, \&e. are dialects of the Latin. It has been supposed by many very learned men, that the Hebrew characters or letters were nften used hieroglyphically, and that each had its veveral distinct sense understood as a hieroglyphic. Nemmann took infinite pains to find out the stecret meaning of these letters : but tire enquiry is to.) trifing to be pursued here.

Hebrew (Rabbinical or Modera), is. the
language used by the rabbins in the writings they have composed. The basis or body hereof is the Hebrew and Chaldee, with divers alterations in the words of these two languages, the meanings whereof they have considerably enlarged and extended. Abundance of things they have borrowed from the Arabic; the rest is chicfly composed of words and expressions, chiefly from the Greck; some from the Latin; and others from the other modern tongues, particularly that spoken in the place where each rabtin lived or wrote.

The rabbinical Hebrew must be allowed to be a very copious language. M. Simon, in his Hist. Crit. du Vieux Testam. liv, iii. chap. 27, observes, that there is scarce any art or science that the rabbins have not treated of in it. They have translated most of the ancient philosophers, mathematicians, astronomers, and physicians; and have written themselves on must subjects : they do not want even orators and poets. Add, that this language, notwithstanding it is so crowded with foreign words, has its beauties visible enough in the works of those who have written well in it.

Hebrews, the descendants of Heber, commonly called Jews.

Hebrews (Epistle to the), a canonical book of the New Testament. It was written, according to the best critics, to the Jewish helievers at Jerusalem and in Judea: and the writer is gूenerally believed to have been St. Paml, who is thought to have had particular reasons for concealing his name in this epistle; since the circumstances of the time might render a disclosure of it offensive and improper. Dr. Lardner supposes this epistle to have been written at Rome or in Italy soon after Paul had been released from his conifinement, about the beginuing of the year 63. In what language it was originally written is a matter of dispute : the critic last mentioned, with others of note, thinks it was in Greek: M. Michaelis, that it was in Hebrew or Syriac.

The manifest design of Paul in this epistle was to confirm the Jewish Christians in the faith and practice of the gospel of Christ, which they might be in danger of deserting either through the insinuations or ill-treatment of their persecutors. With this view the apostle, 1st. obviates the insinuations and objections of the Jews to the gospei of Christ, as inferior to the Mosaic dispensation, by shewing its transcendent excellence over it in every article (to chap. x. 25), 2dly. He prepares them to encounter persecution, which they had partly felt, and were to expect in a still higher degree, by reminding them of many renowned examples of faith and fortitude (to chap. xii. 2), and by other the most cogent exhortations and cautions.
HEBRI'CIAN. s. (from Helirew.) One gkille.l in Hebrew (Raleigh),
HEBRIDES, or Western Isles, a name given to a great number of islands, situated in the North Atlantic Ocean, to the west of Scotland. Pliny, who reckoned the number to be thirty, is cousidered to be pretty near the truth.

HEB

The principal are Lewis, North and South Uist, Skye, Benbecula, Mull, and Jura. These islands were anciently called Ebude, and afterwards Hebrides. As the history of these islands is not much known, we presume 2 short sketch will not be unacceptable. The inhabitants had probably, for some ages, their own governors : one little king to each island, or to each group, as necessity required. It is reasonable to suppose that their goverament was as much divided as that of Great Britain, which, it is well known, was under the direction of numbers of petty princes, before it was reduced under the power of the Romans. In the year 1089, is an evident proof of the independency of the islanders on Norway : for, on the death of Lagman, one of their monarchs, they sent a depulation to O'Brian, king of Ireland, to request a regent of royal blood to govern them during the minority of their young prince. They probably might in turn con:pliment in some other respects their Scontish neighbours: the islanders must have given them some pretence to sovereignty, for, in the year 1093, Donald-bane, king of Scotland, called in Magnus the Barefooted, king of Norway, and bribed him by a promise of all the islands; Magnus accepted the terns, but, at the same time, boasted that he did not cone to invade the territories of others, but to resume the ancient rights of Norway. His conquests werc rapid and complete, for besides the islands, by an ingenious fraud he added Kintyre to his cominions. In the thirteenth century, howerer, they were ceded to Scotiand, but Scotland seems to have received no real acquisition of strengthz the islands still remained governed by powerful chieftains, the descendants of Somerled, thane of Heregaidel or Argyle, who, marrying the daughter of Olave, king of Man, left a divided dominion to his sons Dugal and Reginald: from the first were descended the Mac-dougals, of Lorn, from the last powerful clan of the Macdonalds. The lordship of Argyle, with Mull, and the islands north of it, fell to the share of the first ; Hay, Kintyre, and the southern isles, were the portion of the last : a division that formed the distinction of the Sodereys and Nordereys. These chieftains were the sciurges of the kingdom; they are known in history, but as the devastations of a tempest : for their paths were narked with the most barbarous desolation. Encouraged by their distance from the seat of royalty, and the turbulence of the times, which gave their monarchs full employ, they exercised a regal power, and often assuned the title; but are more generally known in his. tory by the style of the lords of the iskes or the earls of Ross; and sometimes by that of the Macdonalds. Historians are silent about their procecdings, from the retreat of the Danes, in the year 1963, till that of 1335 , when John, lord of the isles, withdrew his allegiance. In the beginning of the next century, his sulcesssors were so independent, that Henry IV. entered into a formal alliance with the brothers, Donald and John; this encouraged them to commit fresh hostilitites agaiust their matual

HEB

prince. Donald, under pretence of a claim to the earldoin of Ross, invaded and made a conquest of that country; but penetrating as far as the shire of Aberdeen, after a fierce but undecisive battle with the royal party, thought proper to retire, and in a little time to swear allegiance to his monarch, James I. But he was permitted to retain the county of Ross, and assume the title of earl. His successor, Alexander, at the head of ten thousand men, attacked and burned Inverness; at length, terrified with the preparations made against him, he fell at the royal feet, and obtained pardon as to life, but was committed to strict confinement. His binsman and deputy, Donald Balloch, resenting the imprisommemt of his chieftain, excited another rebellion, and destroyed the country with fire and sword: but on his flight was taken and put to death by an Irish chieftain, with whom he sought protection. In the reign of James II. in the year 1461, Donald, another petty tyrant, an earl of Ross, and lord of the isles, renewed the pretence of independence, surprised the castle of Inverness, forced his way as far as Athol, obliged the earl and countess, with the principal inhabitants, to seek refuge in the church of St. Bridget, in hopes of finding security from his cruelty by the sanctity of the place; but the barbarian and his followers set fire to the chureh, put the ecelesiastics to the sword, and, with a great booty, carried the carl and countess prisoners to bis castle of Claig, in the island of llay. In a second experlition, immediately following the first, he suffered the penalty of his impiety : a tenapest overtook him, and overwhelined most of his associates ; and he, excaping to Inverness, perished by the hands of an Irish harper; bis surviving followers returned to Ilay, conveyed the earl and countess of Athol to the sanctuary they had violated, and expiated their crime by restoring she plunder, and making donations to the shrine of the offended saint. John, successor to the last earl of Ross, entered into alliance with Edward IV. sent ambassadors to the court of England, where Edward empowered the bishop of Durham and earl of \mathbf{X} inchester to conclude a treaty with him, another Donald Balloch, and his son and heir John. They agreed to serve the king with all their power, and to become his subjects : the earl was to have a hundred marks sterling for life, in time of peace, and two hundred pounds in time of war; and these island allies, in case of the conquest of Scotland, were to have confirmed to them all the possessions north of the Scottish Sea; and in case of a truce with the Scottish monarch, they were to be included in it. But about the gear 1476, Edward, from a change of politics, courted the alliance of James III. and dropped his new allies. James, determined to subdue this rebellious race, sent against them a powerful army, under the earl of Athol, and took leave of him with this grod wish, "Furth, fortune, and fill the fetters;" as much as to say, go forth, be fortunate, and bring home many captives: which the family of Athol have used ever since for their motto.

Ross was terrified into a subnission ; obtained his pardon, but was deprived of his earldom, which, by act of parliament, was then declared unalienably annexed to the crown; at the same time the king restored to him Knapdale and Kintyre, which the earl had resigned, and invested him anew with the lordship of the isles. to hold them of the king by service and relief. Thus the great power of the isles was broken; yet, for a considerable time after, the petty chieftains were continually breaking out into small rebellions, or harassed each ocher in private wars, and tyranny seems but to have been multiplied. James V. found it necessary to make the voyage of the isles in person in the year 1536; seized and brought away with him several of the most considerable leaders, and obliged them to find security for their own grod behaviour, and that of their vassals. He examined the titles of their holdings, and finding several to have been usurped, reunited their lands to the crown. In the same voyage he had the glory of causing a survey to be taken of the coasts of Scotland and of the islands, by his pilot, Alexander Lindesay, which were published in the year 1583, at Paris, by Nicholas Nicholay, geographer to the French monarch. The troubles that succeeded the death of James occasioned a neglect of these insulated parts of the Scottish dominions, and left them in a state of anarchy. In the year 1614, the Macdonalds made a formidable issurrection, opposing the royal grant of Kintyre to the earl of Argyle, and his relations. The petty chieftains continued in a sort of rebellion, and the sword of the greater, as usual in weak governments, was employed agaiost them : the encurageu:ent and protection given by them to pirates, employed the power of the Campbels during the reign of James VI. and the beginning of that of Charles I. An act of parliament, passed in the year 1748 , to abolish heritable jurisdictions, 8 cc . has deprived the chieftains of the power of doing so much mischief in future. They are now quiet and good subjects. See Lewis, Skye, Mull, Jura, St. Kilda, \&e.

Hebrides (New), a cluster of islands in the South Pacific Ocean, first discovered by Quiros in the year 1506, who supposed them to have been the southern continent, and called them Tierra Australia del Espirito Santo. Mons. Bourgainville landed on one of them in the year 1768 ; but they were not discovered to be a group of islands tiil captain Coak explored them in 1774. They are in general mountainous, and abound with wood and water. Their principal productions are bread-fruit, cocoa-nuts, plantains, yams, and sugar-canes. The inhabitants appear civil and hospitable. Lat. 14.30 S. Lon. 166. 40 E.
HEBRON, a town of Palestine, situated partly on a hill and partly on a plain. The Christians have a church here, which they say contains the tombs of Abraham and Sarah, to which the Mahometans, as well as Christians, come in pilgrimage. The valley or plain of Mamre is not far from Hebron : it is ferile, apd planted with excellent vinejards, Con-
etantine builta church here, the walls of which are yet in existence: eight leagues S.W. Jerusalem.

HFBRUS, in ancient geography, the largest siver of Thrace, rising from mount Scombrus, and emptying itself at two mouths into the \#gean Sea, to the N. of Samothrace.

HECATE, in fabulous hisiory, a daughter of Perses and Asteria, the same as Proserpine or Diana. She was called Luna in heaven, Diana on earth, and Hecate or Proserpine in hetl, whence her name of Disa triformis, tergemina, triceps. She was supposed to preside over magic and enchantments. Dogs, lambs, and honey were generally offiered to her, especially in cross roads, whence she obtained the ame of 'rivia. Her power was extended over heaven, the earth, sea, and bell.

HECATESIA, a yearly festival kept by the Stratonicensians and Athenians in honour of Hecate.
HFCATOMB, in antiquity, a sacrifice of an hundred beasts of the same kind, at an hundred altars, and by an hundred priests or sacrificers. The word is formed of the Greek exaLoune, which properly siznities a sumptuous or nagnificent sacrifice. Others derive it from the Greek exarev, centum, a hundred, and foy; los, bullock, \&e. ; on which footing the hecatomb should be a sacrifice of 100) bullocks. Others derive the word from exatov and wes, pes, foor ; and on that principle hold, that the hecatomb might consist of only 25 four-footed brasts. They add, that it did not matter what kind of heasts were chosen for victims, provided the quota of feet were but had. Pyithagoras is said to have sacrificed a hecatomb to the muses, of loss oxen, in joy and gratitude for his discovering that in a rectangled triangle the square of the hypothenuse is equal to the squares of the two other sides: but as he had an aversion to animat sacrifices, this tale canuot easily be credited.
hecatombaion. Sce Ecatommenn.
HECATOMPHONIA, a solemn sacrifice offered by the Messenians to Jupiter when any of them had killed an hundred enemies.
HECATOMPOLIS, an epithet given to Crete, from the hundred cities which it once contained.
HECATOMPYLOS, an epithet applied to Thebes, in Esypt, on account of is hundred gates.
HECATONSTYLON, in ancient architecture, a porch with 100 colunins.
HECKLE, among hemp-dressers. See Halchel.
HECLA (Mount), a mountain of Iceland, with a volcano, which frequently sends forth flames and torrents of burning matter. The ernptions in the year 1 fyy 3 and 1760 oceasioned terrible devastations, some of the matter being thrown firth to the distance of 150 miles, and a circmit of nearly fifty haid waste by the hava. It takrs ep four homis time to ascened. On the highest point, where Fahrenheit's thermometer was al twenty four in the air, it cunc to

153 when placed on the ground. No persons ever ascended to the top of this mountain uill the yeur 1772, when it was visited by $\mathrm{Dr}_{\text {. }}$ Van Troil, a Swedish gentleman, sir Joseph Ranks, Dr. Solander, and Dr. Lind of Edinburgh. They found about Hecla most kinds of lara 10 be niet in other volcanic countries.
HE'CTIC. He'ctical.a. (hectique, Fr.) 1. Habitual; constitutional (Donne). 2. Troubled with a morhid heat (T aylor).
Hectic fever. See Febris hectica.
HECTOR, in fabulous history, a son of king Priam and Hecuba, the most valiant of all the Trojan chiefs that fought ars: nst the Greeks. He marricd Andromache, the daughter of Eetion, by whom he had Astyanax. He was appointed chicf commander of all the Trojan forces, when Troy was besieged by the Greeks. He engaged with the bravest of the Grecks in the different actions. When Achiiles had driven back the Trnjans towards the city, Hector waited the approach of his enemy near the Scran gates. The sight of Achilles, however, terrified him, and he feed before hin in the plain. The lireck pursued, and Hector was killed, and his body was drawed in cruel triumph by the conqueror round the tomb of Patroclus. Old Priam, afier the greatest insult had been offered to the corpse, ransomed it. The epithet of Hectoreus is applied by the puets to the Trojans, as best expressive of valour and intrepidity.

He'ctor. s. (from Hector, the great Homeric warrior.) A bully : a blustering, turbulent, pervicacious, noisy fellow (Prior).

Tu He'cror. v. a. (from the noun.) To threaten; to treat with insolent terms (Arlutinot).

To Héctor. v. n. To play the bully (Swift).
HLCCUBA, dauzhter of Dymas, a Phregian prince, or according to others, of Cissets, 2 Thracian king, was the second wife of Priam, king of Troy. When pregnant of Paris, she dreamed that she had bronght forth a torch, whieh had reduced all Troy to ashes. The southsayers declared that the son she should bring into the world would prove the ruin of his country. Wher: Paris was born, she exposed him on mount lda to avert the calamities threatened; but the prediction of the soathsayers was eventually fulfilled. After haing had the misfortune to see the greatest part of her children perish by the hands of the enems, she, when Troy was taken, fell to the tot of Ulysses, as one of the captors. She sailed int Grecec, and in her vovage found on the Threcian coast the boly of her son Polvdiorus, who had perished by the cruclty of Pulymnes:or, king of Thrace. She attempted to revenze the death of her son, but was prevented br beins suddenly changed into a bitch. After bitit metamorphosis, it is said, she threw herselí into the sea.

IIEDAMORA, a town of Sweden. in Wesmania, seated on the Dahl. Lat. Go. 14 N. Lon. 17.7E.

IIK'IDERA, in botany, ivy : a geats of the
class and order pentandria, monogynia. Calyx Give-toothed; petals five, dilated at the base; berry five-seederl, surrounded by the calyx. Four species: two of Jamaica, H. pendita, and H. nutans; one of Ceylon, H. terebinthinacea; and one, H. helix, common to our own country, with five-angled, and five-lotred leaves; the floral leaves ovate; and with erect umbels. The leaves of this last have little or no smell, but a very nauseous taste. Haller informs us, that they are recommended in Germany against the atrophy of children. By the common people in this country they are sometimes applied to running sores, and to kecp issues open. The berries were supposed by the ancients to have a purgative and emetic quality; and an extract was made from them by water, called by Quercetanius extractum purgans. Later writers have reconumended them in small doses as alexe,harmic and sudoritic: it is said, that in the plague at London, the powder of them was given in vinegar or white wine with good success. It is from the stalk of this tree that a resinous juice exudes very plentifully in warm climates. See (funmi hederfe.

Medera terrestris. Ground-ivy, or gill. Glecoma hederacea; foliis reniformibns crenatis, of Linnéus. Class didynamia. Order gynnospermia. This indigenous plant has a peculiar strong smell, and a bitterish somewhat aromatic taste. It is one of those plants which were formerly much esteemed for possessing virtues that, in the present age, cannot be detected. In obstinate coughs it is a favourite remely with the poor.

HEDERA'CEOUS. a. (hederaceus, Lat.). Protucing ivy.

HEI)GE. s. (hezse, Saxon.) A fence made round grounds with prickly bushes (Pope).

HEDGE, prefixed to any word, notes something mean, vile, of the lowest class (Swift).

To Hedge. v.a. (from the noun.) 1. To enclose with a bedge (Bacon). 2. To obstruct (H osea). 3. To encircle for defence (Shati.). 4. To shut up within an enclosure (Locke). 3. To force into a place already full (Dryden).

To Hedge.v. n. To shift; to hide the head (Shatispeare).

Hedgeborn. a. Of no known birth; meanly born (Shakspeare).

Hedge-hog, in mastiology. See Erinaceus.

Hedgehog treyoil, in botany. See Medicago.

Hedge-hog thistle, in botany. See Cactus.

Hedge-hog holly, in botany. Seellex.
Hedgehoggedpericarp. In botany, echinatum pericarpium. Beset with prickles. A round prickly set of flowers, like a hedgehog, is called echinus: a burr.

Hedge-hog hooked. In botany, echi-nato-uncinata spica. $\quad A$ spike beset with prickles which are hooked at the end.

Hedge vettle (Shrubby). See Prasium.
Hedge-note. s. A word of contempt for low writing (Dryden).

HED
Hedge-pic. z. A young hedge-hog (Shando speare).
Hedge-row.s. The series of trecs or bashes planted for enclosures (Milton).
Hedge-bfarkow, in ornithology. See Motacilla.

HEDGING-BILL. s. (hedge and lill.) A cutting book used in making hedges (Sidney).

HE'DGER. s. (from iredge.) One who makes hedges (Locke).

HEDWI'GIA. In botany, a genus of the class octandria, order monogynia. Calyx fourtoothed; corol tubular, four-cleft; capsube three-grained, three-celled; a nut in each cell. One species. A trec of Hispaniola, with atternate, pinnate leaves; terminal and axillary racemes.

HEDYCA'RIA. In botany, a genus of the class monocia, order icosandria. Male: filamentless; anthers numerous, four-grooved, bearded at top. Yem. : germs pedicelled : stigmas papillæ scattered over the germ; nuts pedicelled, one seeded. One species only. A New Zealand shrub, with axillary racemes and sweet nuts.
HEDY'CHIUM. In botany, a genus of the class monandria, order monogynia. Calyx one-leafed, appearing as if broken: corol with a very long tube, and double three-paried border; nectary two-leaved. One species only; a native of India, with nodding corols much longer than the calyx.

HEDY'CREA. In botany, a genus of the class pentandria, order monogynia. Calyk five-tootherl, inferior; corolless; drape oneseeded, soft; nut one-seeded, covered with fibres. One species; a Guiana tree, with white flowers; and white fruit doted with red, the size of an olive, and eatable.
HEDYO'SMUM. In botany, a genus of the class monoecia, order polyandria. Male: ament covered with anthers; perianthlcess; corolless, bilamentless. Fem.: calyx threctoothed; corolless; style one, thiree-sided; berry threc-sided, onc-seeded. Two species, natives of Jamaica; one with a shrubby, the other with an arborescent stem.

HEDY'OTIS. In botany, a genus of the class tetrandria, order monogynia. Corol onepetalled, funnel-form ; capsule two-celled, many seeded, inferior. Eleven species, chiefly of the East, a few of the West Indies. The only one entitled to notice is H . auricularia, a native of Ceylon, with alternate branches opposite, pendulous, entire lance-ovate, glabrous leaves and flowers in whorls; in common use among the inhabitants of neighbouring nations as a specific in cases of deafness.
HEDY'PNOIS. In botany, a genus of the class syngenesia, order polygamia xqualis. Receptacle naked; calvx invested with scales; down of the centre double; the outer of many obsolete bristes, inner of five chafiy leaves; of the ray a membranaceous denticulate margin. Five species, chiefly natives of the south of Europe.
HEDY'SARUM. In botany, a genus of the class diadelphia, order decandria. Calyx Give-cleft; heel of the cosol transversely obtuse;

- loment jointed, the joints compressed and oncseeded. A hundred and seventeen species scatiered over the four quarters of the globe, but the greater number natives of the East or West lndies. They may be subdivided as follow.
A. Leaves simple.
B. With a single pair of leaffets.
C. Leaves ternate.

1. Leaves pinnate. See Nat. Hist. Pl. CXXVII.

To HEED. v. a. (hedan, Saxon.) To mind; to regard; to take notice of; to attend (Locke).

Heed. s. (from the verb.) 1. Care; atiention (Addisin). 2. Caution; fearful attention; suspicious watch (Shahspeare). 3. Care to avoid (Tillotson). 4. Notice; observation (Bacon). 5. Seriousness: stailness (Shak.). 6. Regard; respectful notice (L'Estrange).

HE'EDFUL. u. (from heed.) 1. Watchful; cautious; suspicious (S/ak.). 2. Attentive; careful; observing (lope).

HE's:DFULLY.ad. Attentively ; carefully; cautionsly (Watts)
HE'EDFULNESS. s. (from hecdful.) Caution; vigiknce; attention.

HE'EDILY. ad. Cantionsly; rigilantly.
HE'EDINESS. s. Caution ; vigilance.
HE'ED)LESS. a. (fron heed.) Negligent; inattentive; carelcss; thoughtess (Locke).

HE'EDLESSLY.ad. Carelesly; negligently; inattentively (.Irluthnot).

HE'EDLESSNLSSS. s. (from liefdless.) Carclesness; neglizence; inattention (Locke).
HEEL. s. (hele, Saxon.) 1. The part of the foot that protuberates behind. (See Anaтому). 2. The whole foot of animais (A!? dison). 3. The feet, as empleyed in flight (L'Estrangr). 4. To le at the Hefis. To pursue closely; to follow hard (Milton). 5. To tay ly the Heeis. Tofetter; to shachle; to put in gyves (Hatiliras). 6. Any thing shaped like a heel (Morlimer). 7. The back part of a stocking: whence the phrase to le out at hefls; to be worn out.

T, Heel. v. n. (from the noun.) 1. To dance (situlispeare). 2. To lean on one side; as, the ship hee's.

To Heel.e. a. To arm a cock.
heel of a horse, the lowest hind-part of the foot, conprehended between the quarters and opprosite to the toe.

Heel-piece. s. (keel and picce.) A piece fixed on the hinder part of the shoe.

To Heel-piece. v. a. To put a piece of leather on a shoe heel (.Ar'uthnot).

HEELER, in cock-fighting, the person who affixes the weapon called a spur made either of stecl or silver to the heel of a game corck, when taken from the pen previnusly to his being carried to the eock-pit to fight his battle. A haril-hitting cock, that is perpetually fighting with efliect, and giving his alversary no time to stand still, or look about him, is likewise called a hecler.

HEFI.s. (from hea:e.) 1. Heaving: effort (Slymivprare). 2. (for haft.) Handle (IVall.) IIESMRA, a term in chronology, signifying the epoch, or account of time, used by the

Mahomedans, who begin their computation from the day that Mahomet was forced to make his escape from the city of Mecca, which happened on Friday the 16 ih of July $6 \div 2$.

The years of the hegira are lunar ones, consisting only of 354 days. Hence, to reduce these years to the Julian calendar, that is, 10 find what Julian year a given year of the hegira answers to: reduce the year of the hegra into days, by multiplying by 354 , divide the product by 365 , and to the quotient add 622, the year the hegira commenced.

The orientals do not agree with us as to the time of the hegira. Among the Mahomedons, Amasi fixes it to the ycar of Christ 630, and from the death of Mcses 2347; and Ben Cassem, to the year of the world 5800 ; accorring to the Greek computation, among the Christians, Said Ebn Batrik refers the hegira to the year of Christ 614 , and of the creation 614 .
HEIDEGGER (John James), a natire of Zurich in Switzerland, who cane to England in 1708 , being then about fifty. By his address and ingenuity he became the arbiter cle gantiarum to the court, and manager of the opera-house, by which means he cuntrived to gain 5000l. a-year. He was a man of good humour and liberality. He died in 1749 .

Being once at supper with a large company when a question was delated, Which nationalist of Europe had the greatest ingenuity? to the surprise of all preseut, he claimed that character for the Swiss, and appealed to himself for the truth of it. "I was born a swiss (said he), and cance to England withour a farthing, where I have found means to gain scoul. a-veir, and to spend it. Now I dety the misst abic Finglishman to go to Switzerland, and cither to win that income or to spend it there." Heidegrer is said to have had sn remarkable a memory, that he once swalked from Charing cross to Temple-bar, and back again; and when he came home, wrote down every sign on each side of the strect. Heidecyer was noted for a remarkably umpleasing comutenance and harshness of features; this naturally led to many jokes, as he was a good natured man; many of them are retailed by the Joe Milleri of thie dav.

HELbELBERG, a considerable and papto Inus town of Germany, capital of the Lower Palatinate, with a celebrated university. It is noted for its great tun, which holds sion hogheads, generally kept full of good thensh wine. It stands in a pleasant rich country, and was a fanous seat of learning; but it his undergone so many calamitics, that it is nothing now to what it was formerly. The own is coumercial, and has manufaciures of suffi, silk-stockings, \&e. It stands on the south side of the N'eckar, orer which is a handsome bridec. Lat. 49. 90 N. Lon. 8. 48 E.

HEIDENHEIM, a town of Suabia, with a palace bclonging to the house of Wurtemburg. Lat. 48.47 N . Lon. 10. y E.

HE:IFER.s. (heapone, Saxon.) A young cow (Pope).

HEIGH HO. interj. An expression of slight languor aud uncasiness (Shanisprare.)

HEI

HEIGHT. s. (from high.) 1. Elevation above the ground (Addison). 2. Altitude; space measured upwards (Dryden): 3. Degree of latitude (Allot). 4. Summit; ascent; towering eminence; high place (I)ryden). 5. Elevation of rank ; station of dignity (Sh.). 6. The utmost degree; full completion (Bacon). 7. Utmost exertion (Shak.). 8. State of excellence ; advance toward perfection (Add.).

Height, in geometry, is a perpendicular let fall from the vertex, or top, of any rightlined figure, upon the base or side subteoding it. It is likewise the perpendicular altitude of any object above the horizon; and is found several ways, hy two staffs, a plain mirror, with the quadrant, theodolite, or some graduated instrument, \&c. The measuring of heights or distances is of two kinds: when the place or object is accessible, as when we can approach to its bottom ; or inaccessible, when it cannot be approached. See Surveying, and Altitude.

To HE'IGHTEN. $v . a$. (from keight.) 1. To raise higher. 2. To improve; to meliorate. 3. To aggravate (Addison). 4. To improve by decorations (Dryden).
heila, a town of Western Prussia, at the mouth of the Vistula, on the Baltic Sea. Lat. $54.53 \mathrm{~N} . \operatorname{Lon.~19.25~E.~}$

HEILIGELAND, an island in the German Ocean, between the mouths of the Eyder and the Elbe, belonging to Denmark. Lat. 54. 21 N . Ion. 8. 20 E .

HEILIGENSTADT, a town of Germany, eapital of the territory of Etchset, belonging to the clector of Mentz. Lat. 51. 22 N. Lon. 10. 14 E .

HEINECCIUS (John ($o t l i e b$), one of the greatest civilians of the 18 ith century, was born at Fisenberg, in the principality of Altenburg, in 1681. After having studied at Goslar and Leipsic, he was designed for the ministry, and began to preach ; but disliking that profession, he laid it aside, and applied himself entirely to the study of philosophy and the civil law. In 1710 he became proiessor of phibosophy at Hall; and in .1721 he was made professor of civil law, with the title of counsellor of the court. His great reputation made the States of Friesland invite him to Franeker in 1724 ; but three ycars after the king of Prussia prevailed on hitn to accept of a professorship of law at Francfort on the Oder, where he distinguished himself till the year 173.3. Becoming again professor at Hall, he remained there till his death, which happened in 1741, notwithstanding his being invited to Marpurg, Denmark, and three academies in Holland. He wrote many works, all of them much esteemed. The primcipal are, 1. Antiquitatum Romanarum jurisprudentiaun illisitrantium syntagma. It was this excellent abridgement that gave rise to his reputation inf foreign countries. 2. Elementa juris civilis secundum ordinem institutionum et pandectarum. 3. Fundamenta styli cultioris. There are few works so useful as this for forming a Latin style. 4. Elementa philosophia rationalis et moralis,

HEI

quibus premissa historia philosophica. 5: Historia juris civilis Romani ac Gernamici. 6. Elementa juris nature et gentium, \&ic.

HE'INOUS. a. (haineur, French.) Atrocious : wicked in a high degree (Tillotson).

HE'INOUSLY. ad. Atrociously; wickedly.

HE'INOUSNESS. s. (from heinous.) Atroo ciousness; wickedness (Rogers).

HEINSIUS (Daniel), a famous critic, was born at Ghent in 1580 . After going through his studies at various universities he was mado Greek professor at Leyden, when he was bue eighteen ; and afterwards succeeded his master Joseph Scaliger in the professorship of politics and history. He died in 1621. He wrote numerous poems in different languages; several admired works in prose, as Laus Asini, Laus Pediculi, \&e. ; and illustrated many of the Greek and Iatin classics.

Heinsius (Nicholas), son of the preceding, was born at Leyden in 1620. He was an eminent Latin poet, and has been called the Swan of Holland. He also publisherl editions of Virgil, Ovid, Claudian, and other Latin authors, with learned notes. He died in $\mathbf{1 6 8 1}$.

HEIR, is he to whou lands, tenements, or hereditaments, by the act of God and right of blood, descend of some estate of inheritance. Co. Lit. 7. b.

Heir apparent. Here we must observe, that no person can be heir until the death of his ancestor : yet in common parlance, he who stands nearest in degree of kindred to the ancestor is called even in his life-time heir apparent. Co. Lit. 8. n. The law also takes notice of an heir apparent, so far as to allow the father to bring an action of trespass for taking away his son and heir, the father being guardian by nature to his son, where any lauds descended to him. Co. Lit. 37.

Heir-general: the heir-general, or heir at common law, is he who after his father's or ancestor's death has a right to, and is introluced into, all his land, tenements, and hereditaments; but he must be of the whole blend, not a bastard, alien, \&e. None but the heirgeneral, according to the course of the cornmon law, can be heir to a warrantry, or sue an appeal of the death of his ancestors. Co. Lit. 14.

Customary heir: a custom in particular places varying the rules of descent at common law is good : such is the custom of gavelkind, by which all the spus shall inherit, and make but one heir to their ancestor; but the gencral custom of gavelkind lands exicuds to sons only; but a special custom, that if one brother dies without issuc, all his brothers may inherit, is good. Co. Lit. 140. a.

To prevent the wrong and injury to creditors by the alicnation of the lands descended, \&.c. by 3 and 4 W. and M.c. 14. it is era:tad that in all cases where anv heir at law shall be liable to pay the debt of his ance,tor in regard of any lands, tennements, or hereditaments descending to him, and shall sell, alien, and make over, the same before any action

HE I

bmught or process sued out against him, such heir at law shall be answerable for such debt or debts in action or actions of debt to the value of the said land so by him sold, alienated, or made over: in which case all creditors shall be preferred, as in actions against exceutors and administrators : and such execution shall be taken out upon any judgment or judgments so obtained against such heirs, to the value of the said land, as if the same were his own proper debts; saving that the lands, tenements, and hereditaments, bona fide aliened before the action brought, shall not be liable to such execution. Provided, that where any action of debt upon any speciaity is brought against any heir, he may plead riens per descent at the time of the original writ brought, or the bill filed against him; any thing thercin contained to the contrary notwithstanding. And the plaintiff in such action may reply, that he had fands, tenements, or hereditaments, from his ancestor before the original writ brought, or the bill filed; and if upon issue joined thereupon, it is found for the plaintiff, the jury thall inquire of the value of the lands, tenements, or hereditaments so descended, and thercupon judgment shall be given, and exeeution shall be awarded as aforesaid; but if julgment is given against such heir, by confession of the action with the assets descended, or upon demurrer, or nihil dixit, it shall be for the debt and damages, without any writ to enquire of the lands, tenements, or hereditaments, so descended.

Before this statute, if the ancestor had derised away the lands, a creditor by specialty had no remedy, either against the heir or derisee. Abr. Eq. 149.
But by the said statute, it is enacted that all wills and testaments, of or concerning any manors, messuages, lands, tenements, or hereditaments, or of any rent, profit, term, or charge out of the same, whereof any person at the time of his decease shall be seized in fee simple, possession, reversion, or remainder, or have power to dispose of the same by his last will and testament, shall be deemed and taken only against such creditor as aforenid, his heirs, successors, executors, administrators aud assigns, and every of them, to be fraudulent, and clearly, absolutely, and utterly void, frustrate, and of none effect; any pretelnee, colour, feighed or presumed consideration, or any other matter or thing, to the contrary notwithstanding.

And for the means, that such creditors may be enabled to recover their said debts, it is farther enacted, that in the cases before-mentionrel, every such creditor shall and may maintain his action of debt, upon his said bonds and specialies, ygainst the heir at law of such obligor, and such devisec and devisees jointly, by viltue of this act ; and such derisee and devisees shatl be liable and chargeable for a false piea by him or them pleadel in the same nanner as any heir should have been for false plea by him pleaded, or for not confessing the lands or teneunents to him desconded.

HEL

Provided, that where there has been or shall be any limitation or appointoment, devise or disposition, of any manors, messuages, lands, tenements, or hereditaments, for the raising or payment of any real or just debt, or any porion, sum, or sums of money, for any child or chilh dren of any person, other than the heir at law, in pursuance of any marriage-contract or agree: ment in writing bona fide made before such marriage ; the same and every of them shall be in full force, and the same manors, \&ce. may be holden and enjoyed by every such person, his heirs, executors, administrators, and asigus, for whom the sairl limitation, appointment, devise, or disposition was made, and by his trustee, his heirs, executors, administrators, and assigns, for such estate or interest as shall be so limited or appointed, devised, or dispoed, until such debt or debts, portion or portions, shall be raised, paid, and satisfied ; any thing contained in this act to the contrary notwithstanding.

And it is further enacted by the said sla. tute, that all and every devisee and derisees made liable by this act, shall be liable and chargeable in the same manner as the heir al law, by force of this act, notwithstanding the lands, tenements, and hereditaments to him or them devised, shall be aliened before the action brought.

In the construction of this statute it has been holden, that though a man is prevented thereby from defeating his creditors by will, yet any settlement or disposition he shall make in his life-time of his lands, whether voluntary or not, will be good against bond creditors; for that was not providel against by the statute, which only took care to secure such creditors from any imposition which might be supposed in a man's last sicknes; but if he gave away his estate in his life-time, this prevented the descent of so much to the heir, and consequently took away their remedy against him, who was only liable in respect of the lands descended; and as a bond is no lien whatsoever on the lands in the hands of the obligor, much less can it be so when they an given away to a stranger. Abr. Eq. 149.

To Heir. v. a. To inherit (Dryden).
HE'IRESS. s. (from heir.) An inheritix; woman that inherits (Waller).

HE'IRLESS. a. (from keir.) Withont an heir; wanting one to inherit after him (Sh.)

HE'IRLOOM. s. (heir and סeloma, goods,
Saxon.) Any furniture or moreable decreed to descend by inheritance, and therefore inseper rable from the freehold ($S w i f t$).

HE'IRSHIP. s. (from heir.) The state, chsracter, or privileges of an heir (Aylife).
HEISTERIA. In botany, a genns of the class decandria, order monogynia. Calyx firecleft; petals five; drupe with a very large coloured calys. One species only; 2 tree of Martinico with oblong leares, and small axillary fowers.

HELCONIA. (helconsa, from axax, an ulcer). An ulcer in the external or internal superficies of the cornea, known by an exctu
vation and ouzing of purulent matter from the cornea.
HELD. The preterit and part. pass. of hold. helena, Helen, the most celebrated beauty of her age, sprang from one of the egrs which Leda, the wife of Tyndaris, brought forth after her amour with Jupiter, metamorphosed into a swan. Her beauty was so admired even in infancy, that Theseus, with his friend Pirithous, carried her away before she had attained her tenth year, and concealed her at Aphidure; but her brothers, Castor and Potlux, recovered her, and she returned unpolluted to Sparta. This violence offered to her virtue rather angmented her fame, and her hand was eagerly solicited by many of the young princes of Greece. At length all the suitors agreed by oath to abide by the uninfluenced choice which Helen herself should make, and also to unite, in order to defend her if any attempt was inade to force her from her husband. Helen then fixed upon Menelaus, and married him. Hermione was the early fruit of this union. After this, Paris, son of Priam, came to Lacediemon on pretence of sacrificing to Apollo. He was kindly received by Menelaus, but shamefully, in his absence in Crete, corrupted the fidelity of his wife Helen, and persuaded her to follow him to Troy, B. C. 1198. At his return, Menelaus, hirhly sensible of the injury, assembled the Grecian princes, and reainded them of their solemn promises. They resolved to make war against the Trojans; but previously sent ambassadors to Priam to demand the restitution of Helen, but received no satisfactory answer. Soon after their return, their combined forres asermbled, and sailed for the coast of Asia. Authors have ditiered much with respect io her conduct while at Troy. After the death of Paris she married! !eiphobus, whonn she betrayoll, in order to ingratiate herself with Menclavs. She returned to Sparta with Menelaus, who pardoned all her errurs. Some assert that she had willingly followed Paris, and that she warmly supported the canse of the Trojans; while others believe that she secretly favoured the cause of the Grecks, always sighed after her busband, and cursed the diay in which she had proved faithless to his bed. Homer represents her as in the last instance. After she had lived for some years at Sparta, Menelaus died, and ahe was driven from Peloponnesus by Megapenthes and Nienstratus, the illegitimate sons of her husband. She retired to Rnodes, where Polyxo, a native of Argos, who reigued over the country, caused her to be tied to a tree and sfrangled. Herolotus meations a tradition, that Paris, on his return from Sparta, was driven on the coast of Egypt where Helen was detained by Protens, king of the country, in consequence of his iagratitule to Mienelans. Melen was honoured after death as a goddess, and the Spartaus built her a temple at Therapne, which had power of giving beauty to all the deformed wonmen that entered it.-2. A yonng woman of Sparta, often confounded with the daughter of Leda. As she was going
to be sacrificed, because the lot had fallen upon her, an eagle came and carried away the knife of the priest, upon which she was released, and the barbarous custom of offering humau vioLims was abolished.

Helena (St.), an island in the Atlantic Ocean, first discovered by the Portuguese. From them it passed to the Dutch; and in the year 1600 the English becane its masters. After they had once obtainal possession, they maintained it without disturbance till the year 1673, when the Dutch took it by surprise, but did not long enjoy the fruits of their conquest, for it was retaiken a short time afterwards, by the brave captain Munden, with three Dutch East Indiamen in the harbour. The idand of St. Helena io about twenty miles in circumference, and the lond so high, that it may be discerned at sea above twenty leagues' distance. It consists indeed of one vast rock, perpendicular on every side, like a castle in the nuiddle of the ocean, whose natural walls are too high to be attempted by scaling-ladders; nor is there the smallest breach, except at the hay called Chapel Vallev Bay, which is fortified with a strons battery of fifty large cannon, planted even with the water, and farther defended by the perpetual dashing of prodigious waves against the shore, which, without farther resistance, makes the landiug difficult; and a little creck, where two or three men may land from a small boat. but now rendered inaccessible by a battery. As there is no other anchorage but at Chapel Valley, touching here is extremely precarious; for the wind always setting from the south-east, if a ship once over-shoots it, it is a matter of great dithiculty again to recover the harbour. Notwithstauding St. Helena apprars on every side to be a hard barren rock, yet on the top it is covered with a coat of fine rich nould, about a foot and a half deep, which produces all manner of grain, grase, fruits, herbs, mots, and every kind of vegetables, in the utmost perfection and plenty. After ascending the rock which borders it to the sea, the country is prettily diversified with rising hills and vallies; the first covered naturally with a great variety of herbs, and the latter adorsed with elegant plantations of fruit-trees and gardens, among which are dispersed the houses of the natives; while herds of cattle low about the fields, some of which are fattened for the supply of shipping and of the islanders, and the rest kept for milk, butter, and chcese, and to afford a prospect equally rich and delightul. Upon this island there are nearly 300 Euglish familics, or, at least, descended from English parents. Some French refugees were likewise encouraged to settle, in order to propagate vines, and make winc, a point in which ihey have been by no means successful. Every family has its house and plantation,on the higher part of the islaud, where they look after their catile, hogs, goats, and poultry, fruit and kitchen gardens, without scarcely ever descending to the town in Chapel Valley, unless it be once a week to church, or when the shipping arrives; at which times almost every bouse in the valley

HEL

is converted to a punch-house, or lodgings for their guests, to whom they sell their hogs, poultry, and fruits, receiving in exchange flour, wive, and whatever necessaries they want, but they must first come into the company's warehouse. The merchandize usually laid in by the company are Cape wines, brandy, European or Canary wines, Batavia arrack, beer, malt, sugar, tea, coflee, china-ware, Japan cabinets, calicoes, chintzes, muslins, ribands, woolien cloths and stufts, with a variety of other particulars. The governor resides in a fort with a garrison, and centinels are always placed on the highest part of the island, to give notice of the approach of any vessels. This island is situated about 400 leagues from the coast of Africa, and 600 from the coast of South America. Lon. 5. 49 W. Lat. 15. 55 S .
Helema (St.), an island in the Atlantic, in a bay called St. Helena Sound, about thirty miles in circumference. Lon. 80. 36 W. Lat. 32. 25 N.

HELE'NIUM. Bastard sun-flower. In botany, a genus of the class syngenesia, order polygamia superfua. Receptacle naked, except the calycine chaff of the margin; down fiveawned; calyx one leafed, many-parted; fiorets of the margin half three-cleft. Three species natives of America. The species most common in our own gardens is H. autumnale, with serrate and quite glabrous leaves. It rises to the height of six or seven feet, in good ground, and may he propagated either by seeds or by parting of the roots, which last method is gemerally practised in this country, because the plant seldom perfects its seeds here. The seeds should be sown in March, on a bed of light earth, where they often remain a whole year before the plants appear. When they come up, if the season prove dry, they should be often watered, thinned where they grow too close, and transplanted into beds a foot asunder, every May; then let them be shaded till they have taken root, and watered in dry weather. In autumn they may be transplanted to the places where they are to remain. The old roots should be trimsplanted and parted in October, when their flowers are over, or in the beginning of March, just before they begin to shont. They should be carefully watered, if the season require it; and not be removed oftener than every other year.

HELENS (St.), a town of the Isle of Wight, in East-Medina, has a bay which runs a considerable way within land, and in a war with France is often the station and place of rendezvous for the royal nary. At the mouth of the hay is that cluster of rocks called the Mixen. It hide an old church situated at the extremity of the coast, which was in danger of being w.isthed away, as was great part of the churchvard, which oecasioned a new church to be built in 1719.

HENLENUS, in fabulous history, son of Priam and Hectiba, was a famous prophet, and greatly respected by all the Trojans. It was he who disclosed that Troy could not be taken
whilst in the possession of the palladium, nor until Philuctetes came from his retreat at Lemnos, and assisted at the siege. Afier the ruin of his country, he fell to the share of Pyrrhus, the son of Achilles, and received from his hand Andromache, the widow of his brother Hector ; some say he married her after the death of Pyrrhus. Helenus was the only one of Priam's sons who survived the ruin of his country. After the death of Pyrrhus, he reigned over part of Epirus, which he called Chaonia, in memory of his brother Chaon, whom he had inadvertently killed.

HELEPOLIS, in antiquity, a military machine, for battering down walls.
The helepolis, as described by Diodorus Siculus, \&c. appears to have been no more than the aries or battering-ram, with a roof or covering over it, to prevent its being set on fire, as also to screen the men who worked it.
HELIACAL, in astronomy, a term applied to the rising and setting of the stars; or, more strictly speaking, to their emersion out of and immersion into the rays and superior splendor of the sun. A star is said to rise heliacally, when, after having been in conjunction with the sun, and on that account invisible, it comes to be at such a distance from him as to be seen in the morning before sun-rising; the sun, by his apparent motion, receding from the star towards the east. On the contrary, the heliacal setting is when the sun approaches so near a star as to hide it with his beams, which prevent the fainter light of the star from being perceived; so that the terms apprarition and occultation would be more proper than risiug and setting.
HELINAA, in Grecian antiquity, was the greatest and most frequented court in Athens for the trial of civil affairs. See Heliasta.
HELIANTHUS. Sun-flower. In botany, a genus of the class syngenesia, order polygamia frustranea. Receptacle chaffy, flat; seeds crowned with two lanceolate chaffy leaves; calyx imbricate, spreading at the top. Twen-ty-one species ; a few natives of the East Indies, but the greater part indigenous to North or South America. Some of them perennial, (see Nat. Hist. Pl. CXXVII), some triennial, and some annual plants. Most of then are propagated in our own gardens, and especially the large annual sun-flower and the Jerasalem artichoke, which is one of the species of this genus. The Jerusalem artichoke is perennial, and a native of Brazil : it is propagated in many gardens for the sale of the ruots, which are by some people very much esteemed : these, as well as all the other species, are hardy plauts, and are propagated by parting their roots, which spread and increase greatiy. The best season for this is about the iniddle of October, soon after the flowers are past, or very early in the spring ; after which the plants will require no other trouble than to be kept clear from weeds.

The following are worthy of notice.

1. H. alhagi : with simple, lanceolate obtuse leaves; shrubby spinous stem. A sative of
theicianchues mulifforues
Serennal shon flower.
Stedyparem otymuserm.
Creching rooted Sthely,

HEL

Persia, from which manaa is obtained by the inhabitants.
2. H. gyrans. Moring plant. Leaves ternate, ovate-lanceolate, obtuse; the lateral ones very minute; panicle terminal ; loments repand below, roughish, pendulous. A Bengal plant, and gathered on the banks of the Ganges. This extraordinary plant has a constant and voluntary motion, consisting in an alternate meeting and receding of the leaflets, a motion which seems totally unconnected with any external atimulus; certainly not dependent on the light of the sun, for they move in the dark as well as in the light, and even when the leaves are perfectly asleep. It is also remarkable that the leaves, in the height of erection and during very warm but serene days, discover a tremulous motion. The common motion will continue for twenty-four hours in a branch lopped off from the parent stem if put into water. This plant in Bengal is called burrum kundali ; it is four feet high, and produces yellow fowers in the autumn. The root is annual or biemnial.
3. H. coronarium. French honey-suckle. Caulescent; diffuse; leaves pinnate, roundishelliptic ; joints of the loment roundish, prickly, naked. It rises three or four feet high; and throws forth between the leaves long spikes of beautiful red flowers, succeeded by loments or seed-pods of a peculiar kind. It is a native of 1taly.
4. H. onobrychis. Saintfoin. Sterm ascending; leaves pinnate, elliptic, nearly glabrous; wings of the corol as long as the caly \mathbf{x} : loments one-seeded, reticulate, with prickly teeth on one side. Indigenous to our uwn country, and largely cultivated by agriculturists. See Husbantiry.

HELIASTE, in antiquity, the judges of the court Heliza. They were so calldd, according to some authors, from a Greek word which signifies to assemble in a great number; and, according to others, from another word which signities the sun, because they held their aseemblies in an open place. It was a maxim among the Atheniaus that no cause could be judged by any tribunal before it had been submitted to arbitration. When the matter could not be reconciled by this procedure it was brought before the 6000 judges. These were not all employed in judging at the same time, but from them the Heliaste were drawn by lot ; and their number depended on the nature of the subject to be decided. In ordinary cases they announted to 500 , and formed consequently an unequal tribunal, proceeding in civil causes on the plan which the Areupagites had adopted with respect to crimes. When discussions of greater consequence were brought forward, they sometimes occupied 1000), or even 1500 judges, as was the case when Demosthenes was arcused of being corrupted by the money of Harpilue. That number was never surpassect except in cases of high treason, or lese-majesty. De Pauw.
We are whld by liogenes laertius, in his Life of Solon, that it was befure one of these VOI. V .

HEL
Heliastic assemblies that Pisistratus preseated himself, covered with wounds and contusions (for thus he had treated himself and the males which drew his car), to excite the indignation of the people against his pretended enemies, who jealous, as lie alleged, of the popularity he had acquired by asserting the rights of his poorer fellow-citizens, in opposition to the men in power, had attacked him while he was hunting, aid had wounded him in that barbarous nanner. His design succeeded : a guard was appointed him ; by the assistance of which he acquired the sovereignty or tyranny of Athens, and kept it 33 years. The power of the assembly appeared remarkably on that occasion ; for Solon, who was present, opposed is with all his effiorts, and did not succeed.
As to the inanner in which the judges gave their suffirages, there was a sort of vessel covered with an osier mat, in whici were placed two urns, the one of copper, the other of wood. In the lid of these urns there was an obloug hole, which was large at the top, and grew narrower downwards, as we see in some old boxes of our churches. The suffiages which condernned the accused person were thrown into the wooden urn, which was termed kyrios. That of copper, named akjros, received those which absolved him.
HE'LICAL. a. (helice, Fr. from me..) Spiral ; with many circumvolutions (Wilhins).

HELICE, in astronomy, the same with ursa major.
HE'LICIS MAJOR. (helix.) A proper muscle of the ear, which depresses the part of the cartilage of the ear into which it is inserted: it lies upon the upper or sharp point of the helix or outward ring, arising from the upper and acute part of the helix anteriorly. and passing to be inserted into its cartilage a little above the tragus.
Hélicis minor. A proper muscle of the ear, which contracts the fissure of the ear: it is situated below the helicis major, upon part of the helix. It arises from the inferior and anterior part of the helix, and is inserted into the crus of the helix, near the fissure in the cartilaye opposite to the concha.
HELICOII) Parabola, or the Parabolic spiral, is a curve arising from the supposition that the common or Apollonian parabola is bent or twisted, till the axis come into the periphery of a circle, the ordinates still retaining their places and perpendicular positions with respect to the circle, all these lines still remaining in the same plane. The equation of this curve remains the same, as when it was a parabola.
HELICON, in ancient genemphy, the name of a mountain in the neighbourtiood of Parnassus and Cyitheron, sacred to Apollo and the muses, who are thence called Heliconides. It is situated in Livadia, and now cafled Zagura or Zaguya. Helicon was one of the most fertile and woody mountains in Greece. Here was the shady grove of the muses, and their images, with statues of Apollo and Bacchus, of Cimia anch Orpheus, and the illustrious M M
poets who had recited their rerses to the harp.

Helicon, the name given tn a curions in. strument sugqeated by Polemy, fur demonstrating the con-onances.

HELICONIA. In botany, a genus of the elass pentandria, order monopynia. Spathe general and partial; calyxless; corol three-petalled; nectary two-leaved; capsule threccelled; the cells one-secded. Five species; herbaceous stove-plants of the West Indics or South America, with beautiful red or safron corols.

HELI'CTERIS. Screw-tree. In botany, a genus of the class monadelphia, order dodecandria. Caly tubular, obliquely five-cleft; petals five; germ on a very long pedicel; style about five-cleft ; rapsules fise, one-celled, nia-ny-seeded, spirally twisted. Eight spectes trees or shrubs; and indigenous to India, South America, or the West Indies; commonly with yellow red, or purple flowers; in one specics, a native of Carthagena, of a fetid odour. They are cultivated in our own gardens, but require care and a green-house or store during winter.

HELIER, (St.) the capital of the island of Jersey, in the Faglish Channel, seated in the bay of St. Aubin, where it has a harbour, and a stone pier, hating the sea on the S. W. and hills on the N. that shetter it from the cold. Another large hill projects in a manner over the town, and has a pleasant walk, that affords an extensive prospect. The strects are wide and well-paved. The inhabitants are computed to be 2000 . In the church, prayers are read alternately in English and French. Lat. 49. 11 N . Lon. 2. 10 W .

Helier, (St.) a little island, near the town of the same name, in the bay of St . Aubin, on the S. side of Jerscy. It took its name from Elerius, or Helier, a holy man, who lived in this islaad many centuries ago, and was slain by the Pagan Normans at their coming here. He is mentioned among the martyrs in the Martyrology of Coutances. His litlle cell, with the stone bed, is still shown amonis the rocks; and in memory of him a noble abbey was founded in this island.

HELIOCARPUS. In botany, a genus of the class dodecandria, order digynia. Calyx four-leaved ; petals four ; styles simple ; capsule two-celled, compressed, longitudinally surrounded with filiform feathered ravs on each side. One species, a tree of Vera Cruz, with heart-shaped serrate alternate leaves.

HELIOCENTRIC PLACE OF A PLANET, is the place of the ecliptic, in which the planet would appear to a spectator placed at the centre of the sun: it agrees with the heliocentric longitude. Heliocentric latitude of a planet, is the inclination of the line drawn from the centre of the sun to that of the planet, to the plane of the ecliptic.

HELIOCOMETE, a phænomenon sometimes observed about sun-setting; being a large luminous tail or column of light proceeding from the body of the sun, and dragging after
it, not unlike the tail of a comet; whence the name.

A phenomenon of this kind was obserred at Gripswald. March 15th, 1702, about 5 o'clock P. M. The extremity of the tail nearest the sun was in breadh about half the diameter of that luminary, but the other extremity seemerl in breadih more than five solar dianeters: and the whole tail followed the direction of the sun. Lis colour was yellow near the sun, and gradually darkened at tie remoter parts; so that it was ninly seen as if prainted on the rarer and more elerated clouds. This heliocomete appeared for an hour, and then gradually diminished, the sun being at the horizon. The pharnomeron in some respects resembles the zodiaml light.

HELIODORUS, a Christian bishop of Trica in the fourth century. He was in all probability one of the carliest writers of novels; and professor Robicon observes that in his piece, which was called " The Adventures of Theagenes and Chariclea," woman is tirst pictured as a respectable character. I thrik (says he) the hersine is a greater character than you will meet with in all the annals of antiquity. Ard it is worth while to observe what was the effect of this painting. The poor bishop had been deposed, and eren excommunicated, for doctrinal errors, and for drawing such a picture of a heathen. The magistrates of Antioch, the most voluptuous and corrupted city of the East, wrote to the emperor, telling him that this book had reformed the ladies of their city, where Julian the emperor and his sophists had formerly preached in vain, and they therefore prayed that the gond bishop might not be deprived of his mitre." This romance has been frequen:ly printed in Greek and Latin. Heliodorus was also a good Latin poet.

HELIOGABALUS, a deity among the Phœeniciaus. M. Aurelius Antoninus, a Roman emperor, son of Varius Marcellus, was also called Heliogabalus, because he had been priest of that divinity, in Phenicia. After the death of Macrinus, he was invested with the purple, and the senate approved of his election, and bestowed upon him the title of Augustr:s at the age of 14 years. Helingabalus made his grand-mother and mother his colleagues on the throne, and chose a senate of women. over which his mother presided, and prescribed all the fashions which prevailed in the enrpire. Rome now displayed a scene of cruclty and debauchery, and the imperial palace was full of prostitution. He raisel his horse to the bonours of the consulship. To the ridiculous deity Heliogabalus, which was only a black stone, temples were raised at Rome, and the altars of the gods plundered to deck those of the new dirinity. He married four wives; and not satisfied with following the plain laws of nature, he professed himself to be a woman, and gave himself up to one of his officers, called Hierocles. In this ridiculons farce he suffered the greatest indignities from his pretended hushand. Such licentiousness soon became delestable to the Romans. At lengib,
though terror of the soldiers, he hid himself in the filth and excrements of the camp, where he was found in the arms of his mother. His head was severed from his body the loth of March, A. 1). 222, in the 18 th year of his age. He was succeeded by Alexander Severus. Il is cruelties were as conspicuous as his licentionsness. He often tied some of his favournes on a large wheel, and was particularly delighted to see them whirled round like Ixions, and sometimes suspended in the air, or sunk bencath the water.

HELIOMETER, or Astrometer, an instrument for measuring, with particular exactness, the diameters of the sm, moon, and stars. It was invented by M. Bougner in 1747, and is a kind of telescope, consisting of two ohject glasses of equal focal ditance, placed by the side of eaci other, so that the same eve-glass serves for both. The tube is of a conical form, larser at the upper end, which receires the cwoobject-glasises, than at the lower, which is furnished with an eye-glass and micrometer. By the construction of this instrument two distinct images of an object are formed in the focus of the eye-glass, whose disrance, depending on that of the two objectglasses from one another, may be measured with great accuracy. Mem. Acad. Sci. 1748.

Mr. Servington Savery discovered a similar method of improving the micrometer, which wascommunicated to the Roval Society in 1743.

HELIOPHILLA. In botany, a genus of the class tetradynamia, order siliquosa. Nectaries two, recurved towards the vesicular base of the calys. Thirteen species, all herbaceous plants of the Cape.
HELIOPOLIS, a famous city of Lower Fyypt, in which was a temple sacred to the sum. The inhabitants worshipped a bull called Meneris, with the same ceremonies as the Apis of Memphis. Apollo had an oracle there.

IIELIOSCOPE, a kind of telescope peculiarly adapted for viewing and ohserving the sun without hurting the eye. 'There are various kinds of this instrument, usually made by employing coloured glass for the object or eveglass, or both; and sometines only using an eye-rlass blacked by holding it over the snooke or flame of a lamp or cancile, which is Huygens's way. See Dr. Hooke's treatise on Hefioscopes.

HELIOSTATA, an instrument invented by Dr. Gravesande, and so called from its property of fixing the sun-beam in one posiiion, viz. in a horizontal direction across the dark chamber while it is need. See Gravesande's Physices Element. Mathematica, tom. 2, p. 515. ed. 3 tia 1742.

HELIOTROPE, HeliotropiUn, among the ancients, an instrument or machine for showing when the sun arrived at the tropics and the equinctial line. This name was also used for a sun-dial in general.
Heliotrope, in botany. See HelioTROPIUM.
heliotro'pil succus. See Bezet-

acerviea.

HELIOTROPIUM. Heliotrope. Turn-
sole. In lootany, a genus of the class pert: tandria, order monozynia. Corol satver-shaped. five-cleft, with teeth between the divisious: throat naked. Twenty-two species, scatiered over the warm climates of all the quarters of the glabe. Europe however allords but one species, thence named H. curopæum, and a native of Spain and Italy, with white flowers, produced at the end of the branches. The berrics of this plant are employed in the manufacture of col uars. Many of the other species are propugated, and without muchdificulty, in our ardens and green-housce.
HELISPHEKICAL LINE, the rhumbline.

HE'LIX. s. (helice, Fr. ext. .) Part of a spiral line; a circumvolution ($W_{\text {illizins }}$).
Hélix. (helix, exiç, from alisos, to turn about.) In anatomy, the extermal circle or border of the outer ear, that curls inwards.
Helix, is by some architects distinguished from a spiral. Thus a staircase is said to be helical when the steps wind round a cylindrical newel; when they wind round a conical newel, the staircase is called spiral.
Helix. Stail. In zooloery, agenus of the class vermes, order testacea. Animal a limax; shell univalve, spiral, sublucid, brittle; aperture contracted; semilunar or roundish. Two nundred and sixty-seven species, scattered over the globe, of which about forty are common to our own country. They may be sutdivided as follows:
A. whorls with a carinate acute margin.
B. umbilicate, the whorls rounded.
C. rounded, imperforate.
1). taperiag.
F. ovaie, imperforate.

The following are chiefly worthy of nod tice.

1. H. pomatia. Shell sub-umbilicate, subovate, obtuse, with a roundish semilutar aperture; reddish brown, with ohsolete paleish bands. There are four or five varictis. It inhabits the wood of Europe, and was first introduced into Eugh and by sir Kcluclm Disby, for medical purposes. In many parts of Europec it is used as an article of food during Lent, and was a favourite dish among the Romans: it is oviparous; very tenacious of life, and towards winter covers its uperture with a calcareous lid. Under the Romans these were fed as an article of future luxury with bran and sodden wine: and it is stated by some writers that under this diet they grew becasiona!!y to such an enormous size that their shelis would contain ten quar:
2. H. nitens. Shell umbilicate, subdepressed, fulvous, horny or yellowish-green, pellucid, subs:riate; aperture large : whorls four or five. This is one of the more common of the smaller and land specimens. It ininabits the wet woods of Europe; and is often uot more than a line wide.
3. H. hortensis. Garden smail. Shell imperforate, p'olntar, pale, with broad interrupted brown bands: lip white: from seven and a half to eight lines wide. Inhabits Europe, in gardens and orchards, and is extremely destruc-
tive to fruits and tender leaves. Armong the many peculiarities of these animals, the mode by which they conduct their amours is most curious and surprising: at this season they make reciprocal approaches by discharging several small dars at each other, which are of a sinarp form and of a horny substance. These are contained within a cavity on the neck, and are launched with some degree of force at bout the distance of two inches, till the quiier or reservoir is exhausted, when a reconciliation takes place, and the animals unite. 'The epres are perfectly round, and about the size of small peas.

The eyes ofall of them are placed at the extremity of the horns or tentacles : these are four, being the number of the tentacles. The spiracle or breathing aperture is situated near the neck.
4 II. janthina. Shell nearly imperforate, rouaciish, obtuse, diaphonous, and sery britule; aperture dilated, with an emarginate lip. A marine snail: it inimabits most seas; about an mish broad and hizh. She! violet with a subtriangular aperture; the snail when alive emits phosphorescent light and shines in the dark : it stains the hand with a violet or purple dye. So small an animal as the snail is not frie from the plague of supporting other smaller animals on its besly; and, as in other animals, we find these secoudary ones either living on their surface, as lice, ke. or only in the intestines, as worms; it is very remarkable, that the smail is infested in both these manners, lice being found sonetimes on the surface of its bon'y, and worms sometimes within its intestincs. There is a part of the common garden snail, and of wher of the like kinds, commonly called the collar; this surrounds the neek of the suail, and is considerably thick, and is the only part that is visible when the animal is retired quiedly into its shell: in this shate of the animal, these insects which infest it are usually scen in considerable numbers, marching about very nimbly on this part; besides, the snail, every time it has occasion to open its anus, gives them a place by which to enter into its intestines, and they ofien seice the opportunity.

HEL.L. s. (helle, Saxon.) 1. The place of the devil and wicked sonls (Simhtpprare). 2. The pare of separate souls, whether goorl or bad (ifmosles (ireed). 3. Temporal deah ($P_{\text {salms }}$). 4. The place at a ruming plav to which those who are caught are carried (Sid.). 5. The plire into which the tailer throws his shreds (IIudilitas). 6. The internal powers ('oulcy).

Mele, Gehenna, Tartara, Inffrnus, Sic. the piace of divine pibishment afier drath, in contradistinction to hearen. Sce heaven.

As a!l religions have supposerl a future state of existence after this life, sir all have their hell or place of torment, in which the wiched are suppoxisd to he punished. The hell of the ancient heathens was divided into two mansinns, the one called Elysiun, on the right hand, ploasant and delighiful, appointed for the souls of gooll man, the other called Tartara, on
the left, 2 region of misery and torment, apo pointed for the wicked. The latter was only hell in the present restrained sense of the word. Sce Elysium.
The Jews placed hell in the centre of the earth, and believed it to be situated under waters and mountains. According to them there are three passages leading to it: the first is in the wilderness, and by that Korah, Dathan, and Abiram, descended into hell; the second is in the sea, because Jonah, who was thrown into the sea, cried to God out of the brilly of hell; the third is in Jerusalem, because it is said, "The fire of the Lord is in Zion, and his furnace is in Jerusalem." They likewise acknowledged seven degrees of pain in hell, because they find this place called by seven different names in scripture. Though they believed that infidels, and persons eminently wicked, will continue for ever in hell, yet they maintained, that every Jew whois not infected with some heresy, and has not acted contrary to the points mentioned by the rabbins, will not be punished therein for any other crimes above a year at most.
Among Christians, there are two controverted questions in regard to hell ; the one concerns locality, the other the duration of its torments. 1. The locality of hell, and the reality of its fire, began first to be controverted by Origen. That father, interpreting the scripture account metaphorically, makes hell to consist, not in external punisinments, but in a consciousness or sense of guilt, and a remembrance of past pleasures. Amoug the moderns, Mr. Whiston adranced a new hypothesis. According to him, the comets are so many hells appointed in their orbits alternately to carry the damned into the confines of the sun, there to be scorched by its violent heat, and then to return with thein beyond the orb of Saturn, there to starve them in these cold and dismal regions. Another modern author, not satisfied with any hypothesis hitherto advanced, assigns the sun to be the local hell. 2. As to the second question, viz, the duration of hell torments, we have Origen again at the head of those who deny that they are eternal ; it bsing that father's opinion, that not only men, but devils, afior a due course of punishment suits able to their respective crimes, shall be pardoned and restored to heaven. The chief priaciple upon which Origen buil his opinion, was the nature of punishinent, which he took to be emendatory, applied only as physic for the recovery of the patient's health. The ehiief objection to the eternity of hell torments among modern writers, is the disproportion between temporary crimes and eternal punishments. Those who maintain the affirmative, gronud their opinion on the scripture accounts, which represent the pains of hell under the firure of a worm which never dies, and a fire which is not quenched; and also upon the words, "These shall go away into evcrlasting punishment, but the righteous into life eternal." We are told, indeed, by the editars of a late "Improved Version of the New Testament, upon the Basis of Abp. Newcome's," "that

H E L

"f the word here rendered punishment, properly signifies correction inflicted for the benefit of the offender." But in opposition to this, we beg leave to sas, that xonacos does not properly signify correction inflicted for the bencht of the offender. Its proper and original siznification we affirm to be punishment in general, on the authority, first of Hesychins, who explains it by trmapta, and, secondly, of Scapula, who translates it punitio, item castigatio. The word occurs but in one other place in the New Testament. Allowing, however, the interpretation given in the new version, it would be impossible to find the person of whom it could be said, as our Lond said of Judas, "It were better for that man never to have been born." The awful picture of the duration of future punishment, given in Mark ix. 43. 4y. must, we think with most persons who receive the scriptures as the word of God, be decisive on this point. The expression " where their worm dieth not, and the fire is not gurenched" is reiterated with solemn and dreadful force: and the declaration "every one shall be salted with fire," implies, in our estimation, if it imply any thing, that, as salt preserves from putreliction flesh to which it is applied, so those unhappy victions of divine justice shall be salted with fire, and, instead of being consumed by it, shall, in the wretched abodet to which they are consigned, continue immortal in the midst of their flames : Notwithstanding all this, however, the annotators just referred to proceed without dismay, saying " The word translated everiasting, is often used to express a long but indefinite duration. Rom. xvi. 25; 2 Tiun. i. 9; Philemon, ver. 15. This text, therefore, so far from giving countenance to the liarsh doctrine of eternal misery, is rather favourable to the more pleasing and more probable hypothesis, of the ulitimate restitution of the wicked to virtue and to happiness." More pleasing and more probable indeed, to the wicked, who never properiy es. timate the " exceeding sinfulness of sin" and its extreme enormity in the view of an infinitely pure and holy beins: and this is not ano:g the least effectual of the means by which they are seduced to that place of torment. The word nexinos occurs seventy-one times in the New Testament. There are five instances in which a proper eternity may not be understood. Rom. xvi. 95 ; $\mathbf{2}^{2}$ Tim. i. 9; Tit. i. 2 ; Philem. ver. 15 ; and Jude ver. 7. The first three are resolvable into one, and express the counsels of mercy towards man liefore the creation. But the word in this and the other two passages, seems to express a perpetnity limited only by the temporary nature of the subject. In such instances the metaphorical use of a term may surely be allowed, without derogating from the proper use in other places. In most of the remaining 66 instances the worl is applied to life, and has been generally allowed io signify a proper eternity. Whe it sbould not, when amplicd to finture punishment, and particularly in Matt. xxy. 46, There the same word is used to describe the
opposite final doom of the rightenus and the wicked, in the very form of antithesis, and in the short space of a moderate verse, is a momentous question to those who adopt the negative. In Rev. xx. 10, the expresion as ats 2 acares ruv aumar, is so strong, that if it do not express a proper eternity, it will be ditfictult to produce any scripture that does. Bat that the word alawos does signify a proper eternity with reference to the future state of u...nkind, generally considered, in oue passage of the New Teitament, viz. 2. Cor. iv. ult., we think few will presume to deny. There the things which are seen, every thing visible or material, the world and all the things of it, are put in expres; opposition to the unseen funure state; and the things that are seen are said to be for a short time (or temporary), but the things which are not seen are evcriasting. It is not, however, on a single term that we are constrained to rest so important a doctrine. Every one who has the most superficial acquaintance with scripture can recollect a variety of very solemn declarations expressive of the eternity as well as of the extrene torment of the punishment appointed to the wicked; and the most rigid critical analysis cannot, we beliere, extract an atom of hope, that those who go away into " ainnian punishment," (as Mr. Scarlett translates the phrave) will ever be restored to virtue and to happiness.
Hell-black. a. Biack as hell (Shakspeare).
Hell-broth.s. A composition boiled up for infernal purposes (Shiahspcare).
Hell-doomed. a. Consigned to hell (Milton).
Hele-hated. a. Abhorred like hell (Shinspeure).
Hei.1.hound. T. 1. A dozo of hell (Dry.). 2. Aucht of hell (Milton).

Heli-kite. s. Kite of infernal breed (Shnt pheure).
HELLAS, in ancient gengraphy, an appellation compriving, according to the more ancicnt Greeks and Romans, Achaia and Pelopmase us, hut afterwards restrained to Achaia. It was called Heilus, from Hellen, the son of ibnention.
HELALE, in fabuinus history. a danghter of Athamas king of Thetres by Nephele. She fiod from her father's house with her brether Phevats, to avoid the crued oppression of her mother-in-law Ino. According to some accounts she wisc carried through the air on a golden ram which ther mether had received from Neptune, and in her passuese she berame priddy, and fell from her seat into that part of wine sea which from her received the name of Helicspont. Others say that she was carre:l on a cloud, or rather nume a chip. form which she fell inth the sea and was drowned. Ihrext:s, after he had :inen his sister a burial on the neighbouring coasts, pursued his journey and arrived in Colthis.

HELLEBORASTER. (hicllintatrum, from os Ët, 0 , hellebore.) Fetid hell. bnre, or bear's foot. Helleborus futidug, of Limuêus;

H E L

HEL
hellebortis caule multiforo folioso; foliis pedatis. The leares of this indigenous plant are recommended by many as pussessing extraordinary anthelmintic powers. The smell of the recent plant is extremely fetid, and the taste is bitter and remarkably acrid, insomuch that, when chewed, it excoriates the mouth and fauces. It commonly operates as a cathartic, sometimes as an emetic, and in large doses proves highly deleterious. See Helleborus.

helifibore. Sec Helleborus.

Hellebore (Whic). Sce Veratirum.
HELLELORUS. Hellehore. A genus of the class polyandria, order polygynia. Calyxless; petals five or more ; nectaries two-lipped, tubular; capsules compressed, nearly erict, many-scedel. Eight species; chicfly common to the Levant and South of Europe, but two natives of our own country.

1. Il. viridis: with siem many-fowered, Jeafy; leaves in finger-like divisions: petals spreading. Found in our woods. See Nat. Hist. HI. CNXIX.
2. H. futidus; with many-flowered lesfy stem; leaves pedate; petals corinivent. Found in our shades: and known in our dispensatories under the name of helleboraster, fetid hellebore, or bears-foot. Sce Helleboraster.
3. H. niger : with a one or two-flowered scape, nearly naked, leaves pedate. This species is a native of Austria, and is known anong medical writers under the name of nelampodium, black hellebere, or Christmas rose. The root is the part of the plant medicinally emplojed : its taste, when fresh, is bitterish and somewhat acrid: it also emits a nauseous acrid smell, but being long kept, both its sensible qualities and modicinal activity suffer very considerable diminution. The ancients esteemed it as a powerful remedy in maniacal cases. At present it is exhibited principally as an alterative, or, when given in a large dose, as a purgative. It oficu proves a very powerful emmenagogue in plethoric habits, where steel is ineffectual or iaproper. It is also recommended in dropsies, and some cutaneous diseases.

Helleborus albus. (hellelorus, from
 stroys if caten). Veratrum album. Jlleborum album. White hellebore or veratrum. Veratrum album racemo supradecomposion, corollis ercetis, of Limuéus. This plant is a native of Italy, Switzerland, Austria, and Russia. Every part of the plant is extremely acrid and poisonnus. The dried root has no particular smeil, but a durable, nauseous, and litter taste, burning the mouth and fauces; when powdered and applied to issues or ulecrs, it produces griping and purging ; if snufficd up the nose, it proves a vinlent sternutatory. Gesner made an infusion of half an ounce of this root with two ounces of water; of this he took two drachms, which produced great heat about the scapula and in the face and head, as well as the tongue and throat, followed by singultus, which continued till romiting was excited. Bergius also
experienced very distressing symptoms upontabting this infusion. The root, taken in large doses, discoucrs such acrimony, and operates by the stomach and rectum with such violence, that blood is usually discharged: it likewise acts very powerfully upon the nerious system, producing great anxiety, tremors, vertigo, syncope, aphonia, interrupted respiration, sibihing of the pulise, convulsions, spasnis, and death. Upon opening those who have died of the effects of this poison, the stomach discovered marks of inflammation, with corrosions of its imermal coat. The ancients exhibited this active medicine in maniacal cases, and it is said with success. The experience of Greding is somewhat similar; out of twente-cipht cases, in which he extibited the bark of the ront collected in the spring, five were cured. In almost every case that he rclates, the medicine acted more or les upon all the excretions: vomiting and purging were very gencrally prodiced, and the matter thrown off the stomach was constantly mixed with bile ; a forid redness frequently appeared on the face, and rarious cutaneous efforesceuces upon the bolf; and, in some, pleuritic symptoms, with fever, supervened, so as to require bieeding; nor were the more alarming aficetione of spasms and convulsions unfrequent. Critical eracuations were also very evident; many sweated profusely, in some the urine was considerably moreased, in others the saliva and mucous discharges: and uterine obstructions, of long duration, were often remoned by its use. Veratrum has likewise been found useful in epilepsy and other convulsive complaints: but the discases in which its efficary scems least equivocal are those of the skin, as itch, and different prurient cruptions, herpes, morbus pediculosus, lepra, scrofula, $\& \cdot \mathrm{c}$. ; and in many of these it hiss been successfully employed both internally and externally, As a powerful stimulant and irritating medicine, its use has been resorted to in desperate cases only, and even then it ought first to be exhibited in very small doses, as a grain, and in a diluted state, and to be gradually increased according to the efietes, which are wenerally of an alarming nature. Sce Veratrum.

HELLE'NIA. In botany, a genus of the class monandria, order monogynia. Corol with a double border, the exterior mostly threecleft; nectary two-leaved or bifid; capsule three-celled, or coriaccous, inflated, sub-glohular; calyx spathe-like, campanulate, bifid. Four species, natives of India, with a panicled efflorescence; the flowers white, red, or gellow.

HELLENISM, in language, a phrase in the idiom, genius, or construction of the Greek tongue. This word is only used when speaking of the authors who, writing in a different language, express themselves in a phraseology peculiar to the Greck.

HELLLENISTIC LANGUAGE, that used by the Grecian Jews who lived in Egypt and other parts where the Greck tongue prevailed. In this language it is said the Septuagint waq

BOTAN

H E L

*ritten, and also the books of the New Testament; and that it was thas denominated to show that it was Griek filled with Hebraisms and suri.erms.
hiflhilis s, Helleniste, a term occurrmg intice direts texi oi he New Testament, and waich :a the Eatish version is rentered Girectans. The criucs are divided as to the signitication of the word. Uchmenius, in bir Scnotia on Actevi. I. oberres, that it is not to be atatratulas oimfining these of the religion of the (-resis. but ho-e who spoke

 ours, (ilati; bat Minsicurs lia Pot Roval more acematy, Ju:s Grecs, Greck or Grecian Jews; th linus he Jews whospoke (ireck thet are here teated ef, and who are herely distinuisud from tie Jews callell Heirews, that is, who spaic ve llebrew tungue of that time. The ldelleniss, or Grecian Jews, were those who liveri in lesp and oher parts where the Greck tomsue prosilad. It is them we owe the Gieet vertion of the Oid Tistmment, commonly called the Septuagint, or that of the Sevent. Salmasius and Vorsius are of a different sentiment with regard to the Hellenists. The latter will naly have them to be these who adiaered to the Cirecian interests. Sculiger is represented, in the Saligerana, as asserting the Hellenists to be the Jows who lived in Grece and other places, and who read the Greek Bible in their synagogue, and used the Greck languare in sacris; and tinus thev were opposed to the Hebrew Jews, who periormed their public worship in the Hebrew nougue; and in this sense St. Paul speaks of himelf as a Hebrew of the Helrews, Phil. iii. j. i. e. a Hebrew both by nation and language.
HELLFNODICE, in antiquity, the directors of the Olympian games. Ai first there svas only one; but, in process of time, the number was incressed to nine. The place where ther assembled was called Hellenodicaum.

HELL-GATE, is a name givel, we sup. pose by Eplish sailors, to a celebrated strait near the W. end of Long Island Sound, 8 niiles \mathbf{E} of New York. It is remarkable for its whirpools. But, at proper times of the tide, a skilful pilot may conduct a ship of any burden through the strait.

HELLESPONT, a narrow strait between Asia and Europe, near the Propontis, which received its name from Helle, who was drowned there in her voyage to Colchis. It is celebrated for the love and death of Leander, and for the bridge of boats which Xerxes built over it when he invaded Greece. It is about $3: 3$ miles long, and varies in breadth from haif a mile to a mile and an half.
HE'LLISH. a. (from hell.) 1. Sent from hell; belonging to hell (Sidncy). 2. Having the qualiues of hell; infernal; wicked; detestable (South).
HE'LLISHLY. ad. (from hellish.) Infernally ; wickedly : detestably:
HE'LLISHNESS. s. (from hellish.) Wickeduess; abhorred qualities.

HEL

HELLOTIA, two festivals, one of which was observed in Crete, in honour of Europa, rarried off by Jupiter in the shape of a bull. 'The other at Corimth, in honour of Minerva, sirnamed Elotis.
HELLOTIS, a very large myrtle garlad, carried in procession at the (retan Hellotia.

IHELLWARI).ad. Toward hell (P (pe).
HEL M denotes deficice: as Eachelm, happy defence ($G_{i}(1 / s, n)$.
Helm. s. (l:elin, Saxon.) 1. A covering for the head in war (Dryden). e. The part of a enat of arms that bears the ciest (Camden). 3. The upper part of the retort (Buylc). 4. (helma, Suxon.) The steerage; the rudder (Ben Jonson). 5. The station of goverament (Suifi).
Helm, a long and flat piece of timber, or an assemblage of several pieces, suspended along the hind-part of a ship's stern-post, where it turus upon hinges to the right or left, serving to direct the course of the vessel, as the tail of a fish guides the body. The helm is usually composed of three parts, viz. the rudder, the tiller, and the wheel, except in small ressels, where the wheel is unneccssary. As to the form of the rudder, it becomes gradually broader in proportion to its distance from the top, or to its depth under the water. The back, or inner part of it, which joins to the sternpost, is diminished into the form of a wedge throughout its whole length, so as that the rudder may be more easily turned from one side to the other, where it makes an obtuse angle with the keel. It is supported upon hinges, of which those that are bolted round the sternpost to the after extremity of the ship are called goosings, and are furnished with a large hole on the after-part of the stern-post. The other parts of the hinges, which are bolted to the back of the rudder, are called pintles, being strong cylindrical pins, which enter into the googings, and rest upon them. The length and thickness of the rudder is nearly equal to that of the stern-post.
The rudier is turned upon its hinges by meaus of a long har of timber, called the tiller, which is fixed horizontally in its upper end within the vessel. The movements of the tiller to the right and left, accordingly, direct the efforts of the rudiler to the goverument of the ship's course as she advances; which, in the sea-language, is called steering. The operations of the tiller are guided and assisted by a sort of tackle, communicating with the ship's side, called the tiller-rope, which is usually composed of untarred rope-yarns for the purpose of traversing more readily through the blocks or pulleys.
In order to facilitate the management of the helm, the tiller-rope, in all large vessels, is wound about a wheel, which acts upon it with the powers of a crane or windlass.

There are several terms in the sea-language relating to the helin; as, "bear up the helm;" that is, let the ship go more large before the wind: "helm a mid-ship," or "right the helm ;" that is, keep it even with the middle
of the ship: "port the helm," put it over the left side of the ship: " startboard the helin," put it on the right side of the ship. Sce Seamanship.

HELMET, an anclent defensive armour worn by horsemen both in war and in tourna. ments. It covered both the head and face, ouly leaving an aperture in the front secured by bars, which was called the visor. It is still used in heraldry by way of crest over the shicld or coat of arms, in order to express the different degrees of nobility by the different manner in which it is borne. Thus, a helmet in profile is given to gentlemen and esquires: to a knight, the helmet standing forward and the beaver a little open: the helnet in profile and open, with bars, belongs to all noblemen under the degree of a duke : and the helmet forward and open, with many bars, is assigned to kings, princes, and dukes.

There is generally but one helmet upon a shicld; but sometimes there are two, and even three: if there be two, they ought to face each other; and if three, the middemost should stand directly forward, and the other two on the sides facing towards it.

Helmet. Galea. In botany, the upper lip of a ringent coral.

Helmet-tubed petal. In botany. Galeato telbulatum petalum : having the tube shoped like a helmet.
Helmet-flower. In botany. Sce Aconitum.

HELMINTHAGOGUES. (helmintliago-
 to drive out). Medicines which destroy and expel worms. See Antheimintics.

HIELMINTHI'ASIS. (helminthiasis, a$\mu \mathrm{mi}$ incots, from tiatrs, which signifies any species of worms.) A disease in which worms, or the larves of worms, are bred under the skin, or some exterval part of the body. It is cudemial to Martinique, Westphalia, Tranbjlvania, and some other places.

HELMNTHO'LITHUS. In oryctology, a genus of the class pectrifactions, order animal. The body or parts of a crustaceous worm or shell-fish changed into a fossile substance. A bnut fifty species found in different parts of the globe, but chiefiy in Europe, and a very large proportion of them in the clay-pits and flint nad chalk hills of our own country. They consist principally of asturias, sea-hedgehogs, or cchinuses, cockles, oysters or scallops, anomias, nuscles, nautiluses, whelks, or murexes, tops or trochuses, snails, tubipores, madrepores, corals, and corallines, either whilly or parts of their shells or other substance petrified. The following are those best known or most worthy of attention :

1. H. echinus. sa hedge-hog.
«. Entire. Found in England, Saxonf, Germany, \&c. in ehalk, lime, mafl, flimt or agate; sometimes in iron ore.
2. In parts. Jew's-stone. The parts are either knobs, or scparate compartments of the shell, or teeth of the shill. liound quandantly in Great Britain, aud vatious

HEL

other parts of the globe: the spines are longer or shorter, smooth, striated or studded.
2. H. bucardites. Petrified cardium or cockle. Found in the clay-pits at Richmond in Surry, at Sherborne in Gloucestershire, in Warwick-cliff, Shooter's-hill, and in vast masses of grey limestone, near Castle-Saffron, in the county of Cork; in Germany, Italy, 13ohemia, Austria, and other parts of the continent.
3. H. anomia. Petrified anomia: of which there are twenty varieties, or perhaps more. The chief are,
a. A. terebratula. Terebratulites. Found fixed or detached in lime or flint, and sometimes filled with spar, near Witney in Oxfordshire, and at Gravesend; in Germany, Saxony, Bohe:nia, Austria, and mosi parts of the continent.
6. A. hysterita. Hysterolithus. Found in Sweden, Saxony, and Germany, in Aint or sand stone.
y. A. sandalium. Sandaliolithus. Found in Bohemia and Germany : generally calcareous.
8. A. perdium. Perdiolithus. Found in Westphalia.
4. H. mytilites. Petrified mytilus or mus-cle-shell. Thirteen varieties, of which the clisef is H . penna paronis. Petrified peacock's wing. Found near Aristorf in Switzerhand, opake, but admitting a most beautiful polish, and exhibiting the most splendid iridescent colours, according to its position in the light.
5. H. nautilites Petrified nautilus. The varieties and subrarieties are almost innumerable. The most common is H. belemuita, thunderliolt, or thunderstone: very frequent in many parts of England, particularly in Gloucestershire and Oxfordshire, and in most mountainous parts of Europe: they are more or less opake or transparent, straight or bowed, cylindric, conic, more or less clavate, fusiform, a little compressed, pointed, or rather obtuse, with a gronve or two towards the tip, internally hollow or filled up, from a quarter of an inch to eight inches long ; colour whitish, amber, grey, brownish, or blackish; they are often inclosed in or adhere to other stones, and are composed of several crusts encircling each other, and are most frequent in chalk, gravel, or clay: when burnt or scraped with a knifo they give an odour like rasped horn. The country people have a untion that they are to be found at all times after a thunder-storn. Whence their verriacular name.
6. H. isidis. Petritied coral. Five rab rieties, and many subvarieties. The most common variety is
a. I. entrocha, or entrochite. Found in England, and almost every part of the continent, sometimes in single separate joints, sometimes connected together into a column, from the size of a pin's head to a finger's length and magnitude, They are more or less transparent in proo portion as they contain more or less sifico

HELMINTHOLOGY.

are striated from the centre to the circumference, and have a cavity in the middle. When powdered they are esteemed very powerful diuretics, and are exhibited in nephritic cases, the dose being as much as will lie on a shilling.
C. I. madrepora asteria, star-stone; also a common varicty, and has many subvarieties from differences of its angles. It is found in England, Switzerland, Germany, Austria, single or gregarious, detached or fixed, with the jeints solitary or forming a coluinn, which is rarely curved or branched, smooth or warty, rarely three or six-sided, very rarely square ; the joints when separated resenible a radiated star; when placed in good rinegar thuse stones have the property of moving, which is merely occasioned byithe effervescence produced by the acid acting upon the calcareous matter of which they are composed.
HELMINTHOLOGY. (from $\mathrm{i}_{1} \mu_{4} v_{5}, \theta_{0} ;, 2$ worm, and dop/p, a treatise or discourse.) Scolecology. Tine doctrine or natural study of veorms: as ornithology is that of lirds, and entomology that of inscrts. Till of late years this division of natural history has not been a subject of much scientific pursuit : and even at present our researches have not enabled us to explain manyimportant phoenomena relating to the animals which constitute this division, nor even to form an unexceptionable classification.
Under the Linnéan system (which is that, notwithstanding its imperfections, to which upon the whole we have deemed it best to adhere) helmintholngy, as a class, embraces the five following orders:
I. Intestina: consisting of worms of the most simple formation; some of which live within other animals, some in waters, and a few in the earth; the use of many of which appears obvious to us, though in regard to most of them we are ignorant of their advantages. Thus the fordius perforates clay to give a passage to springs and water; the lumbiricus pierces the earth that it may be exposed to the action of air and moisture; the teredo penetrates wood, to contribute towards its destruction, so that its elementary principles may promote towards the growth of succeeding vegetables; the phloas and mytilus, in like manner, penetrate rocks, to effect their dissolution.
11. Mollusca: naked worms, furnished with tentacles or arms. for the most part inhabitants of the sea; illuminating by their phosphoreous power the dark alyss of the waters, and reflecting their lights to the firmament. Thus what is beneath the water corresponding with that which is above.
III. Testacea. Molluscous wornss covered with calcareous habitations, or shells which they carry about with them : thenselves producing and often penetrating calcareous bodies. Like insects, they are multiplied into a vast number of species and varieties; and both in form and colours exhibit splendid examples of the power of the almighty Artificer.
IV. Zoophyta. Composite animals, hold-
ing a medium between animals and vegetables. Most of them take root, and grow up into stems, multiplying life in their branches and deciduous buds, and in the transformation of their animated blossoms or polypes, which are eudowed with spontaneous motion. Plants, therefore, resemble zoophytes, but are destitute of animation and the jpower of locomotion ; and zoophytes are, as it were, plants, but furnished with sensation, and the organs of spontaneous motion; of these some are soft and naked, as the polype, and are called proper zoophytes; others are covered with a hard shell, and are hence denominated lithophytes.
V. Infusoria. Extremely minute aninalcules, destitute of tentacles or feelers, and generaily not visible to the naked eye. They are mostly found in infusions of yarious vegetiable substances; and after becoming dry, do not (except in a few instances) revive upon being replaced in moisture.
The anatomical characters, however, of these different orders of animals, and of many of the genera of which these different orders consist, are so various, and in some cases so opposite to each other, that several zootomists, and natural historians of the present day, have endeavoured to improve upon the Linuéan classification, and to re-arrange it into a simpler and more harmonicus furm. We shall have occasion to revert more at length to this subject in the article Zoology; and shall here, therefore. only observe that, in ceneral, the term helmintholory, or the natural science of worms, is used by writers of the present day in a much more limited sense than is imported by the Linncian idea : the animals arranyed under the name of vermes, or torms, constituting only a small part of the Linućan class, not confined to any particular order, though alnost exclusively from the first three. Under the system of Blumenbach, the class vermes consists of two orders only.
I. Intestini including,

1. Gordius.
2. Ascaris.
3. Tricocephalus.
4. Fasciola.
5. Tænia.
6. Hydatis.
II. Externi, consisting of
7. Aphrodite.
8. Sipunculus.
9. Hiruclo.
10. Ncreis.
11. Nais.
12. Planaria.
13. Lumbricus.

The names of these orders are derived from the animals existing or not existing in the organs of other animals: the first belongs obviously to those that are formed or occasionally found there: the second to those which are only traced externally.

The system of Cuvier also contemplates the worm class under two orders, though bis characters are drawn from a very difiesent source. The orders are as follow :

HELMINTHOLOGY.

1. Posecssing external organs for respiration, with sette upon the sides of the body. This order inclukes the followin"genera.
2. Aplirodita.
e. Tercbelia.
3. Nercis.
4. Serpula.
5. Penecillus.
6. Siliquaria.
7. Amphitrite.
8. Dentahinm.
II. Posecosing nis external organs for respiration: some of them with sera upon the sides of the body, some without. The genera are as follow :
9. Nais.
10. Lumbricus.
11. Thalassema.
12. Hirudo.
13. Fasciola.
14. Planaria.
15. Gordius.

To which orders M. Cuvier adds an appendix, consisting of animals similar to worms, the orgatization of which is not sufficiently known to determine whether they should be included in the worm class, or constitute a separate class, next to the zoophytes.

These consit of two familics.
A. 1. 'Tienia.
2. Mydatigena.
3. Lígula.
4. Liquatula.
B. 1. Ascaris.
2. Furia.

3, 4, Sic. all the other intestinal worms of Linnéus.
Gencrally speaking the Limnean class vermes, but more especially the more confined class of this name, whether of Blumenbach or of Curier, possesses a vascular system, and a epinal marow, knotted like that of insects: in some gencra the nervous system is very distinct; in others so obscure that we can scarcely recognize its existence.

In the aphrodita aculcala it is very obvious. Immediately behind the tentacles, situated above the mouth we observe a large nervous ganglion, which is the brain: it has the form of a heart, the broadest and bilobed part of which is directed backward: the pointed and anterior part produces two small filaments for the tentacles; and the lateral parts form other filaments, which are still more slender, for the parictes of the mouth: this ganglion is situated immediately above the origin of the œsophagus. The two cords which arise from the brain, and form the collar, are very long and delicate; they gradually increase in thiekness as they approach the point of their union. Each then preduces a large filament, called by Cuvier the recurrent nerve: these nerves are very distinct : they are directed forward towards the part where the œesophagus, which is very short, joins the stomach : they may be easily followed by the naked eye to the lateral parts of that viscus, which is very long and muscular; before they reach the intestines
that follow the stomach, they swell inte a ganglion, which produces a great number of nervisus fibrils. The two nerves of the collar produce a very large ganglion at their union : it is bifurcated anteriorly, and situated immedintely behind the mouth and above the oesophagus: it is the anterior extronity of the chief nervons cord. We do not observe any filaments proceeding from it. To this first ganglion another succeeds, which is distinguished from it by only a small contraction : the later produces two nervous filaments, which go towards the muscles of the abdomen. A series of eanglia, the spaces between which are considerably greater, succeed next: each of these sends ofi six nerves, three on a side, which are lost in the muscles. These ganglia are twelve in number. The nervous curd which is still prolonged, and cceupies the posterior third of the bedy, no longer exhibits any apparent enlargement: but pairs of nerves are still detached at certain spaces. Finally, this cord may be traced to the extremity of the boty-

In the hirudo or lecch genus, the nervons is a lonsitudinal cord, compred of awenty-thre ganglia. 'The first is scated above the orsophagus: it is sma!! and rouncid: anteriorly it produces two slender filaments which proceed above the disk of the month. The lateral parts furnish a thick pair of nerves that forma collar round the aesophacus as they proceed dowiward, and unite at the sectind ganglion. This ganglion is of a triangular fizure : it appears to be formed by the union of two tubercles. Tiwo of these angles are anterior and lateral; they receive the nerves that procced from the first ganglion. The other is posterior: it is prolonged into a nerve sather more than hali a line in length, which produces the third ganglion. The anterior part of the trianzular ganglion detaches two small nerves which are lost on the œsophagus around the mouth. The nine succeeding ganglia are preciscly of the same form, and produce each two pairs of nerves; they differ only in the greater or less distance at which they are placed in respect to each other. The third is very near the second : the three following are placed at nearly the distance of a line and a half: but those which succeerl, from the seventh to the twentieth, are at the distance of three or four lines: fmally, the three last are very close together. All these ganglia are situated longitudinally below the intestinal canal, to which they furnish, from their superior surface, a number of nervous filaments; they produce on each side two nerves, which pass into the longitudinal and transverse muscles, in the substance of which they are lost. These nerves run in opposite directions, so that they represent the fiyure of an X. The coat of these arteries is black and very solid: on this account, before the parts have been immersed in alkohol, the neries appear like a system of vessels.

In the lumbricus or carth-roorm, the nerrous cord derives its origin from a ganglion, situated about the cesophagus: which ganglion is formed of two close, but very distinet

HEL

tubercles: it produces a pair of small nerves, which proceed to the parietes of the mouth, and two large cords which embrace the oesophagus in the shape of a collar: these unite to form the nervous cords, the orizin of which, the efore, appears bifurcated. Three pairs of small nerves are detached at this place; one from the cord itelf, and the others from its lateral parts. They all proceed into the muscles of the mouth. The nervous trunk is continned to the anus along the inferior part of the intestine: its size is not sensibly diminished, and the contractions are not retnarkable: there are, in reality, no reai ganglia. A pair of nerves ar:ses between each of the rings of the body: these pass under the longitudinal muscles, and disappear between them and the skin. When the nervous cord reaches the anus it terminates by forming a plexus, which is lost on the paricies of that aperture.

In the gordius argilluceus there is only a single nervous cord, simitar to that in the earthworm; but its coniractions are still less conspicuous.

In the nerris and tereleplla we find within the shin of the belly a loneitudinal cord, which may be regarded as nervous : it has as many contractions as there are rings in the boly. No nervous filament has hitherto been traced from this cord.

In the ascaris luml-ricoides, whether of man or horse, there appear to be two nervous cords observable througiout the whole length of the bordv on the lateral parts of the abdomen.

The uniforn distribution of nearly equal ganglia upon a cord extending throughout the whole length of the body, seems designed to furnish each segment with a brain peculiar to itself. Thus we are gradually conducted to that general diffision of the medullary substance which takes place in zonphyles.

Among zoophytes we may observe that a nervous cord is not unfrequently, but by no means always, to be traced. It is conspicuous in the asterias, holothuria and sipunculus, sometimes extendiug into rings and filaments, but never convoluted into ganglia. In the achinia and medusa we can trace nothing that has any resemblance to a nervous arrangement. In the hydra we only discover a gelatinous and homogeneous pulp, which exhibits no apparent organization. This animal, however, exhibits very distinct sensations; its sense of touch is very delicate, and it is open to impressions of heat and light.
The microscopic or infusory animalcules appear to approach, in some measure, the nature of polypes, by their uniform and gelatinous structure. In some, however, we are able to trace a more complicated organization, and several kinds of internal viscera.
The organization of the sepia is one of the most complicated and extraordinary of the Linnéan class vermes: but as we shall find it necessary to examine its structure when describing it in its systematic place, it is unnecessary to enter upon the same suhject in this article. See Sapia.

II EL

The organs of motion in worms are less perfect than in caterpillars and some other larves of insects. Having neither scaly nor membranous feet, several of them crawl or drag themselves along by the help of still hairs or bristies, with which they are wholly or partially covered. Sucin are the aphrodita, terebella, nereis, lumbricus, \&c. ; others, possessing neither spines nor bristles, are aible to move by a peculiar organization in the two extremities of the borly, which they apply alternately to the surface on which they crawl. This orgenization is of two kinds: in lecches and several intestinal worms it consists of suckers possessing a considerable power of contraction, though it is extremely difficult to trace the muscles that move their bodies in obedience to such contraction: in the trenia, tarnca, echinorrhyneus, uncinaria, \&c. the head, instead of being terminated by a disk, provided with the power of suction, is generally armed with hooks, by means of which they lay hold of any part to which they wish to attach themselves. The disposition and curvature of these hooks differ very considerably. Among 2oophytic worms, motion is in some cases produced by moveable spines on the back, sometimes by an alternate inflation of the body, and sometimes by moveable retractile feet, acting like a sucker with an envelope more or less solid.

HELMI:NTRA. In botany, a genus of the class syngenesia, order polygamia a qualis. Receptacle naked; calyx double; the innereightleaved, equal ; outer five-leaved, as long as the inner: seeds transversely striate; down feathery, on a pedicel. One species only ; indigenous to the hedyes of our own country, with leaves and calyx fringed with long prickles; the picris echioides of Dr. Snith in his English Botany.

HEIMONT (John Baptist Van), a celebrated Flemish gentleman, was born at Brussels, in 1577. He acquired such skill in natural philosophy, plysic, and chemistry, that he was accounted a magician, and thrown into the inquisition: but having with difficulty justified himself, as soon as he was released he retired to IIolland; where he died in $16+4$. He published, 1. De magnetica corporum curatione. 2. Feltrium doctrina inandila. 3. Ortus medicince. 4. Paroduxa de aquis spadnnis; and other works, printed together in one volume folio.

Helmont, a town of Dutch Brabant, with a strong cistle. Lat. 51.31 N. Lon. 5.37 E.

HELMSDALE, a river in Sutherlandshire, which descends from the mountains bordering on Caithnessshire, and falls into the German ocean.
HELMSLEY, or Helmaley Brackmore, a town in the West Riding of Yorkshire, with a market on Saturdays. Lat. 54. 19 N. Lon. 1.10 W.

HELOISE, famous for her unfortunate affection for her tutor Abelard, and for her I atin letters to him after they had retired from the world. She died abbess of Paraclet in 1105.

See Abeliard.

HELO'NIAS. In botany, a genus of the

HEL

thas hexandria, order trigynia. Calyxless; coral six-petalled ; capsule three-celled. Two epecies, natires of North America, herbaceous plants. See Nat. Hist. PI. CXXXIX.

HELOPS, in the entomology of Fabricius, a tribe of the genus Primelia, which see.

HELSS, in ancient gengraphy, a maritime cown of Laconia, situated between Trinasus and Acrix, in Pausanias's time in ruins. The district was c Hed Helotca, and the people Heloxes, Helotz, Helei, and Heleate, by Stephamess ; and Ilote, hy Livy. Being subducd by the Lacedmonians, they were all reduced to a state of public slavery. Hence the Spartons called the slaves of all nations Helotes or Helots.

HELIOTICAS. In botany, a genns of the ehass cryptogamia, order fungi. Fungis with a fleshy, menbranous, convex hemispherical eap, smonth underneath, and bearing naked secels. Six species: two indigenous to our own country:

To HELIP. v. a. preterit helped or holp; part. helped or holpen. (helpan, Suxom.) 1. To assist; to support; to aid (Finirfar). 2. To remove, or advance by help: the upration is helped by air (Loche). 3. To free from pain or vexation: the paim is helped ly medicine (Locke). 4. To cure: to heal (Siukspeare). s. To remedy: to change for the better (.Whakspeare). 6. To prevent ; to hincier (Solif). 7. To forbear; to avoid ($\mathcal{P o}_{\mathrm{o}}^{\mathrm{p}} \mathrm{e}$). 8. To promote; to forward (Breon). 9. To Helpto. To supply with; to furnish with ($P_{o j}$ ore).

To Help. v. n. 1. To contribute assistance (Dryden). 2. To bring a supply (Rymer).

Helf. s. (from the verb; hutpe, Duteh.) 1. Assistance; aid ; support; surcour (Locler). 2. That which gives help (\boldsymbol{F} thins). 3. That which forwards or promotes (Bacon). 4. Remedy (Holder).

Helpg, in the manage, the aids or collateral assistance or stimulus given to a horse in riding. They usually include the seren following, the voice, whip, bit, calres of the legs, stirrupe, spur and ground. See Aids.

HE'LPER. s. (from help.) 1. An assistant; on auxiliarv (Kings). 2. One that administers remedy (Mure). 3. One that supplies with any thing wanted. 4. A supernumerary servant (Swif).

HE:'PFUL. a. (help and fill.) I. Useful ; that gives assistance ($D_{\text {ry }}$ den). 2. Wholecome: salutary (Raleigh).

HE'LPLLESS. a. (from help.) 1. Wanting power to succour one's self (Dryden). 2 . Wanting support or assistance (Pope). 3. Irresediable; admitting no help (Sjpenser). 4. Unsupplied; void (Dryden).

HE'LPLESSLY.ad'. (from helpless.) Withcut ability; without succour.

HF'LPLESSNESS.s. (from helpless.) Want of ahility: want of succour.

HELSINBLRG, a scaport of Sweden, in the province of Schonen. Lat. 5 ij. 6 N . Lon. 12. 40 E .

HELSINGFORS, a town of Swedish Finland, in a romantic situation. T'ne hariour,

HEL

which is very commodious, is in the Gulf of Finland. Lat. 60.20 N. Lon.25.0 E.

HELSINGIA, a province of Sweden, bounded on the north by Jeapterland and Medelpadia, on the east by the Bothnic gulf, and on the south and west by Dalecarlia and Gestricia. It is full of mountains and forests.

HELSTON, a borough in Cornwall, situated on the river Loe, near the sea. It is a large and populous town, of good trade, and one of the places appointed for stamping tin, according to the ancient stannery laws. The magistracy is vested in a mayor, four aklermen, and twenty-four assistants, by charter of queen Elizabeth. It is a borough town, and sends two members to the British parliament, and has a weekly market; twelve miles E. Penzance. Lat. 50. 4 N . Lon. 5. 15 W.

HE'LTER-SKELTER. ad. In a hurry; without order ; tumultunusly (L 'Estrange).
HELVE. s. (from helfe, Sixon.) The handle of an axe. (Raleizh.)
To Helve. v. a. (from the noun.) To fit with a helve or handic.

HELVELLA. In botany, a genus of the class cryptogamia, order fungi. Fungus inflited, detormed, or concave, smooth, elastically ejecting its seeds from the upper surface. Sixtien species; of which twelve are natives of nur own entintry.
HELVETIC, something that has a relation to the Swizers, or inhabitants of the Swiss cantons, who were ancieatly called IIelvetii.

HELVETILS (Adrian), a Dutch physician, who settled at Paris, and by his successfully administering ipecacuanha in the dysentery, which raged violently in that city, gained a pension, and the appointiment of inspector-general of the military hospitals. He died in 1721, aged 65. He wrote some medical treatises.
Helvetius (John Claude), son of the preceding, was born in 16i55. He became first physician to the queen of France, and inspector-general of the military hospitals, after his father. He was a man of considerable skill and great humanity. He died in 1755. His wortis are, 1. Idée générale de l'Economie animale, 1722. \&. Principia Physico, Melica in tyronum Medicina Gratiam Conscripta, 2 vols. 8vo.
Helvetius (Claude Adrian), son of the last-mentioned, was born at Paris in 1715, Though his genius expanded itself early, yet it was not till 1758 that he thought proper to give any fruits of it to the world, and then produced his celcbrated work, entited, de IEsprit, which, on account of its atheistical principles, was condemned by the parliament of Paris. The odium which he incorred hereby induced him to visit England in 1764, and from thence he went to Prussia, where he met with a good reception from the king. On his return to France, he led a retired life in the country, and died in 1771. Besides the above work, he wrote some others, as 1. Le Bunheur, a poem in 6 cantos, 1779. 2. ©

$\mathbb{N} T \mathbb{R} \mathbb{R} L \quad H I S T D R T$.

Digitized by GOOgle

HEM

Man, a philosophical work, on the same clusters on the leaves of the plants, each placed ground as his first performance. 3. The Child of Nature improved by Chance, an indecent romauce. (Hathins).

HELVOETSLUYS, a seaport of Holland, on the island of Voorn. It is the place of destination of the English packets from Harwich. Lat. 51.45 N. Lon. 4. 23 E.

HEM. s. (hem, Saxon.) 1. The edge of a garment doubled and sewed to keep the threads from spreading (Wiscman.) 2. (hemmex, Dutch.) The noise uttered by a sudden and violent expiration of the breath ($A d d$.) 3. Interject. Hem! (Latin).

To Hem. v. a. 1. To close the edge of cloth by a hem or double border sewed together. 2. To border ; to edge (Spenser.) 3. to enclose; to environ; to confine; to shut (Fairfa.i).

To Hem. v. n. (hemmen, Dutch.) To utter a noise by violent expulsion of the breath.
hevatite See Hematites.
HEMERALOPIA. (hemeralopia, nмероzerise, from murtins a day, and oriw, to see.) Crepusculary blindness. A defect of vision, in which the patient sees perfectly well all day, but in the crepusculary light, as in the evening, perceives little or nothiug. It is often endemic to China, Barbadoes, the Brazils, and Poland.

HEMERALOYS. (hemeralups, qupanut. from nu«ra, the day, and wi, an eye). One who can see but in the daytime, or when the sun is in full strength.
HEMEROBAPTISTS, a sect among the ancient Jews, thus called from their washing and bathing every day in all seasons; and performing this custom with the greatest sokemnity, as a religious rite necessary to salvation. Epiphanius, who mentions this as the fourth heresy anoong the Jews, observes, that in other points these heretics had much the same opinions as the Scribes and Pharisees; orly that they denied the resurrection of the dead, in common with the Sadducees, and retained a few other of the inproprieties of these last.
HEMEROBIUS. In zoology, a genus of the class insecta, order neuroptera. Mouth with a short, horny mandible; the jaw cylindrical, straight, cleft; feelers four, unequal, fliform ; without stemmata, or eyes on the crown; wings deflected, not folded; antennas setaceous, projecting. longer than the thorax, which is convex. Thirty-eight species; which may be thus subdivided:
A. Lip cylindrical, membranaceous, annulate; comprising the Fabrician tribe semblis.
B. Lip horny, rounded at the tip, vaulted.

Some of the different species are common to all the quarters of the globe: eight of them found in our own country. Like the ephemera, these insecty are very short-lived; and in every state of their existence prey with unceasing avidity upon plant-lice: the larve is six-focted, generally ovate and hairy; the pupe mostly folliculate; the eggs are deposited in
on a small gummy pedicel. Many of the species when touched have an excrementitious smell. The colour varies much; that of the body is chiefly yellow, brown, or black, or intermixed, sometimes greenish: the wings are often white. Some of the species are smaller than the common louse; several of them resemble the termes, and perhaps might as well be included under that genus: whence the hemerobius of tabricius comprises a whole tribe of the genus Termes, which see. See also Nat. Hist. PI. CXXXI.
HEMEROCALLIS. Day-lily. In botany, a genus of the class hexandria, order monogynia. Corol campanulate, with a cylindrical tube; calyxless; stamens declining. Forr species; one a native of Switzerlard, the other three of China and Japan.

1. H. flava. yellow day-lily or lily aspode. Leaves lincar; segments of the corol Hat acute, with their nerves undivided. 'This is the Swedish plant.
2. H. fulva. Tanny day-lily; neres of the outer segments branched; a native of China.
3. H. lancifolia. Lance-leaved day-lily; leaves oblong, tapering to both ends, sevennerved.
4. H. Japonica, with roundish ovate leaves, pointed, many nerved. Indigenous to Japan, and prolucing in our own green-houses beautiful white flowers.

Of this last species there is also a beautiful variety, affording blue flowers. See Nat. Hist. PI. CXXXV.
The two first are the most common, and obtained with most facility. Of these two the former is easily propagated by off-sets, which the roots send out in abuadance; these may be taken off in autumn (that also being the best season for transplanting the roots) and planted in any situation; for, being extremely hardy, they will require no other culture than to be kept clean from weeds, and be allowed room to spread their roots. This sort may be propagated also by seeds, which, if sown in autumn, will produce plants the sprivg following, and these will flower in twe years; but if the seeds be not sown till spring, the plants will not come up till the year after. The second species is usually propagated by parting the roots: the proper season for this is autumn, as also for transplanting the roots. These plants should not be transplanted oftener than every thitd year, when the roots may be parted to make an increase of the plants; but they must not be divided too smali, for if they be, it will be two years befure they flower. They delight in a light loamy seil; and an open exposure.
HE:iERODROML, compounded of nuria, day, and $\delta_{i} \mu \boldsymbol{\beta}$, course, \&c. among the ancients, were sentinels or guards appointed for the security and preservation of cities and other places. They went out of the city every morning, as soon as the gates were opened, and kept all day patrolling round the

HEM

HEM

place; sometimes also making excursions farther into the courtry, to see that there were no enemics lying in wait to surprise them.

Hemerojromi were also a sort of contiers among the ancients, who only travelled one day, and then delivered their packets or dispaiches to a fresh man, who ran his day, and so on to the end of the journey.
HEMIPROTROPHIS, in antiquity, a measure of capacity, the same with the choenix. It was so called from its holding one day's fuod. The word is compounded of \# μ нir a day, and $\tau ; \rho p \eta$ fond.

HEMI, a word used in the composition of various terms. It signifies the same with $s \mathrm{cmi}$ or demi, viz. half; being an abbreviature
 The Greeks retrenched the last syllable of the word $\eta_{\mu} \sigma_{v}$; in the composition of words; and after their example, we have done so too in most of the compounds borrowed from them.
HEMICRANIA. (hemicrania, nu"x $\boldsymbol{q}_{\mathrm{f}}$ ria, from $\mu_{\mu} / \sigma v$, half, and \times pavir, the head). A pain that affects only one side of the head.

HEMICYCLE, Hemicyclium, in archi-

 tecture, a term applied to semicircular vaults.Hemicyclium was abo a part of the orchestra in the ancient theatre. Scaliger, however, observes, it was no standing part of the ochestra; being only used in dramatic pieces, where some person was supposed to be arrived from sea, as in Plautus's Rudens. The ancients had also a sort of sun-dial, called hemicyclium. It was a concave semicircle, the upper end or cusp, whereof looked to the north.
HEMIDITONE, in ancient music, the interval of a major-third diminished by half a tone: its consututiag ratio is $5: 0$.

HEMIMERIS. In botany, a genus of the class didynamia, order angiospermia. Calyx five-parted; corol wheel-shaped, reversed, gibbous at the base, cloven; filaments glabrous; capsule two-celled. Five specics ; three natives of the Cape, two of South America: all herbaceous plants; the two last with beautiful scarlet flowers.

HEMINA, formed of nu:ru;, half, a vessel used as a measure anoug the ancient Romans, containing half the sextary. The hemina, called also colyla, and acctalulum, contained eight ounces of liquor ; and was about half our wine pint.

HEMIOBOLON, in antiquity, a weight of half the obolus, or five grains.
HEMIOLUS, or Hemiolia, among ancient musicians, denotes that ratio which we now call sesquialteral.
HEMIONITIS. In botany, a genus of the class cryptogamia, order filices. Fructification in decussite, forked, or reticulate lines; involucreless; six speciec, thrce with simple and three with compound frond: natives of the East or West Indies.
HEMIOPE, a kind of fistula, having three holes, used by ancient musicians.

HEMIOPSIA. (hcmiopsia, nurotia, from
nu!sy:s, half, and $w \downarrow$, an eye.) A defect of vision, in which the person sees the hall, but not the whole of an object.
HEMIPLEGKA. (hemiplegia, nyuz-rpes, from nucous, half, and π arajew, 10 strike). A paralytic affection of one side of the body. See paralysis.
HEMIIPTERA. In zoolnry, the second order of the class ingecta consistently with the Liméáan system, thus ordinally rharacterised: mouth and snout beat in towards the breast; upper wings soft semi-crustaceous, not divided by a straight suture, the base of the left covering the inner nargin of the base of the right. See Zoology.
HE MIISPHERE: s. (\quad meapatesor.) The half of a globe, where it is supposed to be cut through its centre in the plane of one of its greatest circles (I)ryden).
Hemispheres separated by different great circles on the nuundane spliere are chasracterised by diffierent names. Thus, the equator separates the northern and southern terrestrial hemispheres; the ecliptic, the northern and southern celestial hemispheres; the first meridian, the eastern and western hemispheres; and the korizon, the upper and lutur hemispheres.
Hemispheres of Magdeburge, two brass concave hemispheres, one of which is furnished with a cock, by which it nay be adjusted to the air-pump. The other hias a ring at the middle of its convexity, by means of which it may be suspended. When these two hemispheres are placed together, the air is drawn from within through the medium of the cock by the mechavism of the air-pump; and then, the exhaustion being carried far enough, and the cock turned to present the admission of air from without, a considerable force is requisite to separate the hemispheres: the force varying with their external surface: This furnishes an easy and obvious method of proving the force and pressure of the air. Otto Gucricke, the inventor of the air-pump, to whom also is due this invention, made hemispheres of about a foot radius, and found that the atmospheric pressure upon them wa equivalent to about 5400 pounds.
hemisphericcalyix, or Nectary. In botany. In form of half a sphere. The firs exemplified in tanacetum: the second in narcissus jonquilla.
HEMISPHEROIDAL, in genmetry, something that approaches to the figure of a hemisphere, but is not justly so.

HEMISTICH, compounded of nuirys, half, and $4 \times x^{\circ} ;$ verse, in poetry, a half versc.
Such, e. gr.are, Cernit Deus omnia vinderor Medio tutissimus ilis, \&ec.
It is disputed, whether or no the hemistichs in the Atneid were left with design; or whether they are owing to the work's being unfinished?

In English, \&c. the common and Alexandrine verses require a rest at the end of
each hemistich; common verses require it at

II E M

the end of four syllables; and Alexandrine at the end of six.

Leonine verses rhythm both at the end and at the hemistich. Sec Leonine.

HEDITONE, in music, a semi-tone.
HFMLOKK, in botany. see Cicuta.
ME'MORRHAGE. He'morrhagy. s.
 Hamorkhagia.

HE'MORRHOIDAL. a. (from hemorrhoids.) Belonging to the veins in the fundament (Ray).

HE'AIORRHOIDS. s. (a!uopairis.) The piles; the emrods (Suift).
hemp, in botany. See Canabis.
Hemp (Agrimonj). Sce Eupatorium.
The canatis sativa, or hemp-plant, is cultivated ou account of its external filaments, which constitute the hemp used for cordure, canvas, cloth, \&c. and the seeds abound with oil. The plant is annual; it rises quick into a tall slender surt of shrub; its leaves growing by fives or sixes from the same pedicle, are a little jagyed, and yiold a strong smell, which affects the head. The culture and manacement of hemp makes a comsiderable articie in agriculture; requirng divers operations, as pulling, waterins, beating, and swingling. It is sown in May, in a warm, sandy, rich soil; and is of itself sutbicient to destroy weeds on any ground. 'The first season for pulling hemp is ustally about the middle of Augns:, when they begin to pull the maie plants, called fimble hemp. But the s.ficr method is to puil it a fortnight or three wecks later, when the nale plants have fully shod their farina, withont which the seeds will prove only empty husks. At the sccond pulling, a litile atter Michaelmas, the female plants, called karle hemp, are taken out of the ground. This karle hemp is laid in the sun to dry, and then housed, for the seed to be thrashed out. The female hemp alone produces seed to perpetuate the kind. The operations of harling, watering, breaking, swingling, and heckling hemp, are very much like those practised in the dressing of flax. The hemp imported into this country chicfly comes from Russia. Amongst it the Riga hemp deserves the prefcrence, which, according to the quality, is divided in rhyne, outshot, pass, and codilia hemp. The Italian, known in this country by the name of Bologna hemp, is of very prime quality, but comes too dear for the consumption of the nothern parte of Europe.

Anoong us, after the seed is beaten out, the hemp is prepared for the manufacturer, either by grassing, that is, lying on stubble or pasture ground, in order to be gradually dewripened; or, by uater rutting, for which process clay-pits are preferred to runaing water. In these the hemp is immersed in bundles, laid both directly, aud across, thus,

for four or five davs, according to the fineness of the weather. The next operation is that of reeding, namely, the seplaration of the bark from the reed, or woody part, which is effected either by pulling ont the reed with the hand, or by drying, and breaking it by machinery, like flis. The hemp is then cleared of its mucilaginous matter, by pouring water through it, and squetzing out the liquid after every athusion, till it be completely divested of those particles.

The nest operation is that of lrenking it, which, in the county of Suffolk, is periormed with the aid of eertain machinery worked by the hand; when :he hemp is beaten in mills; combed or dressed by drawing it through heckles, similar to the combs of wool manimfacturers; and spun into thread, whence it is made into twine, cordige, cloth, netting, \&c.

Beside the strong cluth, and other articles mate from it, hemp is of considerable utility for other purposes. The refuse, called hempsheaces, atiorls an excellent fuel; and the sceds yield by expression a pure oil, which is pecuitiarly adipted for burning in chambers, 28 it is perfectly limpid, and possesses no smell. Another valuable property of hemp is, that it efficctually expels vermin from plantations of cabbages; for, if it be sown ou the horders of ficilds, Sic. planted with that vegetable, no caterpillars will infest it.

When fresh, hemp bas a strong, narcotic smedl: the water in which it has been soaked is suill to be in a high degree poisonous, and to produce fatal eficets immediately after drinking it. The seeds have an unctuous, sweetish taste; they may be triturated with water, or boilcd in milk as an enulsion, which is occasiona!ly taken as a domestic remedy in conghs, heat of urine, and similar comphats.

In the eastern climates hemp-leaves are used like opium, and posess similar intoxicating properties. The Russians and Poles, even of the higher classes, bruise or roast the seeds, mix then with salt, and cat them on bread.-Birds, kept in cages, are likewise foud of this oily seed; but they should not be indulged in its constant use, which is apt to render them prematurely old, blind, and at length consumptive. Hemp being an article of extensive utility, various vegetables have been discovered, which may serve as substitutes. A mong these are the Canada goldenrod, or solidaro Canadensis, a perennial plant, that might be easily cultivated in Britain: its stalks are numerons, straight, and grow above five feet in height; they afford very strong fibres, if treated in the same manner as hemp. The sun-fower, or helianthus, L. also affords single filaments or fibres, which are said to be as thick and in all respects as s'rong as small pack-thread.

HE'MPEN. a. (from hemp.) Made of heipp.
HEMSEIRK or Heemsifire (Martin),

HEN

a celebrated Dutch painter, was born in 1498, and studied his art at Rome, after which he seturned to his own country, and settled at Haerlem, where he died in 1574, aged 76. His invention was fruitful, which enabled him to paint all kinds of subjects with success ; but his figures are generally bad, and he was ignorant of the chiaro-scuro.

Hemskiri (Fgbert), called Hemskirk the old, was an excellent painter of droll sabjects and conversations.

Hemsirir (Egbert), called the young, was probably the son and disciple of the above. He had abundance of humour, and a whimsical imagination, many of his pieces being sepresencations of the nocturnal meetings of witches and devils. He died in 1704, aged 59.
hempsted, or Hemel Hempsted, a borough town in Herts, with a market on Thursdays. It is seated among hills, on a branch of the Coln. Lat. 51. 47 N. Lon. 18. 14 E.

HEMSTERHUIS (Tiberius), or Hemsterhusius, a learnerd critic, was born at Groningen in 1685, and at the age of 19 was appointed professor of mathematics and philosophy at Amsterdam. In 1717 he removed to Franeker, where he was appointed Greek professor, to which was afterwards added the professorship of history. In 1740 he went to Leyden, where he occupied the same stations as he had done at Franeker. He died in 1766. He published, 1. the three last books of Julius Pollux's Onomasticon, in 1706, which brought him acquainted with the learned Bentley. 2. Select Colloquies of Lucian. 3. The Plutus of Aristophanes. 4. Part of an edition of Lucian and various other learned works.

HEN, in ornitholegy. See Phasianus.
Hen (Guinea). Sec Numidia.
Men-harrier. See Falco.
Hen-webd (Guinea), in botang. See Petiveria.
Hen-bane. See Hyosciamus.
HEn, significs the female of domestic fowls, and such as often come near habitations: as hen-sparrow, \&c.

Hen-hearted.a. (hen and heart.) Dastardly; cowardly.

Hen-pecked. a. (hen and pecked.) Goveraed by the wife (Arluthnot).

Hen-koost. s. (hen and ronst.) The place where the poultry rest (Addison).

HENAUL'T (John d'), a French poet, was the son of a baker at Paris. He was patronized by the superintendant Fouquet, who gave him the place of receiver of the taxes at Fores. He wrote a satirical poen on Colbert, and several pieces of merit. His conduct was irregular, and his principles libertine, but his death was very penitent. This happened in 10̂x:.

Henault (Charles John Francis), a French writer, was born at Paris in 1685. In 1707 he gained the prize of eloquence at the French academy, and in 1715 he produced a tragedy on the stage, which had a bad suc-

HEN

cess. Mr. Horace Walpole, in 1768 , begged it of the author, and printed it at Strawberry Hill. In 1706 he was admitted a counsellor of parliameut, and in 1710 presicent of the first chainber of inquests, and these occupations led him to the stady of politics and history. In 1744 he published his chronalogical abidgment of the History of France, which work has been translated into many languages, and even into the Chinese. He also wrote some very pleasant conedies, Henault died greatly respected in 1771 .

HENCE. ad. or interj. (hendan, Sax. hennes, old English). 1. From this place to another (Roscommon). 2. Away ${ }^{3}$ to a distance (Milton). 3. At a distance; in another place (Shalkspeare). 4. From this time; in the future (Arluthnot). 5. For this reason; in consequence of this (Tillotson). 6. From this cause; from this ground (Arb.). 7. From this source; from this original; from this store (Suckling). 8. From hence is a vitious expression.

To Hence. r. a. (from the adverb.) To send off; to dispatch tw a distance: obsolete (Sidney).
HENCEFO'RTH. ad. (henonfonð, Sax.) From this time forward (Milion).

HENCEFORWARD. ad. (hence and forward.) From this time to futurity (Dryd.).

HE'NCHMAN. s. (hy̆ic, a servant, and man.) A page; an attendant: obsoleto (Shakspeare).

To HEND. v. a. (henban, Saxon.) 1. To seize; to lay hold of (Fairfaxi). 2. To crowd; to surround (Shakspeare).
HE'NDECAGON. s. (adiexa and ywom.) A figure of eleven sides or angles.

HENED-PENNY, in our old writers, a customary payment of money instead of hens at Christmas.
HENIOCHAS, in astronomy. See Avriga.

HENLEY, a town in Oxfordshire, with markets on Wednesdays, Fridays, and Saurdays. It is seated on the Thames, over which is a handsome bridge, and sends malt, corn, sic. to London by barges. Lat. 51. 35 N. Lon. 0.46 W .
Henley, a town in Warwickshire, with a market on Tuesdays. It is seated on the Alne. Lat. 52. 33 N. Lon. 1. 50 W.

Henley (John), well known by the name of orator Henley, was born at Melton Mowbray in Leicester hire, in 1692, and brought up at Cambridge, after which he entered into orders, and became a popular preacher in London; but disgraced himself and bis gown by setting up a lecture on Sunday erenings, near Lincoln's-ina fields, adunission to which was one shilling each person. He had also another lecture on Wednesdays, on all kinds of subjects, but generally of a political or satirical nature. Henley was a man of some abilities, and published a translation of Pliny's Epistles, and some other works. He died in 1766.

This extraordinary persos struck medals,

HEN

which he dispersed as tickets to his subscribers: a star rising to the weridian, with this motto, Ad summa; and below, Inveniam viam, aut faciam. He was author of a weekly paper called the Hyp Dictor, for which he had 100)l. a year given him. Henley used every Saturday to print an advertisement in the Daily Advertiser, containing an account of the subjects he intended to discourse on the ensuing evening at his Oratory, with a sort of motto before it, which was generaliy a sneer at some public transaction of the preceding week. Dr. Cobden, one of Geo. II.'s chaplains, having, in 1748, preached a sermon at St. James's from these words, "Talie away the wicked from before the king, and his throne shall be established in righteousuess;" it gave so much displeasure that the doctor was struci out of the list of chaplains; and the next Saturday the following parody of his text appeared as a motto to Henley's advertisement :
"A way with the wicked before the king,
And away with the wicked behind him;
His throne it will bless

With righteousncis,

And we shall know where to find him."
HENNEBERG, a county of Germany, in the circle of Franconia. Maiuungen is the capital.

Henneberg, a town of Germany, in the county of the same name. Lat. 50.40 N . Lon. 10.38 E .

HENOTICUM, 'Hrorixor, q. d. reconciliative; of irow, I unite, in church history, a famous edict of the emperor Zeno, published A. D. 482, and intended to reconcile and re-unite the Eutychians with the Catholics.

It was procured of the emperor by means of Acacius, patriarch of Constantinople, with the assistance of the friends of Peter Mongus and Peter Trullo.

The sting of this edict lies here; that it repeats and confirms all that had been enacted in the councils of Nice, Constantirople, Ephesus, and Chalcedon, against the Arians, Nestorians, and Eutychians, without making any particular mention of the council of Chalcedon. It is in form of a letter, addressed by Zeno to the bishops, priests, monks, and people of Eigypt and I.ibya. It was opposed by the Catholics, and condemned in form by pope Yelix 11.

HENRICHEMONT, a town of France, in the department of Cher. It was the capital of a district which Henry IV. gave to his minister the duke of Sully. Its original name was Bois Belle; but Sully gave it its present name, in gratitude for the privileges which the king had anneved to it. It is seated on the Saudre, 15 miles NNE from Bourges.

HENRY 1. king of England, and duke of Normandy, surnamed Beauclere, on acconnt of his great learning, was the son of William the Conqueror, and the youngest brother of William Rufus and Robert. His engaging person and address, his courage, learning, and eloquence, have beca highly celebrated. Ro-

YOL. V.
bert being in Palestine when William Rufus was killed, in 1100, Henry took advantage of his absence, and caused himself to be crowned king of England, on August 5, 1100; but Robert, at his return, was acknowledred duke of Normandy, and landed at Purtsmouth to make good his right to the crown of England. However, Henry came to an agreement with him, by consenting to pay him an annual tribute of three thousand marks. This tribute however being but ill paid, they rekindled the war a short time after; when Henry landing in Normandy, rendered himself master of that duchy, after the battle of Tinchebray, fought on the 27th of September, 1106, in which Robert was defeated and taken prisoner. After which Henry had the cruelty to cause his eyes to be put out, and confined him twenty years in Cardiff castle, in Glamorganshire. He died the 1st of December, 11:35, aged sixiy-eight, leaving his crown to Mand, or Matilda, his daughter, but was succeeded by Stephen his nephew.

Henry II. king of England, son of Geoffrey Plantagenet, and the empress Maud, or Matilda, the daughter of Henry I. succeeded Stephen the 20th of December, 1154, in the twenty-third year of his age. As the son of Geoffrey Plantagenet, he inherited the French provinces of Anjou, 'Tourain, and Maine, and afterwards by his narriage with Eleanor,obtained Poictou,Saintogne, Guienne, and Gascony. In his person the Norman and Saxon blood were united, and in him began the race of the Plantagenets, which ended with Richard III.

In 1:72 Henry sailed with a numerous flect to Ireland, and landing at Waterford, all the Irish princes voluntarily swore allegiance to him, so that he became master of that kingdom without bloodshed, and divided grat part of the country among the English nobles, \&ic. who attended him in this expedition, and from them sprung some of the principal families now in Ireland. The king had for sume years before met with continual disturbance from the arrogance of Thomss Becket, whom he had raised from a mean station to the see of Canterbury ; but at last four knights, thinking to please his maiesty, murdered that insolent prelate. But what is more extraordinary, the pope's legate prevailed on the king to do penance, by going bare-foot three miles to Becket's shrine: and to be scourged there by the Augustine mouks, who gave him fourscore lashes on his naked back.

Henry was brave, learsed, polite, generons, and of a mild disposition; but thece rirtues could not secure him from suffering tise greatest rexations, even in his own family. Lust was his prerlominant passinn; and Eleanop his queen being jealous of Rosamond, tise lord Ciifford's daughter, who wos his mistreas, and whom he kept at Woodstock, in a laberinth, built to secure her from the queeri's rage, is said to have found means to de-patch her by poison; and the young princes, his sons, being joined by several of the nobility,大 N
and assisted by the kina, of France and Scolland, raised a great rebellion. Kius Henry however took the king of Scolland pisoner, and afterwards not ouly restored the young princes to favour, but pardoned all the revolter; ; however, he obliged the king of Scotland to pay hin homage for his kingtom. Henry was so mortinied at the disulteclience of his sons, that through grief he fell sick at Chinon, in Touraine, and perceiving his end draw near, gave orders for his tringz carried into the church, where he expired before the altar, on the Gith of July, 118 , , in the fiftyseventh year of his aze, and the thiry-fifith of his reign. After which he was stripped by his ungrateful attendants, and left naked in the church; but was aficrwards inlerred at Fontevrand, in Anjou. He was succeeded by tiis son Rickard I.
Henry 1II. king of England, commonly Henry of Winchester, from his being burn in that citr, was born October 1, 12107, aud succeeded his father king John, the 28ith of October, 1216, when not ten ycars of age. Lewis, the dauphin of France, afterwarts king Lewis VIII, who was called in by the barons against king Jolin, was then in Eing. land; but having reccived a larpe sum of money, returned into Prance. When Henry was of age, he began with exacting large sums of money, and annulling the two sacred charters granted by his father. He landed in Brittany with a numerous arny, in order to recover the British dominions in France ; but spending his time in diversions, slamefully returned, after having spent all his treasure: afterwards renewing the war, he lost all Poictou, and then concluded a peace with Lewis for five years, to purchase which Henry agreed to pay him five thousand pounds annually.
The king, who paid no regard to the constitution of Eugland, met with many mortifications from his pariliament and peoplle, who at length obliged him to renew the two charters ; which was done in Westminster-hall, in the following manner, viz. the pcers being assembled in the presence of the kiug, each holding a lixhted taper, the archbishop of Canterbury denounced a terrible curse against those who should violate the lavs, or alter the constitutions of the kingdom; ;hen the charters were read aloud, and confirmed by the king, who all this tine kept his hand upon his breast; afier which every one threw his taper on the ground to raise a great smoke, and wished that those who violated the charters might smoke in hell. After which, the parlianent granted him a subsidy for suppressing an insurrection in Guienne. He soon reluced that province, and returned to England, where he renewed bis exactions. In short, the people being still oppressed, and the barons finding that Heury could not be bound by the most solemn oaths, undertook to reform the government; accordingly commissioners were chosen by the king and the barons, and articles agreed on; which the king again broke. At
last they came to an open war, when a decisive battle was lought noar I.cwes, in Sussex, in which the king's army was defeated, and himself, prince Edward, and the king of the Romans, taken prisoncrs; but afterwards the earls of Leicester and Gloucester quarrelling, the latter joined prince Elward, who had escaped from his hecpers, and uniting their forces, marched against the earl of Leicester, whom they defeated and slew : the king was then set at liberty; but peace was not restored till some time after; when prince Edward engaged in a crusade, and went to the Holy La:d. Henry died at London, on the eoth of November, 127:, aged sixty-five, in the fifiy-sixth of his reign, and was buried in Westhinster-abbey. He was succeeded by his son Eidward Longshanks.
Hemry IV. king of England, was born in 1367 , and proclained hivg after the deposition of Richard II. on the 30th of Deecaber, 1399. He was the son of John of Gunnt, duke of Lancaster, third son of Edward III. He had not a just claim to the crown, which of right belonged to Elmund of Mortimer, earl of March, theu duke of York, the descendant of Lionel, duke of Clarence, the second son of Edward III. which oceasioned the wars between the houses of York and Lancaster, under the device of the white rose and red. The next year, the dukes of Exeter, Surry, and Albemarte, the earls of Salisbury anul Gloucester, the bishop of Carlisle, and sir Thomas Blount, the friends of Richard, formed a conspiracy, in order to assassiuate Henry, and restore lichard to the throne: but being discovered, and their whole scheme frustrated, they assembled an army of forty thousand men, and set up Maudhin, a priest, whose person resembled Richard, to pretend that he was Richard himself; but in this they also failed: most of the leaders were taken and beheaded ; Maudlin was hanged at Loudon, and this conspiracy hastened the death of the unhappy king Richard, who was soon after basely nuurdered at Pontefract. In 1409, Heury caused Roger Clarendon, the natural son of Edward the Black Prince, and seereal others, to be put to death, for maintaining that Richard was alive. The sanie year he married Joanna of Navarre, widow of the duke of Brittany.
About this time the Scots invaded Enyland, under the carl of Douglas, but were defeated at Halidown-hill, by the carl of Northumberland, and his son Henry Hotspur, with the loss of above ten thousand men ; and in this victory several earls, and many other persons of consequence, were made prisoners; but the king ordering Northumberland to deliver up the prisoners into his hands, the earl was so exasperated, that he, with Henry Piercy, surnamed Hotspur, his son, and other lords, agreed to crown Edmund Mortimer, earl of March, whom Glendower kept prisoner in Wales. The rebel army were encamped near Shrewsbury, headed by Henry Hotspur, the earl of Worcester, and the Scotch carl of

f E N R Y:

Donglas; and the king marched directly thither, with fourteen thousand choice troops, headed by himself, the prince of Wales, and the earl of March; and on the 22d of July, at a place afterwards called Battle-field, the king obtained so complete a victory, that about ten thonsand of the rebels were killed, among whom was the brave Hotspur, who fell by the hands of the prince of Wales. In 1+05, another conspiracy was raised, at the head of which was the archbistop of York, the carl of Northumberland, Thomas Mowbray earl marshal, and other noblemen, who assembled a large body of troops at York, and published a manifesto, declaring the king a traitor, and that they were resolved to place Mortimer, the lawful heir, on the throne. But this rebellion was soon suppressed by the policy of Ralph Nevill, carl of Westmoreland.

Henry died in the Jerusalem-chamber at Westminster, on the 20ih of March, 1413, in the forty-sixth year of his age, and the fourteenth of his reign, and was interred in the cathedral at Canterbury. He was succeeded on the throne by his son Henry V.

Henry V. the eldest son of king Henry IV. was born at Monmouth, in 1388, and succeeded his father in 1413. Though wild and unruly in his youth, he no sooner obtained the crown, than lie proved himself a wise and a warlike prince. He chose a council of state composed of men of distinguished wisdom, and commanded those who had been the companions of his irregularities, either to change their manners, or never to approach his person. He revived the English title to the crown of France, and in 1415 embarked his army, amounting to fitteen thousand men, and having landed at Havre de Grace, laid siege to Harfleur, which surrendered in five weeks. Soon after, the French ting having assembled an army six times as numerous as that of Henry's, challenged him to fight, and Henry consented, though the French army consisted of one hundred and fifty thousand men, and the English were reduced by sickness to nine thousand. The French therefore made rejoicings in their camp as if the Eaglish were already defeated, and even sent to Henry to know what he would give f.r his ransom; to which he replied, "a fow hours would shew whose care it would be to make that provision." The English, thongh fatigued with their march, sich of a flus, and almost staried for want of food, were inspired by the example of their brave king, and resolved to conquer or die. On the gjth of October, 1415, the king being encamped near Agincourt, drew up his small army into tivo lines, the first commanded by the duke of York, and the second by himself; he disposed his few men to such advantage, and bchaved with such extraordinary conduct and courage, that he gained a complete victory, after having been several times knocked down, and in the most imminent danger of losing his life. The English killed upwards of ten thousand men, and took more prisoners than they had men in the
army. The loss of the English was only frou ${ }^{\text {t }}$ hundred men. In 1417 the king, to enable himself to carry on the war, pledged his crown for one hundred thousand marks, and part of his jewels for ten thousand pounds; then landing at Beville, in Normandy, he reduced Caen, and the next year subducd all Normandy. In May 1420, a ircaty was concluded at Troyes, which was ratifed by the states of France. By this treaty, the danphin was disinherited; and Henry V. married Catharine of France; and was declared regent of that kingdom till the death of Charles V1. when he was to take possession of that crown. But notwithstanding this treaty, the war was continued by the datphin, and the next year Henry advanced into Fiance with thirty thousand men; but while he was marching towards the river Loire, he was seized with a pleuretic fever, and was carried to Vinceunes, where he expired the 31st of August, 1422, in the thirty-fourth vear of his age, and the tenth of his reign. His body was conveyed to England, and interred in Wiestminster abley.
The quicen dowager some time after married Owen Tudor, a Welsh gentleman, by whou she had Edmund, the father of Henry, earl of Richmond, who became king of England under the name of Henry VII.
Henry VI. was born at Windsor, December 6, 1421, and succeerled his father Henry V. in 1429, when but fourteen months old, and reigned in Eugland under the tutelage of his uncie Humphrey, duke of Gloucester, and in France under that of his uncle the duke of Bedford. This unhappy prince was unsuecessful both at home and abroad. His misfortunes began in France hy the death of his grandfather Charles VI. not quite two months after the death of his father king Henry, which gave great adrantage to the dauphin, who was called Charles VII. and being crowned at Pcictiers, disputed with Henry the crown of France, yet for some time the English contimued to have great success in that kingdom, and gained the famons battles of Crevant, Verneuil, and Rour roi; and every thing seemed to promise the entire poisession of Fiance, when it was prevented by an mifurescen blow. A girl, known by the name of Joan of Arc, or the Maid of Orleans, suddenly appeared at the head of the French army, and, in 14:9, made the English raise the seige of Orleans. Froms that moment Henry's interest in France declined. However, he was carricd to Paris, and crowned there with a double crown in the cathedral church, on the 27 th of November, 1431. In 1444 a truce of cighteen months was enncluded between the two crowns; after whici king Henry married Margaret of Anjou, the daughter of Renatus, king of Naples; this was the source of many of his misfortunes; for the king being of a mild and easy te:; per, and the queen a high spirited woman, she undertook with her favourites to govern the kingdom. The English were now every where defeated, and in 1541 we had no places left in France but Calais, and the earldom of

HENRY.

Guines. These losess were principally occasioned by the civil wars which broke out in Encland. Richard, duke of York, who descended on the mother's side from Lionel, the second son of ldward III. claimed a better right to the crown than Henry, wlm was deseended from John of Gaunt, duke of Lancaster, the third son of the same Edward. Henry was defeatell and made prisoner at St. Alban's, by Richard Plantagenet, duke of York, on the 31st of May, 1455, and a second time at the batile of Northampton, on the 19:h of July, 14ijo. The parliament then determined that hemry should keep the crown, and be succeeded iny the duke of York; but queen Margaret afticwards raised an army in the north, and gained the battle of Wakefield, in which the duke of Jork wav killed, and her hasband delivered. This turned the scale, and sunk the interest of the house of York. However, Edward, earl of March, the son of Richard, duke of York, revived the quarrel, and gained a bloody battle at Mortimer's Cross, near Ludlow. In short, the earl of March, alier scieral engazements, was proclaimed king by the name of Fidward IV. by means of the eirl of Warwiek, called the setter up and puller down of Kings. Henry was taken in discuise, brouzht in the most ignominious manner to London, e:d confiued in the Tower, where, in 1.171, he was murdered, when fiftytwo years of age.
Henry VII. king of England, son of Edmund, earl of Richnond, anill of Margaret of the house of Lincaster. He took up arms avainst Richard 11I. and gained the battle of losworth, in which Richard was slain, the ged of August, 1.885, and was crowned king of England the 30th of September following. He married Flizaberth, daughter of I.dward IV. by which the claias of the houses of York and Lancaster were united. However, fresh troubles broke out, and the enemies of Ifenry attempted wice to dethrone him, by setting iij) two pretcuders. The first was one Lannbert Simmel, a baker's son, who assumed the titte of carl of Warwick, and pretended to be the son of the duke of Clarence, brother to Edward IV. but being defeated and taken prisoner, was make kiny Henry's urnspit: the other was an adrenturer, nanied Perkin Warbeck, who pretended to be Richard duke of York, Edward the Fifth's brother, who was murciered in the 'lower, and being at length taken prisoner, was hanged at Tyhurn. Henry assisted the cmperor Masimilian against Charies VIII. of France ; he made a war on the Scots; instituted the band of geveleman pensioners; built the noble chapel adtioning (1) Westminster-able ey, which still bears his nome: and formeded several colleges, by which he obtained the character of a pious prince, and a fiend to learting; thoterl be was remarkable for his aratice, and oppressing the wonte by numbertess exactions. He died at Richmosd patace. which lie had cansed to te crectich, the eed of Aprit, 1500, aged fifictwo, in the twenty-fourth year of his reign, and
was succeeded by his son Henry VIII. He also left two daughters, Margaret, who married Janes IV. king of Scotland, and Mary, who narried the French king, Lewis XII.

Henry VIII. succeeded his father, the preceding monarch, at the age of 18 . The first years of his reign were very popular, owing to his great generosity, but at lengh his conduct grew capricious and arbitrary. The emperor Maximilian and pope Julius II. having made a league against France, persuaded Henry to join them, and he in consequence invaded that kingom, where he made some conquests, and returned to lingland with a great many prisoners. About the same time James IV. kins of Scotland invaded Encland, but was defeated and slain by Henry at Flodden-field. Henry's minister, Wolsey, succeeded in bringing him over from the Imperial interest to that of the French king. When Luther commenced the reformation in Germany, Henry's zeal was stirred up to defend the tenets of the Romish church, and he accordingly published a book against the reformer, for which he was complimented by the pope with the title of Defender of the faith, a title which has been adopted by the kings of England ever since. The work was printed, and intitled Assertio septem Sacramentorum adversus Martyn Luther, edita ab invictissimo Anglix et Francix Rege et de Hybernia ejus nominis Octavo. Henry's attachment, however, to the papal see did not last long; for having conceived an affection for Anne Boleyn, he determined to divorce his wife Catharine of Arragon, to whom he had been married 18 years. His plea for the divorce was that Catharine was his brother Arthur's widow. This, however, was not admitted by the pope, and Henry not being in a humour to suppress his desires, renounced the papal anthority, assumed the title of supreme head of the English church, put down the monasteries, and alienated their possessions to secular purposes. He soon after married Anne Boleyn; but at the end of no long period he brought her to the scaffild, and married lady Jane Seymour, who died in child-bed. He then married Ann of Cleves ; but she not pmoring ayreeably to his expectations he put her away, and caused Cromwell, earl of Esex, who had projected the match, to be behialded: after this he espoused Catharine Parr, who had the gond fortune to survive him. Henry died in 1547. and was succeeded by his son Elward VI. He was a man of strong passions, and considerable learning; but his character has been well appreciated in this declaration, " that he never spared man in his anger, nor woman in his last." (Wathins).

Henry (Philip), a pious English divine, was born at London in 1631, and educated at Westininster-school under the celebrated Dr. Busby ; from this seminary he was removed on (lariv-church, Oxford, after whieh he received prethyterian ordiuation, and settled as a minister at Worthenbury, in Flintshire ; but at the Restoration he was silenced for nonemnformity. Aficr a most exemplary and useful

Iife, he died at Broad-oak, in Shropshire, June 24, 1696 . Au account of the life and death of this excellent man, with a dedication by Dr. Bates, has gone through many editions; and is very interesting not only on account of the many pious and sententious reflections which it contains, but because it in many respects elucidates the history of a very eventful period.

Henry (Matthew), a celebrated nonconformist divine, was the son of the above, and born in 1602 . He received the principal part of his education under his father, and having made a considerable progress in learning, entered at Gray's-inn; but his turn being for divinity, he renounced the study of the law, and became a dissenting minister at Chester, where he resided many years, and then removed to Hackney. He died at Nantwich in 1714, and his remains were interred at Chester in Trinity church. Mr. Henry was an excellent writer, and his books on practical divinity are deservedly held in great estimation by all classes of Christians. His chief work is an Exposition of the Bible, in 5 vols. foloo; which shews him to great advantage as a judicious and pious commentator. (\boldsymbol{W} athins).
Henry of Huntingdon, an English historian, of the 12 th century, was cannu of Lincoln, and afterwards archdeacon of Huntingdon. He wrote, 1. A History of England, which ends with the year 1154. 9. A continuation of that of Bede. 3. Chronological sables of the kings of Engiand. 4. A sinall treatise on the contempt oi the world. 5. Several books of epigranis and love-verses. 6. A poem on herbs; a! whish are writen in Latin. His invocation of Apollo and the groddesses of Tempe, in the exordium of his peem on herbs, may not be unueceptable as a specimen of his poetry :

Vatum magne parens, herbarum Phobe repertor.
Vosque, quibus resonant Tempe jocosa Dex!
Si mihi serta prius hedera forente parastis,
Ecce meos flores, serta parate fero.
HEP.TREE, in botany. See Rosa.
HEPAR. (hepar, na $a_{\text {; }}$, the liver.) See Liver.

Hepar antimonif. See Oxydumsti-

 bifselpheratum.Hepar sulphuris. Liver of sulphur. This is a sulphuret made either with potash or soda. It has a diagreeable feid smell, but is in high esteem as a medicine to decompose corrosive sublimate when taken into the stomach.

HEPATALGIA. (hipatalsia, , maza from raf, the liver, and ario, pain.) Pain in the liver.

HEPATIC. Any thiug belonging to the liver.

Hepatic air. Hepatic airs monsist of hydrogen combined with alphamr. which exists in very different proportion. Whare each ingredient is combiued merely to saturaio: 1 , it is

HEP
called simply sulphurated hydrogen; hut where the sulphur is in excess, it is termed super-sulphurated hydrogen. Sulphurated hydrogen combined with any base forms a hydro-sulphuret, and may be also called an hepatule, to distinguish it from an hepar, which is the union of sulphur singly with a basis.
Hepatic artery. Arteria hepatica. The artery which nourishes the substance of the liver. It arises from the cerliac, where it almost touches the point of the lobulus Spigelii. Its root is covered by the pancreas; it then turns a little forwards, and passes under the pylorus to the porta of the liver, and runs betwist the biliary ducts and the vena porta, where it divides into two large branches, one of which enters the right, and the other the left lobe of the liver. In this place it is iuclosed along with all the other vessels in the capsu!? of Glisson.
Hepatic duct. Ductus hepaticus. The trink of the biliary pores. It runs from the sinus of the liver towards the duodenum, and is joined by the custic duct, to form the ductus communis choledochus. See Biliary ducts.
Hepatic veins. Sce Caverepatice, and Vena porte.
HEPATICA. (hepatica, from rmaf, the liver, so called because it was thought to be useful in diseases of the liver.) The heri liverwort. See Anemone.
Hepatica nobilis. Herba trinitatis. Hepatica or herb trinity. This plant, anemone hepatica of Limiéus, possesses mildly adstringent and corroborant virtues, with which intentions infusions of it have been drunk as tea, or the powder of the dry leaves given, to tise quantity of half a spoonful at a time. Ser Anemone.
Hepatica terrestris. Jecoraia. Li-ver-wort. This is a species of marchantia polvmorpha, a very common moss. It has a fenctating though mild pungency, and binter taste, sinking, as it were, into the tongue. It is recommended as an apericnt, resolvent, and antiscorbutic, and, thenegh seldon wed in this country, appe rs in !e a piant of no inconsiderable virtue. See Marchan-tiA-
H1EPATICE, in botany, an order of the class cryptogamia, including those genera characteris:d by being frondose herbs with capsules without lid or veil. Sce lotany.

HE:PATICLS. In miseralogy, a gemis of the class earths, order calcareois: consisting of carbonat of lime, barst, sulphuric acid, and infiammable matter; soft lamellar, of a common form; either spontanemsly or when rubbed giving ont an odour like liver of smphur: not effervescing with acids; crumbling ow powder in a small degree of bat, which forms a paste with water, and hardons in the ais. 'liaree species; not very essentially difteritz: one compact, and receivirg a polisth: one opaque, bat shining internally; one shaning exieriaily, diaphnoous, and of smine colour. All frumil in Nurway and Bohemia.
HEPATITLS. (hippatiis, : :minit;, from naw;
the liver.) Inflanmation of the liver. \mathbf{A} genus of diseases in the class pyrexix, and order phlegmasia, of Cullen. It is characterized by pyrexia, tension, and more or less of acute pain in the right hypochondrium, which is frequently referred to the top of the right shoulder, and increased by lying on the left side ; the urine is high coloured.
HEPATIRRHCEA. (hepatirrhara, mant;foos, from $n \pi a_{p}$, the liver, and ${ }_{\text {giw }}$, to How.) A species of diarrhea. Sec Diarrhega.
HEPATOCELE. (hapatocele, naroxnnn, from noap, the liver, and $=$ minn, a tumour.) An hernia, in which a portion of the liver protrudes through the ablominal parictes.
HEPATORIUM. The same as eupatorium.
HEPATOSCOPIA, in antiquity, a general pame for divination by entrails.
hepatule. Sce Hepatic air.
HEPHESTIA, an Athenian festival in honour of Vulcan.
HEPHTHEMIMERIS. (composed of $s \pi=\pi$,
 Greek and latin poetry, a sort of verse consisting of three feet and a syllable; that is, of seven half feet.
Such are most of the verses in Anacreon.

And that of Aristophanes, in his Plutus:

They are also called trimetri catalectici.
Hephthemimeris, or Hephthemimeres, is also a cesura after the third foot; that is, on the seventh half-foot.

HEPIOLUS. In entomology, a tribe of the genus phalæna, as arranged by Fabricius. See Phalena.

HEPPENHFIM, a town of Germany, in the electorate of Mentz, with a castle and an abley. Lat. 49. 29 N. Lon. 8. 41 E.

HEYTACA'PSULAR. a. (\quad mia and capsulo, Latin.) Having seven cavities or celle.
HEPTACHORD, of trla, seven, and xopla, in the ancient pootry. Heptachord verses were those suing, or played, on seven chords; that is, in seven different notes or tones; and, probably, on an instrument with seven strings.
HEPYAGON, in geometry, a figure of seven sides and seven angles. When those sides and angles are all equal, the heptagon is said to be regular, otherwise it is irregular.

In a regular heptagon, the augle at the centre is $=51^{\circ}$, the angle of the polygon is $=128^{\circ} \frac{5}{5}$, and its half $64^{\circ} \frac{2}{5}$. Also the area is $=$ the square of the side $\times 3.6339124$ or $=$ $\mathrm{AB}^{2} \times \frac{?}{4} t$, where t is the tangent of the angle CAB of $64^{\circ}{ }^{2}$ to the radius 1 .

HEPTA CONAL NUMBERS, are a kind of polygoual numbers in which the difference of the terms of the corresponding arithmetical progression is 5. Thus, Arithmeticals, 1, 6, 11, 16, 21, 26, \&c. Heptagonals, 1, 7, 18, 34, 55, 81, 8ic. where the heptagonals are formed by adding continually the terms of the arithmeticals, above them, whose common difference is 5 .

HEP

One property, among many others, of thew heptagonal numbers is, that if any one of them be multiplied by 40 , and to the product add 9 , the sum will be a square number.

$$
\begin{aligned}
& \text { Thus } 1 \times 40+9=49=7^{2} ; \\
& \text { and } 7 \times 40+9=289=17^{2} ; \\
& \text { and } 18 \times 40+9=729=27^{2} ; \\
& \text { and } 34 \times 40+9=1369=37^{2} ; 8 \mathrm{cc} .
\end{aligned}
$$

Where it is remarkable that the series of squares so formed is $7^{2}, 17^{2}, 97^{2}, 37^{2}, \& c$, the common difference of whose routs is 10 , the double of the common difference of the arithmetical series from which the heptagonals are formed.
HFPTAMFRIS, in the aticient music, the seventh part of a meris.
HLPPINDRIA, in botany, (eria, seren, and ares, a husband.) The seventil class in the system of Liunéus, comprehending those plants which have seven stamens to the tiowers. See Botany.
HEPTANGULAR, in gonmetry, an appellation given to fizures which have seven angles.
HEPTAPHONOS, the name given to one of the ten nausical notes used in the middie ages.
HEPTAPIHYLLUM. (heptaphyllum, from sxia, seven, and puגdor, a leaf.) Sce Tosmentilea.
HEPTARCHY, compounded of the Greck "sтa, seven ; and $a_{i} \chi$ v, imperium, government: a government composed of seven persons, or a country governed hy seven persons, or divided into seven kingdoms. The Saxon hepurchy included all England, which was cantoned out into seven petty independent kingdoms, peopled and governed by diffierent clans and colonies ; viz. those of Kent, the South Saxons, West Saxons, East Saxons, Northumberland, the East Angles, and Mercia. The heptarchy was formed by degrees from the year 435, when first the kinglom of Kent was erected, and Hengist assumed the title of king of Keat immediately afier the batule of Eglesford; and it terminated in 827 or 828, when king Egbert reunited them iuto one, made the heptarchy into a monarchy, and assumed the title of king of England. It must be obscrved, however, that though Egbert became monarch of England, he was not pericictly absolute. The kinglom which he actually possessed consisted of the ancient kingtoms of Wessex, Sussex, Kent, and Essex, that had been peopled by Saxons and Jutes. As for the other three kingdoms, whose inhabitants were Angles, he contented himself with preserving the sovereignty over them, permitting them to be governed by kings, who were his vassals and tributaries. The government of the heptarchy, reckoning from the founding of the kingdom of Mercia, the last of the seven Anglo-Saxon kingdoms, lasted 243 years; but if the time spent by the Saxons in their conquests from the arrival of Hengist in 449 be added, the heptarchy will be found to have lasted 378 years from its commencement to its dissolution. The causes of the dissolution of the heptarchy were, the great inequality among the seven kingdoms ${ }_{4}$

HER

three of which greatly surpassed the others in extent and power; the default of male heirs in the royal families of all the kingdoms, that of Weosex excepted; and the concurrence of various circumstances which combined in the time of Fibert.

HER. pronoun. 1. Belonging to a female; of a she; of a woman (Ciowley). 2. The obLique case of she.

Hers. pron. This is used when it refers to a suibsuntive going before: as, such are her charms, suc! charms as hers (Cowley).

HERACLEA, an ancient scaport of Romania, with a Greek archbishep's see. It was furmeriy very famons, and known by the name Peri thius; there are still considerable remains of 14 thmer grandeur. Latt. $40.5 y \mathrm{~N}$. Lon. 27.

IfibiacleEMM. Cow-parsnep. In botuly, a - 1 , of the class pentandra, order digevid. liant eiliptic, notched, compressed, stiate, dihated in the margin; fowers radiant; petah, notche!, with an inflected point; general inolucre decidnous. Ten species: ail natises of Europe except H. heberositm, which is a plant of chili. One is common to our own country and found wild in our thickets, II. spendilium, with pinnate leaves; leatlets in five oblong, pinnatiid, acute, toothed segments. There is a variety with long narrow leaflets; and both were often called anong medical writers of former times brania ursina, or brank ursine.

HFRACLIA, an Athenian festival celcbrated every fifth year in honour of Hercules.

HEKACLIDE, in antiquity, the descendants of Hercules, whom the Grecks called
 glory ; on account of the glory he acquired by exccuting what Juno induced him to undertake.
The Heraclide were expelled from Pelnponnesus by Enristheus, king of Mycenx, after the death of Hercules.
Heraclide (Reiurn of the) into Peloponnesus, is a celebrated epocha in the ancient chronology. This return is generally believed to have happened 80 years after the Trojan war, or 1190 years before the Christian ara. Calistes, Cumanus, Ephorus, and Theopompus, begin their histories at this period; and we have no accurate profane histories of preceding times.

HERACLITLS, a celebrated Greek philosupher of Ephesus, who flourished ahout 500 years before the Christian ara. Naturally of a melancholy disposition, he passed his time in a solitary and unsocial manner, and reccived the appellation of the mourner, from his weeping at the follies of mankind. He supposed that there was a fatal necessity, and that the world was created from fire. His opinions about the origin of things were adopted by the Stoics. To remove himself totally from the society of mankind he retired to the mountains, where, for some time, he fed on grass. Such a diet waps soon productive of a dropsical complaint, and the philosopher revisited the town. The

HER

enigmatical manner in which he consulted the phssicians made his applications uninteligitibe, and he was left :o driened for cure only upon himself. He fixed his residence on a dunghill, in hopes that the continual waruth which proceeded from it might diss:pate the watery accunulation, and re:tore him to the enjoyment of his former heaith. Such a remedy proved ineffectual, and the philosopher died in tho 60th of his age.

HERTA, an ancient festival celebrated at Arens, in honour of Juno.
HERALD, according to Verstegan, is derived from the Saxnn word herchault, and by abbreviation heralt, which in that language significs the champion of an army ; and, growind to be a name of office, it was given to him who, in the aruy, had the sjecial charge to denounce war, to challenge to battle and combat, to prochaim peace, and to execute martial messages. But the business of heralds with us is as follows: viz. 'To marshal, order, and conduct all royal cavalcades, ceremonies at coronations, royal marriages, installations, creations of dukes, marquisses, earls, viscounts, barons, baronets, and dubbing of knights; embassics, funcral processions, declarations of war, proclamations of peace, $\& \mathrm{c}$. : to record and blazon the arms of the nobility and gentry; and to regulate any abuses therein through the English dominions, under the authority of the earl marshal, to whom they are subservient. The office of Wimdsor, Chester, Richmond, Somerset, York, and Lancaster heralds, is to be assistants to the kings at arms, in the different branches of their otfice; and they are superior to each other, according to creation, in the above order.
Heralds were formerly held in much greater estecm than at present, and were created and christened by the king, who pouring a gold cup of wine on their head, gave them the he-rald-name; but this is now done by the carlmarshal. They could not arrive at the dignity of herald without having been seven years poursuivant; nor could they quit the office of herald, but to be made king at arms.
The three chief heralds are called Kings at Arms, the principal of which is Garter, the next is called Clarencicux, and the third Norroy; these two last are called provincial heralds.

Herald significs also, 1. A precursor; a forerunner; a harbinger (Shakispeare). 2. A proclaimer; a publisher (Shahspeare).
To He'rald. v.a. (from the noun.) To introduce as by a herald: not used (Shakspeare). HE'RALDRY. s. (heraulderie, French.) I. The art or office of a herald (Peacham). 2. Registry of genealogies (Denham). 3. Blazonry (Cleaveland).
Heraldry, the science which teaches how to blazon, or explain in proper terms, all that belongs to coats of arms; and how to marshal, or dispose regularly, divers arms on a field.

Arms, or coats of arms, are hereditary marks of honour, made up of fixal and determiued colcur and figures, granted by sovereign princes an

HERALDRY.

reward for military valour, or some signal public service performed. These are intended to denote tie descent and alliance of the bearer, or to distinguish states, cities, societics, \&c. civil, ecclesiastical, and military.

Men in all ages bave made use of figures of livinz creatures, or symbulical signs, to denote the bravery and courage either of their chicfor nation, to render themselves the more terrible to their enemies, and even to distinguish themselves or families, as names do individuals. Thus the Fgyptians bore an ox, the Athenians an owl, the Goths a bear, the Romans an eagle, the Franks a lion, and the Saxons a horse : the last is still burne in the arms of his present Britannic majesty As to bereditary arms of families, William Camden, sir Henry Spelman, and other judicious helalds, agree, that they began no sooner than towards the latter end of the 11th century.

With tournaments first came up coats of arms; which were a sort of livery, made up of several lists, fillets, or narrow pieces of stuff of many colours, from whence came the fess, the bend, the pale, \&c. which were the original charges of fa-mily-arms: for they who never had beenat tournaments had not such marks of distinction. They who enlisted themselves in the croisades took up also sevcral new fisures hitherto unknown in arn:orial cusigns; such as alerions, bezants, esca-lup-sinells, martlets, \&c. but more particularly ciosses of dibienent colours for distinction's sake. From this it may be concluded, that heraldry, like most human inventions, was iusensibly introduced and established; and that, after having been rude and unsettled for many azes, it was at last methorlized, perficted, and fixed, by the croisades a ad tommanents.

These marks of honour are called arms, from their beine priacipally and first worn by military nien at war and tournaments, who had the in englaved, embossed, or depicted on shields, targets, banners, or other martial instruments. They are a!co called coat of arms, from the custom of the ancients embroidering them on the coats they wore over their arms, as heralds do to this day.

Arms are distinguished by different names, to denote the causes of their bearing; such as arms of dominion; of pretension ; of concession; of community ; of patronage ; of family ; of alJiance; of succession.

Alms of duminion, or sovereignty, are those which emperors, kings, and sovertign states do constantly bear; being annexed to the territories, kingtoms, and provinces, they possess. Thus the three lions are the arms of England, the Larp those of Ircland, \&e.

Arms of pretension are those of such hingdons, provinces, or tearitories, to which a prince or lord has some claim, and which he adds to his own, although the said kingeloms or territories may be possussed by a foreign prince or lord. Thus the kings of England have quartered the arms of France with their own ever since Edward IIf. laid claim to the hingdom of France, which happened in the year 1530, on account of his being son to Isabella, sister to Chaules the Handsome, who died without issue.

Arms of concession, or angmentation of honour, are cither cutire anns, or else one or more figures, fiven by pininces as a reward for some extranrdinary service. We read in history that Robert Bruce, king of Scotland, allowed the earl of Wintouns ancestor to bear, in his evat-armour, a
crown supported by a sword, to shew that he, and the clan Scaton, of which be was the head, supported his tottering crown.

Arms of community are those of bishoprics, cities, universities, academies, societies, companies, and other bodies corporate.

Arms of patronage are such as governors of provinces, lords of manors, patrons of benefices, \&cc. add to their family-arms, as a token of their supe. riority, rights, and jurisdiction. These arms have introduced into heraldry castles, gates, wheels, ploughs, rakes, harrows, \&cc.

Arins of family, or paternal arms, are those that belong to une particular family, that distinguish it from others, and which no person is suffered to assume without committing a crime, which sovereigns hare a right to restrain and punish.

Arms of alliance are those which families or private persons take up and join to their own, to denote the alliances they have contracted by marriage. This sort of arms is either impaled, or bome in an escutcheon of pretence, by those who have married heiresses.

Arms of surcession are such as are taken upby them who inherit certain estates, manors, \&c. either by will, eutail, or donation, and which they either impale or quarter with their own anns; which multiplies the titles of some families out of necessity, and nut through ostentation, as many imasine.

These are the eight classes under which the different sorts of arins are generally ranged; but there is a sort which blazoners call assumptive arins, being such as are taken by the caprice or fancy of upstarts, though of ever so inean extrac. tion, who, beinz advanced to a degree of fortupe, assunse them without a legal title.

The essential and integral parts of arms are these: 1. The escutcheon. 2. The tinctures. 3. The charges. 4. The ornaments.

Of the shield or escutcheon.-The shield or scutcheon is the ficld or ground whereon are represented the figures that make up a coat of arms : for these marks of distinction were put on bucklers or shields before they ware placed on banners, standards, flags, and coat-armour ; and wherever they may be fixed, they are still on a plane or superficies whose form resembles a shield.

Shields, in heraldry called escutcheons or scatcheons, from the Latin word scutum, bave been, and still are, of different forms, according to different times and nations. Amongst aocient shields, some were almnst like a horseshoe, such as is represented by a few of the figures of escutcheons: uthers triangular, somewhat flat or rounded at the bottom. The English, French, Germans, and other nations, have their escutcheons formed different w:ny, according to the carver's or painter's fancy: of these various examples are contained in the plates of heialdry. But the shield of maids, widows, and of such as are born ladies, and are married to private gentlemen, is of the form of a lozenge (Sec Plate 84.)

Armorists distinguith several parts or points in escutcheons, in order to determine exactly the position of the bearings they are charged with; they are here denoted by the first sine letters of the alphabet, ranged in the following manner (See,Plate 84:)

The knowledge of these points is of great im: portance, and ought to be well observed, for thify are frequently occupied with several things of different kinds. It is necessary to obserre thaf the

HERALDRY.

Sexter side of the escutcheon is opposite to the left haud, and the sinister side to the right hand of the person that looks on it.

Distinctions of houses.-These distinctions inform us how the bearer of each is descended from the came tamily; they also denote the subordinate degrees in each house from the original ancestors, viz.

First house. For the heir or first son the label; second sun the crescent; third son the mullet; fourth son the martlet; fifth son the annulet; sixth son the deur-de-lis.
second house. The crescent, with the label on it, for the fint son of the second son. The crescent on the cliscent for the second son of the second son ut tie dirst bouse, \&ic. Sce Plate 84.

By ti,c tinctures or colours is meant that variety of hat of arms common both to shields and their charges: the coluurs generally used are red, blue. sable, vert, purpure. Note, yellow and white, termed or and argent, are metals; these colours are represented in engravings by dots and lines, as in Plate 84.

Or is expressed by dots.
Argent is plain.
Gules, by perpendicular lines.
Azure, by botizontal lines.
Sable, by perpendicular and horizontal lines erossing each other.

Vert, by diagonal lines from the dexter chief to the sinister base point.

Purpure, by diagonal lines from the sinister chief to the dexter base point.

Furs.-There are different kinds, and represent the hairy skins of certain animals, prepared for the liuings of robes of state; and anciently shields were covered with furred skins; they are used in coats of arms, viz.
Ermine, is black spots on a white field.
Ermines, is a fieid black with white spots.
Erminois, is a field gold with black spots.
Vair, is white and blue, reprisented by figures of small escutcheons arranged in a line, so that the base argent is opposite to the base azure.

Potent-counter-potent, is a field covered with figures like crutch heads. See Plate 84.

Charges, are whatsoerer bearings or figures are borne in the field of a coat of arms.

Rampant, signifies the lion standing erect on one of the hind leass.

Rampant-gardant, is a lion standing on his hind leg , looking full-faced.
Ranpant-regardant, standing upon his hinder leg, looking back towards his tail.
Passant: this term is to express the lion in a walking position.

Sejaut, for the lion sitting, as the example.
Saliant, is when the lion is leaping or springing forward, as the example.

Couchant, is a lion lying at rest, with the head erect.
Passant-gardant, for a beast, when walking, with its head looking full-faced.

Couped, cut off smooth and even, as the example.

Erased, signifying torn or plucked off, as the example.

Demy, is the half of any charge, as the example, a deny lion.

Linmant, for sleeping with its bead resting on its fore paws.

Partition lines, by which is understood a shield
divided or cut through by a line or lines, rither horizontal, perpendicular, diagonal, or transverses the eugraved examples are the crooked lines of partition, viz. engrailed, invecked, wavy, nebule imbattled, raguly, indented, dancette, dore-tail. See Plate 34.

Roundels are round figures, much used in arms: the English heralds vary their names according to their colour, thus :
$\left.\begin{array}{l}\text { Or, } \\ \text { Argent, } \\ \text { Gules, } \\ \text { Azure, } \\ \text { Sable, } \\ \text { Vert, } \\ \text { Purpure, }\end{array}\right\}$ is termed a $\left\{\begin{array}{l}\text { Bezant. } \\ \text { Plate. } \\ \text { Torteaux. } \\ \text { Hurt. } \\ \text { Pellet. } \\ \text { Pouney. } \\ \text { Golpe. }\end{array}\right.$

Crescent, or half-moon, having its horns turned upwards.
Increscent, differs from the crescent, by having its horns turned to the dexter side.
Decrescent, is the reverse of the inerescent, having its horns turned to the sinister side.

Rose, is represented, in beraldry, fall blown, with fine green barbs, and seeded in the middle. Annulet, or ring, and by some authors supposed
to be rings of mail.
Chess-rook. This piece is used in the game of chess.

Star, in heraldry, is termed an estoile, having six waved poiuts.
Trefoil, or three-leaved grass.
Quatrefoil, or fuur-leaved grass.
Cinquefoil, or five-leaved grass.
Mascle, is in shape like the lozenge, but is ab-
ways perforated as the example.
Fountain, an heraldric term for a roundle barry
wavy of six argents and azure.
Billet, a small parallelogram, supposed to be let-
ters made up in the form of the example.
Rustre, is a lozenge pierced round in the middle.
Gutte, in heraldry, signifies drops of any thing
liquid, and, according to their coluur, are termed as follow : if

Or,	Gutte d'or.
Argent,	Gutte d'eau.
Vert,	Gutte de'olive.
Gules,	Gutte de sang.
Azure,	Gutte de larmes,
Sable,	Gutte poix.

Fess, an ordinary composed of two horizontal lines drawn across the centre of the shicld.

Chevron, an ordinary, in form like tworafters of a house, or a pair of compasses extended.

- Bend, an ordinary, drawn diagonally from the dexter chief to the sinister base, and takes up onethird of the field.
Pale, an ordinary, which is placed perpendicular in the centre of the shield.

Chief, an ordinary, which slways occupies the upper part of the shield, and coutains in depth the third of the feld.

Cross, an ordinary, composed of four lines, four perpendicular, and two trallsverse.

Saltire, an ordinary, in furm like the cross of St. Andrew.

Bend-sinister, which is placed diagonally from the sinister chief to the dexter base of the shield

Quarter, an ordinary, formed of two lines, one perpendicular, the other horizontal, taking up onefourth of the fiedd, as the example.

Canton, an ordinary, in forin like the quarter, but the size is ouly the tinid part of the chief.

HERALDRY.

Pile, an ordinary, like the foot of the pile that is driven into the ground to make the foundation of a building in swampy ground.

Elanches, are composed of two circular lines, and are always borne double, as the cxample.

Flory, a cruss, the ends terminating in fleurs-de-lis.

Moline, a rmss, which turns round both ways at the extremities, like a hook.
Pattec, a cross, smail in the centre, and widening to the ends, which are very broad.

Croslet, a cross, crossed ayain at the extremities at a small distance from each of the ends.

Luzense, a four-curberel tigure, like a pane of glass in old casements, sumposecl to be a phesical composition given for colds, and was invented to distinguish emine it physicians.

Mulict, consists of tive puints, andpicreed in the centre, and is supposed to represent a spur mwel.

Mill-rind, a cross, in form litie the mill-ink which carries the millstonc, and is perforated in the centre.

Water-boujet, ancient!y used as a vessel liy soldiers for cariying water in luner marches.
Helmets, were furmerly worn as a defrasive weapon to cover the bearer's head : a helmet is now placed over a coat of arms as its chief ornament, atid a mark of genility. The

First is a side-faced helmet of stecl, with the vizor thut, for an esquire.
second is a full faced helmet of steel, with the vizor open, for knights or baroncts.
Third is a side-faced helmet of steel, the bars and onlaments gold, for the dobility.
Fourth is a full faced lielmet, with bars all gold, for the sovereign and princes of the blood royal.

Close, signifies the wings of a bird are duwn, and cluse to the body.
Rising. This term is for a bird when in a posicion as if preparing to fly.

Displayed, signifies the wings of an eagle to be expanded, as the example.
Volant, a term for any bird represented fiying.
Tripping, a term for a stag, antelope, or hind, when walking.

Courant, for a stag, or horse, or greyl:ound, ruaning.

At gaze, is a term for a stag or hind; when looking full-faced, is termed at gaze.

Lodged, signifies the stag to be at rest on the ground.

Inverted, is for two wings conjoincl, and the points of the winge downwards.

Erect, is for two wings conjoined, and the points erect, or upwards.

Hauriant. 'This term is for a fish when erect, paleways, as putting its head above water.

Naiant, for a fish, when borne horizontally across the shield, as swimming.

Cockatrice, a chimerical figure used in heraldry ; its beak, wings, legs,comb, wattles, and spurs, partake of the fowl; and its body and tail of the snake.

Wyvern. This, like the former, is chimerical, and diffiers from the cockatrice in its head having no comb, wattles, or fpurs.

Dragon. This is an heraldic figure, as drawn by heralds. See the example.

Tiger. This, like the former, is of heraldic ereation; being so different from the tiger of nature, it is termed the heraldic tiger.

Checky, is a shield or bearing, covered with amall squares of different colours alternately.

Gyromny, is a shicld divided into six or eight tria:gular parts of diffirent colours, aind the points all mecting in the centre of the shied.

Pa!y, is a shicid divided into four, six, or mure equal parts, by perpendicular lines, consisting of two colours.
liary, is a shield divided into four, six, or more equal parts, by horizontal lines of two culours.
B.ithelor.-The arms of a bachelor, whilst he remains such, he may quarter his paternal cozt with other coats, if they belory to him, but he may not impaile it tili he is married.
Married man.-A married anan is to conjoin the coat armours of $f: m$ melf and wife in one escutcheon paleways; the man's on the devter side of the shicld, and the woman's on the simister side.

An hi:ress. - When an heiress is married, her arms are not be impaled with her busband's, but are to be borne on an escutcheon of pretence, placed in the centre of the shield.-Nute, the escutclicoal of pretence disp ars his pretension to her entate; and if the husbaind has issue by her, the heir of those two inhatitus shall bear the hereditary coats of fath:er and mother gnarterly.

Quarterly,-1s an arms divided into four parts by a perpenofictar and herizontal line coossing each other, ia the centre of the shiedd, into fuur equal parts, termed quarters.

Miad-The arms of a maid are to be placed in a lozenge; and it her father bere any diti reme in his cout the same is to be continucd; for by the mark of cadency of her father's will be denoted what branch she is from.

Widow.-The arms of a widow are to be impaled with the arms of her late husband; her husthand on the dexter side, and hers on the simister side, upon a luzenge, as the example.

Knigbt of the garter and his lady-When a knight of the garter is married, his wife's arms must be placed in a distinct shield, because his arms are surrounded with the ensign of that odder; for though the hurbaud may give his equal share of the shield and hereditary honour, yet he cannot share his temporary order of knighthood with her.

Commoner and his lady. -The arms of a commones married to a lady of quality: he is not to impale her arms with his own; they are to be set aside of one another in separate shiclds, as the lady still retains her titie and rank. See the example, pl. 84.

Of common charges lorne in coats-of-arms-It has been already observed, that in all ages men have made use of the representation of living creatures, and other symbolical signs, to distinguish themselves in war; and that these marks, which were promiscuoasly used fur hicroglyphics, emblems; and personal devices, gare the first notion of heraldry. But nothing shows the extent of human fancy more, than the great variety of these marks of distinction, since they are composed of all sorts of figures, some natural, others artificial, and many chimerical; in allusion, it is to be supposed, to the state, quality, or inclination of the bearer.

Hence it is, that the sun, moon, stars, comets, meteors, \&c. have been introduced to denote glory, grandeur, power, \&c. Lions, leopards, tigers, serpents, stags, \&ce. have been employed to signify courage, strength, prudence, swiftuess, \&c.

The application to certain exercises, such as war, hunting, music, \&c. has furnished lances, swords, pikes, arms, fiddles, \&c. Architeeture,

HERALDRY.

solumns, cheverons, \&e.; and the other arts several things that relate to them.

Human bodies, or distinct parts of them, also clothes, and ornaments, have, for some particular intention, fonnd place in armoury; trees, plants, fruits, and flowers, have likewise been admitted to denote the rarities, advantages, and singularities, of different countries.
The relation of some creatures, figures, \&c. to particular names, has been likewise a very fruitful source of variety in arms. Thus the family of Coningsby bears three coneys; of Arundel, six swallows; of Urson, a bear; of Lucie, three pikes; in Latin tres lacios pices; of Starkey, a stork; of Castleman, a castie triple-tovered; of Shuttleworth, three weaver's shutties, \&c.

Besides these natural and artiticial figures, there are chimerical or imaginary ones used in heraldry, the result of fancy and caprice; such as centaurs, hydras, phenixes, griffons, dragons, \&c. Which great variety of tizures shows the impossibility of eomprehending all common charges in a work of this nature; thercfure such only shall be treated of as are most frequently borne in coats-ofarms.

1. Among the multitude of natural figures which are used in coats-of-arms, those most usually borne are, for the sake of brevity as well as persnicuity, distributed into the following classes, viz. Celestial fiyures; as, the sun, amon, stars, \&ce. and their parts. Effigies of men, women, \&c. and their parts. Beasts; as, lions, stags, foxes, boars, \&c. and their parts. Birds; as, eagles, swans, ctorks, pelicans, \&c. and their parts. Fishes; as, dolphins, whales, sturgeins, trouts, \&cc. and their part... Reptiles and insects; as, tortoises, serpents, grasshoppers, \&cc. and their parts. Vegetables; as, trees, plants, flowers, herbs, \&c. and their parts. Stones; as, diamonds, rubies, pebbles, rocks, \&c.

These charges have, as well as ordinaries, divers attributes or epithets, which express their qualities, positions, and dispositions. Thus the sun is said to be in his glory, eclipsed, \&c. The moon, in her complement, increscent, \&c. Animals are said to be rampant, passant, \&c. Birds have also their denominations, such as close, dipplayed, \&ec. Fishes are described to be hauriant, naiant, \&c. It is only therefore necessary to notice here, that lions are termed lioncels if more than two in the field, and eaules eaglets.

It must be observed also, that trees and plants are sometimes said to be trunked, eradicater, fructuated or raguled, according as they are represented in arms.
2. Of artificial figures borne in coats-of-arms, the following classes may be distinguished. Warlike instruments; as, swords, arrows, bat-tering-rams, gauutlets, belmets, spears, poleaxes, \&cc. Ornaments used in royal and religious ceremonies; as, crowns, coronets, mitres, wreaths, crosiers, \&cc. Architecture; as, towers, castles, arches, columns, plummets, battlements, churches, portcullisses, \&c. Navigation; as, ships, anchors, rudders, penclants, sails, oars, masts, flags, galleys, lighters, \&c.

All these bearings bave different epithets, serving either to express their position, disposition, or make: viz. swords are said to be erect, pommeled, hilted, \&cc.; arrows, armed, feathered, \&cc.; towers, covered, embattled, \&c.; and so on of all others.
3. Cbimerical Ggures form the last and oddeat
kind of bearings in coats oi arms, as under the name of chimerical heralds rank all figures of things which have no real existence, but are mere fabulous and fantastical inventions. These charges, grifions, martlets, and unicorns excepted, are so uncommon in British coats, that we have not thought it necessary to give examples of them. lustances occur, however, of angels, cherbbims, tritons, centaurs, martlets, griffuns, unicorus, dragous, mermaids, satyrs, wiverus, harpies, cockatrices, phenixes, \&c. and all these, like the foregoing charies, are subject to various positions and disr,ositions, which, from the principles already laid down, will be plainly understood.

To the forementioned figures may be added the montegre, an imaginary creature, supposed to have the body of a tiger with a satyr's head and horns; also those which have a real existence, but are said to be endowed with extravagant and imaginary qualities, viz. the salamander, beaver, camelion, \&e.

It is an established rule among the heralds, that ir blazoning, animals are always to be interpreted in the best sense; that is, according to their must noble and generous qualities, and so as may redunnd most to the honour of the bearers.

Thas the fox, being repeated witty, and withal given to filching for his prey; if this be the charge of an escutcheon, we are to conceive the quality represcuted to be his wit and cunuing, not his theft.

Guillim adds, that all savage beasts are to be figured in their fiercest action; as, a lion erected, his mouth wide open, his claws extended, \&c. thus formed, he is said to be rampant. A leopard or wolf is to be pourtrayed going, as it were, pedetentim ; which form of action, saith Chassanaus, fits their natural disposition, and is termed passant. The gentler kinds are to be set forth in their noblest and most advantageous action; as, a horse running or vaulting, a grey-hound coursing, a deer tripping, a lamb going with sinooth and casy pace, $\& c$.

Every animal is to be moving or looking to the right side of the shield; and it is a general rule, that the right foot be placed foremost, because the right side is reckoned the beginning of mution: add, that the upper part is nobler than the lower; so that things constrained either to look up or down, ought rather to be designed looking upwards. It must be notel, that notwithstanding these solemn precepts of Guillim, and the other masters of armoury, we find by experience that there are lions passant, couchant, and dormant, as well as rampant, and that most animals in arma look down, and not up.

Birds are esteetned a more honourable bearing than fish; and wild and ravenous birds than tame one's.

Of the external ornaments of escutcbeons.-The ornaments that accompauy or surround escutcheons deuote the birth, dignity, or office, of the person to whom the coat of arms appertaineth; and obtains both among the laity and clergy. The chief of which are as follow:

Crozens. -The first crowns were only diadems, bands, or fillets; afterwards they were composed of branches of divers trees, and then flowers were added to them. Among the Greeks, the crowns given to those who carried the prize at the Isthmian games were of pine; at the: Otympic of laurel; and at the Nemean of smallage. The Romans had various crowns to reward martial ex-

HERALDRY.

ploits and extraordinary services done to the republic. Examples of some of these crowns are frequently met with in modern achievenuents.

Mindern crowns are only used as an urnament, which emperors, kings, and independent princes set on their heals, in great soleminitiss, to denote their sovereign authority. These are described in beralliry as follow :

The imperial crown is mare of a circle of gold, adorned with pieciuns stunes and peails, beightened with tlems-de-lis, bord red and seeded with pearls, raised in the form of a cap voided at the top, like a crescent. From the midlle of this ca: rises an arched diliet enriched witu pearis, and surmounted of a mound, whereon is a cross of pearls. See Plate 85.

The cruwn of the kincs of Great Britain is a circle of gold, hordered witn ermine, enriched with pearls and precions stones, and i.e chtened up uith four crosses patte, and four tavge in whede-lis alternately; from these rise fur aret d diations adorned with pearls, bihich close under a nound, surmounted of a cross lite those at bett in.

The crowns of spaia and Portual are a ducal coronet, heigt:tened up with eight arched diadeins that support a mund, erisigura with a plain cross. Those of Demmark and Succien are in \therefore of the same form; and cunsist of eight arched dia i. :.a, rising from a marquis's coronet, whirh conjoin at the top under a musur! ensigried with a cross butone. The crowns of soost other kiass in Europe are circies of gold, adorned widi precious stones, and heshened up wit large treooils, and clused by fuur, six, of cight diadem:, supporting a mound, gurmounted of a cross.

The ereat Turk bears over his arms a turban, enricteif w th prails ani diamonds, under two coruseto, the tist of which is made of pyramidical puiats betichtered up with lare pearls, and the $u_{p^{\prime}}$ entust is smmenterl with cresie:ts.

T:be pupe ap pup iates to himedia tiara or long ca, of solten woth hom which hang two pentants enbonctiema and frienced at the cads, semee of crosses of kold. This eap is incluned by three manyus's coronets; and has on its top a mound of gull, wheteon is a cross of the same, which cross is subetimes represented by engravers and paimers ponictted, rectossed, flowery, or plain. It is a difficult matter to ascertain the time when these haughty prelates assumed the three forementioned coropets. See Piate 84.

Coromes. - The coronet of the prince of Wales, or eldest son of the king of Great Britain, was anciently a circle of guld set round with four crossespatter, and as many ticurs-de-lis alternately; but since the Restoration it has been closed with one arch only, adorned with pearls, and sumounted of a mound and crose, and borderd with ermine like the king's. But besides the cormet his royal highness has another distinguishing mark of honour, pecuiar to himscli, viz. a plume of three ostrich feathers, with an ancient coronct of a prince of Wales. Under it, in a scroll, is this motto, Ich dien, which in the German or old Saxon language signifies "I scrve." This device was at first taken by Edward prince of Wales, cummonly called the blark prince, after the famons battle of Cresse, in 13+6, where having with his own hand kilied John, kinx of Bohemia, he took from his head such a plume, and put it on his own. See Plate 85.
The cornet of all the inmediate sons and brothers of the kiugs oi Gieat Eritiun is a cincle of
gold, bordered with ermine, beightened up with four ficurs-de-lis, and as many crosses-pattee alternate. The particular and distinguishitig form of such coronets as are appropristed to princes of the blood royal is described and settled in a grant of Charles II. in the 13 th of his reign. See Plate 34.

The coronet of the princesses of G:i at Britain is a cincle of gold, bordered with eruibie, and heightened up with crosses-pattee, fleurs-de-lis, ond strawberry leaves alternate; whereas a priace's coronet has only fleurs-de-lis and crosses.

A duke's coronet is a circle of gold bordered with ermine, enricled with precious stones and pearls, aml set round with eight large strawberry ur parsley leares. Sce Plate 84.

A maiquis's coronet is a circle of sold, bordered wifh ermine, set round with four strawberry leaves, and as many pearls on pyramidical puints of equal height, alternate. Sce Plate sis.

An call's comenet is a circle of gold, bordered with crmine, hen_i.tisect n.p with cigh pyramidical points or rays, on the tops of which are as many la:ge pearls, that are placed alterwately nitin as many strasbery leaves, but the pearls much higter than the leaves. Sce Ilat: 54 .

A viscount's corvnct differs from the preceding ones as being caly a circle of guld bordered xita ermine, with large parles: : \because, whin on the rim, vitinut any thated number, whith is his prera;ative above the baron, who is limited. See Pidic 8 t.

A baron's coronet, which it appears was granted by king Charles 11., is formed with six pearls set at tural distances on a gold circle, bordered with ermine, :our of which only are seen on engrariugs, paintings, \&e. to shew be is inferior to the viscuunt. Sce Plate 85.

The eldest sons of peers, above the degree of a baron, bear their father's arins and supporters with a labcl, and use the coronet appertaining to their father's second titie; and all the younger sons bear their arms with pruper differences, but use no coronets.

As the crown of the king of Great Britain is not quite like that of other potentates, so do unost of the coronets of foreign noblemen ditier a little from those of the lititi-h nobility.

Mitres.-The archbishops and bishops of England and Ircland place a mitre over their coat of arms. It is a round cap pointed and cleft at the top, from which hang two pendants fringed at both euds; with this diflierence, that the bishop's mitre is only surrounded with a fillet of gold, set with preciuus stones, whereas the archbishop's issues out of a cincal coronet. Sce Plate 84.

This ornament, with other ceclesiastical garments, is still worn by all the archbishups and bishops of the church of Rome, whencrer they officiate with solemnity; but it is never used in England otherwise thain on coats of arms, as befure mentioned.

The first archbishop's conscration in Ensland was in the year 568. No mitre but an archbislop's is birne upon a ducal coronet, except the bistiop of Durham, that see being a principrality.

The first bishop's consiccration in England was in tice year 516.

Chupeaux, ureaths, and crests.-A chapesu is an ancie int hat, or rather cap, of disnity, worn by duks, gemetally scarlet-coloured velict on the outvile, lianed and turned up with fur; fir quently to be met with above an helmet, instiat of a wreaih, under geuticmes's and noblwasa's sresis.

HERALDRY.

Heretofore they were seldom to be found, as of right appertaining to primate families; but by the grants of Robert Cooke, Clartncieux, and other succeeding heralds, these, together with ducal coronets, are now frequently to be met with in families, who yet clain not above the degrec of geatlemen. See Plate 85.

The wreath is a kind of roll made of two skains of silk of different cuiours twisted together, which ancient knights wore as a head-dress when equipped for tournaments. The colours of the silk are always taken from the principal metal and colour contained in the coat of arms of the bearer. They are still accounted as one of the lesser unnaments of escut beons, and ar? placed between the helmet and the crest (see Piate S.5). In the time of Henry I. and long after, no man who was ander the degree of a knight had his crest sit on a wreath; but this, like other prerosatives, has been infringed so far that every budy now-a-days wears a wreath.

The crest is the highest part of the ornaments of a coat of arms. It is calied crest from the Latin word criska, which signifies comb or tuft, such as many birds have upon their bais, as the prodcock, pheasant, \&c. in albuon :o the place on which it is fixed. See Plate 85, crest of the prince of Wales

Crests were formerly sreat marks of honour, because they were only worn by herocs of great valour, or by such as were advanced to some superior military command, in order that they miast by the better distinguished in an encarem: and thereby rally their men if dispersed; but they are at present considered as a mere ormameat. The crest is frequently a part either of the supporters, or of the charge borne in the cscutcheon. Thus the crest of the royal achievement of Great Britain is a " lion guardant crowned." There are several instances of crests that are relative to alliances, employments, or manes; and which on that account have been changed. See Crfst.

Tice scroll and supporters.-The scroll is the ornament usually placed li loa tice crest, comaining a motto, or short sentence, …edine thereto, or to the burines, or to the bearer's name, as in the two following instances. The m tto of the noble earl of Chomondeley is, " Cassis tuissima virtes;" i. e. "Virtue is the safest helmet;" on account of the helenct in the eroat of arns:. The unotto of the right hon. luid Fortescue is, "Forte scution salus ducum;" i. e. "A strour shicld is the safety of th: commanders;" alleding to the name of that aucient family. Sometimes it has reference to neither, but expresses something divine or heroic; as that of the earl of Scarborouth, which is, "Murus areus concinntia sana;" i. e. "A good couscience is a wall of brass." Otiers are enigmatical; as that of the royal achievement, which is, "Dieu et mon droit;" i. e. "God and my right;" introduced by lidward III. in 1340, wisu he assumed the arms and title of king of France, and beran to proserute his claim, which oceasioned long and blowdy wars, fatal, by turns, to both kingduns. Mettos, though heredifary in the families that first took them un, have been clanged on some particular occasions, and othery appropriated in their stead, instances of which are sometimes inct with in the history of families.

Sirporters are figures standing on a scroll, and
placed at the side of the escutctieun; they are so
called because they seem to shpport or hold up the shield. Supporters tave formerty beon taken from such aamals or birts as are borne in the shieids, and sometines thev have ticen chnsen as bearing some allus to the nanes of those whose arms the are malle to cupprit. The supporters of the arms of Gifat Dinain, since king James the Firs' sar.ession to the throne, are, a lion rampant gimriant crowned or, on the dexter side, atu an mu"corn aisent, crowned, arned, ungulel, maned and grered w:! an antique crown, to which a chain is aftixed, all or, on the sinister.

It is to be observed, that bening coats of arme supported, is, according to the heraidic rules of Enyiatid, the prowgative, 1 st, Of those calied nobiles wajres, viz dukec, marguisses, earls, viscounts, barous: ©d, Of all kiblits of the garter. thoush they should be under the degree of harons: Sd. Of knishts of the Rath, who buth receive on their creation a grant of supponters; and, lastly. of such knights as the king cl:ooses to bestow this honour upon. \checkmark

Of the lizu; of heraliry, and the mathod of marshalligg couts of arms-1. The first and must general rule is, to express heraibio distinctions in proper terms, so as not to omit any thing that ought to be specifind, ard at the same time to be clear and conrise withont tautology. 2. Boyin with the tincture of the filld, aad tisen proceed to the principal charges wbinh poseess tio most honourable place in the shieht, such ad fiss, cherron, \&c. alwass naming that charge first which lies next and immedatcly upon the fiedd. 3. After naming the tincture of the field, the honourable orditaries, or other principa! firures, you must specify their attributes, and aftewards their metal or colour. 4. When an honourable ordinary, or some one figure, is placed upon another, whether it be a fess, cleeveron, cross, 太c. it is always to be named after the ordinary or fisure orer which it is placed, with one of these expressions, surtout, or over all. 5. In the blazening of stech ortharies as are plain, the bare mention of them is sufficient; but if an ordinary should be made of any of the crouked lines mentioned above, its form must be specificd; that is, whether it be enyrailed, wavy, \&cc. 6. When a principal figme possesses the centre of the field, its position is not to be expressed, or (which amounts to the same thing) when a bearing is named, without specifying the point where it is placed, then it is und ristood to poisess the middle of the shield. 7. The number of the points of mullets or stars must be specified when more than five; and also if a mullet or any other charge be pierced, it must be mentioned as such, to distinguish it from what is plain. 8. When a ray of the sun, or other single tigure, is borne in any uther pait of the escutcheon than the centre, the point it issues from mut be named. 9. The natural culour of trees, plants, fruits, birds, \&ec. is no otherwise to be expressed in b'azoning but by the word proper; but if discoloured, that is, if they differ from their natural colour, it must be particularised. 10 When three figures are in a field, a:m their position is not mentioned in the blaz nine, they are always underitond to be placed two above and one belur. 11. When there are many figures of the same speries borne in a coat of arms, their number must be oborred as they stand, and must he distinctly expressed.

By marshaliny coats of arms is to be understood the art of disposing divers of theu iu one

HERALDRY.

escutcheon, and of distributing their contingent ornaments in proper places. Various causes may occasion arms to be thus conjoined, which are coniprised under two heads, viz. manifest and obscure. What is meant by maniest causes in the marshalling of coats of arms, are such as leet, ken marriages, or a sovereign's fift , granted cither through the special favour of the prince, or for mome eminent services. Concerning marrages it is to be ubserved,

1. When the coats of arms of a married couple, descended of distinct familics, are to be put together in one escutcheon, the field of their respictive arms is conjoined paleways, and blazoned parted per pale, baton and femme, two coats; first, \& c . In which case the baron's arms are always to be placed on the dexter side, and the femme's arms on the sinister side.
2. If a widower marry again, his late and present wife's arms are " to be placed on the sinister side, in the escutcheon with his own, and parted per pale. The first wife's coat shall stand on the chief, and the second on the base; or he may set thein both in pale with his own, the finst wife's coat next to himself, and his second outcrmest. If he should marry a third wife, then the two first matches shall stand on the chief, and the third shall have the whole base. And if he take a fourth wife, she must participate onc-half of the base with the third wife, and so will they seem to be so many coats quarterel." But it must be obscrved, that these forms of impaling are manat of hereditary coats, whereby the bulband stands in expectation of having the hereditary nossessions of his wife united to his patrimony.-Note. If a man marry a widuw, he marshals her maiden arms only.
3. In the arms of femines joined to the paternal coat of the baron, the proper differences by which they were borne by the fathers of such women must be inserted.
4. If a coat of arms that has a bordure be impaled with another, as by marriage, the" the bordure must be wholly omitted in the side of the arms next the centre.
5. The person that marries an heircse, instead of impaling his arms with those of ! is wife, is to bear them in an escutcheon placed in the centre of his shield, which, on account of its showing forth his pretensio: to her estate, is called an escutcheon of pretence, and is blazoned surtout, that is, orer all. But the children are to bear the hereditary coat of arms of their father and mother quarterly, which denotes a fixed inheritance, and so transmit them to posterity. The first and fourth quarters generally contain the father's arms, and the second and third the mother's; except the heirs should derive not only their estate but also their title and dignity from their mother.
6. If a maiden or dowager lady of quality marry a commoner, or a nobleman inferior to her in rank, their coats of arms may be set beside one a nother, in two separate escutcheons, upon one mantle or drapery, and the lady's arms ornamented according to her title. See Plate 84.
7. Archbishops and bishops impale their arms differently from the fore-mentioned coats, in giving the place of honour, that is, the dexter side, to the arms of their dignity, ns it is expressed in Plate 84, which represents the coat of arms of a supposed archbishop of Canterbury and bishop of an English sea.

With respect to such armerial ensigns st the sovereign thinks fit to auginent a cuat of arms with, they may be marslialled in various ways, as may be secn in the arms of his grace the duke of Rutland, and many others.

So far the causes fur marshalling divers arms in one shield, \&e. are manifest. As to such as are called obscure, that is, when coats of arms are marshalled in such a manner that no probable reasoul can be given why they are so conjoined, the explanation of them must be left to the heralds. γ
(If the orders of knightiood, Ơc.-The baronet's mark of distinction, or the arms of the province of Uister in Ircland, granted and made hereditary in the male line by king James I. who erected this dignity on the 22.1 of May, 1611, in the gth year of his reign, in order to propagate a plantation iu the fore-mentioned province. This mark is argent, a sinister hand couped at the wrist, and erceted gules; which may be bornc cither in a cantou, or in an escutchcon, as will best suit the fiwures of the arins. The aucient and reapectable bidge of the nost nuble order of the garter was instituterl by king Edward III. 1319, in the 27th year of his reign. This honourable angmentation is a deep blue garter, surrounding the arms of such knights, and inscribed with this motto, " Honi soit qui mal y pense."

The arms of those who are knights of the orders of the Eath, of the Thistle, or of St. Patrick, are marshallell in the same manner, with this difference only, that the colour and motto accord with the order to which it belongs. Thus the mottos "Quis scparabit 1783" on the light blue ribbun of the order, surrounds the escutcheon of a knight of St. Patrick. "Nemo me impune lacessit," on a green riband, distinguishes a knight of the Thistle; and "'Tria juncta in uno," on red, a knight of the Bath. It is to be observed, that none of the orders of knighthood are hereditary. The honours of a baronet of Ulster, and of a baronet of Nora Scotia (created by patent in 1602), descend to the heirs-male.
For representations of the badges of the several orders of knighthood, see Plate 85.
Of funcral escutcheons.-After having treated of the essential parts of coats-qf-arms, of the various charges and ornameots usually borne therewith, of their attributes and dispositions, and of the rules for blazoning and marshalling them, we shall next rescribe the sereral funcral escutcheons, usually called hatchments; whereby may be known, after any person's decease, what rauk either he or she held when living; and if it be a gentleman's hatchment, whether he was a bachelor, narried man, or widower, with the like distinctions for gentlewomen.

The hatchment is usually affixed to the fronts of houses, when any of the nobility or gentry die. The arms, if the d ceastd be a private gentleman, are parted per pale with those of his wife. The ground without the escutcheon being hlack, denotes the man to be dead; and the ground on the sinister side being white, siguitics that the wife is liiing, which is distinctly shown in Plate 85, whi re also all the varietics of hatchments are displayed, accoiding to the following descriptions.

When a married gentlewoman dies firot, the hatchment is distinguished by a contrary colour from the former; that is, the arms on the sini-ter side have the ground without the escutcheon blark; whereas those on the dexter side, for ber surviving

HERALDRY.

musband, are upon a white ground: the hatchnent of a gentiewoman is, moreover, differenced by a cherub over the arms instead of a crest.

When a bachelor dies, his arms may be depicted siogle or quartered, with a crest over thear, but never impaled as the two fist are, and all the ground without the escutcheon is also black.
When a maid dies, her arms, which are placed in a lozenge, may be sing!e, or quartured, as those of a bachelur: all tile giound without the escutchoon is also black.
When a widower dies, his arms are represented impaled with those of his dereased wife, haring a crest, and sometimes a helmet and mantling over them, and ali the ground withou: the escutcheon black.

When a widow dies, har arms are also represented impaled with those of her deceased husband, but inclosed in a lozeng:, and a cherub is p'aced over them; all the ground without the escutcheon is also black.
If a widower or barhelor should happen to be the last of his family, a death-head is ecnerally amped to each hatcinmont, to denose that death has conquered ail.
Wy the fure-mentioned rules, which are sometimes neglected throush the ignorame of illiterate people, may be known, upoa the sisht of any hatchment, what branch of the fanily is dead; and by the helmet, coronet, Bec. what tite and degree the dereased person held. The same rules are observed with respect to the escutcheons placed on the hearsc and horses ueed in po.nfous funerals, except that they are not surnonated with any crest, as in the forcooing examp!es of hatelsments, but are always pian. It is necessary, huwever, to ensign those of peers with coronets, support rs, \&c. and that of a maiden lady with a knot of ribands. For various other examples of batchmentsalicady reerred to, sce Plate 85.

Of preceiency.-In formiag the presint treatise, we can by no means omit giving some account of the laws which govern the precedency of the differ nt ranks which compose the community of Great Britain.

SECT. I. Of the preceiency of men.

The first personage in point of precedency, is of course--

- The King.

Prince of Wales.
Kirg's scns.
King's brothers.
King's uncies.
King's grandsons.
King's nephews.
Vicegerent, when any such officer.
Archbishop of Canterbury, lord primate of all England.

Lord high chancellor, or lord keeper.
Archbishop of York, primate of England.
Lord high treasurer.
Lord president of the privy council.
Lord privy seul.
Lord high constable in commission.
Hereditary earl marshal.
Lord high admizal.
Lord steward of his majesty's houschold.
Lord chamberlain of his majesigherousehold.
Dukes, according to patents of crearing.
Marquisses, according to their patent.
Dukes' eldest sons.
Earla, according to their patents.

Marquisses' eldest sons.
Dukes' younter sons.
Viscounts, according to their patents.
Earls' eldest sone.
Marquisses' younger sons.
Bishups of Loudon, Durham, Winchester.
Bishops, according to seniority of consecration; but if any bishop be principal secretary of state, he shail be paced above all other bishops, not having any of the great offices before mentioned.
barons, accord ne to their patents of creation; but if any baron the principal secretary of state, be shail be placed above all barons, unless they have any of the great offices before mentioned.

Speaker of the house of commons.
Viscounts' elideat sons.
Earls' younger sons.
Barons' cldest sons.
Kuights of the most noble order of the garler.
Privy councillurs.
Chancellor of the exchequer.
Cimancellur of the duchy of Lancaster.
Lord chief justice of the king's bench.
Master of the Rolls.
Lord ctief justice of the common pleas.
I. ord chief baron of the exchequer.

Judges, baruns, of the durce of the coif of the said courts, acronding to seniority.

Eanmerts, made under the hirg's own royal standard, dicplared in an army rogal, in open war. by the kins hinself in person, for the term of their lives only.

Viscounts' younger sons.
Baronv' younger sons.
Baronets.
Bannerets, not made by the king in person.
Knights of the most honourable order of the Bath.

Kuizhts bachelors.
Baronets' eldest sons.
Knights: of tho garter eldest sons.
Banuerets' cldest sons.
Knighis' of the Bath eldest sons.
Knig!ts' eldest sons.
Sergeants at law, DD. LLD. MD. of British universities.

Baronets' younger sons.
Esquires of the king's creation, by the imposition of a cullar of SS.

Esquires attending knights of the Bath.
Esquires by office, as justices of the prace.
Captains, gentlemen of the privy chamber, \&c.
Knigits' of the garter younger sons.
Bannerets' of both kinds younger sons.
Knights' of the Bath younger sons.
Kuights bachelors' younger sons.
Gentlemen entitled to bear arms.
Gentlemen, by office, function, or profession.
Clersymen.
Attorneys at law, \&c.
Citizens.
Burgesses, \& ce.
SECT. II. Procedency of women
The Queen.
Princess of Wales.
Princess Royal.
Daughters of the king.
Duchess of York, and
Wives of the king's younger sons.
Wives of the king's brothers.
Wives of the king's uncles.
Wives of the eldestsons of dukes, of the bleod royal.

HER

Daughters of dukes, of the blood royal.
Wives of the king's brothers' or sisters' sups.
Duchesses.
Marchionesses.
Wives of the eldest sons of dukes.
Daughters of dukes.
Countesses.
Wives of the eldest sons of marquisses.
Daughters of marquisses.
Wives of the younger sons of dukes.
Viscountesses.
Wives of the eldest sons of earls.
Daughters of earls.
Wives of the younger sons of marquisses.

Baronesses.

Wives of the eldest sons of viscounts.
Daughters of viscounts.
Wives of the younger sons of earls.
Wives of the eldest sons of barons.
Daughters of barons.
Wives of the younger sons of viscounts.
Wives of the younger sons of barous.
Dames, wires of baronets.
Wives of knights of the garter.
Wives of bannerets of each kind.
Wives of knights of the Bath.
Wives of knights bachelors.
Wives of the eldest sons of baronets.
Daughters of bironets.
Wives of the eldest sons of knights of the garter.
Daughters of knishts of the garter.
Wives of the eldest sons of bannerets of each kind.

Daughters of bannerets of each kind.
Wives of the eldest sons of knights of the Bath.
Daughters of knights of the Bath.
Wives of the eldest sons of knights bachelors.
Wives of serjeants at law, DD. LLD. MD. of British miversities.

Wives of the younger sons of baronets.
Daughters of knights bachelors.
Wircs of esquires, attendants on knights of the Bath.

Wives of esquires by office, as justices of the peace.

Wives of captains, gentlemen of the privy cham-

ber, sc.

Wives of the younger sons of knights of the garter.

Wives of the younger sons of bannerets of each lind.

Wives of the younger sons of knights of the Bath.

Wires of the younger sons of khights bachelors.
Wives of gentlemen lawfully bearing coat armour.

Daughters of esquires lawfully bearing coat armour, who are gentlewomen by birth.

Daughters of gentlemen lawfully bearing coat armour, whe are gentlewomen by birtb.

Wives of gentlemen by office, function, or profession, as clergymen, and attorneys at law, \&ec. se.

Wives of citizens.
Wives of burges.es, \&ce.
IllRA'T, a town of Persia, in Chmrasan : in its ueighbourhnod roses are so plentiful, that it is called Surguitzar, or the city of roses. Lat. 34. 30 N . Lon. 61. 50 E .

HERAULT, a department of France, so called from a river which falls into the gulf of Lyons. It includes part of the late province of Languedoc; and the capital is Montpellier.

HER

HERB. Herba. In common language an herb is used in opposition to a tree. By Linnéus the herb is put for that part of a vegetable which arises from the root, is terminated by the fructification, and comprehends the stem, leaves, fulcres, and hybernacle. Vegetabilis pars, orta a radice, terminata fructificatione, comprehenditque truncum, folia, fulcra, hybernaculum. Philos. Bot. Herbs adscendens, aéria spirans, morens. Regn. Veg.

Herbaceous plants, are such as perish annually down to the root.

Herbaceous stem, perishing annually, soft not woody.

Herbs constitute the fourth nation, grear tribe or cast, into which Limnéus divides all vegetables. See Gentes.
Herb bennet, in botany. See Geum.
Herb christopher, in botany. See Actera.

Herb of grace, in botany. See Ruta.
Herb mastic, in botany. See SatuREIA.

Herb twopence, in botany. See Lysimachia.

Herb willow, in botany. See Epilobium, Lythrum and Lysimachia.

HERBIN'CEOUS. a. (from herlia, Latin.) 1. Belonging to herbs (Brown). 2. Feeding on vegetables (Derham).

HERBAGE. s. (herlage, French.) 1. Herbs collectively; grass; pasture (Hoodv.) 2. The tithe and the right of pasture (Ains.)

HE'RBAL. s. (from herlb.). A book containing the names and descriptions of plants (Bacon).

HE'RBALIST. s. (from herbal.) A man skilled in herbs (Brown).

HERRBARIST. s. (herbarius, Lat.) One skilled in herbs (Boyle).

HE'RBELET. s. (diminative of herl.) A small herb (Shakspeare).

HERBELOT (Bartholomew d'), a learned orientalist, was born in France in 1693. He applied himself with great diligence to the Hebrew and other eastern languages, and ip which he acquired such eminence as to obtain a large pension in his own country, and honours from abroad. His great work, entitled Bibliothêque Orientale, or Universal Dictionary, containing whatever relates to the knowledge of the eastern world, is universally known. He died in $16 y 5$.

HERBER, among farriers, a stimulative application to excite a discharge, in certain diseases of horses, and especially of the head. It usually consists of a piece of hellebore root introduced under the skin, which, of course, acts as a rowel or seton.
HERBERT (Mary), countess of Pembroke, was the sister of sir Philip Sidney, who dedicated to her his Arcadia. She translated fram the French a tragedy called Annius, 1.95. 12 mn . and rendered into English some of David's psalms. She died in 1021. Ben Jonson wrote her epitaph as follows:

Underneath this sable herse
Lies the subject of all verse :

HER

Sidney's sister, Pembroke's mother; Dath! ere thou hast kiild another, Fair and good and learn'd as she, Time shall throw a dart at thee.
Herbert (Eidward), lord Herbert of Cherbury in Shropshire, was born in Montgomery castie in 1581. He received his education at Oxford, after which he went on his travels, and became an accomplished gentlenaan. On his return he was made one of the king's counsellors for military affairs, and soon after was sent ambassador to France to intercede in behalf of the persecuted protestants, where he behaved with great dignity and spirit. In 1625 he was made a peer of the kingdom of Ireland, and in 16.31 created an Euglish peer. At the breaking out of the rebellion he sided with the parliament. He died in 1648 . Lord Herbert wrote some singular broks, the most remarkable of which is that entitied, De Veritate, \&c. Its design is to shew the absolute sufficiency of natural reason for ail religious purpuses; on which account the author has been ranked, and justly, aunong the deists. He also wrote the history of the Life and Reign of Henry VIII. and a treatise in Latin on tire ancient religion of the Gentiles

Herbert (George), an English poet and divine, was brother of the abore, and born in 1593. He reccived his education at Westminster schnol, from whence he was elected to Trinity-college, Cambridge, where he took his degrees in arts, and was chosen fellow. He was also appointed orator to the university, which office he held eight years. Being disappointed in his views of preferment in the state, he entered into orders, and obtained the rectory of Bemerton near Salisbury, and a prebend in the church of Lincoln. He was a most exemplary divine, and died about 16.35 . His poems, entited, The Temple, were printed in 1635,12 no. and his Priest to the Temple in 165\%. They have been frequently reprinted.

Herbert (Thomas), an ingenious writer of the Pembruke family, was born at York. He was entered first of Jesus college, Oxford, from whence he removed to Trinity-college, Canbridge, afier which he went on bis travels, in which he speat four years. In $163+$ he published, in fotio, a relation of some years' travels into Africa and the Great Asia, esprecially the territories of the Persian monarchy, and some parts of the oriental Indies and isles aḍacentet. On the breaking out of the rebellion he joined the parliament party, and was very active in that cause. When the king was under the necessity of dismissing his servants, he chose him to he one of the grooms of his ber-chamber, and Mr. Herbert continued to serve him with great fidelity and affection to the last. For this he was created a baronet by Charles II. at the restoration. He died in 1682 . Sir Thomas wrote, he-ides his travels, a curious book, entitled, Threnodia Carolina, containing an historical account of the two last years of the life of king Charles I. 8vo.

VOL. V.

H ER

HERBE'SCENT. a. (herlescens, Lat.) Growing into herbs.
HE'RBID. a. (herlidus, Latin.) Covered with herbs.

HERBIVOROUS ANIMALS, are thos which feed only on vegetables.

HE'RBORN, a town of Germany, in the circle of Westphalia, and principality of Nassau Dillenburg. Lat. 50.34 N. Lon. 8. 20 E
HE'RBOROUGH: s. (herlerg, German.) Place of temporary residence (Ben Jonson).
HERBOUS. a. (herbosus, Latin.) Abounding with herhs.
HE'RBULENT. a. (from herlula, Latin.) Containing herhs.

HERBWOMAN. s. (herl and woman.) A woman that sells herbs (Arluthnot).

HE'RBY. a. (from herl.) Having the nature of herbs (Bacon).

HERCULANELiA, a town of Campania swallowed up by an earthquake, produced from an er"phion of mount Vesurius, A. D. 79, in the reign of Tituj. This famous city was discovered in the beginning of the last century, and from the rumins have been dug busts, stathes, manuscripts, paintings, and utensils, which contribute much to cularge our notions concerning the ancients. A nore valuable acquisition than bronizes and pictures was thought to ie nade, when a lage parcel of manuscripts was found among the ruins. Hopes were enteroined that many work of the ciassics, which time has deprived us of, were now going to be restored to light, and that a new mine of science was on the point of being opened. But the difficulty of unroiling the burnt p. rehment, of pasting the fragments on a flat surface, and of decyphering the obscure letters, have proved such obstacles, that very litule progress has been made in the work. A pricst invented the inethad of proceeding; but it would require the joint labours of many learned to carry on so nice and tedious an operation with any success. Indeed, much was expected when the prince of Wales engaged so munificently in the employment of persons to examine these MSS. : but hitherto their labour has been almost entirely in vain, and the rolls remain at Carletonhouse, without having furnished anv important information or scarcely any gratification to those who have been employed.
HERCULES, a name given to several persons in arcient and fabulous history. Of all these the sun of Jupiter and Alcmena is the most celebrated, and to him the actions of the others have been gencrally attributed. The bitits of Hercules was attended with many miraculous events: it is reported that Jupiter, who introduced himself to the bed of Alcmena, was employed three nights in forming a child whom he intended to be the greatest hero the world ever beheld. He was brought up at Tirynthus, or at Thebes, and befire he had completed his eighth month, the jealousy of Juno, intent upon his destructinn, sellt two snakes to devour him. Not terrified at the sight of the serpents, he boldly seized them.

00

HERCULES.

and squeezed them to death, while his brother \mathbf{l}_{p} hiclus alarmed the house with his frightful shricks. He was early instructed in the liberal arts, and soon became the pupil of the centaur Chiroia, under whom he rendered hinuself the most valiant and accomplished of the age. In the 18th year of his age he commenced his arduous and glorious pursuits. He subdued a hage fion that devoned the flocks of his suppoed father Amphitryon. After he had destroyed the lion, he delivered his country from the anmal tribute of an hundred oxen which it paid to Erginus. As Hercules by the will of Jupiter was subjected to the powerof Eurystheus, and obliged to obey him in every respect, Eurystheus, jealous of his power, ordered him to appear at Nycenx and perform the labours, which, by priority of birth, he was emprowered to impose upon him. Hercules refused, but afterwards consulted the oracte of Apollo, and was told that he must be sulservient for twelve yeas to the will of Eursstheus, in compliance with the commands of Jupiter; and that after he had achieved the most celebrated labours, he should be reckoned in the number of the zods. So phain an answer determinch him to go to Meenx, and to bear with firtitude whatever giods or men imposed upon him. Eurystheus, apprehensive of so powerful an enemy, commanded him in achice a number of enterprizes the most difiicult and arduous ever known, generally calied the 12 labours of Hercules. Being furmithed with complete armour by the godr, he boldly encountered the imponsed labours. He subdued the Nemean Lion; the Lernean hydra; took alive the stag famnus for its swifinces, with golden horns, and brazen feet; the lirimanthyan boar: cleansed the stables of Augeas; alio the wild bull of Crete; killed the carnivorous bieds which raraged the lake Stump,ialis in Areadia; obtained the mares; of Dionedes which fed on human flesh; whained the girdle of the queen of the Amazons; hilled the monster Geryon, king of Gades, and brought away his focks; obtained the apples of the garden of the Hceperides, and brought upon earth the three-headed dog Cerberns, guardan of the entrance to the infernal regions. Besides these arduous labours, which the jealousy of Eurystheus imposed upon him, he alio achievitd others of his own accord equally celebrated. He accompanied the Argnnants to Colchis before he delivered himself up to the king of Mycenar. He assisted the gods in their wars against the giants, and it was through him alone that Jupiter obtained a victory. He conquered Lamedon, and pillaged Troy. Having at difierent times experienced three fits of insanity, in the second he slew Iphitus the brother of his beloved Iole, in the third he attempted to carry away the sacred tripod from Apollo's temple at Delphi, for which the oracle told him he must be sold as a slave. He was sold accordingly for three years to Omphale, queen of Ludia, who restored him to liberty and married him. After he had completed his slavery, he returned to Peloponnesus, where he
re-established on the throne of Sparta Tyndarus, who had been expelled by Hippoconn. He became one of Dejanira's suitors, and married her after he had overcome all his n vals. He was obliged to leave Caiydon, his father-in-law's kingdom, because he had inadvertently killed a man. He retired to the court of Ceyx, king of Trachinia. In his way he was stopped by the streans of the Evenus, where the centaur Nessus attempted to offer violence to Dcjanira, under the perfidiouspretence of conveying her over the river. Hercules perceived the distress of $D_{\text {-janira, and killed }}$ the centaur, who as he expired gave her a tunic, which as he observed had the power of recalling a husband from unlawful lore. Cevx receired him and his wife with friendship. Hercules was still mindful of Iole, who had now fallen into his hands after having murdered hiin. This excited the jealousy of Dejanim, who sent him the tunic of Nessuy, as he was about to offer a sacrifice to Jupiter. This tunic was infecterl with priion, which penetrated his bones. He attempled to pull off the fataldress, but it was too late. As the distemper was incurable, he implored the protection of Jupiter, gave his bow and arrows to Phibotetes, and erected a large burning pile on the inp of mount (Sta. He spread on the pile the shin of the Nemaxan lion, and laid himself down upon it as on a bed, leaning his head on his club. Philoctetes set fire to the pile, and the hero saw himself on a sudden surrounded with the flanies. The pile was suddenly surrounded with a dark smoke, and after the mortal parts of Hercules were comsumed, he was carried up in heaven in a chariot drawn by four horses. The white polar, among numerous other thinge, was particularly dedicated to his service. Hercules is generally represented naked, with stionz nud well-proportioned limbs, sometimes coverel with the shin of the Nenman lion, and holds a snotted club in his hand, on whici he often leans. The children of Hercules were as nuincrous as the labours he underwent, and they became so powerful soon after his death, ithat they alone had the courage to invade all Peloponnesus. (Vid. Heraclider.) He was father of Driman and Therimachus, by Megara ; of Ctesippus, by Astydania; of Palemon, by Autonoe; of Everes, by Parthempe; of Glycisnnetes, Gyneus and Odites, by Dejanira ; of Thessalus, by Chalciope; of Thessalus, by E.picaste ; of Tlepolemus, by Astyoche. Such are the most striking characteristics of the life of Hercules, who is said to have supported for a while the weight of the heavens upon his shoulders, (Vid. Atlas), and to have separated by the force of his arm the celebrated mountains, which were afiterwarls called the boundaries of his labours. He is held out by the ancients as a true pattern of virtue and piety, and as his whole life had been employed for the common benefit of mankind, he was deservedly rewarded with im. mortality. His judicious choice of virtue in preference to pleasure, as described by Xienophon, is well known.

HER

Hercules, in astronomy, an old northern constellation. Independent of Ramus and Cerburus, with which this constellation is commonly united, it contains 102 stars of the first six magnitudes, viz. 0.0. 12. 12. 32. 46. Hercules's Pillars, in antiquity, a mame given to two lofty mountains, situated One on the most southern extremity of Spain,
and the other on the opposite part of Africa. They were called by the ancients Abyla and Calpe. They are reckoned the boundaries of the labours of Hercules; and, according to ancient tradition, they were joined together till they were severed by the arm of the hero, and a communication opened between the Mediterranean and Atlantic seas.

HERCYNIA SILVA, in ancient geography, the largest of forests. Its breadth was a Journey of nine days to the best traveller.
Taking its rise at the limits of the Helvetii, Taking its rise at the limits of the Helvetii,
Nemetes, and Rauraci, it ranalong the Dallube Nemetes, and Rauraci, it ran along the Danube
to the borders of the Daci and Anartes, a length of 00 days journey, according to Cexsar, who appears to have been well acquainted with its true breadth, seeing it occupied all Lower Germany. It may therefore be considered as covering the whole of Germany; and most of the other forests may be considered as parts of it, though distinguished by particular names.
HERD. s. (heono, Saxon.) 1. A number -of beasts together. Flocks and herds are sheep and aren or kine (Addison). 2. A company
of men, in contempt or detestation (Dryden). of men, in contempt or detestation (Dryden).
3. It anciently signified a keeper of cattle. (hynpo, Saxon.) A sense still retained in come. position ; as, goat-herd.

To HERD. v. n. (from the noun.)
ìnn in herds or companies (Dryden). 2. To associate (Walsh).

To Herd. v. a. To throw or put into a herd (Ben Jonson).
HE'RDGROOM. s. (herd and groom.) A keeper of herds: not in use (Spenser).
HE'RDMAN. HE'RNSMANN.s. (herd and man.) One employed in tending herds : formerlv, an owner of herds (Sid. Dryd.).
HERE. ad. (hen, Saxon.) 1. In this
place (Mitton). 2. In the present state (place (Milton). \&. In the present state (Bacon). 3. It is often opposed to there (Sprat). HEREA BO'UTS. ad. (here and alout.) About this place (Addison).
HEREA'FTER. ad. In a future state
Shakspeare). (Shakspeare).
HEREA'PTBR. s. A future state (Addison).
HEREAT. ad. At this (Hooker).
HEREAT, ad. At this (Hooker).
HEREBY' ad. By this (Watts).
HERE'DITABLE. a. (haeres, Latin.)
Whatever may be occopied as inheritance
HEREDITAMENTS, whatever moveable things a person may have to himself, and his
heirs by way of inheritance heirs by way of inheritance; and which, if not
ortherwise bequeathed, descend to him who is. otherwise bequeathe deescend to him who is
next heir, and not to the executor as chattels do. HEREDITARRILY .ad.(from hereditary.) By inheritance.
HEREDITARY. (from hares, an heir.) An appellation given to whatever balongs to 2

HER

family by right of succession from heir to heir. The term hereditary is also figuratively applied to good or ill qualities, either of body or mind, supposed to be transmitted from father to son: thus we say virtue and piety are hereditary qualities in such a family; that in Italy the hatred of families is hereditary; and that the gout, king's evil, maduess, \&-c. are hereditary

Hereditary right, in the British constitution. The grand fundamental maxim uponwhich the jus corona, or right of succession to the throne of Britain depends, Sir William Blackstone takes to be this: that the crown is, by common law and constitutional custom, hereditiry; and this in a manner peculiar to itself: but that the right of inheritance may from time to time be changed or limited by act of parliament; under which limitations the crown still continues hereditary.
HEREFORD, a city of England, situated on the river Wye, near the centre of the county to which it gires name. The name is said to be Saxon, and signify the Ford of the Army, being a long time a military station of the Saxons, before the Norman conquest. Besides, the cathedral ; before the civil wars of the last century, there were five churches, two were then demolished. Hereford was formerly surrounded with walls and a ditch, and defended by a castle, said to have been as large as the castle at W indsor. The castle, great part of The wall, and three of the gates, are destroyed. The city is large, but not well built, though considerably improved, within a few years. Hereford is said to have been erected into a bishop's see in the year 680 : it is governed by a mayor and aldermen, \&ic. and has three markets weekly: Wednesday and Saturday forprovisions, poultry, butter, \&c.; and on Friday for live stock. The number of houses is 1460 , and of inhabitants 6828 . Lat. 52.4 N . Lon. 2. 3.5 W .
HEREFORDSHIRE, a county of England, bounded on the north by Shropshire, on the east by Worcestershire and Gloucestershire, on the south by Monmouthshire, and on the west by the Welsh counties of Brecon and Radnor. The form is nearly circular, the mean length about thirty-seven miles, and the breadth thirty-three. It is divided into eleven hundreds, which contain one city (Hereford), six market towns, 176 parishes, 17,944 houses, and 89,190 inhabitants. It furnishes 580 men to the national militia. The market towns are Leominster, Weobley, Ledhury, Kington, Ross, and Bromyard; the two first, the city of Hereford, and the county, each return two members to the British parliament. The principal rivers are the $W_{y e}$ and the Munnow, or Mynnow. The climate is mild, and the land generally fertile; the face of the country is rich, beautiful, and picturesque. The quantity of land is about $\mathbf{7 8 1 , 4 4 0}$ acres, about 30,000 acres of which are uncultivated; including wood-lands. The soil is very different, from a stroug clay to sand, yet all are productive. The principal part of

HER

the land is emplayed in tillage, producing wheat, barley, oats, clover, turnips, \&c. The county is in general well woorled, both in timber and copice wood, the value of which is much increased by the cultivation of hops. Herefordshire eyder has been long a liqnor highly esteemed; of course orchards and the culture of apple-trees are a matter of considerable consequence. The sheep of this country were formerly in much estimation, and the wool valuable on account of its staple and fineness; but the superior quality of the wool not beitg thought adequate to atone for the smallness of the carcass, the farmers are in general desirous of obtaining a breed larger and more protitable.
HEREGELD, in old writers, a tribute or tux for the maintenance of an army.
HERLI'N. ad. (here and in.) In this.
HFREINTO. ad. In this (Hooker).
HERIO'F. ad. From this ; of this (Shak.).
HERE(${ }^{\prime} \mathrm{N}$. ad. Upon this (Brourn).
HERE O C'T. ad. Out of this place (Spen.).
HEREMI'TICAL. a. (eremulical, from eremite; heremitique, Fr.) Solitiary ; suitable $s o$ a hermit (Pope).
HERLSIARCH. s. (heresiarque, French.) A leader in heresy (Stilling fleet).

H1: RESY. s. (heresie, Fr.; haresis, Lat.) An opinion of private men different from that of the catholic and orthodox church (Bacon).

Heregy, in law, an offence agaiust Christianity, consisting in a denial of some of its essenial doctrmes, publicly and obstinately avowed ; being defined, "sententia rerum divinarum humano sensu excogitata, palum docla et perlinaciter defensa.". And here it must be acknowledged that particular modes of belief or unbelief, not tending io overturn Chrissianity itself, or to sap the foundations of mosaity, are by no means the olject of coercion by the civil magistrate. What doctrines shall therefore be adjudged heresy, was left by our old constitution to the determination of the ecclesiastical judge; who had herein a most arbitrary latitule allowed him. For the general definition of an heretic given by lyndewode extends to the smallest deviations from the doctrines of the holy cinurch: "hareticus est qui dulitut de.fide cutholica, et qui negligit servare ca, que Romana ecclesia statuit, seu servare decreverat." Or, as the statute 2 Hen. 1V.c. 15. expresses it in English. "teachers of erronenus opinions, contrary to the faith and blessed determuations of the holy church." V ery contrary this to the usage of the first generil councils, which defined all heretical doctrines with the utmost precision and uxactness. And what ought to have alleviated the punishment, the uicertainty of the crime, seems to have enhanced it in those days of blind zeal and pious cruelty. It is true that the sanctimoninus hypocrisy of the canonists went at first no farther than enjoining penance, excommunication, and ecelesiastical deprivation, for heresy; though afterwards they proceeded boldly to imprisonment by the ordinary, and confiscation of gouds in pios usus. But in

HER

the mean time they had prevailed upor the weakness of bigoted princes to make the civid power subservient to their purposes, by makang heresy not only a temporal, but even a capit:al oflence : the Romish ecclesiastics deterinining, without appeal, whatever they pleased to be heresy, and shifting off to the seculararn the odium and drudgery of executions; with which they themselves were too tender and delicate to intermeddle. Nay, they pretended to intercede and pray, on behalf of the convicted heretic, ut cilra morlis pericalum senlen:ice circa eum moderetur : well knowing that at the same time they were delivering the unhappy victim to certain death. Hence the capital punishments inflicted on the anciess Donatists and Manichzans by the emperors Theodosius and Justinian : hence also the corstitution of the emperor Frederic mentioned by Lyndewode, adjoiging all persons without distinction to be burnt with fire who were convicted of heresy by the ecelesiastical judge. The same emperor, in another constitution, ordained, that if any temporal lord, when admonished by the church, should neglect to clear bis territories of heretics within a year, it should be lawful for good catholics to seize and occupy the lands, and utterly to exterminate the heretical possessors. And upon this founclation was built that arbitrary power, so long claimed and so fatally exerted by the pope, of disposing even of the kingdoms of refractory princes to more dutiful sons of the church. The immediate event of this constitution was something singular, and may serve to illustrate at once the gratitude of the holy see, and the just punishment of the royal bigot; for, upun the authority of this very constitation, the pep afterwards expelled this very emperor lirederic from his kingdom of Sicily, and gave it to Charles of Anjou.

Christianity being thus deformed by the dx mon of persecution upon the continent, we cannot expect that our own island should be entirely free from the same scourge. And therefore we find among our ancient precedenis a writ de heretico comburcide, which is thought by some to be as ancient as the common law itself. However, it appears from thence that the conviction of heresy by the common law was not in any petty ecclesiasticat court, but before the archbishop himselfin a provincial synoxl; and that the delinqueat was delivered over to the king to do as he should please with him: so that the crown had a controul over the spiritual power, and might pardon the convict by issuing no process against him; the writ de haretico conilinrendo being not a writ of course, but issuing only by the special direction of the kiog in council.
But in the reign of Henry IV. when the eges of the christian world began to open, and the seeds of the protestant religion (though under the opprobrious name of lollardy) took root in this kingdom; the clergy, taking advanuge from the king's dubious title to demand an increase of their own power, obtained an act of parli-

HERESY.

ment, which sharpened the edge of persecution to its utmost keenness. For, by that satute, the diocesan alone, without the intervention of a synod, might convict of heretical tenets; and unless the convict abjured his opinions, or if after alijuration he relapsed, the sheriff was bound e.x afficio, if required by the bishop, to commit the unhappy victim to the flames, without waiting for the consent of the crown. By the statute 2 Hen. V. c. 7 . lollardy was also made a temporal offence, and indictable in the king's courts; which did not thereby gain an exclusive, but only a concurrent, jarisdiction with the bishop's consistory.

Afterwards, when the final reformation of pelizion began to adrance, the power of the ecclesiastics was somewhat moderated; for though what heresy is was not then precisely defined, yet we are told in some points what it is not : the statute 25 Hen. VIII. c. 14. declaring that offiences against the see of Rome are not heresy, and the ordinary being thereby restrained from proceding in any case upon mere suspicion ; that is, unless the party be accused by two credible witnesses, or an indictment of heresy be first previously found in. the king's courts of common law. And yet the spirit of persecution was not yet abated, but only diverted into a lay channel. For in six years afterwards, by statute 31 Hen. VIII. c. 14. the bloody law of the six articles was made, which established the six most contested points of popery, transubstantiation, communion in one kiad, the celibacy of the clergy, monastic vows, the sacrifice of the rass, and. auricular confession; which points were" determined and resolved by the most godly sturly, pain, and travail of his majesty : for which his most humble and obedient subjects, the lords spiritual and temporal, and the commons, in parliament assembled, did not only render and give unto his highness their most high and hearty thanks ;" but did also enact and declare all oppugners of the first to be heretics, and to be burnt with fire; and of the five last to be felons, and to suffier death. The same statute established a new and mixed jurisdiction of clergy and laity for the trial and conviction of hereties; the reigning prince being then equally intent on destroying the supremacy of the lishops of Rome, and establishing all other their corruptions of the christian religion.
Without perplexing this detail with the sarious repeals and revivals of these sanguinary laws in the two succeeding reigns, let us proeed to the reign of queen Elizabeth; when the reformaion was finally established with temper and decency, unsullied with party-rancour, or personal caprice and resentment. By statute I Eliz. c. 1. all former statutes relating to heresy are repealed, which leaves the jurisdiction of heresy as it stood at common law ; riz. as to the infliction of common censures, in the ecclesiastical courts ; and in case of burning the heretic, in the provincial synod only. Sif Matthew Hale is inceed of a different opinion, and holds that such power resided in the di-
ocesan also; though he agrees, that in enther case the writ de heretico comburendo was not demandable of common right, but grantable or otherwise merely at the king's discretion. But the principal point now gained was, that by this statute a boundary is for the first time set to what shall be accounted heresy; nothing for the future being to be so determined, but only such tenets, which have been heretofore so declared, 1. by the words of the canonical scriptures; 2. by the first four general councils, or such others as have only used the words of the holy Scriptures; or, 3. which shall hereafter be so declared by the parliament, with the assent of the clergy in convocation. Thus was heresy reduced to a greater certainty than before ; though it might not have been the worse to have defined it in terms still more precise and particular: as a man continued still liabl to be burnt, for what perhaps he did not unlderstand to be heresy, till the ecclesiastic:judge so interpreted the words of the canonical scriptures.

For the writ de hæretico comburendo romained still in force; and we have instances of its being put in execution upon two baptists in the seventeenth of Elizabeth, and two Arians in the ninth of James I. But it was totally abolished, and heresy again subjected only to ecclesiastical correction, pro salute aninix, by virtue of the statute 29 Car. II. c. 9 : for, in one and the same reign, our lands were delivered from the slavery of military tenures; our bodies from arbitrary imprisonment by the habeas corpus act ; and our minds from the tyrauny of superstitious bigotry, by demolishing this last badge of persecution in the English law.

Every thing is now less exceptionable, with respect to the spiritual cognizance and spiritual punishment of heresy : but still much is wanting to the amelioration of the laws in this respect, even in the opinion of the most pious and excellent clergymen of the established church. Certainly what constitu:es heresy ought to bs more strictly defined, and no prosecution permitted, even in the ecclesiastical courts, till the tencts in question are by proper authority previously declared to be heretical. Under these restrictions, some think it necessary for the support of the national religion that the olficers of the church should have power to censure heretics; yet not to harass them with temporal penalties, much less to exterminate or destrog them. The legislature hath indeed thought is proper that the civil magistrate should agaiu. interpose, with regard to one species of heresy, very prevalcot in modern times; for by statute 9 and 10 W . III. c. 32 . if any person educated in the Christian religion, or profescing the same, shall by writing, printing, teaching, of advised speaking, deny any one of the persons in the holy Trinity to be God, or maintain that there are more gods than one, he shall underga the same penaltics and incapacities which were just now mentioned to be inflicted on aposiacy by the same atatute.

HER

HERETIC, in a general sense, is one that sets up to be the head, or chooses to join himself to a particular religious sect.
Herctic, in a bad sense, according to the opinion of Whitby, Foster, and many others, is one who knowingly espouses a false doctrine, is insincere in his profession, and asserts and defends what he is convinced is contrary to Christianity, and consequently supports the interest of a faction, in order to serve some bad designs. According to this opinion, a heretic not only entertains wrong sentiinents of christianity, but doth this wilfully, and with an ill intention : so that no mere error of the judgment can be heresy, and no honest man, who is not condemned of himself, can prossibly be a heretic.
The heretics, whom, in the New Testament, we are directed to avoid, were not the humble, modest, and peaceable, though erroneous christians, who adhered to the authority of Christ, and desired to know and do his will ; but the prour, pragmatical, turbulent party-men, who disturbed and divided the church by their impositions and innovations, on the terms of brotherly affection and christian communion, and by assuming an authority over their fellowchristians. Heresy, in the sense of scripture, doth not consist in simple error ; nor were those heretics who were anathematized and persecuted; but only those who anathematized and persecuted others, refusing to ack nowledge them for true christians, on account of their supposed or real mistakes: agreeably to this sense of the appellation, it is justly observed by Mr. Hallet, that the pope is the greatest heretic in the world. See Hallet's Notes, \&.c. vol. iii. disc. ix. p. 390, and Furneaux's Letters to Jurge Blackstone, p. 30.

A real heretic is properly he who maintains a false opinion, out of a spirit of obstinacy, faction, or hypocrisy. A heretic makes profession of christianity, by which he is distinguished from an infidel, Jew, and idolater.

A man does not become an heretic by doing a thing condemned or forbilden by the rospel, and of consequence repugnant to the christian faith; but by a stiff, disingenuous, wilful, turbulent alherence to an opinion opposite to some article of the christian faith, whether it regard speculation or practice.
HERETICAL. a. (from heretic.) Containing heresy (Decay of Piely).

HERE'TICALLY. ad. With heresv.
HERETO'. ad. (here and to.) 'To this; add to this.

HERETOCHS, among our Sason ancestors, signified the same with dukes or duces, denoting the commanders or leaders of their armics.
HERETOFO'RE. nd. (hereto and fore.) Formerlv; anciently (South).

HEREUNTO'. ad. (here and unto.) To this (Locke).

HleREWITH. ad. With this (Hayward).
Herford, or Hervorien, a free imperial town of Westphalia, capital of the coun-

HER

ty of Rayenshurg, with a famous nunners; belonging to the protectants of the confession of Augburg, whose abbess is a princess of the empire. Lat. 59.9 N. Lon. 8. 47 F .

HERGRUNDT', a town of Upper Hungary, noted for its mines of vitriol, which are very rich. Lat. 48.30 N . Lon. 18.15 E .
HERI, an island in the Indian Octan, two miles N.N.W. of Ternate. It is not more than two miles in circumference, but rery fertile and well inhabited.

HERIOT, in law, signifies a tribute given to the lord for his better preparation towards war. And by the laws of Canute, it appears, that at the death of the great men of this nation, so many horses and arms were to be paid for as they were in their respective life-times obliged to keep for the king's service. A heriot was first paid in arnss and horses; it is now by some custom sometimes the best live beast which the tenant dies possessed of, sometimes the best inanimate goods, under which a jewel or piece of plate may be included. Some are due by castom, some by tenure, and by reservation on deeds executed within time of inemory : those due by custom are the most frequent.

For an heriot service, or for an heriot reserted by way of tenure, the lord may either seize or distrain.

HERISSON, in fortification, a beam armed with a great number of iron spikes, with their points outwards, and supported by a pivot, on which it turns.

HE'RI'TABLE. a. (hares, Lat.) Capable to inherit whatever may be inherited (Hate).

HE'RITAGE. s. (heritage, Frencl.) 1. Inheritance; estate derolved by succession; estate in general (Rogers). \&. (In divinity.) The penple of God.

HERITIE'RA. Looking-glass plant. In botany, a genus of the class menoccia, orider monoclelphia. Calyx fire-toothed; corolless Male: authers ten, without filaments. Fem. germs five; drupes dry with one subglobular seed. One species : an East Indian tree.

HERMEA, ancient Greek festivals in honour of Hermes or Mercury. At the Ciretan Hermea the servants sat down at the table while their masters waited.

HEKMANN (James), a leamed mathematician of the academy of Berlin, and member of the academy of sciences at Paris, was born at Basil in 1078 . He was a great traveller ; and for 6 years was professor of mathematics at Pallua. He afterwards went to Russia, being invited thither by the Czar in 1794, as well as his compatriot Daniel Bernoulli. On his return to his native country, he was appointed professor of morality and natural law at Hasil; where he died in 1733, at 55 years of age. He wrote several mathematical and philosophical pieces, in the memoirs of different academies, and elsewhere: but his principal work is the Phoronomia, or two Books on the Forees and Motions of both Solid and Fluid Bodies; 410, 1716: a very learned work on the new mathe matical physics.

HER

HERMANNIA. In botany, a genus of the class monadelphia, order pentandria. Calyx simple, tive-cleft; petals five, spirally hooded; filanents lancolate; styles five: capsule fivecelled, many seeded. Thirty species; all shrubs and natives of the Cape of Goorl Hope. They are propagated by cuttings, planted during any of the sumimer months, in a bed of fresh carth, obsenving to water and shade them till they have taken root: in about six weeks after planting they should be taken up, with a ball of earth at their roots, and planted in pots, filled with light fresh earth, placing them in a shady situation till they have taken new root; after which they may be exposed to the open air till sometime in October, when they must be removed to the green-house, and have as much free air as possible: they must be frequently watered, and will require to be new potted twice a year, in May and September. The plants are also raised from seeds, which must be sown upon a nooderate hot-bed: when the plants come up, they should be transplanted into small pots, and pluaged into another moderate hot-hed, in order to promote their rooting; after that they must be hardened by degrees to bear the opel air, and may then be treated as the old plants; but they seldom produce prood seeds in this country.

HERMANSTADT, a large and strong city, the capital of Transylvania, with a bishop's see. It is seated on the Seben, and is fortitied with a double wall, and a deep moat. Lat. 40.25 N . Lon. 24. 40 E .

HERMAPHRODITE. (hermaphrodilus,
 Venus, i. e. partaking of both sexes). The true hermaphrodite of the ancients was, the man with male organs of p eneration, and the female stature of body, that is, narrow chest and harge pelvis; or the woman with female organs of generation, and the male stature of body, that is, broad chest and narrow pelvis. The term is now often used to express any lusus nature wherein the parts of generation appear to be a mixture of both sexes. But it is of still farther use in natural history, and accurately applied to a variety of the lower classes of animals, as insectis and worms, as well as to most classes of vegetables. Thus snails are hermaphrodites : they prosicss the organs of both sexes, but cannot propagate without copulating, the male organs of the one being applied to the female organs of the other, and vice versa. The female aphis is an extraordinary hermaphrodite : she generally propagates from union with the male, but if iefused or precluded from possessing it, she is said to propazate from her own - wers alone. Lpon this subject however there is some doubt: for it is probable that both the aphis and the hen will at times propagate successively, or at least more than once, from a single coition.

Mermaphrodite flower. In botany, having both anther and stigma. An hermaphrollite plant is that which bas only hermaphrodie flowers.
HERMAAPHRODITICAL. a. (from her-
maphrodite.) Partaking of both sexes (Brovin). HERMAPHRODITUS, in fabulues history, a son of Venus and Mercury educated by the Naiales. At the age of 1.5 he began to travel to gratify his curiosity. When he came to Caria he bathed himselfin a foumain, and Salmacis, the nymph who presided over it, became enamoured of hiin, and attempted to seduce him. He continued deaf to all entreaties, and Salmacis, endeavouring to obtain by force what was denied to prayers, closely embraced him, and entreated the gods to make them two but one body. Her prayers were heard, and Salmacis and Hermaphroditus, now two in one body, still preserved the characteristics of both their sexes. Hermaphroditus begged the gods that all who bathed in that fountan might become eff minate.
HERMAS. In botany, a genus of the class polygamia, order monœcia. Herm. : umbel teriminal; involucres general and partial; umbellets with truncate rays, the central ones floriferous; petals five: stamens five, barren; seeds in pairs, nearly orbicular. Male umbels lateral ; involucres general and partial; umbellets many-flowered; petals five, stamens five, ferile. Five specics: all herbs of the Cape.
HERMATHENA, a statue representing Mercury and Minerva in the same body, was generally placed in schools where eloquence and philosophy were taught, because these deities presided over the arts and sciences.
HERMESTRISMEGISTUS, an Eeyptian priest and philosopher; who taughr his countrymen the culitiation of the vine, the neasurement of lands, and the knowledge of hieroglypliiss. He lived as it is believed :adore than 1990 years before the christian ara. Clemens Ale sandrinus has recorded a list of more than 40 of this philosopher's works, none of which remain amongall that list. Not we treatise is professedly written on chemistry, although we find some on every other science, except that one which has received from him the name of Hermetic philosophy.
Hermes or Herma, among antiquaries, a sort of square or cubical figure of the yod Mercury, ustully made of marbse, though sonctimes of brass or other nateri:is, without arms or legs, and planted by the Grectis and Romans in their crossways. Servilus gives us the origin thereof in his comment on the eighth book of the Æueid. Some shepherds, says he, having one day canght Nercury, called by the Greeks Hermes, asleep on a mountain, cut of his hands; from which he, as rell as the mountain where the action was done, became denominated Cyllenius, from x:iגлos maimed: and thence, adds Serviu:, it is that certain statues without arms are denominated Hermeses or Herma. But this ely:nology of the epithet of Cyllenius contradicts nuost of the other ancient authors; who derive it hence, that Mercury was born at Cyllene. a city of Elis, or even on the mountain Cyicte i bet. which had been thus called before hin..

HERMERACLES, in auriquity, a sta
eompounded of the figures of Mercury and Hercules.
hermetic, or Hermeticalart, a name given to chemistry, on a suppesition that Hermes Trismenistus was the inventor of the art, or that he excelled therein. See Тнотн.

HERMETICAL PHILOSOPIYY, is that whien undertakes to solve and explain all the phenomena of nature, from the three chemical principles, salt, sulphur, and mercury.

Hermetical physic, ormedicine, is that system or hypothesis in the art of healing which explains the canses of diseases, and the operations of medicine, on the principles of the hermeticul philesophy, and particularly on the system of alkali and acid. It has been long exploded.

Hermetical seal, in chemistry, a manner of stopping or closing glass vessels so very accurately that nothing can escape. It is performed by heating the neck of the ressel in the flame of a lamp or otherwise, till it be ready to melt, and then with a pair of pincers twisting or bending it till the orifice is closed: it is then said to be hermetically sealed.

HERMETICALLY. ad. According to the hermetical or chmic art (Bentley).

HERMHARPOCRATES, in antiquity, a figure of a deity composed of Mercury and Harpocrates.

IIERMiONE, a daughter of Mars and Venus, who married Cadmus. The gods, except Juno, honoured her nuptials with their presence, and she received, as a present, a rich veil and a splenidid necklace which had been made by Vulcan. She was changed into a serfent with her husband Cadne. and placed in the Flysian fields. - 2. A daughter of Menelaus and Helen. She was privatcly promised in marriage to Orestes the son of A eamemnon; but her father, if-inrant of this preengagement, gave her hand to Pyrrhus the son of Achilles. Pyrrhns, at his return from Tıoy, carried home Herminne and married her. Hermione, tenderly attached to her cuusin Orestes, looked upon Prorhus with horror and indignation. According in others, however, Hermione received the addresses of Pyrrhus with pleasure. Her jeaionsy for Andromache, according to some, induced her to unitc herself to Orestes, and in destroy Pyrrhus. She gave herself to Orestes after this murder, and reccived the kingdom of Sparta as a dowry.
hermione, in ancient geography, a considerable city of Argolis. It was in ruins, except a few temples, in the time of Pansanias; whon says that the new city was at the distance of four stadia from the promontory on which the temple of Neptune stoocl. It gave name to the Sinus Hermionicus, a part of the Sinus Argolicus.

HE'RMIT. s. (hermite, French.) 1. A onlitary; an anchoret; one who retircs from society to contemplation and devotion. 2. A headsman; one hound to pray for another: improper (Shakspeare).

HERMITAGE. s. (hermitage, French.) The cell or habitation of a hermit (Addison).

HER'MITESSS. s. (from hermit.) A woo man retiry' n devotion.

IHER', TICAL. a. (from hermil.) Suitsble na mint.

hll RModactyl. Se Hermodac.

 tylus.HERMODACTYLUS. (hermodactylus, qquprexicuac:.) Etymolozists have alwaya detived this word from $E_{f / 4 n}$, Niercury, and daxicionss, 2 finger. It is probatly named from Hernus, a river in Asia, upon whose banks it grows, and jexlunos, a date, which it is lise. The ront of a spectes of coicincum, not yet ascertainerd, but supposed to be the colchicumillyri un of Linnéus, of the shape of a heart, flattened on one side, with a furrow on the other, of a whte colour, compract and solid, yet easy to cut or powder. This root, which has a viscous, sweetish, farinaceous taste, and no remarhatle smell, is imported from Turkey. Their use is totally laid aside in the practice of the present day. Formerly they were enteemed as cathartics, which power is wanting in those that reach this country.
HFRMOUORUS, a philosopher of Ephesus, who is said to have assisted, as inter!reter, the Roman decomvirs in the compostion of the ten tables of laws, which had been collected in Greece (Cicero).-2. A poet who wrote a book callied Nompa.

HERMON, ol Afrmon, in ancient gengraphy, a mountain of the $\overline{\text { nomorites, called }}$ ξ nnior by the Phounicians, and Sauir or Senir by the Amorites, on the cast of Jurdan. It is also called Sion (Moses); but must not be confounded with the Sion of Jerusaten. By the Sidonians it was called Scirion ; in the Vulgate, it is called Sirion. Joshua informs us, that it was the duminion of O : king of Bashan : which nimst be understood of its south side. It is never particularly mentioned by profane writers; being comprised under the appellation Libanus, or Antilibanus, with which mountain it is joined to the east. It is also called Hermonim plarally, Psalm xliii. 6. because it was extensile, and contained several mounLains.

IIERMOTIMCS, a famous prophet of Clazomenr. It is said that his soul separated from his budy, and wandered in every part of the earth to explain futurity, after which it returned again and animated his frame. His wife, who was acquaintel with the frequent absence of his soul, took advantage of it and bumb his body, as if totally dead, and deprived the sonl of its uatural reccptacle. Hermotimus received divine honours in a temple at Clazomenx, into which it was unlawful for women to enter.

HERMLS, in ancient geography, a river of Innia, which rose near Doryloum, a town of Phrygia, and passed through the plains of Snyrna, down to the sea.

HERN. s. (Contracted from heron).

HERMANDIA. Jack in a box. Mymbolan. In botany, a genus of the class moncecia, order triandria. Male : calyx three-parted; corol three-petalled. Fem. calyx very entire,

HERNIA.

Iruncate ; corolsix-petalled; drupe hollow with an open mouth, and noveable kernel. Two species.

1. H. sonora: with peltate leaves; a native of the West Indies.
2. H. ovigeta; with ovate leaves, petioled at the base. A native of Indis. Both are lufty trees with a whitish brittle wood, in their native habitations; but scldom in transplantation rise higher than a shrub of moderate tallness. The latter is esteemed in India an antidote against poisulied arrows, but on no sulficient a:nhority.

HERNIA. (hernia, from eiro;, a branch, because it protrudes forwards). Hernia is a swelling proiluced by the fulling down, or protrusion, of some part or parts which ought naturally to be contained within the cavits of the belly.

The places in which these tumours make their appearance, in order to form what is called hernia, are the groin, the navel, the labia pudendi, the upper and fore part of the thigh, and every point of the anterior part of the abdomen.

The parts which, by being thrust forth from the carvity in which they ought naturally to remain, and which form these tumours, are, a portion of the omentum, a part of the iutestinal canal, and sometimes, though very rarely, the ston:ach and! liver.

From these two circumstances, of situation and contents, are derived all the difficent appellations by which hernias are distinguished; for example, they are called inguinal, scrotal, femoral, umbilical, and ventral, as they happen to make their appearance in the groin, scrotum, thigh, navel, or belly. If a fortion of intestine only forms it, it is called enterocele, hernia intestinalis, or gut ruptire : if a piece of omentum only, epiplocele, hernia, omentalis, or caul rupture; and if both intestine and omentum contribute mutually to the formation of the tumour, it is called entero-epiplocele, or compound rupture.

If the piece of gut or caul descends no lewer than the groin, it is said to be incomplete, and is called bubonocele; if the scrotum be occupied by either of them, the rupture is said to be complete, and bears the name of oscheocele; the latter used by our forefathers to be artributed to laceration of the peritoncum, the former to its dilatation merely.

The opinion that the scrotal hernia is orcasioned by a forcible division or breach made in the peritoneum has always been; and still is, with the unknowing, a very prevailing one, though without any foundation in truth; both the scrotal and femoral pass out from the abdomen by openings which are natural to every human body, as well those who have not ruptures as those who have. The former, that is the scrotal, descend by means of an aperture in the tendon of the external oblique muscle, near the groin, designed for the passage of the spermatic vessels in men, and the round ligaments ef women; and the latter, under the hollow
made by Poupart's or Fallopius's liguments, at the upper part of the thigh, along with the great crural vein and artery.

Horses and other guadrupeds are subject to various species of this disease, as well as man. In the horse nore especially we meet with it from accidents and violent exertion. It is thus ally lescribed by Giitson. "When any part of the guts or caul makes its way through the mustes of the lower bells, it is calied a rupture; when any part of the guts fails into the scrotum, it is said to be a complete rupture; when at the navel, it is called an umbilical rupture. I once saw a fine Spanish stone horse with a conpitete rupture; the swelling was so extremely larec, that the gut extended the scrotum down to his hock. This circumstance rendered the cure in a great measure impracticable. It was the only one of the kind I ever saw, and, in fact, it is a case that must seldom happen, the position of a horse's body being such as cannot so easily expose hion to ruptures into the scrotum, as men are whose posture is erect. I also have seen a gelding, whero probably some part of the gut or peritoneum had made its way through the vaginal passage, into the membranous parts of the sheath on the right side; for the omentum or caul seldom reaches so low in a horse, his continual horizonial notion throwing it for the most part forward in wrimkles. The swelling was about the size of a goose's eger, a great part of which might be thrust back with the finger into the cavity of the lower belly, but immediately returned in the manner of a flatulent tumour; and perhaps there might be some portion of air along with it. The cure was never attempted, because it was little or no hindrance to the horse in his busincss, the swelling being generally fuller when he stood still than when he worked.
" But the most usual ruptures are more upwards, and proceed from strains in working, or from bcing staked, or gored by bullocks, violent kicks from other horses, very high leaps over gates and herlges; all which things sometimes divide the muscles of the lower belly, and oft-times without piercing or rending the skin, whereby a portion of the intestines, with a part of the peritoneum, and when the wound happens to be forward, part of the cau! may also be Indged where these muscles are separated or divided, and so cause a swelling of a proportion and size equal to the rent made in the part. An instance of this kind I onse saw, of a very fine Flanders mare, that had a rupture near her navel of a considerable size, which however did not present her workitg, but as it grew larger it became troublesome; and a very eminent and able surgeon imagining the substance to be fleshy, and of the nature of a wen, persuaded ne to have some trial made of it by excision, for it felt solid as she stood on her legs, which might be owing to part of the caul (which is always rolled forwards in working horses), and along with this, an adventitious growth of flesh, caused by the rending of the

HERNIA:

muscles and membranes; $;$ for when she was thrown upon her back, part of the substance weut inwards, and plainly discovered her malady to be a rupture.
"I have known some few instances of umbilical ruptures, that have been caused by rowels in the belly, when they have been cut too deep, and perhaps were afterwards neglected. And I knew a horse with a rupture of this kind perform a journey of several hundred niles, without any great inconvenience, ouly that he always went sluggish at his first setting out, but inore cheerfully as he emptied himself. Nevertheless this is a very great defect, and few horses with such infirmities can be long useful. I have seen other ruptures, and these are indeed the most usual, that push out on the sides of the lower belly, where the tunica vaginalis passes through the rings of the muscles, with the spermatic vesscls, into the scrotum; and in geldings they seldon reach further than the first ring, which is a little way above the groin, but when they happen on the sides of the flanks, they are then for the most part owing to such accidents as have been abovementioned. They gencrally bunch out about the size of a man's fist, and are fullest when the horse stands still in the stable, especially after feeding and watering, and in brokenwinded horses they rise and fall with the agitation of the flanks; they are soft, and yield to the pressure of the hand, and in most of them one may fell the vacuity through which the viscera make their way immediately to the skin. But as there is no absolute cure to be expected in such cases, the safest way is to feed moderatcly, and in small quantities, with small draughts of water, and to use such horses gently. In all beginning ruptures, a fomentation made of oak hark, boiled in equal parts of the sharpest vinegar, and smith's forge water, have been used by farriers for a general application; for in horses, bandage and trusses of any kind are for the inoit part impracticable."
This experienced writer concludes his subject with an instance of a very fine gelding that was killed by a rupture, and in a manner somewhat extraurdinary. "This horse," says he, "belonged to a person of distinction, and was athroad with our army in Germany and the Netherlands. He received a hurt while he stoxd at the piquet along with some other horses ; yet went through his business very well for the space of two years, notwithotanding that arcident ; but afier a hard div's hunting, was taken with the gripes, of which he died. I was sent for to examine hi: abdomen, where there was something that surprised all that saw him opened. The ring through which the tunica vaginalis passes appears plainly in a horse to be formed of the tendinous part of the muscles, has the strength and firmness of a ligament, and resembles a hem or large oilethole, such as we see in the sails of a ship. One half of this ring was torn off from the ficsh, and lay across the orifice, which tied up a duplicature of the culon so tight that nothing
could pass through it ; and this was eridently the cause of his sudden death.
"I have briefly related this case," adds he, " in order that those who are empleyed about horses may be so far informed in such thing as to examine them carefully when the gripes, or any other sudden disorder, seizes them. For if the duplicature of the gut had been forced back into the cavity of the lower belly, when he was first seized, his death might probably have been prevented; for this rupture seldom appeared larger than a man's fist."
Hernia congenita (so called because it is, as it were, born with the person). This species of hernia consists in the achecion of a protruded portion of intestine or omentum to the testicle, after its descent into the scrotum. This adhesion takes place while the testicle is yet in the abdomen. Upon its leaving the abdomen it draws the adhering intestine or omentum along with it into the scrotum, where it forms the hernia congenita.
Herniacruralis. Femoral heruia. There is no difference between an inguinal and crual hernia, but what arises from the places where they are formed. Men are most subject to inguinal, and women to crural hernia, proceeding from the figure of the pelvis, which is largest in woonen, while the utcrus and the bladder concur by their bulk to force the intestines on each side the ossa ilia, being more spread in them than in men, afford larger spaces for the parts to be received on the sides, and to recede from the groin. In the cruaral hernia, the parts generally pass out of the abdomen under Poupart's ligament, in the space formed by the attachments of this ligament to the os pubis. It is owing to the fat which envelopes the crural vessels that the viscera more easily slip down under this ligament; and those ressels are always found behind the hernia. The parts extend theniselves afterwards more or less under the aponeurosis, which proceeds from the ligament, and covers the muscles that form the fore part of the thigh. The peritoneum, in its natural state, obstructs their passage here, as it docs at the ring, but it likewise gives way, as in the inguinal hernia, to the pressure of the viscera, and, being distended, forms a hernial bag, of a greater or less size according to the bulk of the prolapsed parts. In the iaguinal hernia, the colon is sometimes found, and the cacum very sellom; but in the crural hernia the bag of the cacum is frequently seen with the beginning of the colon.
Hernia humoralis. Inflammation of the testicle. Here the term hernia is very im. properly applied: there is certainly tumour in the disease, as there must necessarily be in all local inflammations of the soft parts: but if tumour, or inflammatory tumour alone were to constitute a hernia, there would be neither discrimination in the genus nor termination in the species of the disease. It is more accurately named Orchitis, which see.

Hernia incarcerata. a rupture is
soid to be incarcerated or strangulated, when on a sudden the protruding viscus cannot be reduced into its proper cavity, and bad symptoms arise, as voniting, collic, and obstipation, fever and tumour of the part: which alarming symptoins arise either from obstruction of the intestines, or from suspended circulation of the bloorl. The danger in this state depends on the narrowness of the strangulating opening, and the extent of the parts which have fallen down.

Hernia inguinalis. The hernia inguinalis is so called because it appears in both sexes at the groin. It is one of the divisions of hernia, and includes all those hernix in which the parts displaced pass out of the abdomen through the ring, that is, the arch formed by the aponeurosis of the musculous obliquas externus in the groin, for the passage of the spermatic vessels in men, and the round ligament in women. The parts displaced that form the hernia, the part into which they fall, the manner of the hernia being produced, and the time it has continued, occasion great differences in this disorder. There are three different parts that may produce a hernia in the grein, viz. oue or more of the intestines, the epiploon, and the bladder. That which is formed by one or more of the intestines, was called by the ancients enterscele. The intestine which most frequently produces the hernia is the iliun : because, being placed in the iliac region, it is nearer the grom than the rest; but notwithstanding the situation of the other intestines, which seems not to allow of their coming near the groin, we often find the jejunum, and frequently also a portion of the colon and cacum, included in the hernia. It must be remembered, that the mesentery and mess)colon are membranous substances capable of extension, which, by little and litule, are sometimes so far stretched by the weight of the intestines as to escape with the ilium, in this species of hernia. The hernia made by the epiploon is called epiplucele; as that caused by the epiploon and oue of the intestines together is called entero-epiplocele. The hernia of the bladder is called cystocele. Hernia of the bladder is uncommon, and has seldom been known to happen but in conjunction with some of the viscera. When the parts, haring passed through the abdominal rings, descend no lower than the groin, it is called an incomplete hernia; when they fall into the scrotum in men, or into the labia pudendi in women, it is then termed complete.

HERNIARIA. (herniaria, from hernia, a rupture, so called from its supposed efficacy in curing ruptures). Rupture-wort. In botany, a genus of the class pentaniria, order digynia. Calyx five parted inferior; corolless: stamens with five filiform scales between them: capsule one-seeded, covered with the calyx. Six specie3, chiefly natives of Spain or the Alps, but two of them, H. glabra, and H. hirsuta, common to our own country. The former of these two was long ago esteemed efficacious in the cure of hernias: but has long since been discarded froma every dispensary,

HER

HERNIOTOMY. (herniatomia, from hero nia, and $\pi, \mu \mathrm{mw}$, to cut). The operation to remore the strangulated part in cases of incarcerated hernia. This term ought to be expunged from the chirurgical vocabulary, as an illegitimate compound of Latin and Greek. As the Greek xnay is now generally appropriated to hernial tumours, it should give way to celutomy, which indead has been already made. use of by wore correct writers.

HERO, in pagan mythology, a great and illustrious person, of a mortal nature, though supposed by the populace to partake of immortality, and after his death to be placed among the number of the gods. The word is. formed of the Latin heros, and that of the Greek rfow, semi-deus, "demi-god." The Greeks erected colurns and other monuments over the. tombs of their heroes, and established a kind of worship in honour of the manes both of their heroes and heroines. The Romane also raised statues in honour of their heroes; but there were six of their heroes of a superior order and who were supposed to be admitted into the community of the twelve great gods: these were Ifercules, Bacchus, Esculapius, Romulus, Castor, and Poliux. Writers have distinguished between the worship which the ancients paid to their heroes and that offered to their gorls. The latter, it is said, consisted of sacrifices and libations; the former was only a kind of funeral honqur, in which they celehrated their exploits, concluding the rehearsal with feasts.

Hero is also used in a more extensive sense, for a great, illustrious, and extraordinary personage ; particularly in respect of valour, courage, intrepidity, and other military virtues. F. Bouhours makes this distinction between a great man and a hero, that the latter is more daring, fierce, and enterprising; and the former more prudent, thoughtiul, and reserved. In this sense we properly say, Alexander was a hero, Julius Ciesar a great man. Women who evince any extraordinary heroism of character are called heroines.

Hero of a poem or romance, is tha principal personage, or he who has the chief part in it. Thus the hero of the lliad is Achilles; of the Odyssey, Ulysses; of the \#neid, Æueas : of'Taso's Jerusalem, Godfrey of Bulloign; of Milton's Paradise Inst, Adam; though Mr. Dryden will have the Devil to be Milton's hero, because he gets the better of Adam, and drives him out of Paradisc. Many. of the critics find fault with the hero of the IEneid, for being too delicate, wanting the fire, firmmess, and uncontroulable spirit remarkable in the hero of the Iliad. Piety, tenderness, and submission to the golls, are virtues of the middle class of mankind; they do not strike enough for a hero, who is to be the instrament of such notable exploits.

In answer to this, F. Bossu observes, that有neas's character was not to be formed on the morlel either of Achilles or Clysses; nor to be of the same kind with them, as the fable and design of the Eneid were very differeat from

HER

Those of the Iliad and Odyssey. Virgil's design Fras to persmade the Romans to receive a new form of government, and a new master; who must have all the qualities requisite for the founder of a state, and all the virtues which make a prince beloved.

Hero, in fabulous history, a priestess of Venus, lised at Abvdos, in a tower situated on the bank of the Hellespont. She being beloved by Leander, who lived at Sestos, on the other side of the streight, he every night swam over to visit her, but the light being put out in a stormy uight, the youth missed his wav, and was drowitied; on which Hero threw herself into the sea, and was also drowned.
Hero, the nane of two celebrated Greek mathematicians; the one called the old, and the other the young, Hero. The younger was a disciple of Ctesibus. They are known by two works translated into Latin by Barochius: Spiralium liber, by Hero senior ; and Tractat. artis et machin. militar. by Hero junior. They flouristed about 130 and 100 B . C.

HER()D the Great, was born at Ascalon in Judra, B. C. 70. He was the son of Antipater the Irlumean, who appointed hin governor of Galike. Antony made him tetrarch, and afterwards he obtained the kingdom of Judra, which was confirmed to him by Augustus. He behaved like a sarage tyrant to his subjects and to his own family. His wife, the beautiful Mariamne, her grandfather Hyrcanus, and brother Aristobulus, were all made victims to his cruelty. At the birth of our Sa viour he caused all the infants of Bethlehem to be massacred, in hopes that he would fall in the number; and put to death his own sons Alexander and Aristobulus, and many other persons, so that Augustus said, "It was better to be Herol's hog than his son." However he sebuilt the temple of Jerusalem, and in a time of famine sold his curiosities to relieve the suffercrs. He died miserably about two or three years after the birth of Christ, aged 70.

Herod Antipas, the son of Herod the Great, succeeded his father as tetrarch of Galilee. He dirorced his wife, the danghter of Aretas king of Arabia, and esponsed Herodias the wife of his brother Philip. Aretas avenged the insult by declaring war against him, in whirh the Jews suffered several defeats. Herod sacrificed John the Bapist to the cruelty of Herodias ; and his conduct orcasioned the Jews to revolt. Being called to Rome to justify his conduct, he died on the road. This is the Herod to whum Jesus Christ was sent hiv Pilate.

HFRODIAN, a Greek historian, who flourished A, D. 247. He was a native of Alexandria, and enjoyed some oflice at court. He wrote a Roman history, in eight books, from the death of Marcus Aurclius to Maximinus, which is extant. The best editions are that of Politian, who also translated it into excellent Latin, 4to. 1525; and that of Oxford, 8vo. 1708.

HERODIANS, a sect among the Jews, at the time of Jesus Christ, mentioned by St. Matthew, sxii. 16. and St. Mark, iii. 6. and xii. 13 :

HER

The critics and commentators on the New Testament are very much divided with regard to the Herodians; some making them to bea political party, and others a religious scet. The former opinion is favoured by the author of the Syriac version, who calls then the domestics of Herod, and also by Josephus' having passed them over in silerice, though he profesises to give an account of the several religious sects of the Jews. The latter opinion is countenanced by nur Lord's caution against the learen of He rod, which implies, that the Herodians were distinguished from the ocher Jews by some doctrinal tenets.
Dr. Prideaux is of opinion that they derived their name from Herod the Great, and that they were distinguished from the other Jews by their concurrence with Herod's scheme of subjecting himself and his dominions to the Romans, and likewise by complying with many of their heathen usages and customs. This symbolizing with idolatry upon views of interest and worldly policy, was probably that leaven of Herod, against which our Sariour cautioned his disciples. It is farther probable that they were chiefly of the sect of Sadducee; because the leaven of Herod is also denoninated the leaven of the Sadducees. Prid. Corn. part ii. bonk v. sub. sin.
HERODOTUS, a celebrated historian of Halicarnassus. He travelled over Egypt, Italy, and all Greece. He afterwards returned io Halicarnassus, and expelled the tyrant Lydamis, which deed, far from gaining the esteem of the populace, irritated them, so that Herodotus was obliged to fly into Greece. To pmcure a lasting fame, he publicly repeated at the Olympic games the history which he had composed in his 3gth year, B. C. 445. It was received with such universal applause, that the names of the nine Muses were unanimousty given to the nine books into which it is divided. This celcbrated composition, which has procured its author the title of father of history, is written in the Ionic dialect. Herodotis is among the historians what Homer is among the poets, and Demosthenes among the orators. His style abounds with elegance, ease, and sweetness. The work is an histor of the wars of the Persians against the Greeks, from the age of Crrus to the battle of Mycale in the reign of Xerxes; and, besides this, it gives an account of the most celebrated nations in the world. Piutarch has accused him of malerolence towards the Greeks. The best editions of this valuable writer are, that of Gronovius, at Leyden, in 1715 ; of Wesseling, folio, Amst. 1763 ; and that of Glasgow, 9 vol. 12mo. 1761. Mr. Beloe has given an excellent English translation of this historian.

her roess. Sec Heroine.

HERO'IC. a. (from hero.) 1. Productire of heroes (Shakspeare). 2. Noble; suitable to a hero; brave; magnanimous; intrepid (Faller). 3. Reciting the acts of heroes (Courley).

Heroic age, that age or period of the world wherein the beroes are supposed to bave lived,

HER

Heroic verse, that wherein heroic pooms are usually composed; or it is that proper for such poems. In the Greek and Latin, hexameter verses are usually denominated heroic verses, as being alone used by Homer, Virgil, $\& c$.

Alexandrine verses of twelve syllables were formerly called heroic verses; but later writers use verses of ten syllables.

Heroic porm. See Epic porm.

HEROINE, a woman of an heroic spirit, or who makes the principal personage in an heroic poem.

HE'ROISM. s. (heroisme, Fr.) The qualities or character of a hero (Broome).
heron, in ornithology. See Ardea.
HE'RONRY. HE'RONSHAw. s. (from heron.) A place where herons breed (D.r.).
 crecp, because it creens and spreads about the skin.) Serpigo. 'Tetters. A genus of diseases in the class locales and order dialysis of Cullen, distinguished by an assemblage of little creeping ulcers, itching very much, and not inclined to heal, but terminating in furfuraceous scales. There are two species of this disease: 1. Herpes simplex, which corresponds with the above description. 2. Herpes exedens, called also ferus and esthionenos, which deeply corrodes the skin, and continues spreading sometimes over the abdomen or face, or where it is situated, and sometimes becomes carreerous. Herpes has been thought by many to be produced by a bilious acrimony irritating the subcutaneous glands. The remote causes are the abuse of spices, suppressed eracuations, cachexies, contagion. Herpes is sometimes critical, arising after jaundice, fever, \&c. and should not be checked. The herpes exedens sometimes becomes cancerous.

HERRING, in ichthyology. See CluPEA.

Herring fishery. Sce Fishery

Merring (Thomas), archbishop of Canterbury, was the son of a clergyman in Norfolk, and born in 1693 . He receivel his alucation at the grammar school of Wisbeach, from whence he was removed to Jesus college, Cambridge. Afterwards he was elected fellow of Corpus Christi college, and was also a tutor there for several years. On entering into orders he became minister of Great Shelford. In 1722 he was appointed chaplain to Dr . Fleetwood bishop of Ely, who gave him some preferment. In 1726 he was chosen preacher to the society of Lincolu's-inn, and about the same time appointed chaplain to his majesty. In 1731 he was made dean of Rochester. In 1737 he was raised to the bishopric of Bangor, from whence in 1743 he was translated to York. In the time of the rebellion the archbishop exerted himself with great zeal in defence of the government, and gave by his example great animation to the king's friends in the north, for which he was in 1747 rewarded with the metropolitical seat of Canterbury. He died, after a long illness, in 1757, and was buried in the church of Croydon. A volume of
his sermons on public occasions has been printed, and Mr. Duncombe has also published a volume of his letters.
herrnhut, or Herrnhuth, the firsa and most considerable settiement of the United Brethren, commonly called Moravians, situated in Upper Lusatia, upon an estate belonging to the family of Nicolas Lewis Count Zinzendorf, about 50 miles east of Dresden. See the article Unitedbrethren. The building of this place was began in 1727 by some emigrants from Moravia, who forsook their possessions on account of the persecution they suffered as Protegtints from the Roman (atholics. It is situated upon the rise of an hill called the Hutberg, or Watch-hill, from which they took occasion to call the new setilement Herrnhut, or the Watch of the Lord. The building, increase, and admirable regulations of this settlement occasioned no small surprise in the adjacent country; and caused, in 1732, 1730, and 1737, commissioners to be appointed to examine into the doctrives and proceedings of the brethren at Herrnhut. The commissioners made a favourable report; and ever since both Herrnhut and other settlements of the United Brethren in Saxony have been pratected, and even several immunities oflered them by the court, hut not accepted. Herrnhut was visited in 1766 by the late emperor Joseph II. after his return from Dresden, by the king of Prussia, and by several other royal personares, who expressed their satisfaction in examining its peculiar regulations. The United Brethren have settlements in Saxony, Silesia, and other parts of Germany; in Holland, Denmark, England, Ireland, and America. In England their principal settlements are at Fulnee near Leeds, and Fairfield near Munchester. In Greenland, North and Sounh America, the West Indics, and Russia, they have missions for the propagation of Christidnityamong the heathens; and in many parts have had considerable success. See Busching's Account of the Rise and Progress of the Church of the Brethren, printed at Halle in 1781; and Crantz's History of the Brethren, London 17*0.

HERS. pron. The female possessive. See Her.

HERSCHEL, the name by which several astronomers call the primary planet discovered by Dr. Herschel in March 1781. Its other names are Georgium Sidus, and Ouranus or Uranus. The planet is denoted by this character H , a Roman H as the initial of the name, the horizontal bar being crossed by a perpendicular line, forming a kind of cross, the emblem of Christianity, meaning thereby perhaps that its discovery was made by a Christian, or since the birth of Christ, as all the other planets were discovered long before that period.

This planet is the remotest of all those that are yet known, though not the largest, being in point of maznitude less than Saturn and Jupiter. Its light, says Dr. Herschel, is of a blueish-white colour, and its brilliancy between that of Venus and the maven. With a teles-

HER

eope that magnifies about 300 times, it appears to have a very well defined visible disk; but with instruments of a small power, it can hardly be distinguished from a fixed star of between the sixth and seventh magnitude. In a very fine clear night, when the moon is absent, a good eye will perceive it without a telescope.

From the observations and calculations of Dr. Herschel and other astronomers, the elements and dimensions, \&c. of this planet, have been collected as below.
Place of the node - - $2^{0} 11^{\circ} 42^{\prime} 30^{\prime \prime}$ $\begin{array}{llllll}\text { Place of the aphelion in } & 1795 & 11 & 23 & 33 & 55\end{array}$ Inclination of the orbit - . . 43.35 Time of the perihelion passage Sep. 7, 1799. Eccentricity of the orbit gos
Half the greater axis 19.0818 of Earth's dist. Revolution - - $83 \frac{1}{\mid}$ sidereal years
Diameter of the planet 35107 miles
Propor. of diam. to the
earth's $\quad 4.3177$ to 1
Itsbulk to the earth's $80 \cdot+9^{2} 6$ to 1
Its density as - - 2204 to 1
Its quantity of matter 17.7406 to 1
And heary bodies fall on its surface 18 feet 8 inches in one second of time.

Dr. Herschel has likewise discovered 6 satellites belonging to this planet. The periodical revolutions of these satellites are completed in the respective times following. I. 5d. 21 h .25 m .11 .8 d .17 h .1 m .19 s . Ill. 10 d . 23 h .4 m . IV. 13 d .1 hh .5 m .2 s . V. 3 Bd . 1 h .49 m . VI. 107 d .16 h .40 m . The orbits of these satellites are very much inclined to the plane of the ecliptic ; and it has been asserted that therer real motion is retrograde; but this is probably an optical illusion.

HELRSE. s. (hersiu, low Latin.) 1. A temporary monument raised over a grave. 2. The carriage in which corpses are drawn to the grave (Pope).

To Herse. v. a. (from the noun.) To put into a herse (Crushure).

HERSESF. pronoun. 1. A female individual, as distinguished from others (Shak.). 2. Being in her own power; mistress of her own thoughts (Dryden). 3. The oblique case of the reciprocal pronoun; as, she hurt herself.
HE'RSELIKF. a. (herse and like.) Funeral; suitable to funerals (Bacon).
HERSIPHORIE, the same as Arre. phoria.

HERTFORD, a town of England, and capital of the county to which it gives name, situated on the river Iea, which is navigable from the Thames, said to be a town in the time of the ancient Britons. Sume of the Saxon kings resided here, and on the first division of the kingdom into countics it was made the county town; the magitracy is vested in a mayor and addermen, burgesses, \&c. There were formerly five churches, but now only two, with places of worship for Dissenters, Quakers, \&.c. A castle was built here in the reign of king Alarea, to stop the incursions of the Danes, who had sailed up the river Lea, as far as

HER

Ware, where they had erected a fort, to which they retired after plundering the country round about. The castle is now the seat of the marquis of Downshire. In the reign of king John the castle was taken by the barons, but recovered by king Henry 111. Here is a large school for the younger children belonging to Christ's Hospital in London. Members were returned to parliament in the reign of Edward I. but in the reign of Henry V. the burgesse desired to be excused, on account of their poverty; however, two members have been returned ever since the reign of James I. Here are two markets weekly, viz. on Thursdays and Saturdays. The town contains 542 houses, and 3360 inhabitants. Lat. 51.50 N . Lon. 0. 1 E .

In 1806 a college and school were opened here, belonging to the Fast India Company, and where persons are to be properly qualificd for filling places of trust and importance in the civil government of India. The lectures of the professors are arranged under the heads of oriental literature, mathematics and natural philosophy, classical and general literature, law, history, and political cconomy. The president of the college is Dr. Samuel Henley, a man of established character and considerable erudition: and two of the professors, viz. Mr. Bridge and Mr. Dealtry, are extremely well fitted for the departments they fill. The students arc habited in the costume of the Cambridge undergraduates; a circumstance which we cannot but regret, as it may often induce them to assume improper airs, and the presdent has no such power as the vice-chancellor and proctors of the Unirersity, to talie cognizance of and punish offenders.

HERTFORDSHIRE, or Herts, a cuunty of England, bounded on the N. by Cambridge, on the E. by Essex, on the N. W. by Bedfordshire, oa the W. by Bucks, and on the S. by Middlesex. It is 36 miles long from N . to S . and 98 broald from E . to W . It is divided into eight hundreds, which contain 19 market towns, and 174 parishes, and sends six menbers to parliament. The northern skirts of this county are hilly, forming a scattered part of the chalky ridge which extends across the kingdom in this direction. A number of streams take their rise from this side, which, by their clearness, show the general nature of the snil to be inclined to hardness, and not abundantly rich. Flint stones are scattered in great profusion over the face of this, county ; and beds of chalk are frequently to be met with. It is found, however, with the aid of proper culture, to be extremely favourable to corn, both wheat and barley, which come to as great perfection here as in any part of the kinglom. The western part is, in general, a tolerally rich soil, and under excellent cultivation. ludeed, the traffic of the county is in corn and malt. The air is wholesome; and the principal rivers are the Lea, Stort, and Coln. The comintyontains alout 451,000 acres of land, about 4500 of which are uncultivated, including woxllands. There were, in 1801, 18, 172 houses, and 97,577

HES

HES

inhabitants. It then furnished 480 men to the national militia.

HERVEY (James), a pious and ingenious Fnglish divine, was the son of a clergyman at Hardingstone in Northamptonshire, where he was born in 1714 . He received his academical education at the grammar school of Northampton, and was removed from thence to Lincoln college, Oxford, where he had for his tutor the celebrated Mr. John Wesley. In 17.36 he became curate to his father, who had then the living of Weiton Favell, and soon afterwards went to Bideford in Devonshire, where he was greatly beloved by the parishioners. In 1743 the old rector dying, and a a new one being piesented, Mr. Hervey was removed from the curacy to the great grief of the inluabitants, who offered to pay his salary themselves if the rector would permit him to remain. This being refused, he returned to his father, whom he succceded in his livings of Weston and Collingtree. In $17+6$ he publi.her his Meditations among the Tombs, and Reflections in a Flower Garden, which being well received he added another volume, and they both are ton generally known and admired to need encomium here. In 1755 he published his Theron and Aspasion, or a Series of Dialognes and Letters on the most important Subjects, in 3 vols. 8vo. This work, in respect of Janguage and arguinent, rises far superior to the Meditations. The author's grand object is to prone the total ruin of mankind by the fall, and their restoration by the imputation of Christ's righteousness. Several writers attacked his doctrine, and among the rest Mr. John Wesley, to whom Mr. Hervey replied in a series of letters, which were pullished after his death. As his works had a great sale, his profits were large, but he gave the whole away to charitable purposes. This eminently pious and goorl man died on Christmas-day, 17j8, after a lingering consunption, which he bore with all the fortitude and submission to the divine will, which genuine christianity can inspire. Besides the above performances, he printed Refections on Lord Bolingbroke's Letters on the Study and Use of History, and several single Sermons. All his works were printed in 7 vols. 8 vo. 1796.

Of the piety of this excellent man, and the great usefulness of many of his writing, there cannot be two opinions. His erudition was respectable; but his taste was extremely ill formed; and his style is, therefore, very inflated, diffuse, and flowery. (See Florid.) He was, however, a man of genius as well as of piety; and our language must undergo considerable mutations before his publications can sink into neglect.

To HE'RY. v. a. (hemian, Saxon.) To regard as holv; not in use (Spenser).

HFSbON, Esebon, or Hesbbon, in ancient gengraphy, the royal city of the Amorites, in the tribe of Reuben, according to Moses: though in Joshua xxi. 39. where it is reckoned among the Levitical cities, it is put in the
tribe of Gad ; which argues its situation to be on the confines of both.

HESDIN, a strong town of France, in the department of the Straits of Calais and late county of Artois. Lat. 50. 24 N. Lon. \%. 6 E .

HESIOD, a celebrated poet, born at Ascra in Beotia, son of Dius, and Pycimede. He lived in the age of Homer, and even obtained a poetical prize in competition with him, according to Varro and Plutarch. Quintilian and others maintain, that Hesiox lived before the age of Homer; but Val. Paterculus, \&c. support that he flourished about 100 years after him. Hesiod is the first who wrote a porm on agriculture. This composition is called The Works and the Days. His Thengony is a miscellancous narration executed without art or precision, and his Shield of Hercules but a fragment of a larger poem. Hesiod, without being master of the fire and sublimity of Homer, is admired for the elerance of his diction and the sweetuess of his poetry. Virgil, in his Georgics, has imitated the compositions of Hesiod, and taken his opera and dies for model. The Greeks were so partial to his poetry and moral instructions, that they ordered their children to learn all by heart. If Hesiod flourished in the age of Homer he probably lived 907. B. C.

A good edition of Hesind's works was published at Amsterdam by Le Clerc, in 1701. They have been done into English by Thomas Cooke; and the Remains of Hesiod have been just translated into English verse by C. A, Elton.

Lucian has left us a little dialogue between Hesiod and hiunself, wherein he jecrs him, because he boasted of his commerce with the Muses.
"Lurian. Your verses, IHesiod, sufficiently evince you a great poet, for all you write is notile and lofiy, and we easily perceive you have reccived a branch of laurel from the Muses' hands. But you having said that this divine present would teach things past and future, 1 would fain know, why having descanted on the one, you have told us nothing of the other; for you have sung the geneology of the gorls, beginning from the heaven and earth, the chaos and love: you have afterwards set down the precepts of astrology for sailors and husbandmen; you have treated of rural life, of women's virtues, and other such like matters; but you have not hazarded so much as one word of futurity, which had bctter manifested your inspiration, and redounded more to the advantage of men. Is it that you imposed upon us? or are you willing to conceal your secret? or else are not your prophecies transmitted down to us? for there is no likelihood that the Muses should keep but that part of their promise, and neglect to teach you futurity, which was the main thing.
"Hesiod. It is easy to answer you, that having said nothing but by the inspiration of the Muses, 'tis to them to give you an account
of their actions; but if sou desire to know something of my calling, I will tell you what I know of agriculture. As the gods reveal themselves to whom they please, so they reveal only what they please, and have not taught me the least of what you desire to know. Moreover, an historical truth is not expected from poets, nor a reason asked them of all their fictions; besides, they are used to add many things, for the filling up the measure of their veroes, or to canse the more admiration ; for if you should retrench them of this liberty, you would curb their genius. But without taking notice of the beanty of invention and expresion, which are the principal tatents, you make it your business to cavil at the words, as you would do with those of a contract; which is the sign of a carping, quirking wit. 1 forhear to mention, that you will find in my poem entitled The Works and Days several predictions, which I bestow on those who are good and bad husbandmen."

HE'SITANCY. s. (from hesitate.) Dubiousness; uncertainty ; suspence (Alterl.).
To HE'SITA'TE.v. a. (hresito, Latin.) To be doublful; to delay; to pause (Pope).

HESITATION. s. (from hesitate.) 1. Doubt; uncertainty; difficulty made. 2. Intermission of speech; want of volubility (Surift).
HESPER, in astronomy. See Hesperus.
HESPERIA, an ancient name of Italy, as well as of Spain.
Hesperia. In entomology, a tribe of the genus papilis upon the Fabrician system. See Pápilio.

HESPERI'DEFE. The name of the forlyfirst order in Linnéus's Fragments of a Natural Method; containing only three genera, citrus, styrax, garcinia.
HESPERIDES, three celebrated nymphs, daughters of Hesperus. They were appointed to guard the golden apples which Juno gave to Jupiter on the day of their nuptials, and the place of their residence placed beyond the ocean by Hesiod, is more universaliy believed to be near momut Atlas in Africa, according to A pollorlorus. This celebrated garden abounded with fruits of the most delicious kind, and was carefully guarded by a dreadful dragon which never slept. It was one of the labours of Herculus to procure some of the golden apples of the Hesperides, which he did, as some naythologists assert, by having previously killed th e watchful dragon that guarded the fruit. This monster was supposed to be the offispring of Typhon, and to have had a hundred heads and as many voices. Those that attempt to explain mythology observe, that the Hesperides were certain persons who had an inumense number of flocks, and that the ambigunus word μ novr, which signifies an apple and a sheep, gave rice to the fable of the golden apples of the Hesperides.
HESPERIS. Rocket-violet. Dame's-violet. In botany, a genus of the class tetradynamia, order siliquosia. Petals bent obliquely; gland within each of the shorter stamens; silique
stiff; calyx closed; two of the leares gibbous at the base. Ten species, chiefly natives of the south of Europe : one, H. inodora, common to the pastures of our own country. Of the rest we shall notice the following.

1. H. histis. Pale mountain rocket. Stem bristly, branched, spreading.
2. H. matronalis. Garden rocket. Stem simple, erect; leaves ovate, lanceolate, denticulate; petals emarginate with a point.
3. H. verna. Stem erect, branched; leaves heartshaped, clasping the stem, serrate, villous.

The first and second species are biennial plants; the first grows naturally in Hungary, and is much cultivated in the gardens abroad for the fragrancy of its flowers, though it is rarely seen in our English gardens. The second, which is a native of Italy, was formerly in greater abundance in Euglish gardens than at present. Of this there is a variety with double flowers, much esteemed for its beanty, and much cultivated in our gardens. These sorts are propagated by seeds, which, if they be permitted to scatter, the plants will come up without any trouble in the spring; and if the seeds be sown, the best season is the autumn, because those sown in the spring will often fail, if the season prove dry, or will remain a long time in the ground before they vegetate. The plants require a loamy, undunged soil. The last species is a native of France, and propagated by sowing the seeds in autumn, in the same manner as the other species.

HESPERUS, a son of Japetus, brother to Atlas. He came to Italy, and the country received the name of Hesperia from him, according to some accounts. (Vid. Hesperides.) Diod.-The name of Hesperus was also applied to the planet Venus, when it appeared after the setting of the sun. It was called Phosphorus or Lucifer when it preceded the sun.
HESSE, a country of Germany, in the circle of the Upper Rhine; bounded on the N. by the bishopric of Paderborn, and duchy of Brunswick; on the J . by Thuringia; on the S. by Fulde, and Weteravia; and on the W. hy the counties of Nassau, Witgenstein, Hatzfelt, and Weldeck. It is about 100 miles long, and 50 broad. The house of Hesse is divided into four branches; namely, Hesse-Cassel, Hormburg, Darmstadt, and Rheinfeld; each of these has the title of Landgrave, and takes its name from one of the four principal towns.
hESSIAN FLY. See Tentriredo.
HEST. s. (hære, Saxon.) Command; preo cept ; injunction ; obsolete (Shakspeare).
HESYCHYASTIC, in music, a term by which the ancients expressed that mixed mode or scale of sounds, which consisted partly of sharp, and partly of flat intervals (Busly).

HETERIARCH, in antiquity, an officee in the Greek empire, whose principal function was to command the troops of the allies

HE'TEROCLITE. s. (heleroclitum, Latq.

HEV

1. Such nouns as vary from the common forms of declension (Watts). 2. Any thing or person deviating from the common rule.
HETERUCLI'TICAL. a. (from heteroclite.) Deviating from the common rule (Brown).
HETERODOX. a. (rrs© and $\delta_{0}{\underset{y}{c}}_{a}$.) Deviating from the established opinion; not orthodox (Locke).

He'terodox. s. An opinion peculiar (Brown).
HETEROGE'NEAL. a. (heterogene,) Fr. er: $\boldsymbol{3}^{3}$ and y (3).) Not of the same nature; not kindred (Newton).
HETEROGENEITY. s. (from heterugeneous.) 1. Oppusition of nature; contrariety or dissimilitude of qualities. 2. Opposite or dissinilar part (Boy/e).
HETEROGE'NEOUS. a. (ere and gri(心.) Not kindred; opposite or dissumilar in nature (IFooduard).

Heterogeneous bodies, are such as have their parts of unequal density.

Heterogeneous light, is by sir Isaac Newton said to be that which consists of rays of diffic reat degrees of refrangibiiity.

Heterogeneous quantities, are those which are of such different kind and consideration, as that one of them, taken any number of times, never equals or exceeds the other.

Heterogeneous surds, are such as have different radical signs; as, $\sqrt{ } a a$, and $\sqrt{3}^{2} b ;{ }^{5} \sqrt{0}$, and ${ }^{7} \sqrt{ } 19$.

HETEROSCLI, in geography, are such inhabitants of the earth as have their shadows at noon projected always the same way with regard to themseives, or always contrary ways with respect to each other. Thus, all the inhatitants u-ithout the torrid zone are Heteroscii, with regard to themselves, since any one such inhabitant has his shadow at noon always the same way, viz. always uorth of him in north letitude, and always south of him in south latitude; or these two situations are Heteroscii to each other, having such shadows projected contrary ways at all times of the ycar.

HETEROSPERMCM. In botany, a genus of the class syugenesia, order polygamia superflua. Receptacle naked; seeds of the margin compressed, with a membraneorus edge; inner ones oblong, two-awned; calyx double; outer one four-parted; inner one many-leaved. Two species: natives of Spanish America.

HETH, the father of the Hittites, was the eldest son of Canaan (Gen. x. 15).
hetruria, and Etruria, a celebrated country of Italy, at the west of the Tyber. It originally contained twelve different nations, which had each their respective monarch.

HEV EI, in ancient geography, one of the seven people who occupied Canaan; a principal and numerous peoplc, and the same with the Kadmonsi, dwelling at the foot of Hermon and partly of Libanus, or between Libanus and Hermon (Judges iii. 3.)

VOL. V.

HEX

HEUCHERA. In botany, a genus of the class pentandria, order digunia. Pctals five; capsule two leaved, two-celled. One species, a native of Virginia, with panicled tiowers.

HEVELIUṠ (John), a famous astronomer, was born at Dantzic, in 1611, of a distinguished family: His education was extensively liberal, but his chief turn was to the mathematics. Astronomy fixed his attention most, and he built an observatory for the purpose of making accurate observations; the result of which he pullished in $16+7$, under the title of Solenographia, sive Lunæ descriptio, \&ic. to which he added the phases of the other planets as observed by the telescope. This work was followed by many others, the most distinguished of which was lis Cumetographia, published in 1068 . He sent a copy of this book to our Dr. Hooke; and it is observable that the present occasioned a controversy between those two great men on this point: " Whether distances and altitudes could be taken with plain sights nearer than to a minute," which Hooke denied, and Heveling maintained. Though the affair was philosophical, the parties did not manage it so, but expressed themselves with considerable warmth, and enmity against each other. Hevelius died at Dantzic in 1087, after having been appointed burgomaster of that city. II i* works are very numerous, but the greatest is that entitled, Machina Coelestis, in two parts (Watkins).
To HEW. o. a. part. hewn or hewed. (heapan, Saxon.) 1. To cut by hlows with an edged instrument; to hack (Haymard). 2. To chop; to cut (Dryden). 3. To fell, as with an ase (Sandys). 4. To form or shape with an axe (Addison). 5. To form laborinusly (Dryden).

HE'WER. s. (from hcw.) One whose em.ployment is to cut wood or stone (Brou'n).

HEXACHORD, compounded of t, , sir, and x-in, chord, or string, in the ancient music, a concord commonly called by the moderns a sixth. The hexachord is two-fold, the major, and the minor: the former is expressed in numbers by the ratio of $3: 5$; the latter by that of $5: 8$.
hexaminon, or Hexahedron, one of the five regular or Platonic bodies; being indred the same os the cube; and so called from its having six faces.-The square of the side or edre of a hexahedron, is one-third of the square of the diameter of the circumscriting sphere; and hence the diameter of a sphere is to the side of its inscribed hexahedron, as $\sqrt{ } 3$ to 1 .
In general, if A, B, and C , be put to denote respectively the linear side, the surface, and the solidity of a hexahedron, or cube, also r the radius of the iascribed sphere, and \mathbf{K} the radius of the circumscribed one; then we have these general equations or relations:

$$
\begin{aligned}
& \text { 1. } A=2 r \quad={ }_{3} R \sqrt{ } 3=\sqrt{ } \mathrm{i} B \\
& \text { 2. } B=244^{8}=8 R^{*}=6 A^{2} \\
& =6 \geqslant \mathrm{C}^{2} \text {. } \\
& \text { P P }
\end{aligned}
$$

$$
\begin{aligned}
& \text { II E X } \\
& \text { 3. } \mathrm{C}=8 r^{3} \quad=1 \mathrm{R} \sqrt{3}=\mathrm{A}^{3} \\
& =13 \sqrt{\prime} \text { ! } 13 . \\
& \text { 4. } \mathrm{R}=\stackrel{\sqrt{3}}{3}=\mathbf{A}=3=1 \sqrt{ }!\mathrm{B} \\
& \text { 5. } r=\frac{1}{2} \sqrt{2} \sqrt{3}=\frac{1}{2} A \quad=\frac{1}{2} \sqrt{2} B \\
& =\frac{1}{2} \mathrm{C} .
\end{aligned}
$$

MIX.IGON, in grometry, a figure of six sides and andes; and if these sides and angles be equal, it is cailed a regular hexagon.

The side of every regular or equilateral hexagon, inscribed in a circle, is equal in lenath to the radius of that circle. Hence, it is casy, by laying off the radius six times upon the circumference, to inscribe an hexagon in a circle.

The sinuare of the side of a regular hexagon multiphied into the number $2 \cdot 5 y 80 ; 02$, will give the area.

Hexacon, in fortification, is a six-lined figure defended by six bastions.
HEXA'GONAL. a. (from hexagon.) Hawing ix sides or conners (Bromen).

HEXA'()NY.s. (from lie.iabom.) A figure of six anales (Bramhuli).
IIEXAGY'NIA. (ts, ix, and lyum, a woman.) In butany, one of the orders in the ninth and thirteenth clanes of the Limie.an system; comaining those plants which have six styles in the Howers.

HIEXA'METER, in meient poetry, a kind of vere consisting of six feet; the first four of which may be indifferently, either spondees or dactyls; the fifith is generally a dactyl, and the sixith always a spondec. Such is the following verse of Horace :

hifXamilion, Hexamit, or Hexambitem, a celebrated wall, built by the -nuperor Emanuel in 1413 over the isthum of cormath. It took its name from ste, and a. 2 m, which in the vultar (ireek simifies a mele, as being six miles long. 'I he design of the he samiiion was to defend Yeloponnesus trom the incursions of the barbarians.

HEXANDRIA. (t $\frac{2}{亏}$, and ame, a man or hnstand.) In botang, the name of the sisth class in linméns system; comprehending tho,e phants which have hermaphrodite flowers with six equal stamens. This is a natural cl.ss, nearly the same with the litia or litiaceous plants of other writers; and contains a great part of the sisth, ninth, tenth, and ederemh orders, in Liméne's Natural Arrangement, with an admixture of some othere.

HEXAPETALOLS COROL.. In botany, a corol consisting of six distinct petals.

HEXAPETAIOHICOLOL. In botany, divided so near to the base as to have the appearance of a six-petalled corol, but in realis one-petalled, ax in agapanthus.
HEXAPHYIIOUS CALYX. In botany, a callex of is leaves or leatlets.
HEXAPLA. formed of es sir, and $=$ Biow. Injen, I unfidd: in church-history, a bible disposed in six columns; containing the text,

HEX

and divers versions thereof, compiled and published by Origen, with a riew of sccuring the sacred text from future corruptions, and to correct those that had been already introluced.

Eusebius, Hist. Eecl. lib. vi. cap. 16. relates, that (Orizen, after his return from Rome under Caracalla, applied himself to learn Hebrew, and began in collect the several versions that had been nade of thesacred writings: and of these to compose his Tetrapla and Hexapla: others, however, will not allow him to have begun till the time of Alexander, after ho had retired into Palestine, about the year ${ }_{2} 31$.
To concrive what this Hexapla was, it most be obeerved, that, besides the translation of the sacred wrinings, called the Scptuagint, made under Polomy Philadelphus, alove : $\because 0$ years before Christ, the scripture had been since translated into Greek by other interpreters. The first of those versioms, or (reckoning the Septuagint) the second, was that of Aquila, a proselste Jew, the first edition of which he published in the tweltith year of the emperor Adrian, or about the year of Christ 198 ; the third was that of Symmachise, published, as is commonly supposed, uncier Marcus Aurelius, bent, as some saty, under Scptimus Scverus, about the year sik); the fourth was that of Theodotion, prior to that of Symmachus, under Commodus, or about the year 175: these Greek versinns, says Dr. Kennicott, were made by the Jews from their corrupted copies of the Hebrew, and were designed to stand in the place of the Sice conty. against which they were prejudiced, becanse it secmed to favour the Christians. The fifth was found at Jericho, in the reign of Caracalla, about the year 217 ; and the sixth was discovered at Nicopolis, in the reign of Alexander Severns, about the year 228: latty, Orizen himself recorered part of a serenth, containug only the Psalms.

Now ()rigen, wion had held frequent disputations with the Jews in Egept and Palestine, observing, that they always otjected against those pariges of Scripturequoted against them, and appealed to the Hebrew text; the better to vindicate those passages, and confound the Jews, by shewing that the Seventy had given the sense of the Hebrew; or rather, to shew. by a number of different versions, what the real sense of the Hebrew was; unilerimok to reduce all these several versions into a boly, aloug with the Hebrew text, so as they might be easily confronted, and afiord a mutual hight to eachother.

He inade the Hebrew text his standard; and allowing that corruptions might have happened, and that the old Hebrew enpies might and did read differenty, he contented himself with markiny buch words or sentences as were not in his Hebrew text, nor the later Greck versions, and adding such words or sentences as were omitted in the seventy, prefixing an asterisk to the additions, andan obeisk to the others.

In oader to this, he made choice of eight

HEY

Qolumns: in the first he gave the Hebrew text in Hebrew characters; in the second, the same text in Greek characters; the rest were filied with, the setcral version above mentioned; all the colu:nus answering verse for verse, and phrase for phrase; and in the Psaims there was a nimth coliumn for the seventh version.
This celcbrated work peristied with the library at Cesarea, in the year 053.

HE'XAPOI). s. (a ξ and noobs.) An animal with six feet (Ray).
 of six lines.

HFXASTYLE, in ancient architecture, a buikding with six columns in front.
HEXHAM, a town in Nurthumberland, with a market on Tuesdays. It way formerly famous for its abbey, built in the beginaing of the tweltio century. Hexham was erected into a bistopric in 675, but in 874 the see was united to Lindisfarn, and afterwards to that of York. Near this place, in 1463, was fought a battle, between the houses of York and Lancaster, in which the latter was defeateri. Hexlam contains about 2000 inhabitant. Lat. 55. 3 N. Lon. 2. 1 w.
HEXIS. ((ξ_{5}, from ${ }^{\prime} \times w$, to have.) In medicine, habit or constitution. It is a frequent termination in compound words; as cachexis or cachexy, an ill-habit, \&c.

HEXÓNON. In entomology, a tribe of the genus Scarabæus, upon the Fabrician aytem. See Scarabeus.

HEY. interj. (from high.) An expression of joy, or mutual exhortation (Prior).

HE'YDAY. intcrj. (for high day.) An expression of frolick and exultation (Hudilras).

He'yday. s. A frolick; wildness (Síakspeare).

HE'YDEGIVES. s. Λ wild frolick dance (Spernser).

HEYDEN (John van der), an eminent landscape-painter, born at Gorcum in 1637, and died in 1712 . He was not only distinguisl:ed in painting landscapes, but also representations of buildings, which he executed according to the justest rules of perspective.

HEYDON, a borough in the E. riding of Yorkshire, with a market on Thursdays. It was formerly a considerable town, but is now much decayed. Lat. 53.45 N . Lon. 0. 5 W .
HEYLI'N (Peter), a learned Euglish divine, was born at Buifford in Oxfordshire in 1600 , and educated at Hart-hall, Oxford, but aftervards obtuined a fellosvship of Muglalen college, where he read cosinographical lectures, then a novelty in that university. In 1021 he published his Description of the World, which was so well received that he greatly enlarged it, and gave it the name of Cosmugraphy. In 162 s he was appointed chaplain in ordinary to the king, and in 1631 obtained a preliendal stall in Westminster-abbey, which was followed by the valuable living of Houghton in the dincese of Durham. In 1633 he took his degree of D.D. and in $16: 37$ was chosell treasurer of the church of Westminster. He also ob-

HIB

tained some other preferments, of all which he was deprived by the parliament, and was besides voted a delinquent, by which his goods were confiscated, and his person endangered. He kept removing about meogito for some years, still, however, emploving his pen against the prevaling party. At the Restoration he was restored io his prebend, and died in 1662. He was a man of vast äilities, and a smart and intelligent writer; but it must be confessed he was not always impartial, and sometimes he carried his nitions to an unwarrantable pitch. His works are too numerous to be mentioned in this place.

HEYTESBLRY, a borongh in Wiltshire, that sends two members to parliament, but has now no market. Lat. 51.12 N . Lon. 2. 8 W .

HEYWOOD (Johni), an English poet and wit, was born at London, and bred at Oxford. He is one of the first who wrote plays in our language, and is said also to have been well skilled in music. He was a great favourite with Henry.VIII. and was equally so with queen Mary, on account of his extreme liveliness and humour. On the accession of Elizabeth he went to Mechlin in Brabant, and died there in 156j. He wrote several plays; but one of his principal performances is, The S_{p} ider and Fly, a parable, in 4 to. 1596, in which his portrait very frequently occurs, cut in woor.

HIATION. s. (from hio, Latin.) The act of gaping (Brovon).

HiATUS, a Latin term, properly signifying the aperture of the mouth, from the verb hiare, to gape.

It is variously used, in works of literature, \&s. to denote a chasm or eap; particularly in verses, where there is a clashing of vowels, by one word ending with a vowel, and the following one beginning with another: as in,
-Tho' oft the ear the open vowels tire.
This clashing of rowels, so disagreable to the ear, is called a hiatus in prose as well as verse.
Hiatus is aloused for a defect in a manuscript copy, where something is lost or effaced by the injuries of time or ntherwise.

H!BE'RNAL. a. (hilermus, Latin.) Belonging to the winter (Brown).
HIBISCES. Syrian mallow. In botany, a genus of the class monadelphia, order polyandria. Calyx double; the outerno-t generally many-leaved; stigmas five; capsule fivecelled, many-sceded. Sixty-six species : chicfly of the Eist and West Indies, America, and the Cape of Good Hope. The following are principally worthy of notice.

1 H. elatus. Leaves hearted, roundish, very entire, hoary, downy miderneath with a single pore; peduncle very short, bearing a single flower, large, of purplish-saffiron hue; with a ten-toothed outer calyx. A Jamaica tree from fifty to sixty feet high.
2. H. rosa cinensis. Chinese rose. Leaves ovate, pointed, toothed; glabrous, very entire

PP4

H I D

at the base; stem arboreous; outer calyx from five to eight-leaved. A native of the East Indies.
3. H. Phœnicus. Leaves ovate, pointed, serrate ; the lower ones somewhat hearted, and tricuspidate; peduncles jointed; seeds woolly. A small East Indian shrub, with beautifully scarlet fowers.
4. H. nutabilis. Leaves hearted, angular, five-lobed, pointed, toothed; outer calyx cightleaved; capsule villous. Stem arboreous, rising to twelve or fourteen fect. The flowers are large, white in the morning, pale flesh-colour in the middle of the day, rosy in the evening; and fall off at sun-set. It is a native of India; but in our own climate the flowers neither change nor fall oft so rapidly.
5. H. Syriacus. Althæa frutex. Leares wedge-ovate, three-lobed, toothed; outer calyx from six to eight-leaved, as long as the inner one; stem arboreous.
6. H. Abelmuschus. Musk-mallow. Leaves somewhat peltate, and heartod, seven-angled, pointed, serrate; outer calyx about eight-leaved; stem bristly. A native of India, with large seeds, and a very strong inusky odour.
7. H. tiliaceus. Maho-tree. Leaves roundish, hearted, pointed, crenate; stem arbnreous; outer calyx ten-toothed: a native of India, with pale yellow flowers, terminal, in long spikes.
8. H. esculentus. Fatable hibiscus. Leaves heart-shaped, five-lobed, rather obtuse, toothed; petiolcs longer than the flower; outer calyx ten or twelve-parted, deciduous; inner one bursting longitudinally, and discharging a number of heart-shaped seeds, which are cut and dried when gathered green, and used as spices in soups and other culinary preparations.

Many of these are common to ourown gardens and green-houses; and in general propagated without much trouble.

HiCCIUS DOCCIUS. s. A cant word for a juggler; one that plays fast and loose ($H u$ diliras).
hicecory-nct tree. See Juglans. hiCCOUGH, or Hickup. Sce Medicine.

To Hiccóvgh. v. n. (from the noun.) To sob with convulsion of the stomach.

To HI'CKUP. v. n. (corrupted from hiccough.) To sob with a convulsed stomach (Ihudilrus).
HICKES (George), a learned divine, was horn in 1642, at Newshaun in Yorkshire, and educated at the school of North Allerton, from whence he removed to St. John's college, Oxford; but he afterwards became fellow of Lincoln, and took there his degree of M. A. He accompanied his pupil, sir George Wheeler, on his travels; but proceeded no further than France, where he contracted an intimacy with Mr. Henry Justel. In 1676 he becane chaplain to the duke of Lauderdale, whom he attended to Scotand when his grace was appointed high commissioner of that kingdom. While at St. Andrew's he was honoured with the degree of D. D. which was
confirmed to him by the university of Oxford in 16799 . In 1683 he was made dean of Worcester, of which he was deprived at the Revolution for refusing the oaths. The deprived bishops having consulted about preserving the episcopal succession among the non-jurors, recommended Dr. Hickes to king James, and he accordingly waited on that monarch in France, who confirmed their proceedings, and the doctor was accordingly consecrated suffragan bishop of Thetford. Hickes was a man of strong mind, great resolution, and vast abilities. He died in 1715. He wrote several thenlogical treatises, mostly polemical; but his chief works are some Latin books on the northern languages and antiquities. His sermons are close and argu. mentative, and full of excellent learning well applied.

HIDAGE, Hidagivm, was an extraordinary tax payable to the kings of England for every hide of land.
HIDALGO, in modern history, a title given in Spain to all who are of a noble family.

I's HIDE. v. a. preter. hid; part. pass. hid or hidden. (hiran, Sax.) To conceal; to withhold or withdraw from sight or knowledge (Shahspeare).

To Hide. v. n. To lie hid; to be concealce (Pロpe).

Hide and segx. s. A play in which some hide themselves and another seeks them ($S_{w} \mathrm{ift}$).

Hide. s. (hyye, Saxon, hawde, Dutch.) 1. The skin of any animal, either raw or dressed (Pope). 2. The human skin: in contempt (Dryden).

Hide of land, such a quantity as might be ploughed in the compass of a year by one plough; some call it 60 , some 80 , and others. 100 acres.

Hide-bound, in the manage, a discase among horses supposed to proceed from coasse diet, or undue exertion. The horse in such case has the appearance of being emaciated; his coat is of a dingy variegated hue, staring different ways, with a scurvy dust undermeath; his skin is of an unpliable rigidity, seeming to adhere closely to the internal parts, denoting a deficiency of the fluids, an obstruction of the porous system, and a languor in the circulation.

Nothing will produce this disease sconer than hard work with bad keep, and a constant exposure to all weathers, in the severity of thewinter season. Musty oats, mouldy tray, and winter straw-yards, are also frequent causes: good stable-discipline, however, in wisping and dressing, regular daily exercise, a few mashes nigtrily of ground inalt and bran in equal parts, followed by a cordial ball every morning, or an antimonial alterative powder nightly in the mash, will soon restore tho horse to good condition.

By way of metaphor, we sometimes hear of a hideloond pedant, or of a hidelound miser.

HIDEGILD, in the laws of king Cauule,
the price paid by a servant to save his skin a holy beings (Fairfax). 2. Ecclesiastical gowhipping.

HIDEOUS. a. (from hideur, French.) Horrible; dreadful; shocking (Hoodward).

HI'DEOLSLY. ad. Horribly; dreadfully; in a manner that shocks (Shakspeare).

HI'DEOUSNESS. s. (from hideuns.) Horribleness; dreadfulness; terrour.

HI'DER. s. (from the verb.) He that hides.

Hidrogen. See Hydrogen.
HIDROA. (is wa, from ife?; sweat.) Pustules produced by sweating in hot weather.

To HIE. v. n. (hiezan, Saxon.) To hasten ; to g o in haste (Dryden).

HIERACIUM. Hawk-weed. In botany, a genus of the class syngenesia, order polygamia xqualis. Receptacle mostly nahed, dotted; calyx imbricate, ovate; down simple, sessile. Sixty-nine species: mostly natives of Europe, a few of A merica: ten indigenous to the woods, shades, or mountains, of our own country. They may be thus subdivided:
A. Scape with a single flower.
B. Scape many-fowered.
C. Stem leafy.

The two unost common in our own country are,

1. H. pilasella, found in our pastures, and tnown by the name of mouse-ear.
2. H. aurantiacum, more frequently met with in Scotland, and vulgarly denominated Grim the collier.

The most beautiful sorts of this genus, and those most worth cultivating in the gardens, have perennial roots, and may be propagated by seeds, sown in March upon a border with an aspect to the cast. The plants must be kept clean from weeds; and, when strong enough to be removed, which they will be about the beginning of June, should be transplanted into a shady border of undunged yround, at the distance of six inches asunder. If the weather prove dry, let thein be watered till they have taken new root; after which, if kept clean from weeds, they will require no other culture. In the autumn they should be transplanted where they are designed to semain: the following summer they will flower, and produce ripe seeds; and the roots will continue some years, if not planted in a rich or moist soil. They may be also propagated by offisets, or parting of the roots, in autumn. Sec PI. CXXXV.

HIERAPOLIS, in ancient geography, a town of Phrygia, abounding in hot springs, and having its name from the number of its temples. It is now called Pambouk; and is situated near the Scamander, on a portion of Mount Mesogis, distant six miles from Ladicea. Ins situation is very romantic.

HI'ERARCH. s. (n; \mathbb{C} and apx.) The chief of a sacred order (Milton).

HIERA'RCHICAL. a. (hierarchique, Fr.) Belonging to sacred or ecclesiastical government.

HI'ERARCHY. s. (hierarchic, Fr.) I. A sacred government; rank or subordination of

vernment (South).

HIERATIC PAPER, in antiquity, the finest paper, set apart for religious purposes.

HIERES, a town of France, in the department of Var, and late province of Proo vence. It was furmerly a seaport town, where pilgrims bound for the Holy Land used to embark, but the sca is now retired to a considerable distance from the town. It is situated in a delightiul country, and fine climate. Lat. 4.3. $5 \mathrm{~N} . \mathrm{Jon} .6 .20 \mathrm{E}$. This town is the birth-place of Massillon.
Hierfes Islands, a cluster of smallislands in the Mediterranean, near the coast of France, which take their name from the town of Hicres. They are particularly celebrated for the great variety of inedicinal plants on them. Lat. 43. 2 N. Lon. 6. 28 E.

HIERO I. king of Syracuse, succeeded his brother Gelon B. C. 478. He declared war against Theron the tyrant of Agrigentum, and took Himera. He gained three crowns at the Olympic games (two in horse races, and one in a chariot race,) for which he is celebrated by Pindar. The conversation of that bard and othereminent men softened his disposition, which was naturally impetnous, and rendered him humane and liberal. He died B. C. 467.
Hiero II. king of Syracuse, was a prince of great virtues. He was a descendant of Gelon, and elected king B. C. 203. He carried on a war arainst the Romans for some time, in conjunction with the Carthaginians, but he was ston obliged to make peace, and ever after continued a firm ally of that people. He was the relation and friend of Archimedes, and grearly encournged arts and commerce. He died regretted by all his subjects, B. C. 225.

HIEROCLES. The most remarkable of this name were, 1. a great persecutor of the Christians under Dioclesian; and, 2. a Platonic philosopher, who taught at Alexandria, and wrote a book on providence and fate, frayments of which are preserved by Photius; a commentary on the gollen verses of Pythagoras; and facetious moral verses. He flourished A. D. 485.

HIEROGLY PHICS, in antiquity, mystical characters, or symbols, in use among the Egyptians, and that as well in their writings as inscriptions; being the figures of various animals, the parts of human bodies, and mechanical instruments. The word is composed of the Greek u; \mathfrak{Z}, sacer, holy, and $\begin{aligned} \text { dupur, }\end{aligned}$ sculpere, to engrave; it being the custom 'o have the walls, doors, \&c. of their temiples, obelisks, dec. engraven with such figures. Hieroglyphics are properly emblems or signs of divine, sacred, or supernatural things, by which they are distinguished from common symbols, which are sizns of sensibie and natural things. Hermes Trismegistus is commonly esteemed the inventor of hieroglyphics he first introduced them into the heathen theology, from whence they have hecn transplanted into the Jewish and Christian. Sacred
things, saps Hippocrates, should only be communicated it sacred persons. Hence it was that the ancient Egyptians communicated to none but their hing and priest, and those who were to succeed to the priesthond and the crovn, the secrets of nature, and the secrets of their morality and history ; and this they did by a kind of cabbala, which, at the same time that it instucted them, orly amused the rest of the perple. Hence the use of hieronlyphics, or mystic figures, to veil their morality, polities, \&c. from profane cyes. This author, it ma:y br observel, and many others, do not keep to the precise character of a hieroglyphic, but apply it to profane is well as divine things.

Hier ghyphics are a hind of real characters, whicin do not only denote, but in some measure express, the things. Thus, according to Clemens Alexandrinus, Strom. v. a lion is the hieroglyphic of strength and fortitude; a buliock, of arriculture; a horse, of liberty; a sphinx, of subtity, \&c.

Such is the opinion that has generally been embraced, both by ancient and modern writers, of the origin and use of hienolyphies. It has been almost unifornily maintained, that they were insented by the Egeptian priests in order to conceal their wistom from the knowledge of the vulyar; but the late bishop Warburton hath, with much ingenuity and learning, endeavoured to shew that this account is crroneous.

According to this writer, the first kind of hieroglyphies were mere pietures, because the most nataral way of communicating our conceptions by markis or figures was by tracingont the images of things; and this is actually verified in the case of the Mexicans, whose only method of writing their laws and history was by this picture-writing. But the bierog!yphacs invented by the Egyptians were an inupronement on this rule and inconvenient egsay towards writing, for they contrived to make then both pictures and characters.
hifRoGLy'phic'al, Hierogly'phic. a. (hierog!!phiifuc, Fr.) Emblematical; expressive of sonie meaning beyond what immediately appears (Sindys).

HAERO(iLYMPHCALIS.. ad. (from hieroghtu, in al) Emblemattically (Braun).

HIEROGRAMMATISTS, (Hicrogrammatci), i. e. huly rcgisters, were an order of priests among the ancient ligypians, who presided over learning and religion. They had the care of the hierodtyphics, and were the expositurs of religious doctrines and opinions. They were looked upon as a kind of prophets; aind it is pretended, that one of them predicted to an Ioyptian king, that an Israelite (encaning Moses), emment for his qualifications and achievements, would lessen and deprest the Exyptian monarchy. The hicrogrammatei were always near the king, to a-sist him with their information and conincels.

HHEROGRAPHY. s. (Hso; and riapw.) Holy uriting

III: ROMANCY, in antiquity, that species
of divination which predicted future events from observing the various things offered in sacrifice. See Divinationand Sacrifice.
HIEROMENIA, a name given to the month in which the Nimean yames were celebrated. It answered to part of our A ugnst and September.

HIEROMNOMON, in Grecian antiquity, a delcgate chosen ly lot, and sent to the great comicil of the Amphictyons, where he trok care of what concerued religion. The same word denoted an officer of the Greck ehuret. who put the pontifical robes on the parriarch, and shewed him the prayers, \&c. he was to read. It also cenoted a stone used in divinar tion.
hierophantes, or Hierophanta, (from usor, hoiy, and $\varphi_{\text {z.ropur, }}$ I appear,) in antiquity, a priest amng the Athenians. The Hieropiantes instructed persons in the mysteries of their religion; and it was a part of his office to dress and adorn the statues of the gorls.

To HI'GGLE. v. n. 1. To chaffer: to the penurious in a bargain (Hale). 2. To go selling provisions from door to door.
MIGGLEDY-PIGGLEDY. ad. A cant word corrupted from iaggle, which denctes any confused mass.

HigGIER.s. (from higgle.) One who sells provisious by retail.

HGH. a. (heah, sax.) 1. Long upward; rising above from the surface, or from the centre (Burnet). 2. Elevated in place; $r a$ sid aloft (Loche). 3. Exalted in nature (Bua, er). 4. Elevated in rank or condition (Drycien). 5. Exalied in semtiment (Milton). 6. Dificult; abstruse (Shatispeare). 7. Bouisiml; ostentations (Clurendiun). 8. Arrogant; proud; lofiy (Clarendon). 9. Severe; oppresive (Bacon). 10. Noble: ibiustrious (N/ahspcare). 11. Violent; rempestuous; loud: applied to the wind (Deniann). 12. Tumultusus; turbulent; ungovernable (Dryd n). 13. Full; complete: applied to time (Spenser). 14. Rised to any great degree (Baher). 15. Advancing in latitude from the line ($A(0)$) 16 . At the most perfect state; in the meridian (Genesis). 17. Far advanced into antiquity (Brown). 18. Dear; exorbitant in price (Simuth). 19. Capital; great; opposed la little : as ligh treason, in opposition to pelly.

High, in music, is sometimes used in the same sense with loud, in opposition to low : at others, it is nsed for acute, as opposed to grave.
High. s. High place; elevation; superior region (Dryden).

On Higer. ad. Aloft; above; into superior regions (Drydeu).

High-biest. a. Supremely happy (Milton).

High-blown. a. Swelled much with wind; much inflated (Shahspeare).

Hige-born. a. Qf noble ex:raction (Rorce).

High-coloured. a. Having a deep or glaring colour (Floyer).

Highdesigning. a. Having great schemes (Dryden).

High-pbd. a. Pampered (L'Estrange).
High-flier. s. Une that carries his opinion to extravagance (Swift).

High-plown.a.l. Filevated; proud (Denham). 2. Turgid ; extravagant (L'Estrange).

High-flying. a. Exiravagant in claims or opinions (Dryden).

High-heaped. a. 1. Covered with high piles (P ope). 2. Raised into high piles (Pope).

High-mettled. a. Proul or ardent of spirit (Garth).
Higheminded.a. Proud; arrogant (Shakspeare).
H:gh-priest. See Pontifex and Priest.

High-red.a. Deeply red (Boyle).
High-seasoned. a. Piquant to the palate (Locke).

High-spirited. a. Bold; daring; insolent.

High-stomached. a. Obstinate; lofty.
High-tasted.a. Gusfful; piquant.
High-viced. a. Enommously wicked (Shakspearc).
High-way, a free passage for the king's subjects, on which account it is called the king's high-way, though the frechold of the soil belong to the lord of the manor, or the owner of the land. Those ways that lead from one town to another, and such as are drift or cart-ways, and are for all travellers in great roads, or that communicate with them, are highways only; and as to their reparation, are under the care of surveyors.

Every justice of the peace, by the statute, upon his own view, or on oath made to him by the surveyor, may make presentment of roads being out of repair; and, thereupon, like process shall be issued as upon indictment. For the repuiring of highways, there are certain regulations, by statute; and every inhabitant of a parish is bound to perform certain duties for that purpose.

High-way-man, one who robs on the king's high-way. It is common to distinguish between a highwayman and a footpad; the furmer being ou horseback, the latter on foot.

High-water, that state of the tides, when they have flowed to the greatest height, or have cedsed to fluw. It is high-water several minutes, as many as between 15 and 30, before it becius to ebb again.
ligh-wrought. a. Accurately finished.
HIGHAM FERRERS, a borough of Northamptonshire, with a market on Saturdays. It sends one member to parliament. Lat. 52. 19 N. Lon. 0. 40 W.

HIGHGATE, a large villaze in Middlesex, seated on a hill E. of that of Hampstead; on which accomm, these two hills have been peetically called The Sister Hills. It is 4 mises N. by W. of London.

HI'GHLAND. s. (high and land.) Mountainous region (Addison).

HIGHLANDERS, a general appellation fur the inhabitants of the mountainous parts of
any country. In Britain it is appropriated to the people who inhatit the mountainous parts of Scotland, to the north and north-west, including those of the Hebrides or Western Isles. They are a branch of the ancient Celta; and undoubtedly the descendants of the first inhabitants of Britain, as appears from the many monuments of their language still retained in the most ancient names of places in all parts of the island. The Highlanders, or, as they are often termed by ancient authors, the Caledonians, were always a brave, warlike, and hardy race of people; and in the remotest times, scent to have possessed a degree of refinement in sentiment and manners then unknown to the nations that surrounded them. This appears not only from their own traditions and peems, but also from the testimony of many ancient authors. This civilization was probably owing in a great measure to the order of the bards, or 1)ruids, and some other institutions peculiar to this people.
The Highlanders always enjoyed a king and government of their own, iill Kenneth M•Alpine (anmo 8.45), after having subluced the lictish kingdom, transferred thither the seat of royalty. This event proved very unfavouralile to the virtues of the Highlanders, which from this period began to decline. The country, no longer awed by the presence of the sorereign, fell into anarchy and confusion. The chieftains began to extend their authority, to form factions, and to foment divesions and feuis between contending clans. The laws were cither too feeble to bind them, or too remote to take notice of them. Hence sprung all those evils which long disgraced the comntry, and disturbed the peace of its inhabitants. Robbery or plunder, provided it was committed on any one ofan adverse clan or tribe, was countenanced and authorised; and their reprisals on one another were perpetual. Thus quarrels were handed down from one generation to another, and the whole clan were bound in honour to espouse the cause of every inctividual that belonged to it. By this means the genius of the people was greatly altered; and the Highlanders of a few ages back were alinoat as remarkable for their irregular and disorderly way of life as their predecessors were for their civilization and virtue. It is from not attending to this distinction between the ancient Highlat, ders and their posterity in later times, that. many have doubted the existence of those exalted virtues ascribed by their poets to the more ancient-inhabitants of the country. But now that the power of the chieftains is again abolished, law establishel, and property secured, the genius of the penple (where it is not hindered by some other extrancous cause) begins again to shew itself in its genuine conours; and many of their ancient virtues bezin to shine with conspicunus histre. Justice, generosity, honesty, fricndship, peace, and love, are perhaps no where more cultivated than among this people. But one of the strongest features which marhed the clia-

H I G

rater of the Highlanders in every age, was their hospitality ind benevolence to stranEers.
The language of the Highlanders is still the Gaclic; whieh, with many of their customs and manners, has been secured to them by their mountains and fastnesses, annidst the many revolutions which the rest of the island has undergone in so long a course of ages. The Gaelic seems to be the oldest and purest dialect which remains of the Celtic, as appears from its approaching the nearest to the names of places, $\& \mathrm{c}$. which that language left in most countrics where it prevailed; and from its most obvious affinity to those tongues, ancient or modern, which have been in any measure derived from the old Celtic. Thie Gaclic has all the mar's of an original and primitive language. Most of the words are expressive of some property or quality of the objects which they denote. This, together with the variety of its sounds (many of which, especially of those that express the soft and mournful passions, are peculiar to itself), renders it highly adapted for poetry. It is generally allowed to have been the language of court, in Scothad, till the reign of Malcolm Canmore. The Gaclic epithet of Canmore, or " large head," by which this king is distinguished, seems to intimate so much. In some particular parliaments at least, it was spoken much hater, as in that held by Robert the Bruce at Ardchatan. That it has been formerly a good deal cultivated, appears from the style and complexion of its poens and tales, and from several anc:ent MSS. that have come down to the present times. To sirangers the Gaelic has a forbidding aspect, on account of the number of its quiescent consonanis (which are retained to mark the derivation of words, and their variation in case and tense); but its sound is abundantly musical and harmonious, and its genius strong and masculine. Its alphabet consists of 18 letters, of which one is an aspirate, 12 are consonants, and the are vowels.

The Highlanders have begun of late years to apply to learning, agriculture, and especially to commerce, for which their country, every where indented with arms of the sea, is peculiarly favourable. Catte is the chief staple of the country; but it produces more grain than would supply its inhabitants, if so much of it were nut consumed in whisky. The natives are beginning to avail themselves of their mines, woods, wool, and fisieries; and by a vigorous application, with the due encouragement of government, may become a prosperous and useful people.

The ilighlanders are of a quick and penetrating genius, strongly tinctured with a thirst of knowledge, which disposes them to learn any thing very readily. They are active, persevering, industrious, and economical. They are remarkably bold and adsenturous, which qualities them for being excellent scamen and soldiers.

[^4]
H I L

vation as to place and situation. 2. In a great degree (Alter(ury). 3. Proudly; arrogantly; ambitiously (Shatispeare.) 4. With esteenin with estimation (lomans).
HIGHMORE (Joseph), an eminent painter, was born in London in 16y2. He was bred an attorney; but he abandoued that profession, for the one which was more congenial with his talents; and by close application soon becane an accomplished artist. He painted the portraits of several ewizent personages; particularly of the grear duke of Cumberland, and the pritice and priucess of Wales. He also painted a set of picture:, the subjects of which were taken from Mr. Richardson's Pamela. At the instituinn of the Academy of Painting, \&e. he was chosen one of the professors. His ge eatest performances are, Hagar and Ishmael, at the Foundling! Iospital; the finding of Moses; and the grod Samaritan. Mr. Highmore was also eminent for his literary abilities, and pu:blished, 1. A Critical Exatnination of the two paintioges hy Rubens, on the cicling of the banquetinghouse at Whitehall, \&c. 4to. 1754. 2. The Practice of Perspective, on the Principles of Dr. Brooke Taylor, 4to. 1706. 3. Oberrations on a pamphlet, entitled Christianity not founded on Argument, 1765. 4. Two volumes of Essays, 1766, 12mno. He died in 1780, and was buried in Canterbury catbe. dral.

HI'GHMOST. a. Highest ; topmost (Shakspeare).

HI'GHNESS. s. (from high.) I. Eleration above the surface; loftiness. 2. The title of prisces, anciently of kings. 3. Dignity of nature: supremacy (Jol).

HIGHT. imperf. verb. 1. Was named; was called (Dryden). 2. Called; named (Spenser).

HIGHWORTH, a town in Wilts, withs market on Wednesdays. Lat. 51.36 N. Lon. 1. 10 W .

HILARIA, festivals at Rome, held in March, in honnur of the mother of the gods.

HILA'KITY s. (hilarilas, Latin.) Meriment; gaycty (Brown).

MLARIUS, an ancient father of the Christian church, who flourished in the 4th century. He was born, as St. Jerome informs us, at Poictiers, of a grond family; who gare him a liberal education in the Pugan relizion, which he did not forsake till he was arrived at maturity. He was advanced to the bishopric of Poictiers in the year 355, according to Baronius; and became a most zealous champion for the orthodox faith, particularly against the Arians, who were at that time gaining ground in France. He assembled several councils there, in which the determinations of the synods of Rimini and Seleucia were condemned. He wrote a treatioe concerving svnod; and a famous work in 19 books on the Trinitv, which is much admired by the orithodox believers. He died in the latter end of the year 367 . His works have been many times published; but the last and best edition

HIL

of them was given by the Benedictines at Paris in 1 ino. 3

HILARODI, innfǔx, compounded of atasos, jouful, and wob, song, in the ancient muic and poetry, a sort of poets among the Greeks, who went about singing little merry diverting poems or songs; though somewhat graver than the Ionic pieces. They dressed in white, and were crowned with gold. At first they wore shoes; but afterwards they assumed the crepida, which was only a soal tied over the foot with straps. The poems they sung were called Hilarodia.
hilary Term. See Term.
HILDFSHEMA, a strong town of Lower Saxony, in Germany. Lat. 52. 10 N. Lon. 10. 10 F .

HILDBERHAUSEN, a town of Franconia, ill Germany. Lat. 30.53 N. Lon. 11. 3 k .

HILDFSLEY (Mark), an excellent English bishop, was born at Marston in Kent, in if $\mathrm{K}_{\mathrm{p}} \mathrm{B}$, and educated at the Charter-House; from this seminary he was sent to Trinity college, Cambridge, where he was chosen fellow in 17\%3. In 1731 he obtained the college living of Hitchin, and four years afterwards that of Holwell, in Bedfordshire, where he distinguished himself by the faithful discharge of his ministerial duties. On the death of 1)r. Wilson, bishop of Solor and Man, the duke of Athol appointed Dr. Hildesley to succeed hiun; in this office he trod closely in the steps of his evangelical predecessor, whose laudable design of printing a tramslation of the Bitle in the Manks language, he brought to a conclusion. This worthy prelate died in 1772.

HI/LDING. s. (hilo, Saxon, signifies a lord; perhaps hilding means originally a litlle lord.) 1. A sorry, paltry, cowardly fellow (Shinkspare). 2 It is used likewise for a mean woman (Shatspeare).
HILL. s. (hil, Saxon.) An eleration of ground less than a mountain (Grantille).
Hile (Aaron), an Einglish poet, was born at London in 1685 . At the age of fifteen he went to Constantinople to visit his relation lord Paget, then ambassador there, who took great notice of him. About 1703 he returned with his lordship, and a few years afterwards he accompanied sir William Wentworth on the tour of Europe. In 1709 he was made master of 12rary-lane theatre, on which he wrote his Elfirid, or the Fair Inconstant. The following year he became master of the Operahouse, and then wrote the opera of Rinaldo, which was the first that Handel composed after he came to England. About 1718 he wrote a poem called the Northern Star, by way of panesyric on Peter the Great, for which the Empress Catherine, sone years after, sent him a gold medal. He was a great schemer as well as a poet; but as in the formies chiracter he never acquired riches, so in the later he never rose far above mediocrity. His works were published in four volumes, 8vo. after his death, which happened in 1750.

HIM

Hile (sir John), a voluminous English writer, was born in 1716, and bred to the business of an apothecary, which he carried on for some years in St. Martin's-lane. His first publication was a translation of Theophrastus's Tract on Gems, which procured him friends and reputation. This induced hint to undertake a general Natural History, in 3 vols. folio. He became now a general writer, and all subjects were alike to him. He published a supplement to Chambers'e Cyclopædia, and conducted a Magazine, and a daily paper under the title of the Inspector. At this time he obtained his degree of M. D. from Scotland, and became a man of the world. He also set up as an empyric, and invented some remedies which biought him a grod deal of money. The earl of Bute became his patron, and under his protection he commenced a voluminous work, called, the System of Botany; this he sent to the king of Sweden, who invested him with one of his orders of knighthood. This singular man died in 1775. Besides the works above mentioned he wrote many others, as, Mrs. Glasse's Cookery; a Review of the Works of the Royal Society; some novels, and a few farces. These last performances brought him into a controversy with Garrick, who fired the following epigram at him:

For physic and farces, his equal there scarce is;
His farces are physic, his physic a farce is.
(Wathins).
HILLIA. In botans, a genus of the class hexandria, order monogyia. Calyx double, the lower one six-leaved, upper one from two to four leaved; corol very long, twisted; capsule inferior, two-celled, many-seeded; seeds inrested with long down. Two species: shrubs of Jamaica.

HILLSBOROUGH, a borough of Ireland, in the county of Down, with a thrising manufacture of muslins. Lat. 54.26 N . Lon. 6.2 W.

HI'LLOCK. s. (from hill.) A little hill (Sidncy).

HINLY. a. (from hill.) Full of hills; unequal in the surface (Howell.)

HILT. s. (hile, Saxori.) The handle of any thing. particularly of a sword (P^{\prime} / pe).

HI'LUM. The eye. In botany, peculiarly so called in the bean, and generally in other seeds. The external mark or scir of the umbilical chord on those seeds, in which they adhere to the pericarp.-(icatrix umbuticalis. Regn. Veg.-Cicatrix externa seminis ab ejusclem affixione in fructu. Philos. Bot.Às in Cardiospermum, Staphylea, Dolichos, sic.

HIM. s. (him. Saxon.) The oblique case of He .

HIMMALEH, mountains of Asia, which separate the countries of Cachimere and Cashgar from Thibet. These mountains were known to the aucients uader the name of Imans, or Himaus.

HI'MSELF. pron. (him and self.) 1. Ia
the nominative, he (Bacon). 2. In ancient authors, itself (Shahspare). 3. In the oblique coses it has a reciprocal sipmtication (Samuel).

By Himself. Alune; unaccompanicd (K ! ng).

Hil.i. s. (.;-7) A measure of liquids among the Jews, containing about ten pints (Exodus.)
HINCHABBROOK ISLAND, one of the New Hebrides, in the S. Pacitic Ucean. Lat. 17.20 S . Lon, 16 k .33 E.
MINCKLEY, a town in Leicestershire, wih a market on Mondays. Here is a considerable stocking-manuatactory. Lat. sis. 34 N. Lon. 1. 20 W.

HiNI). a. compar. hinder; superl. hindmost. (hymoan, Saxon.) Backward; contrary in pnsition to the face (Ray).
Hind.s. (hnee, Saxin.) 1. The she to a stag (S'penser). 2. (hune, Saxon.) A servant (Shuhspeare). 3. (hmeman, Sax.) A pcisant; a bioor (Dryden).
HiNn-berry, in botany. Sce Rubus.
HINDELOPEN, a seaport of the United Provinces, in Friesland, seated upon the Zunder Zee. Lat. 52. 58 N. Lon. 5. 10 E.
To HI'NDER. v. a. (humptan, Saxon.) To obstruct; to stop; to let; to impede (Taylor).
Tu Hinder. v. n. To raise hinderances; to cause impediment (Dryden).
Hinder.a. (from hind.) That is in a position contrary to that of the face (Siducy).
HINDERAN(E. s. (from hinder.) limpediment: let; stop; obstruction (Altcrlury).

HI NDERER. s. (from kinder.) He who or that which himeders or obstructs (May).
H1'NDERLIN(s. s. (from hind ir hinder.) A paltry, worthless, decenerate animal.

HINIDERMOST. a. Hindmost; last (Shakspeare).

HINDIA, a town of the Deccan of Hindustan, capital of a district of the same nane in the country of Candeish. Lat. 22. 3j N. Lon. 77.10 E .

HI'NDMOST. a. (hind and most.) The last; the lat; that comes in the rear (Pope).

HINDON, a borough in Wils, with a market on Thursd.ays. Lat. 51. 6 N . Lon. 2. 9 W . It seads two meabers to parlianent.

HINDOOS, or Hindus, the inhabitants of that part of India known by the name of Hindustan, or the Mogul's cmpire, who profess the religion of the Bramins, supposed to be the same with that of the ancient Gymnosophists of Ethiopia.

From the earliest period of history these people secm to have maintained the same religion, laws, and customs, which they do at this dav: and indeed they and the Chincese are examples of perseverance in these respects altogether unknown in the western world. At the present period they are divided into four casts or triber: 1. The Bramin; 2. The Khatry; 3. The Bhyse; and, 4. The Soorlera. All these have distinct and semarate oflices, and cannot, aceording to their laws, interningle with cach ouber; but for certuin oficnces they
are subject to the loss of their cast, which is reckoned the highest punishment they can sutier; and hence is formed a kind of fitith cast named Pariars on the coast of Corim mandel, but in the Sanscrit or sacred lanquage Chandalas. These are estermed the dreers of the pcople, and are never emploved but in the meanest offices. There is besides a general division which pervades the four casts indiscriminately; and which is taken from the worship of their pods Vishnou and Sheevah; the worshippers of the former being named Vishnou-bukht; of the later, Sheevah-bukht.

Of these four casts the bramins are accounted the foremost in every respect; and all the laws have such an evident partiality toward, them, as camont but indure us to suppose that they have had the principal hand in framing then. They aie mot, however, allowed to assume the sovereignty ; the religious ceremonies and the instruction of the people being their peculiar province. They alone are allowed to read the Veda or sacred books; the Khatries, or cast next in dignity, being only allowed to hear them read; while the other two can only read the Sastras, or commentaries upon them. As for the poor Chandalas, they dare not enter a temple, or be present at any religious ceremony. The sovercigns are chosen from among the second cast. 'The Bhyse or Banians, who constitute the third cast, have the charge of commercial affairs; and the Soodera, or fourth cast, the most numerous of all, conprehends the labourers and artisans. These last are divided into as many classes as there are followers of diflerent arts; all the children being invariably brought up to the profession of their fathers, and it being absolutely unlawful for them erer to alter it afterwards.

When a man has lost cast, his most intimate friends and nearest relatives forsake him for ever. Were a Hindu of any other cast to touch a Chandala, even by accident, he must wash himself and change his raiment: he would refrain from the productions of the earth, if he knew they had been cultivated by 2 Chandala. In fact, the puaishment of expulsion from cast, which is supposed in its consequences to extend even to another life, becomes nore terrible to a Hindu than that of death.
The religion of the Hindus is contained in four books, named Veda, Vedams, or Bedir, written in a language called Sanscrit, which is now known only to the learned among them. The books are supposed to have been the work, not of the supreme Gorl himself. but of an inferior deity named Bramha. They inform us, that Brama, or Brahma, the su, preme God, having created the world by the word of his mouth, formed a female deity named Bawancy, who in an enthusiasm of joy and praise brought forth three eggs. Frour these were produced three male deities, named Bramha, Vishnou, and Sheevah, or Secls Bramha was endowed with the power of creating the things of this world, Vishnou with that of chershing them, and Sheerat
with that of restraining and correcting them. Thus B:imha became the creator of man; and in this character he formed the fivur casts from diif: remt parts of his own booly, the Bramins from his mouth, the hhatry from his arms, the Banians from his belly and thighs, and the Soodera from his fect. Hence, say they, these four different casts derive the different offices assigned them : the Bramins to teach ; the Klatry to defend and govern; the Banians to enridh by commerce and agriculture; and the Sootcra to hatour, serve, and obey. Brama himetf endowed mamkind with passion, and underituading to regulate them; uhile Bitimha, having created the inferior beinss, proceeded to write the Vedas, and Whivered them to be read and explained by the Bramins.

The four Vedas conatain 10.,000 stanzas in verse, each consisting of four lizes. Each of these Vedas has a particular name, descriptive of its nature, or the subyect it treats upon: viz. 1. Rug Brda. 2. Shesiam. 3. Judger Beda. 4. Óater Buh. There are also Siansters, or books that treat of divimity; the chief of these are the Bediung, the Neaders'n, and the Dirm Shasters; and the Hindus are divided into sects, according to the Shaster they aiopt. Besides these sacred books there are 18 oners called Pourans, which are all commenarics on the Vidas; it is the custom of the bramins in git most of these by heart.

The tlindu Shaters make God a respecter of person: ; inasmuch as no other mation under heasea can be of their religion, which adasts of no procelytes: in this respect, probably their rellizion differs from every other.

The religion of the Hindus, thongh now involud ia superstition and iddatry, seems to have been much purer in its origin: the following account of the Deity is translated from their original scriptures by Mr. Holwell:" (Gorl is one-Creatur of all that is.-Gorl is like a pertect sphere, whhout beginning or end-God rules and governs ail cratures by a general providence, resulting trom first determined and fixed priaciples.--Thou shalt not make cuguiry into the essence and nature of the exisicuce of the Eternal One, nor by what laws he governs.-An enquiry into either is vain and criminal.-It is enough that day by day, and night by night, thou seest in

In the Hindu religions sstems, the peculiar doctrines of the Trinity, of the Incarnation of the Deity, of atonement for sin, and of the influences of the Divine Spirit, are so strongly represented as to leave no doubt that, notwithstanding the general corruptness of their principles and practices, they were once derived from the Cliristian scriptures. 1st, The doctrine of the Trinity. The Hindus believe in one God, Brahma; the creator of all thinge; and yet they represent him as subsisting in three persons: and they worship one or other of théce persons throughout every part of India. Aud what proves that they hold this
doctrine distinctly is, that their most ancient representation of the Deity is formed of one body and three faces. edly, The doctrine of the incarnation of the Deity. The Hindus believe that one of the persons in their Trinity (and that, too, the second person) was " manifested in the flesh." Hence their fables of the incarnations of Vishnu. 3dly. The doctrine of atonement for sin, by the shedding of blood. To this day, in Hindustan the people bring the goat or kid to the temple, and the priest sheds the blimed of the innocent victin. 4thly, The doctrine of the influence of the Spirit of God. In the most ancient writings of the IIndus, it is asserted that the " divine spirit, or light of huly knowledge," influences the minds of men, and the man who is the subject of such influence is called " the man twice-born :" many chapters are devoted to the duties, character, and virtues, of " the man twice born."

Among the Hindus there are two kinds of worship; distinguished by the names of the worshpp of the invisible God, and of idols. The worshippers of the invisible God are, strictly speaking, deists: the idolaters perform nany absurd and unmeaning ceremonies, too tedious to mention, all of which are conducted by a Bramin; and during the performance of these rites, the dancing-women occasionally perform in the court, singing the praises of the Deity in cuncert with various inaruments.

The Hindus have a multitude of demigorls, who are supposed to inhatit the air, the car:h, and the waters, and in short the whole world; so that every moun'ain, river, wood, town, village, de. has one of these tutelar deities, as was the case among the western heathens. By nature these demigrols are subject to death, but they are supposed to obtain iminortality by the use of a certain drink named Amrut. Their exploits in many instances reiemble those of Bacchus, Hercules, Thescus, \&c.; and in a beautiful epic poem named Rancuun, we have an account of the wars of Kain, one of the demigods, with Ravana tyrant of Cevlon.

All these deities are worshipped, as in other countries, by going to their temples, fasting: prayers, and the performance of ceremonits to their honour. They pray thrice a day, at morning, boon, and evening, turning their faces towards the east. They use many ablutions, and, like the Pinarisees of old, they always wash before meals. Running water is always preferred for this purpose to such as stagwates. Fruits, flowers, incense, and money, are offiered in sacrifice to their idols; but for the dead they offer a kind of cake named Peenda; and offerings of this kind always take place on the day of the full moon.

The Hindus have a great veneration for fire and water. Every day at sun-rise the pricsts go to some river, or to the tanks of their temples, to worship. Of all their rivers the Ganges is the most highly venerated; they say it takes away all the spots of sin, because,

HINDUS.

springing from the foot of their god Vishnou, it descends into the paradise of devendne, and thence into Hindustan: therefore the Indians go in crowds to wash at this river.

Great numbers of devoters are to be met with among the Hindus. Every cast, except the Chandialdhs, may assume this way of life. Those held most in esteem are named Seniasses, and Jogeys, or logcizs. The former are allowed no other clothing but what suffices for covering their nakedness, nor have they any worldly goods besides a pitcher and staff; but though they are stricily enjnined to meditate on the truths contained in the sacred writings, they are expressly forbididen to argue about them. The logeys are bound to much the same rules, and iotii subject themselves to the most extravagant penances. Some will keep their arms constant!y stretched over their heads till they become quite withered and incapable of motion ; others keep them crossed over their breast during life; while others, by keeping their hands constantly shot, have them quite pierced throngh by the growth of their nails. Some chain themselves th trees or particular spots of ground, which they never quit; others resolve never to lie down, but sleep leaning against a tree: but the most curious penance perhaps on record is that of a Yogey, who measured the distance between Benares and Jagernaut with the lenzth of his body, lying down and rising alternately. Many of these enthusiasts will throw them. selves in the way of the chariots of Vishnon or Sheevah, which are sometiones brought forth in procession to celcebrate the feast of a temple, and drawn be several hundreds of men. Thus the wretchird devotees are in an instant crushed to pieces. Others devnte themsclves to the flames, in order to shew their regard to some of their idols, or to appease the wrath of one whom they suppose in be offended. Indeed it would be endless to describe their various modes of torturing themselves.

A certain set of devotees are named Pandarams; and another on the cnast of Coromandel are named Cary-Patra Pandurams. The former rub themselves all over with cowdung, running about the conntry singing the praises of the good Shecvah whon they worship. The latter go about asking charity at doors by atrikiug their hands together, for they never speak. They accept of nothing but rice. Another kind of mendicants are callel Tadinums; they sing the incarnations of Vishnon.

Among the Hindus, marriage is considered as a relicious duty; and pareots are strictly commanded to marry their children by the time they arrive at eleven years of $a_{i} ;$ Marriages are often contricted at 2 or 3 years of age: and it is no unisual thing to hear a married child crying bitterly when carring ahnut in the dhom'y, or Bengal palanquin. The partics remain' wromate men a cermin tine; whe: they are filts unitel with numerous formatitice. Polyruinv is allowed; but thislicence :s sel! man mate use of.

Among these people the custom of buiniry the dead prevails universally; and the horrid practice of wires burning themselves along with their deceased husbands was formerly very common, though now much less so. This piece of barbarty is not enjoined by any law existing among the Hindus; it is only said to be proper, and rewards are promised in the next world to those who do so. But thoush a wife choose to outlive her husband, she is in no case whatever permitted to marry again, even though the marriage with the former had never been completed. It is unlawful for a woman to hurn herself if she be with chinid at the time of her husband's decease, or if he died at a distance from her. In the later case, however, she may do so if she can procure his girdle or turban to be put on the funeral pile along with her.
Some Hindus, though few, bury their dead: and in these cases, it is reckoned the duty of the widow to hury herself with the body of her husband. Craufurd hicard of two instaices of this dreadful ceremony.
The Hindus are very loquacious, and very deceitful, but not malicions: they are fond of amusements, particularly dancing. They do not, however, learn or practise dancing themsclves, but have women taught for the purpose; and in beholdiag these they will spend whole nights. Ther disapprove of many parts of the education of European ladies, as supposing that they engage the attention too much, and draw away a woman's affection from her husband and childreu. Hence there are few women in Hindustan who can either write or read. In general they are finely shaped, gentle in their manners, and have soft and even musical voices. The women of Kashmere, according to Mr. Forster, have a bright olive complexion, fine featares, and delicate shape; and a pleasing freedom in their manners, without any tendency to immodes:y.
The dress of the modest women in Hindustan consists of a close jacket, which covers their breasts, but perfectly shews their form. The sleeves are tight, and reach half-way to the elbows, with a narrow border painted or embroidered all round the edges. Instead of a petticoat, they have a piece of white cotton cloth wrapped round the loins, and reaching to near the ancle on the one side, but not quite so low on the other. A wide piece of muslin is thrown over the right shoulder; which, passing under the left arm, is crossed round the middle, and hangs down to the feet. The hair is usually rolled up into a knot or bunch towards the back part of the head; and some have curls hanging before and behind the ears. They wear bracelets on their arms, and rings in their ears, and on their fingers, toes, and ancles, with sometimes a suall one in the nostril.
The men generally shave their heads and beards, leaving only a pair of small whiskers, and a lock on the back part of their head, which they take great care to preserve. In kahmere and some otherplaces, they let their

H 1 N

H I N
beards grow to the length of two inches. They wear turbans on their heads; but the branins who officiate in the temples, commonly go with their heads uncovered, and the upper part of the body naked: round their shoulders they hang the sacred string called Zennar, made of a kind of perennial cotton, and composed of a certain number of threads of a determined length. The Khatries wear also a string of this kind, but composed of fewer threads; the Bhyse have one with still fewer threads; but the Sooderas are not allowed to wear any string. The other dress of the bramins consists of a piece of white cotton cloth wrapped about the loins, descending below the knee, but lower on the left than on the right side. In cold weather they sometimes put a red cap on their heads, and wrap 2 shawl round their bodies.

The progres of the llindus in geometry as well as asironomy has been very great in ancient times. Of this a most remarkable instance is given by Mr. Playfair, in their finding out the proportion of the circumfercuce of a circle to ins diameter, to a great degree of accuracy. This is determined, in the Ayeen Ahlary, to be as 3927 to 1250; which, to do it arithmetically in the simplest manner prossible, would require the inscription of a pelycon of 768 sides; an operation which cannot be performed without the knowledge of some very curious properties of the circle, and at least nine extractions of the square ront, each as far as ten places of decimals. This proportion of 1250 to 3927 is the same with that of 1 to 3.1416 ; and differs very little from that of 113 to 355 discovered by Metius. He and Vieta were the first who surpassed the accuracy of Archimedes in the solution of this problem; and it is remarkable that these two mathematicians flourished at the very time that the Ayeen Akbary was composed among the Hindus. In geography, however, they are much deficient; and it is very difficult to find out the true situation of the meridians mentioned by their authors, from what they have said concerning them.

The art of painting among the Hindus is in an imperfect state; nor are there any remains of antiquity which evince its ever having been more perfect than it is now. Their principal defect is in drawing, and being almost totally ignorant of the rules of perspective. They are much better skilled in colouring; and some of their pictures are finished with great nicety. Their sculptures are likewise rude, and greatly resemble those of the Egyptians. They seem to follow no regular sules in architecture: their temples indeed are filled with innumerable columns, but most of them without any just shape or proportion. They are principally remarkable for their immense size, which gives them an air of majesty and grandeur.

The music of the Hindus is but little known to Europeans; and the art scems to have made but little progress among them in comparison with what it has done in the western countries; though some of the Indian airs are said to be
very melodious. A specimen of one of their tunes is given in the Periodical Accounts of the Baptist Missionary Society, No. 3; to the various Numbers of which we also rcfer for much other curious and interesting information. Sce also Maurice's History of Hindustan; the Asiatic Researches; Buchanan's Travels in the Mysore; Cunningham's Christianity in India, \&c.

HINDUSTAN, a country of Asia, bounded on the north by the mountains of ' Partary and Thibet, on the east by the countries of A:sam, Meckley, and Aracan, on the south by the sea, and on the west by the river Indus, or Sinde. But, strictly speaking, the name Hindustan should only be applied to the part which ties to the north of the 21st and $22 d$ degrees of latitude; the Nerbudda river being the southern boundary, as far as it goes, while Bengal and Bahar bound the south elsewhere. I'he country in the south side of this line is called by the general name of Deccan; but this division is not generally followed, and the term Hindustun is applied to the whole region, as well as to Hindustan Proper. Hindustan Proper, in the opinion of Major Rennel, is in extent about equal to France, Germany, Bohemia, Huugary, Swisserland, Italy, and the Netherlands, collectively; while the Deccan and peninsula are about equal to the British islands, Spain, and European Turkey. The words Hindustan and India are originally Persian. This country was but little known to the ancients; it was invaded, but not conquered, by Alexander the Great. The A rabians penetrated into India under the calif Valid, and the Arabian princes founded an empire which extended to the Ganges. In 1155, this cmpire was usurped by the Ghaurs, who were dispossessed in their turn by a dynasty of Turkish princes. In the ye: r 1398, a sultan, named Mahmoud, reigned here, under the protection of two of his generals, who had placed him on his throne. At this time Hindustan was invaded by Timur Bek, or Tamerlane, who passed the Indus with his army, conquered the provinces which he passed through, and arrived at Delhi through rivers of blood. Mahmoud was vanquished, Delhi was destroyed, and all Hindustan submitted; but of all this vast and rich conquest, the descendants of Timur Bek enjoyed only the northern part. Babr, one of his desceidants, invaded Hindustan in the year 1498 , at that time divided into several independent kingrloms and states; his first attempts were unsuccessful, hut afterwards he subdued the greater part, except the Deccan, Guzerat, and Bencal. His son Hemayun subdued Bengal. At his death, which happened at Delhi, his son Akbar was proclaimed emperor, in 1556, who encreased his empire by conquest, and enriched it by commerce. Aurengzebe conquered Bengal, Visiapour, the Carnatic, and Golconda. In the year 1739, in the reign of Mohammed Shah, IIindustan was invaded by Tahmasp Kuli Khan, otherwise called Nadir Shah, king of Persia, which

IIINDUSTAN.

put an end to the great splendour of the Mogul empire. Besides the great riches, said to have amounted to upwards of $2: 30$ millions sterling, which the seized on during hig resdence at Delhi, all the provinces west of the Sinde were surrentered to the cringueror. Mohammed was reinstated indeed in his dominions, but without power to eaffirce obedience to his commands. Several of the provinces revolted; Achnict Abdallah, treasurer to Nadir Shah, who was as assinated in 1747, found means to secrete vast sums of money, and crected an independent kinglom, of which Candahar was the capital At jiresent, the empire of Mindustan is confined to the city of Delhi and a susall country round it; and, perhaps, the protection of the English is the greatest support of the descendant of Thimur Bek. Before the invasion of Nadir Shah, the government was despotic; there were no permanent councils: and three or four ministers, raised or deposed according to the caprice of their master, were the depositaries of his power. Ilindustan s inhabited by people of different kinds, as the Hindus, the Patans, or Afghans, the Baluchis, the Parsis, and the Mongols, or Tartars, besides foreigners, particularly Jews and Christians. All, excepting the Hindus, who are the ancient inhabitants, have settled there by conquest or accident; having been induced by commerce, or compelled by war and persecution, to abandon their native countries. The Hindus are the ancient occupants; and, though subject to the Mongols, still preserve the superiority in number. The Parsis are the descendants of the ancient Persians, who worshipped the fire. These, to avoid the persecution of the Mohammedans, on their first conquest of Persia, fled in great numbers by the sea to India; where they settled on the western peninsula, chiefly abriut Surat, and there they still remain. The Patans were those from whom the Mongols conquered Hindustan; and are most likely the descendants of those Mohammedans, Turks, Persians, and Arabs, who about the vear 1000 first became masters of Dellii and Moultan, under Sultam Mahmud Gazni. These people are still very numerous throughout Hindustan, and especially in the north-wet parts beyond the Sinde towards Cabul, Ghizni, and Candahar: from whence, in all probability, they originally came. They still inhabit the same provinces of the Persian empire, where they are chiefly known by the name of Afghans: they have a great aversion to the Monguls for having dispossessed them of their territories ; and, being high-spirited, still entertain hopes of recowcring from them what they seized. 'The meanest of them frequently use this expression, "let me never be king of Delhi, if it be not so." These people are fierce and warlike. They now possess many of the mountainous parts; where some have erected petty sovereignties, like the rajahs. They have from time to time given great uncasimess to the Mongols, and had no small share in the revolution brought about in
that enipire by Nadir Shah. The Baluchiare another nation, who possess several parts of Hindustan to the west of the Sinde, or Indus; they are spread over all the large province of Mecran and the neighbouring par:s. They are a barbarous people, acidicied to rapine, and pay little oledience to the mon:arctio to whon they are subject. The Muguis, or Jagatays, are the descendants of the army of 'Jinur Bck, who have held chicf rule in India from that time. Among the Christians, the Portuguese were the first to establish themselves on the continent and in the islands, chictly by force, but were afterwards almont every where dispossessed by the Dutch. The sculements obtained by the English, Frenich, and Danes, have chietly been formed by traty with the inhabitants, or grants from the princes. Of the several nations above mentinned, the Hindus and Parsis are Pagans, but excel most of the rest in proper deportment. The Patans, Baluchins, and Mogols, are Mohammedans. The two first, given to arms, are of a restless disposition, subject on sliyht occasions to revolt, and plunder their neighbours without distinction. In the time of Aurengzebe, the provinces which composed the Mogul empire were Delhi, Agra, Agimerc, Moultan, Sindy, lahcre or Punjab, Oude, Allahabad, Bengal, Bahar, Orissa, Cabul, Cachimere, Malwa, Guzerat, Berar, Candeish, Dowlatabad, Beder, Hydrabad, or Golconda, and Visiapour, all which produced an annual revenue of about 32 millions sterling. At the present time, Bengal, the greater part of Bahar, with part of Allahabad. and Orissa, belong to the Enylish, who are also in possession of the northern circars, a jaghire in the Carnatic, Baramahal, Dindigul, and some considerable countries to the N . and S. of Calicut, on the coast of Malabar, with the island and territory of Bombay. Oude is goverued by a nabob, in alliance with Great Britain, as likewise the eastern part of Delhi. Allahabad, Malwa, Dowlatakad, part of Guzerat, Orissa, Berar, Agra, Agimere, and Visiapour, are goverued by Mahratta princes, in sinaller states, chiefly under the name of Rajahs. Golconda, Aurungabad, Beder, part of Berar, \&tc. are subject to the Soutah of the Deccau. Lahore, Moultan, and the western parts of Delhi, are subject to the Stiks, or deseendants of a famous Hindu named Nanuck, of the cast of Khatry, who was born in 14;0. He formed a scct, who were purely deists, and reprobated the worship of iduls. The southern parts of the peninsula are the Mysore, the Caruatic, Tanjore, Cochin, 'Iravancore, Madura, Tinevelly, Coimbetore, Canara, and a few smaller states subject to the king of Mysore. The Carnatic, including Tanjore, Madura, Tinevelly, and Marawars, are allies to the British; so likewise are Cochin and Travancore. The native inhabitants of Hindustan amount to about 10,000,000 Mahometars, and 100,000,000 Hindus.
The British territories in the East Indies

HINDUSTAN.

vere originally under the jurisliction of a go-

 Auctuated occasionally from 14 to number has it was fixed by act of parliament. In this council, all matters, whether relating to peace or war, government or commerce, were debated, the governor having no other suPeriority than that of giving the casting vote. was other respects the whole exccutive power pondence in his hands, and all the correscarricd on by his means, princes of India was them being signed means, the dispatches to princes and great men who wisited the presidency were first received by hisited the preintroduced to the counsellors. He was military governor of Fort William, and commander in Chef of the presidency; whence, as by his degree of was tivested with a considerable eniry and jealousy to the members of some conncil aud other considerable people in that part of the wurld. This circunstance occasioned the government to be divided into tivo parties, one siding with the governor, and the other opposing nim; in consequence of which, the debates were frequently carried on with an indeceut degree of heat and viulence. This cipal may be looked upon as one of the prinBritish causes by which the reputation of the world governmert in the eastern parts of the frefuently opinied; for, as there were very one another recorded upon the same subject, the contending parties in the British parliament hadd always sufficient authority for what they said, let them take which side they would; and thus the characters of all concerned in the East India government were, with great appearance of justice, set forth in the most opprobrions light. Another source of just reproach was, that the court of directors in of party which pervaded all other departments oi the state ; anll hence arose innumerable disputes and contentions highly disgraceful toahose concerned. With regard io affairs in the the the administration of British remarked, that East Indies, it nust indeed be different capacity from what they originally did. Froni a society of therchants, they are dow become sovereigns of the country to which they trade. The latter character was quite foreign to them; and they have accordingly looked upon that of merchants as the principal one, while that of sovereigns was to be only a kind of apprendage to it. Thus, instead of acting for the interest of the country they govern, and which as sovercigus they naturally ought to do, they have acted in many cases directly opposite to it, which, as merchants, is also their natural interest. Hence also, when the administration in India did any thing in olbedience to the orders of the directors, which orders being dictated by merchants were prejudicial to the interests of the country, that injury has been sometimes unjustly attri-
buted to their servants, who acted merely in obedience to the orders they received. On the other hand, when the India administration acted with the generous spirit of soveretgns, they were sometimes blamed by the directors, who judged as merchants ; and sometimes by the ministry, who were always ready, upon the smallest pretence, to interfere in their firs.
At the time when the British alministration first commenced in Hindustan, the Hindu governors were miviversally named Rajahs; but though many of the linda families yet bear that title, it does not appear to resemble, in any mammer of way, our tites of nobility, or to be a dignity which can be conferred by any of the princes, or even by the Mornl himself. Hence, in that part of the world conferred no ancient nobility; the titles being right nor title y byusurpers, who have neither violence.
From a comparison of any government to which the Hindus have get been subject, with that of Britain, it is evident that the preference must be decidedly given to the latter. At the time when the British first visited that country, they were not under the jurisdiction of their native sovereigns, nor had they been so for a long time before. The Moguls were not only foreigners, but a most cruel and detestable race of men; and it was hy usurpations of their own rebellious subjects that the anarchy and confusion was introduced, in which the comintry was so long involved. The British are forcigners, as well as the Mogals; but the latter, who profess the intolerane superstition of Mohammed, suffer their conduct to be influenced by it in such a manner as to treat the native Hindus with the ummer cruelty. The greatest evil perhaps which results from the British government is, the exportation of great sums of money to a forcign country; but this evil, with respect to the provinces possessed by the British, existed also under the Mohammedan government; and indeed there is great reason to conclude. that under this дovemment, matters were stifi worse, even in this respect, than under that of Britain.
One great objection, however, to the India government is, that the linglish law, which undoubtedly is better calculated than any other for securing the liberties of the people, has not yet been adopted in India; whence it is thought that the company's servants have still shewed a disposition to oppress, rather than to relieve, the oppressed inhabitants of IIindustan. But in answer to this it is said, that the difierence betwixt the two countries is so great, that there can be no comparison bet wixt the one and the other, nor can the constitution of Eneland be in any degree adapted to that of the otlicr. The religion, laws, manners, and customs, of both Hindus and DIohammedans, are so essentially different from those of this country, that it is impossiole to assimilate then, btould ever any thins of the kind te

HINDUSTAN.

attempted. The only true method therefore of judging whether the present state of Hindustan is preferable to what it formerly was, is to compare it with what it was under the best Mogul emperors; and in this comparison it must certainly appear that the preference is greatly in favour of the British administration. In Major Rennel's work we are informed, that during the reign of Akbar, whom he styles "the glory of the house of Timur," the country had never enjoyed so much tranquillity; " but this tranquillity would hardly be deemed such in any other quarter of the world, and must therefore be understood to mean a state short of actual rebellion, or at least commotion." The same author, speaking of the state of the British empire there, uses the following words: "The Bengal provinces, which have been in our actual possession near 23 years, have, during that whole period, enjoyed a greater share of tranquillity than any other part of India, or indced than those provinces had ever experienced since the days of Aurengzebe." To this we may add, that the provinces have not ouly experienced a perfect freedom from external invasions, but likewise enjoy a degree of internal tranquillity altogether unknown before, by the subjection and civilization of a set of banditti who inhabited the hills of Rajemahl, and infested the travellers who passed that way; a wandering tribe of religious mendicants, who were wont to commit the greatest enormities.

Towards the north, Hindustan is very cold and barren; but towards the south, very hot, and fertile in corn, rice, fruits, and other vegetables. The northern provinces are very mountainous and sandy; while the southern are for the most part level, and well watered by several rivers.

The most remarkable mountains are those which surround it on three side3. Those on the west, separating it from Persia, called, in general, Soleyman hay, or the mountains of Solfyman, are of a vast height as well as breadth, and are only passable in certain places, through which roads have been made for the sake of commerce. The chief are those which lead to Kabul, Gazna, and Kandahar. This great chain of mountains is inhabited by different nations, the principal of which are the Afghans, or Patans, and the Baluches, who have extended themselves on the side of India, as well as Persia. The mountains on the north are called Negrahut, Hima, or Müs Tâg, which has an allinity with Imaus, and by other names, which are given also in commnn to the mountains on each vide, separating Hindustan from Thibet. The very prospect of these mountains is frightul; being nothing but hideous precipices, perpetually corered with snow, and not to be crossed without the greatest danger and difficulty.

The most remarkable rivers of Hindustan are the Indus and Ganges. The former is called by the orientals, Send, Sind, or Sindi. It rises in the mountains to the north or northeast of Hindustan; whence, after a long
course, first to the south and then to the sosthwest, it falls into the Persian sea, below Lower Bander, by several mouths. In its course it receives scveral other large rivers, as the Nilah, Jamal, Behat, and Lakka. The Ganges, called in the Indies Ganisa, riscs in the kingdon of Thibet; entering Hindustan about the 30th degree of latitude, it rums first southeastward by the cities of Bekincr. Minuphr, Halabas, Banàres, and Patua, to Rajah Mahl, where it divides into two branches. The eastern having passed by Dakka, the capital of Bengal, enters the gulph of that name about Chatigan. The western, descending by Kos-sum-Bazar and Hughly, falls into the gulph bclow Shandernagor, towards Pipeli. Many of the Jews and ancient Christians believeril this river to be the Pison, one of the four mentioned in scripture as the boundaries of the terrestrial paradise. The Indians retain the greatest reverence for its waters, going in crowds from the remotest pars of the comitry to wash in them, from a persussion that they wholly obliterate the spots of \sin. See Hin dus. Nothing is more childish than the fables of the Bramins on this subject, yet the people swallow them all. The Mogul and prince of Golconda drink no other water than that of the Ganges: foreiguers, on the contrary, ailege that it is very unwholesome, and that it cannot be safely drunk till it is first boiled. There are a great number of superb pagodas on the banks of the Ganges, which are immensely rich. At certain festivals, there has been sometimes a concourse of 100,000 people who came to bathe in it. But what principally distinguishes this river, besides it greatness and rapidity, is the gold it brings down in its sunds, and throws on its banks; and the precious stones and pearls it produces, nut only in itself, but in the gulph of Bengal, into which it discharges its waters, and which abound therewith. The Chun or Jemma, the Gulerasu, the Persilis, Lakia, and several other rivers, discharge themselves into it during its course.

The weather and scasons are, for the most part, very regular in this spacious country: the wiuds blowing constantly for six months from the south, and six from the north, with very little variation. The months of April, Mav, and the beginning of June, till the rains fall, are so extremely hot, that the reflexion from the ground is apt to blister the face; and but for the brecze or small gale of wind which blows every day, there would be no living in that country for people bred in northern climates; for, excepting in the rainy season, the coldest day is hotter there at noon than the hottest day in England. However, very surprizing changes of heat and cold sometimes happen within a few hours; so that a stifling hot day is succeeded by a night cold enough to produce a thin ice on the water, and that night by a noon as scorching as the preceding. Sometimes, in the dry season, before the raius, the winds blow with such extreme violence, that they carry vast quautities of dust and sand into

the air, which appear black, like clouds charged with rain; but fall down in dry showers, filling the eyes, ears, and nostrils of those among whom they descend, and entering every chest, cabinet, or cupboard, in the houses or tents, by the key-hole or crerices.
From Surat to Agra, and beyond, it seltiom or never rains, excepting in oue reason of the year; that is, from the middle of June to the midide of Seplember. These rains generally begin and end with most furious storms of thunder and lightaing. During these thrce months it rains usually cvery day, and sometimes for a week together without intermission: by this means the land is enriched, like Egypt by the Nile. Although the land looked before like the barren sands of the Arahian deseris; yet, in a few days afier these showers begin to fall, the surface appears conered with verdure. When the rainy season is over, the sky becomes perfectly serene agaiil, and scarce one cloud appears all the other nine months: however, a refreshing dew falls every night during that dry interval, which coole the air, and clierishe, the earth.
We cannot conclude this article without noticing the laudable attempt made by the Baptists of England, to dispel the "gross durkness which covers the land" of Hindustan with respeet to religion, by sending over Missionaries to propmgate the light of Christianity among the benighted natives of those revions. Considering the almost insurnountable olstacle of the cast (see Hindus,) the success of these Missionaries has been greater than manv expected. They have primed and circulated translations of the New Testament in the Bengallee dialect, and other eastern languages; and this has induced many of the natives to come to them with the question of the gaoler, "Sirs, what must we do to be saved?" to join with then in Christian worship, and fellowship, and completely to abandon their wonted superstitions. See Missions.
To HINGE. $v . a$. (from the nouni.) 1. To furnish with hinges. 2. To bend as a hinge (Shahspeare).
HiNGES. s. (or kingle, from hangle or hang.) I. Iron or brass joins, whereby duors, tables, \&c. open, shut, or fold. 2. The cardinal points of the world (Creech). 3. Governing rules or principles (Temple). 4. To be off the Hinges. To be in a sate of irregilarity and disorder (Tillotson).

Hinges are of different denominations: as butts, ueed by the joiners for hanging tableleaves, \&c.; casement, for hanging casements upon dove-tails; and esses, for light doors and lockers; garmet-cross, for hanging large doors or heavy scuttles in ships; port, for hanging shipe' ports; scuttle, particularly used for scuttles. Besides these, there are many othens of different forms and uses, distioguished by different names.
The upper part of plate 86 is a representation of a contrivance for causing a door to shut to, which is to be applied to those doors which zwing open both wass; and the office of the
spring is to shut it either way. As this is the case, it is evident that the ordinary spring used for shutting doors cannot be used; for if the action which cassed the door to shut, be continned after it is cicsed, the door will be opened again. Fig. 1 is an elevation of the lower part of a donr, shewing the mechanism beneath the floor; and fig. 2 is a plan of the same, the floor being supposed to be removed. The door AA is not hung upon hinges as in common, but is mounted upon pivots at the top and bottom : the lower pirot a is firmly screwed to the bottom of the door by an iron arm b, and works in a brass socket d, fixed below the floor. The upper pirot of the door is nearly the same, except that it is shorter, the socket being close to the arm d, and screwed to the door-case e. is a semicircular arch of cast iron, fitted upon a square, npon the lower pivot a: to this arch the ends of two chains $f g$ are pinned; the other ends of the chains are passed round a barrel h, and pinned fast to it. The basrel contaius a spiral spring, which is coiled up within it. The inner end or the spring is hooked to an arbor in the centre of the barrel, whose ends come through the barrel: the outer end of the coil of spring is riveted to the inside of the barrel. The ends of the arbor of the barrel are filed square, and fitted into square holes in the bridge i, and the plate k, so that it cannot turn round the spring at the same time, being set considerably upon the strain, that it may draw the chain f and g light. It will be easily seen, that if the door is moved either way from the position of the dotted lines $1 l$ fig. 2 , it will turn the arc e with it, and wind up one or other of the chains f or g, and by that means draw of some of the chain from the spring-barrel; at the same time the opposite chain is wound off the are, and, not being taken up by the spring barrel, lies slack between them. When the force which coused the door to open is removed, the spring-barrel draws the chain which is weund up, and brings the door back again until it arrives at the position $1 /$ fig. 9 , when both chains have an equal share of the force exerted by the spring barrel; and if the door is opened on the other side, that chain which was slack before, will now take up the spring, and the other will become slack. The semicircular arc e, upon which the chains wind, is not fixed to the pivot a of the door hy its centre, but very nearly in its circumference. By this means, when the door is shat, as in the figure, the chains act upon a long lever, and have considerable force upon the foor to keep it so: but when the door is tarned one quarter round (that is, set open), the chain draws very near the centre, and has but little power upon the door, so that it may easily be held open.

These hinges are the invention of Mr . Morris, Whitenmb-street, London, who manufactures them. We have seen some of them in action, which answered extremely well.

HINGHAM, a town of Norfolk, with a market onSaturdays. Lat. 58.43 N . Lon. 1.4 E 。

H I N

HINNOM, or the Valley of Hinnom, in ancient geography, a place that lay to the south of Jerusalem. It was also called the Valley of Tophet, and was remarkable for the cruel and barbarous worship of the god Moloch, in which parents made their children pass through the fire in honour of that idol.
HINNY, in mastiology. See Equus.
To HINT. v. a. (enter, French, Skinner.) To bring to mind by a slight mention or remote allusion; to mention imperfectly (Pope).

To Hint at. To allude to; to touch slightly upon (Addison).

Hint. s. (from the verb.) 1. Faint notice given to the mind; remote allusion; distant insinuation (South). 2. Suggestion; intimation (Addison).

HINZUAN, or Joanisa, one of the Comora islands, between the north end of Madagascar and the continent of Africa. It is about thirty miles long, and fifteen broad. The sea-coasts of this island are chiefly in the hands of Arabians, who have obtained a settlement, and driven the original natives to the interior and mountainous parts, though the latter are double the number of the former. Though not the largest, it is the principal, and demands tribute of the others. The island produces oranges, leinons, limes, cocoa-nuts, yams, bananas, pine-apples, with some antiscorbutic plants, the principal of which is purslane: the inhabitants are fond of the English, and the English language; and most of them claim the title of lord, duke, or prince, and on the arrival of a vessel, solicit custom, or presents, under those characters, hoping to obtain something more substantial. Lon. 44. 48 E. Greenwich. Lat. 12. 14 S .

The inhabitants, like those of most hot and tropical countries, are indolent, and do not improve by their labour the richness of that soil with which nature has blessed them. "Climate here," says major Rooke, "promotes vegetation to such a degree as requires little toil in the husbandman; but that little is denied; so that beyond oranges, hananas, pine-apples, cocoa-nuts, yams, and purslane (all growing spontaneously), few vegetables are net with. Nor are the natural beauties of the island inferior to its other advantages of plenty and fertility. The face of the country is very picturesque and pleasing, its scenes being drawn by the bold strokes of Nature's masterly pencil. Lofty mountains clothed to their very suinmits, deep and rugged valleys adorned by frequent cataracts, cascades, woods, rocks, and rivulets, intermixed in "gay theatric pride," form the landscape. Groves are seen extending over the plains to the very edge of the sea, formed princijally by the cocoa-nut trees, whose long and naked stems Ieave a clear and uninterrupted passage beneath; while their tufted and overspreading tops form a thick shade above, and keep off the scorching rays of the sun. . In the interior part of the ialand, surrounded by mountainsof a prodigious height, and about 15 miles from this town, is situated a sacred lake, half a mile in circum-

H I P

ference. The adjacent hills, covered with lofty trees, and the unfrequented solitude of the place, seem more calculated to inspire religious awe in those who visit this sequestered spot, than any sanctity that is to be discovered in a parcel of wild ducks inhabiting it, which are deitied and worshipped by the original natives, who consult them as oracles on all important affairs, and sacrifice to them. Being extremely averse to conduct strangers thither, they stipulate that all gunsshall be left at a place five miles from the lake. The worship paid to these birds ensures their safety and tranquillity; and rendering them of course perfectly tame, they fearlessly approach any out who goes there. The Arabian part of the islanders hold this barbarous superstition in the utmost detestation; but dare not forbid the practice of it, so bigoted to it are the others."

HIORRING, a town of Denmark, in N. Jutland, once the see of a bishop, which is now removed to Alburg. Lat. 57. 2 N . Lon. 9. 38 E.
HIP. s. (hype, Saxon.) 1. The joint of the thigh (Brown). 2. The haunch; the flesh of the thigh (Dryden). 3. To have on the Hip. (A low phrase.) To have an advantage over another (Shahspeare).

To Hir. v. a. (from the noun.) 1. To sprain or shoot the hip (Shakspeare). 2. Hir-hop. A cant word formed by the reduplication of hop (Congreve).

Hip. interj. An exclamation, or calling to one.
Hip, the fruit of the briar. See Rosa.
Hips, in building, pieces of timber placed at the corners of roofs, and which are longer than the rafiers on account of their oblique position.
Hip means also the angle formed by two parts of the roof, when it rises outwards.
Hip-roop, called also Italian roof, is one in which two parts of the roof meet in an angle, rising outwards : the same angle being called a valley when it sinks inwards.
Hip-tiles, those which are made of such a form as to fit over the hips and angles of roofs.
Hip-shot, in the manage, an injury sustained by a horse in wringing or spraining his hips or haunches. In this case the horse halts, and moves sideways, trailing his legs after him; the affected hip becomes lower than the opposite, and falls away in flesh. Stimulaures, and especially a rowel, when the inflammation has subsided, appear most likely to be serviceable. This injury, however, is sometimes confounded with a dislocation of the hip.
Hip, Hi'ppish. a. A corruption of hypochondriack (Ainsworth).
HIPPA, in entomology, a tribe of the genus cancer, as arranged hy Fabricius. See Cancer.

HIPPARCHUS, a celebrated astronomer of antiquity, was born at Nice in Bithynia, and flourished between 160 and 135 years before Christ, He is accounted the first who, from rague and scattered obserrations, reduced
astronomy into a science, and prosecuted the study of it systematically. Pliny often mentions him, and always with great commendation. He was the first, he tells us, whoattempted to count the number of the fixed stars; and his catalogue is nreserved in Ptolemy's Almagest, where they are all noted according to their longitudes and apparent magnitudes. Pliny places him among those men of a sublime genius, who, by foretelling the eclipses, taught mankind, that they ought not to be frightened at these phenomena. He foretold the course and eclipses of the sun and moon for 000 years. He was also the first who discovered the precession of the equinoxes; and he invented some new instruments. His Commentary on the Phenomena of Aratus is still extant; a correct edition of it was published by Petavius.

HIPPIA. In botany, a genus of the class syngenesia, order polygaınia necessaria. Receptacle naked, downless; seeds with very broad margins, naked; calyx hemispheric, somewhat imbricate; florets of the ray ten, obsolete, two or three cleft. Four species: shrubs of the Cape, South America, India, and Portugal.

HIPPIATRICE, (of im\%os, horse, and ierfes, physician,) the art of curing the diseases of brutes, and particularly horses.

HIPPIUM, in antiquity, that part of the Hippodrome which was beaten with the horse's feet.

HIPPOBOSCA. In zoology, a genus of the class insecta, order dipterous. Mouth with a short, cylindrical, straight, two-valved sucker, the valves equal; antennas filiform; feet armed with numerous claws; body flat and hard. Five species: four of them coninion to our own country.

1. H. equina. Horse-fly; wings obtuse; thorax varicgated; feet armed with four claws; head brown; legs annulate with ycllow and boown. Inhabits Europe, and especially the New Forest, and is very troublesome to horses: they hide themselves under the hairs, and attach themselves firmly to the skin, by means of their crooked nails. Their general appearance is that of a large bug. See Nat. Hist. Pl. CXXXI.
2. H. avicularia. Wings obtuse; thorax imnaculate; body dull brown, with a slight cast of green. Inhabits Europe, on the body of various birds, especially swallows.
3. H. hirundinis. Wings tapering to a point; feet with six claws; body brown, with a blueish cast; abdomen darker. Inhabits Europe, on the bodies and in the nests of swallows, sivifts, and martins.
4. H. orina. Wingless; body dull. testaceous; legs hairy, claws double. Inhabite Europe, is found among the wool of sheep, and is generally known by the name of sheeptick. It more properly belongs to the apterous class.
5. H. uralensis. Black, hairy, with three rows of white shining vesicles on the back. Inhabits Ural. All these species deposit an egy or pupa, for it may be denominated either,

H I P

nearly as large as the size of the parent body itself; the fly in some of them is produced from the pupa in a month, in others the pupa continues inert through the winter, and is only entomised in the spring.

HIPPOCAMPUS, or Seahorse. See Syngiathus.

HIPPOCASTANUM, (hippocastanum. $\iota \pi \pi u x a f a v o r$, from $\quad \pi \pi \pi \sigma^{\prime}$, a horse, and xasavor, a chesnut, so called from its size). Common horse-chesnut. Esculus hippocastanum, foliolis septenis, of Linnéus. The fruit, when dried and powdered, is recommended as an errhine. The bark is highly esteemed on the continent as a febrifuge, and is by some considered as being superior in quality to the Peruvian bark. The bark intended for medical use is to be taken from those branches which are neither very young nor very old. See Eisculus.
HIPPOCENTAUR, formed of ${ }^{2 \pi} \pi \sigma$, horse, xivtew, pungo, I spur, and $\tau a v \rho_{5}$, bull, in antiquity, a fabulous monster, supposed to be half horse and half man.

HIPPOCRAS, a medicinal drink, composed of wine, with spices and other ingredients; much used among the French by way of a cordial dram after meals. There are various kinds of hippocras, according to the sort of wine and the other additional ingredients made use of; as white hippocras, red hippocras, claret hippocras, strawberry hippocras, hippocras without wine, cyder hippocras, \&ec.

HIPPOCRATEA. In botany, a genus of the class triandria, order monogynia. Calyx five-parted; petals five; capsules inversely heart-shaped. Three species : climbing plant of the West Indies.

HIPPOCRATES, a celebrated physician, of Cos, one of the Cyclades. He improved himself in physic by reading the tablets in the temples of the gods, where each individual had written down the diseases under which he had laboured, and the means by which he had recovered. He delivered Athens from a dreadful pestilence in the beginning of the Peloponnesian war, and was publicly rewarded with 2 golden crown: He devoted all his time to the service of his country. From his judicious remarks and experiments, succeeding physicians have received the most valuable advantages. He died in the 99th year of his age, B. C. 361 , free from all disorders of the mind or body. His writings, few of which remain, have procured him the epithet of Divine. The hest editions of his works are those of Geneva, folio, 1657; Amsterdam, 2 vols. 8vo. 1665; and Vienna, 2 wols. folio, 1740.

HIPPOCRATIA, in antiquity, feasts celebrated by the Arcadians in honour of the equestrian Neptune, from a notion that this deity conferred horses on men.

HIPPOCRENE, in ancient geagraphy, a fountain of mount Helicon, on the borders of Bœotia, sacred to the muses. Some, as Ovid. make Hippocrene and Aganippe the same.

HIPPOCREPIS. Horse-shoe vetch. In botany, a genus of the class diadelphia, order

H I P

decandria. Calyx five-toothed ; loment jointed, compressed with several deep notches on one of its sutures, curved. Five species : four indigenous to Europe, and one to Cochin China. Uf the European plants, one (h. comosa), is conmon to the chalk hills of Eucland. They are all low, herbaceous, trailung plants, with yellow flowers, scarcely worthy of the gardener's attenium.

Hippodrome, Hippodromes (composed of ، π mo; horse, and tpoopo; course, of the verb spane, curro, I run), in antiquity, a list or $^{\text {a }}$ course wherein chariot and horse races were performed, and horses exercised. The Olympian hippodrome or horse-course, was a space of ground of 000 paces long, surrounded with a wall, near the city of Elis, and on the banks of the river Alpheus. It was uneven, and in some degree irregular, on account of the situation; in one part was a hill of a moderate beight, and the circuit was arlorned with temples, altars, and other embellishinents. See Stadium. We have in England several vestiges of the Hippondromus: besides the remarkable one near Stonehenge, Dr. Stukeley speaks of one near Dorchester, another near Penrith, and another near Risyston.

HIPPODROMU'S is alsn the Bootian name for the month Ecatomboon.

HIPPOGLOSSUS, in ichthyology. See Pifurinectes.

HI'PPOGRIFF s. ($n \pi \pi \sigma_{s}$ and $\gamma_{\rho} \cup \downarrow$.) A winged horse (Miltou).
HIPPO'LAPATHUM, (hippolapathum,
 the lapatnum; a species of lapathum so named from its size.) Seerhabarbarum monaсноRUM.

HIPPOLYTUS, in fabulous history, a son of 'Theseus and Hippolyte, famons for his continence. His step-mother Phedra fell in love with him, and when he refused to pollute his father's bed, she accused him of offering violence to her person before Theseus, who believed the accusation, and entreated Neptune ${ }^{10}$ punish severely the incontinence of his son. Hippolytus fled from the resentment of his father, and, as he pursued his way along the sea shore, his horses were so frightened at the noise of sea-calves, which Neptune had purposely sent thither, that they ran about the rocks till his chario: was broken, and his body torn to pieces. Ovid. Virg.

HIPPO MANE. Manchineel-tree. In botany, a genus of the class monoecia, order monadelphia. Male: an ament; perianth cloven; corolless. Feın. : perianth three cleft; corolless; stigma three-parted; drupe or capsule three-grained. Three species : natives of the West Indies and America.

1. H. manicella. Leaves nvate, serrate, with two glands at the base. The milky juice of this tree is highly poisonous, and was at one time in frequent use among the Indians as a poison for the tips of their arrows. The poisonous property pervades nearly equally the fruit and the wood. Hence the incautious traveller, ternpted by the appearance of the

H I P
first, has often fallen a victim to the violence of its morbid stimulus: for the poison seems to depend on a peculiar acrimony aloue; and hence also the fellers of the timber, which on account of the closeness and beauty of its grain is in much esteem among our cabinet-makers, are compelled to dry the trunk by making fires around it, before they attempt to fell it; while the sawyers find it requisite to blind their eyes while sawing, to avoid ophthalmic inflammations, which the pungent aroma that Hies about them is otherwise sure to proluce. If the juice of this tree touch the skin, it generally blisters it ; and if it fall on linen, it corrodes it like vitriolic acid, the spoted parts turning black, and terminating in holes. This is a West Indian tree.
2. H. spinosa. Leaves somewhat orate, with spinous teeth, like the holly. A natire of South A merica.
3. H. biglandulosa. Leaves ovate-oblong, with two glands at the base. Also a native of S. Annerica. Boththese latter possess an acrimonious and poisonous juice of the same kind as that of h. manicella, but less pungent and fatal. Neither of them is so lo' y, and especially the second: for while h. manicella rises to the size of a large oak, and ofiers some such appearance, h. spinosa seldom attains more than twenty feet in height, and has the external character of a holly. See Buckthoren.

HIPPOPHEA. Sea Buck thorn. In botany, a genus of the class monoecia, order tetrandria. Male: calyx two parted; corolless. Ftm.: calyx tubular, cloven; style one; berry supeo rior, one-seeded; seed with a double coat. Two species, as follows :

1. H. rhamnuides: with lanceolate leaves, found wild on our own sea-coasts; the stem shrubby, of a dark brown hark, branching irregularly eight or ten feet high.
2. H. Canadensis : with ovate leaves, silvery beneath: a native of Canada, and about the size of the former. The first species is eaten by goats, sheep and horses, but refused by cows. Of the second no sufficient trial has beein made.
HIPPOPHAGI, in ancient geography, a people of Scythia, so called from their living on horse-flesh; the fare at this day of the Tartars their descendants. Also a people of Persia (Ptolemy.)

HIPPOPODES, Hippopedes, or HippoPODIR, composed of $1 \pi \pi 0$: horse, and wes; foot, in the ancient geography, an appellation given to a certain people situated on the banks of the Scythian sea, as being supposed to have had horses' fect. The hipponpodes are mentioned by Dionysius, Gcogr. v. 310. Mela, lib. iii. cap. 6. Pliny, lib. iv. cap. 13. and St. Augastine, De Civit. lib xri. cap. 8. But it is conjectured, that they had this appellation given them on account of their swiftness, or lightness of foot.

HIPPOPOTAMUS. River-Horse. In zoology, a genus of the class mammalia, order bellux. Fore-teeth in each jaw four ; upper four in pairs, remote ; lower prominent ; intermediate ones longer ; tusks solitary, lower, very
long, obliquely truncate, recurvate ; feet hoofed at the margin. One species only:
H. amphibius. Fcet four-lobed; head large ; mouth very wide; skin thick, dark, almost naked; teeth very white, harder than ivory, and do not grow yellow with age: tusks froin tweaty to twenty-six iuches long, werghing six or seven pounds; grinders six above, eight below, on each side; ears small, acute, ciliate, with short fine hairs; eyes and nostrils large; lips tufted with hair; tail naked, about a foot in length; legs short, thick; lobes of the feet not connected; flesh sonietimes eaten; fat occasionally used in pulmonary diseases.

Africa seems to be the only division of the globe inhabited by this species. The Nile, the Niger, the Gambia, and the Zaira, are the chief rivers in which they have been discovered. But they are observed through all the other considerable rivers, and the lakes of the African conunent. From the information of the Jesuits, and of a later and more accurate observer, Mr. Bruce, we learn, that they abound in all the lakes and rivers of Abyssinia, Nubia, and Upper Exypt. Cultivation has expelled then from Lower Eeypt. Sparrman represents them as not less numerous in the southern parts of Africa. It had been imagined, that hippopotami never ventured into the ocean, and scarcely ever descended so low as to the mouths of rivers; bitt this philosophical traveller relates, that he actually observed several hippopotami in salt water, at the mouths of the rivers Kronne and Camtour; and in the district of Krakekama, saw on the sea-beach evident traces of one of these animals that had come out of the sea, but instantly retired back. He was also informed by a Captain Burtz, that on the eastern coast of Africa, he had often seen hippopotami raise their hears above the surface of the sea, to breathe and neigh. In Guinea, the rivers, lakes and marshy grounds, afford numbers of them : and Sparrman was told by a party of Caffrarians, that about Konaprivier in Caffraria, they appear on land in bodies as numerous as the pelbles on the bed of the river. See Nat. Hist. PI. CXXXIV.
The female produces one young which she suckles in the water. A calf caught by Sparrman and supposed to be about three weeks old measured three feet and a half in length and two in height. When caught, this calf uttered a squeaking noise, like a scared or wounded hog. The voice of the adult aninial is a neighing sound, which some describe as having a perfect resemblance to the neighing of a horse; while others represent it as a loud sonosous noise, between the bellowing of an ox and the roaring of an elephant.
Although an inhabitant of the waters, the hippopotamus is well known to breathe air like land animals. On land he finds the chief part of his food. He may perhaps occasionally feed on aquatic plants; but he very often leaves the waters, and commits wide devastutions through all the adjacent cultivated fields. On the banks of the Nile, he often defeats the hopes of the husban man; even a large field of corn
or clover is soon entirely despoiled of verdure by his capacious jaws. In the south of A frica he commits similar ravages. Not only grass, but boughs and roots of trees and shrubs are articles of his ordinary food. In cultivated tracts, it is commonly in the night that the hippopotamus leaves his retreats in the rivers, and wanders into the fields. He descends to the bottom of the deepest river, and walks along it with the same slow, stately pace, as if on land, and breathing the open air. But he cannot continue under water bejond a certain length of time. He must ascend at intervals to the surface to discharge the contents of his lunge, and draw in fresh air. He appears at times in the sea, and is seen going out with the tide; but it appears probable, that sea-water does not serve him to drink; for Sparrman relates, that a hippoporamus, which having been disturbed in the rivers, had taken refuge in the sea, was observed to come every night on shore to drink water out of a neighbouring well, till he was at last shot. It has been pretended, that the hippopotamus devours great quantities of fish; but it appears with the fuliest evidence, both from the relations of many travellers, and from the structure of the stomach in specimens which have been dissected, that he is nourished solely, or almost solely, on vegetable food. He walks with a tardy pace; and is capable of so little agility, that even a hillock or wall of a very moderate height, presents to him an insurmountable barrier. Unless when accidentally provoked or wounded, he is never officnsive. But, when his fury is proroked, revenge is fully in his power. With his teeth he eas.ly breaks a boat in pie ees; or, where the river is not too deep, he will raise one on his back, and overset it.

The Egyptians practise a very artful contrivance for destroying this animal. On some place where they expect an hippopotamus to pass, they throw a large quantity of peas; these the hungry animal eagerly devours as soon as he perceives them; such a quantity of dry food soon disposes him to drink; and the water swelling the peas in his belly, these burst the vessels, and he falls dead on the shore. The Hottentots sometimes practisc the same stratagem. But they more commonly either intercept the animal in pits dug in places through which he has been observed to pass, or shoot him with tin balls.
The hippopotamus in his full size is nearly as large as an elepiliant. He is said by many naturalists as well as divines to be the leviathan of Job; but there are various essential diffierences in the two characters that it seems impossible in reconcile.

HIPP()SELI'NUM. (hipjoselinum, -
 slane, so named because it resembles a large kind of purslane.) Common Alexanders. This plant, Smyraium olusatrum of Linnéus, was formerly cherished in our gardens for culinary use, but is now superseded by celery. The seeds are bitter and aromatic, and the roots are more powerfully bitter. They stand

HIR

recommended as resolvents, diuretics, and emmenagogues, though seldom used. See Smyrnium.

HI'YPURIS. Horse-tail. Mare's tail. In botany, a genus of the class monandria, order digynia. Calyx an obsolete margin crowning the germ; petalless; stigma simple; seed one. Two species.

1. H. rulgaris. Leaves, stellate, numerous, linear, acute. Found in the ditches of our own country, and formerly used as an article in the materia mediea, under the name of Equisetrum : which see.
2. H. tetraphylla. Lower leaves in fours, upper in sixes, obtuse. A native of the seashores of Sweden and Finland. Goats are the only domestic animals that will eat either species.

HI'PPUS. (hippus, from $\quad \pi \pi 0 ;$, a horse, because those who labour under this affection are continually twinkling and trembling, as is usual with those who ride on horseback.) \mathbf{A} repeated dilatation and alternate constriction of the pupil, arising from spasm or convulsion of the iris.

HIRÆA. In botany, a genus of the class decandria, order trigynia. Calyx five-leaved, without mellifnons pores, petals roundish with claws; filaments cohering at the base; capsules three, one-sceded, two-winged, or sarrounder with a wing. Three species : one a tree of Carthagena, with reclining branches and inodorous flowers : the other two herbaceous plants of Guinea and Sierra Leone.

HIRCUS, in astronomy. See (iapella.
To HIRE. v. a. (hẏpan, Saxon.) 1. To procure any thing for temporary use at a certain price (Dryden). 2. To engage a man in temporary service for wages (Isaiah). 3. To bribe (Dryden). 4. To engage himself for pay (Samuel).
Hire. s. (hẏne, Saxon.) 1. Reward or sccompense paid for the use of any thing. 2. Wages paid for service (Spenser)

Hire (Philip de la), an eminent French mathematician and astronomer, born at Paris in 1640 . His father, who was painter in ordinary to the king, designed him for the same profession : but he devoted himself to matho matical studies, and was nominated together with M. Picard to make the necessary observalions for a new map of France, by the directions of M. Colbert. In 1683, he was employed in continuing the famous meridian line begnn by M. Picard; and was next engaged in constructing those grand aquedncts which were projected by Lonis XIV. The great number of works he published, either separately or in the Memoirs of the Academy of Sciences, together with his continual employments, as professor of the Royal College and of the Academy of Architecture, give us some idea of the labours he underwent. His days were always spent in study; his nights very ofien in astronomical observations; seldom seeking any other relief from his labours, than a change of one for another. In his manner, he had the exterior politeness, cir-
elumspection, and prudence of Itals; on which account he appeared too reserved in the eyes of his countrymen; though he was always esteemed a very honest disinterested man. . He died in 1718, at 78 years of age.

HI'REIING. s. (from hire.) 1. One who serves for wages (Sandys). \&. A mercenary; a prostitute (Pope).

Híreling. a. Serving for hire; venal; mercenary (Dryden).

HI'RER.s. (from hire). One who uses any thing, paying a recompense; one who employs others paying wages.

HIRPINI, in ancient geography, a peuple of Italy, next to the Samnites, to the southeast, and descendants from them ; situated to the north of the Picentini, and to the west of the Apuli, having on the north the Apennin and a part of Samnium.

HIRSCHFELD, a town of Germany, in the circle of the Upper Rhine, capital of a principality of the same name; depending on a famous abbey, which was secularized in favour of the house of Hesse Cassel. Lat. 50. 56 N . Ion. 9. 50 E .

HIRS'U'TE. If botany, rough with hair, shaggy. Nearly the same with hispid, but having more hairs or bristles, and being less stiff. Applied to the stem; frond; calyx, as in Serratula alpina; and legume, as in Lathyrus orloratus.

HIRTELLA. In botany, a genus of the class pentandria, order monogynia. Petals five; filaments very long, permanent, spiral; berry one-seeded; style lateral. 'Three species: trees of India, West Indies, and Cayenne.

HIRTOUS. In. botany, rough-haired. Nearly the same with hirsute. The hairs stiffer than intended by pilous or pilose.

HIRU'DO. Leech. In zoology, a genus of the class vermes, order intestina. Body oblong, truncate at both ends, unarmed, cartilaginous; moving by dilating the head and tail, and contracting itself into an arch. Seventeen species ; some of which are found in alt the four quarters of the globe. The following are the chief:

1. H. medicinalis. Medicinal leech. Elongated, olive-black, with six yellow ferruginous lines, and spotted with yellow beneath : body above composed of numerous annular wrinkles which it can contract or expand at pleasure: mouth smaller than the tail and armed with three cartilaginous teeth, with which it draws blood; tail composed of an annular muscle, by which it has the power of fastening its body to any object. Found in stagnant ponds and ditches; is viviparous; and used commonly as a phlebotomist in the practice of medieine.
2. H. sanguisuga. Horse-leech. Elongated, olive-brown, with an ochre-yellow marginal band. Found frequently in stagnant waters, ditches and ponds; from four to six inches long. This species sucks blood with great avidity and in large quantities.
3. H. viridis. Green leech. Body lepressed, oblong, green, with a transparent margin, and pointed as the tail. Inhabits most clear
waters ; about an eighth of an inch long; and like most of the genus has a power of re-production nearly equal to that of the polype; for if the animal be divided crosswise, laterally, or in any other direction, the parts will become perfect animals and may be re-divided and reproduced ad infinitum.
4. H. stagnalis. Elongated, cinereous, with two eyes : body whitish, pellucid; eggs about forty, surrounded by a pellucid circle, at first cinercous, afterwards brown; the young, after exclusion, adhere by their nails to the belly of the mother.
5. H. geometra. Elongated, yellowishgreen, with a row of white sputs : body tapering before, and very broad at the tail end ; colour varying ; possest of four eyes. Inhabits fresh waters, and fixes itselfon the bodies of the trout and other fishes after the spawning season: eight lines long: moves as if measuring like a pair of compasses.
6. H. crenata. Slightly depressed ; suboval, with transverse annular strix, the margin crenulate: body greeuish, approaching to ash colour, and transerscly striate; eyes two, approximate ; upper surface convex, lower flat. Found in shallow streams among aquatic plants.
HIRUNDINARIA, (hirundinaria, from Lirundo, the swallow, so named from the resemilance of its pods to a swallow.) Swallowwort. See Nummularia and Vincetoxicum.
HIRU'NDO. Swallow. In 2oology, a genus of the class aves, order passeres. Bill small, weak, curved, subulate, depressed at the base; gape larger than the head; tongue short, broad, cleft ; wings long; tail mosily forked. Thirty-eight species, dispersed over the four quarters of the globe: a few of which, forming the tribe of swifts, have the four toes all placed forwards; the rest, three before and one behind.

Of all the feathered tribes, that of the swallow kind is most upon the wing. Flight seems indeed its natural, and almost necessary attitude. In that state it feeds and bathes itself, and sometimes procreates and nourishes its young. Of these facts we have an example in the swifts. Sometimes they give chace to the fluttering insects upon which they feed, displaying in the pursuit that amazing versatility which enables them to continue the objects of chace through all their winding course. At other times, they skim along the surface of the earth, or the water, seizing the small ephemera, or May-flies, just emerging from their aurelia state. Again, they are seen eluding the impetuosity of the most rapid birds of prey, by the great flexibility of their movements. Nature has admirably adjusted their several parts to a life, that must be supported by quick motion. Their wings are long, and adapted for continued flight. Their tails are large and forked, to enable them to turn with agility, and to be masters of their flight even in its greatest velocity.

It was fornuelly imagined that mang indi-

HIR

viduals of sereral of these species, instead of migrating from colder to warmer climates in the winter, remained under ground in hybernacles, or holes of banks having a southerly exposure, whence they might occasionally be dug out altogether naked of feathers. The whole of this, however, is now known to be inconsistent with fact. No well authenticated instances of the hibernation of even the bant-swallows have yet been adduced; for these birds, contrary to what might be expected, did they remain, during winter, in a torpid state, do not use, as winter-houses, the caverns in which they nestle in summer. Banks perforated by this bird, have been dug with great care, during the winter, when nothing was found but empty nests.

The nidification of this tribe is a curious part of their economy. It is wonderful to observe with what different degrees of architectural skill Providence has endowed birds of the same genus, and nearly correspondent in their modes of life. While the sivallow and the house-martin discover the greatest address in raising, and securely fixing, crusts of loam, of which their nests are formed, the bank-martin tenebrates a roand hole in the sand, which is serpentine, horizontal, and about two feet deep. At the inner end of this burrow does this bird deposit in safety her rude nest, consisting of fine grasses and feathers, very inartificially laid together. At first, we might be disinclined to believe, that those weak birds, with their soft and slender bills and claws, could ever bore the stubborn sand-bank, without entirely disabling themselves; yet, with these feeble instruments, a pair of them have been scen to make great despatch. This species of swallow is greatly annoyed with fleas. Bed fleas are often seen swarming at the mouths of their holes, like bees on the stools of their hives. Perhaps it is owing to this circumstance, that the old habitations are forsaken in the course of a few years, and new ones bored. They become foul and foetid, and so pestered with these insects as to be no longer tenantable.
The following are the chief species of this genus:

1. H. rustica. Common swallow. Front and chin chesuut; tail feathers, except the two middle ones, with a white spot.

There is another variety with the body entirely white. Inhabits almost every where: frequents houses, and usually builds under the roofor in the chimney ; leaves England in September, and previous to its departure assembles in vast flocks on the tops of houses, churches, and even trees; lays from four to six white eggs speckled with red; is said to presage stormy weather if it fy low : six inches long.
2. H. esculenta. Esculent swallow. Blackish, beneath whitish; all the tail feathers with a white spot. Inhabits China and the islands of the Indian scean, two and a quarter inches long ; builds in caverns of rocks, and makes its nest of gelatinous marine substances, in shape resembling an apple cut down the middle. These nests are found in great numbery toge-
ther, and are by the natives and luxurious A siatics made into broths and otherwise cooked, and esteemed one of the greatest dainties of the table. If injured they serve the purpose of glue.
3. H. urbica. Martin. Bluish-black, beneath white; tail-feathers without spots.
Another variety, with quill and tail-feathers tipt with white. Bill black; mouth yellow; rump white; legs covered with a short white down. Inhabits Europe and North America: five and a half inches long; builds under the eaves of houses, but not in chimneys; eggs white.
4. H. rufa. Shining black; beneath rufous; front whitish: bill black, legs dusky black. Inhabits Cayenne : five and a half inches long; affixes its nest to beams; the nest sometimes a foot and a half long.
5. H. riparia. Sand martin. Cinerenus; chin and belly white: bill blackish, throat encircled with a mouse-coloured ring; legs black ; downy behind. Inhabits Europe and North America: four inches and a quarter long; builds in holes in sand-pits and banks of rivers.
6. H. purpurea. Purple swallow. Entirely violet; tail forked: bill blackish: fennale brown. Inhabits Carolina and Virginia during summer: is very much esteemed by the inliabitants for its use in warning poultry of the approach of birds of prey, which it does not only by slarieking, but athacking them with the greatest fury.
7. H. apas. Swift. Blackish; chin white. Inhabits almost every where; eight inches long; flies about chiefly in the morning and evening; its feet are so small that it rises from the ground and walks with great difficulty; is mostly on the wing, and rests by clinging to some wall; builds under eares of honses, in steeples, and other lofty edifices: retires from England either by migration or becoming torpid (of which last the instances are very few) early in the autumn.
8. H. Cayennensis. White collared swift. Blackish-violet ; head black, collar bifid, ocular; band and thighs white: greater wing-coverts brown edged with white; less downy. Inhabits Cayenne ; five inches and a quarter long; builds a long conic nest, chiefly of the down of dog's bane curiously woven together, with a division in the middle.

HIS. pronoun possessive. (hỳr, Saxon.) The masculine possessive. Belonging to him that was before mentioned (Lockc).

HISPA. In zoology, a genus of the class insectæ, order colcoptera. Antennas cylindrical, approximate at the base and seated between the eyes: feelers fusiform; thorax and shells often spinous, or toothed at the tip. 'Twenty five species: found in the difficrent quarters of the globe. They may be thus subdivided:
A. Lip horny; entire,
B. Lip membranaceous, subemarginate: comprising the Fabrician tribe ptilinus.
C. Lip membranaceous, entire : comprising the Fabrician tribe melasis.

HIS

Of this genus four are common to our own country: h.atra; \boldsymbol{h}. pectinicornis $; \mathbf{h}$. mutica; \mathbf{h}. flabellicornis. The first is the most frequent: its antennas are fusiform ; thorax and shells spinous, like the bristles of the hedge-hog; body black. It is found generally at the ruots of long grass.

HISPALIS, in ancient geography, a town of Bxtica, in the Farther $\mathrm{S}_{\mathrm{p}} \mathrm{ain}$; an ancient mart or trading town on the Bxtis, navigable quite up to it for ships of burthen, and thence to Corduba for river barges. Called Colonia Romulensis. It is now called Seville

HISPANIA, in ancient geography, called Hesperia Ultima, (Horace), because the westernmost part of Europe; also Iberia, from the river Iberus. Its name Hispania, or Spania, (Greek), is of Phoenician orig:n, from its great number of rabbits: the Phonicians, who setiled several colonies on the coast, calling it Spaijah, from these animals. It has the sea on every side, except on that next to Gaul, from which it is ecparated by the P'yrenées. Sce Spain.

HISPANIOLA, an island of the West Indies, more commonly known by the name of St. Domingo. When first discovered, it was divided into five kingdoms, and some other small independent states. The Spaniards were received at first hospitably by the natives, but their frequent quarrels, from time to time, ended nearly in their extermination. This being the first discovery made by the Spaniards, it was the centre of their commerce and was for some time a very flourishing colony, but after the discovery of Peru seems to have been neglected. In the middle of the last century, the French began to resort and settle on the island; the first that came were Buccaneers, but these were some time afterwards followed hy others, who became regular planters. The court of France pretended to discourage these settlers, but took no effectual means to prevent them, and in the year 1697, by an article in the treaty of Ryswick, the Spaniards ceded the north-west part of the island to the French, containing one of the finest territories in the world. The climate, though hot, is healithy, except to new comers. Some of the inhabitants upon it are said to live to the uncommon age of 120 . It is continually refreshed by breezes and rains, and its salubrity is likewise, in a great measure, owing to the beautiful rariety of its surface, exhibiting hills and ralleys, woods and rivers. It contains forests of palms, elms, oaks, pines, and besides several other woods, not common and hardly known in Europe; and it is generally agreed that the pine-apples, grapes, oranges, lemons, citrons, limes, dates, apricots, and other fruits have a particular taste and flavour in Hispaniola.

When the French troope under General Rochambeau were obliged to evacuate Hispaniola, the freedorn and independence of the island were proclaimed by the conquering chief Dessalines: and a new empire was formed under the title of the empire of Hayti, of which Dessalines was chosen the first emperor. This hap-
pened in 1805, since which time all political distinction of colour has ce:sed in Hispaniola.

HISPID. In botany, applied to the stem and leaf. A hispid stem, is a stem beset with stiff bristles, as in Brassica Erucastrum. A hispid leaf is a leaf having brittle stiffish bristles scattered over the disk, as in Turritis hirsuta.

Since we cannot easily find significant English terms for all the numerous varieties of pubescence, it is perhaps best to use the Latin terms where we can. Thus here hirsute and hispid are preferable to shaggy and bristly: though for hirtous we may substitute roughheired, or rough with hairs.

HISPI'DULA, (hispidula, from hispidus, rough, so named from the rough woolly surface of its stalks.) Cudweed. See Gnaphalium.

To HISS. v. n. (hissen, Dutch.) 1. To utter a noise like that of a serpent and some other animals (Shahispeare). 2. To condemn at a public exhibition, which is sometimes done by hissing (Sandys).

To Hiss. v. a. (hircean, Saxon.) 1. To condemn by hissing; to explode (Dryden). 2. To procure hisses or disgrace (Siakspeare).

Hiss. s. (from the verb.) 1. The voice of a serpent (Millon). 2. Censure; expression of contempt used in theatres (Pope).

HISSAR, a town of Hindustan Proper, capital of a district of the same name, in the country of Delhi. Lat. 29. 5 N . Lon. 75. 40 E .

HIST. interj. An exclamation commanding silence (Swift).

HISTER. In zoology, a genus of the class insecta, order coleoptera. Antennas clavate, the club solid; the last joint compressed, decurved; head retractile within the body; mouth forcipated ; shells shorter than the hody, truncate; fore-shanks toothed, hind-shanks spinous. Twenty four species: Europe, Africa, America, Australasia. Five, inhabitants of England. The following are the chief:

1. H. unicolor. Body black, polished and brilliant; general figure alenost square ; thorax large, and highly polished, with a slight margin at the circumference. The most beautiful of the tribe, and often found in gardens and sandy fields: its eggs and larva have not been discovered.
2. H. bimaculatus. Black : shells striate, with a red spot behind. Found in dunghills; appearance like a small beetle.

HISTO'R1AN. s. (historien, French.) A writer of faets and cents; a writer of history (Pope).
histórical. Históric. a. (historique, French; hisloricus, Latin.) 1. Giving an account of facts and events (Spenser). 2. Pertaining to history or narrative (Prior).

HISTO'RICALLY. ad. In the manner of history; by way of narration (Hooker).

To HIS'O'RIFY. v. a. (from history). To relate ; to record in history (Brown).

HISTORIO'GRAPHER. s. (rropia and ypapw.) An historian ; a writer of history ($S p$.)

HISTORIOGRAPHY. s. (roosca and ypasw.) The art or employment of an historian.

HIS

HI'STORY. s. (${ }^{5} \mathrm{sop}_{1}$; ; histoire, French.) 1. A narration of events and facts delivered with dignity (\boldsymbol{P}, pe). 2. Narration; relation (Wiseman). 3. The knowledge of facts and events (Watts).

History, a recital or description of things as they are, or have been, in a continued orderly narration of the principal facts and circumstances thereof. See Annals. The word is Greek, isopa, historia; and literally deuntes a search of curious things, or a desire of knowing, or even a rehearsal of thiugs we have seen; being formed of the verb ${ }^{4} 55^{\circ}$.v, which properly signifies to know a thing by having seen it: though the idea appropriated to the term history is now much more extensive, and we apply it to a narration of divers memorable things, even though the relater only takes them from the report of others. The origin of the word is from the verb $\operatorname{lon} \mu \mathrm{L}$, . I know; and hence it is, that among the ancients several of their great men were called polyhistores, meaning persons of various and general knowledge.
History is divided, with tepard to its subject, into the history of nature and the history of actions.

History of cature, or Natural History, is a description of natural bodies; whe ther terrestrial, as animals, vegetiables, fossils, fire, water, air, meteors, \&c. or celestial, as the stars, planets, comets, \&c.

Natural history is much the same with what we otherwise call physiology.
History, with regard to actions, is a continued relation of a series of memorable events in the affairs either of a single person, a nation, or seceral persons and nations, and. whether included in a great or little space of time; or it is a narrative of such facts as are fit to be transmitted to posterity for the use of mankind and the better conduct of human life. Cicero calls history the mistress of life, (De Orat. lib. ii, cap. 9) as it teaches us both what we ought to pursue and what we ought to avoid.
Thus Thucydides has written the History of Greece; Livy, that of Rome; Mezeray and F. Daniel, of France; Tyrrel, Echard, Rapin, Goldsmith, Smollett, Hume, Adolphus, Coote, \&c. the History of England; Buchanan of Scotland; Clarendon, the History of the Rebellion; and Thuanus, bishop Burnet, sxc. the History of their own Lives and Times.

Eusebius, Baronius, \&c. have written the History of the Church; bishop Burnet that of the Reformation, \&c.

Several authors have written on the method of reading and studying history; among the rest Lucian, Bodin, Vossius the elder, Whear, Patrici, Beni, Mascardi, De Silhon, F. le Moine, F. Rapin, the abbot de St. Real, F. Thomassin, Fresnoy, \&c.

History with respect to time, is divided into ancient and modern, distinguished into several epochs, periods, and intervals.

The three periods of time into which history has been divided are the following: viz. the first, from the creation to the deluge, which

HISTORY.

age is reckoned uncertain, because we know no more than the short account given of it in the holy scriptures; the second, from the deluge to the first Olympiad, which, from the many feigned stories jelated in it, is called the fabulous age; the third, from the first Olympiad to our own times, is called historical, because the actions done in that period are recorded by writers of true history. See Age.

The most ancient of the Greek historians now left is Herodotus, who lived, according to Sir lsaac Newton's Chronology, a hundred and tifty-seven years after the building of Rome. And as to the Romans, Livy himelf confesses, that there were scarce any certain memoirs of their affairs till the city was taken by the Gauls, which was above a hundred years later than Herodotus; the accounts before that time having been preserved chiefly by tradition.

History, with respect to its subject, is divided into universal and particular, sacred and profane.
F. Menestrier gives us the proper characters of the divers kinds of history with great accuracy. He distinguishes history with regard to both its matter and its form, and gives curious instances of each particular.

History, with regard to its matter, is either sacred, or natural, or civil, or personal, or singular; to which some have added artificial history, giving an account of the origimand progress of arts; and miscellaneous liistory, which recites many various things, as they proniscuously occur in human life.
History (Sacrel), is that which lays before us the mysteries and ceremonies of religion, visions, or appearances of the Deity, \&c. miracles, and other supernatural things, whereof God alone is the author. Such are the book of Genesis, the Gospels, Apocalypse, \&c. See Miracles, Prophecy, Revelation, \&c.
To this head we may refer ecclesiastical history, which gives an account of the rise and establishment of the several religions and churches, of the rise and progress of various opinions, sects, \&ec. In ancient sacred history, otherwise called the history of the Old Testament, there are seven remarkable periods. The first comprehends 1656 years, from the creation of the world to the deluge; (see Sacred Chronology.) The second period includes 857 years, from the deluge to the going forth of the Israelites out of Egypt. The third period begins with the exodus of the lsraelites in 2513 , extends to the times of the kings, and includes 396 years, The fourth period begins in the year of the world 2909 , or from the beginning of the government by kings, and extends to the end of the Babylonish captivity, or 3468 th year of the world, including 559 years. The fifth period amounts to 372 years, from the year of the world 3468 to the year 3840, or to the times of the Maccabees. The sixth period begins with Judas Maccabrus, A. M. 3840 , and is continued to the year 3964 , or to Herod the Great, comprehending 124 years. The seventh or last period reaches from Herod the Great to the destruction of Jerusalem, or
the 7oth year after the birth of Christ, containing 106 years.
In more modern sacred history, more properly called ecclesiastical history, which denotes a clear and faithful narration of the transactions, revolutions, and events, that relate to the external and internal state of the Christian church, Dr Mosheim has distinguished four remarkable periods. The first comprehends the state and vicissitudes of the Christian church, from its commencement to the time of Coustantine the Great. The second period extends from the reign of Constantine to that of Charlemagne, which produced such a remarkable change in the face of Europe. The third period contains the history of the church from the time of Charlemague to the mennorable period when Luther rose in Germany to oppose the tyranny of Rome, and to deliver divine truth from the darkuess that covered it. The fourth period reaches from the times of Luther to the present. On this plan Dr. Moshcim's Ecclesiastical History, a work deservedly held in great esteem, is divided into four books, containing the history of the centuries comprehended by the above periods, according to the order of time. See Holberg's Introduction to Univertal History, translated by Dr. Sharpe, with notes, \&c. p. 55, \&c. ed. 1758; and Mosheim's Ecclesiastical History, translated by Dr. Macleane, with notes, \&c. ed. 1758, vol. i. p. 12. Milner's Church History, \&c.

History (Civil), is that of people, states, republics, communities, cities, \&c. Such are those of Thucydides, Halicarnesseus, Livy, Polybins, Mezeray, F. Daniel, Milton, Buchanan, \&c.

Civil history may be again subdivided into particular and general : the former consists of a number of facts relating to the same state, suitably connected and laid together in a proper series; such are Thucydides's History of the Peloponnesian War, comprising the events of the first twenty years of that war; Sallust's History of the War between the Romans and King Jugurtha in Africa ; and Cæsar's History of his own Gallic and Civil Wars: the latter, or general history, is made up of several particular histories, whose separate transactiuns within the same period of time, or part of it, should be so distinctly related as to cause no confusion ; such are those of Diodorus Siculus, of Herodotus, of Justin, of Xenophon, and of Polybius, among the ancients; and Thuanus's History, Lord Lyttelton's History of Henry 1 L . Dr. Robertson's History of Charles V. \&c. among the moderns.

Civil history, in its more unlimited extent, is denominated universal history.

Mistory (Particular). See Biography.
History or a Science, as of Chemigtry, of Algebra, \&c. Thus we have Montucla's and Bosnet's History of Mathematies, Priestley's History of Vision, Priestley's History of Eleetricity, Garnett's Annals of Science, \&e.

In a moral point of view general and national History is extremoly useful, as it points

HIS

out the issues of things, and exhibits as its general result, the reprobation consequent upon vice, and the glory which awaits virtue. In his days of nature, the oppressor may be applauded by the venal, whilst he lords it over his fellow-men, and the wanton destroyer of the human race may be hailed as a hero by the obsequious or mistaken crowd. But when his dust is mingled with that of the victims of his cruelty and ambition, history summons him to her tribunal: she scrutinizes his deeds with impartial strictness, and passes sentence upon him according to his deserts. The prejudices and errors of the present time will hereafter be done away and corrected by history, which redresses the wrongs of the injured, and treats with just contempt the insolent assumption of the undeserving. Thus, by the record of crimes no less than by the display of illustrious examples of virtue, does history inculcate good principles, and enforce upon the reflecting mind a belief in a superintending Providence.

The enlightened student of history will not direct his chief attention to the frivolous anecdotes of a court, but to the circumstances which stamp the character and decide the destiny of a nation. He will enquire what has been its radical vice or its predominant virtue; why it has been powerful or weak by sea or land; what has been the improvement or the deterioration of its trade and commerce; wherein consist the excellences and the defects of its civil and municipal institutions; what has been the constitution, and what the influence of its ecclesiastical establishments. He will trace the introduction of arts and manufactures, and observe the changes which have taken place in manners and in laws.

We may just add a few words on the particular duty of the historian; the model for whom is preserved among the works of Cicero. It is the first law of history, he says, that the writer should neither dare to advance what is false, nor to suppress what is true; that he should relate the facts with strict impartiality, free from ill-will or favour; that his narrative should distinguish the order of time, and, when necessary, give the description of places; that he should unfold the statesman's motives, and in his account of the transactions and the events, interpose his own judgment; and should not only relate what was done, but how it was done ; and what share, chance, or rashness, or prudence, had in the issue; that he should give the characters of the leading men, their weight and influence, their passions, their principles, and their conduct through life. In addition to these, Tacitusgives another rule: " Precipuum munus annalium reor, ne virtutes sileantur, utque pravis dictis factisque ex posteritate et infamiâ metus sit :" that it is incumbent on the writer to rejudge the actions of men, to the end that the good and worthy may meet with the reward due to eminent virtue, and that pernicious citizens may be deterred by the condemnation that waits on evil deeds at the tribunal of posterity. In this conciste the chief part of the historian's duty.

H I T

Let it be remembered that in this country, it is an indispensable duty of every man of fiberal birth, to be acquainted in a certain degree with the science of politics. History is the achool of politics: it unfolds to us the springs of human affairs; the causes of the rise, grandeur, revolutions, and fall of empires. It points out the reciprocal infuence of government and of national manners : it dissipates prejudices, nourishes the love of our country, and directs to the best means of improvement. It illustrates equally the blessings of political union and the miseries of faction.

As to the events that stand recorded in history, says Lord Bolingbroke, we see them all, we see them as they followed one another, or as they produced one another, causes or effects, immediate or remote. We are cast back, as it were, into former ages ; we live with the men who lived before us, and we inhabit countries that we never saw. Place is enlarged, and time prolonged in this manner; so that the man who applies himself early to the study of history may acquire in a few years, and before he sets his foot abroad in the world, not only a more extended knowledge of mankind, but the experience of more centuries than any of the patriarchs saw. The events we are witnesses of in the course of the longest life, appear to us very often original, unprepared, simple, and unrelative; they appear such very often, are called accidents, and looked upon as the effects of chance: experience can carry us no farther, for experience can go a very little way back in discovering causes; and effects are not the objects of experience till they happen. Hence many errors in judgment, and by consequence in conduct, necessarily arise ; and here too lies the difference we are speaking of between history and experience: the advantage on the side of the former is double. In ancient history the examples are complete, which are incomplete in the course of experience ; experience is doubly defective; we are born too late to see the beginning, and we die too late to see the end of many things. History supplies both these defects. Modern history shews the causes, when experience presents the effects alone; and ancient history enables us to guess at the effects when experience presents the causes alone.

History Piece. s. A picture representing some memorable event (Pope).

HISTRIO, in the ancient drama, signified an actor or comedian; but more especially a pantomine, who exhibited his part by gestures and dancing. Livy informs us, that the histriones were brought to Rome from Etruria, in the year of the city 391. (Dec. i. lib. 7.)
histrio'nical. Histriónic. a. (from histrio, Lat. histrion, Fr.) Befitting the stage; suitable to a player; becoming a buffoon; theatrical.

HISTRIO'NICALLY. ad. (from histrionical.) Theatrically; in the manner of a buffoon. histrix. See Hystrix.
To HIT. v. a. (from hitte, Danish.) 1. To strike ; to touch with a blow (South). \&. To

H I T

touch the mark; not to miss (Sidney). S. To attain; to reach; not to fail (Attcre.). 4. To suit; to be conformable to (Milton). 5. To strike : to touch properly (Dryden). 6. To His off. Tostrike out ; to fix or determine luckily (Temple). 7. To Hir out. To perform by gond luck (Sipenser).

ToHit.v.n. I.Toclash; tocollide. (Locke.) 2. To chance luckily; to sncceed by accident; not to miss (Bacon). 3. To succeed; not to miscarry (Bacon). 4. To lizht on (Tillotson).

Hir. s. (trom the verb.) 1. A stroke ($\mathrm{S}_{\text {tuhsprare }}$). 2. A chance; a fortuitons event (Giancilie). 3. A lucky chance (Shaíspeare).

To HITCH.v. n. (hiegan, Saxon, or hocher, French.) To catch; to move by jerks (Pope).

To hitchel. v. a. See Hatchel. To beat or comb flax or hemip.

H'itchel. s. (heckel, Gerinan.) The instrument with which flax is beaten or combed.

HITCHIN, a town in Hertfordshire, with a market on Tuesday. The manor was the ancient demesne of the kings of England, as it continues at this day. The inhabitants now make large quantities of malt, and the market, which is held on Tuesday, is one of the greatest in England for wheat. Lat. 51.58 N. Lon. 0. 10 W .

HITHE, a town of Kent, in England, 70 miles from London. It is one of the cinque ports; and had formerly five parishes, but by the choaking up of its harbour and otlier accidents these are now reduced to one. In the reign of Henry IV. numbers of its inhabitants were cut off by a pestilence, 200 of their houses consumed by fire, and five of their ships sunk at sea, with the loss of 100 men;; so that the people were going to abandon the town, had not the king hy his charter generously released to them, for five turns next following, their service of five ships of 100 men and five horse, which they were to have furnished out and kept at their own charge in the king's wars for 15 days. It was first incorporated by the name of barons of the town and port of Hith; but the government was afterwards changed. It was incorporated by Queen Elizabeth with the name of the mayor, jurats, and commonalty of the town and port of Hith, who, with the freemen, elect the members of parliament. The mayor is chosen yearly on Candlemas-day. Here is a market on Saturdays, and fairs in July and December. Lat. 51.8 N. Lon 1. 10 E.
Hithe. s. (hỳðe, Saxon.) A small haven to land wares out of vessels or boats.
HITHER. ad. (hiben, Saxon.) 1. To this place from someother (Milton). 2. Hither and thither, to this place and that. 3. To this end ; to this design (Tillotson).
Híther. a. superl. hithermost. Nearer; toward this part (Hale).
HI/THERMOST. a. (of hither, adv.) Nearest on this side (Hele).
HITHERTO. ad. (from hither.) 1. To this time ; yet (Dryden). 2. In any time till now (Spenser). 3. At every time till now (Dryden).

HITHERWARD. Hi'thenwards. ad. (hydenpeano, Saxon.) This way; toward thas place (Milton).

HITTITES, the descendants of Heth, the father of the Hittites. Heth was the eldest son of Canaan, (Gen. x. 15.) who dwelt southward of the Promised Land, at Hebron, or thereabout. Ephron, an inhabitant of Hebron, was of the race of Heth, and this whole city in Abraham's time was peopled by the children of Heth.

HIVE. s. (hjffe, Saxon.) 1. The habitation or artificial receptacle of bees (Addison). 2. The bees inhabiting a hive (Shakspeare). 3. A company being together (Suift).

To Hive. v. a. (from the noun.) 1. To put into hives; to harbour (Dryden). 2. To contain as in hives (Cleaveland).
To Hive. v. n. To take shelter together; to reside collectively (Pope).
HI'VER. s. (from hive.) One who puts bees in hives (Mortimer).
HIVITES, a people descended from Canaan. They dwelt at first in the country which was afterwards possessed by the Caphtorims, or Philistines. There were Hivites likewise at Shechem and Gibeon, and consequently in the centre of the Promised Land; for the inhabitants of Shechem and the Gibeonites were Hivites, (Josh. xi. 19. Gen. xxxiv. 12.) Lasuly, there were some beyond Jordan, at the foot of mount Hermon, (Josh. xi. 3.) Bochart is of opinion, that Cadmus, who carried a colony of Phœenicians into Greece, was an Hivite. His name Cadmus, comes from the Hebrew Kedem, " the east," because he was of the eastern part of the land of Canaan. The name of his wife Hermione, comes from mount Hermon, at the foot whereof the Hivites had their dwelling. The metamorphosis of Cadmus's companions into serpents is grounded on the signification of the name Hivites, which in Phoenician signifies "s scrpents."
HO, Hoa. interj. (eho! Latin.) A call; a sudden exclamation to give notice of approach, or any thing else (Shakspeare).
HOADLEY (Benjamin), a learned English prelate, was born at Westerham in Kent, in 1676, and educated at Catherine-hall, Cambridge, of which he afterwards became fellow. In 1700 he commenced his literary, or rather his polemical career, by some remarks on Dr. Atterbury's funeral sermon for Mr. Bennet; and in 1708 he answered another sermon of the same author on the Power of Charity to cover Sin. The year following he had a controversy with Atterbury on the doctrine of non-resistance, which recommended Hoadley to the notice of the house of commons, who prayed the queen to grant him preferment for his services in the cause of liberty. Soon after the accession of George I. he was made bishop of Bangor, which see he never visited, but continued in London preaching and publishing party-sermons. One of these on the Spiritual Kingdom of Christ, and asserting the temporal jurisdiction of the clergy, produced a long and vioplent debate, called the Bangorian con-

HOB

trorersy. He was afterwards engaged in a dispute with Dr. Hare on the nature of prayer, which, however, was of short duration. From Banisor he was removed to Hereford, thence to Salisbury, and lastly to Winchester. In 1735 he published his Plain Account of the Lord's Supper, which he resolved into a matter of mere indifference. This excited another controversy, in which he had the ingenious William Law for his antagonist, who proved more than a match for the bishop. Dr. Hoadley died in 1761.

Hoadley (Benjamin), an ingenious physician, was the eldest son of the preceding, and was born at London in 1705. He received his academical education at Cambridge, under Mr. Herring, afterwards archbishop of Canterbury. Here he took his first degree in physic, and in 1738 was created doctor in that faculty by mandamus. In 1742 he was appointed physician to his majesty's household, and to that of tire prince of Wales in 1743. He died in 1757. His works are; 1. Some Lectures on the Organ of Respiration, before the College of Puysicians; 2. The Suspicious Husband, a connedy; 3. Observations on a Series of Electric.il Experiments, \&c.

HOANG-Tr HEOU-FOU, a populous and commercial city of China, in the province of Hou quang. Its district contains one city of the second, and two of the third class. Lat. 38. 30 N . Lon. 114.27 E .

HOAR. a. (han, saxou.) 1. White (Fairfax). 2. Gray witi age (Popir).

Hoar-frost. s (hoar and frost.) The congelations of dew in frosty mornings on the grass (Arlinthnol).

HOARI). s. (hond, Saxon.) A store laid up in secret ; a hidden stock; a treasure ($\mathbf{S h}$. .).

To Hoard. n. n. To make hoards; tolay up store (Shatspeare).

To Hoard. v. a. To lay in hoards; to husband privily; to store secretly (Rogers).

HOA'RDER. s. (from hoard.) (One that stores up in secret (Locke).

HOA'RHOUND. s. A plant (Hill).
HOA'RINESS. s. (from hoary.) The state of being whitish; the colour of old men's hair (Dryden).

HOARSE. a. (har, Saxon.) Having the voice rough, as with a cold; having a rough sound (Shmkspeare).

HO'ARSELY. ad. (from hoarse.) With a rough harsh voice (Dryden).

HOA'RSENESS. s. (from hoarse.) Roughness of voice (Holder).

HO'ARY. a. (han, hanunz, Saxon.) 1. White ; whitish (Addison). 2. White or gray with age (Rowe). 3. White with frost (Shaks.). 4. Mouldy ; mossy ; rusty (Knolles).

Hoary leaf. In botany, folium incanum. Covered with a white pubescence; as in draba incana, cistus incanos.

HOBBES (Thomas), an English philosopher, was bom at Malmsbury, in Wiltshire, in 1588, and educated at Magdalen-hall, Oxford. In 1608 he became tutor to William Lord Cavendish, son of the Eanl of Deron.
shire, with whom he made the tour of Eirope. On the death of his patron and pupil he became travelling tutorto a young gentleman; but the countess dowager of Devonshire recalled him into her family to take upon him the education of the young earl, which trust he discharged with great fidelity. In 16.34 he reprinted his translation of Thucydides, the first edition of which had appeared in 1628. The same year he attended the earl on his travels, and at Pisa contracted an intimacy wih Galieo. In 1637 he returner with his pupil to England, and soon afterwards the Scottish troubles broke out, which set Hobbes on writing his bonk, De Cive, which he afterwards anplified into his Leviathan. In 1640 he went over to France, and became acquainted with Des Cartes and Gassendi. In 1642 he printed a small edition of his book, De Cive, which brou,ht him many enemies, on account of its dangerons principles. His patron, sir Charles Cavendish, afterwards duke of Neweasile, recommended him to be mathematical tutor to the prince of Wales, afterwards Charles II. in which capacity he gave great satisfiction. In $16 j 0$ appeared, in English, his book on Human Nature ; and one, 1)e Corpore Politico, or the Elements of the Lav. Shortly after came out his Leviathan, dedicated to the king. who was dissuaded from giving it any countenance, and certainly the principles of it warranted that advice. He afterwards engaged in a dispute with Dr. Wallis on the subject of mathematics, in which Hobbes came off very indifferently. On the restoration of the king he received a pension; but in 1666 the parliament passed a censure on his writings, which alarmed him greatly. In 1674 he published a translation into English of part of the Odyssey, the reception of which was such that he went through with that poem, and also the Iliad. He had before given some tokens of a poetic turn in a Latin poem; entitled, De Mirabilibus Pecci, or of the Wonders of the Peak. The earl of Devonshire remained hiss constant patron, and Hobbes lired in the family to his death, which happened in 1679. Dr. White Kennet informs us that "he used to say, it was lawful to make use of ill instruments to do ourselves good: ' If I were cast (says he) into a deep pit, and the devil should put down his cloven foot, I would take hold of it to be drawn out by it.' After the Restoration he watched all opportunities to ingratiate himself with the king and his prime ministers; and looked upon his pension to be more valuable as an earnest of favour and protection, than upon any other account. His future course of life was to be free from danger. He could not endure to be left in an empty house. Whenever the earl removed, he would go along with him, even to his last stage, from Chatsworth to Hardwick. When he was in a very weak condition, he dared not to be left behind; but made his way upon a feather-bed in a coach, though he survived the journey but a few days. He could not bear any discourse of death, and seemed to cast off all thoughts of it : he de-

HOB

lighted to reckon upon longer life. The winier before he died, he made a warm coat, which he said must last him three years, and then he would have such another. In his last sickness his frequent questions were, Whether his disease was curable ? and when intimations were given, that he might have case, but no temedy, he used this expression, 'I shall be glad to find a hole to creep out of the world at ;' which are reported to have been his last sensible words; and his lying some days following in a silent stupefaction, did seem owing to his mind more than to his body."

The following original letter from Dr. John Wallis, the mathematician, to Mr. (afterwards Archbishop) Tenison, containing some remarks on Mr. Hobbes and his writings, will doubtless be acceptable to many of our readers :

Oxford, November 30, 1680.
SIR,
I received your's of the 25th of November, and approve the design. The Life you speak of, I have not seen, nor do I know that I ever saw the man (Mr. Hobbes.) Of his writings, I have read very little save what relates to naathematics. By that I find him to have been of a bold and daring fancy to venture at any thing, but he wanted judgment to understand the consequence of an argument, and to speak consistently with himself. Whereby his argumentations which he pretends to be demonstrative, are very often but weak and incoherent discourses, and destructive in one part of what is said in another, sometimes within the compass of the same page or leaf. This is more convincingly evident (and unpardonable) in mathematics, than in other discourse, which are things capable of cogent demonstration and so evident that, though a good mathematician may be subject to commit an error) yet one who understands but little of it, cannot but see a fault when it is shewn him. For (they are his own words: Leviathan part 1. cap 5. p. 21.) ' who is so stupid as both to mistake in geometry, and also to persist in it when another detects his error to him?' Now when oo many hundred paralogisms and false propositions have been shewed him in his mathematics by those who have written against him, and that so evidently that no one mathematician at home or abroad (no, not those of his intimate friends, have been found to justify him in any one of them, which makes him somewhere say of himself, ' Aut ego solusinsanio, aut solus non insanio,' he hath been yet so stupid (to use his own word) to persist in them, and to repeat and defend them : particularly he hath first and last given us near twenty quadratures of the circle, of which some few, though false, have been coincident (which therefore I repute for the same only differently disguised, but more than a dozen of them are such as no two of them are consistent; and vet he would have them thought to be all true. Now either he thought so himself (and then you must take him to be a person of a very shallow capacity, and not such a man of reason as he would be thought to be;) or else,

HOB
knowing them to be false, was obstinately resolved notwithstanding to maintain them as true, (and he must then be á person of no faith or honesty;) and if he argues at this rate in mathematics, what are we to expect in his other discourses?
" Nor am I the first who have taken.notice of his incoherent way of discourse and illogical inferences. Mr. Boyle, in his Examen of Mr. Hobbes's Dialogus Physicus de Naturâ Aëris, p. 15, (and I think elsewhere, though I do not remember the place) refers to Dr. Ward's Dissertatio in Philosophiam Hobbianam, p. 188, who voucheth Des Cartes to the same purpose; ' Nempe hoc est quod alicubi admiratus est magnus Cartesius nusquam eum, sire verum, sive falsum posuerit, recte aliquid ex Suppositionibus Academiarum,' against one Webster with some animadversions on Mr. Hobbes. He had in his younger dars some little insight in mathematics, and which, at that time, (when few had any) passed for a great deal. On the credit of which he did much bear up himself as a great man, and having somewhat singular; and thereupon despised divines as not being philosophers or not mathematicians, without which he would have thought it impossible to do any good in philosophy; De Corpore cap. 6. sect. 6-and so long as he did but talk and forbear to write, he did by his own report pass for a mathematician ; but when once he began to write mathematics, he presently fell into those gross absurdities, and discovered in himself such an incapacity for it, as could not have been imagined of him if he had forborne to write: and truly I look upon it as a greas providence that God should leave him to so great a degree of infatuation, in that wherein he did so much pride himself. For whereas in discourses of other subjects, mistakes may be shuffled over with a multitude of great words, in mathematics it cannot be so; and hereby he discovered himself (without possibility of palliation,) not to be that man of reason he would be thought to be. For though a man may be rational who is not a mathematician, (and had he not pretended to it, his ignorance har been excusable) but for so great a pretender, and who had gloried in it for so long a time, and was acquainted with the principles of it, from such principles to infer such absurd conclusions, must needs argue a want of logic, and an incapacity not only to reason well, but even to understand reason. And I guess it was his affectation of singularity (as much as any thing) which made him engage in atheistical tenets, that he might seem to bea man of greater reach than all the world besides. I know not what to add more, but if this may contribute any thing to your satisfaction, it is at your service. Your's toserve you,
". John Wallis."
HOBBIMA (Minderhout), an eminent painter of landscapes, born at Antwerp about 1611. He studied wholly after nature, and his choice was exceedingly picturesque, but his works are now very scarce.

To HO'BBLE. v. n. (to hop, to hopple, to

HOC

houble.) 1. To walk lamely or awkwardly upon one leg more than the other; to hitch (Swift). 2. To move roughly or unevenly (Prior).
Ho'sbile. s. (from the verb.) Uneven awkward gait (Swift).

HO'BBLINGLY.ad. (from koblle.) Clumsilv; awkwardly; with a halting gait.

HO'BBY. s. (hobereau, French.) I. A species of hawk. See Falco. 2. (hoppe, Gothick.) An Irish or Scottish horse; a pacing horse ; a garran. 3. A stick on which boys get astride, and ride (Prior). 4. A stupid fellow (Shakspeare).

HOBGOBLIN, a name vulgarly applied to fairies and apparitions.
HOBIT, a small mortar. See Howitzer.
HOBLERS, a name formerly given to certain Irish knights who used to serve as light horsemen upon bobbies.
HO'BNAIL. s. (from holly and nail.) A nail used in shocing a little horse (Shukspeure).

HOBNAILED. a. Set with hobnails (Dryden).
HO'BNOB. Corrupted from halnab (Sh.).
HOBSHEE-COFFREES, a kind of slaves very frequent in the empire of Hindustan. They come mosily from a province subject to the Negus of Ethiopia, called Innariah, to the south of his other dominions, and bordering upon Negroland in Africa.
HOBSON'S CHOICE, a vulgar proverbial expression, applied to that kind of choice in which there is no alternative. It is derived from the name of a carrier at Cambridge, who let out hackney horses, and obliged each customer to take in his turn that horse which stood next the stable-door. Hobson died Jan. 1, 1630 , while the plague was in London, and Milton wrote two epigrammatic epitaphs on the occasion, both of which are preserved in his Miscellanies. Till very lately there was a fine picture of Hobson, at the Bull, in Bi-shopsgate-street, London : where it is now we know not.
HOCHBERG, a marquisate of Brisgaw, in Germany, in the circle of Suabia. It belongs to the Prince of Baden Dourlach.
HOCHSTET, a town of Germany, in the circle of Suabia, remarkable for the great battle gained near it by the Duke of Marlborough in 1704, and which the English call the battle of Blenheim, from 2 village of that name three miles S . W. of this. It is seated on the Danube. Lat. 48.38 N. Lon. 10. 33 E .
HOCK, the hough of a horse or other quadruped : the joint of the leg behind, corresponding with the knee in front. Its office, in sustaining the principal weight and various turns of the body, renders it liable to injuries of a peculiar kind, which are often severe and permanent. Bone-spavins, blood-spavins and curbs are of this description.

To Hock. v.a. To disuble in the hock.
Hock, Ho'ckamore. s. (from Hockheim on the Maine.) Old strong Rhenish wine (Floyer).

HOF

HO'CKHERB. s. (hock and herl.) A plant, the same with mallow (Ainsuurth).

To HOCKLE. v.a. (from hock.) To hamstring (Hanmer).

HOCUS POCUS. (Junius derives it from hocced, Weish, a cheat, and poke or pocus, a bag.) A juggle ; a cheat (L'Estrange).

HOD. s. A kind of trough in which a labourer earries mortar to the masons. The same word is often used in the fens of Huntingdonshire, \&c. to denote a kind of turf used as fuel.

HODIDESDON, a town in Hertfordshire, with a market on Thursdays. It is seated near the Lea. Lat. 51.49 N. Lon. 0. 5 E.

HODGE-PODGE. (haché poché, Fr.) A medley of ingredients boiled together (Sandys).

HODIE'RNAL. a. (hodiernus, Latin.) Of to-day.

HƠDMAN. s. (hod and man.) A labourer that carries mortar.

HOE, a husbandman's tool, somewhat like a cooper's adze, to cut up weeds in gardens, fields, \&c. This instrument is of great use, and ought to be much more employed than it is in hacking and clearing the several corners and patches of land in spare times of the year, which would be no small advantage to the soil.

HOECK (John van), an historical and portrait painter, was born at Antwerp in 1600. He studied under Rubens, and afterwards visited Rome, where he gained the patronage of several of the cardinals and other great personages. At the solicitation of Ferdinand II. he went to Vienna, where he was greatly distinguished by the imperial family. He died in 1650. (Watkins).

HOEI-TCHEOU, the most southern city of the province of Kiang-nan of China, and one of the richest of the empire. The people are economical and temperate, but they are active and enterprising in trade. They boast of their tea, varnish, and engravings, which are indeed the most esteemed in China.

HOEI-TCHEOU-FOU, a commercial city of China, in the province of Quang-tong. Its jurisdiction contains 11 cities of the 2 d and 3d class. Lat. 23. 1 N. Lon. 113.58 E.

HOEING, in the new husbandry, is the breaking or dividing the soil by tillage while the corn or other plants are growing thereon. It differs from common tillage (which is always performed before the corn or plants are sown or planted) in the time of performing it; and it is much more beneficial to the crops than any other tillage. This sort of tillage is performed various ways, and by means of different instruments. See Husbandry.

HOEL (Gerard), an historical and landscape painter, born at Bommel in 1648 . He settled at Utrecht, where he was appointed director of an academy for drawing and painting. Many capital pictures of his are in the palace of Stargenberg, and his eminent talents may be seen in the grand staircase of the seat of the Earl of Albemarle. He died in 1733.

HOFFMAN (Maurice), an eminent phy*

H O G

gician, born in the electorate of Brandenburg, in 1621. After studying under his uncle, who was professor of physic at Alddorf, he went to Padua, where he took his doctor's degree. In $16+8$ he was made professor-extraordinary in anatomy and surgery at Altdorf, and the year following professor of physic. In 1053 he obtained the professorship of botany, to which was added the direction of the physic-garden. He died in $16 \mathrm{~g} \boldsymbol{8}$. His works are, 1. Aldorfi delicix Hortenses; 2. Appendix de Catalogum Plantarum Hortensium; 3. Deliciæ silvestres; 4. Florigeium Altdorfinum. His son John Maurice Hofiman was also an emineut physician, as well as a good botanist.

HOFFMANNIA. In botany, a genus of the class tetrandria, order monogynia. Calyx four-twothed; corol salver-shaped, four-parted; filamentless; berry two-celled, many-seeded, inferior. One species; an herbaceous plant of Jamaica.

HOG. s. (hwch, Welsh.) 1. The general name of swine. See Sus. 2. A castrated boar. 3. To bring Hogs to a fine market. To fail of one's design (Spectator).

Ho g, on board a ship, is a sort of flat scrub-bing-broom, formed by inclosing a number of short twigs of hirch or such wood between two pieces of plank fastened together, and cutting off the ends of the twigs. It is used to scrape the filth from a ship's bottom under water, particularly in the act of boot-topping. For this purpose they fit to this broom a long staff with two ropes; one of which is used to thrust the hog under the ship's bottom, and the other to guide and pull it up again close to the planks.

HOG'S-LARD. See Axungia.
HOGARTH (William), a celebrated English artist, was born at London in 1608 , and bound apprentice to an engraver of arms on silver plate. About 1780 he set up business for himself, and his first employment was to engrave coats of arms and shop-bills. He next undertook to execute plates for booksellers, the chief of which are a set of prints to illustrate Hudibras in 1726. His first performance as a painter was a representation of Wanstead assembly, the portraits taken from life, but without burlesque. In 1730 he married a daughter of Sir James Thornhill, and shortly after embellished the gardens of Vauxhall with some excellent paintings, for which Mr. Tyers, the proprietor, complimented him with a kolden ticket of admission for himself and friends. In 1733 appeared his Harlot's Progress, a set of prints which at once stamped his reputation, and which was followed by other moral histories, most strikingly executed. Soon after the treaty of Aix-la-Chapelle he went over to France, and while at Calais began to sketch a drawing of the gate of the town, for which he was taken up, but at last obtained his discharge. This circumstance gave rise to his piece of, \mathbf{O} the roast Beef of Old England ! and it is observable that he never after exhibited a Frenchman but in caricature. In 1753 he published his Analysis of Beauty,

HOH

in a 4to. volume, in which work he was greatiy assisted by Dr. Benjamin Hoadley the plyysician, and Dr. Morell. Hogarth bad the infirmity of excessive vanity, and thought himself the first painter of the age. He was also a very absent man; an instance of which happened as follows: Soon after he had set up his carriage, he paid a visit to the lord mayor, and having protracted his visit for a considerable time till a heavy shower came on, he was let out by a different door from that by which he entered. Unmindful of his own carriage, he called for a coach, but finding none was to be had he set off through the rain, and got home dripping wet. When Mrs. Hogarth ashed him where he had left the carriage, he said that he had forgot it. The last remarkable incident of his life was a dispute with Churchill the poet, who attacked him in a poetical epistle for his abuse of his friend Mr. Wilkes. Hogarth retaliated by representing the eatirist in the form of a bear dressedly canonically, holding a pot of porter in his paw. He died of a lingering illness in 1762, and was iuterred in the church-yard of Chiswick.
A specimen of Hogarth's propensity to merriment, on the most trivial occasions, is observable in one of his cards requesting the company of Dr. Arnold King to dine with him at the Mitre. Within a circle, to which a knife and fork are the supporters, the written part is contained. In the centre is drawn a pie, with a mitre on the top of it: and the invitation of our artist concludes with the following words in Greek letters-to Eta Beta Pi. The rest of the inscription is not very accurately spelled. A quibble by Hogarth is surely as respectable as a conundrum by Swift.
HO'(iCOTE. s. (hog and cole.) A house for hogs ; a hog-sty (Mortimer).

HO'GGEREL. s. A two-year-old ewe (Ainsworth).
HO'GH. s. (otherwise written ho, from hoogh, Dutch.) A hill; rising ground (Spen.).

HÓGHERD. s. (hog and hyirb, a keeper.) A keeper of hogs (Broome).
HO GGISH. a. (from kog.) Having the qualities of a hog; brutish ; selfish (Nidney). HO'GGISHLY. ad. Greedily ; sellishly.
HOYGGISHNESS. s. (from hoggish.) Brutality ; greediness; selfishness.
HOGSHEAD, in commerce, a measure of capacity for liquids. The hogshead of wine contains 63 gallons, each of 231 cubic inches : the hogshead of beer 54 gallons of 282 cubic inches each. In Scotland a hogshead contains 16 gallons.
HO'GSTY. s. (hog and sty.) The place in which swine are shut to be fed ($\operatorname{Swifft\text {).}}$

HOYGWASH. s. (rog and wash.) The draff which is given to swine (Arbuthzot).

HOGUE, CAPE LA, on the N.W. point of Normandy, near which Admiral Rooke burat 13 French men of war in 1692 . Lat. 49. 45 N . Lon. 1.52 W.

HOHENZOLLERN, a town of Suabia, capital of a county of the same name, with a
castle. It is seated on a mountain. Lat. 48. 24 N. Lon. 9. 6 E.

HOI'DEN. s. (hoeden, Welsh.) Au illtaught awkward country girl.

To Hoiden. v. n. (from the noun.) To romp indecently (Swift).

To HOISE. To Hoist. v. a. (hausser, Fr.) To raise up on high (Chapman).
hoke-day, Hock-day, or HockTuesday, in our ancient customs (dies Martis, quem quindenam paschæ vocant), the second Tuesclay after Easter week; a solemn festival celebrated for many ages in England in memory of the great slaughter of the Danes in the time of king Ethelred, they having been in that reign almost all destioyed in one day in different parts of the kingdom, and that principally by women. This is s:ill kept up in some counties; and the women bear the principal sway in it, stopping all passengers with ropes and chains, and exacting some small matter from them to make merry with.

HO-KIEN-FOU, a city of China, and one of the principal in the province of Pe-tcheli. It has two cities of the second, and fifteen of the third class, in its district, but is remarkable for nothing but the neatness of its streets. Lat. 38. 28 N. Lon. 115. 43 E.

HOLBEACH, a town in Lincolnghire, with a market on Thursdays. Lat. 52. 47 .N. Lon. 0. 11 E.

HOLBECK, a seaport of Denmark, in the island of Zealand, with a good harbour. Lat. 55.42 N. Lon. 11.44 E.

HOLBEIN (John or Hans), a famous painter, was born at Basil in Switzerland in 1498, and was instructed in the principles of his art by his father. In the town-house of Basil he painted a fine picture of our Saviour's Passion; and in the fish market of the same town, a dance of peasants, and Death's dance, the last of which has been engraved in a series of plates. In the reign of Henry VIII. he came to England, where he was patronized by sir Thomas More and other great men. He was also taken into the service of the king, aud painted a vast number of portraits and historical pieces in an excellent style. On the report of this painter's character, a lord of the first quality came to see him when he was drawing a figure after the life. Holbein sentto desire his lordship to defer the honour of his visit to another day; which the nobleman taling for an affront, broke open the door, and very rudely went up stairs. Holbein, hearing a noise, came out of his chamber; and meeting the lord at his door, fell into a violent passion, and pushed him backwards from the top of the stairs to the bottom. However, immediately reflecting on what he had done, he escaped from the tumult he had raised, and made the best of his way to the king. The nobleman, much hurt, though not so much as he pretended, was there soon after him ; and upon opening his grievance, the king ordered Holbein to ask his pardon. But this only irritated the nobleman the more, who would not be satisfied with less than his liff; upon which the VOL. V.

HOL

king sternly replied, "My lord, you have not now to do with Holbein, but with me: whatever punishment you may contrive by way of revenge against him, shall certainly be inflicted on yourself. Remember, pray, my lord, that I can whenever I please make seven lords of seren ploughmen, but I cannot make one Holbein of even seven lords." Holbein died of the plague at his lodgings at Whitehall in 1554.

HOLCUS. Soft grass. In botany, a genus of the class polygamia,order monæcia. Herm.: calyx glume :wo-valved; one or two-flowered; corol glume two-valved, awned; stamens three; styles two; seed one. Male : calyx glume two-valved; corolless; stamens three. Fifteen species : chiefly natives of Iudia, a few of America, and two common to our own country. The following are all we can notice.

1. H. sorghum. Millet. Glumes villous, sceds compressed, awned. It produces the true culinary millet-seed; and is a native both of India and Guinea. In the latter country, and especially on the banks of the Senegal, the fields are frequently covered with it, and the stalk rises to eight feet in height. The flour makes excellent bread; and from the quantity of saccharine matter contained in the sap, it is probable that an excellent sugar might be obtained from it at a cheap expence.
2. H. mollis. Glumes partly naked ; hermaphrudite plant awnless; male with a sharp-ly-bent awn ; root creeping. Common to our own hedges.
3. H. lanatus. Glumes villous; hermaphrodite floret awnless; male with an arch recurved awn. Found in our pastures.
HOLD, in veterinary language, is a term applied to the mare after copulation, and means that she retains the male semen. See Retain. The mare being brought to the horse on the ninth day, from the first time of covering, if she again receive him the act is accounted a sufficient proof she did not hold or retain befure: she is, nevertheless, brought again to the horse at the end of another nine days, and when she has twice refused to take him, she is said to be stinted, and no doubt is entertained of her being with foal.

To Hold. v. a. preter. held; part. pass. held or holden. (haloan, Saxon.) 1. To grasp in the hand ; to gripe; to clutch (Shakspeare). 2. To keep; to retain (Spenser). 3. To connect; to keep together (Exodus). 4. To maintain as an opinion (Locke). 5. To consider; to regard (Shakspeare). 6. To think of; to judze with regard to praise or blame ($D_{\text {ryden }}$). 7. To receive, and keep in a vessel (Milton) 8. To contain; to receive into its capacity : as, a hogshead holds sixty-three gallons. 9. To have any station (Milion). 10. To possess; to have (Knolles). 11. To possess in subordination (Knolles). 12. To suspend ; to refrain (Crashave). 13. To stop; to restrain (Denham). 14. To fix in any condition (Shak.). 15. To keep; to save (Shakspeare). 16. To confine to a certain state (Esdras). 17. To detain; to keep is subjection (Acts). 18. To R R

H O L

H O L
retain ; to continue (Dryden). 19. To practise wih contimance (Mit/on). 20. To solemuize; to celehrie (Stamucl). 21. To conserve ; not to infrimge (I)ryden). 22. To mange; to handle intellectually (Bacon). 23. To maintain (Mucculces). 24. To carry
 culte; to continue ($1 /(\%)$) 26. To Hold forth. To offer to exhibit; to propose (Tcm ple). 27. To Hold firth. To protend; to put forward to view (Chcyne). 28. To Hold m. To restrain (Siwift). 29. To Hold off. To keep at a distance (Shalispeare). 30. To Howdem. To continue ; to protract ; to push forward (Sunderson). 31. To Hold out. To extend: to stretch forth (Esther). 32. To Hold out. To offer; to propose. 33. To Hold out. To comtinue to do or suffier (Shatspleare). 34. To llold up. To raise aluft (Loche). 35. To Hold up. To sustain; to support (Shatispeare.)

To HoLd. v.n. 1. 'I'o stand; to be right; to be without exception (Stillingflet). 2.To continue unbrokenor unsubslued (Shaispeare). 3. To last; to endure (Bacon.) 4. To continue without variation (Milton.) 5. To refrain: he held from tears (1)ryden). 6. To stand upf for; to adhere (Hale). 7. To bedependant on :Ascham). 8. To derive right (Dryden). 9. T, IIold forth. To harangue; to speak in public (L^{\prime} 'istrange). 10. To Hold in. To restrain one's self (Jer.). 11. To Hond in. To continue in luck (Suift). 12. T'o Hold off. To heep at a distance without closing with offers (Decay of Piety). 13. To llond on. To continue; not to be interrupted (Surifl). 14. To Hold on. To proceed (LE Estranse). 15. To Hold out. To last ; to endure (. Irluthnot). 16. To Hold out. Not to yielid ; not $10!$: subdued (Collier). 17. To Hold togellicr. To be joined (Dryd.). 18. Tollond ther ther. To remain in ninion. 19. Tu Holip up, To support himself (Tillotsonj. 20. T's Iloliv up. Not to be foul weather. 21. To Mozd up. To continue the same speed (Collicr).
liold. interj. loobear; stop; be still (1)rydin).

Hot.D. s. (from the verb.) 1. The act of scizing; gripe; grasp; scizurc (Spenser). 2. Something to be hedr ; support (Bacon). 3. Catch; power of seizing (Shahspeare). 4. Pison ; place of custody (llooker). 5. Custonly (Shahspcurr). 6. Power; influence (1 riyden). T, A lurking place. 8. A fortifiet place; a fort (Spenser).

Hold, in music, the name originally given to that curve or arch with a point under it, which we now term a pause.

HoLD, the whole interior cavity or belly of a ship, or all that part of her inside which is comprehended between the floor and the lowerdeck throughout her whole length. This capacious apartment usually contains the ballast, provisions, and stores of a ship of war, and the principal part of the carge in a merchantman. The dipposition of the ee articles with regard to each other, naturally falls under consideration
in the article Stowage; it suffices in this place to say, that the place, where the ballast, water, provisions, and liquors are stowed, are known by the general name of the hold. The several store-rooms are separated from each other by bulk-heads, and are denominated according to the articles which they contain, the sail-rom, the bread-room, the fish-room, the spiritroom, \&ic.
HOLDER (William), a learned divine, was born in Nottinghamshire, and edueated in Pembroke-hall, Cambridge. In 1642 he becance rector of Blechingdon, Oxfordshire. At the restoration he took his doctor's degree, became fellow of the Ruyal Society, and subalmoner to the king. He had great skill in teaching the deaf and dumb to speak, on which art he wrote a treatise. He was also well skilled in music, and published a treatise on the Natural Grounds and Principles of Harmony, 1694 , $8 v o$. His other works are; \mathbf{a} 1) iscourse concerning Time, with Application of the natural Day, lunar Month, and solar Year, 8 vo.; and some papers against Dr. Wallis. He died in 1697 .

Hólder. s. (from hold.) 1. One that holds or gripes any thing in his hand (Mortimer). 2. A tenant; one that holds lands under another (Carrw).

HOLDERFO'RTH. s. (hold and forth.) An haranguer; oue who speaks in public (Addison).

HOLDERNESS, a division of the East riding of Yorkshire, which has a very rich soil, and is remarkable for its large breed of horned cattle and horses.

HOLD-FAST. s. (hold and fast.) Any thing which takes hold; a catch; a hook (Ray).

HO'LDING. s. (from hold.) 1. Tenure; farm (Curell). 2. It sometimes signifies the burden or chorus of a song (Shatispeare).

HOLDSWORTH (EXward), an elegnt scholar, was born about 1688 , and chucated at Winchester school, from whence he was elceted demy of Magdalen college, Oxford, where he took his degrees of arts. He afterwards became travelling tutor to young noblemen and gentemen, and died at Coleshill, in Warwickshire, in 1747. He wrote, 1. Muscipula, a Latin poem of considerable nicrit. 2. Pharsalia and Philippi, or the two Philippi in Virgil's Georgics attempted to be explained and reconciled to History, 4to. 3. Remarks and Dissertations on Virgil; with some other classical observations published by Mr. Spence, 17/is, 4to.

HOLDSWORTHY, a town in Devon: shire, with a market on Saturdays. Lat. 50 : 50 N . Lon. 2. 42 W .
HOLE. s. (hol, Dutch; hole, Saxon.) 1: A cavity narrow and long, either perpendicular or horizontal (Bacon). \&. A perforation; a small interstitial vacuity (Boyle). 3. A cave; a hollow place (Shahspeare). 4. A cell of an animal (Addisvn). 5. A mean habitation (Dryden). 6. Some subterfuge or shift (Ains.).
holeracex, Holoracee, com:

HOL

monly written Oleracea (from olus, anciently holus, a pot-herb.) The name of the twelfth order in Liunéus's Natural Orders; and the fiftythird in his Fragments of a natural Method; containing Spinach, Beet, \&sc. \&c.

HOLIBLT, or Hollibut, in ichthyology. See Pleuronectes.

H(YLlDAM. s. Blessed lady (Hanmer).
HO'LILY. ad. (from holy.) 1. Piously; with sanctity (Shichspeare). 2. Inviolably; without breach (Silncy).

HO'LINESS s. (Ha holy.) 1. Sanctity: piety; religious gowiness (Royers). 2. The state of being taliowed; dedication to religion. 3. The title of the pare (.1idison).

HOLINSHED (Ruphaei), an English higtorian famous for the Cirronicles under his name, was descended from a family that lived at 130 osely, in Cheshire; but neither the time of his birth, nor scarecly ally circumstances of his life, are known. However, he appears to have been a man of considerable learning, and to have had a genius particularly adapted for history. His Chronicles of England, Scotland, and Ireland, were first published at London in 1570, ln 2 vols. folin; and then in 1587, in 3 vols. In this second edition yeveral sheets in the 2 d and 3 d vols. were castrated for containing some passages disagrecable to queen Elizabeth and her ministers; but the castrations have since been printed apart. Holinshed was not the sole compiler of this work, being assisted in it by several other hands. The time of his death is unknown; but from his will, which is prefixed to Hearne's olition of Camden's Annals, it appears to have happened between $1: 78$ and 158 ?
HO'LLA. interj. (hola, French.) A word used in calling to any one at a distance(Mill.).

To Ho'lla. v. n. (from the interjection.) It is now vitiously written hollo; sometimes halino.) To cry gut foudly (Síakspeare).
HOLLAND, a once celebrated republic of Europe, and principal of the Dutch states, or as they were commonly, though perhaps improperly, called, the Seven U nited Provinces. Holland is a peninsula, bounded on the north and west by the German Ocean, on the cast hy the Zuyder See and the state of Útrecht, and on the south by the river Meuse and Brabant. It is divided into North and South. Nerth Holland includes all to the north of Amsterdam. South Holiand extends from the state of Zealand and Brabant to the river Ye: the length of the whole, inclading the island of Texel and the islands in the Meuse, is about ninety miles; the breadth is various, from fifteen to forty-eight. It eontains twenty-nine walled towns, with many others that enjoy municipal privileges, and above 400 villages. Six large cities have seats in the states general, viz. Dort, Haeriem, Delft, Leyden, Amsterdam, and Gouda. The number of inhabitants is estimats ed at 800,000 . The soil of the country is so soft and marshy, that but for the constant care in forming ditches and canals, it would be hardly capable of cultivation; some part of it lies even lower than the sea, from which it is
secured by dykes or dans, The meadowgrounds are rich, and great numbers of milc!? cows are kept by the tarmers, and the makin: of butter and chiese is one of their principal occupations; these meadows are generally under water in the winter, and the water wond continue there at all times, if the inhabitants of the country had not found means to discharge them, by mills invented for this purpose, into the ditches and canals. The Hollanders are afliable, industrious, laborious, absorbed in trade, excellent sailors, good politicians, and lovers of liberty. A free exercise of religion is allowed to all persuasions except the Roman Catholics; but Calvinism is the most prevailing. This country was anciently inhabited by the Batavians, who derived their origin from the Catti, a people of Germany. Having been obliged to abandon their country on account of civil wars, they came to establish themselves in an island, formed by the waters of the Rhine and the Wahal or Leck, and named their coun-. try Batavia, or Betuwe, from Batton, the son of their king. Tinese people served in the Roman armies in quality of auxiliary troops, and historians inform us, that some of them were at the battle of Pharsalia. They formed the ordinary guard of the emperor Augustus. The services which they rendered Germanicus, in Germany, were so important, that the senate gave thein the appellation of brothers. They had afterwards a considerable share in the coniquest of Britain, under Plancius and Agricola. They strengthened the party of Galba, and atterwards that of Vitellius, and it was principally to their valour that Julian the Apostate was indebted for the victory which he obtained over the Germans, near Striabbur. The name of Holland is by some sard to be given it caz account of the vast and thich forests of woral with which it was at one time corered. Holilant, in German, siguifying woolland; others are inclined to think that the Normans, who made a descent here about the year 836, gave the country this name, founding their opinion on the resemblance of names found in this country to those in Denmark and Norway, the ancient residence of the Normans, as Zealand, Oland, Schagen, Bergen, \&ic. On the decline of the Roman empire, the Batavians, or. Hollanders, having thrown of their yoke, came under the dominion of the Sasons, and then oi the French, under Childeric I. king of France. The Normans and the Danes were the next masters, from the time of Charlemagne, and ravaged the country three times with fire and sword: when they were driven away, Charles the Bald, enuperor and king of France, erected Holland into a county, in the year 863 , in favour of Thierfy, duke of Aquitaine, who, five years after, was also made count of Zealand, by Louis, king of Germany. In the rear loge, the county of Holland devolved to the counts of Hainaut, and, in 1436, it fell to Philip thic Good, duke of Burgundy, and afterwards to the emperor Maximilian, whose descendant, Philip II. king of Spain, was the last count of Ilolland; the seven provinces reroling from
lk 2

H O L L A N D.

him, and, after a long struggle, forming an independent republic. The states of the province have the title of the states of Holland and West Frieseland, and are formed of the nobility and towns. By West Friesland is to be understood North Holland, which is sometimes so called, and not the state or province of Friesland. The number of the nobility admitted into the assembly is not limited, and not always the same : they are elected by a majority of votes, and rarely exceed ten. The towns who have a right to send deputies were originally six ; at present they are eighteen, of which seven are in North Holland, and eleven in South Holland. Tlre number of deputies sent by each town is not fixed. In the year 1581 , the Hague was appointed to be the place for the assembly of the states, when William of Nassiuu, prituce of Orange, was acknowledged by the states-reneral of the United Province as the chief of their republic, and most certainly so him they were chiefly indebted for their establishment when they threw off their allegiance to Spain. He was assassinated at Delft, on the toth of July, 1584. Maurice, of Nassan, succecded his father, and, in consideration of his virtue and valour, was nade governor, or stadtholder, of Holland, Zealand, and Utrecht. William Henry of Nassau, the grandson of Frederic Henry, brother of Maurice, obtained the three offices of stadtholder, captain, and admiral general, with a grant of the same to his descendants for ever. In the year 1677, this prince espoused Mary, daughter of Jaines II.
king of England, and, in 1689, was crowned king at W estminster. In the present disputes on the French revalution, Holland at first appeared hostile to the new republic, but never heartily to have co-operated with the allics. The stadtholder was nost probably influenced by Prussia and England; but a party more powerful than his own were his enemies, and on the invasion of Holland by the French, in the beginning of the year 1795 , the staditholder, with his family, thought it prudent to take refuge in Eugland. Such are the ways of Proridence! in the year 1688, a prince of Orange came to England to obtain a crown, and in the year 1795, a prince of Orange fied hither for protection.

The preceding account of Holland we hare given verbatim, from our most respectable Gazetteer (that by the rev. Clement Cruttwell); judging it improper, in the present unsetted state of continental affairs, to substitute any novel titles and description of this republic for the one that has been so long adopted by geographers. It is necessary for us, howerer, to add here, that since the iuvasion of the United Provinces by the French, in 1795, the Hollanders have, either in compliance with the wishes or commands of their new allies, not only new modelled their government and constitution, but first recurred to a name they had long rejected, the Dutch being for a time (about 1802) called Batavians, and Holland the Batavian republic, terms which about four years afierwards gave way to the kingdom of Hollaud.

By the treaty conciuded at the Hague, in 1806, the kingdom of Holland was divided as follows:

Dipartments.

Consisting of. Chisf Towns.

1. Groninguen
2. Friesland
$\{$
The province of Groninguen, comprising Wied and West \} Groninguen.
3. Over-Issel The province of Friesland and Ameland
. Over-Isrel, and the country of Brenthe
4. Guelderland -
5. Utrecht - - Utreiland, Kuilemberg, aud Buren

- - Utrecht and Veanen
. Holland

7. Brabant - - Holland, Isselstein
8. Zealand - - Dealand Bois le Duc.

It is also divided into four military divisions: The first comprises the department of Holland, Brabant, and Utrecht : head quarters at the Hague.
The second, the province of Zcaland : head quarters at Middleburg.
The third, the departments of Friesland and Groninguen: head quarters at Groninguen.
The fourth, the dejpartments of Guelderland and Over-Issel : head quarters at Deventer.

Louis Napoleon, brother to the French emperor, was placed on the throne of Holland in 1806.

Holeand, a district of Lincolnshire in England, in the S.E. part of the county. It is divided into Upper and Lower, and lies contiguous to the shallow inlet of the sea called the Wash. In nature, as well as in appellation, it resembles the province of the same name in the Netherlands. It consists entirely of fens and marshes; some in a state of nature, but others cut by numberless drains and canals, and crossed by raised causeways. The lower
or southern division is the most watery, and is preserred from constant inundations by nothing but rast banks, raised on the sea-coast and rivers. The air is unwholesome, and the water in general so brackish as to be unfit for interna! purposes; on which account the inhabitants are obliged to make reservoirs of rain-water. In summer, vast swarms of insects fill the air, and prove a great nuisance. Yet even here industry has produced comfort and opulence, by forming excellent pasture land out of the swamps and bogs, and even making thrm capable of producing large crops of corn. The fens too, in their native state, are not without their utility; and afford various objects of curiosity to the naturalist. The reeds with which their waters are cosered make the best thatch, and are annually harvested in great quanticies for that purpose. Prodigious flocks of geese are bred among the undrained fens, forming 2 considerable object of commerce, as well for their quills and feathers, as for the bird iselt, which is driven in great numbers to the Lon-

H OLLAND.

don markets. The principal decors in England for the various kinds of wild ducks, teal, widgeon, and other fowts of the duck kind, are in zhese parts. Wild geese, grebes, godwhits, whimbrels, coots, ruffs, and rees, and a great tariety of other species of water-fowl, breed here in amazing numbers; and stares or starlings resort during winter, in myriads, to roost on the reeds, breaking them down by their weight. Near Spalding is the greatest heronry in England, where the herons build together on high trees, like rooks. The avoset, or yelper, is found in great numbers about Fossdike Wash, as also knots and dotterels.

Holland (New), the largest island in the world, reaching from 10 to 44 deg . S. lat. and between 110 and 154 of tong. east from LonHon. It received its name from having been chiefly explored by Dutch navigators. The land first discovered in those paris was called Eendraght (Concord) Land, from the name of the ship on board which the discovery was made in 1616; 24 deg. and 25 deg. south. In 1818, another part of this coast, neariy in 15 deg. south, was discovered by Zeachen, who gave it the name of Arnheim and Diemen ; though a different part from what afterwards received the name of Diemen's Land from Tasman, which is the southern extremity, in latitude 43 deg . In $1619, \mathrm{JanVan}$ Elels gave his name to a southern part of New Holland. Another part, situated between 30 and 33 deg. receired the name of Leuwen. Peter Van Nuitz gave his name, in 1627, to a coast which communicates to Leuwen's Land towards the westward; and a part of the western coast, near The tropic of Capricorn, bore the name of De Wit. In 1688, Peter Carpenter, a Dutchman, discovered the great gulph of Carpentaria, between 10 and 20 deg. south. In 1687, Dampier, an Englishman, sailed from Timor, and coasted the western parts of New Holland. In 1699, he left England with a design to explore this country, as the Dutch suppressed whatever discoveries had been made by them. He sailed along the western coast of it, from 28 to 15 deg . He saw the land of Fendraght and of De Wit. He then returned to Timor ; from whence he went out again, and examined the isles of Papua; coasted New Guinea; discovered the passage that bears his name; called a great island which fornis this passage or strait on the east side, New Britain; and sailed back to Timor along New Guinea. This is the same Dampier who, between 1683 and 1691, sailed mund the work by changing his ships. Notwithstanding the attempts of all these navigators, however, the eastern part of this vast tract was botally unknown till captain Cook made his voyages; and by fully exploring that part of the coast, gave his country an undoubted title to the posesssion of it; which accordingly has since been taken possession of under the name of New South Wales.

Some have disputed whether the title of island can be properly applied to a coumtry of such vast extent, or whether it ought not sather to be denominated a continent; while
others have replied, thatthough the word island, and others sinilar to it, do indeed signify a tract of land surrounded by sea, yet in the usual acceptation it means only a land of moderata extent surrounded in this manner. Were it otherwise, we might call the whole world an island, as it is every where surrounded by the sea; and in fact, Dionysius Perigetes applies this term to it, with the addition of the word immense, to distiuguish it from other islands. The best rule, aocording to Mr. Stockdale, for determining when a country ought to lose the name of island and begin to be called a continent, is when it begins to lose the advantages of an insular situation. The first and princis pal of these, is the being capable of an union under one goverament, and thence deriving a security from all external attacks excepting those by sea; but in countries of great extent this is not only diffioult, but impossible. If we consider, therefore, New Holland as extending about a thousand miles every way, we shall find that its claim to be called a continent is undoubted; its length from east to west being about 2400 English miles, and 2300 from north to south.

This coast was first explored by eapt. Cook, in the year 1770 ; but his stay was too short to examine the nature of the country with the aocuracy which he would otherwise have done had he continued longer in it. In general, it was found rather barren than otherwise. Many brooks and springs were found along the eastern coost, but no river of any consequence. They found only two kinds of trees useful as timber, the pine, and another which produces a sort of gum.. They found three kinds of palm-trees; but few esculent plants, chough there are abundance of such as might gratify the curiosity of the botanist. A great variety of birds were met with, which have since been particularly described; but the number of quadrupeds bears buta very small proportion to that of the other sniunals.
This country has now become to us an object of more consequence than formerly, by reason of the establishment of a British colony in it; where the criminals conderaned to be transported are sent to pass their time of servitude. On the 6 th of December 1786, orders were issued by his Majesty in council for making a settlement in New Holland, establishing a court of judicature in the colviry, and other necessary rezulations. The whole reecived the complete sanction of parliament in the beginning of the year 1787. The squadron appointed for putting the design in execurion consisted of the Sirius frigate, captain Joln Hunter; the Supply armed tender, lieut. H. L. Ball; three store ships, for carrying provisions and stores for two ycars; and lastry, six transports, to carry 778 convicts, of which 558 were males; with a detachment of marines in each, proportioned to the nature of the service. Governor Phillip hoisted his flag on board the Sirius, as commodore of the squadron, weighed anchor on the 15th of May; and they arrived at Bolany Bay, on the 18ch of January 178\%.

H O L L AN D.

The governor then took the necessary steps for the establistiment of the colony. In 1801 there were 6500 persons under the governor's authority.

With regard to the state of this colony there have been various and discordant accounts. some of these have represented the country in such a lichit, that it would seem impossible to subsist on it; and it has been said, that the people who have had the misfortune to go there already were in the utmost danger of starving befure any assistance could be sent fiom Britain. 'I hese reports, however, appear not to be well fomaded. Dificulties must undoubtedly be felt at the first settlement of every uninhabited country; and we are not to expect that a colony, most of whom are wretches exiled for their crimes from their own country, can thrive in an extraordinary manner for some time. It appears, indecd, that so far trom the transportation to this place having had anv goed effect in reforming them, the governor has been obliged to execute the utnost rigour of the law by hanging several of them. For nur own parts, we expect that much goad will result from the regulations fately recommended to our government by the Rev. Sam. Marsden, semor chaplain to the colons, requlations most of which have been adripted, and for the execution of which Mr. Marsden has just returned to New South Wales with ample powers. Acarcely any thing is 100 much to expect from the prudence, activity, iutrepidity, and piety of this excellent man; and we doubt not that unborn ages will revere his name, and rejoice in the blessings he was the means of briming to the colong.

The quadrupeds on the contincut of New Mhiland hatherto discovered are principally of tue (O mssum hind, of which the inost remarkalle is the Kinnaroo. There is also a species of dogs very ditierent from those known in Earope. 'l hevare extremely fierce, and never can be brought to the same degree of familiarity with those we are acquainted with. Some of them have been brought to Jin:land, but still retain their usual ferccity. There are a great many beautiful birds of various hinds; among which the principal are the black swans already mentioned, and the ostrich or cassowary; whichlast arrives frequently at the height of seven feet or more. Several kinds of serpents, large spiders, and scopolencras, have also been met with. 'Ihere are likewise many curious fishes; though the finny tribe seem not to be so plentiful on the coast as to give any considerable assistance in the way of provisions for the colony. Some very large sharks bave been seen in Port Jackson, and two smaller species, one named the Port Jackson shark, the other Watts's shark. The latter, notwithstanding its diminutive size, the mouth scarce excecding an inch in breadth, is excessively voracious. One of them having been taken and thung down upon the deck, lay there quiet fir two hours; after which Mr. Watts's doy happening to pass by, the fish sprung ufon it withall the ferocity imaginable,
and scized it by the leg in such a manner that the animal could not disengage himself without assistance.

The climate of this continent appears not to be disagretable, notwithstanding the violent complaints which some have made about it. The heat has never been excessive in summer, nor is the cold intolerable in winter. Siorms of thunder and lightning are frequent: but these are common to all warm countries; and it has been supposed (though upon what foundation does not well appear) that were the country cleared of wond, and inhabited, these would in a great measure cease. A shock of an earthquake has likewise been felt; but these natural calamities are incident to some of the finest countries in the world. It is not known whether there are any volcanoes or not.

The inhabitants of New Holland are by all accounts represented as the most miserable and savage race of mortals, perhaps, existing on the face of the earth. They go entirely naked; and though pleased at first with some ornaments which were given them, they soon threw them away as useless. It does not appear, however, that they are insensible of the benefits of clothing, or of some of the conveniences which their new neighbours are in possession of. Some of them, whom the colonists partly clothed, seemed to be pleased with the comfortable warnith they derived from it; and they all express a great desire for the iron tools which they sec their neighbous make use of. Their colcur, in the opinion of captain (ook, is rather a deep chocolate than a full black; but the filth with which their skins are covered prevents the true colour of them from appearang. At some of their interviews with the coinnists, scveral droll instances happened of their mistaking the negroes among the colonists for their own countrymen. Notwithstanding their disregard for Furopean finery, they are fond of adorning, or rather deforming, their bodies with scars; so that some of them cut the most hideous figure that can be imagined. The scars themselves have an uncommon appearance. Somctimes the flesh is raised several mehes from the skin, and appears as if filled with wind; and all these scepu to be reckoned narks of honour among them. Some of thean pelforate the cartilage of the nose and thrust a large bone through it, an lideous kind of ornament humorously called by the sailors their sprit-sail yard. Their hair is generally so nuch clonted with the red gum alreaty mentioned, that they resemble a mop. Though these savages allow their beards to grow to a considerable length, it does not appear that they look upon them to be any omament, but ratler the contrary, as appears from the following instance. Some goung gentlemen belonging to the Sirius, one day met an old man in the waods with a beard of considerable length. This his new acquaintance let him know that they would rid him of, stroking their chins, and showing him the smootheses of them at the same time. At length the old fellow conscrited; and oue of the youngsters taking a pen-
kuife from his pocket, and making the best substitute for lather he could, performed the operation with such success that the Indian seemed highly delighted. In a few dass he paddled alongside of the Sirius again, pointing to his beard; but could not by any means be prevailed upon to enter the ship. On this a barber was sent down to him, who again freed him from his beard, at which he expressed the utmost satisfaction. it has, however, been found impossible to form any kind of permanent intercourse with the natives, though many attempts have been made for that purpose; but in his letter abore quoted, governor Phillip declares that he has not the least apprehension of their doing any damage to the colony. At first the colonists imatrined the spears of the New Holianders to be rory trivial weapons; but it now dppears that they are capable of inflictinz very aievous and mortal wounds. They are someunes pointed with a sharp piece of the same reed of which the shafts are made, but more frequently with the sharp bone of the sting-ray. They certainly burn their dead; which perhaps has given rise to the report of their being cannibats. Governor Phillip, observing the ground to be raised in several places, caused one of these tumuli to be opened, in which were found a jaw-bone half consumed and some ashes. From the manner in which the ashes are deposited, it appears that the body ha* been laid at length, raied from the ground a litule space, and consumed in that posture; beine afterwards lightly covered with mould.

The only donestic animals they have are the dogs already mentioned, which resemble the fox-dog of Eugland. In their language these animals are called dingo; but all other quadrupeds without exception they name kungaroo. -They seem very little given to thieving in comparison with the inhabitants of most of the South Sea islands; and are very honest among themselses, leaving their spears and other implements open on the beach, in full and perfect security of their remaining untouched. They are very expert at throwing their javelins, and will hit a mark with great certainty at a considerable distance; and it scems that sometimes they kill the kangarm with this weapon, as a long splinter of one of the spears was taken out of the thigh of one of these animals, the Hesh having closed over it completely. The people are more numerous than was at first margined, though still the number of inhabitants must be accounted few in comparison to the extent of country; and there is great renson to beliere that the interior parts are uninhabited.

The New Hollanders bake their provisions by the help of hot stones, like the inhabitants of the South Sea islands. They produce fire with great facility according to captain Cook, but with difficulty accoiding to later accounts, and spread it in a wonderful manner. To produce it, they take two picecs of dry soft wood; one is a stick about cigho or aine inches long, the other piece is flat. The stick they shape into an obtuse point at one cond; and
pressing it upen the other, turn it nimbly, by holding it between both their hands, as we do a chocolatemill; ofien shifting their hands up, and then moving them down upon it, to inciease the pressure as much as possible. By this method they get fire in less than wo minutes; and from the smallest spark they increase it with great speed and dexterity. "We have often seen (says captain Cook), one of them run aloug the shore, to all appearance with nothing in his hand, who stooping down for a moment, at the distance of every tifig or an hundred yards left fire behind him, as we could see, first by the snacke, and then by the flame along the drift of wond and other litter which was scattered alows the phace. We had the curiosity to examine one of llase planters of fire when he set off, and we saw him wrap up a small spark in dry grass, which when he had run a littie way, having been fanned be the air that his motion produced, began to blaze; he then laid it down in a place conveniont lor his purpese, inclosing a spark of it in another quantity of grass, and so continued his course."

For more on the subject of this article, we must refer to the interesting works of Savage, P'eron, \&x.
Holland, in commerce, a fine and close kind of linen, so called from its being lirst manufactured in Ilulland.

IIOLLAR (Wenceslaus), a celebroted cagraver, was born at Prague in Bolvemia in 1007. His family having been ruined in the destruction which had fallen upon their cometry by the wars, he was obliged to go abroad to sech for bread. By close application to drawing he acquifed great excelience in delineating views, which procured him reputation and prosfit. The carl of A rundel being on an embasy to the imperial court, was sn pleased with ins taste that he took him into his suite, and brought him to England. His first performance was a view of and from the town of Greenwich, in two plates, in 1637. After this he etched a great number of views and portrats. In $16+0$ appeared his fine set of tigures in 28 plates, called Oruatus Mulidbris Anglicanus, containing the dresecs of Euplishwomen of all degrees. In $16+5$ he went to the continent and settled at Antwerp, where also the earl of A rundel resided with his family. While there he etched a great number of jortraits and laudscapes after lireughel, El-hemer, and 'Teniers. In 1 (is2 he returned to Ensland, and continued there laboriously employed till 1677, when he died. His works are exceedingly muneerois, and gencral!y possess great spirit, freedom, and lightness, with a very high fini-hing.
$\mathrm{HO}^{\prime} \mathrm{LL}() \mathrm{IV}^{\prime}$. a. (from hole.) 1. Excavated; having a void space within; not solid (Dry.). 2. Noisy, like sound reverberated from a cavny (Dryden). 3. Not faithful; not sound; not what one appears (. Miton).

Ho's.low. s. I. Cavily; concavity (Baron). ?. Cavern; den; hole (l'rior). 3. I'it (Alliison). 4. Any opening or vacnity (Cencois). 5. Passige; canal (.liluisun).

HOL

To Ho'slow. \boldsymbol{v}. d. (from the noun.) To make hollow; to excavate (Spectator).
To Ho'llow. v. n. To holla ; to shout ; to hoot (Dryden).
hollow square, in military language, is a body of foot, drawn up with an enpty space in the middle, for the colours, druns, and bagyage ; facing and covered by the pikes every way, to oppose the horse.

Hóllow-hearted. a. (hollow and heart.) Dishonest ; insincere (Hudilias).

HO'LLOWLY. ud. (from hollow.) 1. With cavitics. 2. Unfaithfully; insincerely; dishonestly (Shakspeare).

HO'LLOWNESS. s. (from hollow.) 1. Cavity; state of being hollow (Hakewill). 2. Deceit; insincerity; treachery (South).

HOLLOW ROOT, in botany. See Adosa.
HOLLY, in botany. Sce Ilex.
Holly feee, in botany. See Ruscus.
Holly sea, in botany. See Eryngium.
Hollyhock, in botany. See Alceum.
HOLM, a town in Cumberland, with a market on Saturdays. It is someumes called Abbey-Holin from an abbey which formerly stood here. Lat. 54. 53 N. Lon. 3. 19 W.
Holm-oak. Sce Quercus.
Holm sea. See Eryngium.
HOLME. s. Holme or howme, whether jointly or singly, comes from the Saxon holme, a river island; or if the place be not such, the same word signifies also a hill, or mountain, (Gilison).
HOLMESDALE, a rough and woody tract in Surry, lying immediately beneath the hills to the S. and E. of that county, and extending into Kent.

HOLMS-KIOLDIA. In botany, a genus of the class didynamia, order angiospermia. Calyx five-toothed, dilated, very much spread: corol ringent; capsule one-celled (as commonly supposed, but not fully decided); many seeded. One species; a Bengal shrub with square branches ; leaves opposite, ovate, or heartshaped; ralyx of corol red.

HOLOCAUST, formed from odos, whole, and x ww, I consume with fire, a kind of sacrifice, wherein the whole offering is burnt or consume: by fire, as an acknowledgment that God, the creator, preserver, and lord of all, was worthy of all honour and worship, and as a token of men's giving themselves entirely up to him, It is called also in Scripture a burntoffering. Sacrifices of this sort are often mentioned by the heathens as well as Jews; particularly by Xenophon, Cyropæd. lib. viii. p. 464. ed. Hutchins. 1738, who speaks of sacrificing holocausts of oxen to Jupiter, and of horses to the sun: and they appear to have been in use long before the institution of the other Jewish sacrifices by the law of Moses; (sce Job. i. 5. xlii. 8. and Gen. xxii. 13. viii. 20.) On this account, the Jews, who would not allow the Gentiles to offer on their altar any other sacrifices peculiarly enjoined by the law of Moses, admitted them by the Jewish .priepts to offer holocausts; because these were

HOL

a sort of sacrifices prior to the law, and common to all nations. During their subjection to the Rnmans, it was no uncommon thing for those Gentiles to offer sacrifices to the God of Israel at Jerusalem. Holocausts were deemed by the Jews the most excellent of all their crifices.
HOLOGRAPHUM, composed of oies, all, and $y_{i} a \not{ }^{\circ} \mathrm{l}, \mathrm{I}$ write, in the civil law, something written wholly in the hand-writing of the person who signs it. The word is chiefly used in speaking of a testament written wholly in the testator's own hand. The Romans did not approve of holographic testaments; and though Valentinian authorised them by a novel, they are not used where the civil law is in full force.

HOLOSTEUM. Chick weed. In botany, a genus of the class triandria, order trigynia. Calyx five-leaved, petals five; capsule one celled, nearly cylindrical, bursting at the top. Five species; natives of the West Indies or America, except one, H. umbellatum, so called from its fowers in umbels, and which is found wild on the walls of our own country.

holóstelis. See Obteocolla.

HOLOTHURIA. In zoology, a genus of the class vermes. Body detached, cylindrical, thick, naked, and open at the extremity; mouth surrounded by fleshy branched tentacles. Twenty-three species: inhabitants chiefly of the north seas ; some of them of the Mediterrancan and Indian seas; some of the Atlantic. The following are some of the chief. Sec Nat. Hist. Pl. CXVIII.

1. H. elegans, with twenty branched tentacles; body papillous, varied with red and white; papillæ, painted distant, those of the back disposed in six rows. Inhabits the northern seas, and squirts out water like a syphon from the lower orifice: from eight to eleven inches long.
2. H. tremula. Upper surface corered with numerous conic papillæ, lower with cylindric ones; tentacles fascinulate: body generally a beautiful mixture of red and white: but varying in colour: the cylindric tubes beneath the body act as so many suckers, by which the animal fixes itself to the bottom of the sea. Inhabits the Mediterranean and Adriatic seas: a foot long.
3. H. physalis, with differently shaped, filiform, pendulous cirsi : body ovate by a line, and somewhat triangular. Inhabits the Atlantic, and appears like a transparent bladder.
4. H. levis. Elongated with white tentacles; body with five rows of lines and dots, soft, smooth, whitish, pellucid: from one to six inches long. Inhabits Greenland seas among rocks; hides itself frequently in the clay, protruding every alternate tentacle, and contracting the rest.
5. H. impaticus. Bory rigid cinereous; tentacles twenty, filiform, seven-cleft and denticulate at the tip. Inhabits the chores of the Red sea, under stones, or in the pores of the Spongia officinalis. The whole tribe are marine inhahitants, and expand or contract themselves at pleasure: the anterior aperture serves

H O L

them both is a mouth and vent, and from the hinder one they reject waters which have beem previously sucked in: the tentacles are nniverailly retractile.
HOLP. The old pret. and part pass of help.
HOLPEN. The old participte passive of help.

HOLSTEBROE, a town of Denmark, in N. Jutland, sitaate on a shallow river which runs into the North Sea. Lat. 56. 20 N . Lon. 9. 23 E.
HOLSTEIN (Duchy of), a country of Germany, in the circle of Lower Saxony. Including the lordship of Pinneberg, it is bounded on the north by the duchy of Sleswick and the Baltic, on the east by the Baltic, on the south by the duchy of Lauenberg, the territories of Lubeck, and Hamburg and the Elbe, and on the west by the Elbe and the German Sea; ubout seventy miles in length from east to west, and forty-eight in breadth from north to south. Its situation between the Baltic and the German Ocean exposes it to frequent storms, which occasions heavy expence to the land-owners, in raising dykes to prevent inundations, especially in the districts borlering on the German Sea and the Elbe. These districts consist of excellent marsh land, producing wheat, barley, oats, beans, peas, and rape-seed, in great plenty. The meadows and pastures feed great numbers of cattle, both milch kine and to be fatted for the butcher. The other parts of the country are still more fertile. Holstein is divided into four provinces, namely, Holstein Proper, Stormar, Ditmarsen, and \mathbf{W} agria. The three first of these were form' rly called Nordalbingia, or Saxony beyond the Elbe. The Saxons of this country were a free people, till they were snbdued by Charlemagne, who transporied 10,000 families into Brabant, Flanders, and Holland. A treaty was made between this prince and the king of Denmark, which fixed the river Eider as the common boundary of their two empires. The country on the south of the river was called the Marche, and a marggrave appointed to defend it. Lothario, duke of Saxony, who afterwards became emperor, erected Hulstein Proper and Stormar into a county, in farour of the count of Scauenbuig, in the year 1106; whose son, Adulphas II, incorporated Wagria with Holstein, and peopled his estates with strangers from Holland and Westphalia. The territories were afterwards divided into separate principalities. One of the princes who reigned here obtained from the king of Denmark the investiture of Sleswick. This branch became extinct, and the people elected Christian I, king of Denmark, who became duke of Sleswick, and count of Holstein; which was soon after erected into a duchy. His posterity reigned here in the same manner as over Denmark. The branch of Holstein Gottorpf, founded by the second son of king Frederick I, was often disturbed by that which reigned in Denmark, and in the year 1720, the reigning prince was entirely disposessed of his dominions. This prince had espoused And,

HOL

the eldest danghter of Peter I, emperds of Russia. In the year 1743, his son Charles Ulrick was by his mother's sister, Elizabeth, empress of Russia, dec lared grand duke of Russia, and took the name of Peter Feodorowitz. The king of Denmark, as duke of Holsteia Gluckstadt, has a seat and voice in the diet of the empire in the college of princes, so also has the emporor, or a mpress of Russia, for Holstein Gottorpf. The assessinent of the whole dum chy, in the matricula of the empire, is 800 florins. Holstein Gluchstadt pays to the imperial chamber 189 rix dollars thirty-one kruitzers, and Holstein Gottorpf the same. The king of Denmark appoints a governor over his part of Holstein, who generally resides at Guckstadt. The regency court for Russian Holstein is held at Kiel. The principal trading towns are Altona, Gluckstadt, and Kiel. The exports of Holstein are wheat, barley, malt, starch, buck-wheat, peas, beans, rapeseell, horned catte, sheep, rams, swine, horses, poultry, butter, checse, venison, and fish.
HOLSTON, a river of United America, in the Tennasee government, which joins the Tennasee, twenty miles W. Knoxville.
HOLSTER. s. (heol rren, Saxon.) A case for a horseman's pistol (Butler).
HOLT, (Sax.) a wood; wherefore the names of towns beginning or ending with hole, as Buck-holt, \&e. denote that formerly there was great plenty of wood in those places.
Holt, a town of England, in the county of Norfolk, with a weekly unarket on Saturday: twenty-two miles N. W. of Norwich, and 120 N. N. E. of London.

Holt, a town of Norway, in the divoese of Christiansand : thirtytwo miles N. N. E. of Christiansand.

Holt, a town of North Wales, in the county of Denbigh: three miles N. E. of Wrexham.

Holt, a town of Germany, in the circle of Westphalia, and duchy of Cleves: twentyseven miles S. E. of Cleves. Lon. 24. 12 E. Ferro. Lat. 51.39 N.

Holt (Sir Johu), knight, eldest son of sir Thomas Holt, serjeant at law, was born in 1649. He entered hinself of Gray's. Inn in 1658; and applied to the common law with so much industry, that he soon became a very eminent barrister. In the reign of James II. he was made recurder of London, which office he discharged with much applause for about a year and a half; but lost his place for refusing to expound the law suitably to the king's designs. On the arrival of the prince of Orange, he was chosen a member of the convention parliament, which afforded him a good opporzunity of displaying his abilities; so that, as soon as the government was setded, he was made lord chief justice of the court of king's bench, and a privy counsellor. He continued chief justice for 22 years, with great repute for steadiness, integrity, and thorough knowledge in his profession. Upon great occasions he asserted the law with intrepidity, though he thereby reatared so ineur by turan the indivs-
fation of both houses of Parliament. He published some Reports, ard died in 1709.

HO'LY. a. (haliz, saxon.) 1. Good; pious; relignus (Shatispleare). 2. Hallowed; consecrated to divine uee (Dryden). 3. Pure; immaculate : Soutit). 4. Sacred (Siakspeare).
Hot.v-(iнost. s. The third person of the adorable Tribity. See Trinity.

HOLYHEAD, a town and cape of the isle of Anglesea in Wales, and in the Irish ctiannel, where people usually embark for Dublin, there being regular packet-hoas that sail for that city every Monday, Wednesday, and Friday, wind and weather permitting. It is 276 miles from London, and has a very convenient harbour for the northern trade, when taken short by contrary winds. It is situated near the extremity of the Isle, and is joined to the north-west part of it by a stone bridge of one arch. It has a small market on Saturdays. The parish is about five or six miles long, and two or three broad, bounded nearly by the sea. The churel stauds above the harbour, within an old quadrangular fortification, with a bastion at each corner, built about 4.50 . On a mountain near it is another old fortification called Turris Munimentum, which is an old stone wall without mortar; and in its centre is a sinall turret, that contains a well of water. Molyhead was formerly used to be visited by Irish rovers, and was defended as a place of consequence. There are several remains of old fortifications and Druidical antiquities in its neighbourhood, as well as chapels of religious worship. Here also a lighthouse has been recently erected. Lat. 53.19 N. Lon. 4. 24 W .

HOLY-ISLAND, a small island lying on the coast of England, ten iniles south-east of Berwick, in Northumberiand. Bede calls it a semi-island, being, as he observes, twice an islar.d and twice continent in one day: for at the flowing of the tide, it is encompassed by water; and at the etb, there is an almost dry passage, both for hornes and carriages, to and from the main land; from which, if measured on a straight line, it is distant about two miles castward; but, on account of some quicksands, passensers are obliged to make so many detours that the length of way is nearly doubled. The water over these flats at spring-tides is only seven feet deep. This iskand was by the Britons called Inis Medicante ; also Lindisfarne, from the small rivulet of Lindi or Landi, which here runs into the sea, and the Celtic word faliren, or "recess;" and on account of its being the habitation of some of the first monks in this country, it afterwards obtained its present name of Holy-Island. It measures from east to west about two miles and a quarter, and its breadth from north to south is searcely a mile and a half. At the north-west part there runs out a spit of land of about a mile in length. The monastery is situated at the southernmost extremity; and at a small distance north of it stands the villlage. On this island there is plenty of fish and fowl: but the air and soil_are bad. There is not a

H O M
tree on the island. The village, which stands on a rising ground, consists but of a few scattered houses, chiefly inhabited by fishermen; and it has two inns. The north and east coasts are formed of perpendicular rocks, the other sides sink by gradual slopes to the sands. There is a comniodions harbour, defended by a block-house; which last was surprised and taken in 1715, but was soon invested and retiken. Holy-island, though realiy part of Northumberland, belongs to Durham; and all civil disputes must be determined by the justices of that county. It was a very ancient episcopal seat. Ardan the first bishop, after presiding in it fourteen years, died and was buried here A. D. 651.

Holy-zood Day, a festival observed by the Roman catholics, in memory of the exaltation of our Saviour's cross.

Holy Thursday, or Ascension Day, the fortieth dav from Easter; being the day on which our Saviour's ascension is celebrated.
Holy Week. The week before Easter.
HOLYWELL, a town of North Wales, in the county of Flint, chiefly celebrated for a spring, called St. Winnifred's Well, from whence it takes its name, and concerning which many fables have been told. It issues from the foot of a hill with great impetuosity, and turns several mills erected for workiig copper, making brass-wire, paper, and snuff, and winding cotton, \&e. At the back of the town is a hill, in which lead ore is found. Holywell has a weekly market on Friday : filtytwo miles N.NW. Shrewsbury, and 212 N.W. London. Lat. 54. 13 N. Lon. 3. 21 W. This town contains 1146 houses, and 5060 inhabitants.

Holywell Water. A mineral water, arranged under the class of simple cold waters. It possesses similar virtues to that of Malvern. See Malvern Water.

HO'LYIDAY. s. (holy and day.) 1. The day of some ;ecelesiasucal festival. 2. Anniversary feast (Huller). 3. A day of gayety and joy (Shahspearc). 4. A time that comes seldom (Dryden).

HOLYWOOD (John), or Halifax, or Sacrobosco, an English mathematician, was born at Halifax in Yorkshire, though both the Irish and Scotch have claimed him as their countryman. After recciving his education at Oxford he entered into orders and went to laris, where lie died inl 1950 . He wrote ; 1. De Sphera Mundi; 2. De Anui Ratione; 3. De Algorismo.
HOLZA PFEL, a town of Westphalia, capital of a county of the same name, which gives a seat in the dicts. It is situate on the Lahn at the foot of a mountain. Lat. sa. 22 N . Lon. 7.44 E.
holZopal, or Wood-Opal. Sce Ofal.

HO'MAGE. s. (hommage, French; homingi:m, low Latin.) 1. Service paid and feal. ty professed to a sovereign or superior lord (Davies).. 2. Obeisance; respect paid by external action (Denham).

To Hómage. v.a. (from the noun.) To reverence by external action; to pay honour to .; to profess fealty.

HO'MAGER. s. (hommager, Fr.) One who holds by homare of a superiour lord (bacon).

HOMALIUM. In botany, a genus of the class polyandria, trigynia. Calyx six or seven parted; petals six or seven; stamens eighteen or twellty-one, three before each petal; capsule one-celled, many seeded. Two species: a West India tree, resembling the elon, and a shrub of Guiana.

HOMBER((William), a famous chemist, was born in 1652 at Batavia, where his father was governor of tine arsenal. He at first entered into the army, but at length quitted that profession for the law, which he also abancioned and betook himself to the sciences, particularly botany, medicine, and chemistry; to improve himself in which he travelled into various comntries. In 1682 he fixed his resiclence in France, and abjured the protestant religion; but being disappointed in his views of patronage, he went to Rowse and practised physic. Afterwards he returned to Paris, where he became a nember of the academy of sciences, and chemist to the duke of Orleans, who also appointed him his first physician. He died in 1715. Chemistry is greatly indebted to his labours, particularly for the discovery of the properties of the Bologna stone, and its phosphoric appearance after calcination. IIe never published any distinct work, but some of his papers are in the memoirs of the academy.

Homberg's sedative salt. Sce Boracic Acid.

Homeerg's Pyrophorus. Sec Pyrophorus.
HOMBURG, a town of Germany, in the landgravate of Hesse Cassel. Lat. 50.45 N . Lon. 9. 26 E .

Homburg, a town of Germany, in the duchy of Deux Ponts. Lat. 49.16 N. Lon. 7.32 E.

HOME. s. (ham, Saxon.) 1. His own house ; the privite dwelling ($D_{r_{\mathrm{r}}}$). 2. His own country (Shukspeare). 3. The place of constant residence (Prior). 4. United to a substantive, it signifies domestick, or of the şme country (I Bacon).
Home. ald, (fiom the noun.) 1. To one's own habitation (L.oche). 2. To onc's own country. 3. Close to one's own breast or affairs (Addisshn). 4. To the point designed; closely (Sanderson). 5. United to a subistantive, it implies force and efficacy (Silllingf(ct).

Home (Henry), lord Kames, a learned Scotch judge and elegant writer, was born in 1 fig6, and became hy his merit the senior lord of Session in Scotlayd. He wrote. -E-Essays ypon several Subjects concerring British Antiquitics, $17+6$; 2. Essays on the Principles of Mordity and Natural Religion, 8vo. ; 3. Historical Lave, 8vo. ; 4. The Principles of Equity, folio ; 5. Elements of Criticism, three voli

H O M

8vo. a work which has experienced universal approbation; 6 . 'The Gentleman Farmer, 8vo. 7. Loose Hints upon Elucation, 8vo. ; 8. The History of Man, four vols. 8vo. He died in 1789.

HO'MEBORN. a. (home and lorn.) 1. Native; natural (Donne). 2. Domestick; not forcign (Pope).

HOAMEBRED. a. (home and lired.) 1. Native; natural (Iammond). 2. Not polished by travel ; plain; rude ; artless; uncultivated (Dryden). 3. Dumestick; not foreign (Spenser).
HO'MEFELT'. a. (home and felt.) Inward; private ($\boldsymbol{P}_{o p e}$).
HO'MELINESS. s. (from homely.) Plainness; rudeness ; coarseness (Addison).
HO'MELY. a. (from home.) Plain ; honcspun; not elegant; not beautiful; not fine; coarse ; rude (South).

Ho'mely. ad. Plainly; coarsely; rudely (Dryden).
HO'MELYN.s. A kind ff fish (Ainsu:orth). HOMEMADE. a. (hume and made.) Made at home (Loche).
HO'MER. s. A Hebrew measure of about three pints (Lctiticus).

Homer, a celebrated Greek poet, the most ancient of all the profane writers. The age in which he lived is not known, though some suppose it to be about 168 years after the Trojan war, or, according to others, 160 years before the foundation of Rome. According to Paterculus, he fourished 968 years before the Christian era, or 884, according to Herodotus, who supposes him to be cotemporary with Hesiod. The Arundelian Marbles fix his era 907 years before Christ, and make him als cotemporary with Hesiod. The place of his birth is also unknown, and no less than seren illustrious cities laid claim to it, Smyrna, Chios, Colophon, Salamis, Rhodos, Argos, Athenre, but the place of nativity, parentage, and connexions of this extraordinary man, whom some have represented blind, have never been properly ascertained. In his two celebrated poems called the Iliad and Odyssey, Homer has displayed the most consummate knowledge of human nature, and rendered himself immortal by the sublimity, the fire, sweetness, and elcgance of his poetry. In his Iliad, Homer has described the resentment of Achilles, and its fatal consequences in the Grecian army before the walls of Troy. In the Odyssey, the poet has for his subject the return of Ulysses into his country, with the many misfortunes which attended his voyage after the fall of Troy. Though the lliad claims an uncontested superiority over the Odyssey, yet the same sublimity and elegance prevail, though divested of its more powerful fire ; and Longinus, the most refined of critics, compares the Iliad to the mid-day, and the Odyssey to the setting sun, and observes, that the later s:ill preserves its original splendor and majesty, though deprived of its meridian heat. Nothing was ever comparable to the clcanness and majesty of Homer's style; te
the sublimity of his thoughts; to the strength and sweetness of his verics. All his images are striking; his descriptions just and exact, the passions so well expressed, and uature so just and finely painted, that he gives to every thing motion, life, and action. But be more particularly excels in invention, and in the different characters of his heroes, which are 50 varied, that they affect us in an inexpressible manner. In a word, the more he is read by a person of good taste, the more he is admired. Nor are his works to be esteemed merely as entertaining poems, or as the monuments of a sublime and varied genius. He was in general so accurate with respect to costume, that he seldom mentioned persons or things that we may not conclude to have been known during the times of which he writes; and it was Mr. Pope's opinion, that his account of people, princes, and countries, was purely historical, founded on the real transactions of those times, and by far the most valuable piece of history and geography left us concerning the state of Greece in that early period. His geographical divisions of thatcountry were thought so exact, that we are told of many controversies concerning the boundaries of Grecian cities which have been decided upon the authority of his poems. The ancients had such vencration for Homer, that they not only raised temples and altars to him, but offered sacrifices, and worshipped him as a god. Alcibiades gave a rhetorician a box on the ear for not having Homer's writings in his school. Alexander was ravished with them, and commonly placed them under his pillow with his sword: he inclosed the Iliad in the precious casket that belonged to Darius; "in order (said be to his courtiers) that the most perfect production of the human mind might be inclosed in the most valuable casket in the world." And one day seeing the tomb of Achilles in Sigra, "Fortunate hero! (cried he), thou hast had a Homer to sing thy victories!" Lycurgus, Solon, and the kings and princes of Greece, set such a value on Ho. mer's works, that they took the utmost pains in procuring correct editions of them, the most esteemed of which is that of A ristarchus. Didymus was the first who wrote notes on Homer; and Eustathius, archbishop of Thessalonica, in the twelfih century, is the most celebrated of his commentators. Mr. Pope bas given an elegant translation of the lliad, adorned with the harmony of poetic numbers; Madame Dacier has translated both the Iliad and Odyssey in prose; and Mr. Cowper, in blank-verse. Besides the Iliad and Odyssey, Homer wrote, according to the opinion of some authors, a poem upon Amphiaraus's expedition agaiust Thebes, besides the Phoceis, the Cercopes, the small Iliad, the Epicichlides, and the Batrachomyomachia, anc many hymns to some of the gods.. Those' whonslew sire to know the several edtitions of Homerif and the writers who have enhplojed themselser on the works of that great poes maynodnsult Fabricius, in the first volume eftiis Bibliothe-
ca Græca, Dibdin's Introduction to the Clapsics, or Dr. A. Clarke's Bibliographical Dic. tionary.

Lord Kames, in his "Sketches of the History of Man," speaks of Homer in the following terms:-" Homer is undoubtedly a wonderful genius, perhaps the greatest that ever existed: his fire, and the bolduess of his conceptions, are inimitable. But in that early age, it would fall little short of a real miracle, to find such ripeness of judgment, and correctness of execution, as in modern writers are the fruits of long experience, and progressive improvements, during the course of many centuries. Homer is far from being so ripe or so correct. I shall mention but two or three particulars. The first is, that he reduces his heroes to little better than puppets. Not one of them performs an action of eclat, but with the assistance of some deity; even Achilles himself is every where aided by superior powers. It is Jupiter who inspires Hector with boldness to perform the illustrious actions that are so finely described in the fifleenth book; and it is Jupiter, who, changing sides, fills his heart with dismay. Glaucus, desperately wounded, supplicates Apollo, is miraculously healed, and returns to the battle perfectly sound. Hector, struck to the ground with a stone, and at the point of giving up the ghost, is cured by Apollo, and sent back to the battle with redoubled vigour. Can Homer's admirers be so blind as not to perceive, that this sort of machinery detracts from the dignity of his heroes, renders them less interesting, and less worthy of admiration? Homer, however, is deservedly such a favourite, that we are prone to admit any excuse. In days of ignorance, people are much addicted to the marvellous. Homer himself, it may be justly supposed, was infected with that weakness; and he certainly knew that his hearers would be enchanted with every thing wonderful and out of the cormmon course of nature. Another particular is, his digressions without end, which draw our attention from the principal subject. I wish as good an apology could be made for them. Diomedes (Boọk VI.) for instance, meeting with Glaucus in the field of battle, and doubting from his majestic air whether he might not be an immortal, enquires who he was, declaring that he would not fight with a god. Glaucus lays hold of this very slight opportunity, in the very heat of action, to give a long history of his family. In the mean time, the reader's patience is put to a trial, and his ardour cools. Agamemnon (Book XIV.) desiring advice how to resist the Trojans, Diomedes springs forward; but before he offers advice, 'gives the history of all his progenitors, and of their characters, in a long train. And after all, what was the sage advice that required such a preface? It was, that Agamemnon should exhort the Greeks to fight bravely. At any rate, was Diomedes so little known, as to make it proper to suspend the action at so critical a juncture for a genca-

H O M

logical history? There is a third particular which justly merits censure; and that is, an endless number of minute circumstances, especially in the description of battles, where they are most improper. One capital beauty of an epic poen is, the selection of such incidents and circumstances as make a deep impression, keeping out of view every thing low or familiar. An account of a single battle employs the whole fifth book of the lliad, and a great part of the sixth: yet in the whole there is no general action; but unknown warriors, whom we never heard of before, killed at a distance with an arrow or a javelin; and every wound described with anatomical accuracy. The whole seventeenth book is employed in the contest about the dead body of Patroclus, etuffed with minute circumstances, below the dignity of an epic poem. In such .scenes the reader is fatigued with endless particulars; and has nothing to support him but the melody of Homer's versification. Gratitude would prompt one to apologise for an author who affords so much pleasure: the only apology I can think of for the particular last mentioned is, that Homer had no good models to copy after; and that without good models it is in vain to expect maturity of judgment. In a word, Homer was a blazing star, and the more to be admired, because he blazed in an obscure age. But that he should in no degree be tainted with the imperfections of such an age is a wild thought.".
HO'MESPUN. a. (home and spun.) 1. Spun or wrought at home; not made by regu-- lar manufacturers (Swift). 2. Not made in foreign countries (Addison). 3. Plain ; coarse; rude; homely ; inelegant (Sandys).

Ho'mespun. s. A coarse, inelegant, rude, rustick man : not in use (Shakspeare).
ho'Mestall. Ho'mestead. ${ }^{\text {s. (ham }}$ and reere, Saxon.) The place of the house (D ryden).
HO'MEW ARD. Ho'mewards. ad. (ham and peapi, Saxon.) Toward home; toward the native place (Sidney).
HO'MICIDE. s. (homicidium, Latin.) 1. Murder ; manquelling (Hooker). 2. Destruction (Dryden). 3. (humicida, Latin.) A murderer; a manslayer (Shakspeare).

Homicide, in law, is the killing of a man by a man. Of this there are several species, as homicide by self-defence, homicide by misadventure, justifiable homicide, manslaughter, chance-medley, and murder. Homicide by self-defence, se defendendn, or in a man's own defence, is where one has no other possible means of preserving his life from one who combats with him on a sudden quarrel, and kills the person by whom he is reluced to such inevitable necessity. And not only he who on an assault retreats to a wall, or some such strait, beyond which he can go no farther, before he kills the othen, is judged by the law to act upon unavoidable necessity; but also he, who being assaulted in such a - nanner, and in such a place, that he cannot
go back without manifestly endangering hie life, kills the other, without retreating at all. And though a person who retreats from an assault to the wall should give the other wounds in his retreat, yet if he give him no mortal wound till he get thither, and then kill hìm, he is guilty of homicide se defendendo only. But if the mortal wound were given first, then it is manslaughter.
Homicide by misadventure, is where a man in doing a lawful act, without any intent of hurt, unfortunately chances to kill another; as where a labourer being at work with an hatchet, the head thereof flies off, and kills one who stands by. It seems clear, that neither homicide by'misadventure, nor homicide se defendendo, are felonious, because they are not accompanied with a felonions intent, which is necessary in cvery felony.
Homicide (Justifiable). To make homicide justifiable, it must be owing to some unavoidable necessity, to which a person who kills another must be reduced, without any manner of fault in himself. And there must be no malice coloured under pretence of necessity; for wherever a person who kills another, acts in truth upon malice, and takes occasion upon the appearance of necessity to execute his own private revenge, he is guity of murder. But if a woman kill him who assaulteth to ravish her, it is no felony: or if a man come to burn my house; and I go out and kill him, it is no felony. So, "if any evil-disposed person shall attempt feloniously to rob or murder any person in any dwelling house, or highway, or feloniously attempt to break any dwelling-house in the night-time, and shall happen to be slain in such felonious attempt, the slayer shall be discharged and shall forfeit no lands nor goods." 24 Henry VIII. c. 5. Justifiable homicide of a public nature is such as is occasioned by the due execution or advancement of public justice, with regard to which it must be observed, 1. That the judgment, by virtue whereof any person is put to death, must be given by one who has jurisdiction in the cause; for otherwise both judge and officer may be guilty of felony. 2. The execution must be purstant to and warranted by the judgment, otherwise it is without authority; and consequently, if a sheriff shall behead a man, when it is no part of the sentence to cut off the head; he is guilty of felong.
Homicide, manslaughter, against the life of another, is either with or without malice; that which is without malice is called manslaughter, or sometimes chance medley, or chaud-medley, by which is understood such killing as happens either on a sudden quarrel, or in the commission of an unlawful act, without any deliberate intention of doing any mischief at: " be : : 's to this offence before the fact, beca - tbe done without premeditation; but there be accessaries after the fact. The only diffetence between murder and man-

HOM

slaughter, is, that murder is upon malice atorethought, and manslaughter upon a sudden oceasion, as if two meet together, and striving for the wall, the one kills the other, this is manslaughter and felony. And if they had, on that sudden occasion, pone into the field and fought, and the one had killed the other, this had been but manslaughter, and no murder; because all that followed was but a continuance of the first sudden occasion, and the blowd was never cooled till the blow was given.

Chance, or chuud-medley. Authors of the first authority disagfee about the application of this word. By some it is applied to homicide by misadventure, by others to manslanghter. The original meaning of the word seems to favour the former opinion, as it signifies a sudden or casual meddling or contention; but homicide by misadrenture supposes no previous meddling or falling out.

Murder is the highest crime against the law of nature, that a man is capable of committing. It is when a man of sound memory, and at the age of discretion, unlawfully kills another person under the king's peace with malice aforethought, either expressed by the party, or implied by the law, so as the party wounded or hurt die of the wound or hurt within a year and a day, the whole day on which the hurt was done being reckoned the first.

By malice expressed, is meant a deliberate intention of doing any bodily harm to another, whereunto by law a person is not authorized.

And the evidences of such malice must arise from external circumstances discovering that inward intention; as lying in wait, menacings antecedent, former grudges, deliberate compassings and the like, which are various, according to the variety of circumstances. 1 H . 11.451.

Malice implied, is where a person voluntarily kills another, without any provocation; for in this case the law presumes it to be malicious, and that he is a public enemy of mankind. 1 H. II. 455.

In general any formed desizn of doing mischicf may be called nalice; and therefore not such killing only as proceeds from premeditated hatred or revenge ajainst the person killed, but also in many other cases, such as is accompanied with circumstances which shew the heart to be perversely wicked, is judked to be of ualice prepense, or aforcthought, and consequently murder. 2 Haw. 80.

If a mani kills another, it shall be intended prima facie that he did it malicion-ly, unless he makes the contrary appear, by shewing that he did it on a sudden provocation or the like. 1 Haw. 82.

When the law makes use of the term malice aforcthought, as descriptive of the crime of murder, it must not be understood in that narrow restrained sense to which the modern use of the word malice is apt to lead one, a principle of malevolence to particulars; for the law by the term malice, in this instance, means, that the fact has been attouded with

H OM

such circumstances as are theordinary symptoms of a wicked heart, regardless of social duty, and fatally bent upon inischief. Fost. 256.

The law so far athors all duelling in cold blood, that not only the principal who actually kills the other, but also hig secondis, are zuilly of murder, whether they fought or not ; and it is holden that the seconds of the permen billed are also equally guilty, in respect to that countenance which ihey give to their principals in the exccution of their purpose, by accompanying them therein, and being ready to bear a part with them. I Haw. 82.

Also it seems agreed, that no breach of a man's word or promise, no trespass either to land or goods, no affiront by bare words or gestures, however false or malicious it may be, and aggravated with the most provohing circumstances, will excuse him from being guilly of murder who is so far transported therethy; as immediately to attack the person who offends, in such a manner as manifestly endangers his life, without giving him time to put himself upon his guard, if he kills him in pursuance of such assault, whether the person slain did at all fight in his defence or not. Id.
HOMICI'DIAL. a. (from homicide.) Murderous; blendy (Pape).

HOMILETYICAL. a. (omı2nvixos.) Social; conversable (Atterlury).

HOMILY, in ecelesiastical writers, a sermon or discourse upon some point of religion, delivered in a plain manner, so as to be easity understiod by the common people. The word
 " assembly or council."

The Greek homily, says M. Fleury, signifies a familiar discourse, like the Latin sermo; ard discoarses delivered in the church took these denominations, to intimate, that they were not harangues or matters of ostentation and flourish, like those of profane orators, bat faniliar and useful discourses, as of a naster to his disciples, or a father to his children.

All the homilies of the Greek and Latin fathers are composed by bishops. We hare none of Tertullian, Clemens Alexandrinus, and many other learned persons; because, in the first ages, none but bishops were admitted to preach. The privilege was not ordinarily allowed to pricets till toward the fifth century. St. Chrysostom was the first presbyter that preached statedly. Origen and Mrt. Augustine also preached; but it was by a peculiar licence or privilege.

At the time of the Reformation there were several homilies composed and printed, and ordered to be read in such churches as were not provided with a sufficiently learned minister. in order to prevent unsound doctrine being taught in remote country places.

Homiles (Clementine), in ecclesiastical history, are nineteen homilies in Greek, published by Cotelerius, with two letters prefixed: one of them written in the name of Peter, the other in the name of Clement, to James bishap

H O M O.

of Jerusalem; in which last letter they are intitled Clement's Epitome of the Preaching and Travels of Peter. According to Le Clerc, these homilies were composed by an Ebionite in the second century; but Montfancon supposes that they were forged long after the age of St. Achanasius. Dr. Lardner apprehends, that the Clementine homilies were the original or first edition of the Kecognitions; and that they are the same with the work censured by Eusebius under the title of Dialogues of Peter and Appion.

HOMINE REPLEVIANDO, a writ to bail a man out of prison, now disused on account of the superior advantage of the habeas corpus.

HOMO. Man. In zoology, the first genus in the class mammalia, order primates; thus gencrically characterised: fore teeth cutting; upper four parallel; teats two, pectoral.

1. H. sapiens. Diurnal; varying by education and situation. The varitlies is follow:
a. Four-footed, mute, hairy. Wïld man.
e. Copper-coloured, choleric, erect. American. Hair black, straight, thick; nostrils wide; face harsh; beard scanty; obstinate, content, free. Paints himself with fine red lines.
r. Fair, sanguine, brawny. Erropean. Hair yellow, brown, flowing; eyes blue; gentle, acute, inventive. Covered with close vestments; governed by laws.
2. Sooty, melancholy, rigid. Asiatic. Hair black, eyes dark; severe, haughty, covetous. Covered with loose garments. Governed by opinions.
3. Black, phlegmatic, relaxed. African. Hair black, frizzled; skin silky; inose Hat; lips tumid; crafty, indolent, negligent. Anoints himself with grease. Governed by caprice.
4. H. monstrosus. Varying of climate or art. The varicties of this species as follow:
${ }_{a}$. Small, active, timid. Mountaineer.
5. Largr, indolent. Patagonian.
y. Less fertile. Hutlentot.
d. Beardless. American.
6. Head conic. Chinese.
§. Head flattened. Canadian.
Such is the arrangement of Linneus; which Howerer is somewhat involved and intricate, and perhaps unt quite correct. It is, with much reason, doubted whether the homo ferus, or wild man, be a genuine varicty. A few scattered accounts of wild boys and wild girls, some of them resenbling the sheep, others the wolf, dumb, covered with hair, and walking on all fours, are to be met with in different registers and writers attached to the marvellous, but it has been justly observed by Mr. Kcrr, that of all these, some may be ascribed to imposture, and others to exagzeration; most generally to idiots (the offspring of the other varieties), who had strayed from their friends or keepers, and only resembled the wolf or she elleep by imitating their sounds.

The arrangement of Gmelin is somewhat
more to the purpose, and we therefore subjoin it for a comparison. The genus admitting but one species is divided into the following varicties:
a. H. albus. White man. Formed by the rules of symnetrical elegance and lecauty; or at least by what is generally regarded as such. This division includes almost all the inhabitants of Europe ; those of Asia, on this side the Obv, the Caspian, Mount Itmaus, and the Ganges, as well as the natives of the north of Africa, of Greenland, and the Esquimaux.
5. II. badius. Brown man. Of a yellow-ish-brown colour; with scanty hair, Hat features, and small eyes. This variety includes the whole of the inhabitants of Asia not comprized in the preceding.
r. H. niger. Black man. Black complexion, frizzly hair, flat nose, and thick lips. The whole of the inhabitants of Africa, excepting those of its more northerly parts.
8. H. cupreus. Copper-coloured or red man. The complexion of the skin resembles the hue of unburnished copper. All the inhabitants of America, except the Greenlanders and Esquinaux.
2. II. fusus. Tawny man. Chiefly of a dark blackish-hrown colour; having a broadnose, and harsh, coarse, straght hair. The inhabitants of Australasia, Polynesia, and most of the Indian islands.
The zoological description of Linnéns is as follows:
" The body, which seldom reaches six feet in height, is erect and almost naked, having only some scattered distant hairs, except in a few detached spots, and when born, often entirely naked. The head is eg.-sha; ;ed; the scalp long and covered with hair ; the forehead broad, top of the head Hat, and hindhead protuberant. 'The face is naked, having the brow or forehead flattened and quadrangular; the temples are compressed, with peaked anyles pointing upwards and backwards towards the hairy scalp. The eyc-brows are prominent, and covered with linirs, which shedding outwards, corer each other like tiles; and betiveen the inner extremitics of the two eye-brows, there is a sinooth shallow furrow or depression, in a line with the nose. The upper eye-lid is moveable, but the lower one hardly moves, and both are planted at their edges with a row of stiff recurved hairs, named eye-lashes. The eye-balls are rourd, having no suspending muscles as in thnse of inost quadrupeds; the pupil, or opening of the sight, is circular ; and the eye has no membranid niectitana. The upper parts of the cheeks are promikent, softish, and coloured with a red blush; their outer parts flattened; the lower parts are hollowed, lax, and expansile. The nose is prominent, and compressed at the sides; its extremity or point is higher than the rest, and blunt: the nostrils are oval, open downwards, with thickened elges, and are hairy on their insides. The upper lip is al-

HOMO.

most perpendicular, and is furrowed on the middle, from the division between the nastrils to the edge of the lip; the under lip is erect, thicker and more prominent than that above; both have a smooth red protuberance, surrounding their mouth at their edges. The chin is prominent, blunt, and gibbous. In males, the face is round ; the mouth is covered with hair, called the beard, which first appears about puberty, in patches on the chin. The teeth in both jaws may be distinguished into three orders; the fore teeth are erect, parallel, and wedge-like, of the kind named incisors or cuting eeeth; they stand close to each ouber, and are mone equal and rounder than in other enimals: the tusks, called in man eyeweeth and corner-teeth, of which there is only one on each side of the fore-teeth in each jaw, are a litle longer than the fore-teeth, but much less so than in other animals, and they are placed close to the ocher teeth: the grinders, of which there are five on each side in both jaws, are blunt, and divided on their upper surface into pointed aminences ; hut these are not so remarkable as in other animals. The ears are placed on the sides of the bead, are of an oblong rounded figure, with a senilunar bend on their anterior edges; they lie flat to the head, are naked, arched at the margin, on their upper and pooterior ellges, and are thicker and soft at the under extremities.
"The trunk of the body consists of the neck, breast, back, and belly. The neek is roundish, and shorter than the head ; its vertebra or chine bones are not, as in most animals, connected by a suspensary ligament; the nape is hollowed; the throat immediately below the chin is hollow at its upper part, and protuberant in the middle a litue lower down. The breast is somewhat flattened both before and behind; on the fore part there is a decavity or depression where it joins with the neck; the armpits are hollow and hairy; the pit of the stomach is flat. On the breast are two distant, round, protuberant mamma or dugs, each having a cylindrical, obtuse, wrinkly, projecting nipple, which is surrounded by a darker colonred circle called the areola. The back is flat, having protuberances on each side at the shoulder-blades, with a furrow or depression between them. The abdomen or belly is large and protaberant, with a hollow at the navel; the epigastric regions, or sides of the belly, are protuberant; the groins flattish and hollowed. The pubes is hairy; the pelvis or basin is wider above, and grows narrower below. The male parts are external and loose; the penis cylindrical ; the scrotum roundish, lax, and wrinkled, being divided in the middle by a longitudinal ridge or smooth line, which extends along the whole perinæum. The female parts are compressed and protubefant, having labia, nympha, clytoris, and hymus, and, in adults, secreting the catamenia There is no external tail. The limbs consist of arms and hands instead of fore-legs; and of thighs, legs, and feet. The arms are placed
at a distance from each other; they are round, and about a foot in lengtu from the joint of the shoulder to the elbow; the fore-arm, or cubit, contains two bones, and is oblusely prominent; the ulna, which forms the principal thickness of the member, is round and somewhat flattened on the inside. The hands are broad, flat, and rounded; convex on the outside or back of the hand, and concave on the inside or palm. Each hand has five fingers, one of which, named the thumb, is shorter and thicker than the rest, and is placed at some distance from them ; the others are near each other, and placed parallel, the outer or liule finger being the smallest ; the second, named index or forefinger, aud the fourth called the ring-finger, are next in length and in size; and the third or middle-finger is the longest; the point of this last, when the arm and hand hang down, reaches to the middle of the thigh. The nails are rounded and oval, being fatly arched or convex upwards, and each has a semilunar whitish mark at the root or lower extremity.
"The lower limbs are placed close together, baving brawny muscular haunches and swelling fleshy hips; the knees are obtuse, pend forwards, and have hollow hams behind. The legs, which are nearly of the same length with the thighs, are of a muscular make behind, where they swell out into what is called the calf; they are lean, and free of flesh on the shins or fore-parts, and taper downwards to the ankle, which have hard hemispherical projections on each side, named the anklebones or malleola. The heel is thick, prominent, and gibbous, being longer and broader than in other animals, for giving a firm support to tho body; it joius iumediately with the sole of the foot. The feet are oblong, convex above, and flattened on the soles, which have a transrerse hollow about the middle. Each foot has five toes, somewhat bent downwards, and gibbous or swelled underneath at their extremities: they are all placed close together, the inner or great-toe being thicker and somewhat shorter than the rest; the second and third aie nearly of equal length; and the fourth and fifil are shorter than the others, the last mentioned or little toe being the shortest and smallest. The toenails resemble those on the fingers.
"Thusman differs from other animals in his arect posture and uaked skin, having a hairy scalp, being furnished with hair on the eyebrows and eye-lashes; and having, when arrived at puberty, the pubes, breast, armpis, and the chin of the male, covered with hair.
"His brain is larger than that of any other animal, even the most enormous; he is provided with an uvula, and has organs of speech. His face is placed in the same parallel line with his body: he bas a projecting compressed nose, and a prominent chin. His feet, in walking, rest on the heel. He has no tail; and lastly the species is distinguished from other animals by some peculiarities of the female constitution which.have been noticed already."

In the carlier editions of his syetem Linnéus armaged the Troglodytes as another variety of the genus Homo; but he atterwands, and certainly with propriety, transforred them to the genus Simin, which see: though there have not been wanting of late, nor are wanting even at present, some physiologists who affect to regard this species of the Simia as the common stock from which all the different varieties of man have arisen: or rather who affect to believe that both man and ape descend from the monkey; the tail having been progressively lost from inusitation, or some accidental circumstance in the animal constitution. Lord Monboddo was one of the warmest and most sturdy adherents to this opinion. From its own absurdity, however, it is now daily losing ground, and will probably be soon totally forgotten.

A still farther variety of the genus Homo has been supposed to exist in the white and colourless individuals denominated Albinos; a name first applied by the Portuguese to Moors who were born white, with every other characteristic of the race from which they descended, and who, on account of this Thue, were looked upon by the negroes as monsters. In these persons, however, there were other peculiarities besides the hue of their skin; for their hair, wherever it made its appearance, was equally white, the iris of the eye white, and the pupil rose-coloured.

It has since been pretty fully established that this appearance, instead of indicating a distinct variety of the genus, only indicates a morbid habit of a particular kind : and a habit which is by no means confined to the Moors of Africa, or to negroes of any country; for the very same symptoms, so far as they are capable of applying, have since been ascertained to exist in various parts of Europe: two (hoth boys) by Saussures, in the regions of Chamouni, where he found them exhibited as a public spectacle by their parents, with lips somewhat thick, light hair, and rose-coloured eves; four (males also) who were inhabitants of Milan ; another male described by Maupertuis; another by Helvetius ; and several of atill later date in our own country, of whom a few have been females.

Now it is a clear proof that the persons thus denominated Albinos do not form a distinct variety of man, since, although they are stated to be occasionally propagated in Guinea, Java, and Panama, from cohabitation of males and females equally affected with this disease. yet that the instances now adduced sprung, in every example, from parents of colsured hair, common complexion, and eyes of an usual appearance; and hence that when Albinos have been propagated, they can only have been propagated as possessing an hereditary disease.

The proximate cause of this disease is obviously a deficiency in the secretion of that rete mucosum, or general colouring matter under the cuticle, which varies the complexion, the colour of the hair, and of the cyes;
and the absence of which reduces the whole to the same whitish or colourless appearance. Of the remote cause, we are totally ignorant to the present moment. The physical strength we usually find impaired ; but the mental faculties seem to sustain no injury.
Another observation we have to make is that the disease, be its remote origin what it may, appears to be more common among males than among females. It seems to have been the opinion of Saussures and Barri that it was altogether confined to males, but this is unquestionably a mistake; for several female Albinas or Albinesses, as they have been called, have been publickly exhibited in this metropolis within the course of the last twenty years, and one if not two of them indigenous to the uniterl kingdom.

Some physiologists, indeed, have on this account gone so far as to imagine that the disease is as common among fernales as among males, but that from the greater modesty of the former, they have more frequently shunned to make public spectacles of themselves. This however is mere opinion, and that not a very plausible opinion; while it is opposed by almost all the few facts we are able to advance upon this curious subject. In proof of this we will venture to select the following statement of a gentleman whose authority is of no small weight, to which we might add several other instances of a similar kind, if we could allow ourselves space. We select the following, however, because the account is accurately drawn up, and because, if we mistake not, it constitutes the latest account of the kind that has yet been presented to the public. It is given in a letter from Dr. T. S. Traill of Liverpool, to Mr. Nicholson, and was published in his Journal of Natural Philosophy for February 7, 1808.
"Robert Edmond and his wifeAnne are both natives of Auglesey in North Wales. He has blue eyes and hair almost black; her eyes are blue, and her hair of a light brown. Neither of them have remarkably fair skins. They have been married fourteen years. Their first child, a girl, had blue eyes and brown hair. The second, a boy, (now before me) has the characteristics of an albino : viz. very fair skin, flaxen hair, and rose-coloured eyes. The third and fourth children were twins, and both boys; one of them has blue eyes and dark brown hair; the other was an albino. The former is still alive : the albino lived nine months, though a very puny child. The fifth child, a girl, had blue eyes and brown hair. The sixth, and last now here, is a perfect albino.
" The oldest of these albinocs is now nine years of age, of a delicate constitution, slender, but well formed both in person and in features; his appetite has always been bad: he frequently complains of a dull pain in his forchead; his skin is exceedingly fair; his hair flaxen and soft; his cheeks have very little of the rose in them. The iris and pupil of his eyes are of a bright rose-red colour, reflecting S S
in some situations an opaline tinge．He can－ not endure the strong light of the sun．When desired to look up，his eyelids are in constant motion，and he is incapable of fixing the eye stealily on any object，as is observed in those labouring under some kinds of slight ophthalmia，but in him is unaccompanied by tears．His inother says，that his tears never flow in the coldest weather，but when vexed they are shed abundantly．The white of the eje is generally bloodshot．He says he secs better by candle than by daylight ；especially at present，when the reflection from the snow on the ground is extremely offensive to him． He gaes to school，but generally retires to the dlarkest part of it to read his lesson，because this is most agreeable to his eyes．In my room，which has a northern aspect，he can only distinguish some of the letters in the fages of the Ediuburgh Review ；but，if the light is not permitted to fall fall on the book， he is able to read most of them．He holds the book sery near his cye．His disposition is very gentle；he is not deficient in intellect． His whole appearance is so remarkable，that some years ago a person attempted to steal him， and would have succeeded in dragging him away，had not his crics brought a person to his assistance．
＂The youngest child is now nine months old；is a very stout lively，noisy，and healthy boy．In other respects he perfectly resembles his brother．
＂The mother says，that one of her cousins has a very fair skin，flaxen hair，and very weak light blue eycs．
＂Professor Blumenbach of Gottingen，in a curions memoir read before the Ropal Society of that city，endcavoured to prove，that the red colour of the cyes of the albinoes of Chamon－ ni was owing to the want of pigmentum ni－ grum within the eye．About the same time， Buzzi of Milan had an opportunity of dissect－ ing an albino，and proved，that the pigmen－ tum nigrum of the choroid coat，and also that portion of it which lies behind the iris，and is called uvea by anatomists，were wanting ；thus demonstrating what 3lumenbach had suppos－ ed．This deficiency was observed before by Hiu：nenbach in some white dogs，owls，and in white rabbits．Buzzi discovered，that the layer of the skin called rete mucosum was also wanting，and to this he with great proba－ bility attributes the peculiar fairness of the skin；the colouring matter of the negro，and of the hair of animals，being lodged in this membrane．
＂It is well known，that from the tawny natives of Asia，Africa，and America，albinoes sometimes spring，who are said to be capable of propagating a race like themselves，when they intermarry．Whether this be the case with the albinoes of Europe is unknown；for． as far as I have been able to learn，not one of them was a female．There are on record eight instances of European albinoes，beside the three now noticed．Two of these are de－ scribed by Saussure，four by Buzzi，one by

Helvetius，and one by Maupertais，all of whom were males．The parents of the two young men of Chamouni had female children of the usual appearance．The woman of Mi－ lan had seven sons，three of whom were albi－ noes．Mrs．Edmond＇s girls were all of the usual appearanee，but all her boys were albi－ noes．Among these eleven cases not one albi－ no girl has been found．This at least proves， that males are more subject than females to this singular structure．
＂From the perpetuation of this variety of the human species in Java，Guinea，and other places，as well as from the account Mrs．Ed－ mond gives of her cousin，it would seem to be hereditary．＂م＂

For the anatomical，physiological，natural， moral，civil，and social，histories of man，we nust refer to the articles Anatomy，Phy－ siology，Physics，Morals，\＆c．
hOMODROMUS VECTIS，or Lever， in mechanics，is a lever in which the weight and power are both on the same side of the fulcrum as in the lever of the second and third kind；being so called，because here the weight and power move both in the same di－ section，whereas in the heterodromus they move in opposite directions．
homoge＇neal．Homoge＇neous．a． （orogrms．）Having the same nature or priuci－ ples；suitable to each other（Newton）．

Homogeneal light，is that whose rayz are all of one and the same colour，degree of refrangibility，and refexibility．See Light．
homoge＇nealness．Homogene＇r－ ty．Homoge＇veousness．s．Participation of the same principles or nature；similitude of kind（Cheyne）．
HOMOGENEOUS SURDS，are such whose exponents，or radical signs are the same ；as $\sqrt{ } a$ and $\sqrt{ } a b$ ，or $2 a^{\frac{1}{3}}$ and $3 a l^{\frac{1}{2}}$ ．
HOMOGENEUM ADFECTIONIS，in algebra，that term in an equation which ren－ ders it adfected．And Homogenium compara－ tionis，the absolute or known number in an adfected equation．

HO＇MOGENY．s．（onoystre．）Joint nature： not used（Bacon）．

HOMOLOGATION，in the civil law， the act of confirming or rendering a thing more valid and solemn，by publication，repe－ tition，or recngnition thereof．The word comes from the Greek opeд⿱丷天r：＂conscot，a3－ sent；＂formed of oposs sinitiis，＂＂like，＂and גoryo；，of дoyert dicere，＂to say；＂q．d．to say the same thing，to consent，agrec．

HOMOLOGOUS．a．（op 0 до（ -3.$)$ Having the same manner or proportions．

Homologous，in geometry，an appella－ tion given to the corresponding sides and an－ gles of similar figures，as being proportional to each other．

All similar figures have their like sides bo－ mologous，or proportional to one another， their areas also are homologous，or proportion－ al to the squares of the like sides，and their

H O M

H O M
solid contents are homologous or proportional to the cubes of the same.

HOMO'NYMOUS. a. (оциниц우.) Denomivatiny different things; equivocal.

HOMO'NYMY. s. (оцогицья.) Equivocation; ambiguity.

HOMOPHONOUS, a term in music, applied to such strings or voices as were in unison.

HOMOPLATE OS. (omplata, w $\mu \pi \lambda a 1 a$, from wros, the shoulder, and $\pi \lambda a l a$, the blade). See Scapula.

HOMO'TONOUS. a. (оцотоэ.) Equable: said of such distempers as keep a constant tenour of rise, state, and deciension (Quincy).

'F. DAVISON, Lombard-gtrete.

 Whitefriars.
-
-

[^0]: $E x$. To find the correct fluent of $\dot{x}=a x^{3} x$. First

[^1]: "Wi And eke the hall and everic boure, Without peeces orjognings,

[^2]:

[^3]: - Mr. Nicholson's correspondent. who is himself a hatter, says, that the brow is best made of ash; that it is composed of the stang or handle; that the bridge at the smaller end, or that which is nearest the window in the act of bowinz. is called the cock; and that the other bridze, which is nearer to the workman's hand, is called the Grectb.

[^4]: HII GHLY. ad. (from high.) 1, With cle-

