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MATHEMATICAL

AND

PHILOSOPHICAL

RECREATIONS.

PART SIXTH.

Containing the easiest and most curious Problems, as well as

the most interesting truths, in AstronomyandGeography,

both Mathematical and Physical.

Of all the parts of the mathematics, none are better cal-

culated to excite curiosity than astronomy in its different

branches. Nothing indeed can be a stronger proof of the

power and dignity of the human mind, than its having been

able to raise itselfto such abstract knowledge as to discover

the causes of the phenomena exhibited by the revolution

of the heavenly bodies ; the real construction of the uni

verse ; the respective distances of the bodies which com

pose it, &c. At all times therefore this study has been

considered as one of the sublimest efforts of genius, and

Ovid himself, though a poet, never expresses his thoughts

on this subject but with a sort of enthusiasm. Thus, when

speaking ofthe erect posture of man, he says :

VOL. III, Β
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Cunctaque cum spectent animalia cætera terram,

Os bomini sublime dedit, cælumque tueri

Jussit, et erectos in sidera tollere vultus.

Metamorph. Lib. 1 .

In another place, speaking of astronomers, he says :

Felices anima! quibus hæc cognoscere primis

Inque domos superas scandere cura fuit.

Credibile est illos pariter vitiisque, jocisque,

Altius humanis exeruisse caput.

Non venus aut vinum sublimia pectora fregit,

Officiumve fori, militiæve labor ;

Nec levis ambitio, perfusaque gloria fuco,

Magnarumve fames sollicitavit opum.

Admovere oculis distantia sidera nostris,

Etheraque ingenio supposuere suo.

If astronomy at that period excited admiration, what

ought it not to do at present, when the knowledge of this

science is far more extensive and certain than that of the

ancients ; who as we may say were acquainted only with

the rudiments of it ! How great would have been the en-

thusiasm of the poet, how sublime his expressions, had he

foreseen only a part of the discoveries which the sagacity

ofthe moderns has enabled them to make with the assist-

ance ofthetelescope !-The moons which surroundJupiter

and Saturn ; the singular ring that accompanies the latter ;

the rotation of the sun and planets around their axes ; the

various motions of the earth ; its immense distance from

the sun; the still more incredible distance of the fixed

stars ; the regular course of the comets ; the discovery of

new planets and comets ; and in the last place, the ar-

rangement of all the celestial bodies, and their laws of

motion, now as fully demonstrated as the truths of geo-

metry. With much more reason would we have called

those who have ascended to these astronomical truths,

and who have placed them beyond all doubt, privileged

beings, and of an order superior to human nature.
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CHAPTER I.

Elementary Problems of Astronomy and Geography.

PROBLEM I.

Tofind the Meridian Line of any Place.

THEdetermination of the meridian line, is certainly the

basis ofeveryoperation, both in astronomy and geography ;

for which reason we shall make it the first problem relating

to this subject. There are several methods of determining

this line, which we shall here describe.

I. On any horizontal plane, fixed obliquely, and in a

firm manner, a spike or sharp pointed piece of iron, with

the point uppermost, as AB, pl . 1 fig. 1. Then provide a

double square, that is, two squares joined together so as to

form an angle, and by its means find , on the horizontal

plane, the point c , corresponding in a perpendicular direc-

tion with the summit ofthe style. Fromthis point describe

several concentric circles, and mark, in the forenoon,

where the summit of the shadow touches them. Do the

same thing in the afternoon ; and the two points D and E

being thus determined in the same circle, divide into two

equal parts the arc intercepted betweenthem. If a straight

line be then drawn through the centre, and this point of

bisection, it will be the meridian line required.

By taking two points in one of the other circles, and

repeating the same operation ; if the two lines coincide, it

will be a proof, or at least afford a strong presumption,

that the operation has been accurately performed : if they

do not coincide , some error must have arisen ; and there-

fore it will be necessary to recommence the operation with

more care.

Two observations, the least distant from noon, ought in

general to be preferred ; both because the sun is then more

brilliant and the shadow better defined, and because the

change in the sun's declination is less ; for this operation

B 2
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supposes that the sun neither recedes from nor approaches

to the equator, at least in a sensible manner, during the

interval between the two observations.

In short, provided these two observations have been

made between 9 o'clock in the morning and 3 in the after-

noon, even if the sun be near the equator, the meridian

found by this method will be sufficiently exact, in the lati-

tude offrom 45 to 60 degrees ; for we have found that, in

the latitude of Paris, and making the most unfavourable

suppositions, the quantity which such a meridian may err,

will not be above 20" . If it be required with perfect ex-

actness, nothing is necessary but to make choice of a time

when the sun is either in one of the tropics, particularly

that of Cancer, or very near it, so that in the interval be-

tween the two operations his declination may not have

sensibly changed.

We are well aware that, for the nice purposes of as-

tronomy, something more precise will be necessary ; but

the object of this work is merely to give the simplest and

most curious operations in this science . The following

however is a second method of finding the meridian by

means ofthe pole star.

II. To determine the meridian line in this manner, it

will be necessary to wait till the pole star , which we here

suppose to be known, has reached the meridian. But this

will be the case when that star and the first in the tail of

the Great Bear, or the one nearest the square of that con-

stellation, are together in the same line perpendicular to

the horizon ; for about the year 1700 these two stars pass-

ed over the meridian exactly at the same time ; so that

when the star in the Great Bear was below the pole, the

polar star was above it ; but though this is not precisely

the case at present, these stars, as we shall here show, may

be still employed for several years, and without any sen-

sible error.

Having suspended a plumb line in a motionless state,
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wait till the pole star, and that in the Great Bear above

described, are together concealed by the thread ; and at

that moment suspend a second plumb line, in such a man-

ner that it shall hide the former and the two stars. These

two threads will then comprehend between them a plane

which will be that of the meridian ; and if the two points

on the ground, corresponding to the extremities ofthe two

plumb lines, be joined by a straight line, you will have the

direction of the meridian.

The hour at which the pole-star, or any other star,

passes the meridian on any given day, may be easily found

by a calculation, for which precepts are given in the Nau-

tical Almanac, in White's Ephemeris, and most books on

practical Astronomy ; but, to save trouble, we shall here

present the reader with a table containing the precise time

at which the pole-star passes the meridian, both above and

below the pole, on the first day of every month.

Months,

January

February

March

• 6h

Above

the pole.

6m Ev.

• · 3 55

· · · 2 6

April
• · • 0 12

May

June

· · · 10 14 Mor.

July

Below

the pole.

6h 8m Mor.

· 3 57·

• 2 8

· • Q 14

10• · 12 Ev.

8 11 . • 8 9

6• 7 6 5•

August

September

4 2 4 0

· • 2 7 2 5·

October 0 19• 0 17·

November • • 10 27 Ev. 10• 29 Mor,

December • 8 24 · 8 26

This table indeed is calculated only for the year 1802 ;

but the pole-star changes its place so little , that the dif-

ference cannot amount to more than 3 or 4 minutes in half

a century.

Attention however must be paid to the day of the
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month ; for, from the beginning of any month to the end

there is a difference of nearly two hours. The daily an-

ticipation being 3m 56s per day* , 3m 56s must be multi-

plied by the number of days of the month which have

elapsed, and the product must be subtracted from the time

ofthe star's passing the meridian on the first of the month,

as given in the table : the remainder will be the time ofits

passage on the proposed day.

Thus, if it were required to trace out a meridian by

the pole-star on the 15th of March , multiply 3m 56s by 14,

which will give 55m ; and if 55m be subtracted from 2h gm,

the remainder 1h 13m will be the hour inthe morning when

the pole star passes the meridian, below the pole, on the

15th of March.

On account of the great length of the days in some

months, such as June, July, and part of August, neither

of these passages is visible ; as they take place in the day,

or during the twilight. This inconvenience however may

be remedied in the following manner. Find the hour at

which the pole-star will pass the meridian above the pole

onthe proposed day, and then examine whether, by count-

ing 6 hours more, that hour will fall in the night-time :

should this be the case, wait for that moment, and then

proceed according to the rules above given. By these

means you will obtain the position of the azimuth circle

passing through the zenith and the pole-star, when it has

attained to its greatest distance towards the west ; for if it

passes the meridian at a certain hour, it is evident that 6

hours after it will be at its greatest distance from it. But

* Ifthe earth had only a diurnal, without an annual motion, any given

meridian would revolve from the sun to the sun again in the same time as

from any star to the same star again ; because the sun would never change

his place in regard to the stars. But as the earth advances almost a degree

eastward in its orbit, in the time that it turns eastward round its axis , what-

ever star passes over the meridian on any day with the sun, will pass over

the same meridian on the next day when the sun is almost a degree short of

that is 3 minutes 56 seconds sooner.it;
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it will be found by calculation that the angle which this

azimuth forms with the meridian for the latitude of Lon-

don, 51 ° 31 ', is 3° 11 ' ; therefore if a line be drawn in such

a manner as to form with the line found, an angle of 3º

11' towards the east, you will have a true meridian line.

If the 6 hours counted after the star's passage of the

meridian above the pole, do not fall in the night, nothing

is necessary but to count 6 hours less : the hour thus found

will certainly be one of those of the night, and will show

the time when the pole-star will be at its greatest distance

from the meridian towards the east ; in this case the angle

of 3° 11' must be laid off towards the west.

It will perhaps be found troublesome to make an angle

of 3° 11' ; but it may be done in the following manner. In

the line from which you are desirous of laying offan angle

of 3° 11′ , assume any point a, pl . 1 fig. 2 ; and from that

point, towards the north, take the length of 1000 lines,

or 6 feet 11 in. 4 lin. from the point B, where this length

terminates, raise a perpendicular towards the west, if the

proposed angle is intended to be laid off on that side,

or towards the east if intended to be laid off on the other.

On this perpendicular set off 55 lines ; and let this length

terminate at the point c : if AC be then drawn, it will form

with AB the required angle of 3° 11 ' ; and this angle will

be much more exact than if any other method had been

employed.

REMARK.As several physical methods of finding a

meridian line are given in the preceding editions of this

work, it is necessary that we should here mention them ;

were it only that the reader may be able to appreciate how

far they are likely to answerthe purpose.

To find the meridian without a compass or magnetic

needle, some have proposed the following method, which

would answer, they say, in the bowels of the earth . Take

a common small sewing needle exceedingly well polished ,

and lay it gently on the surface of some water in a state`
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of perfect rest in any vessel : this needle, they tell us, will

place itself in the direction of the meridian.

This experiment, in some respects, is true : if the needle

is long and delicate, it will remain at the surface of the

water, where it will form for itself a small cavity ; the air

which adheres to it will preserve it for some time from

coming into contact with the water ; and if this should

not be the case, the same effect might be produced by

greasing it with a little tallow : it will then easily maintain

itself on the water, and will move till it approaches the di-

rection of the meridian. This we have often confirmed

by experiment.

But it is false that the direction it assumes is the exact

meridian of the place, for it is only the magnetic meridian,

because every long slender piece of iron, when delicately

suspended, is a magnetic needle. The magnetic meridian

however is only the direction of the current ofthe magnetic

fluid ; and this direction, as is well known , forms in almost

every part of the earth an angle of greater or less extent,

with the astronomical or true meridian. At Loudon, for

example, at present ( 1813) , it is 24° 16'4. Besides, unless the

north and south points were known, it would be impossible

in this manner to distinguish them from each other.

Kircher proposes a method by which he says, that the

south andthe north may be easily known. Ifthe trunk of

a very straight tree, growing in the middle of a plane, at a

distance from any eminence or other shelter, that could de-

fend it from thewind or the sun, be cut horizontally , several .

curved lines closer on the one side than the other, will be

observed on the section. The side where the curved lines

are closest will be the north ; because the cold coming from

that quarter contracts, while the heat coming from the

other dilates thejuices , and other matter of which the strata

ofthe tree are formed.

There is sometruth and reason in the principle on which

this method is founded ; but, besides that all trees do not
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exhibit this phenomenon, it is not true that the north

wind is every where the coldest : it is often, according to

the position ofthe place, the north-west or the north-east :

in this case, one of these points would be mistaken for the

north.

PROBLEM II.

Tofind the Latitude ofany place.

The latitude of any place on the earth , is its distance

from the equator ; and is measured by an arc of the

celestial meridian, intercepted between the zenith of the

place and the equator ; for this arc is similar to that com-

prehended on the earth between the place and the terres-

trial equator. This is equal to the elevation of the pole,

which is the arc of the meridian intercepted between the

pole and the horizon . To those therefore who live under

the equator, the poles are in the horizon ; and if there were

inhabitants at either pole, the equator would be in their

horizon. The latitude of any place on the earth may be

easily found by various methods.

1st. By the meridian altitude of the sun on any given

day. For if the sun's declination for that day, when the

sun is in any of the northern signs, and the given place in

the northern hemisphere, be subtracted from the altitude,

the remainder will be the elevation of the equator, the

complement of which is the elevation of the pole, or the

latitude. If the sun be in any of the southern signs, it

may be readily seen that, to find the elevation of the

equator, the declination must be added.

2d. If the meridian altitude of one of the circumpolar

stars, which do not set , be taken twice in the course of

the same night, namely once when directly above the pole,

and again when exactly below it ; and if from each of these

altitudes the refraction be subtracted ; the mean between

these two altitudes will be that of the pole , or the latitude.

Or, take any two altitudes of such a star at the interval of
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11h 58 of time, correcting them by subtracting the re-

fractions as before ; then the mean between them will be

the height of the pole, or the latitude of the place.

3d.. Look, in some catalogue of the fixed stars, for the

distance of any star from the equator, that is, its declina-

tion ; then take its meridian altitude, and by adding or

subtracting the declination, you will have the elevation of

the equator, the complement of which, as before said, is

the latitude.

PROBLEM III.

Tofind the Longitude ofany place on the earth.

The longitude of any place, or the 'second element of

its geographical position, is the distance of its meridian

from a certain meridian, which by common consent is con-

sidered as the first. This first meridian is commonly sup-

posed to be that passing through the island of Ferro, the

most eastern of the Canaries. But the meridian of the

observatory of Paris is for the most part used by the

French, and that of the Royal Observatory of Greenwich

by the English.

Formerly the longitude was reckoned, from west to

east, throughout the whole circumference of the equator ;

but at present it is almost the general practice to reckon

both ways from the first meridian, or the meridian ac-

counted as such ; that is to say east and west, so that the

longitude according to this method can never exceed 180

degrees and in the tables it is marked whether it be east

or west. We shall now proceed to show in what manner

the longitude is determined.

If two terrestrial meridians, distant from each other

15°, for example, be supposed to be continued to the

heavens ; it is evident that they will intercept, in the

equator and all its parallels, arcs of the same number of

degrees. It may be readily seen also that the sun will

arrive first at the more eastern meridian, and that he will
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then have to pass over 15° in the equator, or the parallel

which he describes that day during his diurnal rotation,

before he arrives at the more western meridian. But to

pass over 15° the sun requires one hour, since he employs

24 hours to pass over 360° ; hence it follows, that when it

is noon at the more eastern place, it will be only 11 o'clock

in the morning at the more western. If the distance of

the meridians of the two places be greater or less, the

difference of the hours will be greater or less , in the pro-

portion of one hour for 15° ; and consequently of4 minutes

for a degree, 4 seconds for a minute , and so on.

Thus it is seen, that to determine the longitude of a

place, nothing is necessary but to know what hour it is

there, when it is a certain hour in another place situated

under the first meridian , or the distance of which from

the first meridian is known ; for if this difference oftime

be changed into degrees and parts of a degree, allowing

15° for one hour of time, one degree for 4 minutes, and so

on, then the longitude of the proposed place will be

obtained.

To find this difference of hours, the usual method is to

employ the observation of some celestial phenomenon ,

that happens exactly at the same moment to every place

on the earth, such for example as eclipses of the moon.

Two observers stationed at two places, the difference of

the longitude of which is required , observe, by means of a

well regulated clock, the moments when the shadow suc-

cessively reaches several remarkable spots on the moon's

disk ; they then compare their observations , and by the

difference of the time which they reckoned when the

shadow reached the same spot, they determine, as above

explained, the difference of the longitude of the two

places.

Let us suppose, by way of example, that an observer at

London found , by observation, that the shadow reached

the spot called Tycho at 1h 45m 50s in the morning ;
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and that another stationed at a place A made a similar ob-

servation at 24m 30s after midnight : the difference of this

time is 1h 21m 20s , which reduced to degrees and minutes

of the equator, gives 20° 20′. This is the difference of

longitude ; and as it was later at London when the pheno-

menon was observed , than at the place A , it thence follows

that the place A is situated 20° 20' farther west than

London.

As eclipses of the moon are very rare, and as it is dif-

ficult to observe with precision when the shadow comes

into contact with the moon's disk, so as to determine the

commencement of the eclipse , and also the exact period

when the shadow reaches any particular spot , the modern

astronomers make use of the immersions, that is the

eclipses, of Jupiter's satellites, and particularly those of

the first, which, as it moves very fast, experiences frequent

eclipses that end in a few seconds. The case is the same

with the emersion or return of light to the satellite, which

takes place almost instantaneously. For the sake of illus-

tration we shall suppose that an observer, stationed at the

place A, observes an immersion of the first satellite to have

happened on a certain day at 4h 55m , in the morning ;

and another stationed at a place в at 3h 25m. The differ-

ence being 1h 30m, it gives 22° 30' for the difference of

longitude. We may therefore conclude that the place A

is farther to the east than B, since the inhabitants at the

former reckoned an hour more at the time of the pheno-

menon.

REMARK. These observations of the satellites , which

since the discovery of those of Jupiter, have been often

repeated in every part of the globe , have in some measure

made an entire reformation in geography ; for the position

in longitude of almost all places was determined merely

by itinerary distances very incorrectly measured ; so that

in general the longitudes were counted much greater than

they really were. Towards the end of the seventeenth
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century there were more than 25° to be cut off from the

extent in longitude assigned to the old continent from the

western ocean to the eastern coast of Asia.

This method, so evident and demonstrative, was how-

ever criticised by the celebrated Isaac Vossius, who pre-

ferred the itinerary results of travellers, or the estimated

distances of navigators ; but by this he only proved that,

though he possessed a great deal of erudition badly di-

gested, he had a weak judgment, and was totally unac-

quainted with the elements of astronomy.

A knowledge of the latitude and longitude of the differ-

ent places of the earth , is of so much importance to astro-

nomers, geographers, &c , that we think it our duty to give

a table of those of the principal places of the earth. This

table, which is very extensive, contains the position of the

most considerable towns both in England and in France, as

well as of the greater part of the capitals and remarkable

places in every quarter of the globe ; the whole founded

on the latest astronomical observations, and the best com-

binations of distances and positions.

The reader must observe, that the longitude is reckoned

from the meridian of London , both east and west. When

east it is denoted by the letter E, and when west by the

letter w.
In regard to the latitude it is distinguished , in

the same manner, by the letters N and s, which denote

north and south.
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A TABLE

CONTAINING THE LONGITUDES AND LATITUDES OF THE

CHIEF TOWNS AND MOST REMARKABLE PLACES OF THE

EARTH.

Names of places. Countries.
Latitude, or

el. ofthe pole.

Longitude, or

dif. of merids.

Abbeville France· • 50° 7'N

Aberdeen Scotland 57 6 N

1° 55'E

1 44 W• •

Abo Finland · 60 27 N 22 15 E

Acapulco
America · 17 30 N 106 23 W

Achen Sumatra 5 22 N• 95 40 E

Adrianople Turkey
41 40 N 26 31 E·

Agra
India · 26 43 N 76 49 E

Aleppo Syria
35 45 N· 37 25 E

Alxandretta
Syria • 36 35 N 36 20 E

Alexandria

Algiers

Alicant

Egypt

Algiers

Spain

• 31 11 N 30 17 E

• 36 49 N
2 18 E

38 34 N• 0 7 W

Altona Germany • 53 38 N 9 55 E

Altorf •

Amiens

Amboyna I.

Amsterdam

Anabona I.

Germany

France

• 49 17 N 11 11 E

49 53 N 2 23 E

India 4 25 N 127 25 E•

Holland

Ethiopia

52 23 N 4 52 E

2 36 s 5 35 E

Ancona
Italy · 43 38 N 13 31 E

Andrews St Scotland• • 56 18 N 2 37 W

Angers France· • 47 28 N 0 31 W

Angouleme
France• · 45 39 N O 14 E

Anapolis Royal
· Nova Scotia 44 52 N 64 OW

Antego I. Caribbee • 16 57 N 62 4 W

Antibes France 43 35 N• 7 14 E

Antiochetta
Syria 36 8 N 36 17 E

Antwerp Flanders • 51 13 N 4 24 E

Archangel
Russia • 64 34 N 38 59 E

Arcot India • 12 51 N 79 33 E

Arles · France 43 40 N 4. 43 E

Arras • France 50 18 N 2 50 E

Ascension I. · Brazil 7 56 s 14 16W
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Lat, or el. Lon, ordif.
Names ofplaces. Countries.

ofthe pole. of merids.

Astracan Siberia 46° 21'N 48° S'E

Athens Turkey 38 5 N 23 52 Б

Auch France 43 39 N 0 40 E

Augustine St.
Florida 30 10 N• 81 29 W

Augsburg Germany 48 24 N 10 26 Б

Avignon
France • 43 57 N 4 54 E

Avranches France 48 41 N 1 18 W

Aurillac France 44 55 N• 232 K

Auxerre France 47 48 N 339 E

Awatcha Kamtschatka 53 1 N 158 30 E

Azoph Crimea 47 10 N 40 55 E

Bagdad Mesopotamia 33 20 N 44 26 E

Bahama I. • America · 26 45 N 78 35 W

Baldivia · Chili 39 38 s

Bale Swisserland 45 55 N•

Bangalore
India 13 ON•

Bantry Bay

Barcelona

Bassora

Ireland· · 51 45 N

· Spain 41 26 N

29 45 N

612 s

73 20 W

740 B

77 42 E

10 46 w

218 E

47 40 B

106 45 E

0 38 W

1.30 W

·

Batavia

Bayeux

Arabia

Java I.

France

·

· 49 16 N

Bayonne France • 43 30 N

Beechy Head • England · 50 44 N O 25 B

Belfast Ireland • 54 43 N 552 W

Bencoolen Sumatra I. •• 3 49 s 102 5 Б

Belgrade · Turkey
45 3 N• 21 27 E

Bender • Turkey 46 50 N• 29 41 E

Bengal

Bergen

Berlin

India· • 22 Ο Ν 92 45 E

· Norway • 60 10 N 614 E

• Germany • 52 33 N 13 26 E

Bermuda Bahama I.• · 32 35 N 63 23 W

Berne •

Berwick

Besançon

Bezieres

Swisserland

England

• 46 58 N 7 31 E

55 45 N 1.50 W

France • 47 13 N 6 8E

Bilboa

Blois

France

Spain

France

· 43 20 N 3 18 E

43 26 N· 3 18 W

• 47 35,N 1 24 E



16 ASTRONOMY AND GEOGRAPHY .

Names of places. Countries.

Lat. or el.

of the pole.

Bologna Italy 44°29′N

Bolkereskoy Kamtschatka 52 54 N

Bombay India 18 57 N

Borneo Borneo I. 5 ON

Lon. or dif.

ofmerids.

11 °26'É

156 25 E

72.43 E

112 15 E•

Boston
England

53 10 N O 25 E•

Boston America · 42 25 N 70 32 w

Botany Bay N. Holland · 34 6 s 151 20 E

Boulogne
France · 50 44 N 1 40 E

Bourdeaux France 44 50 N 0 30 W

Bourg-en-Bresse France 40 12 N 5 19 E

Bourges
France 47 4 N 2 28 E

Bremen Germany 53 30 N 9 O E

Breslaw Silesia 51 3 N 17 13 E

Brest France 6 48 23 N 4 26 w

Bridge Town Barbadoes I. 13 5 N• • 59 36 w

Bristol England
· 51 27 N

Bruges Flanders 51 11 N

235 W

3 12 E·

Brussels Flanders 50 51 N• 4 27 E

Buchan-ness Scotland • 57 29 N 1 23 W

Bucharest Wallachia 44 27 N 26 13 E

Buda Turkey • 47 28 N 19 51 E

Buenos Ayres Brasil 34 35 s 58 26 w•

Cadiz Spain 36 31 N 6 7 W

Caen France · 49 11 N 0 17 W

Caffa Crimea 44 45 N 35 55 E•

Cagliari Sardinia I. · 39 25 N 9 38 E

Cairo • Egypt
30 2 N 31 26 E

Calais France • 50 57 N 1 56 E

Calcutta India • 22 35 N 88 34 E

Calicut India 11 15 N 75 39 E

Callao Peru 12 2 s 76 53 w

Camboida India • 10 35 N 104 45 E

Cambray
France • 50 10 N 3 19 E

Cambridge

Canaria I.

Candia

England

Canaries

Ceylon

• 52 13 N 0 9E

28 1 N 15 O W

• 7 54 N 81 53 E

Canterbury England 51 17 N 1 22 F
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·

·

Names of places.

Cape Comorin

Cape Finisterre

Countries.

7°55'N

Lat. or el. Lon. or dif.

of the pole. of merids.

India 78° 7'E

Spain 42 52 N·

Cape François • St. Domingo I. 19 57 N

9 12 w

71 22 w

Cape Town Caffraria 33 55 s 18 23 E·

Cape Kamtschatka Russia 51 3 N 160 12 E•

Cape Ortegal •
Bay of Biscay . 43 47 N 7 34 w

Cape St. Lucas . California 23 28 N· 109 20 w

Cape Verd •

Caracas

Negroland

South America

14 45 N 17 28 w

10 6 N 66 45 W

Carcassone France • 43 12 N 2 25 E

Carlescrona Sweden • 56 20 N 15 31 E

Carlisle
England 54 47 N 2.35 W

Carthagena

Carthagena

· Spain 37 37 N 1 3 W

· South America 10 27 N 75 22 W

Casan Russia 55 45 N 48 40 E•

Cassel Germany 51 19 N 9 21 E

Castres France 43 57 N 2 20 E

Cayannebourg .

Cayenne I.

Cay St. Louis .

Cephalonia I.

Finland · 64 13 N 41
9 E

South America . 4 56 N 52 10 W•

St. Domingo I.. 18 19 N 73 1 W

• Turkey 38 20 N· 20 11 E

Cette

Ceuta

Cezene

France 43 20 N 0 21 W·

Barbary

Italy

• 35 49 N 5 25 W

44 8 N• 12 17 E

Chalons-sur-Marne France

Chalons-sur-Saône France

Chandernagor Bengal

Charlestown

· 48 57 N O 23 E

· 46 47 N 4 56 E

• 22 51 N 88 34 E

Carolina• • 33 22 N 79 50 w

Chartres • France 48 26 N 1 34 E

Cherbourg France • 49 28 N•
1 33 W

Chester
England

• 53 10 N 2 25 w

Christiana

Christianstadt

Civita Vecchia Italy

Clagenfurth Carinthia

Clermont-Ferrand France

Norway · 59 25 N 10 30 E

Sweden • 62 47 N 22 50 E

42 5 N• 11 51 E

• 47 20 N 14 57 E

45 46 N 3 10 E

Cochin India •

VOL. III.

9 50 N 76 5 E

C
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Names of places. Countries.
Lat. or el.

of the pole.

Colchester

Collioure

Cologne

Compiegne

Conception la

·

England

France

Germany

France

52°00′N

Lon. or dif.

of merids.

0°58′E

•

49 25 N

42 31 N

50 55 N

3 10 E

7,10 E

2 55 E

Chili 36 43 s 73 13 W·

Congo R.

Constance

Constantinople

Copenhagen

Congo

Swisserland

Turkey

Denmark

5 45 s 11 53 E

47 42 N 8 58 E

41.00 N 28 53 E•

55 41 N 12 40 E

Cordova

Corfu

Corinth

Corke

Spain · 37 42 N 3 47 W

Turkey 39 50 N 19 48 E

Turkey 37 30 N 23 00 E

Ireland 51 54 N 8.30 W

Corsica{s.
part

N. part Italy

{

42 53 N 9 40 E

41 22 N 9 26 E

Coutance France 49 3 N 1 22 W

Cowes Isle ofWight 50 46 N 1 15 W

Cracow Poland 50 10 N 19 55 E

Cremsmunster

Cruz St. I.

Germany 48 3 N 14 8 E

Cuddalore

· Antilles

India

17 53 N 64 55 W

11 41 N 79.51 E

Curassoa West Indies 11 56 N 68 20 w

Cusco

Dabul

Danzic

Peru

India

Poland

· 12 25 s 73 35 W

18 24 N 73 33 E

54 22 N 18 39 E

Dartmouth

Deseada I. •

Dieppe

England

Caribbees

France

50 27 N 3 36 w

16 36 N 61 10 W

• 49 55 N 0 9 E

Dijon

Dillingen

France

Germany

• 47 19 N 3 7 E

• 48 30 N 10 19 E

Dol France 48 33 N 1 41 W

Dole France 45 5 N

Domingo St..
Antilles 18 25 N

5 34 E

69 30 w

Dordrecht Netherlands• · 52 00 N 4 26 E

Dover England
• 51 7 N 1 24 E

Dresden • Saxony · 51 6 N 13 31 E

Drontheim Norway 63 26 N 11 SE
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Names of places. Countries.
Lat. or el.

of the pole.

Dublin Ireland 53°21'N

Lon, or dif.

of merids.

6° 10'w

Dunbar Scotland 55 58 N 2 22 W

Dundee Scotland 56 26 N 2.48 w

Dungeness •
England 50 55 N 1 3 E

Dunkirk France • 51 2 N 2 27 E

Durazzo ·

Edinburgh

Elba I.

Turkey

Scotland

41 58 N 25 00 E

55 58 N• 3 7 W

Elbing

Elsinburg

Elsinore

Italy

Poland

Sweden

Denmark

42 52 N 10 38 E

• 54 12 N 20 35 E

• 56 00 N 13 35 E

56 00 N 13 23 E

Embden
Germany

53 5 N 726 E

Enchuysen Holland 52 43 N 5 6E

Ephesus
Natolia 38 00 N• 27 53 E

Erfurth
Germany

51 6 N 10 20 E

Erivan Armenia 40 30 N 44 25 E

Erzerum Armenia 39 57 N 48 41 E

Eustatia Caribbee 17 30 N 63 4 W

Faenza Italy 44 17 N 11 55 E

Falmouth • England
50 8 N 4.58 W

Fernambouc Brasil 8 13 s 35 5 W·

Ferrara • Italy 41 50 N 11 40 E

Ferro I. Canaries • 27 48 N 17 40 w

Finisterre C. •

Fladstrand

France

Denmark

42 52 N 9 12 W

· 57 27 N 10 37 E

Florence

Flushing

· Italy

Holland

43 46 N 11• 7 E

51 33 N 3 20 W

Forbisher's Straits Greenland

Formosa I. {N } China
{N∙P}

Frankfort on the Germany

Mayn

Frankfort on the
Germany

Oder

Frederickstadt Norway

62 5 N 47 18 w

: 21 25 N 121 25 E

22 00 N 120 40 E•

50 6 N 8 40 E

52 26 N 14 38 E

• 59 00 N 11 10 E

Frejus

Gallipoli

• France

Turkey

43 26 N• 6 50 E
་

40 36 N 27 2 E

C 2
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Gambia R. ·

Geneva •

Negroland

Swisserland

Names of places. Countries.
Lat. or el.

ofthe pole.

13 °00′N

Lon. or dif.

of merids.

14°58′ w

6 5 E

·

46 12 N·

Genoa Italy
44 25 N 8 41 E.

Ghent Netherlands 51 4 N 347 E•

Gibraltar

Glasgow

Gloucester

Gluckstadt

Spain
36 5 N 5 17 W·

Scotland 55 52 N 4 10 W
• •

· England

Holstein

51 50 N·

53 48 N

2.16W

9 31 E•

Goa

Gombroon

India 15 31 N 73 50 E• •

· Persia · 27 40 N 55 20 E

Good Hope Cape Africa
. 34 29 s

18 28 E

Gottenburg

Gottingen

Granville

Gratz

•

Sweden

Germany

• 57 42 N 11 44 E

51 32 N· 9 58 E

· France 48 50 N 1 32 W·

Styria • 47 4 N 15 29 E

Greenwich

Grenoble

Grypswald

Guadaloupe I.

•

England

France

• 51 29 N
0 5 E

45 11 N• 5 39 w

Pomerania 54 4 N 13 43 E· ·

Caribbee 16 00 N 61 55 W

Guiaquil

Guernsey I.

Hague

Peru 2 10 s 81· · 5 W

• England
· 49 30 N 2 47 W

Holland· · 52 4 N 4 22 E

Halifax

Halle

• Nova Scotia 44 46 N 63 20 W

• Saxony
51 34 N 11 46 E·

Hamburgh • Germany
53 34 N• 9 55 E

Harlem Holland· • 52 24 N 4 10 E

Harwich · England
· 52 11 N 1 18 E

Hastings

Havannah

England

Cuba I.

50 52 N 0 46 E

23 12 N 82 13 W•

Havre de Grace France • 49 30 N 0 11 E

Helena St. I. . Africa · 15 55 S 5 44 W

Holy Head • Wales 53 23 N

Horn Cape

Hull

• South America

England ·

55 59 s

53 50 N

4.40 W

67 21 W

O 28 W

Hydrabad

Jacoutsk

India· · 17 12 N 78 56 E

Jafnapatan C.

Russ. Tartary

Ceylon I.

• 62 20 N 129 46 E

9 47 N 80 55 E
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nd}

Java I.•

Japan

Germany

Names of places.

Jago St.

Jamaica

W.end?

{
E.end

Jassey

Java Head

Jeddo

Jena

Moldavia

Countries.
Lat. or el.

ofthe pole.

Cape Verd I. • 15° 7'N

Lon. or dif.

of merids.

23°30'w

18 45 N• 78 00 W

West Indies

· 18 00 N 76 40 w

47 9 N 27 35 E

• 649 s
105 6 E

36 00 N 139 40 E

51• 2 N 11 23 E

Jersey I. England
· 49 7 N 2 26 w

Jerusalem Palestine • 31 55 N 35 25 B

Jeniseik Russ. Tartary • 58 27 N 91 25 E

Ingolstadt Germany
48 46 N· 11 28 E

•

Inspruc

Inverness

Jsanna I.

Tyrol

Scotland

Zanguebar

· 47 18 N 12 00 E

• 57 33 N 4 2 W

12 5 S· "

Joppa

Ipswich

Syria

England

32 45 N•

52 14 N

45 45 E

36 00 E

100 E

Ismail
Turkey 45 21 N 28 55 E•

Ispahan Persia • 32 25 N 52 55 E

Juan Fernandez I. Chili • 33 45 s 78 37 w

Judda

Ivica I.

Arabia

Spain

• 21 29 N 29 27 E

38 54 N·

Kamtschatka lower Russia

KamtschatkaupperRussia

Kilda St. I.

Kinsale

· Scotland

Ireland

Kongkitao Cape Corea

• 56 11 N

54 48 N

57 44 N

51 41 N

1 15 E

159 25 E

162 10 E

8 18 W

8 23 W

116 27 E• 37 30 N

Konigsberg
Prussia 54 42 N 21 23 E70

Lancaster

Landau

• England

France

. 54 42 N 4 36 w

49 11 N 8 13 E

Lands End

Landscrona

Langres

· England
50 6 N 5 20 W·

"

Sweden 55 52 N 12 55 E·

France 47 50 N• 5 26 E

Lausanne Swisserland • 46 31 N 6 50 E

Leeds

Leghorn

Leipsic

Leostoff

England 53 48 N 1 33 W

Italy
•· 43 33 N 10 25 E

· Germany

England

· 51 19 N 12 25 E

• 52 38 N 1 54



( 14 )

A TABLE

CONTAINING THE LONGITUDES AND LATITUDES OF THE

CHIEF TOWNS AND MOST REMARKABLE PLACES OF THE

EARTH.

Names of places. Countries.
Latitude, or

el ofthe pole.

Abbeville •

Aberdeen ·

Abo

France

Scotland

Finland

50° 7'N

Longitude, or

dif. of merids.

1° 55'E

• 57 6N

· 60 27 N

1 44 W

22 15 E

Acapulco America · 17 30 N 106 23 W

Achen Sumatra 5 22 N• 95 40 E

Adrianople Turkey 41 40 N 26 31 E•

Agra
India · 26 43 N 76 49 E

Aleppo Syria 35 45 N• 37 25 E.

Alxandretta
Syria

• 36 35 N 36 20 E

Alexandria •
Egypt

• 31 11 N 30 17 E

Algiers

Alicant

Algiers

Spain

· 36 49 N 2 18 E

38 34 N 0 7 W

Altona •

Altorf ·

Germany

Germany

· 53 38 N 9 55 E

• 49 17 N 11 11 E

Amiens France · 49 53 N 2 23 E

Amboyna I.

Amsterdam

India 4 25 N· • 127 25 E
•

·

Anabona I.

Holland

Ethiopia

· 52 23 N 4 52 E

2 36 s 5 35 E

Ancona
Italy · 43 38 N 13 31 E

Andrews St Scotland• · 56 18 N 2 37 W

Angers
France• • 47 28 N 0 31 W

Angouleme
France· · 45 39 N 0 14 E

Anapolis Royal
• Nova Scotia 44 52 N 64 OW

Antego I. Caribbee 16 57 N 62 4 W

Antibes France 43 35 N• 7 14 E

Antiochetta Syria • 36 8 N 36 17 E

Antwerp Flanders • 51 13 N 4 24 E

Archangel Russia · 64 34 N 38 59 E

Arcot India 12 51 N• 79 33 E

Arles France · 43 40 N 4 43 E

Arras · France 50 18 N 2 50 E

Ascension I. Brazil 7 56 s 14 16 W
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Lat. or el. Lon, or dif.
Names of places. Countries.

of the pole.

Astracan Siberia 46° 21'N

of merids.

48° 8'E•

Athens · Turkey 38 5 N 23 52 B

Auch France· • 43 39 N O 40 E

Augustine St. Florida 30 10 N· 81 29 W

Augsburg

Avignon

Germany

France

· 48 24 N 10 26 E

• 43 57 N 4 54 E
.

Avranches France• · 48 41 N 1 18 W

Aurillac France 44 55 N 2 32 E•

Auxerre France• · 47 48 N 3 39 E

Awatcha

Azoph • Crimea

Bagdad

Bahama I.

Baldivia

Kamtschatka

Mesopotamia

53 1 N 158 30 E

• 47 10 N 40 55 E

33 20 N 44 26 E

America 26 45 N· 78 35 W

• Chili 39 38 s 73 20 W

Bale

Bangalore

Swisserland 45 55 N 7 40 E

· India 13• ON 77 42 E

Bantry Bay

Barcelona

Ireland• • 51 45 N 10 46 w

Bassora

Batavia

Bayeux

Spain

Arabia

Java I.

France

41 26 N 2 18 E

29 45 N 47 40 E

6 12 s 106 45 E

• 49 16 N O 38 W

Bayonne
France · 43 30 N 1.30 W

Beechy Head • England • 50 44 N O 25 E

Belfast Ireland 54 43 N• · 5 52 W

Bencoolen Sumatra I.• • 3 49 s 102 5 E

Belgrade · Turkey 45 3 N• 21 27 E

Bender • Turkey · 46 50 N 29 41 E

Bengal

Bergen

India• • 22 ON 92 45 E

Norway • 60 10 N 6 14 E

Berlin Germany · 52 33 N 13 26 E

Bermuda Bahama I. · 32 35 N 63 23 W

Berne

Berwick

Swisserland• . 46 58 N 7.31 E

England 55 45 N• 1.50 W

Besançon France• • 47 13 N 6 8E

Bezieres

Bilboa

Blois

France

Spain

France

• 43 20 N 3 18 E

• 43 26 N 3 18 W

47 35, N 1 24 E
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Names of places .

Bologna

Bolkereskoy

• Italy •

•

Bombay India

Countries.

Kamtschatka

Lat, or el.

of the pole.

44°29′N

52 54 N

18 57 N

11°26′E

156 25 E

Lon. or dif.

of merids.

72.43 E

Borneo Borneo I. 5 ON 112 15 E•

Boston
England

53 10 N O 25 E•

Boston America 42 25 N 70 32 w

Botany Bay
N. Holland 34 6 s 151 20 E

Boulogne
France · 50 44 N 1 40 E

Bourdeaux France • 44 50 N O 30 W

Bourg-en-Bresse France 40 12 N 5 19 E

Bourges
France 47 4 N 2 28 E

Bremen Germany 53 30 N 9 OE

Breslaw Silesia • 51 3 N 17 13 E

Brest France 48 23 N 4 26 w

Bridge Town •

Bristol

Bruges

Barbadoes I.

England

Flanders

13 5 N 59 36 w

• 51 27 N 2 35 W

51 11 N 3 12 E·

Brussels Flanders 50 51 N• 4 27 E

Buchan-ness Scotland • 57 29 N 1 23 W

Bucharest Wallachia 44 27 N 26 13 E

Buda Turkey 47 28 N 19 51 E

Buenos Ayres Brasil 34 35 s 58 26 w•

Cadiz Spain • 36 31 N 6 7 w

Caen France 49 11 N 0 17 W

Caffa Crimea 44 45 N 35 55 E•

Cagliari
Sardinia I. · 39 25 N 9 38 E

Cairo Egypt
30 2 N 31 26 E

Calais France 50 57 N 1 56 E

Calcutta India · 22 35 N 88 34 E

Calicut India 11 15 N 75 39 E

Callao Peru 12 2 s 76 53 W

Camboida India · 10 35 N 104 45 E

Cambray France • 50 10 N 3 19 E

Cambridge

Canaria I.

Candia

England

Canaries

Ceylon

52 13 N 0 9 E

28•

•

1 N

754 N

15 O W

81 53 E

Canterbury England · 51 17 N 1 22 E
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•

·

·

Names of places.

Cape Comorin

Cape Finisterre

Cape François

Lat. or el. Lon, or dif.

Countries.

India

of the pole.

7°55'N

of merids.

78° 7'E

Spain
42 52 N 9 12 W

St. Domingo I. 19 57 N 71 22 w

Cape Town Caffraria 33 55 s 18 23 E•

Cape Kamtschatka Russia 51 3 N 160 12 E•

Cape Ortegal · Bay of Biscay . 43 47 N 7 34 w

Cape St. Lucas . California 23 28 N• 109 20 w

Cape Verd · Negroland
14 45 N 17 28 w

Caracas • South America 10 6 N 66 45 W

Carcassone France · 43 12 N 2 25 E

Carlescrona Sweden • 56 20 N 15 31 E•

Carlisle England
• 54 47 N 2.35 W

Carthagena

Carthagena

· Spain 37 37 N 1 3 W

· South America 10 27 N 75 22 w

Casan Russia 55 45 N 48 40 E

Cassel • Germany 51 19 N 9 21 E

Castres France • 43 57 N 2 20 E

Cayannebourg .

Cayenne I.

Cay St. Louis

Cephalonia I.

Finland · 64 13 N 41 9 E

South America . 4 56 N 52 10 W

• St. Domingo I.. 18 19 N 73. 1 W

• Turkey 38 20 N• 20 11 E

Cette

Ceuta

Cezene

France 43 20 N· • 0 21 W

Barbary

Italy

· 35 49 N 5 25 W

44 8 N 12 17 E

Chalons-sur-Marne France

Chalons-sur-Saône France

Chandernagor Bengal

• 48 57 N O 23 E

· 46 47 N 4 56 E

· 22 51 N 88 34 E

Charlestown Carolina• • 33 22 N 79 50 w

Chartres

Cherbourg

France • 48 26 N 1 34 E

France • 49 28 N 1 33 W•

Chester • England 53 10 N 2 25 w

Christiana Norway
· 59 25 N 10 30 E

Christianstadt Sweden • 62 47 N 22 50 E

Civita Vecchia Italy 42 5 N· 11 51 E

Clagenfurth
Carinthia • 47 20 N 14 57 E

Clermont-Ferrand France 45 46 N 3 10 E

Cochin · India

VOL. III.

9.50 N

C

76 5 E
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Names of places. Countries.
Lat. or el.

ofthe pole.

Lon. or dif.

of merids.

Colchester

Collioure

England

France

52°00′N

42 31 N

Cologne •
Germany

• 50 55 N

Compiegne

Conception la

• France • 49 25 N

0°58′E

3 10 E

7.10 E

2 55 E

Chili· • 36 43 s 73 13 w

Congo R. • Congo 5 45 s 11 53 E•

Constance

Constantinople

Copenhagen

Swisserland • 47 42 N 8 58 E

Turkey

Denmark

41 00 N 28 53 E·

• 55 41 N 12 40 E

Cordova •
Spain 37 42 N 3.47 W

Corfu

Corinth

Corke

Corsica

{

N. part

s. part )

Coutance

Cowes

Cracow

Cremsmunster

Cruz St. I. •

Turkey

Turkey

Ireland

Italy

France

Isle ofWight

Poland

Germany

Antilles

39 50 N

• 37 30 N
·

51 54 N

19 48 E

23 00 E

8.30 W

42 53 N 9 40 E

· 41 22 N 9 26 E

49 3 N 1 22 W

50 46 N 1 15 W

50 10 N 19 55 E

48 3 N 14 8 E

17 53 N 64 55 W

Cuddalore India 11 41 N. · 79.51 E

Curassoa · West Indies 11 56 N· 68 20 w

Cusco Peru · 12 25 s 73 35 W

Dabul India 18 24 N· 73 33 E

Danzic

Dartmouth

Poland

England

· 54 22 N 18 39 E

· 50 27 N 3 36 w

Deseada I. Caribbees 16 36 N• · 61 10 W

•Dieppe
France 49 55 N O 9E

Dijon
France

47 19 N 3 7 E

Dillingen
•

Germany
• 48 30 N 10 19 E

Dol France 48 33 N 1 41 W

Dole France 45 5 N 5 34 E•

Domingo St. Antilles• 18 25 N 69 30w

Dordrecht • Netherlands • 52 00 N 4 26 E

Dover England •
51 7 N 1 24 E

Dresden

Drontheim

Saxony • 51 6 N 13 31 E

Norway 63 26 N 11 SE
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Names of places. Countries.

Dublin Ireland

Lat. or el.

of the pole.

Lon, or dif.

of merids.

6° 10'w53°21'N

Dunbar Scotland · 55 58 N 2 22 W

Dundee

Dungeness

Scotland

England

· 56 26 N 2 48 W

50 55 N 1 3 E

Dunkirk

Durazzo

Edinburgh

France

Turkey

Scotland

· 51 2 N 2 27 E

41 58 N 25 00 E

55 58 N 3 7 W

Elba I.
Italy • 42 52 N 10 38 E

Elbing Poland • 54 12 N 20 35 E

Elsinburg

Elsinore

Sweden

Denmark

56 00 N 13 35 E

• 56 00 N 13 23 E

Embden Germany 53 5 N 26 E•

Enchuysen Holland • 52 43 N 5 6 E

Ephesus
Natolia 38 00 N 27 53 E

Erfurth Germany 51 6 N 10 20 E

Erivan Armenia • 40 30 N 44 25 E

Erzerum Armenia • 39 57 N 48 41 E

Eustatia Caribbee

Faenza

Falmouth •

Italy

England

17 30 N

44 17 N

63 4 W

11 55 E

50 8 N 4 58 w

Fernambouc Brasil 8 13 s 35 5 W•·

Ferrara Italy 41 50 N 11 40 E•

Ferro I.

Finisterre C.

Canaries 27 48 N 17 40 w

·

Fladstrand

Florence

Flushing

France

Denmark

• 42 52 N 9 12 w

· 57 27 N 10 37 E•

Italy

Holland

43 46 N 11 7 E

51 33 N 3 20 W•

Forbisher's Straits Greenland

N.

Formosa I. {N } China

SPE

· 62 5 N 47 18 w

21 25 N 121 25 E

22 00 N 120 40 E

Frankfort on the
Germany

50 6 N 8 40 E

Mayn

Frankfort on the
Germany

Oder }

52 26 N 14 38 E

Frederickstadt

Frejus

Gallipoli

Norway

France

Turkey

59 00 N 11 10 E

43 26 N 6 50 E•

40 36 N 27 2 E•

C 2
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Names of places. Countries.
Lat. or el.

of the pole.

Gambia R. •

Geneva

Negroland

Swisserland

13°00′N

Lon. or dif.

of merids.

14°58'w•

46 12 N 6 5 E· ·

Genoa
Italy

44 25 N 8 41 E•

Ghent · Netherlands 51 4 N 3 47 E

Gibraltar ·

Glasgow

Gloucester

Gluckstadt

Goa

Gombroon

Spain

Scotland

England

Holstein

India

36 5 N 5 17 W•

55 52 N 4 10 W·

51 50 N 2 16 w

53 48 N• 9 31 E

15 31 N 73 50 E•

Persia · 27 40 N 55 20 E

Gottenburg

Gottingen

Granville

Good Hope Cape Africa

Sweden

Germany

France

• 34 29 s
18 28 E

• • 57 42 N 11 44 E

51 32 N 9 58 E

· 48 50 N 1 32 w

Gratz

Greenwich

Grenoble

Styria

England

France

• 47 4 N 15 29 E

51 29 N
0 5 E

45 11 N 5 39 w

Grypswald

Guadaloupe I.

Guiaquil

Guernsey I.

Pomerania 54 4 N 13 43 E

Caribbee · 16 00 N 61 55 W

Peru 2 10 S 81 5 W·

England 49 30 N 2 47 W

Hague Holland 52 4 N 4 22 E

Halifax Nova Scotia 44 46 N 63 20 W

Halle Saxony 51 34 N 11 46 E

Hamburgh •

Harlem

Germany

Holland

• 53 34 N 9 55 E

52 24 N 4 10 E•

Harwich

Hastings

England

England

• 52 11 N 1 18 E

50 52 N 0 46 E

Havannah

Havre de Grace

Cuba I.

France

23 12 N 82 13 W•

49 30 N 0 11 E

Helena St. I. • Africa · 15 55 S 5 44 W

Holy Head • Wales 53 23 N· 4.40 W

Horn Cape ·

Hull •

South America

England

· 55 59 $ 67 21 W

53 50 N O 28 W

Hydrabad India· • 17 12 N 78 56 E

Jacoutsk ·

Jafnapatan C.

Russ. Tartary

Ceylon I.

· 62 20 N 129 46 E

· 9 47 N 80 55 E
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Lon. or dif.Lat. or el.
Names of places. Countries.

ofthe pole.

Jago St. Cape Verd I. • 15° 7'N

of merids.

23°30'w

Jamaica

{

W.end

E.end
!}

18 45 N• 78 00 W

West Indies
18 00 N· 76 40 w

Jassey

Java Head

Jeddo

Moldavia • 47 9 N 27 35 E

Java I. • 6 49 s
105 6 E

Jena

Japan

Germany

• 36 00 N 139 40 E

51 2 N 11 23 E•

Jersey I.

Jerusalem

England 49 7 N 2 26 w

Palestine 31 55 N 35 25 E•

Jeniseik

Ingolstadt

Inspruc

Inverness

·

·

Russ. Tartary

Germany

• 58 27 N 91 25 E

48 46 N 11 28 E

Tyrol
47 18 N 12 00 E

Scotland 57 33 N 4 2 W

Jsanna I.
Zanguebar

· 12 5 S 45 45 E

Joppa Syria
32 45 N· 36 00 E

Ipswich England
52 14 N 1 00 E·

Ismail
Turkey

· 45 21 N 28 55 E

Ispahan
Persia 32 25 N 52 55 E

Juan Fernandez I. Chili 33 45 s 78 37 w

Judda

Ivica I.

Arabia • 21 29 N 29 27 E

Spain . 38 54 N·

Kamtschatka lower Russia

KamtschatkaupperRussia

· 56 11 N

1 15 E

159 25 E

54 48 N•

Kilda St. I. ·

Kinsale

Scotland

Ireland

57 44 N

·

Kongkitao Cape Corea

Konigsberg
Prussia

England

51 41 N

162 10 E

8 18 W

8 23 W

116 27 E• 37 30 N

54 42 N 21 23 E

Lancaster 54 42 N 4 36 w•

Landau France • 49 11 N 8 13 E·

Lands End · England
50 6 N 5 20 W

"

Landscrona Sweden 55 52 N 12 55 E•·

Langres
France • 47 50 N 5 26 E•

Lausanne Swisserland 46 31 N 6 50 E•

Leeds • England
• 53 48 N 1 33 W

Leghorn

Leipsic

Leostoff

• Italy
• 43 33 N 10 25 E

·

Germany

England

• 51 19 N 12 25 E

· 52 38 N 1 54 E
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Names ofplaces. Countries.
Lat. or el.

of the pole.

Lon. or dif.

of merids.

Lepanto

Leyden

Liverpool

Liege

Turkey

Holland

England

Germany

38°20'N 22° 3'E

52 10 N 4 33 E·

53 22 N 3 10 W

50 36 N 5 40 E·

Lima Peru 12 1 S 76 44 w

Limeric Ireland 52 22 N 10 00 W

Lisbon
Portugal

38 42 N 9 4 W

Lizard
England • 49 57 N 5 10 W

London
England

51 31 N Q Q

Londonderry Ireland 55 1 N 7 31 w

Loretto Italy 43 27 N 13 38 E

Louisburg Cape Briton . 45 54 N 59 50 w

Louvain Netherlands • 50 50 N 4 55 E

Lubec Germany
54 00 N 11 40 E•

Lucia St. I. Caribbee 13 25 N 60 46 w·

Lucca
Italy • 43 50 N 10 35 E

Lunden Sweden 55 42 N 13 26 E•

Luxembourg Netherlands 49 37 N• 6 17 E

Lynn England
• 52 46 N O 20 E

Macao China · 22 12 N 113 46 E

Macassar Celebes I. 5· 9s 119 50 E

Madras India 13 5 N·

Madrid Spain 40 25 N·

Madura India

Mahon Port

Majorca I.

Minorca

Spain

· 39 51 N

• 39 35 N

9 54 N

80 34 E

03 21 W

73-18 E

3 53 E

2 35 E

Malacca India 2 12 N 102 10 E

Malta I. Italy
35 54 N 14 34 E

Manchester

Manilla

Mantua

Marseilles

Martinico I.

England

Luconia I.

Italy

France

53 24 N 2 20 W·

14 36 N 120 58 E•

45 2 N 10 15.E

43 18 N 5 27 E

West Indies 14 36 N 61 4 W•

Masulipatam
India 16 28 N 81 40 E

Mauritius I. Africa 20 10 s• 57 33 E

Meaco

Meaux

Japan

France

35 35 N 133 20 E

48 58 N 2 55 E
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Names of places. Countries.
Lat. or el.

of the pole.

Lon. or dif.

of merids.

Mecca

Mechlin

Arabia

Netherlands

21° 40′N

51 2 N

41° 00′ E

4 34 E

Medina Arabia 24 58 N· 39 53 E

Memel Courland 55 48 N 22 23 B

Messina
Sicily 38 21 N 16 21 E

•

Metz France 49 7 N 7 16 E

Mexico Mexico 19 54 N 100 1 W

Milan

Mocha

Italy

Arabia

45 28 N 9 15 E

13 45 N 44 4 E

Modena

Montpelier

Italy
• 44 34 N 11 18 E

France 48 36 N 3 57 E

Montreal

Mosambique

Canada • 45 52 N 73 11 W

Zangue 15 00 S 41 40 E

Moscow Russia · 55 45 N 37 51 E

Munich
Germany · 48 10 N 11 35 E

Munster Germany 52 00 N. 7 40 E

Namur Netherlands 50 25 N 4 50 E•

Nangasaki Japan · 32 32 N 128 50 E

Nankin China • 32 7 N 118 35 E

Nantes France 47 13 N 1 29 W

Naples Italy • 40 51 N 14 19 E

Narbonne France 43 11 N 3 5 E

Negapatnam

Narva

Naze

Nevis I. •

Newcastle

Nice

Nieuport

Livonia • 59 23 N 29 27 E

• Norway

India

• 57 50 N 7 32 E

• 10 46 N 80 2 E

Caribbee · 17 11 N 62 52 W

Nombre de Dios

England

Italy

Flanders

South America

55 3 N 1 28 W

43 42 N

51 8 N

9 43 N

7 22 E

2.50 E

78 35 w

Nootka Sound America• • 49 36 N 126 36 w

Noyon
France· • 49 34 N 1 44 E

Nuremberg Germany · 49 27 N 11 12 E

Ochozk

Oczakow

Olinda

Tartary

Turkey

Brazil

• 59 20 N 143 18 W

45 12 N· 34 40 E

8 13 s 35 00 W

Olmutz Moravia • 49 43 N 17 37 E
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Names of places. Countries.
Lat,or el.

ofthe pole.

Lon. or dif.

of merids.

Oneglia

Oporto

Italy

Portugal

43° 57′ N 7°52′E

• 41 10 N 8 22 W

Oran

Orenburg

Barbary

Astracan

• 35 45 N 0 00

51 46 N 55 14 E•

Orkney isles Scotland
S59 24 N

·

58 44 N

3 23 w

2 11 W

Orleans New Louisiana • 30 00 N 89 54w

Orleans France 47 54 N 1 59 E

Ormus I.. Persia 27 30 N 55 17 E

Orotava • Canaries 28 23 N 16 19 W

Ostend Flanders 51 14 N·

Ozaca Japan 35 10 N 134

3.00E

5 E•

Padua

Paita

Palermo

Italy

Peru

Sicily

45 22 N 11 59 E

· 5 20 s 80.35 W

38 10 N 13 43 E

Palikate India · 13 40 N 80 50 E

Pampeluna
•

Spain
• 42 44 N 1 35 W

Panama Mexico• 8 45 N 80 16 w

Panorma ·

Para

Turkey

South America

40 5 N 21 40 E

1 30 s 47 5 W

Paris

Parma

France

Italy

48 50 N· 2 25 E

44 45 N 10 00 E

Passau

Patmos I. ·

Germany

Natolia

· 48 30 N 13 5 E

• 37 22 N 26 48 E

Pavia • Italy 45 46 N· 9 16E

Pegu India • 17 00 N 96.58 F

Pekin

Perpignan

Petersburg

Philadelphia

Pico I.

Pisa

Plymouth

Pondicherry

Port Mahon

Porto Bello

PortoPraya

China • 39 55 N 116 29 E

France 42 42 N 2 59 E

Russia 59 56 N 30 24 E

America · 39 57 N 75 8w

Azores· · 38 29 N 28 19 W

Italy
· 43 43 N 10 17 E

England

India

· 50 22 N 4 10 W

· 11 42 N 79 58 E

Minorca I. • 39 51 N 3 53 E

New Spain

C. Verde

· 9 33 N 79 45 w

• 14 54 N 23 24 w
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Names of places.

Port Royal

Countries.
Lat. or el.

ofthe pole.

Jamaica· 17° 59′N

Port Royal

Port Royal

Portsmouth

· Martinico 14 36 N

Lon. ordif.

of merids.

76° 40′w

61 4 W•

·

Prague

Presburg ·

Quebec

Quiloa •

Acadia

England

Bohemia

Hungary

Canada

Zanguebar

45 2 N 65 00 W•

· 50 48 N 1 1 W

50 4 N 14 50 E·

48 8 N· 17 33 E

• 46 49 N 71 10 W

• 9 30 s 39 9 E

Quimper
France 47 58 N 4 2 W·

Quinam
Cochin China 12 52 N 109 10 E•

Quito Peru O 13 s• • 77 50 w

Ragusa

Rajapoor

Ramsgate

Ratisbon

Ravenna

Rennes

Reims

Dalmatia 42 45 N 20 CO E· •

India• · 17 19 N 73 50 €

•

England

Germany

• 51 20 N 1 22 E

• 49 2 N 12 1 E

• Italy
44 26 N 12 21 E

France · 48 6 N 1 37 W

France • 49 14 N 4 8 E

Revel

Riga

Rimini

Livonia· · 59 26 N 24 24 E

Livonia · 56 56 N 23 44 E

Rio Janeiro

Italy

Brazil

44 3 N 4 8 E

22 54 S 42 40 w

Rochelle France · 46 10 N 1 5 W

Rochester

Rome

Rostock

Rotterdam

England

Italy

Germany

Holland

51 26 N O 30 E

41 54 N 12 34 E

· 54 10 N 12 50 E

51 56 N 4 33 E•

Rouen France • 49 27 N 1 10 E

Rye England
51 3 N

Saffia Barbary · 32 30 N

0 45 E

8.50W

Saint-Flour

Saint-Malo

Saint-Omer

France· · 45 2 N 3 11 E

France ·• 48 39 N 1 57 W

France• • 50 44 N 2.30 E

Salerno Italy
• 40 39 N 14 48 E

Sallee Barbary · 33 58 N 620 W

Salonicha Turkey · 40 41 N 23 13 E

Sarragossa Spain
41 40 N 0 39 w
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Names of places. Countries.
Lat. or el.

of the pole.

Lon. or dif,

of merids.

Scanderoon Syria 36° 35′N 36° 25'E

Schamaki Persia 40 30 N• 37 5 E

Scilly Isles England
50 00 N 6 45 W

Selinginsk
Russ. Tartary 51 6 N

Senegal R. Negroland • 15 53 N

Senlis France 49 13 N

Sens France •

Seringapatam

Seville →+

Sheerness

India

Spain

England

India

12 32 N

51 25 N

14 18 N 100 55 E

43 20 N 11 26 E

12 7 W

1 20 W*

48 12 N

37 21 N

106 42 E

1626w

2 39 E

3 22 E

76 52 E

6 4W

O 50 E

Siam

Sienna

Sierra Leone

Italy

Guinea •

Shields
England

Shetland I. Scotland ·1
0
0

Skalolt Iceland

Smyrna
Natolia

Socatora I.

Soissons

Africa

France

12 15 N•

· 49 21 N

Southampton
· England · 50 55 N

8 30 N

55 2 N

60 47 N

59 54 N

64 10 N

38 28 N

0 10 W

1 31 W

17 25 w

27 25 B

52 55 E

3 24 E

1.00 W

Spoletto Italy 41 57 N 12 50 E

Spurn England
53 35 N 0 30 E

Start Point

Stettin

England 50 14 N 3 39 W

Pomerania 53 36 N• 15 25 E

Stockholm Sweden • 59 22 N 18 12 E

Stockton England · 54 33 N 1 15 W

Straelsund

Strasburgh

Germany

France

• 54 23 N 14 10 E

48 34 N• 7 51 E

Stromness Orkneys 58 56 N• 3 26 W

Stuttgard Germany 48 40 N• 9 7E

Sukadana • Borneo I. 1 00 s 110 40 E

Sunderland England 54 55 N 1 00 W

Surat India 21 10 N 72 28 E

Surinam South America 6 30 N 55 30 W

Swansey
Wales · 51 40 N 4 25 W

Syracuse Sicily 37 4 N 15 31 E
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Names ofplaces. Countries.
Lat. or el.

of the pole.

Lon. ordif,

of merids.

Tangier

Tarento

Tauris

Tefflis

Tellichery

Temeswar

Teneriff Peak

'Tetuan

Tinmouth

Thessalonica

Tobago I.

Tobolski

Barbary

Italy

• 35°55'N 5°45'w

40 43 N 17 31 E.

• Persia

Georgia

38 5 N 46 55 E

42 55 N 46 25 E·

India 11 42 N• 75 30 E

Hungary 44 42 N 22 00 E·

Canaries 28 13 N 16 24 W· •

Barbary 35 27 N 4.50 w

England
55 3 N• 1 17 W

Greece 48 36 N 23 13 E·

Caribbee 11 15 N· 60 27 W

Siberia • 59 12 N 68 20 E·

Toledo Spain · 39 50 N 2 15 W

Tonquin
India 20 50 N 105 55 B·

Tonsberg Norway 58 50 N 10 5 E•

Torbay England
50 34 N 3 36 W

Tornea Sweden 65 51 N 24 16 E

Toulon France
43 7 N

62E

Toulouse France 43 36 N 1 31 E•

Tours France 47 23 N 0 46 E

Trente Italy 45 43 N 10 45 E

Trieste Carniola 45 51 N 14 3 E

Trinquemalee Ceylon I. 8.50 N 83 24 E

Tripoli Syria 3453 N 36 7 E

Tripoli Barbary
32 54 N 13 10 E

Truxilla Peru 8 00 s 78 35 w

Tunis Barbary 36 47 N 10 16 E

Turin

Tyrnau

Italy

Hungary

45 5 N 7 45 E

48 23 N 17 39 E

Valencia
Spain 39 30 N O 40 W

Valladolid
Spain 41 42 N 5 34 W•

Valpariso
Chili 33 3 N 72 14 w

Vannes France 47 39 N 2 41 W

Venice Italy 45 27 N 12 9 E

Vera Cruz

Verona

Versailles

New Spain

Italy

France

19 12 N 97 25 w

45 26 N 11 24 E

48 48 N 2 12 E
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AND GEOGRAP
HY

.

Names of places. Countries.
Lat. or el.

of the pole.

Lon. or dif.

of merids .

Colchester •
England

· 52°00'N

Collioure

Cologne

Compiegne

Conception la .

Congo R.

Constance

Constantinople

Copenhagen

France 42 31 N·

• Germany

France

• 50 55 N

0°58′ E

3 10 E

7.10 E

• 49 25 N 2 55 E

Chili • 36 43 s 73 13 W

· Congo

Swisserland

Turkey

• 5 45 S 11 53 E

• 47 42 N 8 58 E

41 00 N 28 53 E·

Denmark• • 55 41 N 12 40 E

Cordova

Corfu

Corinth

Corke

Corsica{

Coutance

Cowes

Spain • 37 42 N 3.47 W

Turkey

Turkey

Ireland

• 39 50 N

• 37 30 N
•

19 48 E

23 00 E

51 54 N 8 30 W•

N. part

s. part f

Italy

{

· 42 53 N 9 40 E

· 41 22 N 9 26 E

France 49 3 N 1 22 W

Cracow

Cremsmunster

Cruz St. I.

Isle ofWight

Poland

Germany

50 46 N 1 15 W•

50 10 N 19 55 E

48 3 N 14 8 E•

Antilles • 17 53 N 64 55 W

Cuddalore India• · 11 41 N 79.51 E

Curassoa West Indies 11 56 N• 68 20 w

Cusco Peru · 12 25 s 73 35 W

Dabul India · 18 24 N 73 33 E

Danzic Poland · 54 22 N 18 39 E

Dartmouth

Deseada I. •

England

Caribbees

50 27 N 3 36 w

16 36 N• 61 10 W

•Dieppe France 49 55 N 0 9 E

Dijon
France 47 19 N 3 7E

Dillingen Germany · 48 30 N 10 19 E

Dol France 48 33 N 1 41 W

Dole France 45 5 N 5 34 E

Domingo St..

Dordrecht •

Dover

Antilles

Netherlands

England

18 25 N 69 30 W

· 52 00 N 4 26 E

• 51

Dresden · Saxony 51

7 N

6 N

1 24 E

• 13 31 E

Drontheim Norway 63 26 N 11 SE
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Names of places. Countries.

Dublin Ireland

Lat. or el.

of the pole.

Lon , or dif.

of merids.

6° 10'w53°21'N

Dunbar Scotland 55 58 N 2 22 W

Dundee Scotland 56 26 N 2 48 W

Dungeness England 50 55 N 1 3 E

Dunkirk France 51 2 N 2 27 E

Durazzo Turkey 41 58 N 25 00 E

Edinburgh

Elba I.

Scotland

Italy

55 58 N 3 7 W

42 52 N 10 38 E

Elbing Poland • 54 12 N 20 35 E

Elsinburg

Elsinore

Sweden

Denmark

56 00 N 13 35 E

56 00 N 13 23 E

Embden
Germany · 53 5 N 26 E

Enchuysen
Holland 52 43 N 5 6 E

Ephesus Natolia • 38 00 N 27 53 E

Erfurth Germany
51 6 N 10 20 E

Erivan Armenia 40 30 N 44 25 E

Erzerum Armenia 39 57 N 48 41 E

Eustatia Caribbee 17 30 N 63 4 W

Faenza

Falmouth

Fernambouc ·

Ferrara

Ferro I.

Finisterre C. .

Fladstrand

Florence

Flushing

•

Mayn

Oder

Frederickstadt

Frejus

Italy

England

Brasil

Italy

Canaries

France

Denmark

Italy

Holland

Forbisher's Straits Greenland

N.P China
Formosa I. {SPE

Frankfort
on the}Germany

Frankfort on the}Germany

44 17 N 11 55 E

50 8 N 4 58 w

8 13 s

41 50 N

35 5 W

11 40 E•

27 48 N 17 40 w

• 42 52 N 9 12 W

57 27 N 10 37 E

43 46 N 11 7 E

51 33 N 3 20 W

62 5 N 47 18 w

21 25 N 121 25 E

22 00 N 120 40 E.

50 6 N 8 40 E

52 26 N 14 38 E

Norway 59 00 N 11 10 E

France 43 26 N 6 50 E

Gallipoli Turkey
40 36 N 27 2 E

C 2
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Names of places. Countries.
Lat. or el.

of the pole.

Lon. or dif.

of merids.

Gambia R. • Negroland
13°00′N

Geneva · Swisserland • 46 12 N

Genoa • Italy
44 25 N

14°58'w

65E

8 41 E

Ghent

Gibraltar

Glasgow

Gloucester

Gluckstadt

Goa

Gombroon

Netherlands

Spain

Scotland

England

Holstein

India

51 4 N 3 47 E

36 5 N 5 17 W

55 52 N 4 10 W•

51 50 N 2 16 w

53 48 N· 9 31 E

15 31 N· 73 50 E

Persia · 27 40 N 55 20 E

Good Hope Cape

Gottenburg

Africa . 34 29 s
18 28 E

Sweden• • 57 42 N 11 44 E

Gottingen • Germany · 51 32 N 9 58 E

Granville · France · 48 50 N 1 32 W

Gratz • Styria • 47 4 N 15 29 E

Greenwich

Grenoble

England

France

• 51 29 N 0 5 E

45 11 N• 5 39w

Grypswald • Pomerania 54 4 N 13 43 E·

Guadaloupe I.

Guiaquil

Caribbee 16 00 N 61 55 W•

Peru• · 2 10 s 81 5 W

Guernsey I. •

Hague

England

Holland

49 30 N 2 47 W

· • 52 4 N 4 22 E

Halifax

Halle

• Nova Scotia .44 46 N 63 20 W

•

Hamburgh
•

Harlem

Saxony

Germany

Holland

• 51 34 N 11 46 E

53 34 N 9 55 E

52 24 N 4 10 E

Harwich

Hastings

Havannah

England

England

Cuba I.

• 52 11 N 1 18 E

50 52 N 0 46 E

23 12 N 82 13 W

Havre de Grace France • 49 30 N 0 11 E

Helena St. I. . Africa · 15 55 S 5 44 W

Holy Head • Wales 53 23 N 4.40 W

Horn Cape

Hull

• South America · 55 59 $ 67 21 W

•
England

53 50 N· O 28 W

Hydrabad

Jacoutsk

India· · 17 12 N 78 56 E

Jafnapatau C.

Russ. Tartary

Ceylon I.

· 62 20 N 129 46 E

· 9 47 N 80 55 E
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Names of places. Countries.
Lat. or el. Lon. or dif.

ofthe pole.

Jago St. • Cape Verd I. • 15° 7′N

of merids.

23°30'w

Jamaica{
E.end

Jassey

Java Head

Jeddo

Jena

Jersey I.

Moldavia

Java I.

W.end 18 45 N• 78 00 W

West Indies

18 00 N 76 40 w•

· 47 9 N
27 35 E

•

Japan

Germany

6 49 s

36 00 N

105 6 E

139 40 E

51 2 N 11 23 E·

England 49 7 N 2 26 w

Jerusalem Palestine 31 55 N 35 25 B•

Jeniseik

Ingolstadt ·

Inspruc

Russ. Tartary

Germany

Tyrol

· 58 27 N 91 25 E

48 46 N 11 28 E

47 18 N 12 00 E

Inverness

Jsanna I.

Joppa

·

•

Scotland

Zanguebar

57 33 N 4 2 W

• 12 5 S 45 45 E

Syria 32 45 N• 36 00 E

Ipswich

Ismail

Ispahan

England
52 14 N 100 E·

Turkey 45 21 N 28 55 E•

Persia 32 25 N 52 55 E·

Juan Fernandez I. Chili 33 45 s• 78 37 w

Judda

Ivica I. ·

Arabia

Spain

• 21 29 N 29 27 E

38 54 N 1 15 E

Kamtschatka lower Russia

KamtschatkaupperRussia

56 11 N 159 25 E

54 48 N• 162 10 E

Kilda St. I. ·

Kinsale

Scotland

Ireland

• 57 44 N 8 18 W

51 41 N 8 23 W•

Kongkitao Cape Corea

Konigsberg

• 37 30 N 116 27 E

Prussia 54 42 N 21 23 E

Lancaster •

Landau

Lands End

Landscrona

Langres

Lausanne

Leeds

Leghorn

Leipsic

Leostoff

England

France

· 54 42 N 4 36 w

• 49 11 N 8 13 E

• England
50 6 N• 5 20 W

+

Sweden 55 52 N• 12 55 E•

France 47 50 N• 5 26 E·

Swisserland • 46 31 N 6 50 E

England 53 48 N• 1 33 W

• Italy
· 43 33 N 10 25 E

Germany

England

• 51 19 N 12 25 E

52 38 N 154 E
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Names of places. Countries.
Lat. or el.

of the pole.

Lon. or dif.

of merids.

Lepanto

Leyden

Turkey

Holland

38°20' N 22° 3'E

52 10 N 4 33 E•

Liverpool

Liege

England

Germany

· 53 22 N 3 10 W

50 36 N 5 40 E·

Lima Peru 12 1 S 76 44 W

Limeric Ireland 52 22 N 10 00 W·

Lisbon
Portugal

38 42 N 9 4W

Lizard
England

• 49 57 N 5 10 W

London
England 51 31 N 0 0

Londonderry Ireland 55 1 N 7 31 w

Loretto Italy 43 27 N 13 38 E

Louisburg

Louvain

1

Lucca

Lubec

Lucia St. I.

Cape Briton

Netherlands

Germany

Caribbee

Italy

45 54 N• 59 50 w

50 50 N

54 00 N

4 55 E

11 40 E

· 13 25 N 60 46 w

43 50 N 10 35 E

Lunden Sweden 55 42 N 13 26 E•

Luxembourg Netherlands 49 37 N· 6 17 E

Lynn England
• 52 46 N O 30 E

Macao China · 22 12 N 113 46 E

Macassar Celebes I. 5· 9 s 119 50 E

Madras India 13 5 N 80 34 E

Madrid
Spain 40 25 N·

Madura India · 9 54 N

Mahon Port Minorca · 39 51 N

Majorca I. • Spain · 39 35 N

03 21 W

73-18 E

3 53 E

2 35 E

Malacca India 2 12 N 102 10 E•

Malta I.

Manchester

Italy

England

35 54 N• 14 34 E

53 24 N• 2 20 W

Manilla

Mantua

Luconia I.

Italy

14 36 N 120 58 E•

45 2 N 10 15.E

Marseilles France 43 18 N 5 27 E

Martinico I. West Indies 14 36 N • 61 4 W

Masulipatam
India 16 28 N 81 40 E

Mauritius I. Africa • 20 10 s 57 33 E

Meaco

Meaux

Japan

France

• 35 35 N 133 20 E

48 58 N 2 55 E
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Lat. or el. Lon. or dif.

Names of places. Countries.
of the pole. of merids.

Mecca Arabia 21° 40'N•

Mechlin Netherlands . 51 2 N

41° 00′ E

4 34 E

Medina Arabia • 24 58 N 39 53 E

Memel Courland 55 48 N 22 23 B

Messina

Metz

Sicily

France

• 38 21 N 16 21 E

49 7 N 7 16 E

Mexico

Milan

Mexico

Italy

• 19 54 N 100 1 W

45 28 N 9 15 E

Mocha · Arabia • 13 45 N 44 4 E

Modena
Italy

· 44 34 N 11 18 E

Montpelier

Montreal

Mosambique

France 48 36 N 3 57 E

Canada • 45 52 N 73 11 W

·

Moscow

Zangue

Russia

15 00 S 41 40 E•

· 55 45 N 37 51 E

Munich

Munster

Namur

Germany

Germany

Netherlands

· 48 10 N 11 35 E

52 00 N 7 40 E

50 25 N•

Nangasaki • Japan 32 32 N•

4.50 E

128 50 E

Nankin China • 32 7 N 118 35 E

Nantes France • 47 13 N 1 29 w

Naples Italy
40 51 N• 14 19 E

Narbonne France 43 11 N 3 5 E•

Narva Livonia • 59 23 N 29 27 E

Naze

Negapatnam

Nevis I.

Norway

India

• 57 50 N 7 32 E

10 46 N· 80 2 E

Caribbee• · 17 11 N 62 52 W

Newcastle •
England

• 55 3 N 1 28 W

Nice

Nieuport

Nombre de Dios

Italy

Flanders

South America

43 42 N

51 8 N•

9 43 N

7 22 E

2.50 E

78 35 w

Nootka Sound America· · 49 36 N 126 36 W

Noyon
France· • 49 34 N 1 44 E

Nuremberg · Germany • 49 27 N 11 12 E

Ochozk · Tartary · 59 20 N 143 18 W

Oczakow · Turkey • 45 12 N 34 40 E

Olinda

Olmutz

Brazil

Moravia

8 13 s 35 00 W

49 43 N 17 37 E
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.

Names ofplaces. Countries.
Lat, or el.

of the pole.

Lon. or dif.

of merids.

Oneglia

Oporto

Italy

Portugal

• 43° 57′N 7°52′E

• 41 10 N 8 22 W

Oran

Orenburg

Barbary

Astracan

· 35 45 N 0 00

51 46 N 55 14 E

Orkney isles Scotland
S59 24 N

·

58 44 N

Orleans New Louisiana • 30 00 N

3 23 w

211 W

89 54 w

Orleans France 47 54 N 1 59 E

Ormus I.. Persia 27 30 N 55 17 E

Orotava Canaries 28 23 N 16 19 W

Ostend

Ozaca

Flanders

Japan

51 14 N 3.00 E•

35 10 N 134 5 E

Padua · Italy • 45 22 N 11 59 E

Paita Peru 5 20 s 80 35 W· ·

Palermo · Sicily • 38 10 N 13 43 E

Palikate India 13 40 N 80 50 E

Pampeluna

Panama

• Spain 42 44 N 1 35 W

Mexico• 8 45 N 80 16 w

Panorma Turkey 40

Para South America

5 N

1 30 s

21 40 E

47 5 w

Paris France • 48 50 N 2 25 E

Parma Italy 44 45 N• 10 00 E

Passau

Patmos I.

Germany

Natolia

48 30 N 13 5 E

37 22 N 26 48 E

Pavia Italy · 45 46 N 9. 16E

Pegu

Pekin

Perpignan

India

China

France •

17.00 N

39 55 N

42 42 N

96.58 F

116 29 E

2 59 E

Pisa

Petersburg

Philadelphia

Pico I.

Plymouth

Pondicherry

Port Mahon

Porto Bello

Porto Praya

• Russia

America

59 56 N 30 24 E

· 39 57 N 75 8 w

Azores· · 38 29 N 28 19 W

• Italy · 43 43 N 10 17 E

England

India

· 50 22 N 4 10W

• • 11 42 N 79 58 E

Minorca I. • 39 51 N 3 53 E

• New Spain

C. Verde

• 9 33 N 79 45 w

• 14 54 N 23 24 W
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Lat. or el.
Names ofplaces. Countries.

ofthe pole. of merids.

Port Royal Jamaica• · 17° 59′N

Port Royal Martinico • 14 36 N

Lon. ordif.

76° 40′w

61 4W

Port Royal Acadia 45 2 N 65 00 W

Portsmouth

Prague

England

Bohemia

• 50 48 N 1 1 W

50 4 N 14 50 E•

Presburg

Quebec

Hungary

Canada

48 8 N· 17 33 E

46 49 N 71 10 w

Quiloa Zanguebar
· 9 30 s 39 9 E

Quimper France• • 47 58 N 4 2 W

Quinam • Cochin China 12 52 N 109 10 E

Quito Peru • O 13 s 77 50 w

Ragusa
Dalmatia 42 45 N 20 CO E· ·

Rajapoor
India • 17 19 N 73 50 E

Ramsgate

Ratisbon

England

Germany

51 20 N 1 22 E

• 49 2 N 12 1 E

Ravenna Italy · 44 26 N 12 21 E

Rennes France 48 6 N 1 37 W

Reims France · 49 14 N 4 8E

Revel

Riga

Rimini

Livonia 59 26 N 24 24 E•

Livonia 56 56 N 23 44 E

Rio Janeiro

Italy

Brazil

44 3 N 4 8 E

22 54 S 42 40 w•

Rochelle

Rochester

Rome

France

England

Italy

46 10 N 1 5 W

51 26 N 0 30 E

41 54 N 12 34 E

Rostock Germany 54 10 N 12 50 E

Rotterdam Holland 51 56 N 4 33 E•

Rouen

Rye

France

England

· 49 27 N 1 10 E

51 3 N 0 45 E

Saffia Barbary 32 30 N 8 50w

Saint-Flour France 45 2 N 3 11 E

Saint-Malo France

Saint-Omer France

Salerno
Italy • 40 39 N

Sallee
Barbary 33 58 N

Salonicha
Turkey

· 40 41 N

48 39 N

50 44 N

1 57 W

2.30 E

14 48 E

620 W

23 13 E

Sarragossa Spain 41 40 N
0 39 w
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Lat. or el.
Names of places. Countries.

of the pole.

Lon. or dif.

of merids.

Scanderoon Syria 36° 35′N 36° 25'E

Schamaki Persia 40 30 N• 37 5 E

Scilly Isles England 50 00 N 6 45 W

Selinginsk Russ. Tartary 51 6 N 106 42 E

Senegal R. Negroland 15 53 N 16- 26 w•

Senlis France • 49 13 N 2 39 E

Sens France 48 12 N 3 22 E

Seringapatam
India 12 32 N• 76 52 E

Seville +

Sheerness

Spain

England

• 37 21 N 6 4W

51 25 N O 50 E•

Siam India 14 18 N 100 55 E

Sienna Italy · 43 20 N 11 26 E

Sierra Leone

Shields

Guinea

England

8 30 N 12• 7 W

55 2 N 1 20 W"

Shetland I. Scotland ·

Skalolt

Smyrna

Socatora I.

Iceland•

Natolia • 38 28 N

{60 47 N

59 54 N

64 10 N

0 10 W

1 31 W

17 25 w

27 25 B

Africa 12 15 N 52 55 E•

Soissons

Southampton

Spoletto

France

England

Italy

• 49 21 N 3 24 E

• 50 55 N 1 00 W

41 57 N 12 50 E

Spurn

Start Point •

Stettin

England

England

Pomerania

• 53 35 N 0 30 E

• 50 14 N 3.39 W

53 36 N 15 25 E•

Stockholm Sweden • 59 22 N 18 12 E

Stockton

Straelsund

Strasburgh

England • 54 33 N 1 15 W

Germany

France

· 54 23 N 14 10 E

48 34 N• 7 51 E

Stromness

Stuttgard

Orkneys 58 56 N· 3 26 w

Germany 48 40 N 9 7E

Sukadana Borneo I.• · 1 00 s 110 40 E

Sunderland

Surat

England

India

54 55 N

21 10 N

1.00 W

72 28 E

Surinam South America 6 30 N 55 30 W

Swansey Wales 51 40 N 4 25 W

Syracuse Sicily 37 4 N 15 31 E
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Lat. or el. Lon. ordif,
Names of places. Countries.

of the pole. of merids.

Tangier Barbary · 35°55'N 5°45'w

Tarento Italy 40 43 N 17 31 E•

Tauris Persia 38 5 N 46 55 E

Tefflis

Tellichery

Temeswar •

Georgia

India

Hungary

42 55 N 46 25 E·

11 42 N• 75 30 E

44 42 N 22 00 E·

Teneriff Peak Canaries 28 13 N 16 24 W•

'Tetuan Barbary • 35 27 N 4.50 w

Tinmouth
England 55 3 N• 1 17 W

Thessalonica

Tobago I.

Greece

Caribbee

48 36 N

11 15 N

23 13 E

60 27 W

Tobolski

Toledo

Siberia

Spain

59 12 N• 68 20 E

• 39 50 N 2 15 W

Tonquin India 20 50 N 105 55 B·

Tonsberg Norway · 58 50 N 10 5 E

Torbay England 50 34 N· 3 36 W

Tornea Sweden • 65 51 N 24 16 E

Toulon France • 43 7 N

Toulouse France 43 36 N

62E

1 31 E

Tours France• • 47 23 N 0 46 E

Trente
Italy • 45 43 N 10 45 E

Trieste Carniola 45 51 N 14 3 E·

Trinquemalee • CeylonI. 8 50 N• 83 24 E

Tripoli Syria 34 53 N• 36 7 E

Tripoli Barbary • 32 54 N 13 10 E

Truxilla Peru• • 8.00 s 78 35 W

Tunis

Turin

Tyrnau

Valencia

Barbary

Italy

Hungary

Spain

36 47 N 10 16 E

45 5 N 7 45 E

48 23 N 17 39 E

39 30 N 0 40 W

Valladolid
Spain 41 42 N• 5 34 W

Valpariso Chili 33 3 N· 72 14 w

Vannes France 47 39 N 2 41 W

Venice
Italy · 45 27 N 12

9 E

Vera Cruz New Spain • 19 12 N 97 25 w

Verona
Italy 45 26 N 11 24 E•

Versailles France 48 48 N 2 12 E
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Lat. or el. Lon. or dif.

Names of places. Countries.
of the pole. of merids.

Vienna Germany
48° 13'N 16°28' E

Vigo

Vilna

Spain
42 14 N 8 23 W•

Poland 54 41 N 25 46 E•

Viterbo Italy
42 25 N 12 12 E

Upsal

Uraniburg

Sweden 59 52 N 17 47 E

Denmark • 55 54 N 12 57 E

Urbino Italy · 43 43 N 12 43 E

Wardhus Lapland · 70 23 N 51 12 E

Warsaw Poland 52 14 N 21 5 E•

Waterford Ireland 52 7 N 7 42W

Wells

Wexford

England

Ireland

• 53 7 N 1 00 E

· 52 13 N 6 56 w

Weymouth

Whitby

Whitehaven

Wicklow

• England
52 40 N 2 34 w·

•

England

England

54 30 N 0 50 w

54 25 N 3 15 W

Ireland 52 50 N 6 30 W•

Wittenberg
• Saxony 51 43 N 12 38 É

Wurtzburg
Franconia 49 46 N 10 19 E

Wybourg
Finland 60 55 N 30 20 E·

Yamboa Arabia · 24 25 N 38 54 E

Yarmouth • England • 52 55 N 140 E

Yellow River China• • 34 6 N 120 10 E

Ylo 'Peru 17 36s 71 8 W

York New · America 40 43 N 74 4 w

Youghal
Ireland 51 46 N 8 6 w

Zacatula Mexico 17 10 N 105 00 W

Zagrab

Zante I.

Zara

Croatia 46 6 N· 10 19 E

• Italy • 37 50 N 21 30 E

Dalmatia 44 15 N 16 55 E•

Zurich Swisserland 47 22 N 9 21 E
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PROBLEM IV.

Tofind what o'clock it is at any place of the earth, when it

is a certain hour at another.

As the earth makes one revolution on its axis in the

course of a common day, or of 24 hours, every point of

the equator will describe the whole circle of 360 degrees

in that period ; and therefore if 360 be divided by 24, the

quotient 15 will be the number of degrees that corre-

spond to one hour of time. Hence it is evident that two

places which are 15 degrees of longitude distant from

each other, will differ one hour in their computation of

time, one ofthem making it earlier or later according as

it is situated to the east or west of the other. To deter-

mine this problem therefore, find by the preceding table

the difference of longitude of the two places, which may

be done by subtracting the longitude of the one from that

of the other if they are both east or both west ofLondon,

or by adding them if the one is east and the other west,

and then change the sum or difference into time : this time

added to or subtracted from the hour at one of the given

places, will give for result the hour at the other. If Lon-

don be one ofthe places proposed, the difference of longi-

tude will be found in the last column to the right in the

preceding table.

To change the difference of longitude into time,

multiply by 24, and divide by 360 ; or multiply by 4,

and divide by 60 ; or only divide by 15 ; or find the

hours and minutes corresponding to the given degrees

and minutes in the subjoined table, which will greatly fa-

cilitate operations of this kind.

Now let it be proposed to find what o'clock it is at

Cayenne, when it is noon at London . The difference of

longitude, or of meridians, between London and Cayenne,
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is 52° 10′ ; which converted into time, gives 3 hours 28'

minutes 40 seconds ; and as Cayenne lies to the west of

London, if 3h 28m 40s be subtracted from 12 hours, the

remainder will be 8 hours 31 minutes 20 seconds : hence it

appears that when it is noon at London, it is only 8h 31m

20s in the morning at Cayenne ; consequently when it is

noon at Cayenne, it is 3h 28m 40s in the afternoon at

London.

When it is noon at London, required the hour at

Pekin ? The difference of meridians between London and

Pekin is 116° 29' , which is equal in time to 7 hours 45

minutes 56 seconds. But as Pekin lies to the east of

London, these 7h 45m 56s must be added to 12 hours ;

and hence it is evident that when it is noon at London,

it is 7h 45m 56s in the evening at Pekin. On the other

hand, to find what o'clock it is at London when it is

noon at Pekin, these 7h 45m 56s must be subtracted

from 12 hours, and the result will be 4h 14m 4s in the

morning.

When the two given places are both to the west of

London, to find their difference of meridians, the longi-

tude of the one must be subtracted from that of the

other. If Madrid and Mexico, for instance, be proposed ;

as the longitude of the first is 3º 21 ' , and that of the

second 100° 1 ' , if the former be subtracted from the

latter, the remainder 96° 40' will be their difference of

longitude ; which changed into time, gives 6 hours 26

minutes 40 seconds. Hence, when it is noon at Madrid,

it is 5h 33m 20s in the morning at Mexico.

If one of the proposed places lies to the east and the

other to the west of London, the longitude of the one

must be added to that of the other, in order to have

their difference of longitude ; and the sum must then

be converted into time, and added or subtracted as

before.
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By way of example we shall take Constantinople and

Mexico, the former of which lies to the east of London.

The longitude of Constantinople is 28° 53′ , and that of

Mexico 100º 1 ' , which added give for difference of longi-

tude 128° 54' in time to 8h 35m 36s. When it is noon

therefore at Constantinople, it is only 3h 24m 24s in the

morning at Mexico ; and when it is noon at the latter, it

is 8h 35m 36s in the evening at Constantinople.
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A table for changing degrees and minutes into hours, mi-

nutes, and seconds, or the contrary.

H M D H M

M M S M M S

A
MD H M

M S

A
MD H M

M S

1
2
3
4
5
6
7
8
9

0

0 8 47

0 12

0 16

0 20

0 24 51

0 28

0 32

9 0 36

10 0 40

11 44

12 0 48

13 0 52

14 0 56

15 1 0

16 1 4

17 1 8

18 1 12 .63

19 1 16

20 1 20

21 1 24

22 1 28

23 1 32

31

2
2
2
2
2
2
2
≈
≈

*
*
*
*
3

24 1 36

25 1 40

26 1 44

27 1 48

28 1 52

29 56

30 2 0

2 4

2 8

33 2 12

34 2 16

35 2 20

P
I
R
E
L
L
I
2

*-
8
2
8
2
R
A
R
O
D
2
0
C
C
C
A
A
A

46 3 4 91 6 4 136 9 4

38 92 6 8 137 9 8

48 3 12 93 6 12 138 9 12

49 3 16 94 6 16 139 9 16

50 3 20 95 6 20 140 9 20

3 24 96 6 24 141 9 24

52 3 28 97 6 28 142 9 28

53 3 32 98 6 32 143 9 32

54 336 99 636 144 9 36

55 3.40 100 6 40
145 9 40

56 3 44 101 6 44 146 944

57 3 48 102 6 48 147 9 48

58 3 52 103 6 52 148 9 52

59 3 56 104 6 56 149 956

60 4 0 105 7 0 150 10 0

61 4 4 106 7 4 151 10 4

62 4 8 107 7 8 152 10 8

4 12 108 7 12 153 10 12

64. 4 16 109 7 16 154 10 16

65 4 20 110 7 20 155 10 20

66 4 24 111 7 24 156 10 24

67 4 28 112 7 28 157 10 28

68 4 32 113 7 32 158 10 32

69 4 36 114 736 159 10 36

70 4 40 115 740 160 10 40

71 4 44 116 7 44 161 10 44

72 4 48 117 7 48 162 10 48

73 4 52 118 7 52 163 10 52

74 4 56 119 756 164 10 56

75 5 0 120 8 0 165 11 O

76 5 4 121 8 4 166 11 4

122 8 8 167 11 8

78 5 12 123 8 12 168 11 12

79 5 16 124 8 16 169 11 16

5 20 125 8 20 170 11 20

36 2 24 81 5 24 126 8 24 171 11 24

37 2 28 82 5 28 127 8 28 172 11 28

38 2 32 83 5 32 128 8 32 173 11 32

39 2 36 84 5 36 129 8 36 174 11 36

40 2.40 85 5 40 130 8 40 175 11 40

41 2 44 86 5 44 131 8 44 176 11 44

42 2 48 87 5 48 132

43 2 52

44 2 56

45 3 0

6
8
8
8
8
8

8 48 177 11 48

5 52 133 852 178 11 52

89 5 56 134 856 179 11 56

90 6 0 135 9 0 180 12 0

1
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Intheabove tables the narrow columns contain degrees or

minutes, and the broad ones hours and minutes, or minutes

and seconds. Thus, if 4 in the first narrow column repre-

sent degrees, the 16 opposite to it in the broad column

will be minutes ; and if 4 represent minutes, the 16 willbe

seconds. If it be required to change 4° 20′ into time ; op-

posite to 4 will be found 16 , which in this case is minutes,

and opposite to 20′ stands 1 minute 20 seconds, which

added to 16 minutes, gives 17 minutes 20 seconds, the

time answering to 4° 20'.

PROBLEM V.

How two men may be born on the same day, die at the same

moment, and yet the one may have lived a day, or even

two days more than the other.

It is well known to all navigators, that if a ship sails

round the world, going from east to west, those on board

when they return will count a day less than the inhabitants

of the country. The cause of this is, that the vessel , fol-

lowing the course of the sun , has the days longer, and in

the whole number of the days reckoned, during the voyage,

there is necessarily one revolution of the sun less.

On the other hand , if the ship proceeds round the world

from west to east, as it goes to meet the sun, the days are

shorter, and during the whole circumnavigation, the peo-

ple on board necessarily count one revolution of the sun

more.

Let us now suppose that there are two twins, one of

whom embarks on board a vessel which sails round the

world from east to west, and that the other has remained

at home. When the ship returns, the inhabitants will

reckon Thursday, while those on board the vessel will

reckon only Wednesday ; and the twin who embarked will

have a day less in his life. Consequently if they should

die the same day, one of them would count a day older

than the other, though they were born at the same hour.

VOL. III. D
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But let us next suppose that, while the one circumnavi-

gates the globe from east to west, the other goes round it

from west to east , and that on the same day they return

to port, where the inhabitants reckon Thursday for ex-

ample : in this case, the former will count Wednesday,

and the latter Friday, so that there will be two days differ-

ence in their
ages.

In fact, it is evident that the one is as old as the other ;

the only difference is, that in the course of their voyage

the one has had the days longer and the other shorter.

Ifthe latter returned on a Wednesday and the former on

a Friday, the former would count the day of his arrival

Thursday : next day would be Thursday to the inhabit-

ants, and the day after would be a Thursday to those who

arrived in the second vessel ; which, notwithstanding the

popular proverb, would give three Thursdays in one

week.

PROBLEM VI .

To find the length of the day in any proposed latitude, when

the sun is in any given degree ofthe ecliptic.

Let the circle ABCX , pl. 1 fig . 3 , represent a meridian,

and AC the horizon. Assume the arc CE, equal to the ele-

vation ofthe pole of the proposed place, for example Lon-

don, which is 51 ° 31 ' ; and having drawn DE, draw DF

perpendicular to it, or make the arc AF equal to the com-

plement of CE, and draw FD : it is here evident that ED

will represent the circle of 6 hours, and DF the equator.

After this is done, find by the Ephemeris the sun's de-

clination, when in the proposed degree of the ecliptic, or

determine it by an operation which we shall show how to

perform hereafter. We shall suppose that the declination is

north : assume the arc FM, towards the arctic pole, equal

to the declination, and through the point м draw MN pa-

rallel to FD, meeting the line DE in o, and the horizon AC

in N.
Then from the point o, as a centre, with the radius
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Oм, describe anarc of a circle Mт, comprehended between

the point м and NT parallel to DE. Having measured the

number of the degrees comprehended in this arc, which

may be easily done by means of a protractor, and having

changed them into time, at the rate of 1 hour to 15 de-

grees, &c, the double of the result will be the length of

the day.

Thus, if the length of the day at London, at the time

when the sun has attained to the greatest northern declina-

tion, be required ; as the greatest declination is 23° 28′,

make FB equal to 23° 28′, and the arc BI will be found to

be 124° 17' , which corresponds to 8h 17', and this doubled

gives 16h 34', as the length of the day.

If you have no table of the sun's declination for each

degree of the ecliptic, this deficiency may be supplied in

the following manner. Find the number of degrees which

the sun is distant from the nearest solstice , whether he has

not yet reached it, or has passed it. We shall suppose

that he is in the 23d degree of Tauris. The nearest solstice

is that of Cancer, from which the sun, according to this

supposition, is distant 37°. Draw the line BD representing

a quarter of the ecliptic ; and having assumed, from the

point B, the arcs вк and вk, each equal to 37°, draw кk,

intersecting BD in L: if MN be then drawn through the

point L, it will give the position of the parallel required .

All these things may be found much more correctly by

trigonometrical calculation ; but on that head we must

refer the reader to works on astronomy.

PROBLEM VII.

The longest Day in any Place being given, to find the

Latitude.

This problem is the converse of the preceding, and may

be solved without much difficulty ; for the longest day, in

all places of the northern hemisphere, always happens

when the sun has just entered the sign Cancer. Let FD

D 2
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(pl. 1 fig. 4) then represent the celestial equator, or rather

its diameter, and BL that of the tropic of Cancer. On

the latter describe a circle BKL ; and having assumed the

arc BK equal to the number of degrees corresponding to

half the length of the given day at the rate of 15° for one

hour, draw Kм perpendicular to BL ; if the diameter NMO

be then drawn through the point Mм, the angle PCO will be

the elevation of the pole or latitude of the place.

It would thence be easy to deduce a trigonometrical so-

lution, and to determine the latitude by calculation ; but,

consistent with our plan, we must here confine ourselves

to this graphic construction.

PROBLEM VIII.

The latitude of a place being given, to find the climate in

which it is situated.

In astronomy, the name climate is given to an interval,

on the surface of the earth, comprehended between two

parallels under which the difference of the longest days is

halfan hour : thus the days in summer, underthe parallel ,

whether north or south, distant from the equator 8° 25',

being 12h 30m, this interval, or the zone comprehended

between the equator and that parallel, is called the first

climate.

The limits of the different climates may therefore be

easily determined, by finding in what latitudes the days

are 12 hours, 13, 13 , 14, & c . The following is a table

of all these climates.

Climates.
Most southern

paral. of lat.

0° 0′

Most northern

paral. of lat.

I 8° 25'

II 8 25 · 16 25

III · 16 25 • 23 50

IV 23 50 • 30 20

V • 30 20 • 36 28

VI 36 28 · 41 22
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Climates.
Most southern Most northern

paral. oflat. paral. oflat.

VII · 41 22 45 29

VIII · 45 29 49 21

1X 49 21 51 28

X 51 28 54 27

XI 54 27 56 37

XII • 56 37 58 29·

X111 58 29 59 58

XIV 59· 58 61 18

XV 61 18 62 25

XVI . 62 25 63 22•

XVII 63 22 64 6

XVIII 64 6 64 49

XIX · 64 49 65 21

XX · 65 21 65 47

XXI · 65 47 · 66 6

XXII 66 6 66 20•

XXIII · '66 20 66 28

XXIV 66 28 66 31

As the longest day at the polar circle is 24 hours, and

at the pole 6 months, there are supposed to be six climates

between that circle and the pole.

Most southern
Climates.

paral. of lat.

Most northern

paral. oflat.

XXV

XXVI

66° 31' 67° 30'•

67 30 69 30

XXVII 69 30 73 20·

XXVIII

XXIX

• 73 20 • 78 20

· 78 20 · 84 00

XXX · 84 00 90 00

Nowifit be asked in what climate London is, it may be

easily replied that it is in the tenth ; its latitude being 51°

31', and its longest day 16h 34m.

REMARK. The idea of climates belongs to the ancient

astronomy ; but the modern pays no attention to this di-
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vision, which in a great measure is destitute of correctness,

in consequence of the refraction ; for if the refraction be

taken into account, as it ought to be, whatever Ozanam

may say, it will be found that, under the polar circle the

longest day, instead of 24, will be several times 24 hours ;

for as the horizontal refraction elevates the centre ofthe

sun 32′ at least, the centre of that luminary ought conse-

quently never to set between the 9th of June and the 3d

or 4th of July ; and the upper limb from the 6th of June

to the 6th of July ; this makes a complete month, during

which the sun would never be out of sight.

PROBLEM IX.

To measure a degree ofa great circle ofthe earth, and even

the earth itself.

The rotundity of the earth, that is to say its being a

globe, or of a form approaching very near to one, is

proved by a number of astronomical phenomena ; but we

think it needless to enumerate these proofs, which must be

known by those who are in the least acquainted with the

principles of philosophy and the mathematics.

We shall here then suppose that the earth is perfectly

spherical, as it apparently is ; and shall begin our reason-

ing on that hypothesis.

What is called a degree of the meridian on the earth, is

nothing else than the distance between two observers, the

distance between whose zeniths is equal to a degree, or the

geometrical distance between two places lying under the

same meridian, the latitudes of which, or their elevation of

the pole, differ a degree . Hence, if a person proceeds

along a meridian of the earth, measuring the way he

travels, he will have passed over a degree when he finds a

degree of difference between the latitude of the place

which he left, and that at which he has arrived ; or when

any star near the zenith of his first station has approached

or receded a degree.
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Nothing then is necessary but to make choice of two

places, situated under the same meridian , the distance and

latitudes of which are exactly known ; for if the less lati-

tude be taken from the greater, the remainder will be the

arc of the meridian comprehended between the two places ;

and thus it will be known that a certain number of degrees

and minutes correspond to a certain number of toises, or

yards or feet, &c: all then that remains to be done, is to

make use of the following proportion : as the given num-

ber of degrees and minutes, is to the given number of

toises, yards or feet, so is one degree to a fourth term ,

which will be the toises, yards or feet corresponding to a

degree.

But as the stations chosen may not lie exactly under the

same meridian, but nearly so, as Paris and Amiens, the

meridional distance between their two parallels must be

measured geometrically ; and when this distance, as well

as the difference of latitude of the two places is known,

the number of toises, yards or feet corresponding to a de-

gree, may be found by a proportion similar to the pre-

ceding.

This was the method employed by Picard , to determine

the length of a terrestrial degree of the meridian in the

neighbourhood of Paris. By a series of trigonometrical

operations, he measured the distance between the pavilion

ofMalvoisine, to the south of Paris, as far as the steeple

of Amiens, reducing it to the meridian, and found it to be

78907 toises. He found also by astronomical observa-

tions, that the cathedral of Amiens was 1 ° 22′ 58″ farther

north than the pavilion of Malvoisine. By making this

proportion then : as 1 ° 22′ 58″ are to one degree, so are

78907 toises to 57057, he concluded that a degree was

equal to 57057 toises.

Picard's measurement having been since rectified in

some points, it has been found that this degree is equal to

57070 toises.
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COROLLARIES.

I. Thus, if we suppose the earth spherical, its circum-

ference will be 20545200 French toises = 24881.8 English

miles.

II. Its diameter will easily be found by making use of

the following proportion : as the circumference of the

circle is to its diameter, or as 314159 is to 100000 , so is

theabove number to a fourth term, which is 6530196 toises

= the diameter of the earth = 7920 ∙ 12 English miles.

III. If we suppose its surface to be as smooth as that of

the sea during a calm, its superficial content will be found

to be 134164182859200 square toises = 197063856 En-

glish square miles. The rule for obtaining this result is :

Multiply halfthe circumference by half the diameter, and

then quadruple the product ; or still shorter , multiply the

circumference by the diameter.

IV. To find the solidity : multiply the superficial con-

tent, above found, by a third of the radius, which will give

146019735041736067200 cubic toises = 260124289920

English cubic miles.

REMARK.-The operation performed by Picard be-

tween Paris and Amiens, was afterwards continued

throughout the whole extent of the kingdom, both north

and south ; that is to say, from Dunkirk, where the eleva-

tion ofthe pole is 51° 2′ 27″ , to Collioure, the latitude of

which is 42° 31' 16" : the distance therefore between the

parallels of these two places is 8° 31 ′ 11 ″. But it was

found at the same time by measurement, that the distance

between these parallels was 486058 toises, which gives for

a mean degree in the whole extent of France 57051 toises;

and by corrections made afterwards, this number was re-

duced to 57038 .

During this operation care was taken to determine the

distance of the first meridian , which in France is that ofthe

observatory of Paris, from the principal places between
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which it passes. As it may perhaps afford gratification to

some of our readers, we shall here present them with a

table, the first column of which contains the names of

these places, and the second the number oftoises they are

distant from the meridian , whether to the east or west of

it. The place where the meridian was met by a perpen-

dicular drawn to it, from the steeple of the cathedral of

Bourges, was marked by a pillar.

Table ofthe places in France nearest to the meridian ofthe

observatory ofParis.

Names of the Places.

Fort de Revers

Dunkirk

Saint Omer

Dourlens

Villers Boccage

Amiens

Sourdon

Saint Denis

Montmartre

Paris

·

Toises.

1206 E.·

1414 E.

3011 E.

W.

580 w.

1252 w.

2341 E.

E.

0

Lay

Juvisy

Orleans

Bourges

Saint Sauvier

Mauriac

Rhodez

Alby

Castres

Carcassone

Perpignan

•

·

The summit of the Canigou

•

•

0

0

1350 E.

16396 w.

2358 E.

345 W.

382 W.

9528 E.

8316 W.

3911 w.

246 E.

23461 E.

4664 E.

The meridian of France continued, then enters Spain,

leaving Gironne on the east, at the distance of about of
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a degree ; passes two or three thousand toises to the east

of Barcelona, traverses very nearly the island of Majorca,

to the east of that city, and then enters Africa, about 7

minutes of a degree west of Algiers. But we shall not

follow its course farther through unknown nations and

countries : we shall only observe that it issues from Africa

in the kingdom of Ardra. The astronomers of France

have, since the above, repeated the measurement of the

said arc through the country, with no great difference ;

from which they have deduced the length ofthe meridional

quadrant, which has been assumed as the standard of the

new universal measures. Also several degrees of the

meridian through England are now measuring by Lt. Col.

Mudge, of the Royal Artillery, under the auspices of the

Master General and Board of Ordnance.

PROBLEM X.

Ofthe realfigure ofthe earth.

We have already said that the rotundity of the earth is

proved by various astronomical and physical phenomena ;

but these phenomena do not prove that it is a perfect

sphere. Accurate methods for measuring it were no sooner

employed, than doubts began to be entertained respecting

its perfect sphericity. In fact, it is now demonstrated

that our habitation is flattened or depressed towards the

poles, and elevated about the equator ; that is to say, the

section of it through its axis, instead of being a circle, is a

figure approaching very near to an ellipse, the less axis of

which is the axis of the earth , or the distance from the

one pole to the other, and the greater the diameter of the

equator. Newton and Huygens first established this truth,

on physical reasoning deduced from the centrifugal force

and rotation of the earth ; and it has since been confirmed

by astronomical observations.
1

The manner in which Newton and Huygens reasoned,

was as follows. If we suppose the earth originally spherical
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and motionless, it would be a globe, the greater part of

the surface of which would be covered with water. But

it is at present demonstrated, that the earth has a rotary

motion around its axis , and every one knows that the effect

of circular motion is to make the revolving bodies recede

from the centre of motion : thus the waters under the

equator will lose a part of their gravity, and therefore they

must rise to a greater height, to regain by that elevation

the force necessary to counterbalance the lateral columns,

extended to other points of the earth, where the centri-

fugal force, which counterbalances their gravity, is less,

and acts in a less direct manner. The waters of the ocean

then must rise under the equator as soon as the earth,

supposed to be at first motionless , assumes a rotary motion

round its axis : the parts near the equator will rise a little

less, and those in the neighbourhood of the poles will sink

down ; for the polar column , as it experiences no centri-

fugal force, will be the heaviest of all. This reasoning

cannot be weakened , but by supposing that the nucleus of

the earth is of an elongated form ; or by supposing a

singular contexture in its interior parts, expressly adapted

for producing that effect ; but this is altogether im-

probable.

The philosophers however on the continent persisted a

long time in refusing to admit this truth. Their principal

arguments against it were founded on the measurement of

the degrees of the meridian made in France ; by which it

appeared that a degree was less in the northern part of

the kingdom than in the southern, and hence they con-

cluded that the figure ofthe earth was a spheroid elongated

at the poles. If the earth, said they, were perfectly sphe-

rical, by advancing uniformly under the same meridian,

the elevation of the pole would be uniformly changed.

Thus, in advancing from Paris, for example, towards the

north 57070 toises, the elevation of the pole would vary a

degree ; and to make the elevation of the pole increase
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another degree, it would be necessary to advance towards

the north 57070 toises more ; and so on throughout the

whole circumference of a meridian.

If, in proportion as we proceed northwards, it is found

necessary to travel farther than the above number of toises

before the latitude is changed one degree, there is reason

to conclude that the earth is not spherical, but that it is

less curved or more flattened towards the north, and that

the curvature decreases the nearer we approach the pole,

which is the property of an ellipsis having its poles at the

extremities of its less axis. In the contrary case, it would

be a proof that the curvature of the earth decreased to-

wards the equator ; which is the property of a body

formed by the revolution of an ellipsis around its greater

axis.

But it was believed in France at first, that the degrees

of the meridian were found to increase the more they

approached the south. The degree measured in the

neighbourhood of Collioure, the austral boundary of the

meridian, appeared to be equal to 57192 toises, while that

in the neighbourhood of Dunkirk , which was the most

northern, seemed to be only 56954. There was reason

therefore to conclude that the earth was an elongated

spheroid, or formed by the revolution of an ellipsis around

its greater axis.

The partisans of the Newtonian philosophy, at that time

too little known in France, replied , that these observations

proved nothing, because the above difference , being so

inconsiderable, could be ascribed only to the errors un-

avoidable in such operations. As 19 toises correspond to

about a second, the 238 toises of difference would amount

only to about 12 seconds ; an error which might have

arisen from various causes : they even asserted that this

difference might be on the opposite side.

To decide the contest, it was then proposed to measure

two degrees as far distant from each other as possible, one
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under the equator, and the other as near the pole as the

cold ofthe polar regions would admit. For this purpose,

Maupertuis, Camus, and Clairaut, were dispatched bythe

king in the year 1735, to measure a degree of the meridian

at the bottom of the Gulph of Bothnia, under the arctic

polar circle ; and Bouguer, Godin, and Condamine, were

sent to the neighbourhood of the equator, where they

measured, not only a degree of the meridian, but almost

three. It resulted from these operations, performed with

the utmost care and attention , that a degree near the polar

circle was equal to 57422 toises, and that a degree near the

equator contained 56750, which gives a difference of 672

toises, and therefore too considerable to be ascribed to the

errors unavoidable in the necessary observations. Since

that time it has never been contested that the earth is

flattened towards the poles, as Newton and Huygens

asserted. We shall here add that the measurements

formerly made in France having been repeated, it was

found that the degree goes on increasing from south to

north as ought to be the case, if the earth be an oblate

spheroid.

This truth has been since confirmed by other measure-

ments of the meridian, made in different parts of the earth.

The Abbé de la Caille having measured a degree at the

Cape of Good Hope, that is under the latitude of about 33°

south, found it to be 57037 toises ; and in 1755, Fathers

Mairé and Boscovich, two Jesuits, having measured a

degree in Italy, in latitude 43° , found it to be 56979 : it

is therefore certain that the degrees of the terrestrial

meridian go on increasing from the equator towards the

poles, and that the earth has the form of an oblate

spheroid.

Other operations of the same kind for measuring a de-

gree ofthe terrestrial meridian have been since undertaken

at different times, as by the Abbé Liesganig in Germany,

near Vienna ; by Father Beccaria in Lombardy ; and by
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Messrs. Mason and Dixon, members of the Royal Society

of London, in North America ; and again more lately by

Mechain and De Lambre in France. They all confirm the

diminution ofthe terrestrial degrees as they approach the

equator, though with inequalities difficult to be reconciled

with a regular figure. But it may here be asked , why

should the earth have a figure perfectly regular ?

It is, indeed, impossible to determine with accuracy the

proportion between the axis of the earth and its diameter

at the equator : it has been proved that the former is

shorter, but to find their exact ratio would require obser-

vations which can be made only at the pole. However the

most probable ratio is that of 177 to 178.

Consequently, if this ratio be admitted , the axis ofthe

earth from the one pole to the other, will be 6525376 toises,

and the diameter of the equator 6562242.

In the last place, the difference between the distance of

any point ofthe equator on a level with the sea, to the

centre of the earth, and the distance of the pole from the

same centre, will be 18433 toises, or about 22 English

miles.

Since Montucla wrote the above, however, the French

astronomers Mechain and De Lambre , in 1799 , completed

their measurement of the meridian , from Dunkirk in

France, to near Barcelona in Spain, an extent of almost

10 degrees ; from which it has been more accurately de-

duced, that the flattening ofthe earth at the poles is only

the 334th part, the ratio of the axes being that of 334 to

333 ; that the polar axis is 78994 English miles, the equa-

torial diameter 79234 miles, their half difference only 11

miles, which is the height of the equator more than that

at the pole, from the centre ; the mean diameter 79113

miles, the mean circumference 248735 miles, the greatest

or equatorial circumference 248923 miles, the least or

meridional circle 24855 miles, and the difference of the

two 373 miles.
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COROLLARIES.

I. From what has been said, several curious truths may

be deduced. The first is, that all bodies, except those

placed under the equator and the poles, do not tend to

the centre of the earth ; for a circle is the only figure in

which all the lines perpendicular to its circumference tend

to the same point. In other figures, the curves of which

are continually varying, as is the case with the meridians

of the earth, the lines perpendicular to the circumference

all pass through different points of the axis.

II. The elevation of the waters under the equator, and

their depression under the poles, being the effect of the

earth's rotation round its axis, it may be readily conceived

that if this rotary motion should be accelerated , the ele-

vation of the waters under the equator would increase ;

and as the solid part of the earth has assumed, since its

creation, a consistence which will not suffer it to give way

to such an elevation, the rising of the waters might be-

come so great, that all the countries lying under the

equator would be inundated ; and in that case the polar

seas, if not very deep, would be converted into dry land.

On the other hand, if the diurnal motion of the earth

should be annihilated, or become slower, the waters ac-

cumulated, and now sustained under the equator, by the

centrifugal force, would fall back towards the poles, and

overwhelm all the northern parts of the earth: new islands

andnew continents would be formed in the torrid zone by

the sinking down of the waters, which would leave new

tracts ofland uncovered..

REMARK. We cannot help here remarking one ad-

vantage which France, and all countries near the mean

latitude of about 45 degrees, would in this case enjoy. If

such a catastrophe should take place, these countries would

be sheltered from the inundation , because the spheroid,

which is the real figure of the earth at present, and the

globe or less oblate spheroid into which it would be



48 ASTRONOMY AND GEOGRAPHY.

changed, would have their intersection about the 45th

degree ; consequently the sea would not be altered in that

latitude.

PROBLEM XI.

To determine the length of a degree on any given parallel of

latitude.

As the difference between the greater and less diameter

of the earth does not amount to the 300th part, in this and

the following problems we shall consider it as absolutely

spherical ; especially as the solution of these problems, if

we supposed the earth to be a spheroid, would be attended

with difficulties inconsistent with the plan of this work.

Let it be proposed then to determine how many miles

or yards are equal to a degree on the parallel passing

through London ; that is to say under the latitude of 51

degrees 31 minutes. This problem may be solved either

geometrically or by calculation , according to the following

methods

1st. Draw any straight line AB, pl. 1 fig. 5 , and divide it

into 23 equal parts, because a degree of the equator con-

tains 69.14 miles or about 23 leagues. Then from the

point A as a centre, with the distance AB, describe the arc

BC , equal to 51° 31′ ; and from the point c draw CD per-

pendicular to AB : the part AD will indicate the number of

leagues contained in a degree on the parallel of 51 ° 31 ′.

2d. This however may be found much more correctly

bytrigonometrical calculation ; for which purpose nothing

is necessary but to make use of the following proportion :

As Radius ·

·is to the cosine of lat. 51° 31′

So are the miles in a degree of the equator

to afourth term which will be

1000000

622287

69

43.0267

This last term 43·0267 , or 43 nearly, is the number of

miles contained in a degree on the parallel of 51° 31′.
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The above example is worked by means of the natural

sines and the common rule of three ; but the same thing

may be done by logarithms in the following manner :

As Radius

51 ° 31′
is to the cosine of the latitude 51 ° 31′

·

·

10.0000000

9.7939907

So arethe miles in a degree viz . 69 1ł 1.8397294

to a fourth term
1.6337201

which in the table of logarithms will be found answering

to 43.025 miles , as before nearly. A degree therefore on

the parallel of London contains nearly 43 miles, or about

75643 yards.

The demonstration ofthis rule is easy, if it be recollected

that the circumferences of two circles, or degrees ofthese

circles, are to each other in the ratio of their radii. But

the radius of the parallel of London is the cosine of the

latitude ; whereas the radius of the earth, or ofthe equator,

is the real radius or sine of 90°, and hence the above rule.

3d. If the circumference of the earth at the given

parallel be required, nothing is necessary but to multiply

the degree found as above by 360 : thus as a degree on the

parallel of London is equal to 43 miles, if this number be

multiplied by 360, we shall have 15480 miles, for the whole

circumference of the circle of that parallel.

The following table, which shows the number of miles

contained in a degree on every parallel , from the equator

to the pole, is computed on the supposition that the length

of the degrees of the equator are equal to those of the

meridian, at the medium latitude of 45°, which length is

nearly 69 English miles.

VOL. III. E
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Deg. Deg.

of
English

of
English of

Deg. English Deg.
of

English

miles. miles. miles. miles.
Lat. Lat. Lat. Lat.

0 69.07 23 63.51 46 47.93 69 24.73

1 69.06 24 63.03 47 47.06 70 23.60

2 69.03 25 62.53 48 .46.16 71 22.47

3 68.97 26 62.02 49 45.26 72 21.32

4 68.90 27 61.48 50 44.35 73 20.17

5 68.81 28 60.93 51 43.42 74 19.02

6 68.62 29 60.35 52 42.48 75 17.86

7 68.48 30 59.75 53 41.53 76 16.70

68.31 31 59.13 54 40.56 77 15.52

9 68.15 32 58.51

10 67.95 33

55

57.87 56 38.58 79

39.58 78 14.35

13.17

11 67.73 34

12 67.48 35

13 67.21 36

14 66.95 37

15 66.65

16 66.31 39

57.20 57 37.58 80 11.98

56.51 58 36.57 81 10.79

55.81 59 35.54 82 9.59

55.10 60 34.50 83 8.41

38 54.37 61 33.45 84 7.21

53.62 62 32.40 85 6.00

17 65.98 40 52.85 63 31.33 86 4.81

18 65.62 41 52.07 64 30.24 87 3.61

19 65.24 42 51.27 65 29.15 88 2.41

20 64.84 43 50.46 66 28.06 89 1.21

21 64.42 44

22 63.97 45

49.63

48.78

67

68

26.96 90 0.00

25 85

PROBLEM XII.

Given the latitude and longitude of any two places on the

earth, tofind the distance between them.

We must here observe, that the distance of any two

places on the surface of the earth, ought to be the arc of

the great circle intercepted between them. The distance

therefore of any two places, lying under the same parallel,

is not the arc of that parallel intercepted between them,

but an arc of a great circle having the same extremities as

that arc ; for on the surface of a sphere, it is the shortest

way from one point to another, as a straight line is upon a

plane surface.
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This being premised , it may be readily seen that this

problem is susceptible of several cases ; for the two places

proposed may lie under the same meridian, that is to say

have the same longitude, but different latitudes ; or they

may have the same latitude , that is lie under the equator

or under the same parallel ; or in the last place their longi

tudes and latitudes may be both different : there is also a

sub-division into two cases, viz. one where the two places

are in the same hemisphere, and another where one is in

the northern and the other in the southern hemisphere.

But we shall confine ourselves to the solution of the only

case which is attended with any difficulty.

For it is evident that if the two places are under the same

meridian, the arc which measures their distance is their

difference of latitude, provided they are in the same

hemisphere, or the sum of these latitudes if they are in

different hemispheres. Nothing then is necessary but to

reduce this arc into leagues, miles or yards, and the result

will be the distance of the two places in similar parts.

If the places lie under the equator, the amplitude ofthe

arc which separates them may be determined with equal

ease ; and can then be reduced into leagues, miles, &c.

Let us suppose then, which is the only case attended

with difficulty, that the places differ both in longitude and

latitude, as London and Constantinople, the former of

which is 28° 53′ farther west than the latter, and 10° 31′

farther north . If we conceive a great circle passing

through these two cities, the arc comprehended between

them will be found by the following construction.

From A as a centre (pl. 1 fig . 6 n° 1 ) , with any opening

of the compasses taken at pleasure, describe the semicircle

BCDE, representing the meridian of London. Take the

arc BF equal to 51° 31', which is the latitude of London,

in order to find its place in F, and draw the radius af.

In the same semi-circle, if the arcs BC and ED be taken

each equal to 41º, the latitude of Constantinople, the line

E 2
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CD will be the parallel of Constantinople, the place of

which must be found in the following manner.

On CD as a diameter, describe the semi- circle CGD ; and

in the circumference of it take the arc co equal to the

difference of longitude between London and Constanti-

nople, that is 28° 53′ ; then from the point & draw GH,

perpendicular to CD, to have in н the projection of the

place of Constantinople ; and from the point н draw нI ,

perpendicular to AF and terminated at 1 by the arc BCDE :

if the arc.ri be measured, it will give the distance required

in degrees and minutes. In this case it is about 22

degrees*.

If one ofthe places be on the other side of the equator,

as the city ofFernambouc in Brasil is in regard to London,

being in 7° 30′ of south latitude, the arc BC must be assumed

on the other side of the diameter BE ( fig. 6 n° 2), equal

to the latitude of the second place given, which is here

7° 30' ; and as the difference of longitude between London

and Fernambouc is 35 5' , it will be necessary to make

the arc CG = 35° 5′. By these means the arc FI will be

found to be equal to about 66° +, which reduced into miles

of 69.07 to a degree, gives 4558 miles, for the distance

between London and the above city of Brasil.

REMARK. When the distance between the two places is

not very considerable, as is the case with Lyons and

Geneva, the latter being only 36′ farther north than the

former, and more to the east by 6 minutes of time, which

is equal to 1° 30′ under the equator, the calculation may

be greatly shortened.

For this purpose, take the mean latitude of the two

places, which in this instance is 46° 4′, and find by the

preceding problem the extent of a degree on the parallel

passing through that latitude, which will be= 47.922

* Calculation by spherical trigonometry gives 22° 23′.

↑ Trigonometrical calculation gives 66° 15′.
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miles. The difference of longitude between these places

is 1 ° 30′, which on that parallel , allowing 47.922 miles to

à degree, gives 71'88 miles, and the miles corresponding

to the difference of latitude are 41'44.

If we therefore suppose a right angled triangle, one of

the sides of which adjacent to the right angle is 41.44 miles,

and the other 71-88, by squaring these two numbers, add-

ing them together, and extracting the square root of the

sum, we shall have the hypothenuse equal to 82.97 miles ;

which will be the distance, in a straight line, between

Lyons and Geneva,

As this is the proper place for making known the mea-

sures employed by different nations, in measuring itinerary

distances, it will doubtless be gratifying to our readers to

find here a table of them, especially as it is difficult to

collect them : for the same reason we have added some of

the itinerary measures of the ancients, the whole expressed

in English feet.

TABLE OF ITINERARY MEASURES,

Ancient and Modern.

ANCIENT GREECE.

The olympic stadium
·

A smaller stadium

The least stadium

The schænus

The parasang or farsang

Feet.

604

482

322

EGYPT.

19421

PERSIA.

14499·

ROMAN EMPIRE.

4833
The mile (milliare)

·

The rast or stadium

The berath or mile

JUDEA.

486

3640
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Feet.

ANCIENT GAUL.

The league (leug) 7249

The rast or league

GERMANY.

The mile 12 to a degree

The same 15 to a degree

The mile

ARABIA.

FRANCE.

14498

· 28995

24292

6929

The mile of 1000 French toises 6392

The small league of 30 to a degree 12159

The mean league of 25 to a degree 14594

The great or marine league of 20 to a degree
18238

SWEDEN.

The mile 35050

DENMARK.

The mile 25123

ENGLAND.

The mile
1

5280

SCOTLAND .

The mile 7332

IRELAND.

The mile 6724

SPAIN.

The league (legale of 5000 vares)

The common league 174 to a degree

The Roman mile

The Lombard mile

The Venetian mile

ITALY.

•

• 13724

20846

4909

5425

6341
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Feet.

POLAND.

The league 18223

RUSSIA.

The ancient werst •

The modern werst

The agash •

The little coss

The great coss

The gau of the Malabar coast

The nari or nali of the same •

CHINA.

The present li .

The pu, equal to 10 lis

4193

3497

TURKEY.

16211

INDIA.

8579

9857

38356

5753

1885

18857

These evaluations are extracted from a work by Dan-

ville, entitled Traité des Mesures itinéraires anciennes et

modernes, Paris, 1768 , 8vo, in which this subject is treated

with great erudition and sagacity ; so that, amidst the un-

certainty which prevails in regard to the precise relation

between these measures and ours, the evaluations given by

Danville may be considered as the most probable, and the

best founded. We have deviated therefore in many points

from those given by Christiani, in his book Delle Misure

d'ogni genere antiche è moderne. This work is valuable in

some respects ; but the subject is far from being examined

there in so profound a manner as it has been by Danville.

PROBLEM XIII.

To represent the terrestrial globe in plano.

A map, which represents the whole superficies of the

terrestrial globe on a flat surface, is called a planisphere,

or general map of the world.
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A map of this kind is generally represented in two

hemispheres ; because the artificial globe, which represents.

the globe of the earth , cannot be all seen at one view :

hence, when delineated in plano, it is necessary to divide

it into two halves, each of which is called a hemisphere.

It
may be thus represented in three ways.

The first is to represent it as divided by the plane of

the meridian into two hemispheres, one eastern the other .

western. This method is that generally used for a map of

the world, because it exhibits the old continent in the one

hemisphere, and the whole of the new in the other.

The second is to represent it as divided by the equator

into two hemispheres, the one northern and the other

southern. This representation is in some cases attended

with advantage, because the disposition of the most

northern and most southern countries are better seen.

Some maps of this kind have been published, in which the

tracks pursued by our modern navigators, and all the dis-

coveries made by them in the South Seas, are accurately

delineated,

The third method is to exhibit the globe of the earth as

divided by the horizon into two hemispheres ; the upper

and lower, according to the position of each.

Under certain circumstances this form has its advantages

also. The disposition of the different parts of the earth,

in regard to the proposed place, are better seen, and a

great many geographical problems can be solved by it

with much greater facility.

Father Chrysologue of Gy, in Franche-Comté, published

some years ago two hemispheres of this kind, the centre of

one of which was occupied by Paris ; and he added an

explanation of the different uses to which they might be

applied .

Twomethods may be employed in these representations.

According to one of them, the globe is supposed to be

seen by the eye placed without it ; and such as it would

appear at an infinite distance.
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According to the other, each hemisphere is supposed to

be viewed on the concave side ; as ifthe eye were placed

at the end of the central diameter, or at the pole of the

opposite hemisphere ; and it is conceived to be projected

on the plane of its base. Hence arise the different proper-

ties of these representations, which we shall here describe.

I. Whenthe globe is represented as seen onthe convex

side, and divided into two hemispheres by the plane of the

first meridian, the eye is supposed to be at an infinite

distance, opposite to the point where the equator is inter-

sected by the 90th meridian. All the meridians are then

represented by ellipses , the first excepted , which is repre-

sented by a circle, and the 90th which becomes a straight

line : the parallels of latitude also are represented by

straight lines. This representation is attended with one

great fault, viz , that the parts near the first meridian are

very much contracted, on account of the obliquity under

which they present themselves.

When the hemispheres are represented by the second

method , that is, as seen on the concave side , and projected

on the plane of the meridian, the contrary is the case . It

is supposed, in regard to the eastern hemisphere, that the

eye is placed at the extremity of the diameter which passes

through the place where the equator and the 90th meridian

intersect each other. In this case there is more equality

between the distances of the meridians ; and even the

parts of the earth represented in the middle of the map lie

somewhat closer than those towards the edges. Besides ,

all the meridians and parallels are represented by arcs of

a circle, which is very convenient in constructing the map.

It is attended however with this inconvenience, that the

parts ofthe earth have an appearance different from what

they have when seen from without. Asia for example is

seen on the left, and Europe on the right ; but this may

be easily remedied by a counter-impression.

II. If a projection of the earth on the plane of the
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equator be required , the eye according to the first method

may be supposed at an infinite distance in the axis pro-

duced : the pole will then occupy the centre ofthe map ;

the parallels will be concentric circles, and the meridians

straight lines. But it is attended with this inconvenience,

that the parts of the earth near the equator will be very

much contracted .

For this reason it will be better to have recourse to the

second method, which supposes the northern hemisphere

to be seen by an eye placed at the south pole, and vice

versa : as there is here an inversion of the relative position

of the places, it may be remedied in like manner by a

counter-impression.

III. If the eye be supposed in the zenith of any deter-

minate place, as of London for example, and at an infinite

distance, we shall have on the plane of the horizon a re-

presentation of the terrestrial hemisphere, the pole, of

which is occupied by London, and which is of the third

kind. But this representation will still be attended with

the inconvenience of the places near the horizon being too

much crowded .

This defect however may be remedied by employing

the second method , or by supposing the above hemisphere

to be seen through the horizon by an eye placed in the

pole ofthe lower hemisphere : the different meridians will

then be represented by arcs of a circle , as will also the

parallels : the circles representing the distance from the

proposed place, to all other places of the earth, will be

straight lines. The inversion of position may be remedied

as in the preceding cases.

The numerous uses to which this particular kind of pro-

jection can be applied , may be seen in a work published

by Father Chrysologue in 1774, and which was intended

as an explanation of his double map of the world, already

mentioned.

Various other projections of the globe might be con-
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ceived; and by supposing the eye in some other point

than the pole of the hemisphere, more equality might be

preserved between the parts lying near to the centre and

the edges of the projection ; but this would be attended

with other inconveniences, viz, that the circles on the sur-

face of the sphere or globe, would not be represented by

circles or straight lines, which would render a description

ofthem difficult. It is therefore better to adhere to the

projection where the eye is supposed to be in the pole of

the hemisphere opposite to that intended to be repre-

sented ; whether the terrestrial globe, as in common maps,

is to be projected on the plane of the first meridian , or

whether it be required to project it on the plane of the

equator, or on that of the horizon of any determinate

place,

PROBLEM XIV.

The latitude andlongitude oftwo places, London and Cayenne

for example, being given; tofind with what point of the

horizon the line drawnfromthe one to the other corresponds;

or what angle the azimuth circle drawn from theformer

ofthese places through the other makes with the meridian.

The solution of this problem is attended with very little

difficulty, if spherical trigonometry be employed , as it is

reduced to the following : the two sides of a spherical tri-

angle and the included angle being given, to find one of

the other two angles. But for want of trigonometrical

tables, which I had lost with all my baggage in conse-

quence of shipwreck, I found myself obliged on a certain

occasion to solve this problem by a simple geometrical

construction , which I shall here describe . I cannot how-

ever help mentioning the singular circumstance which

conducted me to it.

Being at the island of Socotora, near Madagascar, on

board a vessel belonging to the East India company, which

had touched there, I formed an acquaintance with a de-
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vout Mussulam, one of the richest and most respectable

inhabitants of the island . As he soon learned , by the

astronomical observations which he saw me make, that I

was an astronomer, he requested me to determine in hist

chamber the exact direction of Mecca ; that he might turn

himself towards that venerable place when he repeated his

prayers. I at first hesitated on account of the object ;

but the good Iahia (that was his name) begged with so

much earnestness, that I was not able to refuse . Having

neither charts nor globes, and knowing only the latitude

and longitude of the two places, I had recourse to a graphic

construction on a pretty large scale. I determined the

angle of position , which Mecca formed with the above

island ; and traced out, on the floor of his oratory, the

line in the direction of which he ought to look , in order

to be turned towards Mecca. Words can hardly express

how much the good Iahia was gratified by my compliance

with his wishes ; and I have no doubt, if still alive, that

he offers up grateful prayers to his prophet for my con-

version. But let us return to our problem, in which we

shall take, by way of example, London and Cayenne.

To resolve it by a geometrical construction, describe a

circle to represent the horizon of London , which we shall

suppose to be in the centre P: the larger this circle is , the

more correct will the operation be. Draw the two dia-

meters AB and CD, cutting each other at right angles ;

and having assumed DN, equal to the distance of London

from the pole, draw the radius NP, and PE perpendicular

to it, which will represent a radius of the equator : make

the arc EK equal to the distance of the second place from

the equator, which in regard to Cayenne is 4° 56 ' ; draw

also KF and кG, perpendicular to the radii PB and PN ;

and from the point & draw Go perpendicular to the di-

ameter AB, and continue it on both sides : if from o as a

centre, with the radius GK, a semi-circle RHQ be then

described on the line ROO , the points R and o will neces-
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sarily fall within the circle ; because PG being greater than

Po, we shall have, on the other hand, GK or OR less than

Os.

Having described the semi-circle RHQ, assume the arc

HI equal to the difference of the longitudes of the two

places, that is towards the side c , which we here suppose

to represent the west, and towards the south ifthe second

place lies to the west of London and farther south, which

is the case in the proposed example ; for Cayenne is situ-

ated to the west of London , and lies much nearer the equa-

tor. Hence it may be readily seen what ought to be done,

if the second place lay farther north, or to the east, &c.

The arc HI then having been taken equal to 52° 11 ', draw

IL perpendicular to the diameter RQ ; and draw HI till it

meet, in M, that diameter continued : if MF be then drawn,

which will cut LI in T, the point T will represent the pro-

jection of Cayenne on the horizon of London ; and con-

sequently, by drawing the line PT, the angle TPA will be

that formed by the azimuth of London passing through

Cayenne.

It will be found, by this operation, that the line of po-

sition of Cayenne, in regard to London, makes with the

meridian an angle of 61 ° 48′ , consequently Cayenne bears

from London south west by west west nearly.

It must however be allowed that this problem can be

solved mechanically, by means of a globe, with much more

ease and convenience ; for nothing more is necessary than

to rectify the globe for the latitude of London ; to screw

fast the quadrant of altitude to that point, and then to turn

it till the edge of it corresponds with Cayenne : ifthe num-

ber of degrees intercepted between it and the meridian be

then counted on the horizon, you will have the angle it

forms with the meridian. But as a globe may not always

be at hand, nor tables of sines and tangents to solve it

trigonometrically, this want may be supplied by the gra-

phic construction above described.
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THEOREM.

The heavenly bodies are never seen in the place where they

really are : thus, for example, the whole face of the sun

is seen above the horizon after he is actually set.

Though this has the appearance of a paradox, it is a

truth acknowledged by all astronomers, and which philoso-

phers explain in the following manner.

The earth is surrounded by a stratum of a fluid much

denser than that which fills the expanse of the celestial

regions. A small portion of the terrestrial globe enve-

loped by this stratum, commonly called the atmosphere,

is seen represented fig. 8 pl . 2. If the sun then be in s, a

central ray SE, when it reaches the atmosphere, instead of

continuing its course in a straight line , is refracted towards

the perpendicular , and assumes the direction EF. A spec-

tator at F, must consequently see the sun in the line FE ;

and as we always judge the object to be in the direct con-

tinuation of the ray by whichthe eye is affected, the spec-

tator at F sees the centre ofthe sun at s , a little nearer the

zenith than he really is ; and this deviation is greater, the

nearer the body is to the horizon, because the ray then

falls with more obliquity on the surface of the atmospheric

fluid .

Astronomers have found that when the body is on the

horizon, this refraction is about 33 minutes ; therefore

when the upper limb of the sun is in the horizontal line,

so that if there were no atmosphere he would seem only

beginning to peep over the horizon , he appears to be ele-

vated 33 minutes ; and as the apparent diameter of the sun

is less than 33 minutes, his lower limb will appear to touch

the horizon. Thus the sun is risen in appearance, though

he is not really so, and even when he is entirely below the

horizon. Hence follow several curious consequences,

which deserve to be remarked.

I. More than one half of the celestial sphere is always
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seen; though in every treatise on the globes it is supposed

that we see only the half ; for besides the upper hemi-

sphere, we see also a band round the horizon ofabout 33

minutes in breadth, which belongs to the lower hemi-

sphere.

II. The days are every where longer, and the nights

shorter, than they ought to be according to the latitude of

the place ; for the apparent rising of the sun precedes the

real rising, and the apparent setting follows the real set-

ting ; therefore, though the quantity of day and night

ought to be equally balanced at the end of the year, the

former exceeds the latter in a considerable degree.

III. The effect ofrefraction, above described , serves also

to account for another astronomical paradox , which is as

follows.

The moon may be seen eclipsed even totally and cen-

trally, when the sun is above the horizon.

Atotal and central eclipse ofthe moon cannot take place

but when the sun and moon are directly opposite to each

other. Wehere suppose that the reader is acquainted with

the causes of these phenomena, an explanation of which

may be found in every elementary work on astronomy.

When the centre of the moon therefore, at the time of a

total eclipse, is in the rational horizon, the centre ofthe

sun ought to be in the opposite point ; but by the effect

ofrefraction these points are raised 33 minutes above the

horizon. The apparent semi-diameter of the sun and

moon being only about 15 minutes ; the lower limbs of

both will appear elevated about 18 minutes.

Such is the explanation of a phenomenon which must

take place at every central eclipse of the moon ; for there

is always some place of the earth where the moon is on the

horizon at the middle of the eclipse.

IV. Refraction enables us to explain also a very com-

mon phenomenon, viz , the apparent elliptical form ofthe

sun and moon, when on the horizon ; for the lower limb



64 ASTRONOMY AND GEOGRAPHY.

of the sun corresponding, we shall suppose, with the

rational horizon, is elevated 33 minutes by the effect of

refraction ; but the upper limb being really elevated 30

minutes, (which is nearly the apparent diameter of that

luminary at its mean distances , ) is elevated in appearance

by refraction no more than 28 minutes above its real alti-

tude ; the vertical diameter therefore will appear shortened

by the difference between 33 and 28 , that is to say 5 mi-

nutes ; for if the refraction of the upper limb were equal

to that ofthe lower, the vertical diameter would be neither

lengthened nor shortened. The apparent vertical diameter

will thus be reduced to about 28 minutes.

But there ought to be no sensible decrease in the hori-

zontal diameter ; for the extremities of this diameter are

carried only a little higher in the two vertical circles pass-

ing through them , and which, as they meet in the zenith,

are sensibly parallel . The vertical diameter then being

contracted, while the horizontal diameter remains the

same, the result must be, that the disks of the sun and

moon will apparently have an elliptical form, or appear

shorter in the vertical direction than in the horizontal.

V. There is always more than one half of the earth en-

lightened by a central illumination ; that is to say by an

illumination, the centre of which is visible ; for if there

were no refraction , the centre of the sun would not be seen

till it corresponded with the plane of the rational horizon ;

but as the refraction raises it about 33 minutes, it will begin

to appear when it is in the plane of a circle parallel to the

rational horizon, and 33 minutes below it.

There is therefore a central illumination for the whole

hemisphere, plus the zone comprehended between that

hemisphere and a parallel distant from it 33 minutes ; and

there is a complete illumination from the whole disk of the

sun to the same hemisphere, and the zone comprehended

between the border ,of it, and a parallel about 16 minutes

farther below the horizon.
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What Ozanam therefore, or his continuator, endeavours

to demonstrate, after Deschales, with so much labour and

tediousness, (see Recreations Mathematiques, vol. II. p. 277

edit. of 1750 , ) is absolutely false ; because no allowance

is made for refraction.

PROBLEM XV.

Todetermine, without astronomical tables, whether there will

be an eclipse at any new orfull moon given.

Though the calculation of eclipses, and particularly

those of the sun, is exceedingly laborious ; those which

took place in any given year of the 18th century, that is

between 1700 and 1801 , may be found, without much dif-

ficulty, by the following operation. The method of find-

ing those of the present or 19th century, will be shown in

the additional remark to this problem.

For the New Moons.

Find the complete number of lunations between the new

moon proposed, and the 8th of January 1701 , according

to the Gregorian calendar, and multiply that number by

7361 ; to the product add 33890, and divide the sum by

43200, without paying any regard to the quotient. Ifthe

remainder after the division, or the difference between that

remainder and the divisor, be less than 4060 , there will be

an eclipse, and consequently an eclipse of the sun.

Example. It is required to find whether there was an

eclipse of the sun on the first of April 1764. Between the

8th January 1701 , and the 1st of April 1764, there were

782 complete lunations ; if this number then be multiplied

by 7361 , the product will be 5756302 ; to which adding

338990, we shall have 5790192 ; and this sum divided by

43200 will leave for remainder 1392 : this number being

less than 4060, shows that on the 1st of April 1764 there

was an eclipse of the sun, which was indeed the case ; and

this eclipse was annular to a part of Europe.

VOL. III. F
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For the Full Moons.

Find the number of complete lunations between that

which began on the 8th of January 1701 , and the conjunc-

tion which precedes the full moon proposed : multiply this

number by 7361 ; and having added to the product 37326,

divide the sum by 43200 : if the remainder after the divi-

sion, or the difference between the remainder and the di-

visor, be less than 2800, it will show that an eclipse of the

moon took place at that time.

Example. Let it be required to find whether there was

an eclipse at the full moon which took place on the 13th

of December 1769. Between the 8th of January 1701 ,

and the 28th of November 1769, the day of the new moon

preceding the 13th of December, there were 852 complete

lunations : the product ofthis number by 7361 is 6271572 ;

to which if we add 37326 , the sum will be 6308898. But

this sum divided by 43200, leaves for remainder 1698,

which being less than 2800, shows that there was an eclipse

ofthe moon on the 13th of December 1769, as indeed may

be seen by the almanacs for that year.

REMARK.-To determine the number of lunations,

which have elapsed between the 8th January 1701 , and

any proposed day, the following method , which is attend-

ed with very little difficulty, may be employed . Diminish

by unity the number of years above 1700, and multiply

the remainder by 365 ; to the product add the number of

bissextiles between 1700 and the given year, and the result

will be the number of days from the 8th of January 1701

to the 8th ofJanuary ofthe proposed year. Then add the

number ofdays from the 8th of January of the given year

to the day of the new moon proposed , or to that which

precedes the full moon proposed ; and having doubled the

sum, divide it by 59, the quotient will be the number of

lunations required.

Let us propose, by way of example, the 13th of De-
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The preceding new.

If 69 be diminished

cember 1769, the day offull moon.

moon fell on the 28th of November.

by unity, the remainder is 68 ; which multiplied by 365,

gives 24820. As in that interval there were 17 bissextiles,

we must add 17, which will give 24837. Lastly, the num

ber of days from January 8th to November 28th 1769 was

309, which added to the above sum make 25146. This

number doubled is 50292 ; which divided by 59, gives for

quotient 852. The number of complete lunations there-

fore, between the 8th of January 1701 and the full moon

December 13th 1769, was 852.

ADDITIONAL REMARK.- This easy method of finding

eclipses was invented by M. de la Hire, a celebrated

French astronomer ; but as it will require some alteration

to make it answer for the present century, we shall first

explain the principles on which it is founded, and then

show how this alteration is to be made.

1st. In regard to the full moons, we shall suppose that

the sun is at present in the ascending node, and the moon

in the descending : the former during the period of a lu̟-

nation will move from his node 30 degrees 40 minutes 15

seconds; which expressed in quarters of a minute are equal

to 7361. Hence M. de la Hire multiplies this number by

that of the complete lunations, betweenthe new moon on

the 8th of January 1701 , and the full moon proposed ; and

the product necessarily gives all the movements which the

sun has made during that time, to recede fromthe one node

andto approach the other.

2d. The sun at the time of the full moon in the month of

January 1701 , was distant from his node 155 degrees 31

minutes 30 seconds, which expressed in quarters of a mi-

nute, give 37326 : hence according to M. de la Hire this

number must be added to the product of 7361 multiplied

bythe lunations.

3d. The two nodes of the lunar orbit are distant from

each other 180 degrees, or 10800 minutes ; which multi-

F 2
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plied by 4, give 43200 : the distance therefore of the one

node from the other is represented by 43200.

4th. To obtain the true distance of the sun from the

node, 43200 must be subtracted from the sum mentioned

in the example, viz 6308898, as many times as possible ;

and hence, according to M. de la Hire, this sum must be

divided by 43200 , neglecting the quotient.

5th. The remainder after the last division gives the true

distance of the sun from his node, which we have hitherto

supposed to be the ascending node ; that is, the node by

which the moon passes fromthe southern to the northern

side of the ecliptic. If this remainder does not exceed

2800, there will be an eclipse, or at least it will be possible ;

because the sun will not be distant from his node 11 de-

grees 40 minutes. For 11 degrees 40 minutes are equal

to 700 minutes ; and 700 minutes multiplied by 4, give

2800 quarters of a minute.

6th. There may be an eclipse though the remainder after

the last division exceeds 2800 ; but in that case the differ-

ence between this remainder and the divisor will be less

than 2800. The reason of this is, that the sun is necessarily

distant from one of the two nodes less than 11 degrees 40

minutes. The one node indeed being distant from the

other only 43200 quarters of a minute, and as the sun can-

not recede from the one node without approaching the

other, if the difference between the remainder after the

division, and the divisor 43200, does not exceed 2800, there

will necessarily be one of the nodes from which the sun

will not be distant 11 degrees 40 minutes.

But it may here be objected , as the sun during the time'

of a lunation does not pass over 30 degrees of the ecliptic

from west to east , why have we asserted that if he be at

present in the ascending node, he will remove from it in

the course of a lunation, 30 degrees 40 minutes 15 se-

conds ?

This objection will not appear of much consequence,
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but to those who imagine that the nodes which the lunar

orbit forms with the solar are fixed and immoveable. This

is not the case ; these nodes have a periodical motion, that

is, they pass through the 12 signs ofthe zodiac in the course

of almost 19 years, not from west to east, as the sun, but

from east to west : at the end of a lunation then the sun

must be 30 degrees 40 minutes 15 seconds distant from the

node he has quitted ; because he not only moves from his

node, but his node moves from him.

In regard to new moons, the only difference in the

operation is, that 33890 is added to the product of the

lunations by 7361 , instead of 37326. At the time of the

new moon in January 1701 , the sun was distant from his

node 141 degrees 12 minutes 30 seconds ; which expressed

in quarters of a minute are equal to 33890. For an eclipse

of the sun therefore, 33890 must be added to the product

ofthe lunations by 7361. ·

It is to be observed also , that for solar eclipses, the re-

mainder must be less than 4060 ; which represents the

quarters of a minute contained in 16 degrees 55 minutes.

A solar eclipse indeed is not impossible but when the sun

and moon are at a greater distance from their nodes than

16 degrees 55 minutes : the remainder and divisor there-

fore must not be compared with 2800, as for eclipses ofthe

moon, but with 4060.

To applythe above rules to the present century.

It is evident from what has been said , that to find, by

the above method, the eclipses of the sun and moon in the

present century, nothing will be necessary but to substi-

tute, for the sun's distance from the node at the time of

the new and full moon in the month of January 1701, the

same distance at the time of the new and full moon in the

month ofJanuary 1801 , and to count the lunations between

the new moon in January 1801 , that is the 14th, and the

time proposed. But the sun's distance from the node at
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the time ofthe new moon onthe 14th day of January 1801 ,

was 280° 56' 44", and his distance from the node at the

time of the full moon on the 29th of January 1801 was

297' 15' 11 ". The former ofthese reduced to quarters of

a minute gives 67427, and the latter reduced in the same

manner gives 71341 .

Example 1st.-Let it be required to find whether there

will be an eclipse at the full moon on the 18th of March

1802. Between the 14th of January 1801 and the 3d of

March 1802, the day ofthe new moon preceding the 18th

of March, there will be 14 complete lunations. The pro-

duct of this number by 7361 is 103054 , to which ifwe add

71341 , the sum will be 174395. But this sum divided by

43200, leaves for remainder 1595 : which, being less than

2800, shows that there will be an eclipse of the moon on

the 18th of March 1802.

-
Example 2d. It is required to find whether there will

be an eclipse of the sun on the 3d of March 1802. Be-

tween the 14th of January 1801 and the 3d of March 1802 ,

there will be 14 complete lunations ; if this number be

multiplied by 7361 , the product will be 103054 , to which

adding 67427 , we shall have 170481 ; and this sum divided

by 43200, will leave for remainder 40881 : this number is

not less than 4060, but its difference from 43200 , which is

2319, is less than 4060 ; we may conclude therefore that

there will be an eclipse ofthe sun on the 3d of March 1802 .

PROBLEM XVI.

Construction of a machine which indicates the new and full

moons ; with the eclipses that have happened, or that will

happen, during a certain period oftime.

This ingenious machine, which deserves a place in the

cabinet of the Astronomer, was invented by M. de la Hire.

It consists of three circular pieces of copper, wood or

pasteboard, and an index (pl. 3 fig . 9) , which all turn

around a common centre. Towards the edge of the upper
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piece, which is the least, there are two circular bands, con-

taining small apertures ; the exterior ones of which exhibit

the new moons, with the image ofthe sun, and the interior

ones the full moons, with the image of the moon.

The edge of this circular piece is divided into 12 lunar

months ; each consisting of 29 days 12 hours 44 minutes ;

but in such a manner, that the end ofthe twelfth month,

which forms the commencement of the second lunar year,

surpasses the first new moon of the second, by 4 of the 179

divisions marked on the second circular piece, placed be-

tween the other two.

The edge of this piece is furnished with an index , one

of the sides of which forms part of a right line, that tends

tothe centre ofthe machine ; and which passes also through

the middle of one ofthe external apertures, that showsthe

first new moon of the lunar year. The diameter of each

ofthese apertures is equal to about 4 degrees.

The edge of the second circular piece is divided into 179

equal parts, corresponding to as many lunar years, each

consisting of 354 days and about 9 hours. The first year

begins at the number 179 , where the last ends.

The complete years are each marked with the figures

1, 2, 3 , 4, &c, placed at every four divisions ; and go four

times round, to make up the number 179, as seen in the

figure. Each lunar year comprehends four of these divi-

sions ; so that in this figure they anticipate one over the

other four of the 179 divisions of the edge.

On the same circular piece , and below the apertures of

the former, there are spaces, coloured black, at the two

extremities of the same diameter, which correspond to the

external apertures ; and which indicate the eclipses of

the sun other spaces coloured red, correspond to the in-

ternal apertures, and indicate the eclipses of the moon.

The quantity of each colour, which appears through the

openings, shows the extent of the eclipse. The middle

between the two colours, which is the place of the moon's
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EPOCHS OF THE LUNAR YEARS,

Corresponding to the Civil Years, for the Meridian of

London.

Lunar Civil
Months. D. H. M.

years. years.

179 1680 B · February
29 4 44•

1 • 1681 • February
17 13 33·

2

10

1682

1689. ·

February

November

6 22 21•

11 20 50•

20 • 1699 July · 26 12 57

30 • 1709 ·
April

9 5 3

40 1718 December 21 21 10• .

50 1728 B · September
3 13 15•

60 · 1738 . May
18 5 21•

70 • 1748 B •

80 • 1757

January

October

29 21 27

12 13 35•

90 · 1767 June 26 5 40

100 · 1777 March 8 21 46· ·

101 1778• February
• 26 6 34

102 1779
February

25 15 22

103 1780 B • February
4 0 10·

104 1781 • January 24 8 58·

105 1782• January 13 17 46·

106 1783
January

3· 2 34

107 1783 December 23 11 22• •

108

109

1784 B

1785

December 11 20 10·

•

December 1 4 59· •

Sin

110 · 1786 • November 21 13• 47

111 1787 November• • • 10 22 35

112 1788 B· · October 30 7 24.

113 1789· · October 19 16 12·

114 1790 · October 9 1 0

114 1791 ·

120 1796 B ·

September .

August

28 9 48

3 5 59·

130 1806
April

16 22 5
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Lunar

years. years.

140 • 1815

150 1825 •

Civil
Months.

December

September

D. H. M.

29 14 12

• 11 5 28

160 • 1835 • May 25 22 24

170 • 1845-

1 • 1854 •

February

October

5· 14 31

20 6 37

Method ofmaking the divisions on the circular pieces ofthe

instrument.

The circle of the largest piece is divided in such a man-

ner, that 368 degrees 2 minutes 42 seconds comprehend

354 days and somewhat less than 9 hours ; hence it follows,

that this circle ought to contain 346 days, and 15 hours,

which may be assumed without any sensible error as two

thirds of a day. But to divide a circle into 346 parts and

two thirds, reduce the whole into thirds, which in this case

make 1040 thirds, and then find the greatest multiple of 3

that can be easily halved , and is contained in 1040. This

number will be found in the double geometrical progres-

sion, the first or least term of which is 3 ; as for example

3, 6, 12, 24, 48, 96, 192 , 384, 768.

The ninth number of this progression, viz 768, is the

one required : subtract this number from 1040 ; and by.

the rule of three, find the number of degrees minutes and

seconds contained in the remainder 272, by saying, as 1040

thirds : 360 degrees :: 272 thirds : 94 degrees 9 minutes

23 seconds.

Then cut offfrom this circle an angle of 94° 9′ 23″, and

divide the rest of the circle always into halves. When

eight sub-divisions have been made, you will come to the

number 3 , which will be the arc of one day ; and ifthe arc

of 94° 9′ 23″ be divided by this also , the whole circle will

be divided into 346 days and two thirds ; for there will be

256 days in the larger arc, and 90 days two thirds in the

other. Each of these spaces will correspond to 1° 2′ 18 ″,

as may be seen by dividing 360 by 3463, and 10 days cor-
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respond to 10° 23' . By these means a table for dividing

this circular piece might be formed .

These days must afterwards be distributed to each ofthe

months of the year, according to the number which belongs

to them, beginning with March, and continuing to the

fifteenth hour of the tenth of February, which corresponds

to the commencement of March ; and the remainder of the

month of February passes beyond and above.

The circle ofthe second plate must be divided into 179

equal parts. For this purpose, find the greatest number

that can always be halved to unity, and which is contained

in 179. This number is 128, which taken from 179, leaves

for remainder 51. Then find , by the rule of three, what

part of the circumference is equal to this remainder, by

saying, as 179 : 360 degrees :: 51 parts : 102 degrees 34

minutes 11 seconds.

Having cut off from the circle an arc of 102° 34′ 11 ″,

divide the remainder always into halves, and after seven

sub-divisions you will come to unity. This part ofthe

circle therefore will be divided into 128 equal parts : then

with the same aperture of the compasses, divide the re-

maining arc into 51 parts ; and the whole circle will be

divided into 179 equal parts, each corresponding to 2 de-

grees and 40 seconds, as may be easily seen by dividing

360 by 179.

In the last place, to divide the circle of the upper plate,

take the fourth of its circumference, and add to it one of

the 179 parts or divisions of the edge of the middle plate :

if the compasses, with an aperture equal to the fourth thus

increased, be then made to turn four times, it will divide

the circle in the manner in which it ought to be ; since by

subdividing each of these quarters into three equal parts,

we shall have 12 spaces for the 12 lunar months ; so that

the end ofthe twelfth month, which forms the commence-

ment of the twelfth lunar year, surpasses the first new

moon by 4 of the 179 divisions marked on the middle

plate.
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The method of using this machine is contained in the

following problem .

PROBLEM XVII.

A lunar year being given; to find, by means of the preced-

ing machine, the days of the solar year corresponding to

it; and on which there will be new or full moon, or an

eclipse of the sun or moon.

Let the proposed lunar year be the 101st in the table of

epochs, which corresponds to the division of the middle

circular plate marked 101. Bring the edge of the index

ofthe upper plate to the division marked 101 ofthe middle

plate, where the commencement of the 101st lunar year

falls ; and as this commencement took place, according to

the table of epochs, on the 26th February 1778, at 6 hours

34 minutes, turn both the upper plates together in that

state, till the edge of the index , attached to the upper

plate, corresponds to the 6th hour, or a little more than

the fourth of the 26th of February marked on the lower

plate, at which time the first new moon of the proposed

lunar year happened.

Then, without altering the situation of the three plates,

extend a thread from the centre of the instrument, or turn

the moveable index , till it pass through the middle of the

aperture ofthe first full moon : the edge of the index will

then correspond to the middle of the 13th of March, which

ought to be the time of full moon, within a few hours ;

and as the aperture of this full moon does not present a

red colour, there was no eclipse of the moon.

To find what took place at the following full moon,

add to the new moon of the epoch 29 days 12 hours 44

minutes, and you will have the time of new moon on the

27th of March, at 19 hours 16 minutes ; and by perform-

ing the same operation, it will be found that there was no

eclipse either at that new moon, or at the full moon fol-

lowing.
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But, proceeding in this progressive manner, you will

come tothe new moon of November, which took place on

the 19th of that month, at 1 hour, 8 minutes ; then per-

forming the same operation, you will find the full moon

following on the 3d of November, at about 8 in the even-

ing, and it will be seen that there was a partial eclipse, the

aperture of the full moon being in that part filled with the

red colour.

The eclipses of the sun will be found in like manner :

they will be indicated by the black colour which will pre-

sent itself at the aperture of the new moons.

On the 24th of June 1778, for example , new moon took

place at 19 hours 8 minutes, or 8 minutes past 7 in the

evening ; and as the aperture of this new moon will be in

part occupied by the black colour which is below, we may

conclude that there was a partial eclipse of the sun on the

24th June 1778 in the evening : which was indeed the case.

By such a machine however, it is not possible, as may

be readily conceived, to determine the exact hour and

minute of an eclipse or of a lunation. It is enough, if it

indicates whether a conjunction or opposition takes place

in the ecliptic ; the rest must be determined by calculation,

for which precepts may be found in all works that treat

expressly on this subject.

To gratify the curiosity of the reader, we shall here

give a table of the eclipses, both of the sun and moon,

which will take place in the course of the present century;

with the different circumstances attending them, such as

the time of the middle of the eclipse, and its extent ; and,

in regard to eclipses of the moon, how many digits will be

eclipsed, &c.

We must however observe, that as this table is extracted

from animmense labour* , undertaken for anotherpurpose,

This labour is a table of the solar and lunar eclipses since the com-

mencement of the Christian æra, to the year 1900, inserted in l'Art de véri-

+

.
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perfect exactness must not be expected, either in extent

or time, and particularly in regard to the eclipses of the

sun, since it is well known that a solar eclipse, on account

of the moon's parallax , varies in quantity according to the

place of the earth ; that an eclipse, for example, which is

central and total to the regions of the southern hemisphere,

may be only partial and small to the northern. The

author therefore, to whom we allude, was satisfied with

indicating, rather than calculating, these eclipses ; and

left the more exact determinations to astronomers.

To render this table however more generally useful , we

shall add the following explanation. The hour marked

indicates the middle of the eclipse in true time ; signifies

one half, one fourth of an hour, morn. morning , aft.

afternoon . The quantity of the eclipse is expressed in

digits and divisions of a digit . A digit is one twelfth part

of the diameter of the luminary eclipsed. Six digits are

equal to one half of the disc ; four digits to one third , &c.

When an eclipse is marked O digits, the meaning is that it

is less than a quarter, or of a digit. When the moon is

within a minute of a degree or less ofthe centre, the eclipse

is marked central ; when within two minutes, almost

central. The duration of eclipses is nearly proportioned

to their greatness ; a total lunar eclipse will continue at

least 3 hours, and at most four hours and some minutes ;

a partial eclipse, which exceeds six digits, may continue

2 or 3 hours ; eclipses of between 3 and 6 digits , are of

two or three hours' duration ; those of two digits will last

about 1 hours ; those of 1 digit , about 1 hour ; and those

of digit, about of an hour. The time therefore of the

middle of an eclipse, and its duration being given, its

beginning and end may be nearly ascertained by the

following rule, viz : subtract its semi-duration from the

time given, and the remainder will be the hour of the

fier les Dates, by the Abbé Pingré, a celebrated astronomer, and member of

the Royal Academy of Sciences.
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beginning ; add the same quantity, and the sum will be

the time of the end. A lunar eclipse must begin and end

every where at the same time ; with this difference, that

so many hours must be added or subtracted as the one

place is to the eastward or westward of the other. Thus,

an eclipse that begins about 44 hours P.M. at Greenwich

observatory, will begin about 12 P.M. at Pekin, as the latter

is 7 hours 46 minutes eastward of the former.

In regard to solar eclipses, they are dated fromthe time

of the conjunction of the sun and moon. Though this

date be sensibly different from that of the middle of the

eclipse ; yet this difference will never amount to two

hours, and may be nearly found by the following rules :

1st. In the morning a solar eclipse must always happen

sooner, and in the evening later, than the time of the con-

junction. 2d. The nearer the sun is to the horizon, the

more sensible will be the difference. 3d. The acceleration

in the morning will be great in proportion to the elevation

of the sun at mid-day, three months before, and the re-

tardation in the evening will be great in proportion to the

sun's elevation, three months after the time proposed. It

thence follows, 1st. That the difference must be greatest

in the torrid zone ; and 2d . That the greatest difference in

the other latitudes must happen in the evening of the

vernal, and in the morning of the autumnal equinox ; for

the greatest meridian altitudes are observed three months

before and after these seasons.

The parts of the world where the eclipse is visible, are

marked. If there be no limitation , the whole or the

greater part of Europe or Asia must be understood.

Particular divisions of these quarters are denoted by the

letters E. W. N. and s. that is East, West, &c. When an

eclipse is said to be visible in E. or w. of Europe, &c, the

meaning is, that it is visible in all the parts of the region

specified , where the sun is sufficiently elevated above the

horizon at the time of conjunction. When it is marked as
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visible N. or s . of any particular region , all places in every

other direction are excluded . The terms small and great

for the most part refer to the eclipses, and not to the places

where they are visible. The latitude of those places is

marked in which an eclipse is central . South latitude is

indicated by the letter s . and north latitude by N. which

is frequently omitted. An 0, or cypher, denotes north

latitude.

The course of a central eclipse is ofttimes pointed out

by three numbers. The first and third show the latitude

in which the eclipse is central in the planes of the 5th and

155th meridians ; the second, included in crotchets, gives

the latitude in which it is central at mid-day. The place

where an eclipse is central at mid-day, may be easily

found , when the time of the true conjunction at Paris is

known. The interval between the true conjunction as

given, and mid-day, nearly shows how many hours and

minutes the required place is east or west of the meridian

of Paris.

It is to be observed also, that the limits of eclipses are

fixed to be the tropic of Cancer in Africa , and the northern

extremity of Lapland ; and from 5° to 6° N. lat. in Asia to

the Polar circle. In longitude, the limits are the 5th and

the 155th meridians, supposing the 20th to pass through

Paris.

The first and third numbers above mentioned , do not

always express the latitude, under the 5th and 155th

meridians. Sometimes an eclipse begins before the sun

has risen uponthe former, and ends after it has gone down

onthe latter meridian. In these cases, the first number

denotes the latitude in which the eclipse is central at sun-

rising ; andthe next the latitude in which it is central at

sun-set. The number included in crotchets is omitted

when there is no meridian within the limits prescribed,

under which the time of mid-day coincides with the middle

of the eclipse. It is to be observed also , that a number is

VOL. III. G
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sometimes added to point out the increase or decrease of

an eclipse.

A single character or number indicates the latitude in

which an eclipse is central in Europe or Africa at sun-set ;

and towards the eastern extremity of Asia at sun-rising.

An asterisk * denotes that the course of a central eclipse

extends many degrees beyond the equator. A dagger +

indicates that its course is beyond the pole ; and the ex-

cess is sometimes added to 90. Thus 94 intimates that

the eclipse referred to is central 4° beyond the pole. The

sign + affixed to pen, is used to express that the penumbra

is deep or strong.

An eclipse is visible from 32° to 64° north ; and as far

south ofthe place where it is central.

Table of Eclipses, from the beginning to the end of the

present Century.

1801. Eclipse of the moon, total , March 30th. 5½ morn.

cent. Of the sun, April 13th. 4 morn. Europe

N.E. Asia, N. dim. from w. to E. Of the sun, Sep-

tember 8th. 6 morn. Asia N.E. small . Of the

moon, total, September 22d. 7 morn.

1802. Of the moon, March 19th. 11 morn. 5 dig. Of

the sun, August 28th. 7 morn. Eur. Afr. Asia,

cent. 69 (59) 23 an. Ofthe moon partial, Septem-

ber 11th. 11 aft. 9 digits.

1803. Of the sun, August 17th . 8 morn. great part of

Eur. s. Afr. Asia, s . cent. 26 ( 12) * an.

1804. Ofthe moon partial, January 26th. 94 aft. Ofthe

sun, February 11th. 11 morn . Eur. Afr. Asia, w.

cent. 25 (22) 64. Of the moon partial, July 22d.

5 aft. 10 dig.

1805. Ofthe moon total , January 15th. 9 morn.

sun, June 26th. 11 aft. part of Asia N.E.

moon total, July 11th. 9 aft.

Of the

Of the

1806. Of the moon partial, January 5th. O morn. 9 dig.
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Ofthe sun, June 16th. 4 aft. Eur. Afr. w. cent.

31-16 tot. Of the moon partial, June 30th. 10

aft. pen. Of the sun, December 10th. 2 morn.

small, Asia, s. E.

1807. Ofthe moon partial, May 21st. 5 aft . 11 dig. Of

the sun, June 6th. 5 morn. small, Asia s.E. Of

the moon partial , November 15th. 83 morn. 3 dig.

Of the sun, November 29th. merid. all Eur. Afr.

Asia, w. cent. 18 (13) 9-25.

1808. Of the moon total, May 10th. 8 morn. Of the

moon total, November 3d. 9 morn.
Of the sun,

November 18th. 3 morn. great part of Asia N. incr.

from w. to E.

1809. Of the moon partial, April 30th. 1 morn. 10 dig.

Ofthe moon partial, October 23d. 9 morn. 9 dig.

1810. Of the sun , April 4th. 2 morn. Asia, s.E. cent.

10 an.

cent.

1811. Of the moon partial, March 10th . 6 morn. 5 dig.

Of the moon partial, September 2d. 11 aft. 7 dig.

1812. Of the moon total, February 27th. 6 morn. almost

Of the moon total, August 22d. 3 aft.

1813. Of the sun, February 1st. 9 morn. Eur. Afr. Asia,

cent. 32-24 (26) 55 an. Of the moon partial,

February 15th. 9 morn. 73 dig. Ofthe moon partial,

August 12th. 34 morn. 4 dig.

1814. Of the sun, January 21st. 2 aft. Eur. s.E. Afr.

*
cent. 10 an. Ofthe sun, July 17th. 7 morn. Eur.

s. Afr. E. Asia, s. cent. 14-33 (31 ) 5 tot. Ofthe

moon partial, December 26th. 113 aft. 6 dig.

1815. Ofthe moon total , June 21st . 6 aft. 124 dig . Of

the sun, July 7th. O morn. Eur. and Asia, N. cent.

62+tot. Ofthe moon partial, December 16th, 1

aft.

1816. Of the moon total , June 10th. 1 morn. Of the

sun, November 19th. 10 morn. Eur. Afr. Asia,

G2
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w. cent. 59 (38 ) 33-37 tot . Of the moon partial ,

December 4th. 9 aft . 73 dig.

1817. Of the sun, May 16th. 7 morn. Asia, s . cent. *

(7) 12-7 an. Of the moon partial, May 3d. 3

aft. pen. +. Of the sun , November 9th. 23 morn.

Asia, E. cent. 26-5 s . tot.

1818. Of the moon partial, April 21st . O

morn.Of the sun, May 5th . 7

cent. 13 (51 ) 60-53 an.

October 14th. 6 morn. 2 dig.

morn. 54 dig.

Eur. Afr. Asia,

Of the moon partial,

1819. Of the moon total , April 10th. 13 aft. Of the sun,

April 24th. merid. N. of Eur. and of Asia, dim .

from w. to E. Of the sun, September 19th . 1 aft.

Eur. N.E. small . Of the moon total, October 3d.

3½ aft.

1820. Ofthe moon partial, March 29th. 7 aft. 6 dig. Of

the sun, September 7th . 2 aft. Eur. Afr. Asia, w.

cent. 62-29 an. Of the moon partial , September

22d. 7 morn. 10 dig.

1821. Of the sun, March 4th. 6 morn. Asia, s.E. cent.

(7. s.) 24 tot.

1822.. Of the moon partial, February 6th . 5 morn . 41

dig. Of the moon partial, Aug. 3d. 03 morn. 9 .

dig....

1823. Of the moon total, January 26th. 5 aft. Of the

sun, February 11th. 3 morn. great part of Asia N.

small. Of the sun , July 8th . 63 morn. Eur. and

Asia, N. Of the moon total , July 23d. 3. morn.

1824. Ofthe moon partial, January 16th. 9 morn. 9 dig.

Of the sun, June 26th. 11 aft. Asia, E. cent.

27-41 tot. Of the moon partial, July 11th. 43

morn. 1 dig. Of the sun, December 20th. 11 morn.

Indies, s. small .

1825. Of the moon partial, June 1st. O morn. Of the

sun, June 16th . O aft. Afr. small cent. * (0) *.

3

"2
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Of the moon partial, November 25th. 4 aft. 21

dig.

1826. Ofthe moon total , May 21st . 3 aft. Of the moon

total, November 14th. 4 aft. Of the sun , Novem-

ber 29th. 11 morn. Eur. Afr. Asia, w.

1827. Ofthe sun, April 26th . 3 morn.

N. cent. 49 (81) 84 an.

Eur. N.E. Asia,

Of the moon partial, May

11th. 8 morn. 114 dig. Of the moon partial ,

November 3d. 5 aft. 10 dig.

1828. Of the sun, April 14th . 92 morn. small part of Eur.

S.E. Afr. Asia, cent. 2 s . ( 18) 29-26. Of the sun,

October 9th. O morn. Asia s . E. cent. 7 * an.

1829. Ofthe moon partial, March 20th. 2 aft. 4 dig. Of

the moon partial , September 13th. 7 morn. 5 dig.

Of the sun, September 28th. 2 morn. Asia, E.

cent. 59-40 an.

1830. Of the sun, February 23d. 5 morn. Asia, N. dim.

from w. to E. Of the moon total, March 9th. 2

aft. Ofthe moon total, September 2d. 11 aft. cent.

1831. Of the moon partial, February 26th. 5 aft . 8 dig.

Ofthe moon partial, August 23d. 10 morn. 6 dig.

1832. Of the sun, July 27th. 2 aft. Eur. s . Afr. Asia,

S.E. cent. 23 N. 3 s . tot.

1833. Of the moon partial, January 6th . 8 morn, 5 dig.

Of the moon partial , July 2d. 1 morn. 104 dig. Of

the sun, July 17th. 7 morn. Eur. Afr. E. Asia N.

cent. 83 (80) 73 tot. Ofthe moon total , December

26th. 10 aft..

1834. Of the moon total, June 21st . 8 morn. Of the.

moon partial, December 16th. 54 morn. 8 dig.

1835. Of the sun, May 27th. 1 aft. small part of Eur.

Afr. Asia, s.w. cent. 7-8-3 s. an.

partial, June 10th . 11 aft. O

Ofthe moon

dig . Of the sun ,

of Eur. s.w.November 20th. 11 morn . small part

Afr. small part of Asia, s.w. cent. 4 (11 s.) * tot.
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1836. Of the moon partial, May 1st. 8 morn. 44 dig.

Of the sun, May 15th. 2 aft. Eur. Afr. Asia, w.

cent. 53-54-44 an. Of the moon partial, Oc-

tober 24th. 13 aft. 1½ dig.

1837. Ofthe moon total, April 20th. 9 aft. Of the sun,

May 4th. 74 aft. small part of Eur. N. great part

of Asia, N. E. Of the moon total, October 13th.

11 aft.

1838. Of the moon partial, April 10th . 24 morn. 7 dig.

Of the moon partial , October 3d . 3 aft. 03 dig.

1839. Of the sun. March 15th. 2 aft. Eur. s . Afr.

Asia, s . w. cent . 17-26 tot. Ofthe sun, Septem.

ber 7th 10% aft. extrem. of Asia, E. cent. 37. an.

1840. Of the moon partial , February 17th . 2 aft. 44 dig.

Of the sun, March 4th. 4 morn . cent. 16 (37) 48.

Ofthemoon partial, August 13th . 7 morn. 74 dig.

1841. Ofthe moon total, February 6th. 24 morn. Ofthe

sun, February 21st. 11 morn. almost all Eur. N.

Asia, N.w. dim. from w. to E. Of the sun, July

18th. 2 aft. great part of Eur. N.E. Asia , N.w. incr .

from w. to E. Of the moon total, August 2d. 10

morn.

1842. Of the moon partial, January 26th. 6 aft. 9 dig.

Of the sun, July 8th. 7 morn. Eur. Afr. Asia, cent.

35-50 (49) 21 tot. Of the moon partial, July

22d. 11 morn. 3 dig.

1843. Of the moon partial , June 12th . 8 morn. pen. Of

the moon partial, December 7th. O morn. 24 dig.

Of the sun, December 21st. 54 morn. Asia, cent.

25 (8) 21 tot.

1844. Of the moon total, May 31st. 11 aft. Of the

moon total, November 25th. 04 morn.

1845. Of the sun , May 6th . '10 morn. almost all Eur.

N.w. Asia, N.w. cent. 90 (98) † an. Ofthe moon

total , May 21st. 4 aft. 124 dig . Ofthe moon

partial, November 14th. 1 morn. 10% dig.
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1846. Of the sun, April 25th. 51 aft. Eur. and Afr. w.

cent. 28. - 26. Ofthe sun, October 20th . 81 morn.

Eur. s.w. Afr. Asia, s. w. cent. ( 18 s. ) * an.

1847. Of the moon partial, March 31st. 9 aft. 2 dig.

Of the sun, September 24th. 3 aft . 4 dig. Ofthe

sun, October 9th. 9 morn. Eur. Afr. Asia, cent.

58 (31) 16-17 an.

1848. Of the moon total, March 19th. 9 aft. Of the

moon total, September 13th. 61 morn. Of the

sun, September 27th. 10 morn. Eur. N.E. Asia, N.

1849. Of the sun , February 23d. 14 morn. Asia, E. cent.

31-28-32 an. Ofthe moon partial , March 9th.

1 morn. 8 dig. Of the moon partial, September

2d. 54 aft. 7. dig.

1850. Of the sun, February 12th. 61 morn. Asia, s.E.

cent. * ( 11 s.) 17 N. an. Of the sun, August 7th.

10 aft. extrem. of Asia, E. cent . 14 tot.

1851. Of the moon partial, January 17th. 5 aft. 5 dig.

Ofthe moon partial , July 13th. 7 morn. 8 dig.

Of the sun, July 28th. 24 aft. Eur. Afr. Asia, w.

cent. 70-39 tot.

1852. Of the moon total, January 7th. 61 morn. Of

the moon total, July 1st. 34 aft. Of the sun, De-

cember 11th. 4 morn. Asia, E. cent. 59 (36) 35 tot.

Ofthe moon partial, December 26th. 1 aft. 8 dig.

1853. Ofthe moon partial, June 21st. 6 morn. 2 dig.

1854. Of the moon partial, May 12th. 4 aft. 3 dig.
Of

the moon partial, November 4th. 91 aft . I dig.

1855. Ofthe moon total , May 2d. 44 morn.
Ofthe sun,

May 16th. 21 morn. great part of Asia, N. dim.

from w. to E. Of the moon total, October 25th.

8 morn.

1856. Ofthe moon partial, April 20th. 9 morn. 8 dig.

Ofthesun, September 29th. 4 morn. Asia, N. cent .

84 (67) 66 an. Ofthe moon partial, October 13th.

114 aft. 114 dig.
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1857. Of the sun, September 18th. 6 morn. Eur. and

-Afr. E. Asia, s . cent. 40 ( 12) 12 s. an.

1858. Of the moon partial , February 27th. 104 aft. 4 dig.

Of the sun, March 15th . 04 aft. Eur. Afr. Asia , w.

cent. (40) 68. Ofthe moon partial, August 24th.

24 aft. 54 dig.

1859. Of the moon total , February 17th . 11 morn.
Of

the sun, July 29th. 9 aft. small, Asia, N.E. Ofthe

moon total, August 13th. 43 aft.

1860. Of the moon partial, February 7th. 2 morn . 9½

dig. Of the sun, July 18th. 2 aft. Eur. Afr. Asia,

w. cent. 49-16 tot. Of the moon partial , August

1st. 5 aft. 44 dig.

1861. Of the sun, January 11th . 3 morn. small , Asia,

s.w. Ofthe sun, July 8th . 2 morn. Asia , s.E. cent.

* 9 an. Of the moon partial , December 17th. 81 .

morn. 2 dig. Of the sun, December 31st . 2 aft.

all Eur. Afr. cent. 17-36 tot.

1862. Of the moon total , June 12th . 63 morn. Of the

moon total, December 6th . 8 morn.
Of the sun,

December 21st . 5 morn. great part of Asia, N.

1863. Of the sun , May 17th . 5 aft. great part of Eur. N.

Ofthe moon total, June 2d. O morn . Ofthe moon

partial, November 25th. 9 morn. 11 dig.

1864. Of the sun , May 6th. 03 morn. Asia, s.E. cent. 6

G -23 .

1865. Of the moon partial, April 11th . 5 morn. 1 dig.

Of the moon partial , October 4th . 11 aft . 33 dig .

Of the sun, October 19th. 5 aft. extrem. of Eur.

and of Afr. w. cent. 16 an.

1866. Of the sun, March 16th . 10 aft . small , Asia , N.E.

Of the moon total , March 31st . 5 morn. Of the

moon total, September 24th. 23 aft. Of the sun,

October 8th. 5 aft. Eur. w. dim. from N. to s.

1867. Of the sun , March 6th. 10 morn. Eur. Afr. Asia,

cent. 31 (45) 69 an. Of the moon partial, March



LIST OF ECLIPSES. 89

20th. 9 morn. 94 dig. Ofthe moon partial, Septem-

ber 14th. 1 morn. 8 dig.

868. Of the sun, February 23d . 24 aft. Eur. s. Afr.

Asia, s.w. cent. 9-21 . an. Of the sun, August

18th. 5 morn. Eur. s. E. Afr. Asia, s . cent. 14-18

(11 ) O tot.

869. Of the moon partial, January 28th. 1 morn. 5

dig. Of the moon partial, July 23d . 2 aft . 63 dig.

Of the sun, August 7th. 10 aft. Asia, N.E. cent. 46

tot.

870. Of the moon total, January 17th . 3 aft. Of the

moon total, July 12th . 11 aft. Of the sun, De-

cember 22d. 03 aft . Eur. Afr. Asia, w. cent. (36)

49 tot.

871. Of the moon partial , January 6th. 9 aft. 8 dig.

Of the sun, June 18th . 24 morn. Asia, s.E. small .

Of the moon partial , July 2d. 1 aft. 4 dig. Of

the sun, December 12th. 4 morn. Asia, s . cent.

17 * tot.

872. Ofthe moon partial , May 22d . 11½ aft . 13 dig. Of

the sun, June 6th. 3 morn. Asia , cent. 8 (42) 43

an. Ofthe moon partial , November 15th . 5 morn.

0 dig.

1873. Of the moon total, May 12th. 11 morn . Of the

sun, May 26th. 9 morn. great part of Eur. N.W.

Afr. w. Asia, N. dim. from w. to E.

total, November 4th. 4 aft.

1874. Of the moon partial , May 1st, 4

Of the moon

aft. 94 dig. Of

the sun, October 10th. 113 morn. Eur. Afr. Asia,

w. cent. 82 (74) 55 an. Of the moon partial, Octo-

ber 25th. 8 morn. 12 dig.

1875. Of the sun, April 6th. 7 morn. Asia, s.E. cent. *

(1) 21 tot. Of the sun, September 29th. 13 aft.

small part of Eur. s.w. Afr . Asia, s.w. cent . 13 ( 10)

13 s. an.
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1876. Ofthe moon partial, March 10th. 63 morn. 3 dig.

Ofthe moon partial, September 3d. 9 aft. 4 dig.

1877. Ofthe moon total , February 27th. 7 aft. Ofthe

sun, March 15th. 3'morn. great part of Asia, N.

dim. from w. to E. Of the sun, August 9th. 5

morn. Asia, N.E. small.

23d. 11 aft . almost cent.

Ofthe moon total, August

1878. Ofthe moon partial, February 17th. 11½ morn. 91

dig. Ofthe sun July 29th. 9 aft. extrem. of Asia,

E. cent. 52 tot. Ofthe moon partial, August 13th

Omorn. 6 dig.

1879. Of the sun, January 22d. merid. small, Asia, s.w.

cent. * 7 an. Of the sun, July 19th. 9 morn.

Eur. s. Afr. Asia, s . w. cent. 8–16 ( 12)
an. Of

the moon partial , December 28th. 4 aft. 14 dig.

1880. Ofthe sun , January 11th. 11 aft. Asia, E. cent. 16

tot. Of the moon total , June 22d . 2 aft. 123 dig.

Of the moon total, December 16th, 4 aft. Of the

sun, December 31st. 2 aft. Eur. Afr. dim. from N.

to s. "

1881. Of the sun, May 28th. O morn. Asia, N. dim. from

W. to E. Of the moon total, June 12th. 74 morn.

Of the moon partial , December 5th. 5 aft. 111

dig.

an.

1882. Ofthe sun , May 17th. 8 morn. Eur. s.E. Afr. Asia,

cent. 10 (38) 42-26 tot. Of the sun, November

11th. O morn. Asia, s.E. cent. 2 *

1883. Ofthe moon partial , April 22d . merid. O dig. Of

the moon partial, October 16th. 73 morn. 3 dig.

Of the sun, October 31st. 03 morn. Asia, E. cent.

46 an.

1814. Of the sun, March 27th. 6 morn. small, great part

of Eur. N.E. dim. in Asia, from w. to E. Of the

moon total, April 10 merid. Of the moon total,

October 4th. 103 aft. Of the sun, October 19th.

1 morn. Asia, N.
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1885. Ofthe moon partial , March 30th. 5 aft. 10 dig. Of

the moon partial, September 24th . 8 morn. 9 dig.

1886. Of the sun , August 29th . 1 aft. extrem. of Eur..

s.w. Afr. cent. 6 (4) * tot.

1887. Of the moon partial, February 8th. 10 morn. 51

dig. Of the moon partial, Aug. 3d. 9 aft. 5 dig.

Of the sun, Aug. 19th. 6 morn. Eur. and Afr. E.

Asia, cent. 54-62 (54) 29 tot.

1888. Of the moon total , January 28th. 11 aft. Of the

moon total, July 23d . 6 morn. almost cent.

1889. Of the moon partial, January 17th. 5 morn . 84

dig. Ofthe moon partial , July 12th. 9 aft. 5 dig.

Of the sun, December 22d. 1 aft. Asia, s.w. cent.

* 5 tot.

1890. Ofthe moon partial, June 3d. 6 morn. O dig. Of

the sun, June 17th. 10 morn. Eur. Afr. Asia, cent.

25 (38) 19 an. Of the moon partial, November

26th. 2 aft . O dig.

1891. Of the moon total , May 23d. 7 aft. Of the sun,

June 6th. 4 aft. great part of Eur. N. cent. † . Of

the moon total, November 16th. O morn.

1892. Of the moon partial, May 11th. 11 aft. 114 dig.

Ofthe moon total , November 4th. 4 aft. 12) dig.

1893. Ofthe sun, April 16th. 3 aft. Eur. s . Afr. cent. 20→

18 tot.

1894. Ofthe moon partial, March 21st. 23 aft. 3 dig. Of

the sun, April 6th. 4 morn. Eur. N.E. Asia, cent.

10 (43) 8. Of the moon partial, September 15th

44 morn. 23 dig. Ofthe sun, September 29th. 5}

morn. Afr. E. small.

1895. Ofthe moon total , March 11. 4 morn. Ofthe sun,

March 26th. 10 morn. almost all Eur. N.w. Asia, N.

Of the sun, August 20th, 0}dim. from w. to E.

aft. Asia, N. small .

4th. 6 morn.

Ofthe moon total , September

1896. Of the moon partial, February 28th. 8 aft. 10 dig.
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Ofthe sun, August 9th. 4 morn. Eur. E. Asia, cent.

60-68 (59) 49 tot. Of the moon partial, August

23d. 7 morn. 8 dig.

1897. No eclipse.

1898. Ofthe moon partial, January 8th. O morn . 1 dig.

Of the sun, January 22d . 8 morn.

all Asia, cent. 11-5 ( 10) 44 tot.

Eur. E. Afr. E.

Of the moon

partial, July 3d. 94 aft. 11 dig. Of the moon total,

December 27th. 12 aft.

1899. Of the sun , January 11th. 11 aft, extrem. of Asia,

E. dim. from N. to s. Of the sun, June 8th. 7

morn. Eur. w. and N. Asia, N. Ofthe moon total ,

June 23d. 2 aft. Of the moon partial, December

dig.17th. 1 morn. 11

1900. Ofthe sun , May 28th. 34 aft. Eur. Afr. cent. 45-26

tot. Of the moon partial, June 13th. 4 morn. pen.

+. Of the sun, November 22d. 8 morn. small

eclipse, in Afr. cent. 3 s . an.

PROBLEM XVIII.

To observe an Eclipse ofthe Moon.

To observe an eclipse of the moon, in such a manner as

to be useful to geography and astronomy, it will be

necessary, in the first place, to have a clock or watch that

indicates seconds, and which you are certain is so well

constructed as to go in a uniform manner : it ought to be

regulated some days before by means of a meridian, if you

have one traced out, or by some of the methods employed

for that purpose by astronomers ; and you must ascertain

how much it goes fast or slow in 24 hours ; that the differ-

ence may be taken into account at the time of the obser-

vation.

You ought to be provided also with a refracting or re-

flecting telescope, some feet in length ; for the longer it is, ›

the more certain you will be of discerning exactly the

moment ofthe phases of the eclipse ; and , if you are desir-
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ous of observing the quantity of the eclipse, it should be

Furnished with a micrometer.

When you find the moment ofthe eclipse approaching,

which may be always known either by a common Almanac,

or the Ephemerides published by the astronomers in differ-

ent parts of Europe, you must carefully remark the instant

when the shadow ofthe earth touches the moon's disk. It

is necessary here to mention, that there will always be

some uncertainty on account of the penumbra ; because

it is not a thick black shadow which covers the moon's

disk, but an imperfect one, that thickens by degrees. This

arises from the sun's disk being gradually occulted from

the moon ; and hence it is difficult to fix with exactness

the real limits of the shadow, and the penumbra. Here,

as in many other cases, observers are enabled by habit to

distinguish this boundary ; or are at least prevented from

falling into any great error.

When you are certain that the real shadow has touched

the moon's disk, the time must be noted down ; that is to

say, the hour, minute, and second, at which it happened.

In this manner you must follow the shadow on the

moon's disk, and remark at what hour, minute , and second

the shadow reaches the most remarkable spots : all this

likewise must be noted down.

If the eclipse is not total, the shadow, after having

covered part of the lunar disk, will decrease. You must

therefore observe in like manner the moment when the

shadow leaves the different spots it before covered, and

the time when the disk of the moon ceases to be touched

by the shadow, which will be the end of the eclipse.

If the eclipse is total, so that the moon's disk remains

some time in the shadow, you must note down the time

when it is totally eclipsed, as well as that when it begins

to be illuminated , and the moment when the shadow leaves.

the different spots.

When this is done, if the time of the commencement of
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the eclipse be subtracted from that of the end, the re-

mainder will be its duration ; and if half the duration be

added to the time ofcommencement, the result will be the

middle.

To facilitate these operations, astronomers have given

certain names to most of the spots with which the moon's

disk is covered. The usual denominations are those of

Langrenus, who distinguished the greater part of them by

the names of astronomers and philosophers who were his

contemporaries, or who had flourished before his time.

Some others have been since added ; but there was no room

for the most celebrated of the moderns, such as Huygens,

Descartes, Newton, and Cassini . Hevelius, far more ju-

dicious in our opinion, gave to these spots names taken

from the most remarkable places of the earth : in this man-

ner he calls the highest mountain of the moon, mount

Sinai, &c. This however is a matter of indifference, pro-

vided there be no confusion . We have here subjoined a

representation of the moon, pl. 4 , by means of which and

the following catalogue they can be easily known, on com-

paring the numbers in the latter with those in the former.

1 Grimaldi

2 Gallileo

3 Aristarchus

4 Kepler

5 Gassendi

6 Schikard

7 Harpalus

8 Heraclides

9 Lansberg

10 Reinhold

11 Copernicus

12 Helicon

13 Capuanus

14 Bulliald

15 Eratosthenes

16 Timocharis

17 Plato

18 Archimedes

19 Isle of the middle Bay

20 Pittacus

21 Tycho

22 Eudoxus

23 Aristotle

24 Manilius

25 Menelaus

26 Hermes

27 Posidonius

28 Dionysius
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29 Pliny

30 Catharina, Cyrillus,

Theophilus

31 Fracastorius

32 The acute promontory

33 Messala

34 Promontory of dreams

A Sea of humours

B Sea of clouds

C Sea of rain

D Sea of nectar

35 Proclus

36 Cleomedes

37 Snell and Furner

38 Petau

39 Langren

40 Tarunt

E Sea of tranquillity

F Sea of serenity

G Sea of fecundity

H Sea of crises .

PROBLEM XIX.

To observe an Eclipse ofthe Sun.

1st. The same precautions, in regard to the measuring

oftime, must be employed in this case, as in that of lunar

eclipses ; that is to say, care must be taken to regulate a

good clock by the sun on the day before, or even on the

day of the eclipse.

2d. A good telescope must be provided , of at least three

or four feet in length ; which must be directed towards the

sun on a convenient supporter. If you are then desirous

to look at the sun without the telescope, you must employ

a piece of smoked glass or rather two pieces, the smoked

sides of which are turned towards each other ; but are

prevented from coming into contact by means of a small

diaphragm cut from a card placed between them. These

two bits of glass may be then cemented at the edges, so as

to make thein adhere. By means of these glasses inter-

posed between the eye and the telescope, you may then

view the sun without any danger to the sight.

About the time when the eclipse ought to commence,

you must carefully observe the moment when the solar

disk begins to be touched by the disk of the moon : this

period will be the commencement of the eclipse. Ifthere
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are any spots on the solar disk , you must observe the time

when the moon's disk reaches them, and also when it again

permits them to appear ; in the last place, you must ob-

serve, with all possible attention, the instant when the

moon's disk ceases to touch the solar disk, which will be

the end ofthe eclipse.

But if, instead of observing in this manner , you are de-

sirous to make an observation susceptible of being seen by

a great number of persons at the same time, affix to your

telescope, on the side of the eye-glass, an apparatus to

support a piece of very straight paste-board at the distance

of some feet. This paste-board ought to be perpendicular

to the axis of the telescope, and, if it be not sufficiently

white, you must paste to it a sheet of white paper. Make

the end of the telescope, which contains the object glass,

to pass through the window-shutter of a darkened room,

or one rendered considerably obscure ; and if the axis of

the telescope be directed to the sun, the image of that

luminary will be painted on the paper, and of a larger

size according as the paper is at a greater distance. It is

necessary here to remark, that before you begin to observe,

a circle of a convenient size must be delineated on it, so

that, by moving it nearer to or farther from the telescope,

the image of the sun may be exactly comprehended within

it. The space contained within this circle must be divided

by twelve other concentric circles, equally distant from

each other, so that the diameter of the largest may be di-

vided into 24 equal parts, each of which will represent a

semidigit.

It may now be readily conceived, that if a little before

the commencement of the eclipse you look with attention

at the image of the sun, you will see the moment when it

begins tobe obscured by the entrance ofthe moon's body ;

and that you may in like manner observe the end of it,

and also its extent.

It must not however be expected that the same exact-
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ness can be attained by employing this method, as by the

Tormer; especially if you are furnished with a long tele-

cope, and a good micrometer.

REMARKS.-There are partial eclipses of the sun, that

s, eclipses in which only a part of the solar disk seems to

be covered , and these are most common. Others are total

and annular.

Total eclipses take place when the centre of the moon

passes over that of the sun, or nearly so ; and when the

apparent diameter of the moon is equal to that of the sun,

or greater. In the latter case, the total eclipse may be

what is called cum mora ; that is to say, with duration of

darkness : of this kind was the famous eclipse of 1706.

During eclipses which are total and cum mora, so great

darkness prevails, that the stars are seen in the same man-

ner as at night, and particularly Mercury and Venus. But

what excites a sort ofterror, is the dismal appearance which

all nature assumes during the last moments of the light.

Animals struck with fear, retire therefore to their habita-

tions, sending forth loud cries ; the nocturnal birds issue

from their holes ; the flowers contract their leaves ; a cold-

ness is felt , and the dew falls ; but as soon as the moon has

suffered a few rays of the solar light to escape, all is again

illumination ; day instantly returns, and with more bright-

ness than when the weather is cloudy.

Some eclipses, as already said, are really annular : they

take place when the eclipse is very near being central ,

while the apparent diameter of the moon is less than that

of the sun ; which may be the case ifthe moon at the time

of the eclipse is at her greatest distance from the earth,

and the sun at his nearest distance to it. The eclipse of

the sun on the 1st of April 1764 was of this kind to a part

of Europe.

During eclipses of this kind, when the sun is entirely

eclipsed, a luminous circle of a silver colour, and as broad

as the 12th part of the diameter of the sun or moon, is

VOL. III. H
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often observed around the former ; it is effaced as soon as

the smallest part of the sun begins to shine : it appears

more lively towards the sun's limb , and decreases in bril-

liancy the farther it is distant. Some are inclined to be-

lieve that this circle is formed by the luminous atmosphere

with which the sun is surrounded ; others have conjectured

that it is produced by the refraction of his rays in the

atmosphere of the moon ; and some have ascribed it to the

diffraction ofthe light. Those who are desirous of farther

information on this subject, may consult the Memoirs of

the Academy of Sciences, for the years 1715 and 1748.

PROBLEM XX.

To measurethe Height ofMountains.

The height ofa mountain may be measured by the com-

mon rules of geometry : for if we suppose CSD (plate 5

fig. 9) to be a mountain, the perpendicular height of which

is required, the following method can be employed. If

the nature of the adjacent ground will admit, measure a

horizontal line AB, in the same vertical plane as the summit

s ofthe mountain. The greater the extent ofthis line , the

more correct will be the result. At the two stations A and

B, measure the angles SAE and SBE, which are the apparent

heights of the summit s , above the horizon, when seen

from A and B. It will then be easy, by means of plane

trigonometry, to find , in the right-angled triangle SEA , the

side EA, as well as the perpendicular SE, or the elevation

of the summit s above AE continued.

Now let us suppose the vertical line SFH to be drawn,

intersecting BE in F. As, in dimensions of this kind, the

angle ESF, formed by the vertical line and the perpendi-

cular SE, will for the most part be exceedingly small, and

much below one degree, the lines SE and SF may be con-

sidered as equal * . On the other hand, the line FH, com-

For even in the case of this angle being a degree, they would not diff
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prehended between the line AE and the spherical surface

CA, is evidently the quantity by which the real level is

ower than the apparent level, in an extent such as AF, or

more correctly in a mean length between AF and BF : for

his reason take the mean length between AE and BE, which

differ very little from AF and BF ; and in the table of dif-

erences between the apparent and real levels, find the

eight corresponding to that mean distance : if this height

be then added to the height SE or SF, already found, you

vill have SH for the corrected height of the mountain,

above the spherical surface, where the points A and B are

situated.

If it be known how much this surface is higher than the

evel of the sea, it will be known also how much the sum-

nit s of the mountain is elevated above the same level.

Another Method.

As it may be difficult to establish a horizontal line, so as

o be in the same vertical plane with the summit of the

mountain, it will perhaps be better to proceed in the fol-

owing manner :

Trace out your base in the most convenient manner, so

s to be horizontal : we shall here suppose that it is repre-

ented by a b (pl . 5 fig. 10) ; let sc be the perpendicular

rom the summit s to the horizontal plane passing through

b ; and let c be the point where this plane is met by the

perpendicular : if the lines ac and be be drawn to that

point, we shall have the triangles sac and sbc, right-

ngled at c ; and the angles sac and sbc may be found by

measuring, from the points a and b, the apparent height

of the mountain above the horizon : the angles sab and

ba, in the triangle a sb, must also be measured.

Now, since in the triangle sab, the angles sa b and sb a

ten thousandth part, which would suppose the distance of the stations

From the mountain to be more than 100000 yards

H 2
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are known, and also the side ab ; any one of the other

sides, such for example as sa, may be easily determined

by plane trigonometry. Inthe triangle a cs, right-angled

at c, as the angle sac is known, the side a c and the per-

pendicular sc may be found in the same manner. When

this is done, the method pointed out in the preceding

operation must be employed : that is, find the depression

of the real level below the apparent level for the number

of feet or yards comprehended in the line ac, and add it

to the height sc : the sum will be the height of the point

s, above the real level of the points a and b.

Example.-Let the horizontal length ab be 2000 yards,

or 6000 feet ; the angle sab 80° 30′ ; and the angle sba

85° 10′ ; consequently the angle bsa will be 14° 20′ . By

means of these data, the side sa of the triangle asb will

be found to be 8050 yards. On the other hand, ifwe sup-

pose the angle sac to have been measured, and to be 18°,

the side a c will be found, by trigonometrical calculation ,

to be 7656 yards ; and sc, perpendicular to the horizontal

plane passing through ab, will be found equal to 2488.

Now, as the depression of the real level below the apparent

level at the distance of 7656 yards, is 12 feet , or 4 yards

6 inches*, if this quantity be added to the height sc, we

shall have 2492 yards 6 inches, for the real height of the

mountain.

--
REMARK. When either of these methods is employed,

ifthe mountain to be measured is at a considerable distance,

such as 20000 or 40000 yards , as its summit in that case

will be very little elevated above the horizon, the apparent

height must be corrected by making an allowance for re-

fraction, otherwise there may be a very considerable error

in the result. The necessity of this correction may be

easily conceived by observing, that the summit c of the

mountain BC (pl. 5 fig. 11), is seen by a ray of light ECA,

See the table in the additional remark.
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which is not rectilineal , but bent ; so that the summit c is

judged to be in D, according to the direction of the line AD,

a tangent to the curve ACE, which in the small space ac

may be considered as the arc of a circle. The angle DAB

therefore, ofthe apparent height of the mountain, exceeds

the height at which the summit would appear without re-

fraction, by the quantity of the angle CAD ; which must

be determined. But it will be found that this angle CAD

is nearly equal to half the refraction which would belong

to the apparent height DAB. You must therefore find, in

the tables, the refraction corresponding to the apparent

height DAB of the mountain, and subtract the half of it

from that height : the remainder will be that of the sum-

mit of the mountain, such as it would be seen without re-

fraction.

Let us suppose, for example, that the summit of the

mountain seen at the distance of 20000 yards appears to

be elevated above the horizon 5 degrees ; the refraction

corresponding to 5 degrees is 9' 54", the half of which is

4′ 57″ ; if 4′ 57″ therefore be substracted from 5º , the re-

mainder will be 4° 55′ 3″ which must be employed as the

real elevation *.

It may thence be seen, that to proceed with certainty in

such operations, it will be necessary to make choice of sta-

tions at a moderate distance from the mountain ; so that

its summit may appear to be elevated several degrees above

the horizon ; otherwise the difference of the refraction,

which is very variable near the horizon, will occasion great

uncertainty in the measurement.

We shall give hereafter another method for measuring

the height of mountains, by means of the barometer ; but

* Montucla here employs the common tables of refraction used for nautical

and astronomical purposes, such as that given in Robertson's Navigation, vol .

p. 328. In regard to terrestrial refraction , and the allowance made for

it, see the additional remark at the end of this article.
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in this case it is supposed that it is possible to ascend to

the summit of them. We shall also give a table of the

heights of the principal mountains of the earth above the

level of the sea. We shall here only observe that the

highest mountains in the world , at least in that part of it

which has hitherto been accessible to scientific men, are

situated in the neighbourhood of the equator ; and it is

with justice that an historian of Peru says, that when com-

pared with our Alps and our Pyrenees, they are like the

towers and steeples of the churches in our cities, compared

with common edifices. The highest yet known is Chim-

boraço in Peru, which rises more than 19000 feet in a per-

pendicular direction above the level of the sea .

As all the known mountains in Europe are scarcely two-

thirds of the height of those enormous masses, the falsity

of what the ancients , and some of the moderns, such as

Kircher, have published respecting the height of mountains,

will readily appear. According to these authors, Etna is

4000 geometrical paces in height ; the mountains of Nor-

way 6000 ; Mount Homus and the Peak of Teneriff 10000 ;

Mount Atlas and the Mountains of the Moon in Africa

15000; Mount Athos 20000 ; Mount Cassius 28000. It is

asserted that these heights were found by means of their

shadows ; but nothing is more destitute of truth , and if

ever any observer ascends to the summit of these moun-

tains, or measures their height geometrically, they will be

found very inferior to the mountains of Peru , as is the

case with the Peak of Teneriff, which when measured

geometrically by Father Feuillé was found not to exceed

6600 feet.

Hence it appears that the elevation of the highest moun-

tains is very little, when compared with the diameter of

the earth, and that its regular form is not sensibly altered

by them ; for the mean diameter of the earth is about

7957 miles ; therefore if we suppose the height of a
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mountain to be 3 miles, it will be only the 2273d part

of the diameter of the earth, which is less than the eleva-

ion of half a line on a globe six feet in diameter.

ADDITIONAL REMARK.-As Montucla has not here ex-

plained the method of finding the difference between the

pparent and true level , we think it necessary to add a few

observations on the subject. Two or more places are said

to be on a true level, when they are equally distant from

he centre of the earth. One place also is higher than an-

other, or out of level with it, when it is farther from the

centre of the earth ; and a line equally distant from that

centre in all its parts, is called the line oftrue level. Hence,

because the earth is round, that line must be a curve, or

at least parallel or concentric to it. But the line of sight,

given by operations of levelling, which is a tangent, or a

right line perpendicular to the semi-diameter of the earth

at the point of contact, always rising higher above the

true curve line of level, the farther the distance, is called

the apparent line oflevel ; and the difference between the

line of true level and the apparent, is always equal to the

excess ofthe secant ofthe arch of distance above the radius

of the earth. Hence it will be found that this difference

is equal to the square of the distance between the places,

divided bythe diameter of the earth ; and consequently it

is always proportional to the square of the distance.

From these principles is obtained the following table,

which shows the height of the apparent above the true

level, for every 100 yards of distance on the one hand,

and for every mile on the other.

The common methods of levelling are sufficient for lay-

ing pavements of walks , or for conveying water to small

distances, &c ; but in more extensive operations, as in

levelling the bottoms of long canals , which are to convey

water to the distance of many miles, and such like, the

difference between the true and apparent level must be

taken into account.
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Dist. Diff. of Level. Dist. Diff. of Level .

Yards. Iuches. Miles. Feet. Inches.

100 0.026
I

200 0.103

300 0.231

400 0.411

500 0.643

600 0.925

700 1.260

800 1.645

900 2.081

1000 2.570

0
0
0
0

1
4
H
3

+

1
2
3
4
5
6
7

01

2

43

8

2 8

6 0

10 7

16 7

23 11

32 6

1100 3.110 8 42 6

1200 3.701 9 53 9

1300 4.344 10 66 4

1400 5.038 11 80 3

1500 5.784 12 95 7

1600 6.580 13 112 2

1700 7.425 14 130 1

By means ofthese tables of reductions, the difference be-

tween the true and apparent level can be found by one

operation ; whereas the ancients were obliged to employ a

great many; for being unacquainted with the correction

answering to any distance , they levelled only from one 20

yards to another, as they had occasion to continue the

work to some considerable extent.

These tables will answer several useful purposes : First,

to find the height of the apparent level above the true, at

any distance. If the given distance be contained in the

table, the correction of the level will be found in the same

line with it. For example, at the distance of 1000 yards

the correction is 2.57, or nearly two inches and a half;

and at the distance of ten miles, it is 66 feet 4 inches. But

if the exact distance be not found in the table , multiply

the square ofthe distance in yards by 2-57, and divide by

1000000, or cut off six places on the right for decimals,

the rest will be inches ; or multiply the square of the

distance in miles by 66 feet 4 inches, and divide by 100 .
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2d. To find the extent of the visible horizon, or how far

n be seen from any given height on a horizontal plane,

at sea, &c. Let us suppose the eye of an observer on

e top of a ship's mast at sea, to be at the height of 130

et above the water, it will then see about 14 miles all

ound ; or from the top of a cliff by the sea side, the

eight of which is 66 feet, a person may see to the distance

nearly 10 miles on the surface of the sea. Also, when

e top of a hill , or the light in a light-house, the height

Iwhich is 130 feet, first comes into the view of an eye on

pard a ship, the table shows that the distance of the ship

om it is 14 miles, if the eye be at the surface of the

ater ; but if the height ofthe eye in the ship be 80 feet,

e distance will be increased by nearly 11 miles, making

n all about 25 miles.

3d. Suppose a spring to be on the one side of a hill, and

house on an opposite hill, with a valley between them ,

nd that the spring seen from the house appears, by a

evelling instrument , to be on a level with the foundation

of the bouse , which we shall suppose to be at the distance

f a mile from it : this spring will be 8 inches above the

rue level of the house ; and that difference would be

arely sufficient for the water to be brought in pipes

rom the spring to the house, the pipes being laid all the

way under ground.

4th. If the height or distance exceed the limits of this

cable : Then first , if the distance be given, divide it by 2,

or by 3, or by 4, &c, till the quotient come within the

distances in the table ; then take out the height answering

to the quotient, and multiply it by the square of the

divisor, that is by 4, or by 9, or by 16, &c, which will

give the height required. Thus, if the top of a hill be

just seen at the distance of 40 miles ; then 40 divided by

4, is 10, and opposite to 10 in the table will be found 66

feet, which multiplied by 16, the square of 4, gives 1061

feet for the height of the hill. But when the height is
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given, divide it by one of these square numbers, 4 , 9 , 16,

25, &c, till the quotient come within the limits of the table,

and multiply the quotient by the square root ofthe divisor,

that is by 2, or 3, or 4, or 5, &c , for the distance sought.

Thus, when the top of the peak of Teneriff, said to be

about 3 miles or 15840 feet high, just comes into view at

sea, divide 15840 by 225, or the square of 15, and the

quotient is 70 nearly , to which in the table corresponds

by proportion nearly 10 miles ; which multiplied by 15,

will give 154 miles and , for the distance of the mountain .

In regard to the terrestrial refraction , which in measuring

heights is to be taken into account also, as it makes objects

to appear higher than they really are, it is estimated by

Dr. Maskelyne at of the distance observed, expressed

in degrees of a great circle. Thus, if the distance be

10000 fathoms, its 10th part 1000 fathoms is the 60th part

of a degree on the earth , or 1', which is therefore the re-

fraction of the altitude of the object at that distance.

Le Gendre, however, says he is induced by several ex-

periments to allow only 4th part of the distance for re-

fraction in altitude. So that on the distance of 10000

fathoms, the 14th part of which is 714 fathoms, he allows

only 44" of terrestrial refraction, so many being contained

in the 714 fathoms.

Delambre, an ingenious French Astronomer, makes the

quantity of terrestrial refraction to be the 11th part ofthe

arch of distance. But the English measurers, Col. Ed.

Williams, Capt. Mudge, and Mr. Dalby, from a multitude

of exact observations made by them , determine the quan-

tity of refraction to be the 12th part of the said distance.

The quantity of this refraction however is found to vary,

with the different states of the weather and atmosphere,

from the 15th part of the distance to the 9th part ; the

medium of which is the 12th, as above mentioned.
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PROBLEM XXI.

Method ofknowing the Constellations.

To learn to know the heavens, you must first provide

Ourself with some good celestial charts, or a planisphere

such a size, that stars of the first and second magnitude

an be easily distinguished . At the end of the present

ticle we shall point out the best works on this subject.

Having placed before you one of these charts, that con-

ining the north pole, turn your face towards the north,

nd first find out the Great Bear, commonly called Charles's

ain (pl. 5 fig. 12) . It may be easily known, as it forms

ne of the most remarkable groupes in the heavens, con-

sting of seven stars of the second magnitude, four of

-hich are arranged in such a manner as to represent an

-regular square, and the other three a prolongation in the

orm of a very obtuse scalene triangle. Besides, by ex-

mining the figure of these seven stars, as exhibited in the

hart, you will easily distinguish those in the heavens

which correspond to them. When you have made your-

elf acquainted with these seven principal stars, examine

n the chart the configuration of the neighbouring ones,

which belong to the Great Bear ; and you will thence

earn to distinguish the other less considerable stars which

compose that constellation.

After knowing the Great Bear, you may easily proceed

o the Lesser Bear ; for nothing will be necessary but to

raw, as seen in the annexed figure (pl . 5 fig . 13) , a straight

ine through the two anterior stars of the square of the

Great Bear, or the two farthest distant from the tail : this

ine will pass very near the polar star, a star of the second

magnitude, and the only one of that size in a pretty large

space. At a little distance from it, there are two other

stars of the second and third magnitude, which, with four

more of a less size, form a figure, somewhat similar to that

of the Great Bear, but smaller. This is what is called the
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Lesser Bear ; and you may learn, in the same manner as

before, to distinguish the stars which compose it.

Now, ifa straight line be drawn through those stars of

the Great Bear, nearest to the tail, and through the polar

star, it will conduct you to a very remarkable group of

five stars arranged nearly in this form M (pl. 5 fig. 14) :

these are the constellation of Cassiopeia, in which a very

brilliant new star appeared in 1572 ; though soon after it

became fainter, and at length disappeared.

If a line, perpendicular to the above line , be next drawn ,

through this constellation , it will conduct, on the one side,

to a very beautiful star called Algenib, which is in the back

of Perseus ; and, on the other, to the constellation of the

Swan (fig. 15), remarkable by a star of the first magnitude.

Near Perseus is the brilliant star of the Goat, called Ca-

pella, which is of the first magnitude, and forms part of

the constellation of Auriga.

After this, if a straight line be drawn through the two

last stars of the tail of the Great Bear, you will come to

the neighbourhood of Arcturus, one of the most brilliant

stars in the heavens, which forms part of the constellation

of Bootes (fig. 16) .

In this manner you may successively employ the know-

ledge you have obtained of the stars of one constellation ,

to enable you to find out the neighbouring ones. We

shall not enlarge farther on this method ; for it may be

easily conceived, that we cannot proceed in this manner

through the whole heavens : but any person of ingenuity,

in the course of a few nights, may learn by these means to

knowa great part of the heavens ; or at any rate the prin-

cipal stars.

The ancients were not acquainted with, or rather did

not insert into their catalogues, more than 1022 fixed stars,

which they divided into 48 constellations ; but their num-

ber is much greater, even if we confine ourselves to those

which can be distinguished by the naked eye. The abbé
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e la Caille observed 1492 in the small space compre-

ended between the tropic of Capricorn and the south

ole ; a part of which he formed into new constellations.

But this space is to the whole sphere, as 3 to 10 nearly ;

o that in our opinion the whole number of the stars visible

the naked eye may be estimated at about 6500. It is

mere illusion that makes us conclude , on the first view,

hat they are innumerable ; for if you take a space com-

prehended between four, five or six stars of the second

nd third magnitude, and try to count those it contains,

Fou will find that it can be done without much difficulty ;

and some idea may be thence formed of their total num-

per , which will not much exceed that above stated.

The stars are divided into different classes, viz, stars of

the first, second, third, &c, magnitude, as far as the 6th,

which are the smallest perceptible to the naked eye. There

are 20 of the first magnitude, 76 of the second, 223 of the

third , 512 of the fourth, &c.

In regard to the constellations, the number of those

commonly admitted is 90 ; of which 33 belong to the

northern hemisphere, 12 to the Zodiac, and the remaining

45 to the austral or southern hemisphere . We shall here

give a catalogue of them, containing the number of stars

of which each is composed, together with the names of

some of the most remarkable stars : the constellations

which have this mark against them, are modern ones,

the others ancient. The figures placed against the prin-

cipal stars denote their magnitudes.

*
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I.
CONSTELLATIONS NORTH OF THE ZODIAC.

No. Constellations. No. of

Stars.
ChiefStars.

1
2
3
4
D
O
N

∞

Ursa Minor
24 Pole Star

2Ursa
Major

87 Dubhe
1

Perseus

59 AlgenibAuriga

56 Capella5 *Bootes

54 Arcturus6 Draco

60 Rastaber
7 *Cepheus

35 Alderamin

2
1
1
3
3

*Canes Venatici scil .
8

9 *Cor Caroli

10

11

Asterian et Chara

Triangulum

Triangulum minus

}
25

3

10

512 *
Musca

6

12 *Lynx
44

14 *Leo Minor

24
15 *Coma Berenices

40
16 Camelopardalus

58
17 *Mons Menelaus

11
18 Corona Borealis

21
19 Serpens

50
20 Scutum Sobieski

8 }Hercules cum Ramo
21

et Cerbero
}

113
Ras

Algiatha 3
*
Serpentarius sive

22

Ophiuchus
} 67

Ras
Alhagus

3
23

24 Lyra

*Taurus
Poniatowski

25 Vulpecula et Anser

7

22
Vega 1

3726
Sagitta

18
27 Aquila

40 Altair
1

28
Delphinus

18

29 Cygnus
73 Deneb Adige

1
30

*Equuleus
10

31 *Lacerta.

1632
*Pegasus

85 Markab33 *Andromeda

66 Almaac

2
22

2
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II. CONSTELLATIONS IN THE ZODIAC.

o. Constellations.

No. of

Stars.

ChiefStars.

1 Aries 66

2 Taurus 140 Aldebaran 1

3 Gemini 85 Castorand Pollux 1.2

Cancer 83

5 Leo 95 Regulus 1

6 Virgo 110
Spica Virginis

1

7 Libra 51 Zubenich Mali 2

8
Scorpio 44 Antares 1

9 Sagittarius 69

10 Capricornus 51

11
Aquaries

108 Scheat 3

12 Pisces 112

II. CONSTELLATIONS SOUTH OF THE ZODIAC.

No. Constellations.

No. of

Stars.

Chief Stars.

1 *Phoenix 13

2 *Officina Sculptoria 12

3 Eridanus 76 Achernar 1

4 *Hydrus 10

5 *Cetus 80 Menkar 2

6 Fornax Chemica 14

7 Horologium
12

8 ReticulusRhomboidalis 10

9 Xiphias 7

10 Celapraxitellis
16

11 Lepus 19

12 *Columba Noachi 10

13 Orion 78

14 Argo Navis 50

Betelguese

Canopus

15 Canis Major 30 Sirius

1

1

16 Equuleus Pictorius 8

17 *Monoceros 31

18 Canis Minor 14 Procyon 1

19 Chameleon 10
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No. of
No. Constellations. Chief Stars.

Stars.

20 *Pyxis Nautica 4

21 *Piscis Volans 8

22
Hydra

60 Cor Hydræ

23 *Sextans

24 *Robur Carolinum

25 *Machina Pneumatica

4
2
3

26 *Crater 11

27 *Corvus 9

Alkes

Algorab

3
3

3

28 *Crosiers 6

29 *Musca 4

30 *Apis Indica 11

31 *Circinus 4

32 Centaurus 36

33 *Lupus 24

34

35

36 Ara

37

38

*Quadra Euclidis

*Trangulum Australe

Telescopium

12

5

9

9

*Corona Australis

39 *Pavo

40 *Indus

2
4
2

12

14

12

41 *Microscopium 10

42 *Octans Hadleianus .43

43 *Grus 14

44 *Toucan 9

45 Piscis Australis 20 Fomalhaut 1

IV. NUMBER OF STARS OF EACH MAGNITUDE.

Constellations.

In the Zodiac

l
a
t
i
o
n
s.

C
o
n
s
t
e
l
-

Magnitudes.

IIIII V V VI

12 5 16 44 120 183 646

Total

Number

ofStars.

In the N. Hemisphere

In the S. Hemisphere

33 6 24 95 200 291 635

45 9 36 84 190 221 323

1014

1251

865

90 2076 223 512695 1604
3130
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We shall not here enter into any physical details re-

pecting the stars ; as we reserve these for another place,

here we shall speak oftheir distances, magnitudes, motion,

d various other things relating to this subject ; such as

w stars, changeable or periodical stars , &c.

The best celestial charts were for a long time those of

ayer's Uranometria, a work in folio, published in 1603,

d which has gone through a great many editions. But

ese charts have given place to the magnificent Celestial

las of Flamsteed , published in folio at London in 1729 ;

work indispensably necessary to every practical astrono-

er. Ofthe other charts or planispheres, those of Pardies,

ablished in 1673, in six sheets magnificently engraved by

uchange, are esteemed. We have also the two plani-

heres of de la Hire, in two sheets. Senex, an English

graver , published likewise two newplanispheres, accord-

g to the observations of Flamsteed ; one of them in two

eets, where the two hemispheres are projected on the

ane of the equator ; and the other where they are pro-

cted on the plane of the ecliptic. Those who have not

e Celestial Atlas of Flamsteed must provide themselves

ith either of these planispheres. The modern astrono-

ers, and particularly la Caille, having added a great

umber ofnew constellations to the old ones in the southern

emisphere, two new planispheres have on that account

een formed. One of them, by M. Robert, consists of

wo sheets, where the ground of the heavens is coloured

ue ; so that the constellations are very distinctly seen.

is constructed according to the newest observations ;

nd it is accompanied with useful instructions respecting

e method of knowing the heavens.

As it is of the greatest importance to astronomers, to be

cquainted with the constellations and stars ofthe Zodiac,

ecause the planets move in that circular band, Senex,

efore mentioned, published about half a century ago, The

tarry Zodiac, from Flamsteed's Observations ; and as it

VOL. III.
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was difficult to be procured at Paris, the Sieur Dheuland,

engraver, gave, in 1755, a new edition of it ; with such

corrections as the interval between that period and the

time when Senex published his edition, had rendered

necessary. He was directed in this undertaking by M. de

Seligny, a young officer in the service of the East-India

Company. To the Zodiac of Dheuland is annexed a

minute catalogue of the Zodiacal stars, with their longi-

tudes and latitudes, reduced to the year 1755. This cata-

logue comprehends 924 stars ; but the author, to render

his work more useful in nautical observations, gives to his

Zodiac ten degrees of latitude, on each side of the ecliptic.

It may be readily seen, from what has been here said, that

those who are not possessed of the Celestial Atlas of Flam-

steed, must_procure the Zodiac and Catalogue of Dheu-

land, or rather of Seligny, and that even possessing the

former work does not supersede the necessity of the latter.

A new edition of Flamsteed's Atlas, reduced to a third

of its original size, has since been published, with a plani-

sphere ofthe austral stars observed by la Caille. M. Fortin,

the author, reduced all the stars to the year 1780 ; and

added a chart of the stars representing the different figures

which they form, together with their relative positions.

To the above list we may add the large Celestial Atlas

lately published by professor Bode, of Berlin , consisting

oftwenty sheets.

REMARK . Since the period when mankind began to

observe the stars, various astronomers, at different times,

have undertaken to exhibit in charts, their places, relative

distances, and magnitudes. To the works of this kind

before mentioned, we may add also the Calum Stellatum

of Julius Schiller, 1627 ; the Firmamentum Sobescianum

of Hevelius, 1690, in 54 sheets ; and Doppelmayer's

Celestial Atlas, Nuremberg 1742. In the year 1729 Flam-

steed's Celestial Atlas was published in 28 sheets, contain-

ing 2919 stars, observed by that astronomer at Greenwich,
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divided into 56 constellations. In the year 1776 , an

tion of it, reduced to the quarto form, was published at

is by Fortin , in 30 sheets ; in the year 1796 la Lande

1 Mechain published the same plates, considerably im-

ved, and enlarged with seven new constellations. In

year 1782 M. Bode published the same Atlas in 34

ets, small folio ; but he added , besides the old observa-

ns, a great many new ones, and above 2100 fixed stars

nebulæ. In the year 1748, a new Uranographia, of

same kind as that of Bayer, to consist of 50 sheets, was

nounced to be published by subscription in England. Dr.

vis, a noted astronomer, was at the head of this under-

ing, and some of the sheets were engraved ; but the

rk was never completed*. The Atlas now published

professor Bode, in 20 sheets , is constructed according

an entirely new projection . Flamsteed's charts were

ch 21 inches in breadth and 28 inches in length ; those

Bode's Atlas are 26 inches in breadth and 38 in length.

amsteed's Atlas contains only 56 constellations on 28

eets ; that of Bode contains 106 on 18 sheets, together

th the stars around the south pole, and two hemispheres.

late years, by the continued assiduity of astronomers,

e number of stars observed has been much increased.

. Herschel, with his excellent telescopes, has discovered

ove 2500 nebulæ, groups of stars, and double stars.

ron von Zach of Gotha constructed a new and complete

alogue of the fixed stars, from his own obervations ;

t professor Bode for the greatest number of his improve-

ents was indebted to la Lande. This meritorious

ronomer supplied him at different times with new stars,

ounting altogether to about 6000 , which were observed

Another little known Celestial Atlas, which at least is mentioned by

ande, is that of Corbinianus Thomas, a Benedictine and professor of

thematics at Ausburg. It is entitled Firmamentum Firmianum, in honour

the then bishop of the house of Firmian, and was published at Augsburg in

all folio, in the year 1731. In this Atlas the northern crown is called

rona Firmiana.

1 2
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by himself and his nephew le François, at the Military

school, with a mural quadrant by Bird. But the first

manuscripts transmitted by la Lande, contained the right

ascensions onlyto minutes oftime; and consequently were

not accurately enough defined for the large scale on which

these charts are constructed. Professor Bode therefore

inserted only some of these stars into his charts, being

obliged to leave out the greater part of them. La Lande

sent afterwards more correct positions ; and though the

professor encountered many difficulties in reducing them,

in consequence of errors in the transcribing or calculation ,

he was enabled to add to his charts some thousands of new

stars, furnished by the above astronomer. The professor

however found several vacuities, and being desirous that

the improvement introduced into his work should be uni-

form, he resolved to supply these deficiencies from his

own observations. He began therefore in the month of

December 1796, at the royal observatory of Berlin, to

search for and observe new stars, with a mural quadrant

by Bird ; and by these means was enabled to enrich his

Atlas with some hundreds of stars, of the 6th and 7th

magnitudes, not to be found in any of the catalogues.

Plate 1 and 2 represents the hemispheres of Aries and

Libra according to the stereographic projection , the first

has 0° , and the second 0° , in the centre ; the poles

are at the top and bottom, and the solstitial colure in the

circumference. Plate 3 to 10 all the principal stars of the

polar regions, and all the old and new constellations north

of the Zodiac. Plate 11 to 16 the twelve constellations

of the Zodiac, and some neighbouring stars. Plate 17 to

20 all the stars below the Zodiac and in the south polar

regions. These charts altogether contain upwards of

17000 stars, nebulæ, groups, and double stars. Many of

' the sheets contain 13 or 1400 stars , nebulæ, &c ; whereas

those ofFlamsteed do not contain above 300.

Flamsteed, for his charts, made choice of a kind of pro-
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ction by which, especially under great declinations, no

oper idea is given of the real figure of the circles ofthe

here. In these charts the parallels to the equator are

raight lines, which intersect the meridians, where the

sines of their distance fromthe mean meridian falls. They

pear therefore as crooked lines ; the meridians or great

rcles appear also crooked, and the parallels or less circles

raight lines, entirely contrary to the real form which

ese circles of the sphere exhibit. Professor Bode there-

re made choice of another kind of projection , namely

at conical projection described by Kastner in his Geo-

etrical Treatises, and in which the semi-diameter of the

ean parallel is the cotangent of its declination. The

nean meridian, on the other hand, is lengthened where

hese cotangents fall ; and from this point as a centre are

rawn the parallel circles at every 5 degrees. At this

entre the value of the angle of right ascension, for ex-

mple 10 degrees , is made = sin. decl . 10° ; and the me-

idians are drawn as straight lines. By this construction

he degrees of ascension are kept in the proper proportion

o those of declination , in the mean zones lying between the

arallels, as far as they extend east or west ; and the princi-

al stars which each sheet exhibits, fall in these mean

zones. Each sheet generally contains about 75°, on the

equator, of right ascension , and 54° in declination. When

the equator falls in the middle of the chart, the parallels

and meridians are straight lines, placed at equal distances,

and intersecting each other at right angles. The polar

regions are delineated according to the stereographic pro-

ection. The scale of these charts, the two polar ones

excepted , is 10° declination to 4 inches English.

The names of all the constellations are given in Latin,

according to the general practice; the original constella-

tions, when they form the principal figures in the chart,

are completely shaded ; but in such a manner that the

smallest stars and the nebulous spots are apparent. The
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names are given in large Roman shaded characters. The

constellations introduced in modern times are shaded in

the punctured manner ; and the names are added in large

open Roman characters. Besides the Arabic and Latin

names, already known, the old Arabian names are also

added to many of the stars. The epoch of the right as-

cension of these stars is fixed at the 1st of January, 1801 .

CHAPTER II.

Ashort View of the principal Facts in regard to Physical

Astronomy, or the System ofthe Universe.

THERE is no difference of opinion at present among

enlightened philosophers, in regard to the position of the

planets and of the sun. All those capable of estimating

the proofs deduced from astronomy and physics, admit

that the sun occupies the centre of an immense space, in

which the following planets revolve around him at differ-

ent distances , viz , Mercury, and Venus ; the earth , always

accompanied by the moon ; Mars ; Pallas, discovered by

Dr. Olbers ; Ceres, discovered by M. Piazzi ; Vesta, dis-

covered by Harding ; Juno, discovered also by Olbers ;

Jupiter, followed by his four moons or satellites ; Saturn ,

surrounded by his ring , and accompanied by seven satel-

lites ; the Georgian planet, discovered by Dr. Herschel,

together with its satellites ; and lastly a great number of

comets, which have been shewn to be nothing else but

planets having orbits very much elongated.

The path in which each of the planets moves around

the sun is not a circle, but an ellipsis more or less elongated ;

in one ofthe foci of which that luminary is placed ; so that

when the planet is at the extremity of the axis, beyond

the centre, it is at its greatest distance from the sun ; and

when at the other extremity of that axis, it is at its nearest



SYSTEM OF THE UNIVERSE. 119

stance. This ellipsis however is not very much elongated :

at described by Mercury is the most of all of the ancient

lanets ; for the distance of its focus from the centre is

qual to a fifth part of its semiaxis. That of Venus is

early a circle. In the orbit of the earth, the distance

-om the focus to the centre is only about a 57th part of

ne semiaxis. The last discovered planet, Pallas, it is

aid , has its orbit the most elongated of any, its eccen-

ricity being about one third of its mean distance from the

un.

The motion of all these bodies around the sun is regu-

ated by two celebrated laws, the discovery of which has

endered the name of Kepler immortal . The first of these

aws, which relates to the motion of a planet in the different

points of its orbit , is, that it always moves in such a man-

ner, that the arc described by the radius vector, or the

straight line drawn from the planet to the sun, increases

uniformly in equal times, or is always proportional to the

time ; so that if a planet, for example, employs 30 days in

moving from Ator (pl. 5, fig. 17) , and 20 in moving from

to p, the mixtilineal area as 7, will be to the mixtilineal

area ™ s p, as 30 to 20 ; or as is to As p, as 30 to 50, or

as 3 to 5. In double the time therefore this area is double,

and so on; whence it follows, that when the planet is at

its greatest distance, it moves with the least velocity in its

orbit. The ancients laboured under a mistake, when they

imagined that the retardation which they observed in the

motion of any of the heavenly bodies, such as the sun for

example, was a mere optical illusion : this retardation is

partly real, and partly apparent.

The second law, discovered by Kepler, is that which

regulates the distances of the planets from the sun , and

their periodical times, or the times of their revolutions.

According to this law, the cubes of the mean distances of

two planets from the sun, around which they perform their

revolutions, are always in proportion to each other as the
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squares of their periodical times ; thus, if the mean distances

of two planets from the sun, be the one double of the

other, since the cubes of these distances will be as 1 to 8,

the squares of the periodical times will be as I to 8 ; conse-

quently the times themselves will be to each other as 1 to

the square root of 8, which is 23 nearly.

This rule holds good, not only in regard to the principal

planets, those which revolve about the sun , but also in re-

gard to the secondary planets , which revolve around a

primary planet, as the four satellites of Jupiter, and the

seven satellites of Saturn . If the earth had two moons,

they also would observe this law in regard to each other

by a mechanical necessity.

These two laws, first discovered by Kepler, from his

observations and those of Tycho Brahe, were afterwards

confirmed and proved by Newton, from the principles and

laws of motion ; so that those who deny truths so well esta-

blished, must be incapable of feeling the force of a demon-

stration.

We shall now lay before our reader every thing most

remarkable in regard to those celestial bodies of which we

have any knowledge, beginning with the sun. They who

can behold this sublime picture without emotion , ought to

be classed among those stupid beings, whose minds are

insensible to the most magnificent works of the Deity.

§ I. Ofthe Sun.

The sun, as we have already said, is placed in the middle

of our system, as a source of light and heat, to illuminate

and vivify all the planets subordinate to it. Without his

benign influence, the earth would be a mere block, which

in hardness would surpass marble and the most compact

substances with which we are acquainted ; no vegetation,

no motion would be possible : in short, it would be the

abode of darkness, inactivity and death. The first rank

therefore among inanimate beings cannot be refused to
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sun; and ifthe error of addressing to a created object

t adoration which is due to the Creator alone, could

nit of excuse, we might be tempted to excuse the

nage paid to the sun by the ancient Persians, as is still

case among the Guebres, their successors, and some

age tribes in America.

The sun is, or seems to be, a globe of fire , the diameter

which is equal almost to 111 times that of the earth,

ng about 883217 English miles ; its surface therefore is

321 times greater than that of the earth ; and its mass

57631 times. Its distance from the earth, according to

= latest observations, is about 95 millions of miles.

This enormous mass is not absolutely at rest : for modern

ronomers have found that it revolves round its axis , in

days 12 hours. This motion takes place, on an axis

lined to the plane of the ecliptic about 73° ; so that the

uator of the sun has the same inclination to the earth's

it. This phenomenon was discovered by means of the

ots, with which the surface of the sun is covered at

rtain periods : with the assistance of a telescope, these

Ots, which are dark, and generally of a very irregular

m, and which often remain some months, may be ob-

ved on the disk of this luminary. They were first

scovered by Galileo, who thus gave a mortal blow to the

inion of the philosophers of that time, some of whom,

ading in the steps of Aristotle, considered the celestial

dies as unalterable. He repeatedly observed , at different

riods, large spots on the sun's disk ; saw them always

proach in the same direction , and almost in a straight

e to one of the edges ; then disappear and re-appear

terwards, at the other edge ; whence he concluded that

e sun had a rotary motion about his axis. It is remarked

at these spots employ 25 days 12 hours to return to the

me point of the disk where they began to be observed ;

ence it follows that they require 25 days 12 hours, to
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perform a complete revolution * ; and consequently the

sun employs that time in revolving about his axis.

It thence follows also, that a point in the sun's equator

moves about four times and a third as fast, as a point of

the terrestrial equator, during its diurnal motion ; for, the

circumference of a solar great circle being 111 times as

great, these points would move with the same velocity if

the period of the sun's revolution were 111 days : But

being only 25 days and some hours, it is about four times

and a third as rapid.

Astronomers have also had the curiosity to measure the

extent of some of these solar spots ; and have found that

they are sometimes much larger than the whole earth.

In regard to the nature ofthese spots ; some philosophers

have conjectured, that they can be nothing else than parts

of the nucleus of the sun which remain uncovered, in

consequence ofthe irregular movements of a fluid violently

agitated. An English Astronomer, Professor Wilson of

Glasgow, revived this idea in the Philosophical Trans-

actions for 1773 , with this difference, that according to his

theory the luminous matter of the sun is not fluid, but of

such a consistence, that under particular circumstances,

there may be sometimes formed in it considerable excava-

tions, which discover a portion of the nucleus. The slop-

ing sides of these excavations, according to his opinion,

form the faculæ, or that border less luminous, without

being black, with which these spots are generally sur-

rounded. This theory he endeavours to establish , by ex-

amining the phenomena that ought to be exhibited by such

excavations, according to the manner in which they might

present themselves to an observer.

• The reason of this difference is, that while the sun performs a complete

revolution on its axis , the earth, moving in its orbit, advances about 25

degrees towards the same side ; on which account the spot must still pass

over about 25 degrees, before it can be in the same point of view in regard

to the earth.
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Other philosophers have supposed these spots to be

ly clouds of fuliginous vapours, which remain suspended

er the surface of the sun, in the same manner as the

noke that rises from Vesuvius at the time of an eruption ;

d which to an eye placed in the atmosphere would ap-

ear to cover a large tract of country. Some also have

agined them to consist of a kind of scum produced by

e combustion of heterogeneous matters, which have fallen

the sun's surface. But, in all probability, nothing

rtain will ever be known on the subject. For whole

ears none of these spots are ever seen on the sun's disk,

ad sometimes a great many are observed . In 1637 it is

id they were so numerous, that both the heat and

lendour of that luminary were in some measure di-

inished by them. If the opinion of Descartes, respect-

g the incrustation of the stars, and their conversion into

Dake planets, had been then known, some apprehensions

ight have been entertained of seeing the sun, to the great

isfortune of the human species, undergo this strange

etamorphosis.

We shall here remark that a certain figure of the sun,

iven on the authority of Kircher, and copied in various

aps of the world , ought to be considered merely as an

maginary production . No observations have ever been

ade by any astronomer, that can serve as the least found-

tion for it.

In 1683, Cassini discovered that the sun not only has a

roper light of his own, but that he is accompanied by a

ind of luminous atmosphere, which extends to an immense

istance, since it sometimes reaches the earth. But this

tmosphere is not of a form nearly spherical, like that of

he earth : it is lenticular, and situated in such a manner,

hat its greatest breadth coincides almost with the pro-

ongation of the solar equator. We indeed often see,

luring very serene weather, and a little after sunset, a

ight somewhat inclined to the ecliptic , several degrees
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broad at the horizon, and decreasing to a point, which

rises to the height of 45° . It is principally towards the

equinoxes that this phenomenon is observed ; and as it has

been since seen, and in various places, by a great number

ofastronomers, these appearances cannot perhaps be ac-

counted for, but by supposing around the sun an atmo-

sphere such as that above mentioned.

Doctor Herschel has two ingenious papers in the Phi-

losophical Transactions, for 1795 and 1802, containing

many new and curious speculations on the nature and con-

stitution of the sun, his light, &c. Dissatisfied with the

old terms, used to denote certain appearances on the sur-

face of the sun, Dr. Herschel rejects them ; and instead of

the words, spots, nuclei, penumbra, luculi, &c, he substi-

tutes, openings, shallows, ridges, nodules, corrugations,

indentations, pores, &c. He imagines that the body ofthe

sun is an opake habitable planet, surrounded and shining

by a luminous atmosphere, which being at times inter-

cepted and broken, gives us a view of the sun's body

itself, which are the spots, &c. He conceives that the

sun has a very extensive atmosphere, consisting of elastic

fluids, that are more or less lucid and transparent, and of

which the lucid ones furnish us with light. " This atmo-

sphere, he thinks, is not less than 1843, nor more than

2765 miles in height : and he supposes that the density of

the luminous solar clouds need not be much more than

that ofan aurora borealis, in order to produce the effects

with which we are acquainted. The sun then, if this by-

pothesis be admitted, is similar to the other globes ofthe

solar system , with regard to its solidity-its atmosphere―

its surface diversified with mountains and valleys- the ro-

tation on its axis-and the fall of heavy bodies on its sur-

face ; it therefore appears to be a very eminent, large,

and lucid planet, the principal one in our system, disse-

minating its light and beat to all the bodies with which it

is connected."
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§ II.

OfMercury.

Mercury is the smallest of all the ancient planets, and the

earest the sun : its distance from that luminary is about

of that of the earth : Mercury therefore revolves about

he sun at the distance of about 37 millions of miles. On

ccount of this position, it is never more than 28° 20′

rom the sun , and on this account it is very difficult to be

een. When at about its greatest elongation from the

un it appears as a crescent like the moon towards her

uadratures ; but to observe this configuration requires

good telescopes.

It has not yet been ascertained from any observations

whether Mercury has a motion round its axis, which how-

ver is very probably the case.

This planet completes its revolution round the sun in

7 days 23 hours 15 minutes, and its diameter is to that

of the earth as 2 to 5 ; so that its bulk is to that of the

earth as 8 to 125.

The distance of Mercury from the sun being no more

han 34 of that of the earth ; and as heat increases in the in-

verse ratio of the squares of the distance ; it thence follows

hat, cæteris paribus, it is nearly seven times as hot in that

planet as on our earth. This heat even far exceeds that

of boiling water. If Mercury therefore has the same con-

formation as our earth, and is inhabited , the beings by

which it is peopled must be of a nature very different

from those of the latter. In this there is nothing repug-

mant to reason ; for who will dare to confine the power of

the Deity to beings almost similar to those with which we

are acquainted on the earth ? We shall show hereafter

that the conformation of the surface of Mercury, and the

nature of the circumambient fluid , may be such as to

make it not impossible for such beings as ourselves to

exist in it.
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§ III.

OfVenus.

Venus is the most brilliant of all the planets in the

Heavens. This planet, as is well known, sometimes pre-

cedes the sun ; and on that account is called Lucifer, or

the morning star : sometimes it follows him, appearing

the first after he is set and on that account is distin-

guished also by the name of Vesper, or the evening star.

;

This planet revolves about the sun at a distance from

him, which is to that of the earth from the sun, as 68 to

95 ; consequently its distance from the sun is about 68

millions of miles : its greatest elongation from the sun, in

regard to us, is about 48° , and it exhibits the same phases

as the moon.

The revolution of Venus around the sun is performed

in 224 days 16 hours 49 minutes : its diameter, according

to the latest and most correct observations, is nearly the

same as that of the earth, and consequently it is of equal

bulk also. Changeable spots have been discovered on

the surface of Venus, which serve to prove the revolution

of that planet about its axis ; but the period of this revo-

lution is not very fully ascertained. M. Bianchini makes

it to be 24 days, and M. Cassini 23 hours, 20 minutes.

For our part we are inclined to adopt the latter opinion ;

but unfortunately these spots , seen by Maraldi and Cas-

sini, are no longer visible, even with the help of the best

telescopes, at least in Europe : at present not a single spot

can be observed in this planet ; and therefore the ques-

tion must remain undetermined till new ones are seen.

Venus may sometimes pass between the earth and the

sun, in such a manner as to be seen on the disk of the

latter, where it appears as a black spot, of about a minute

apparent diameter. It was seen for the first time passing

over the sun's disk in Nov. 1631 ; it was again observed

under the like circumstances on the 6th of June, 1761 ,
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ad the same observation was made on the 3d of June,

69. It will not be again seen passing over the sun's

sk, till the 9th of December, 1874. The observation

this phenomenon, in the success of which all the states

Europe interested themselves, is attended with consi-

rable advantages to astronomy, an account of which

ay be found in books that treat expressly on that sub-

ct.

§ IV.

Ofthe Earth.

The Earth, which we inhabit, is the third in the order

the planets hitherto known. Its orbit , the semi-dia-

eter of which is about 95 millions of miles, compre-

nds within it those of Venus and Mercury. It per-

rms its revolution about the sun in 365 days 6 hours 11

nutes ; for it is necessary that a distinction should be

ade between the real or complete revolution of the

rth, and the tropical revolution, or what is called the

lar year. The latter consists of 365 days 5 hours 49

nutes ; because it represents only the time which the

n employs in returning to the same point of the equi-

ctial ; but as the equinoctial points go back every year

", which makes the stars seem to advance the same

antity, in the same period ; when the earth has returned

the point of the vernal equinox, it must still pass over

" before it can attain to the point of the fixed sphere,

here the equinox was the preceding year. But as it

aploys for this purpose about 20 minutes, these added

the tropical year will give, as the time ofthe complete

volution, from a point of the fixed sphere to the same

Dint again, 365 days 6 hours 11 minutes, as mentioned

Jove.

During a revolution of this kind, the earth , in conse-

uence of the laws of motion, always maintains its axis
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parallel to itself ; and it performs its revolution around

this axis, with respect to the fixed stars, in 23 hours 56

minutes; for it is in regard to the fixed stars that this re-

volution ought to be measured, and not in regard to the

sun, which has apparently advanced in the same direc-

tion about a degree per day. This parallelism of the

earth's axis produces the variation of the seasons ; as it

exposes sometimes the northern and sometimes the south-

ern part to the direct influence of the sun's rays.

This parallelism however is not absolutely invariable.

In consequence of certain physical causes, it has a small

motion, by which it deviates from it, at each revolution ,

about 50 seconds ; as if it had a conical motion, exceed-

ingly slow, around the moveable and supposed axis of the

ecliptic. On account of this motion, the apparent pole

of the world, among the fixed stars , is not fixed ; but re-

volves about the pole of the ecliptic, and approaches

certain stars, while it recedes from others. The polar

star has not always been that nearest the arctic pole ; nor

is it yet at its greatest degree of proximity : it will attain

to this situation about the year 2100 of our æra, and its

distance from the pole at that period will be 28′ or 29' ;

the arctic pole will then recede more and more from it, so

that in the course of ages there will be another polar star,

and even others after that in succession.

The axis of the earth is inclined to the plane of the

ecliptic, at present, in an angle of 23° 28′, and some se-

conds, which causes the inclination of the ecliptic to the

equator, and produces the different changes of the seasons .

This inclination is also variable, and, according to modern

observations, decreases about a minute every century : the

ecliptic therefore slowly approaches towards the equator,

or rather the equator towards the ecliptic , and if this;

motion takes place with the same velocity, and in the

same direction, the equator will coincide with the ecliptic
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about 140,000 years ; and then a perpetual spring, as

ell as an equality of the days and nights, will prevail all

er the earth.

§ V.

Ofthe Moon.

Of all the celestial bodies which surround us, and by

ich we are illuminated, the most interesting, next to

e sun, is the moon. Being the faithful companion of our

be during its immense revolution, she often supplies the

ace ofthe sun, and by her faint light consoles us for the

Es we sustain when the rays of that luminary are with-

awn. It is the moon which raising, twice every day, the

ters of the ocean, produces in them that reciprocal mo-

on , known under the name of the flux and reflux ; a

otion which is perhaps necessary in the economy of the

obe.

The mean distance ofthe moon from the earth is about

semi-diameters of the latter, or 240,000 miles. Her

meter is in proportion to that of the earth, as 20 to 73,

nearly as 3 to 11 ; so that her mass, or rather bulk, is

that ofthe earth, nearly as 1 to 483.

The moon is an opake body ; but we do not think it ne-

ssary to adduce here any proof of this assertion . She

not a polished body, like a mirror ; for if that were the

se, it would scarcely transmit to us any light, as a con-

x mirror disperses the rays in such a manner that an

e, at any considerable distance, sees only one point on

e surface illuminated ; whereas the moon transmits to

from her whole disk a light sensibly uniform.

To this we may add, that observation shows in the

ody of the moon asperities still greater, considering her

agnitude, than those with which the earth is covered.

the moon indeed be attentively viewed , some days after

er conjunction, the boundary of the shaded part will be

en as it were indented ; which can arise only from the

VOL. III. K
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effect of its inequalities. Besides, at a little distance from

that boundary, in the part not yet illuminated, there are

observed luminous points , which, increasing gradually as

the luminous part approaches them, are at length con-

founded with it, and form the indentations above men-

tioned in short, the shadow of those parts, when they

are entirely illuminated, are seen to project themselves

to a greater or less distance, and to change their position,

according as they are illuminated on the one side or the

other, and in a direction more or less oblique. It is in

this manner that the summits of the mountains on our

earth are illuminated, while the neighbouring vallies and

plains are still in obscurity ; and that their shadows are

projected to a greater or less distance, on the right or the

left, according to the elevation and position of the sun.

Galileo, the author of this discovery, measured the height

of one of these lunar mountains geometrically ; and found

it to be about 3 leagues, which is nearly double the height

of the most elevated peaks of the Cordilleras, the highest

mountains known on the earth. But later astronomers,

by more accurate measurements, have not found the lunar

mountains to rise above a mile or two in height.

We have already spoken of the names given by astro-

nomers to these spots, and of their use in astronomy. We

shall therefore not repeat them here, but proceed to

something more interesting. On the surface of the moon

there are spots of different kinds, some luminous, and

others in some measure obscure. It was long considered

as fully established that the most luminous parts were

land, and the obscure parts sea ; for it was said as water

absorbs a part of the light, it must transmit a weaker

splendour than the land, which reflects it very strongly.

But this reasoning is not well founded ; for if these spots,

which are obscure in regard to the rest ofthe moon, con-

sisted of water ; when illuminated obliquely, as they are

in respect to us during the first days after the conjunction,
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ey ought to transmit to us a very lively light ; as a mir-

which seems black to those not placed in the point to

ich it reflects the solar rays, appears on the other hand

ceedingly bright to an eye situated in that point.

Others have hence been induced to believe that these

scure parts are immense forests ; and this indeed may

more probable. We have no doubt that if the vast

ests still in Europe, and those of America, were seen at

great distance, they would appear darker than the rest

the earth's surface.

But is this observation sufficient to make us conclude

at these spots are really forests ? Wedo not think it is ;

d the reasons are as follow :

It is in a manner proved that the moon has no atmo-

here ; for if she had, it would produce the same effects

ours. A star, on the moon approaching it , would

ange its colour : and its rays, broken by that atmo-

here, would give it a very irregular motion, even at a

nsiderable distance from the moon. But nothing of

is kind is observed. A star covered by the dark edge

Ithe moon suddenly disappears, without changing its

-lour, or experiencing any sensible refraction. Some

tronomers indeed have imagined that they saw light-

ng in the moon during total eclipses of the sun ; but

is no doubt was an illusion, owing to their eyes being

tigued by looking too attentively at the sun. Besides,

there were clouds and vapours in the moon, they would

metimes be seen to conceal certain known parts of her

rface ; as an observer placed in the moon would cer-

inly see certain pretty large portions of the earth, such

s whole provinces, concealed sometimes for days, and

ven weeks, by those clouds, which frequently cover

em, during as long a period. M. de la Hire has shown

at an extent as large as Paris would be perceptible to

n observer in the moon, if viewed through a telescope

f 25 feet , or which magnified objects about 100 times .

K 2



ASTRONOMY AND GEOGRAPHY.
132

But if there be no dense atmosphere, no elevation of

vapours on the surface of the moon, it is difficut toco-

ceive how there can be any kind ofvegetation in it; and

if this be the case, it can produce neither plants, trees,

nor forests, and consequently no animals. It is therefore

probable that the moon is not inhabited ; besides, if t

were inhabited by animals nearly similar to man, or er-

dowed with some kind of reason, it is hardly to be sup-

posed that they would not make some changes on the

surface of that globe. But since the invention of theto-

Jescope, to the present time, no alteration has been ob-

served in its surface.

The moon always presents to the earth very nearly the

same face ; and therefore she must have a rotary motion

about an axis, nearly perpendicular to the ecliptic, the

duration of which forms the lunar month; or in one of

its hemispheres there must be some cause, which makes it

incline towards the earth. The latter conjecture is the

more probable ; for why should this revolution of the

moon around its axis be performed exactly in the period

of its rotation about the earth? However, as the moon

always presents the same face to the earth, it thence fol-

lows, that her whole surface is illuminated by the sun, in

the course of a lunar month ; the days therefore in the

moon are equal to about 15 of ours, and the nights of the

same duration.

But if we suppose,
notwithstanding what hasbeen said,

that there are inhabitants in the moon, they will enjoy a

very singular spectacle : an observer placed towards the

middle of the lunar disk, for example, will always see the

earth motionless towards his zenith, or having only a mo-

tion of nutation, in
consequence of reasons which we shall

explain hereafter. In short, each inhabitant of that hemi-

sphere will always see the earth in the same point of his

horizon; while the sun will appear to perform his revo-

lution in a month. On the contrary, the
inhabitants of
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e other hemisphere will never see the earth ; and if there

⇒ astronomers in it, some of them no doubt will under

ke a voyage to the hemisphere which is turned towards

for the purpose of observing this sort of motionless

on, suspended in the Heavens like a lamp, and the

ore remarkable as it must appear to the lunar inhabit-

Es of a diameter four times as large as that of the moon

pears to us ; with a great variety of spots performing

eir revolutions in the interval of 24 hours : for there

n be no doubt that our earth, intersected by vast seas,

ge continents, and immense forests, such as those of

merica, must exhibit to the moon a disk variegated with

great many spots, more or less luminous.

We have said that the moon always presents the same

k to the earth ; but strictly speaking this is not exactly

e case ; for it has been found that the moon has a cer-

n motion, called libration , in consequence of which the

rts nearest the edge alternately approach to or recede

m that edge, by a kind of vibration. Two kinds of

ration are in particular distinguished ; one called a li-

ation in latitude, by which the parts near the austral or

boreal poles of the moon, seem to vibrate from north to

uth, and from south to north, through an arc which

y comprehend about 5 degrees. This, however, is a

ere optical effect, produced by the parallelism of the

Don's axis of rotation, which is inclined 2 degrees to

ecliptic.

The other libration is that in longitude ; which takes

ace around the above axis, at an angle of nearly 7

grees ; and as both are combined, it needs excite no

onder that this phenomenon should have long been an

ject of research to philosophers , though without suc-

ss. The causes of the latter are not yet so fully esta-

ished, as to be beyond doubt, However, it is evident

at the inhabitants of the moon, if there really be any,

ho are situated near the edge of the disk turned towards
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the earth, must see our globe alternately rise and set, de-

scribing an arc of only a few degrees.

§ VI.

OfMars.

Mars, which may be easily distinguished by its reddish

splendour, is the fourth in the order of the primary pla-

nets. Its orbit incloses that of Mercury, Venus, and the

earth ; consequently the motions of these planets must

exhibit to the inhabitants of Mars the same phenomena, as

are presented by Mercury and Venus to the inhabitants

of our globe.

The revolution of Mars around the sun is performed in

686 days 23 hours 30 minutes, or nearly two years.
Its

mean distance from the sun is more than 1 that of the

earth, or about 144 millions of miles.

Spots are observed sometimes on the disk of Mars, by

which it is proved that it revolves on an axis almost per-

pendicular to its orbit ; and that this revolution is com-

pleted in 24 hours 39 minutes. The days therefore, to

the inhabitants of Mars, if there are any, must be nearly

equal to ours ; and the days and nights in this planet must

be of the same length, since its equator coincides with its

orbit. As tothe size of Mars , it is almost equal to that

of our earth .

§ VII.

OfJupiter.

The next planet to Mars, of the ancient ones, is Ju-

piter. Its distance from the sun is above 5 times that of

the earth, being 490 millions of miles . The period of its

revolution around the sun is 11 years 317 days 12 hours

20 minutes. Its diameter, compared with that of the

earth, is as 11 to 1 ; so that its bulk is 1331 times as great

as that ofour globe.

This bulk does not prevent Jupiter from revolving
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Found his axis with much more rapidity than our earth.

he spots observed on the disk of this planet have indeed

own that this revolution is performed in 9h 56m ; so that

is more than twice as quick, and as any point in the

quator of Jupiter is eleven times as far distant from the

kis as a point of the earth's equator is from the terrestrial

is , it thence follows that this point in Jupiter moves with

velocity about twenty-four times as great.

It has therefore been observed that the body of Jupiter

not perfectly spherical : it is an oblate spheroid, flattened

the poles, and the diameter of its equator, is to that

assing from the one pole to the other, according to the

test observations made with the most perfect instruments,

5 14 to 13.

The axis of Jupiter is almost perpendicular to the plane

f its orbit ; for its inclination is only 3 degrees : the days

nd nights therefore in this planet must be nearly equal at

ll seasons,

The surface of Jupiter is for the most part interspersed

with spots, in the form of bands ; some of them obscure,

nd others luminous : at certain periods they are scarcely

isible ; nor are uniformly marked throughout their whole

extent ; so that they are as it were interrupted : their

umber also varies ; and they can be seen only by the as-

istance of good telescopes , or when Jupiter is at his least

Histance from the earth . The year 1773 was exceedingly

Favourable for these observations ; because Jupiter was

then as near to the orbit of the earth as possible.

The distance ofJupiter fromthe sun being above 5 times

that of the earth, it is evident that the sun's diameter must

appear five times less, or about 6 minutes only ; conse-

quently the splendor of the sun at Jupiter will be 25 times

less than it is to the earth. But a light 25 times less than

that of the sun is still pretty strong, and more than suffici-

ent to produce a very clear day : the inhabitants therefore
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of Jupiter, for it is probable that there are some in this

planet, will have no great cause to complain.

But if they are treated less favourably in this respect

than the inhabitants of the earth, they possess advantages

in others ; for while the earth has only one moon, to make

up for the absence of the sun, Jupiter has four. These

moons, or satellites, were first discovered by Galileo ; and

they enabled him to reply to those who objected in op-

position to the earth's motion, the impossibility of con-

ceiving how the moon could accompany the earth during

its revolution : Galileo's discovery reduced them to si-

lence.

The satellites of Jupiter revolve around him in the

periods, and at the distances, indicated in the following

table.

Order of

the Satellites.

Dist. in semi-

diameters ofJupiter.

II

III

་ 524

9

1423

25,13%

Periodical

Times.

D. H. M.

1 18 27

3 13 14

7 3 43

16 16 32•IV

The inhabitants of Jupiter then, in this respect, enjoy

much greater advantages than those of the earth ; for hav-

ing four moons, some of them must be always above the

horizon which is not illuminated by the sun : they will

even sometimes see the whole four, one as a crescent, an-

other full , and a third half-full : they will see them eclipsed ,

as we see the moon deprived of her light from time to

time, when she enters the shadow projected by the earth,

butwith this difference, that, being much nearer to Jupiter,

considering his bulk, they cannot pass behind him, in re-

gard to the sun, without suffering an eclipse.

Astronomers, however, not contented with establishing

the existence of these moons attached to Jupiter, have
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ne more ; for they have calculated their eclipses with

much correctness, at least , as those of our moon. The

utical Almanac, and other astronomical Ephemerides,

hibit for each day ofthe month, the aspects of the satel-

es of Jupiter, and announce the hour at which their

ipses will commence, and whether they will be visible

not on the horizon of the place : they give also the time

en any of these satellites will be hid behind the disk of

piter, or disappear by passing before it. These predic-

ns are not matters of mere curiosity, since they are of

eat utility in determining the longitude.

§ VIII.

OfSaturn.

Saturn, which is still farther from the sun than Jupiter,

hibits a most singular spectacle, on account of his seven

oons, and the ring by which he is surrounded . He per-

rms his revolution around the sun in 29 years 174 days

hours 36 minutes ; and his mean distance from that

minary is about 9½ times as great as that of the earth, or

00 millions of miles.

At such an immense distance the apparent diameter of

e sun, to a spectator in Saturn, is no more than of

hat it is to us ; and its light as well as heat must be 90

mes less. An inhabitant of Saturn transported to Lap-

nd, or even to the polar regions, covered with perpetual

e, would experience there an insupportable heat ; and

ould no doubt perish sooner than a man immersed in

oiling water ; while an inhabitant of Mercury would

eeze in the most scorching climates of our torrid zone.

It is probable that Saturn has a rotary motion around

is axis ; but the best telescopes have not yet shown on his

urface any remarkable point, by means of which this ro-

ation could be ascertained or determined *.

* Dr. Herschel having discovered that there are some belt-like appear-

nces on this planet, similar to those which are seen on Jupiter, concluded
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Nature seems to have been desirous to indemnify Saturn

for his great distance from the sun, by giving him seven

moons, which are called his satellites. Their distances

from the centre of Saturn , in semi-diameters of that planet,

and the periods of their revolution, are as expressed in the

following table.

Satellites.

I

II

III

IV

V

VI

VII

•

5
0
0

Revolutions.

D. H. M.

Distances.

4
1 21 18

5 2 17 41

8 4. 12 25

18 15 22 41

54 79 7 48

35/
8 53

2/5/
0 22 40•

Of these satellites , five were discovered by Cassini and

Huygens, before the year 1685 ; and it was imagined there

were no more, till two were discovered by Dr. Herschel

in 1787 and 1788. These are nearer to Saturn than any

of the other five ; but to prevent confusion in the num-

bers, with regard to former observations, they are called

the 6th and 7th satellites.

The inclination of the first four satellites to the ecliptic ,

is from 30 to 31 degrees. The fifth describes an orbit in-

clined in an angle of from 17 to 18 degrees to the orbit of

Saturn . Dr. Herschel observes that this satellite turns

once round its axis exactly in the time in which it revolves

about Saturn ; and in this respect it resembles our moon.

We shall not here enlarge on the advantages which this

planet must derive from so many moons ; what we have

said in regard to Jupiter is applicable in a greater degree

to Saturn also .

that it must revolve on its axis, and with a pretty quick motion. He also

thinks he has determined from some parts of these belts, which are less black

than others, that this revolution is performed in 10 hours 16 minutes.
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But something still more singular than these seven

ns, is the ring by which Saturn is surrounded. Let

reader conceive a globe placed in the middle of a flat

circular body, with a concentric vacuity ; and that

eye is placed at the extremity of a line oblique to the

e of this circular ring. Such is the aspect exhibited

Saturn when viewed through an excellent telescope ;

such is the position of a spectator on the earth. The

meter of Saturn is to that of the vacuity of the ring, as

5 ; and the breadth of the ring is nearly equal to the

erval between the ring and Saturn . It is fully proved

t this interval is a vacuity ; for a fixed star has been

e seen between the ring and the body of the planet ;

ring therefore maintains itselfaround Saturn as a bridge

uld do concentric to the earth, and having every where

uniform gravity *.

This body, of a conformation so singular , is alternately

minated on each side by the sun ; for it makes, with the

ne of Saturn's orbit, an invariable angle, of about 31 °

; always remaining parallel to itself, in consequence

which it presents to the sun, sometimes the one face,

This ring, according to Huygens, is about 22000 miles broad, and its

atest diameter is in proportion to that of the planet, as 9 to 4. De la

de and De la Place inform us, that Cassini saw the edge of this ring, di-

ed into separate parts, nearly equal in breadth. Hadley also, with an

wellent 54 feet reflector, saw the ring divided into two parts. Mr. Short

I some others thought they saw several divisions on the ring ; but the long

tinued and accurate observations of Dr. Herschel seem to confirm the di-

ion of the ring into only two concentric parts, almost beyond the possibility

doubt. The doctor says there is one single dark considerably broad line,

t, or zone, which he has constantly found on the north side of the ring.

ere have been various conjectures in regard to the nature of this ring.

me have imagined that the diameter of Saturn was once equal to the pre-

it diameter ofthe outer ring, and that it was hollow; the present body

ng contained within the former surface, as a kernel is contained within its

ell . They suppose that in consequence of some concussion , or other cause,

e outer shell fell down to the inner body, and left only the ring at the

cater distance from the centre, as we now perceive it.
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and sometimes the opposite one ; the inhabitants there-

fore, of the two hemispheres of Saturn, enjoy the benefit

of it alternately. Some observations seem to prove that

it has a rotary motion around an axis perpendicular to its

plane ; but this has not yet been absolutely proved * .

Saturn is seen sometimes from the earth without his

ring ; but this phenomenon may be easily explained .

Saturn's ring may disappear in consequence of three

causes. 1st. It disappears when the continuation of its

plane passes through the sun ; for in that case its surface

is in the shade, or too weakly illuminated by the sun tobe

visible at so great a distance ; and its edge is too thin,

even though illuminated, to be seen from the earth. This

phenomenon is observed when Saturn's place is about

19° 45′ ofVirgo and Pisces.

2d. The ring of Saturn must disappear also, when the

continuation of its plane passes between the earth and the

sun ; for the flat part of the ring, which is then turned to-

wards the earth, is not that illuminated by the sun. It

cannot therefore be seen from the earth ; but its shadow

may be seen projected on the disk of Saturn.

The nature of this singular ring affords much matter for

conjecture. Some have supposed that it may be a multi-

tude of moons, all circulating so near each other, that the

distance between them is not perceptible from the earth,

which gives them the appearance of one continued body.

But this is very improbable.

Others have imagined that it is the tail of acomet, which

passing very near Saturn, has been stopped by it. But

such an arrangement of a circulating fluid would be some-

thing very extraordinary. In our opinion , while we ad-

mire this work of the sovereign Artist, the Creator ofthe

universe, we must suspend our conjectures respecting the

* Dr. Herschel, from some spots he has seen on the exterior of the ring,

has determined that it revolves in about 10 hours,

།
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re of it, till a farther improvement in telescopes shall

le us to obtain new facts to support them.

he distance of Saturn from the sun is so great, that all

planets are inferior to it , or below it, as Venus and

cury are, in regard to our earth. Nay, if it be in-

Eed by intelligent beings, it is very doubtful whether

have any knowledge of our existence, and much less

at of Mercury and Venus ; for in regard to them,

cury will never be farther from the sun than 2° 25',

us than 4º 15', and the earth than 6° ; Mars will be

ant from the sun only about 9° , and Jupiter 28° 40′ :

ill therefore be much more difficult for the Saturnians

ee the first three or four of these planets, than it is for

o observe Mercury ; which can scarcely ever be seen,

is almost always concealed among the rays ofthe sun.

is however true that the light ofthe sun is on the other

very weak ; and that the constitution of Saturn's

osphere, if it has one, may be of such a nature, that

e planets are visible, as soon as the sun has set.

§ IX.

Ofthe Georgian Planet, and other New Planets.

was long supposed that Saturn was the remotest planet

our system ; but it is now well known that this is not the

e , as another still farther distant from the sun was dis-

ered by Dr. Herschel, in the year 1781. To this planet

Herschel gave the name of the Georgium Sidus, in

nour of his present majesty. The French call it Her-

el, in honour of the discoverer ; and professor Bode, of

rlin, gave it the name of Uranus, who was the father of

urn, as Saturn was of Jupiter. An interesting history

the discovery was presented to the Academy of Sciences

Brussels, in May 1785, by Baron von Zach of Gotha,

d is inserted in the first volume of the Memoirs of that

ademy.

The distance of this planet from the sun is immense ;
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being about 1800 millions of miles, which is double that

of Saturn. It performs its annual revolution in 83 years

140 days and 8 hours of our time ; and its motion in its

orbit must consequently be above 7000 miles an hour. To

a good eye, unassisted by a telescope, it appears like a

faint star of the fifth magnitude ; and it cannot readily be

distinguished from a fixed star with a less magnifying power

than 200. Its apparent diameter, to an observer on the

earth, subtends an angle of no more than 4 seconds ; but

its real diameter is about 35000 miles , and therefore it must

be about 80 times as big as the earth. Hence we may

infer, as the earth cannot be seen under an angle of quite

a second by the inhabitants of the Georgian planet, that it

has never yet been discovered by them, unless their eyes

and instruments are considerably better than ours. The

orbit of this planet is inclined to the ecliptic at an angle of

46 minutes 26 seconds ; but as no spots have been dis-

covered on its surface , the position of its axis , and the

length of its day and night, are not known.

On account of the immense distance of the Georgian

planet from the sun, it was highly probable that it was ac-

companied with several satellites or moons ; and the high

powers ofDr. Herschel's telescopes indeed enabled him to

discover six ; but there may be some others , which he has

not yet seen. The first and nearest the planet, revolves at

the distance from it of 12 of its semi-diameters ; and per-

forms its revolution in 5 days 21 hours 25 minutes ; the se-

cond revolves at the distance from the primary of 163 of

its semi-diameters, and completes its revolutions in 18 days

17 hours 1 minute ; the third, at the distance of 19 semi-

diameters , in 10 days 23 hours 4 minutes ; the fourth, at

22 semi-diameters, in 13 days 11 hours 5 minutes ; the

fifth, at 44 semi-diameters, in 38 days 1 hour 49 minutes;

and the sixth, at 88 semi-diameters, in 107 days 16 hours

40 minutes. It is remarkable that the orbits of these satel-

lites are almost all at right angles to the plane of the
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ptic ; and that the motion of every one ofthem, in their

■ orbits, is retrograde, or contrary to that of all the

er known planets.

Besides the Georgian, four other planets have lately

n discovered ; a circumstance which leaves room to

ecture that there may be many more of such primary,

ugh small planets.

The first ofthese four was discovered , on Jan. 1 , 1801 ,

first day of the present century, by M. Piazzi , an in-

ious astronomer at Palermo, in the island of Sicily. In

er to preserve the honour ofthis discovery, as well asthe

ervations, to himself, he kept it secret, till , on the 11th

February, he was compelled by sickness to discontinue

observations. This celestial phenomenon is an inter-

liate planet between the orbits of Mars and Jupiter,

appears as a star of the 8th magnitude. This planet

been named Ceres Ferdinandea, by the discoverer,

ugh some astronomers call it Piazzi, after that gentle-

n's own name, and which perhaps would be the best

y of naming and distinguishing all the new planets.

is planet is but of very small size , its apparent diameter

ng only about a second and a half, and its real diameter

ut one-seventh of that of the earth, or half that of the

on, or nearly 1000 miles. Its distance from the sun is

ut 2 times that of the earth and three-fifths ; and its

iodic time, in revolving around the sun, about 4 years

2 months. The eccentricity of its orbit is about 0364

ts mean distance .

The second of these planets, named Pallas, or Olbers,

saccidentally discovered on the 28th of March 1802 ,

Dr. Olbers, of Bremen , as he was looking out for the

mer, or Piazzi, which it much resembled when viewed

h the telescope, appearing, like it , without either atmo-

ere or nebula, as a fixed star of the 7th or 8th magni-

e. Olbers is much smaller however, and supposed to
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be but about 140 miles in diameter. It is also thought to

move in an orbit very eccentric , almost like a comet ; so

much so, that though at its nearest distance it be between

Mars and Ceres, yet at its farthest distance it goes off

much beyond the latter. Its mean distance from the sun

may be about 2 and one-tenth that of the earth, which

places it between Mars and Ceres.

The third of these new planets was discovered Sept. 1 ,

1804, at 10 o'clock in the evening, by M. Harding , astro-

nomer at the Observatory of Lilienthal , near Bremen in

Germany. It appeared very small , like a star of the 8th

magnitude, and which he named Juno, though others give

it more properly the name of the discoverer, after the

manner ofthe two former. Observations have determined

that the period of this planet is 5 years ; the inclination of

its orbit 21° ; its eccentricity a quarter of its radius, which

radius, or mean solar distance, is 3 times that of the earth,

or about 300 millions of miles, and consequently is a little

more than the other two new planets, Piazzi and Olbers,

these being about 288 millions of miles, and is also nearly

of the same size as those two planets.

The fourth of these new planets was discovered at

Bremen, March the 29th, 1807, by Dr. Olbers, the dis-

coverer of the 2d new planet also . He gave it the name

Vesta, but may more appropriately be called Olbers' 2d.

This is another ofthe group ofnew planets , which revolve

round the sun, between Mars and Jupiter, at nearly equal

distances from it, and all nearly equal in size and period.

It is remarkable that several astronomers have formerly

imagined that some planet would be discovered in the

large space between the orbits of Mars and Jupiter : a

prediction which has been amply fulfilled by the discovery,

not of one only, but of four planets, in that space. And

probably there may even exist many more planets, not

only in that space, but scattered about among or beyond
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e other planetary orbits, which may long revolve

n and undiscovered , by reason of the smallness of

size.

§ X.

OfComets.

mets are not now considered , as they were formerly,

signs of celestial vengeance ; the forerunners of war,

e, or pestilence. Mankind in those ages must have

exceedingly credulous to imagine, that scourges con-

to a very small portion of the globe, which itself is

a point in the universe, should be announced by a

ngement of the natural and immutable order of the

ens. Neither are comets, as supposed by the greater

of the ancient philosophers, and those who trod in

footsteps, meteors accumulated in the middle of the

Astronomical observations made at the same time, in

rent parts of the earth, have shown that they are

ys at a distance much greater than that even of the

; and consequently that they have nothing in com-

with the meteors formed in our atmosphere.

n ;

he opinions entertained by some ancient philosophers,

as Appollonius the Myndian, and particularly Seneca,

been since confirmed . According to these philoso-

s, comets are bodies as old and as durable as the planets

selves ; their revolutions are regulated in the same

ner ; and if they are seldom seen, it is because they

orm their courses in such a manner, that in a part of

r orbits they are so far distant from the earth as to be-

e invisible ; so that they never appear but when in the

er part ofthem.

lewton and Halley, who pursued the same path, have

wed by the observations of different comets, which ap-

red in their time, that they describe elliptical orbits

und the sun, which is placed in one of the foci ; and

OL. III. L

1
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that the only difference between these orbits and those of

the planets is, that the orbits of the latter are nearly

circular, whereas those ofcomets are very much elongated ;

in consequence of which, during a part of their course,

they approach near enough to our earth to become visible ;

but during the rest they recede so far from us, as to be

lost in the immensity of space. These two philosophers

have taught us also, by the help of a small number of

observations, made in regard to the motion of a comet,

how to determine the distance at which it has passed, or

will pass, the sun ; as well as the period when it is at its

least distance, and its place in the heavens for any given

time. Calculations made according to these principles

agree in a surprising manner with observations.

The modern philosophers have even done more : they

have determined the periods of the return of some of these

comets. The celebrated Dr. Halley, considering that

comets, if they move in ellipses, ought to have periodical

revolutions, because these curves return into themselves,

examined with great care the observations of three comets,

which appeared in 1531 and 1532 , 1607, and 1682 ; and

having calculated the position and dimensions of their

orbits, found them to be nearly the same, and consequently

that these comets were only one, the revolution of which

was completed in about 75 years : he therefore ventured

to predict that this comet would re-appear in 1758, or

1759 at latest. It is well known that this prediction was

verified at the time announced ; hence it is certain that

this comet has a periodical revolution around the sun, in

75 years and a half. According to the dimensions of its

orbit, determined by observations, its least distance from

the sun is of the semi-diameter of the earth's orbit ;

it afterwards recedes to a distance which is equal to 35

of these semi-diameters ; so that its greatest elongation

from the sun, is about four times as great as that of Saturn.
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e inclination of its orbit to the ecliptic, is 17° 40′, in

ne proceeding from 23° 45′ of Taurus to 23° 45′ of

rpio.

here are still two comets, the return of which is ex-

ted with some sort of foundation ; viz, that of 1556,

ected in 1848 ; and that of 1680 and 1681 , which it is

posed, though with less confidence, will re-appear

ut 2256. The latter, by the circumstances which at-

ded its apparition, seems to be the same as that seen,

ording to history , 44 years before the christian æra,

in 531 , and in 1106 ; for between all these periods there

n interval of 575 years. There is reason therefore to

pose that this comet has an orbit exceedingly elongated,

that it recedes from the sun about 135 times the distance

he earth.

What is very remarkable also in this comet is, that in

lower part of its orbit it passed very near the sun ;

t is, at a distance from its surface which scarcely ex-

ded a sixth part of the solar diameter ; hence Newton

cludes, that at the time of its passage it was exposed to

eat 2000 times greater than that of red-hot iron. This

y therefore must be exceedingly compact, to be able

resist so prodigious a heat, which there is reason to

k would volatilize all the terrestrial bodies, with which

are acquainted .

At present there are near 100 comets, the orbits ofwhich

e been calculated ; so that their position , and the least

cance at which they must pass the sun, are known.

en a new comet therefore shall appear, and describe

same, or nearly the same path, we may be assured that

is a comet which has appeared before : we shall then

ow the period of its revolution , and the extent of its

s, which will determine the orbit entirely: in short we

all be enabled to calculate the times of its return, and

her circumstances of its motion, in the same manner as

ose of the other planets.

L2
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Comets have this in particular, that they are often ac-

companied by a train or tail. These tails or trains are

transparent, aud of greater or less extent ; some have been

seen which were 45 , 50, 60, and even 100 degrees in

length, as was the case with those of the comets which

appeared in 1618 and 1680. Sometimes however the tail

consists merely of a sort of luminous nebula , of very little

extent, which surrounds the comet in the form of a ring,

as was observed in the comet of 1585 : it frequently

happens that these tails cannot be seen unless the heavens

be exceedingly serene, and free from vapours. The

celebrated comet, which returned about the end of the

year 1758, seemed at Paris to have a tail scarcely 4 de-

grees in length ; whereas some observers at Montpelier

found it to be 25° ; and it appeared still longer to others

at the Isle of Bourbon.

In regard to the cause which produces the tails of comets,

there are only two opinions which seem to be founded on

probability. According to Newton, they are vapours

raised by the heat of the sun, when the comet descends

into the inferior regions of our system. It is therefore

observed that the tail of a comet is longest when it has

passed its perihelion ; and it always appears longer the

nearer it approaches to the sun. But this opinion is at-

tended with considerable difficulties. According to M. de

Mairan, these tails are a train of the zodiacal light, with

which comets become charged in passing between the

earth and the sun. It is remarked that comets which do

not reach the earth's orbit, have no sensible tail ; or are at

most surrounded by a ring. Of this kind was the comet

of 1585, which passed the sun at a distance greater than

that of the earth ; the comet of 1718 , which passed at a

distance almost equal to that of 1729 , that is at a distance

nearly quadruple ; and that of 1747, which passed at a

distance more than double. It is indeed true, that the

comet of 1664, which passed at a greater distance from
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sun than that of the earth, appeared with a tail, but it

of a moderate size ; and as the distance of its peri-

on was very little more than that of the earth from the

and as the solar atmosphere extends sometimes be-

d the earth's orbit, no objection of any great weight

thence be made, in opposition to the opinion of M. de

ran.

Ve shall remark, in the last place, that while the other

nets perform their revolutions in orbits very little in-

ed to the ecliptic, and proceed in the same direction,

nets on the other hand move in orbits, the inclination

which to the ecliptic amounts even to a right angle.

ides, some move according to the order of the signs,

are called direct; others move in a contrary direction,

are called retrograde. These motions being combined

h that of the earth, give them an appearance of irregu-

ty, which may serve to excuse the ancients for having

en in an error respecting the nature of these bodies.

t has been already said that there are some comets

ich pass very near the earth; and hence a catastrophe

al to our globe might some day take place, had not the

ity, by particular circumstances, provided against any

ident of the kind.

A comet, indeed, like that of 1744, which passed at a

tance from the sun only greater by about a 50th than

- radius of the earth's orbit, should it experience any

angement in its course, might fall against the earth or

moon, and perhaps carry away from us the latter. As

multitude of comets descend into the lower regions of

r system, some of them, in their course towards the sun,

ght pass so near the orbit of our earth, as to threaten

with a similar misfortune. But the inclination of the

its of comets to the ecliptic , which is exceedingly

ried, seems to have been established by the Deity to

event that effect. It would be a curious calculation to

termine the least distances at which some ofthese comets
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pass the earth: we should by these means be enabled to

know those from which we have any thing to apprehend ;

that is, if it could be of any utility to be acquainted with

the period of such a catastrophe ; for where is the ad-

vantage of foreknowing a danger which can neither be

retarded nor prevented?

An English astronomer, who possessed more imagination

and learning, than soundness of judgment, the celebrated

Whiston, entertained an opinion that the deluge was oc-

casioned by the earth's meeting with the tail of a comet,

which fell down upon it in the form of vapours and rain :

he advanced also a conjecture, that the general conflagra-

tion, which according to the Sacred Scriptures is to pre-

cede the final judgment, will be occasioned by a comet

like that of 1681 ; which returning from the sun, with a

heat two or three thousand times greater than that of red-

hot iron, will approach so near the earth as to burn even

its interior parts. Such assertions are bold ; but they rest

on a very weak foundation ; and in regard to a general

deluge, occasioned by the tail of a comet, we need be

under very little apprehension on that head; for if we con-

sider the extreme tenuity of the ether in which the comets

float, it may be readily conceived that the whole tail of a

comet, even if condensed , could not produce a quantity

of water sufficient for the effect ascribed to it by Whiston.

Cassini thought he observed that comets pursue their

course in a kind of Zodiac, which he even denoted bythe

following verses :

Antinous Pegasusque, Andromeda, Taurus, Orion,

Procyon atque Hydrus , Centaurus, Scorpio, Arcus.

But the observations of a great number of comets have

shown that this supposed Zodiac of comets has no reality.
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§ XI.

Ofthe Fixed Stars.

is it now remains for us to speak of the fixed stars, we

ll here collect every thing most curious in the modern

onomy on this subject.

The fixed stars may be easily distinguished from the

nets. The former, at least in our climates, and when

y are of a certain magnitude, have a splendour accom-

lied with a twinkling called scintillation. But one thing

which they are particularly distinguished is, that they

not change their place in regard to each other, at least

a sensible manner : they are therefore a kind of fixed

ints in the heavens, to which astronomers have always

erred the positions of the moving bodies, such as the

Don, the planets, and the comets.

We have said that the fixed stars in our climates exhibit

sort of twinkling . This phenomenon seems to depend

the atmosphere; for we are assured that in certain parts

Asia, where the air is exceedingly pure and dry, as at

ender-Abassi , the stars have a light absolutely fixed ; and

at the scintillation is never observed, except when the

is charged with moisture, as is the case in winter.

his observation of M. Garcin, which was published in

e History of the Academy of Sciences for 1743, deserves

be farther examined.

The distance between the fixed stars and the earth is so

mense, that the diameter of the earth's orbit , which is

20 millions of miles, is in comparison of it only a point ;

r in whatever part of its orbit the earth may be, the ob-

rvations of the same star show no difference in its aspect ;

that it has no sensible annual parallax. Some astrono

ers however assert that they discovered, in certain fixed

ars, an annual parallax of a few seconds. Cassini, in a

emoir on this parallax, says he observed in Arcturus an

anual parallax of seven seconds, and in the star called
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Capella, one of eight. This would make the distance of

the sun from the former of these stars equal to about

20250 times the radius of the earth's orbit , which, being

95 millions of miles, would give for that distance

19237500000000 miles. Between the fixed stars and the

Georgian planet, which is the most distant of our system,

there would therefore remain a space equal to more than

10000 times the distance of that planet from the sun.

Placed at such an immense distance from us, what can

the fixed stars be but immense bodies, which shine by

their own light ; in short, suns, similar to that which

affords us heat, and around which our earth performs its

revolutions ? It is very probable also that these suns, ac-

cumulated as we may say on each other, have the same

destination as ours ; and are the centres of so many.

planetary systems, which they vivify and illuminate. It

would however be ridiculous to form conjectures respect-

ing the nature ofthe beings by which these distant bodies

are peopled ; but of whatever kind they may be, who can

believe that our earth, or our system, is the only one in-

habited by beings capable of enjoying the pleasure which

arises from the contemplation of such noble works ? Who

can believe that an immense whole, a creation almost

without bounds, should have been formed for an imper-

ceptible point, a quantity infinitely small ?

The apparent diameter of the fixed stars is in no manner

magnified by the best telescopes ; on the contrary, these

instruments, while they increase their splendour, seem to

diminish their magnitude so much, that they appear only

as luminous points ; but they show in the heavens a mul-

titude of other stars, which cannot be observed without

their assistance. Galileo, by means of his telescope, which

was far inferior to those now employed, counted in the

Pleiades 36 stars , invisible to the naked eye ; in the sword

and belt of Orion 80 ; in the nebula of Orion's head 21 ,

and in that of Cancer 36. Father de Rheita says, he
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anted 2000 in Orion , and 188 in the Pleiades. In that

t ofthe Austral hemisphere, comprehended between the

e and the tropic, the Abbé de la Caille observed more

6000 ofthe 7th magnitude, that is to say perceptible

h a good telescope, of a foot in length ; a longer tele-

pe shows others apparently more distant, and so in

gression perhaps without end. What immensity in

works of the Creator ! And how much reason to ex-

im with the Psalmist : " The heavens declare the glory

God, and the firmament sheweth his handy work !"

The fixed stars seem to have a common and general

tion , by which they revolve around the pole of the

iptic, at the rate of a degree in 72 years. It is in con-

uence ofthis motion that the constellations of the zodiac

we all changed their positions. Aries occupies the place

Taurus, the latter that of Gemini, and so ofthe rest ; so

at the constellations or signs have advanced about 30

grees beyond the divisions of the zodiac to which they

But this motion is only apparent, and not

l ; and arises from the equinoctial points going back

ery year about 51 seconds on the ecliptic. The ex-

nation of this phenomenon however is of such a nature,

not to come within the object of this work.

ve names.

It has always been believed that the fixed stars have no

l motion, or at least no other than that by which they

ange their longitude. But it has been discovered, by

e very accurate observations of modern astronomers,

at some of them have a small motion peculiar to them-

ves, by which they slowly change their places. Thus

cturus, for example, has a motion by which it ap-

oaches the ecliptic about 4 minutes every 100 years.

he distance between this star and another very small one,

its neighbourhood , has been sensibly changed in the

urse of the last century. Sirius also seems to have a

otion in latitude, of more than 2 minutes per century,

y which it recedes from the ecliptic, A similar motion
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has been observed in Aldebaran or the Bull's Eye ; in

Rigel ; in the eastern shoulder of Orion ; in the Goat, the

Eagle, &c. Some others seem to have a peculiar motion

in a direction parallel to the equator, as is the case with

the brilliant star in the Eagle ; for in the course of 48

years it has approached one star in its neighbourhood 73″,

and receded from another 48" . All the stars perhaps are

subject to a similar motion ; so that in a series of ages the

heavens will afford a spectacle very different from what

they do at present. So true it is that nothing in the uni-

verse is permanent !-In regard to the cause of this motion,

however astonishing it may at first seem, it will appear

less so if it be recollected that it has been demonstrated by

Newton, that a whole planetary system may have a pro-

gressive and uniform motion in space, without the par-

ticular motion ofthe different parts being thereby disturbed.

It needs therefore excite no surprise that suns, as the fixed

stars are, should have a motion of their own. The state of

rest being of one kind only, and that of motion in any di-

rection being infinitely varied, we ought rather to be asto-

nished to see them absolutely at rest, than to discover in

them any movement.

But these are not the only phenomena exhibited to us

by the fixed stars ; for some have appeared suddenly, and

afterwards disappeared. The year 1572 is celebrated for

a phenomenon of this kind. In the month of November

of that year, an exceedingly bright star suddenly appeared

in the constellation of Cassiopeia : its splendor at first was

equal to that of Venus when in its perigeum , and then to

that of Jupiter when he exhibits the greatest brightness ;

three months after its appearance it was only like a fixed

star of the first magnitude : its splendor gradually de-

creased till the month of March 1574, at which time it

entirely disappeared .

There are other stars which appear and disappear

regularly at certain periods : of this kind is that in the neck
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The Whale. When in its state ofgreatest brightness it

early equal to a star of the second magnitude ; it re-

s this splendor for about fifteen days, after which it

omes fainter, and at length disappears : it then re-

ears, and attains to its greatest splendor , after a period

bout 330 days.

The constellation of the Swan exhibits two phenomena

he same kind ; for in the breast of the Swan there is a

which has a period of 15 years, during 10 of which it

nvisible : it then appears for 5 years, varying in its

gnitude and splendor. Another, which is situated in

neck near the bill, has a period of about 18 months. In

same constellation a star was observed in 1670 and 1671 ,

ich disappeared in 1672 , and has never since been seen.

Hydra also has a star of the same kind , which is attend-

with this remarkable circumstance, that it appears only

months ; after which it remains invisible for 20, so that

period is about two years.

In the last place, some stars seem to have become ex-

ct since the time of Ptolemy ; for he enumerates some

his catalogue which are not now to be seen : others

we changed their magnitude ; this diminution of size is

oved in regard to several ofthe fixed stars ; among this

mber may be classed the star в in the Eagle, which at

e beginning of the last century was the second in

lendor, but which at present is scarcely of the third

gnitude. Of this kind also is a star in the left leg of

rpentarius or Ophiuchus.

It now remains that we should say a few words respect-

those stars called nebula. They are distinguished by

is name because, when seen by the naked sight, they

pear only like a small luminous cloud. There are three

nds of them . Some consist of an accumulation of a

eat number of stars, crowded together, and as it were

eaped upon each other ; but when viewed through a

elescope, they are seen distinct, and without any nebulous
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those proud beings, who, though they occupy but an in-

finitely small portion of this atom, have the vanity to think

that the universe was created for them .

To form an idea of our system as compared with the

universe, let us suppose the sun to be in Hyde Park, as a

globe of 9 feet 3 inches diameter : the planet Mercury will

be representedby a globule of about of a line in diameter,

placed at the distance of 37 feet. Venus will be a globe

of little more than a line in diameter circulating at the

distance of 68 feet from the same centre : if another

globule, a line in diameter, be placed at the distance of 95

feet, it will represent the earth, that theatre of so many

passions, and so much agitation ; on the surface of which

the greatest potentate scarcely possesses a point, and

where a space
often imperceptible excites, among the ani-

'malcula that cover it, so many disputes, and occasions so

much bloodshed. Mars, which in magnitude is somewhat

inferior to the earth, will be represented by a globule of a

little less than a line in diameter, and placed at the distance

of 144 feet ; Jupiter by a globe 10 lines in diameter, 490

feet from the central globe ; Saturn about 7 lines in di-

ameter, at the distance ofabout 900 feet ; and the Georgian

planet, 4 lines in diameter, at the distance of 1800 feet.

But the distance from the Georgian planet to the nearest

fixed stars, is immense. The reader may perhaps imagine

that, according to the supposition here made, the first star

ought to be placed at the distance of two or three leagues.

This is the idea which one might form before calculation

has been employed ; but it is very erroneous, for the first,

that is to say the nearest star, ought to be placed at the

same distance as that between London and Edinburgh,

which is more than 300 miles. Such then is the idea which

weought to have of the distance between the sun and the

nearest of the fixed stars ; and there is reason even to think

that it is much greater, for we have supposed , in this

calculation, that the parallax of the earth's orbit is the

C
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e as the horizontal parallax of the sun, that is to say

. But it is probable that this parallax is much less ;

it can hardly be believed that it could have escaped

onomers had it been so great.

ur solar system then, that is, the system ofour primary

secondary planets, which circulate around the sun, is

ne distance of the nearest-fixed stars, almost as a circle

800 feet radius, would be to a concentric one of 300

es radius ; and in the first circle our earth would occupy

ace a line in diameter, appearing like a grain ofmustard

1.

nother comparison, proper to convey some idea ofthe

ense distance between the sun, which is the centre of

system, and the nearest of the neighbouring bodies of

same nature, is as follows : It is well known that the

ocity of light is so great, that it passes over the distance

veen the sun and the earth in about half a quarter of

hour : in a second and a half it would go to the moon

return, or rather it would go fifteen times round the

th in a second. What time would light then employ in

ning to us from the nearest ofthe stars ?-Not less than

3 days ; or if the annual parallax be only 2 or 3 seconds,

ich appears very probable, it would require a year and

re.

What immense distance then between this inhabited

nt and the nearest of its neighbours ! Is it not probable

t in this vast interval there are planets which will re-

in for ever unknown to the human species ?

Modern astronomy indeed has discovered that this space

not entirely desert : it is now known that about a

ndred comets move in it, at greater or less distances,

t do not penetrate to a very great depth. Those of

31 , 1607 , 1682, and 1759, the only ones the periods and

oits of which are known , do not immerge farther than

out 37 times the radius of the earth's orbit, or four

nes the distance of Saturn from the sun. If that of 1681
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"

those proud beings, who, though they occupy but an in-

finitely small portion of this atom, have the vanity to think

that the universe was created for them .

3

To form an idea of our system as compared with the

universe, let us suppose the sun to be in Hyde Park, as a

globe of 9 feet 3 inches diameter : the planet Mercury will

berepresented by a globule of about of a line in diameter,

placed at the distance of 37 feet. Venus will be a globe

of little more than a line in diameter circulating at the

distance of 68 feet from the same centre : if another

globule, a line in diameter, be placed at the distance of 95

feet, it will represent the earth, that theatre of so many

passions, and so much agitation ; on the surface of which

the greatest potentate scarcely possesses a point, and

where a space often imperceptible excites, among the ani-

'malcula that cover it, so many disputes, and occasions so

much bloodshed . Mars, which in magnitude is somewhat

inferior to the earth, will be represented by a globule of a

little less than a line in diameter, and placed at the distance

of 144 feet ; Jupiter by a globe 10 lines in diameter, 490

feet from the central globe ; Saturn about 7 lines in di-

ameter, at the distance of about 900 feet ; and the Georgian

planet, 4 lines in diameter, at the distance of 1800 feet.

But the distance from the Georgian planet to the nearest

fixed stars, is immense. The reader may perhaps imagine

that, according to the supposition here made, the first star

ought to be placed at the distance of two or three leagues.

This is the idea which one might form before calculation

has been employed ; but it is very erroneous, for the first,

that is to saythe nearest star, ought to be placed at the

same distance as that between London and Edinburgh,

which is more than 300 miles. Such then is the idea which

we ought to have of the distance between the sun and the

nearest ofthe fixed stars ; and there is reason even to think

that it is much greater, for we have supposed, in this

calculation, that the parallax of the earth's orbit is the

1



RECAPITULATION. 159

same as the horizontal parallax of the sun, that is to say

8.5″. But it is probable that this parallax is much less ;

for it can hardly be believed that it could have escaped

astronomers had it been so great.

Our solar system then, that is, the system of our primary

and secondary planets, which circulate around the sun, is

to the distance ofthe nearest-fixed stars, almost as a circle

of 1800 feet radius, would be to a concentric one of 300

miles radius ; and in the first circle our earth would occupy

a space a line in diameter, appearing like a grain ofmustard

seed.

Another comparison, proper to convey some idea ofthe

immense distance between the sun, which is the centre of

our system, and the nearest of the neighbouring bodies of

the same nature, is as follows : It is well known that the

velocity of light is so great, that it passes over the distance

between the sun and the earth in about half a quarter of

an hour : in a second and a half it would go to the moon

and return, or rather it would go fifteen times round the

earth in a second. What time would light then employ in

coming to us from the nearest of the stars ?-Not less than

108 days ; or if the annual parallax be only 2 or 3 seconds,

which appears very probable, it would require a year and

more.

What immense distance then between this inhabited

point and the nearest of its neighbours ! Is it not probable

that in this vast interval there are planets which will re-

main for ever unknown to the human species?

Modern astronomy indeed has discovered that this space

is not entirely desert : it is now known that about a

hundred comets move in it, at greater or less distances,

but do not penetrate to a very great depth. Those of

1531 , 1607 , 1682, and 1759, the only ones the periods and

orbits of which are known, do not immerge farther than

about 37 times the radius of the earth's orbit, or four

times the distance of Saturn from the sun. If that of 1681
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has a revolution of 575 years, as supposed , it must recede

from us about 130 times the distance of the earth from the

sun, or about 14 times that of Saturn from the same body ;

which is only a point when compared with the nearest of

the fixed stars. But there are comets perhaps which per-

form their revolution only in 10000 years, and which

scarcely approach so near the sun as Saturn : in that case

these would penetrate into the immense space which sepa-

rates us from the first of the fixed stars , as far as a fiftieth

part of its depth.

Those desirous of seeing a great many curious conjec-

tures respecting the system of the universe, the habitation

of the planets, the number ofthe comets, &c, may consult

a work by M. Lambert, member of the royal Academy of

Berlin, entitled Systeme du Monde, Bouillon 1770, 8vo.

Every one almost is acquainted with the Pluralité des

Mondes of Fontenelle ; the Cosmotheoros of Huygens , the

Somnium of Kepler, and the Iter extaticum of Kircher.

The first of these, the Pluralité des Mondes, is an ingenious

and pleasing work, but a little too affected. The second

is learned and profound , and, like Kepler's Somnium , will

please none but Astronomers. In regard to the last , how-

ever much we may esteem the memory of Kircher, it can

be considered in no other light , than as a production alto-

gether pedantic and ridiculous.

CHAPTER III.

Of Chronology, and various Questions relating to that

Subject.

ALL polished nations keep an account of the time which

has elapsed, and of that which is to come, by means of

periods that depend on the motions of the heavenly bodies ;

and this is even one of those things which distinguish man
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in a state of civilization, from man in the animal and sa-

vage state : for, while the former is enabled at every mo-

ment to count that part of the duration of his existence

which has elapsed ; to foresee, at an assigned period, the

recurrence of certain events, labours or duties ; the latter,

though in some measure happier, since he enjoys the pre-

sent without recollecting the past, or anticipating the

future, cannot tell his age, nor foresee the period of the

renovation of his most common occupations : the most

striking events of which he has been a witness , or in which

he has had a share, exist in his mind only as past : while

the civilized man connects them with precise periods and

dates, by which they are arranged in their proper order.

Without this invention, every thing hitherto done by man-

kind would have been lost to us ; there would be no his-

torical records ; and men, whose existence in the social

state requires the united efforts of its different members in

certain circumstances, could not employ that concurrence

of action which is necessary. No real civilized society

therefore can exist without an agreement to count time in

a regular manner ; and hence the origin of chronology,

and the various computations of time employed by dif-

ferent nations.

But, before we proceed farther, it will be proper to

present the reader with some definitions, and a few his-

torical facts, necessary for comprehending the questions

which will be proposed in the course of this article.

There are two kinds of year employed by different na-

tions ; one of which is regulated by the course of the sun ,

and the other by that ofthe moon. The first is called the

solar, and the second the lunar year. The solar year is

measured by a revolution of the sun through the ecliptic,

from one point of the equinoctial, that of the vernal equi-

nox for example, to the same point again ; and, as already

said, consists of 365 days 5 hours 49 minutes.

The lunar year consists of twelve lunations ; and its

VOL. III. M
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duration is 354 days 8 hours 44 minutes 3 seconds. Hence

it follows that the lunar year is about 11 days shorter than

the solar; consequently, if a lunar and a solar year com-

mence on the same day, at the end of three years the com-

mencement of the former will have advanced 33 days be-

fore that of the latter. The commencement therefore of

the lunar year passes successively through all the months

of the solar year, in a retrograde direction. The Arabians,

and Mussulams in general, count only by lunar years ;
and

the Hebrews and Jews never employed any other.

But the most polished and enlightened nations have al-

ways endeavoured to combine these two kinds of year to-

gether. This the Athenians accomplished by means ofthe

famous golden cycle, invented by Meto, the celebrated

mathematician whom Aristophanes made the object of his

satirical wit ; and the same thing is done at present by the

Europeans, or the Christians in general, who have borrow-

ed from the Romans the solar year for civil uses ; and

from the Hebrews their lunar year for their ecclesiastical

purposes.

Before Julius Cæsar, the Roman calendar was in the ut-

most confusion ; but it is here needless to enter into any

details on the subject : it will be sufficient to observe, that

Julius Cæsar, being desirous to reform it, supposed, ac-

cording to the suggestion of Sosigines his astronomer, that

the duration of the year was exactly 365 days 6 hours.

He therefore ordered that, in future, there should be three

successive years of 365 days, and a fourth of 366. This

last year was afterwards distinguished by the name of bis-

sextile, because the day added every fourth year followed

the sixth of the calends which was counted twice ; and be-

cause, to avoid any derangement in the denomination of

the following days, it was thence called bis sexto calendas.

Among us it is added to the end of February, which has

then 29 days instead of 28 , which is the number it contains

in common years. This form ofyear is called the Julian
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year, and the calendar in which it is employed , is called

the Julian calendar.

But Julius Cæsar was mistaken, when he considered the

year as consisting exactly of 365 days 6 hours, as it con-

tains only 365 days 5 hours 49 minutes ; and hence it fol-

lows that the equinox always retrogrades in the Julian

year 11 minutes annually ; which gives precisely 3 days

in 400 years. Hence it happened that the vernal equi-

nox, which at the time ofthe council of Nice corresponded

to the 21st of March, after the lapse of about 1200 years,

that is to say in the year 1500 , fell about the 11th. Pope

Gregory XIII, being desirous to reform this error, sup-

pressed, in 1582 , ten consecutive days ; counting after the

11th of October the 21st, and by these means brought

back the vernal equinox following to the 21st of March ;

and , in order that it might never deviate any more, he

proposed that three bissextiles should be suppressed in the

course of 400 years. For this reason the years 1700 and

1800 were not bissextile, though they ought to have been

so according to the Julián Calendar ; the case will be the

same with the year 1900, but the year 2000 will be bissex-

tile; in like manner the years 2100, 2200 and 2300 will

not be bissextile ; but 2400 will ; and so of the rest.

All this is sufficient, and more than sufficient , for the

solar year. But the great difficulty of our calendar arose

from the lunar year, which it was necessary to combine

with it ; for, as the Christians had their origin among the

Jews, they were desirous of connecting their most solemn

festival, that of Easter, with the lunar year ; because the

Jews celebrated their Passover at a certain lunation, viz,

on the day of the full moon which immediately followed

the vernal equinox. But the council of Nice, that the

Easter of the Christians might not concur with the Pass-

over of the Jews, ordained, that the former should cele-

brate their festival on the Sunday after the full moon

which should take place on the day of the vernal equinox,

:.
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or which should immediately follow it. Hence has arisen

the necessity offorming periods of lunations, that the day

ofthe new or full moon may be found with more facility,

in order to determine the paschal moon.

The council of Nice supposed the cycle of Meto, or the

golden number, according to which 235 lunations are pre-

cisely equal to 19 solar years, to be perfectly exact. After

the period of 19 years therefore, the new and full moons

ought to take place on the same days ofthe month. It

was thence easy to determine, in each of these years, the

place of these lunations ; and this was what was actually

doneby means ofthe epacts, as shall be hereafter explained.

But in reality 235 lunations are less, by an hour and a

half, than 19 solar Julian years ; whence it happens, that

in 304 years, the new moons retrograde a day towards the

commencement of the year ; and consequently four days

in 1216 years. On this account, about the middle of the

16th century, the new and full moons had anticipated, by

four days, their ancient places ; so that Easter was fre-

quently celebrated contrary to the disposition ofthe coun-

cil of Nice.

Gregory XIII undertook to remedy this irregularity by

an invariable rule, and proposed the problem to all the

mathematicians of Europe ; but it was an Italian physician

and mathematician, who succeeded best in solving it, by

a new disposition of the epacts, and which the church

adopted. This new arrangement is called the Gregorian

Calendar. It began to be used in Italy, France, Spain , and

other catholic countries, in 1582. It was soon adopted,

at least in what concerns the solar year, even by the pro-

testant states of Germany ; but they rejected it in regard

to the lunar, and preferred finding the day of the paschal

full moon by astronomical calculation : the Roman Ca-

tholics therefore do not always celebrate Easter at the

same time as cne Protestants, in Germany. The English

were the most obstinate in rejecting the Gregorian year,
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and almost for the same reason which made themlong ex-

clude peruvian bank from their pharmacopeia ; that is to

say, because they were indebted for it to the Jesuits : but

they at length became sensible that whatever is good in

itself, and useful, ought to be received, were it even from

enemies ; and they conformed to the method ofcomputing

time employed in the rest of Europe. This change did

not take place till the year 1752. Before that period, when

the French counted the 21st of the month, the English

counted only the 10th. In course of ages they would

therefore have had the vernal equinox at Christmas, and

the winter at Midsummer. The Russians are the only

people of Europe who still adhere to the Julian Calendar :

their Papas hate the Roman Catholic priests as much as

the English did a Jesuit.

-After this short historical sketch, we shall now proceed

to the principal problems of chronology.

PROBLEM 1.

To find whether a given year be Bissextile or not ; that is

to say, whether it consists of 366 days.

Divide the number which indicates the given yearby

4, and if nothing remains the year is bissextile : if there

be a remainder, it shows the number of the year current

after bissextile. We shall here propose, as an example,

the year 1774. As 1774 divided by 4 leaves 2 for re-

mainder, we may conclude that the year 1774 was the se-

cond after bissextile.

To this rule however there are some limitations. 1st. If

the year is one of the centenaries posterior tothe reforma-

tion of the calendar by Gregory X111 , that is to say 1582,

it will not be bissextile unless the number of the centuries

which it denotes be divisible by 4 ; thus 1600, 2000, 2400,

2800 have been, or will be bissextiles ; but the years 1700,

1800, 1900, 2100, 2200, 2300, 2500, 2600, 2700, were
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not, or will not be bissextiles, for the reason already men-

tioned.

2d. If the year be centenary, and anterior to 1582 , but

without being below 474, it has been bissextile.

3d. Between 459 and 474 there was no bissextile.

4th. There was none among the first six years of the

Christian æra.

5th . As the first bissextile after the Christian æra was

the seventh year, and as the bissextiles regularly followed

each other every four years till 459 ; when the given year

is between the 7th and the 459th, first subtract 7 from it,

and then divide it by 4 ; if nothing remains, the year has

been bissextile ; but if there be any remainder, it will show

what year after bissextile the proposed year was. Let the

proposed year, for example, be 148 : if 7 be subtracted,

the remainder is 141 , which divided by 4, leaves 1 for re-

mainder ; consequently the year 148 of the Christian æra

wasthe first after bissextile.

Ofthe Golden Number and Lunar Cycle.

The golden number, or lunar cycle, is a revolution of

19 solar years, at the end of which the sun and moon re-

turn very nearly to the same position . The origin of it is

as follows .

Since the solar Julian year, as already said, consists of

-365 days 6 hours ; and as the duration of one lunation is

29 days . 12 hours 49 minutes ; it has been found, by com-

bining these two periods, that 235 lunations make nearly

19 solar years ; the difference being only 1h 31m. It is

therefore plain that after 19 solar years the new moons

ought to take place on the same days of the month, and

almost at the same hour. In the first of these solar years,

ifthe new moon happen on the 4th of January, the 2d of

February, &c, at the end of 19 years the new moons will

take place also on the 4th of January, the 2d ofFebruary,
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&c; and this will be the case eternally, if we suppose that

235 lunations are exactly equal to 19 solar revolutions.

Hence it is sufficient to have once determined, during 19

solar years, the days ofthe month on whichthe new moons

happen ; and when it is known what rank a given year

holds in this period , we can immediately tell on what days

of each month the new moons fall.

The invention of this cycle appeared to the Athenians

to be so ingenious, that, when proposed by the astronomer

Meto, it was received with acclamations, and inscribed in

the public square in golden letters : hence the name ofthe

golden number. It is distinguished also by the less pomp-

ous denomination of the lunar cycle, or cycle of Meto from

the name of its inventor.

PROBLEM 11.

Tofind the Golden Number ofanygiven year; or the rank

which it holds in the Lunar Cycle.

To the given year add 1 , and divide the sum by 19 : if

nothing remains, the golden number of the given year will

be 19 : butif there be a remainder, which must necessarily

be less than 19, it will be the golden number required .

Let the given year, for example, be 1813. If 1 be added

to 1813, and if the sum 1814 be divided by 19, the re-

mainder will be 9 ; which indicates that 9 is the golden

number of 1813, or that this year is the 9th of the lunar

cycle of 19 years.

If the year 1728 be proposed, it will be found by a

similar operation, that the remainder is nothing : which

shows that the golden number of that year was 19.

The reason ofadding 1 to the given year, is because the

first year of the Christian æra was the second of the lunar

cycle, or had two for its golden number.

If any year before the Christian æra be proposed , such

as the 25th for example, subtract 2 from that number, and

divide 23 the remainder by 19 ; if 4 the remainder be then

1
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taken from 19, the result will be the golden number ofthe

year 25 before Jesus Christ ; which in this case is 15.

REMARK.-It may be readily seen that when the golden

number ofany year has been found , the golden number

of the following year may be obtained by adding 1 to the

former. The golden number of the preceding year may

be obtained also by subtracting 1 from the golden number

already found. Thus, having found the golden number of

theyear 1802, which is 17 , by adding 1 to it, we shall have

18 for that of the year 1803 ; and 1 subtracted from it,

will give 16 for the golden number of 1801 .

Ofthe Epact.

The epact is nothing else than the number of days de-

noting the moon's age at the end of a given year. The

formation of it may be easily conceived by considering

that the lunar year, which consists of 12 lunations, is less

than a Julian year by about 11 days ; therefore ifwe sup-

pose that a lunar and a solar year begin together on the

1st of January, the moon at the end of the year will be 11

days old ; for 12 complete lunations, and 11 days of a

thirteenth, will have elapsed ; and therefore the moon at

the end ofthe second year, will be 22 days old , and at the

end ofthe third 33. But as 33 days exceed a lunation,

one of 30 days is intercalated , by which means that year

has 13 lunations ; and consequently the moon is only 3

days old at the end of the third year.

Such then is the progress of the epacts. That of the

first year of the lunar cycle is 11 ; this number is after-

wards continually added, and when the sum exceeds 30,

if 30 be subtracted, the remainder will bethe epact, except

in the last year of the cycle, where the product of the ad-

dition being only 29, the same number is deducted to have

Ofor epact ; this announces that the new moon happens

at the end of that year, which is also the beginning of

the next one. The order of the epacts therefore is 11 ,
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22, 3, 14, 25, 6, 17, 28, 9, 20, 1 , 12, 23 , 4, 15, 26, 7,

18, 29. 氟

This arrangement would have been perfect and per-

petual, if 19 solar years of 365 days 6 hours, had been ex-

actly equal to 235 lunations, as supposed by the ancient

astronomers ; but unfortunately this is not the case. On

the one hand, the solar year consists only of 365 days 5

hours 49 minutes ; and besides, 235 lunations are less than

19 Julian years by one hour and a half ; so that in 304

years the real new moons are anterior, by one day, to the

new moons calculated in this manner. Hence it happened

that in the middle of the 16th century, they preceded by

four days those found by calculation ; as four revolutions

of 304 years had elapsed between that period and the

Council of Nice, at which the use of the lunar cycle had

been adopted for computing the time of Easter, it was

therefore found necessary to correct the calendar, that this

festival might not be celebrated , as was often the case, con-

trary to the intention of that council ; and with this view

some changes were made in the calculation of the epacts,

which form two cases. One of them is that when the pro-

posed year is prior to the reformation of the calendar, or

to 1582 : the second is when the years are posterior to that

epoch. We shall illustrate both cases in the following

problem .

PROBLEM IIJ.

Any Year being given, to find its Epact.

I. Ifthe proposed year be anterior to 1582, though pos-

terior to the Christian æra, which forms the first case ; find

bythe preceding problem the golden number for the given

year, and having multiplied it by 11 , subtract 30 from the

product as many times as possible : the remainder will be

the epact required.

Let the given year, for example, be 1489. Its golden

number, by the preceding problem, is 8, which multiplied
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*

by 11 gives 88 ; and this product divided by 30 leaves for

remainder 28 : the epact of the above year therefore

was 28.

In like manner, if 1796 be considered as a Julian year,

that is to say, ifthose who have not adopted the new style

or reformation in the calendar wished to know the epact

of that year, it would be necessary first to find the golden

number, which is 11 ; this multiplied by 11 gives 121 ;

and the latter divided by 30, leaves 1 for remainder.

Hence it appears that the epact of 1796, considered as a

Julian year, was 1 .

II. We shall now suppose that the given year is poste-

rior to the reformation of the calendar, or to the year

1582 ; which forms the second case. In this case, multi-

ply the golden number by 11 , and from the product sub-

tract the number of days cut off by the reformation of

Gregory XIII, that is , 10 if the year is between 1582 and

1700 ; 11 between 1700 and 1900 ; 12 between 1900 and

2200 &c ; divide what remains after this deduction by 30,

and the remainder will be the epact required *.

Let it be proposed, for example, to find the epact of

the Gregorian year 1693, the golden number of which

was 3 : multiply 3 by 11 , and from 33, the product, sub-

tract 10 : as the remainder 23 cannot be divided by 30,

that number was the epact ofthe year 1693.

If the epact of the year 1796 were required, the golden

number of which was 11 ; multiply 11 by 11 , and from

the product 121 subtract 11 , which will leave 110 : this

number divided by 30, gives for remainder 20, which was

the epact of the year 1796.

If the epact of the year 1813 were required , the golden

number of which is 9 ; multiply 9 by 11 , and from the

product 99 subtract 11 ; the remainder 88 divided by 30

* When the golden number is 1 , if the year be posterior to 1900 add 30

to it before you multiply by 11 , and then proceed as above directed.
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leaves for remainder. 28, which therefore is the epact for

the present year 1813.

REMARKS.-The epact according to the Julian calen-

dar may be found without division, in the following man-

ner : Assign to the upper extremity of the thumb of the

left hand, the value of 10 ; to the middle joint 20, and to

the last or root 30, or rather 0. Countthe golden number of

the proposed year on the same thumb, beginning to count

1 at the extremity, 2 on the middle joint, 3 on the root ;

then 4 at the extremity, 5 on the joint, 6 on the root ;

and so on, till you come to the golden number found ; to

which, if it falls on the root, nothing is to be added , be-

cause the value assigned to it was 0 : but if it falls on the

extremity add 10 to it ; and if on the middle joint 20 ;

because these were the values assigned to them. The

sum, if less than 30, will be the epact required ; if greater

than 30, subtract 30 from it and the remainder will be the

epact.

Thus, if the epact of 1489 were required : as the golden

number of that year was 8, count 8 on the thumb, as

above mentioned, beginning to count 1 on the extremity,

2 on the middle joint, 3 on the root ; then 4 on the ex-

tremity, and so on. Because 8, in this case, falls on the

middle joint, add to it 20, and the sum 28 will bethe epact

of the above year 1489. In like manner, if the epact of

1726 be required, the golden number of which was 17 ;

count 1 on the extremity ofthe thumb, 2 on the middle

joint, &c, till you complete 17, which will fall on the

joint ; and if 20, the value assigned to that joint, be then

added to the golden number, the sum will be 37 ; from

which if 30 be subtracted , there will remain 7 for the

epact of 1726 , according to the Julian calendar.

By the same artifice the epact for any year of the 17th

century might be found ; provided 20 be assigned to the

extremity ofthe thumb, 10 tothejoint, and 0to the root ;
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and that you begin to count 1 on the root, 2 on the joint,

and so on.

PROBLEM IV.

Tofindthe dayof the New Moon, in anyproposed Month

ofagiven Year.

First find the epact of the given year, as taught in the

two preceding problems ; and add to it the number of

months, reckoning from March inclusively : subtract the

sum from 30, if less, or from 60 if greater ; and the re-

mainder will give the day of the new moon.

Let it be required, for example, to find on what day

the new moon happened in the month of May 1813. The

golden number of 1813 was 9 , which multiplied by 11 gives

99 ; and if 11 be subtracted, according to the rule, we

shall have for remainder 88 : this divided by 30 leaves 28

the epact of that year, as before found. Now the

number of months from March, including May, is 2 ; and

2 added to the epact makes 30, which subtracted from 60

leaves 30 : new moon therefore took place on the 30th of

May 1813. Accordingly the Almanacs show it was new

moon near midnight of the 29th of that month.

REMARK.-In calculations of this nature, great exact-

ness must not be expected. The irregular arrangement

of the months which have 31 days, the mean numbers ne-

cessary to be assumed in the formation of the periods

from which these calculations are deduced, and the in-

equality of the lunar revolutions, may occasion an error of

nearly 48 hours.

More correctness may perhaps be obtained by employ-

ing the following table ; which indicates what ought to

be added to the epact for each commencing month.

January

February .

•

•

· · 0 March

2 April . ··

•

2
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May

June

July

August

•

•

·

3 September

4 October .

5 November

6 December

• 8

· • 8

• • · 10

• . 10

PROBLEM V.

Tofind the Moon's Age on any given day.

To the epact of the year add, according to the above

table, the number belonging to the month in which the

proposed day is ; and to this sum add the number which

indicates the day : if the result be less than 30, it will be

the moon's age on the given day ; if it be 30, it shews that

new moon took place on that day ; but if it exceeds 30,

subtract 30 from it, and the remainder will be the age of

the moon.

Let it be required, for example, to find what was the

age ofthe moon on the 20th of March 1813. The epact

of 1813 was 28, and the number to be added for the

month of March, according to the preceding table, is 0 :

this added to 28 makes 28, and 20, the number of the

proposed day, added to 28, makes 48, from which if 30

be subtracted, the remainder is 18 the moon's age on

the 20th of March ; and this indeed is agreeable to what

is indicated by the Almanacs.

Ofthe Solar Cycle and Dominical Letter.

The solar cycle is a perpetual revolution of 28 years,

the origin of which is as follows :

1st. The seven first letters of the alphabet A B C D E F G

are arranged in the calendar in such a manner, that a cor-

responds to the 1st of January, в to the 2d, c to the 3d,

Dto the 4th, E to the 5th, F to the 6th, G to the 7th, a to

the 8th, B to the 9th, and so on through several revolu-

tions of seven. The seven days of the week, called also

feriæ, are represented by these seven letters.
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2d. Because a year of 365 days contains 52 weeks and

1 day, and as that remaining day is the first of a 53d re-

volution, a common year of 365 days ought to begin and

end with the same day ofthe week.

3d. According to this disposition , the same letter ofthe

alphabet corresponds to the same day of the week,

throughout the course of a common year of 365 days.

4th. As these letters all serve alternately to indicate

Sunday, during a series of several years, they have on

that account been called dominical letters.

5th. It hence follows that if a common year begins by a

Sunday, it will end by a Sunday : the 1st of January there-

fore of the following year will be a Monday, which will

correspond to the letter A ; and the 7th will be a Sunday,

which will correspond to the letter e , which will be the

dominical letter of that year. For the same reason , the

dominical letter of the following year will be r; that of

the next one E, and so on, circulating in an order retro-

grade to that of the alphabet. From this circulation of

the letters has arisen the name of solar cycle ; because

Sunday among the pagans was called dies solis, the day of

the sun.

6th. If there were no days to be added for bissextile

years, all the different changes of the dominical letters

would take place in the course of seven years. But this

order being interrupted by the bissextile years, in which

the 24th ofFebruary corresponds to two different feriæ of

the week ; the letter F, for example, which would have

indicated a Saturday in a common year, will indicate a

Sunday in a bissextile year : or if it indicated a Sunday in

a common year, it will indicate a Sunday and a Monday

in a bissextile, &c . Hence it follows that in a bissextile

year, the dominical letter changes, and that the letter

which marked a Sunday in the commencement of the year,

will mark a Monday after the addition of the bissextile.

This is the reason why two dominical letters are assigned
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to each bissextile year ; one which serves from the 1st of

January to the 24th of February, and the other from the

24th of February to the end of the year ; so that the se-

cond dominical letter would naturally be that of the fol-

lowing year if a day had not been added for the bis-

sextile.

7th. All the possible varieties to which the dominical

letters are subject, both in common and in bissextile years,

take place in the course of 4 times 7, or 28 years ; for after

7 bissextiles, the dominical letters return and circulate as

before. This revolution of 28 years has been called the

solar cycle, or the cycle of the dominical letter.

PROBLEM VI.

Tofind the Dominical Letter ofany proposed year.

1st. To find the dominical letter of any given year,

according to the Gregorian Calendar, add to the number

of the year its fourth part, or, if it cannot be exactly di-

vided by 4, the least nearest to it ; from the sum subtract

5 for 1600, 6 for the following century 1700, 7 for 1800,

and 8 for 1900 and 2000, because the years 1700, 1800 and

1900 are not bissextiles ; 9 for 2100, 10 for 2200, and 11

for 2300 and 2400 , because the three years 2100 , 2200

and 2300 will not be bissextiles ; divide what remains by

7, and the remainder will be the dominical letter required,

counting from the last letter Gtowards a the first ; so that

if nothing remains, the dominical letter will be a ; if 1

remains, the dominical letter will be G ; if 2 remains, it

will be r ; and so ofthe rest.

Thus, to find the dominical letter of the year 1813 :

add its fourth part 453 , which makes 2266, and from this

sum subtract 7; if the remainder 2259 be divided by 7,

the remainder 5 will shew that the dominical letter is c,

since it is the fifth , counting in a retrograde order, from

the last letter G.
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We must here observe, that to find with more cer-

tainty, by this operation, the dominical letter of a bissex-

tile year, it will be necessary to find first the dominical

letter of the preceding year, which will serve till the 24th

ofFebruary of the bissextile year; after which the next

letter in the retrograde order must be used for the re-

maining part of the year. Thus, if it be required to find

the dominical letter of the year 1724 ; first find that of

1723, by adding to it its nearest less fourth part, 430 ;

subtracting 6 from the sum 2153, and dividing the differ-

ence 2147, by 7: the remainder 5 shews that the dominical

letter ofthe year 1723 was c ; which is the fifth of the first

seven letters of the alphabet, counting in the retrograde

order. Since it is known that c was the dominical letter

of 1723, it may be readily seen that в was the dominical

letter ofthe following year 1724. But as 1724 was bis-

sextile, в could be used only till the 24th of February,

after which A, the letter preceding B, was employed to the

end of the year : hence it is seen that A and в were the

two dominical letters of the year 1724. In like manner

the dominical letters of any future bissextile year may be

found.

2d. To find the solar cycle, or rather the current year

of the solar cycle, corresponding to a given year ; add 9

to the proposed year, and divide the sum by 28 : if no-

thing remains, the solar cycle of that year is 28 ; but if

there be any remainder, it indicates the number of the

solar cycle required .

Thus, if the solar cycle of 1813 be required ; add 9,

which makes 1822 , and divide this sum by 28 ; the re-

mainder, being 2, shews that 2 is the solar cycle of 1813.

The reason of this rule is , that the first year of the

Christian æra was the 10th of the solar cycle ; or in other

words that at the commencement of this æra 9 years of

the solar cycle were elapsed.
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REMARKS. The solar cycle of any year whatever may

be found with great ease, and without division , by means

ofthe subjoined table.

Years.
Solar

Cycle.

Years.
Solar Cen- Solar Cen- Solar

Cycle. turies. Cycle. turies. Cycle.

7

8

1
2
3
4
5
6
7
8
9

1
2
3
4
5
6
B
9

10

20 20

10

30

40

1
2
2
2 100 16 1000 20

200 25 2000 12

300 20 3000 4

400 8 4000 24

50 22 500 24 5000 16

60 4 600 12 6000 8

70 14 700 7000 0

80 24 800 16 8000 20

90 6 900 4 9000 12

The method of constructing this table is as follows :

Having placed opposite to the first ten years, the same

numbers as the solar cycles of these years, and 20 for the

solar cycle of the 20th ; instead of setting down 30, for

the 30th year, set down only 2, which is the excess of 30

above 28 , or above the period of the solar cycle. For the

40th year, inscribe the numbers which correspond to 30

and to 10, that is 2 and 10 ; and so of the rest, always

subtracting 28 from the sum when it is greater. Having

thus shown the method of constructing this table, we shall

now explain the use of it.

In the first place, if the proposed year , the solar cycle

of which is required , be in the above table, look for the

number opposite to it in the column on the right , marked

solar cycle at the top, and add 9 to it : the sum will be the

solar cycle required : thus if 9 be added to 12 , which

stands opposite to the year 2000, we shall have 21 for the

solar cycle of that year.

But, if the given year cannot be found exactly in the

above table, it must be divided into such parts as are con-

VOL. III. N
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tained in it. If the numbers corresponding to these parts

be then added, their sum increased by 9 will give the solar

cycle of the required year ; provided this sum is less than

28 ;
if greater, 28 must be subtracted from it as many

times as possible.

Let it be required, for example, to find by the above

table the solar cycle of the year 1813. Divide 1813 into

the four following parts 1000, 800, 10, 3 , and find the

numbers corresponding to them in the right hand columns,

which are 20, 16 , 10, 3 ; the sum of these is 49, and 9

added makes 58 ; from which if 28 be twice subtracted, we

shall have for remainder 2 , the solar cycle of 1813 .

II. The reason of adding 9 to the sum of all these num-

bers, is because the solar cycle, before the first year of the

Christian æra, was 9 ; consequently this cycle had begun

10 years before the birth of Christ, which may be ascer-

tained in this manner :

Knowing the solar cycle of any year, either by tradition

or in any other manner, that of the year 1693 , for exam-

ple, which was 22 ; subtract 22 from 1693, and divide the

remainder 1671 by 28 ; then subtract 19, which remains,

from 28, and the remainder 9 will be the solar cycle before

the first year of the Christian æra.

III. A table to show the golden number of any pro-

posed year might be constructed in the same manner ;

with this difference, that instead of subtracting 28, it

would be necessary to subtract 19, because the period of

that cycle is 19 ; and that instead of adding 9, it would be

necessary to add only 1 ; because the golden number,

before the first year of the Christian æra, was 1 : conse-

quently this cycle began two years before the birth of

Christ ; that is to say, the golden number for the first

year ofthe Christian æra was 2, &c.

IV. The dominical letter ofany proposed year may be

found by another method ; and when this letter is known,



WEEK DAYS. 179

it will serve to show the letter which corresponds to every

day throughout the whole ofthe same year *.

*

Divide by 7 the number of days which have elapsed be-

tween the first of January and the proposed day inclu-

sively ; and if nothing remains, the required letter will be

G; ifthere be any remainder, it will indicate the number

of the required letter , reckoning according to the order of

the alphabet, A 1 , B 2, &c.

Thus, to find the dominical letter of the year 1813 ;

take any Sunday, the 28th of February for example, and

find how many days have elapsed between it inclusively,

and the first of January as the number is 59 , divide this

number by 7, and the remainder 3 will show that c, the

third letter of the alphabet, is the dominical letter re-

quired.

The days which have elapsed between the first of Ja-

nuary and any given period of the year, may be readily

found by means of the following table ; but it is to be ob-

served that in bissextiles, the number of days must be in-

creased by unity, after the end of February.

From Jan. to Feb.

Jan. to March

Days . Days.

· •

• 59

31 From Jan. to August

Jan. to Sept.

212•

• · 243

• • 90 Jan. to Octob... 273

Jan. to May · 120 Jan. to Novemb. • 304

Jan. to June 151• Jan. to Decemb. • 334

Jan. to July · · 181 Jan. to Jan. 365·

Jan. to April

PROBLEM VII.

Tofind what day of the Week corresponds to any given day

ofthe Year.

To the given year add its fourth part, or, when it can-

not be found exactly, its nearest least fourth part ; and to

*It is here to be observed, that when you wish to find the dominical let-

ter, the proposed day must be a Sunday ; otherwise you will find only the

letter which belongs to some other day.

N 2
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the sum add the number of days elapsed since the first of

January, the proposed day included : from the last sum

subtract 14, for the present century, and divide what re-

mains by 7 : the remainder will indicate the day of the

week, counting Sunday 1 , Monday 2, Tuesday 3, and so

on: if nothing remains, the required day is a Saturday.

Thus, if it be required to know what day of the week

corresponded to the 27th of April 1813 ; add to 1813 its

nearest least fourth part 453, and to the sum 2266 add

117, the number of days elapsed between that day inclu-

sive and the 1st of January. If 14 be subtracted from the

last sum, which is 2383, and if 2369 which remains be di-

vided by 7 ; the remainder will be 3 : consequently the

27th of April 1813 was a Tuesday.

REMARK.-Ifthe proposed year be between 1582 and

1700, it will be necessary to deduct only 12 from the sum

formed as above.

Ifthe year be anterior to 1582, it will be necessary to

deduct only 2 ; because in 1582 ten days were suppressed

from the calendar. As a bissextile was suppressed in

1700, which makes an eleventh day suppressed, 13 must

be subtracted if the given year be in the last century.

For the same reason 14 must be subtracted in the pre-

sent century ; 15 in the twentieth and twenty-first, and

so on.

PROBLEM VIII.

Tofind Easter-day and the other Moveable Feasts.

By the reformation of the calendar, the 14th day ofthe

paschal moon was brought back to the same season in

which it was found at the time of the council of Nice,

and from which it had removed more than 4 days. Ac-

cording to the decree of that council, Easter ought to be

celebrated on the first Sunday after the 14th day of the

moon, ifthis 14th day should happen on or after the 21st

of March. Hence it is obvious that Easter cannot hap-



EASTER-DAY. 181

pen sooner than the 22d of that month, nor later than the

25th of April ; which on that account have been called

the paschal limits. The following is a table of these

limits, from the year 1700 to 1900.

Lunar Paschal

Cycle. Limits.

1
2
3
4
5
6

Lunar

Cycle.

Paschal

Limits.

March 24

April 12

April 1

March 21

April

March 29

THE

April 13

April

March 22

April 10

March 30

April 18

April 7

March 27

April 15

April

April 17

April

March 26

By means of this table Easter may be found in the fol-

lowing manner. First find the golden number or lunar

cycle of the year, and opposite to it , in the above table,

will be found the day of the month on which the paschal

full moon happens in that year. The Sunday immediately

following is Easter-day according to the Gregorian calen-

dar. If the full moon happens on a Sunday, Easter-day

will be the Sunday following.

Thus, if Easter-day 1813 were required, as the golden

number of that year is 9 , opposite to it will be found

April 15th, and as the 3d following day, or the 18th, is a

Sunday, Easter-day happens on the 18th of April.

Second Method.

Easter may be found also by means of the following

table, which consists of nine columns, each divided into

seven parts. The first column contains the dominical

letters, the seven following the epacts, and the ninth the

day on which Easter falls.
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23 22 21 20

18 17 16 15 14

A 11 10 9 8

4 3 1

27

23 22 21 20

17 16 15 14 13 12

B 10 9 8 7

3 2 1
*

29

9
3
6
9

19 18

TABLE FOR FINDING EASTER.

2
0
0
2
2

26 25 24

2
5
8
0
8

3
9
9

9
4
7
*

13 12

6

29

26 March

2 April

9 April

16 April

23 April

7 March

8
8
8
5
8
8
8

11 3 April

4 10 April

28 27 17 April

26 25 24 24 April

23 22 21 20

16 15 14 13

C
9 8

^
*

2 29

0
3
6
0

19

128
8
8
5
5

11 10

28 27

2
0
3
0

8
1
4
2

17 28 March

4 April

11 April

26 18 April

25 24 25 April

23

22

D 15 14

8 7

1*. 29

8
8
8
8

6

21 20 19 18 17

12 11 10

5

28 27

4
2
4
2

26

2
0
3
2
4
5

8
=
4
8

16

6
9
2
4

22 March

29 March

5 April

12 April

19 April

23

21

E 14

2
2
7
*

22

20 19 18 17 16 15

13 12 11

7
0
3
0

∞
=
4
2

23 March

30 March

10 9 8

6 5 2

6 April

13 April

28 27 26 25 24
(20 April

23

20

F 13

29

22 21

19 18 17 16

12 11 10

6 5 4 3

6
9
2
5

1
1
5
6

8

14

4
7
*

3
8
2
3

29

24 March

31 March

7 April

14 April

21 April

25 March

1 April

8 April

15 April

22 April

29 28 27 26

1

24

23 22 21 20

19 18 17 16

G 12 11 10 9

5 4 3 2

28 27 26 25 24

5
8
1
2

15 14

4
7
*

13
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To use this table, the epact and dominical letter for the

given year must be found . Thus if 1813 were proposed,

the dominical letter of which is c, and the epact 28 ; look

in one of the cells , opposite to that inscribed c , for the

epact 28, and opposite to it will be found, in the last

column on the right, the 18th April , which is Easter-day.

Third Method.

If the epact of the proposed year does not exceed 23,

subtract it from 44 ; and the remainder, if less than 31 ,

will give the paschal limits in March ; if greater than 31 ,

the surplus will be the paschal limits in April.

But ifthe epact is greater than 23 , subtract it from 43,

or from 42 when it is 24 or 25 ; the remainder will be the

day of the paschal limits in April, and the Sunday follow-

ing will be Easter.

REMARK. Since all the other moveable feasts are

regulated by Easter, when the day on which it falls is

known, it will be easy to find the rest. Septuagesima

Sunday is 9 weeks or 64 days before it, both the Sundays

included . Ash-Wednesday is the 47th day preceding

Easter, and the Sunday following Ash-Wednesday is the

first Sunday in Lent. Ascension-day is 40 days, Pentecoste

orWhit-Sunday is 50 days , and Trinity Sunday is 57 days,

after Easter.

PROBLEM IX.

Tofind on what day of the Week, each Month of the Year

begins.

As it has been usual in the calendars to mark the seven

days ofthe week with the first seven letters of the alphabet,

always calling the 1st ofJanuary A, the 2d B, the 3d c , the

4th D, the 5th E, the 6th F, the 7th G, and so on through-

out the year ; the letters answering to the first day of

every month in the year, according to this disposition,

may be known by the following Latin verses :
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Astra Dabit Dominus, Gratisque Beabit Egenos,

Gratia Christicolæ Feret Aurea Dona Fideli .

Or by these French verses :

Au Dieu De Gloire Bien Espere ;

Grand Cœur, Faveur Aime De Faire.

Or by the well known English ones :

At Dover Dwells George Brown Esquire,

Good Caleb Finch And David Frier.

Where the first letter of each word is that belonging to

the first day of each month, in the order from January to

December.

Now, as these letters, when the dominical letter is A,

indicate the day of the week by the rank which they hold

in the alphabet, it is evident in that case that January

begins on a Sunday, February on a Wednesday ; March

on a Wednesday, April on a Saturday, and so on. But

when the dominical letter is not A, count either backwards

or forwards from the letter of the proposed month, till

you come to the dominical letter ofthe year, and see how

many days are between them ; for, as the dominical letter

indicates Sunday, it will be easy, by reckoning back, to

find the day of the week corresponding to the letter ofthe

proposed month.

Thus, if it were required to find on what day of the

week February 1813 began ; as the dominical letter of

1813 is c, and as the letter corresponding to February is D,

which is the one immediately following c, in the order of

thealphabet, it is evident that February began on a Monday.

In like manner, if April 1813 were proposed, as the letter

G which belongs to that month is the third from c, the

dominical letter , it may be readily seen that April 1813

began on a Thursday.

The day of the week on which any proposed month

begins, may be found also by means of the following

table.
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MONTHS A В C D E F G

April

May

January Sunday Satur. Friday I urs. Wedn. Tues.

February Wedn. Tus Mond. Sunday Satur. Friday Thurs.

March Wedn . Tues. Mond . Sunday Satur. Friday Thurs.

Satur. Friday Thurs. Wedn. Tues. Mond. Sunday

Moud Sunday Satur. Friday Thurs. Wedn. Tues.

Thurs. Wedn . Tues. Mond. Sunday Satur . Friday

Mond.

June

July Satur. Fiday Thurs. Wedn. Tues. Mond. Sunday

August Tues. Mond. Sunday Satur. Friday Thurs. Wedn.

September Friday Thurs. Wedn. Tues. Mond. Sunday Satur.

October Sund. Satur. Friday Thurs. Wedn. Tues. Mond.

November Wedn . Tues. Mond. Sunday Satur. Friday Thurs.

December Friday Thurs. Wedn. Tues. Mond . Sunday Satur.

To use this table, look for the dominical letter of the

given year at the top, and in the column below it, and

opposite to each month, will be found the day on which it

begins. Thus, as the dominical letter for 1813 is c , it

will be seen, by inspecting the table, that January began

on a Friday, February on a Monday, March on a Monday,

April on a Thursday, and so of the rest.

PROBLEM X.

Tofind what Months of the Year have 31 Days, and those

which have only 30.

Raise up the thumb A (pl. 5, fig. 18) , the middle finger

c, and the little finger E, of the left hand ; and keep down

the other two, viz , the fore finger B, which is next to the

thumb, and the ring-finger D, which is between the middle

finger and the little finger. Then begin to count March

on the thumb A, April on the fore finger B, May on the

middle finger c, June on the ring-finger D, July on the

little finger E, and continue to count August on the thumb,
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September on the fore-finger, October on the middle

finger, November on the ring-finger, and December on

the little finger ; then beginning again continue to count

January on the thumb and February on the fore-finger :

all those months which fall on the fingers raised up A , C,

E, will have 31 days ; and those which fall on the fingers

kept down, viz. в and D, will have only 30, except

February, which in common years has 28 days, and in

bissextiles 29.

The number of the days in each month may be known

also by the following memorial lines :

Thirty days hath September,

April, June and November;

All the rest have thirty-one,

Except February alone.

PROBLEM XI.

Tofind the day of the Month on which the Sun enters into

each sign ofthe Zodiac.

The sun enters into each sign of the zodiac about the

20th of each month of the year ; viz, into Aries about the

20th of March, into Taurus about the 20th of April, and

so on. To determine this day somewhat more exactly,

the two following verses may be employed :

Inclita Laus Justis Impenditur, Hæresis Horret,

Grandia Gesta Gerens Felici Gaudet Honore.

Now, to use these two verses, assign the words which they

contain to the twelve months of the year, beginning with

March ; to which you must assign Inclita , and end with

February, which will correspond to Honore. Then con-

sider what is the number in the alphabet of the first letter

of each word ; for if that number be subtracted from 30,

the remainder will be the day of the month required.

For example, Inclita corresponds to the month of March,

and to the sign Aries ; its first letter I is the ninth in the

alphabet, and if 9 be taken from 30, the remainder 21
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shows that the sun enters Aries on the 21st of March. In

like manner, Grandia corresponds to the month of Sep-

tember, and to the sign Libra, and its first letter G is the

7th in the order of the alphabet : if 7 therefore be sub-

tracted from 30, the remainder 23 shows that the sun enters

Libra on the twenty-third of January.

But this method is not always correct, erring by a day

or two in some months.

PROBLEM XII.

Tofind the Sun's place, or in what degree and what sign he is

on anygiven day of the Year.

First find on what day of the proposed month the sun

enters into any ofthe signs ofthe zodiac , and into what sign.

When this is done, if the proposed day precedes that day,

it will be evident that the sun is then inthe preceding sign ;

for this reason the difference between the day proposed

and that when the sun enters a new sign, must be sub-

tracted from 30 degrees, and the remainder will indicate

that degree of the preceding sign in which the sun is.

Let the 18th of May, for example, be proposed : it will

be found by the preceding problem, that in May the sun

enters into the sign Gemini onthe 21st ; but asthe 18th pre-

cedes the 21st by 3 days, subtract 3 from 30, and the re-

mainder 27 will indicate that on the 18th of May the sun

will be in the 27th degree of Taurus,

But if the proposed time of the month be posterior to

the day of the same month on which the sun enters into a

new sign, it will then be necessary to take the number of

days by which they differ : this will be the degree of the

sign in which the sun is, on the given day.

Let us suppose, for example, that the 27th of May is

proposed : as the sun on the 21st of May enters into

Gemini, and as the difference between 21 and 27 is 6, we

may conclude that on the 27th of May the sun is in the 6th

degree of Gemini,
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PROBLEM XIII.

Tofind the Moon's place in the Zodiac, on any proposed day

ofthe Year.

First find the sun's place in the zodiac, as taught in the

preceding problem ; and then the moon's distance from

the sun, or the arc of the ecliptic comprehended between

the sun and moon, which may be done as follows.

Having found the moon's age, by prob. 5, multiply it

by 12, and divide the product by 30 : the quotient will give

the number of signs, and the remainder the degrees ofthe

moon's distance from the sun. If this distance therefore

be counted, according to the order of the signs in the

zodiac, beginning at the sun's place , you will have the re-

quired place of the moon.

Thus, if it were required to determine the moon's place

on the 28th of May 1693, the sun being in the 27th degree

of Taurus, and the moon's age being 14 : multiply 14 by

12, and divide the product 168 by 30 ; the quotient 5 , and

the remainder 18, show that the moon's distance from the

sun was 5 signs 18 degrees. If 5 signs 18 degrees there-

fore be counted in the zodiac, from the 27th degree of

Taurus, which is the sun's place, we shall fall upon the

15th degree of Scorpio, which was the mean place of the

moon.

PROBLEM XIV.

Tofind to what Month ofthe Year any lunation belongs.

In the Roman calendar, each lunation is considered as

belonging to that month in which it terminates, according

to this ancient maxim of the computists.

In quo completur, mensi lunatio detur.

Hence, to determine whether a lunation belongs to a

certain month of any given year, as the month of May

1693 for example ; having found, by prob. 5, that the

moon's age on the last day of May was 27; this age 27
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shows that the lunation ends in the next month, that is to

say in June, and consequently that it belongs to that

month. It indicates also that the preceding lunation ended

in the month of May, and therefore belonged to that

month.

PROBLEM XV.

Todeterminethe Lunar Years which are common, andthose

which are embolismic.

This problem may be readily solved by means of the

preceding, from which we easily know that the samne solar

month may have two lunations. For two moons may end

in the same month, which has 30 or 31 days, as November,

which has 30 ; or one moon may end the first of that

month, and the following moon on the last or 30th of the

same month: this year then will have had 13 lunations ;

and consequently will be embolismic. We shall here give

an example.

In the year 1712, the first moon having ended on the 8th

of January, the second on the 6th of February, the third

on the 8th of March, the fourth on the 6th of April, the

fifth on the 6th of May, the sixth on the 4th of June, the

seventh on the 4th of July, the eighth on the 2d of August,

the ninth on the 1st of September, the tenth on the 1st of

October, the eleventh also on the 30th of the same month,

the twelfth on the 29th of November, and the thirteenth

on the 28th of December ; we know that this year, as it

had 13 moons, was embolismic.

We know that all the civil lunar years of the new

calendar, which begin on the first of January, are embo-

lismic, when they have for epact 29, 28, 27, 26, 25, 24,

23, 22, 21 , 19 ; and also 18, when the golden number is

-19.

Thus we know, that in the year 1693, the epact ofwhich

was 3, the lunar civil year was embolismic ; that is, had

13 moons this happened because the month of August
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had two lunations, one of which ended on the first, and

the following one on the 30th of the same month.

PROBLEM XVI.

Tofind how long the light of the moon will continue during

anygiven night.

Having found the moon's age, by prob. 5, add to it

unity, and multiply the sum by 4, if it does not exceed

15 ; but if it exceeds 15 subtract it from 30, and then

multiply the remainder by 4 : ifthe product be divided by

5, the quotient will indicate as many twelfth parts of the

night, during which the moon will afford light. These

twelfth parts are called unequal hours. They must be

counted after sun-set when the moon is increasing : and

before sun-rising when she is decreasing.

Thus, if it were required to find how long the moon

shone on the night of May 21st , 1693 , at which time her

age was 17 ; add 1 to 17 and subtract 18 the sum from 30 ;

if 12, the remainder, be multiplied by 4, and if the product

48 be divided by 5, the quotient will give 9 unequal hours

and , for the time during which the moon afforded light

before sun-rise.

If it be required to find how long the moon gave light

on the night between the 14th and 15th of February 1730 ;

we must first find the moon's age on the 14th ofFebruary,

which is 26, and having added 1 to it, the sum will be 27.

This sum subtracted from 30, leaves 3 for remainder, which

multiplied by 4 gives 12 ; and if this product be divided

by 5, the quotient will be 2 unequal hours ; that is to say

8 twelfth parts of the nocturnal arc, which must be re-

duced to equal and astronomical hours by the following

remark.

REMARK. When the length of the given day or night

is known, it is easy to reduce unequal hours to equal or

astronomical hours, each of which is the 24th part of a

natural day, comprehending the day and night. Thus, in
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the first example, since the length of the night at London

on the 21st of May, is 8 hours 10 minutes ; if 8 hours 10

minutes be divided by 12, we shall have 40 minutes 50

seconds, for the value of an unequal hour ; this multiplied

by 93, the number of unequal hours during which the

moon gave light , from the time of her rising till sun-rise,

we shall have 6 equal hours and 32 minutes, as the time

comprehended between the rising of the moon and that of

the sun.

COROLLARY.-By these means the time of the moon's

rising may be known , provided we know the hour at which

the sun rises ; for if 12 hours be added to the time of the

sun's rising, which is 4 hours 5 minutes, and if from the

sum , 16 hours 5 minutes, we subtract 6 hours 32 minutes,

which is the time comprehended between the rising of the

moon and that of the sun, the result will be 9 hours 33

minutes, for the time of the moon's rising.

PROBLEM XVII.

An easy method offinding the Calends, Nones, and Ides, of

any monthin theyear.

The denomination of Calends, Nones, and Ides, was a

singularity in the Roman Calendar ; and as these terms

frequently occur in classical authors, it may be useful to

know howto reduce them to our method of computation.

This
may be easily done by means of the three following

Latin verses .

Principium mensis cujusque vocato calendas :

Sex Maius nonas, October, Julius et Mars ;

Quatuor at reliqui : dabit idus quidlibet octo.

Which have been thus translated into French :

A Mars, Juillet, Octobre et Mai

Six Nones les gens ont donné;

Aux autres mois quatre gardé ;

Huit Ides à tous accordé.

The meaning ofthese verses is, that the first day of each

month is always called the calends;
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That in the months of March, May, July and October

the nones are on the 7th day, and in all the other months

on the 5th ;

Lastly, that the ides are 8 days after the nones, viz, on

the 15th of March, May, July and October ; and on the

13th ofthe other months.

It must now be observed that the Romans counted the

other days backwards ; always decreasing, and that they

gave the name of nones to those days of the month which

were between the calends and nones of that month ; that

of ides to those days which were between the nones and

ides of that month ; and the name of calends to those days

which remained between the ides and the end of the pre-

ceding month.

Thus, in the four months of March, May, July and Oc-

tober, where the nones had 6 days, the second day of the

month was called sexto nonas ; that is to say the sixth day

before the nones, the preposition ante being here under-

stood. In like manner the third day was called quinto

nonas ; that is to say the fifth day ofthe nones, or before

the nones ; and so ofthe rest . But, instead of calling the

sixth day of the month secundo nonas, they said pridie

nonas ; that is the day preceding the nones. They said

also postridie calendas, the day after the calends ; postridie

nonas, the day after the nones ; postridie idus, the day after

the ides.

1 PROBLEM XVIII.

Tofind what day of the calends, nones, or ides, corresponds

to a certain day ofany given month.

To solve this problem , attention must be paid to the re-

mark already made, that all the days between the calends

and the nones belong to the nones ; that those between the

nones and the ides bear the name of ides ; and that those

between the ides and calends of the following month , have

the name ofthe calends of that month. This being pre-

mised, the following method must be pursued.
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1st. If the day ofthe month belongs to the calends, add

2 to the number of the days in the month, and from the

sum subtract the given number : the remainder will be the

day of the calends.

Thus, for example, to find to what day of the Roman

calendar the 25th of May corresponds, it is first to be ob-

served that it belongs to the calends, since it is between

the ides of May and the calends of June. As the month

ofMay has 31 days, add 2 to this number, which will make

33 ; and if 25 be subtracted from the sum, the remainder

8 will show that the 25th of May corresponds to the 8th

of the calends of June ; that is to say, the 25th ofMay

among
the Romans was called octavo calendas Junii.

2d. If the day of the month belongs to the ides or the

nones, add 1 to the number of days elapsed between the

first of the month and the ides or nones inclusively ; from

this sum subtract the given number, which is the day of the

month, and the remainder will be exactly the day of the

nones or ides.

We shall suppose, for example, that the given day is

the 9th of May, which belongs to the ides ; as it is between

the 7th day of the nones and the 15th day of the ides. If

1 be added to 15, and 9 be subtracted from the sum 16,

the remainder 7 will show that the 9th of May corresponds

tothe 7th of the ides of that month ; that is , the 9th of May

among the Romans was called septimo idus Maii.

In like manner, if the proposed day be the 5th of May,

which belongs to the nones, because it is between the 1st

and 7th ; add 1 to 7, and from the sum 8, subtract 5, or

the given day of the month : the remainder 3 shows that

the 5th of May corresponds to the 3d ofthe nones ; or that

the Romans called the 5th of May, tertio nonas Maii.

VOL. III.
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PROBLEM XIX .

The day of the calends, ides , or nones, being given ; to find

the corresponding day ofthe month.

This problem may be solved by a method similar to that

employed in the preceding ; but with this difference, that

instead of subtracting the day of the month, to obtain that

of the calends, &c, the latter is subtracted to obtain the

day ofthe month.

Let it be required for example, to find what day of the

month corresponds to the 6th of the calends of June, which

the Romans expressed by sexto calendas Junii. As the ca-

lends are counted in a retrograde order from the 1st of

June towards the ides of May, it is evident that the 6th of

the calends ofJune corresponds to some day inthe month

of May ; and as that month has 31 days, add 2 to 31 , and

from the sum 33, subtract 6 , or the given day of the ca-

lends : the remainder, 27, shows that the 6th ofthe calends

ofJune corresponds to the 27th of May.

The same operation,must be employed, in regard to the

nones and the ides.

REMARK . The abovetwo questions may be easily solved

also by means of a table of the Calends, Nones and Ides,

which will be found with other tables at the end of this

part.

Ofthe Cycle ofIndiction.

The cycle of indiction is a period of 15 years, distin-

guished by that name, according to some authors, because

it served to indicate the year in which a certain tribute

was paid to the Roman republic ; and hence it is called the

Roman Indiction.

It is called also the pontifical indiction , because employed

by the court of Rome in its bulls, and in all its decrees.

The following, it is said , is the origin of this custom . In

the vear 312 , Constantine issued an edict, by which he au-
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thorised the exercise of the Christian religion throughout

the whole empire. Some years after, the council of Nice

was assembled, which in 328 condemned the heresy of

Arius: in the space therefore of 15 years Christianity tri-

umphed over persecution and heresy ; and on that account

it was considered as a memorable period. To preserve

the remembrance of it, the cycle of indiction was establish-

ed ; the commencement of which was fixed at the 1st of

January 313 , to make it begin with the solar year ; though

the epoch of this cycle, according to the institution of

Constantine, had been fixed at the month of September

312, the date of his edict in favour of the Christians. It

was the emperor Justinian however who first ordered, that

the method of computing by the indiction , should be in-

troduced into the public acts.

But, whatever may have been its origin, which Petau

considers as very doubtful, it is certain that the first year

ofthe indiction was the year 313 ofthe Christian æra. The

year 812 therefore must have corresponded to 15 ofthe

indiction, had this method of computation been then in

use ; and if 312 be divided by 15 , the remainder will be

12 ; which shows that the 12th year of the Christian æra

was the 15th ofthe indiction : consequently this cycle must

have begun three years before the birth of Christ ; or, in

other words, the first year of the Christian æra correspond-

ed to the 4th of the indiction , and hence we have a șolu-

tion of the following problem.

PROBLEM XX.

Tofindthenumber ofthe Roman indiction which corresponds

to any given year.

Add 3 to the given year, and divide the sum by 15 : the

remainder will indicate the current year of the indiction ,

Let it be required , for example, to find the indiction of

the year 1813. If 3 be added to 1813 , we shall have 1816,

0 2
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and if this sum be divided by 15 , the remainder will be 1 .

Hence it appears that the indiction for 1813 is 1 .

Of the Julian Period ; and some other periods of the like

kind.

The Julian period is formed by combining together the

lunar cycle of 19 years, the solar of 28 , and the cycle of

indiction of 15. The first year of this period is supposed

to have been that which corresponded to 1 of the lunar

cycle, 1 ofthe solar cycle, and I of the cycle of indiction.

If the numbers 19, 28 and 15 be multiplied together,

the product 7980 will be the number of years compre-

hended in the Julian period ; and we are assured by the

laws of combination , that there cannot be in one revolu-

tion two of these years which have at the same time the

same numbers.

This period is merely an artificial one, invented byJulius

Scaliger ; but it is convenient on account of its extent, as

we can refer to it the commencement of all known æras,

and even the creation of the world, were that epoch cer-

tain ; for according to the common chronology, it was only

3950 years before the Christian æra. But the commence-

ment of the Julian period goes 4714 years beyond that

æra; and hence it follows that the creation of the world

corresponds to the year 764 of the Julian period.

The method by which it is found that the year ofthe

birth of Jesus Christ was the 4714th of the Julian period,

is as follows. It is shown, by a retrograde calculation,

that ifthe three cycles, viz, the solar , lunar, and indiction,

had been in use at the birth of Christ, the year in which

he was born would have been the 2d of the lunar cycle,

the 10th of the solar, and the 4th of the cycle of indiction.

But these characters belong to the year 4714 of the above

period, as will be seen in the following problem . That

year therefore must be adapted to the year of the birth of
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Christ ; from which if we proceed backwards, calculating

the intervals of anterior events, from the profane historians

and sacred scriptures, it will be found that there were

3950 years between that period and the creation of Adam.

If3950 then be subtracted from 4714, the remainder will

be 764 ; so that the Julian period is anterior to the crea-

tion ofthe world by 764 years.

PROBLEM XXI.

Anyyear oftheJulian period being given ; tofind the corre-

spondingyear ofthe lunar cycle, the solar cycle, and the

cycle ofindiction.

Let the given year ofthe Julian period be 6522. Divide

this number by 19, and the remainder 5 , neglecting the

quotient, will be the golden number; divide the same

number by 28, and the remainder 26 will be the year,of

the solar cycle ; if 6522 be then divided by 15, the re-

mainder 12 will indicate the indiction. If nothing remains,

when the given year has been divided , by the number be-

longing to one of these cycles, that number itself is the

number of the cycle. Thus, if the year 6525 were pro-

posed ; when divided by 15 nothing remains, and therefore

the indiction is 15.

But if it were required to find what year ofthe Christian

æra corresponds to any given year of the Julian period,

such for example as 6522, nothing is necessary but to sub-

tract from it 4714 ; the remainder 1808 will be the num-

ber of years elapsed since the commencement of the

Christian æra.

All this is so plain that it requires no farther illustration .

PROBLEM XXII .

The lunar and solar cycles and the cycle of indiction corre-

sponding to any year being given, tofind its place in the

Julian period.

Multiply the number of the lunar cycle by 4200 , that
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of the solar cycle by 4845, and that of the indiction by

6916.

Add together all these products, and divide the sum by

7980 ; the number which remains will indicate the year of

the Julian period * .

æra.

Let the lunar cycle be 2, the solar 10, and the indiction

4; which is the character of the first year of the Christian

In this case 4200 × 2 = 8400 ; 4845 × 10 = 48450 ;

and 6916 × 4= 27664 ; the sum of these products is 84514 ,

which divided by 7980, leaves for remainder 4714. The

year therefore in the Julian period , to which the above

characters correspond, is the 4714th, or the origin of the

Julian period is 4713 years anterior to the Christian æra.

and

REMARKS.-I. There is another period , called the

Dionysian, which is the product of the lunar cycle 19 ,

the solar cycle 28 ; consequently it comprehends 532

years. It was invented by Dionysius Exiguus, about the

time ofthe council of Nice, to include all the varieties of

The year of the Julian period may be found also by the following

general rule : Multiply the golden number by 3780, and the indiction by

1064 ; subtract the sum of these products from the product of 4845 multi-

plied by the solar cycle ; divide the difference, if it can be done, by 7980,

and the remainder will be the year of the Julian period.

The reason of this rule may be found in the solution of the following al-

gebraic problem : To find a number which divided by 28, shall leave for re-

mainder a ; divided by 19, shall leave b ; and by 15, shall leave c.

Call the three quotients, arising from the division of the required number

according to the terms of the problem, x, y, z. Then the number will be

=28x+a=19y+ b= 15 % + c. From the first equation 28x+a=19y+b,

9x+ a- b

19
wehave y=x+

suppose it = m, then m =

m-a+b

19

Now since

9x + a- b

19

9x+ a- b

19
is an integer number, let us

and 2m+
m- a+b

19
or making

•=n, or m= 19n + a−b, we have by substitution , x = 19n+ 2a- 2b.

Therefore 28 + a= 532n + 57 a− 56 b = 15 % + c by the third quotient ; and

by resolving this equation in the same manner, putting p and q to denotethe

successive fractions, we shall find the number sought to be 15 % +c= 7980q +

4845 a- 37806 b- 1064 c.
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the new moons and ofthe dominical letters ; so that, after

532 years, they were to recur in the same order, which

would have been very convenient for finding Easter and

the moveable feasts ; but as it supposed the lunar cycle to

be perfectly correct, which is not the case, this period is

no longer used.

II. As among the cycles of the Julian period there is

one, viz, that of indiction , which is merely a political in-

stitution, that is, which has no relation to the motions of

the heavenly bodies, it would have been of more utility

perhaps, to substitute in its stead that of the epacts, which

is astronomical, and contains 30 years : the number of

years of the Julian period would, in this case, have been

15960. This period of 15960 years, was called by the

inventor of it, Father John Louis d'Amiens, a capuchin

friar, the period ofLouis the Great. But it does not appear

that it met with that reception from chronologists, which

the author expected.

Ofsome Epochs or Periods celebrated in History.

I.

The first of these epochs is that of the Olympiads. It

takes its name from the Olympic games, which, as is well

known, were celebrated with great solemnity every four

years, about the winter solstice , throughout all Greece.

These games were instituted by Hercules ; but having

fallen into disuse, they were revived by Iphitus, one of

the Heraclidæ, or descendants of that hero, in the year

776 before Jesus Christ ; and after that time they continued

to be celebrated with great regularity ; till the conquest

ofGreece by the Romans put an end to them. The æra

or epoch of the olympiads, begins therefore at thesummer

solstice of the year 776 before Christ.
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PROBLEM XXIII.

To convertyears ofthe Olympiads into years ofthe Christian

ara, and vice versa.

1st. To solve this problem, subtract unity from the

number of the olympiads, and multiply the remainder by

4; then add to the product the number of years of the

olympiad which have been completed , and from the last

sum subtract 775 ; or , if the sum be less, subtract it from

776 : in the first case, the result will be the current year

of the Christian æra, and in the second, the year before

that æra.

Let the proposed year, for example, be the third of the

76th olympiad. Unity subtracted from 76 leaves 75, which

multiplied by 4 gives for product 300. The complete

years of an olympiad, while the third is current, are 2 ; if

2 therefore be added to 300 , we shall have 302. But as

302 is less than 775, we must subtract the former from 776,

and the remainder 474, will be the current year before

Jesus Christ.

As a second example we shall take the 2d year ofthe

201st olympiad. If one be subtracted from 201 , the re-

mainder is 200 ; which multiplied by 4 gives 800, and 1

complete year being added makes 801. But 775 subtracted

from 801 leaves 26 ; which is the year ofthe Christian æra,

corresponding to the 2d year of the 201st olympiad.

2d. To convert years of the Christian æra into years of

the olympiads ; the number of years, if anterior to the

birth of Christ, must be subtracted from 776 ; or , if pos-

terior to that period , 775 must be added to them : if the

result be divided by 4, the quotient increased by unity

will be the number of the olympiad ; and the remainder,

also increased by unity, will be the current year of that

olympiad.
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Letthe proposed year, for example, be 1715. By add-

ing 775, the sum is 2490 ; and this number divided by 4,

gives for quotient 622, with a remainder of 2. The year

1715 therefore was the 3d year of the 623d olympiad ; or

more correctly, the last six months of the year 1715, with

the first six months of 1716, corresponded to the 3d year

ofthe 623d olympiad.

II.

The æra ofthe Hegira is that used by the greater part

ofthe followers of Mahomet : it is employed by the Arabs,

theTurks,the various nations in Africa, &c ; consequently,

it is necessary that those who study their history, should

be able to convert the years of the hegira into those of the

Christian æra, and vice versa.

For this purpose, it must be first observed that the years

of the hegira are nearly lunar ; and as the lunar year, or

12 complete lunations , forms 354 days 8 hours 48 minutes ;

ifthe year were always made to consist of354 or 355 days,

the new moon would soon sensibly deviate from the com-

mencement ofthe year. To prevent this inconvenience,

a period of 30 years has been invented, in which there are

10 common years, that is to say of 354 days ; and 11 em-

bolismic, or of 355 days. The latter are the 2d, 5th , 7th,

10th, 13th, 15th, 18th, 21st , 24th, 26th, and 29th.

It is to be observed also , that the first year of the

hegira began on the 15th of July, 622, of the Christian

æra.

PROBLEM XXIV.

Tofind the year of the Hegira which corresponds to a given

Julian year.

To resolve this problem, it must first be observed that

288 Julian years form nearly 235 years of the Hegira.



202 CHRONOLOGY.

This being supposed, let us take, as example, the year

1770 of the Christian æra. Nowas 621 years complete of

our æra had elapsed when the hegira began, we must first

subtract these from 1770, and the remainder will be 1149.

We must then employ this proportion : if 228 Julian

years give 235 years of the hegira, how many will 1149

give : the answer will be 1184, with a remainder of 99

days. The year 1770 therefore, of the Christian æra,

corresponded, at least in part, to the year 1184 of the

hegira.

On the other hand, if it be required to find the year of

the Christian æra which corresponds to a given year of

the hegira, the reverse of this operation must be em-

ployed : the number thence resulting will be that of the

Julian years elapsed since the commencement of the he-

gira; and by adding 621, we shall have the current year

after the birth of Christ.

We shall say nothing further on this subject, but fer-

minate the present article with a few useful tables. The

first contains the dates of the principal events recorded in

history, and of the commencement of the most celebrated

æras ; the second is a table of the golden numbers for

every year from the birth of Christ to 5600 ; the third

a table of the dominical letters from 1700 to 5600 ; the

fourth a table of the index letters for the same period ; the

fifth a table of the epacts ; and the sixth a table of the

calends, nones, and ides.
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A TABLE

Ofthe years ofthe most remarkable Epochs or Eras and

Events.

}

Remarkable Events. Julian Years of Years be-

Period. the World. fore Christ.

The creation of the world . . 706 0 4007

• ·

by Cecrops

The deluge, or Noah's flood

Assyrian monarchyfounded by

Nimrod

The birth ofAbraham

Kingdom of Athens founded

Entrance of the Israelites into

Canaan

The destruction ofTroy

Solomon's temple founded

The Argonautic expedition

Lycurgus formed his laws

Arbaces 1st king of the Medes

Olympiads of the Greeks be-

2362 1656• 2351

• 2537 1831 2176

• 2714 2008 1999

• 3157 2451 1556

• 3262 2556 1451

· 3529• 2823 1184

• 3701 2995 1012

• 3776 3070 937

3829 3103 884

3838 3132 875

gan
• 3938 3232 775

Rome built, or Roman æra
3961 3255 752

Era of Nabonassar 3967 3261· 746

First Babylonish captivity by

Nebuchadnezzar 4107 3401 606

The 2d ditto, and birth of Cy-

rus · "• 4114 3408 599

Solomon's temple destroyed 4125 3419 588

Cyrus began to reign in Baby-

lon 4177• 3471 536

Peloponesian war began 4282 3576 431

Alexander the Great died .• • 4390 3684 323
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Remarkable Events. Julian

Period.

Years of Years be-

the World. fore Christ.

Captivity of 100,000 Jews by

Ptolemy .
4393 3687 320

Archimedes killed at Syracuse 4506
3800 207

Julius Cæsar invaded Britain • 4659 3953 54

He corrected the calendar · 4667 3961 46

4003 4The trueyear of Christ's birth 4709

Christian Era begins here.

Remarkable Events. Julian Years of Years since

Period. the World. Christ.

Dionysian, or vulgar æra of

Christ's birth · 4713 4007 0

Christ crucified, Friday April

3d . 4746 4040 33

Jerusalem destroyed 4783 4077 70

Adrian's wall built in Britain 4833 4127 120

Dioclesian epoch, or that of

Martyrs 4997 4.291• · 284

The council of Nice • 5038 4332 325

Constantine the Great died • 5050 4344 337

The Saxons invited into Bri-

tain 5158 4452• 445

med

Hegira, or flight of Moham-

·

Death of Mohammed

The Persian yesdegird

Sun, moon, and planets, seen

from the earth .

Art of printing discovered

Constantinople taken by the

· 5335 4629 662

· 5343 4637 630

• · · 5344 4638 631

↑

5899 5193 1186

· 6153 5447 1440

Turks · · 6166 5460 1453

Reformation begun by Luther 6230
5524 1517
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Remarkable Events. Julian Years of Years since

Period. the World. Christ.

The calendar corrected by

Pope Gregory
· 6295 5589 1582

Sir Isaac Newton born • 6355 5649 1642

Made president of the Royal

Society · 6416 5710 1703

Died, March 20th 6440 5734 1727

Newplanetdiscovered byHers-

chel 6494 5788 1781

New planet discovered by Pi-

azzi · 6514 5808 1801·

New planet discovered by Ol-

bers • 6515 5809 1802

New planet discovered by

Harding . -6517 5811 1804

Second new planet discovered

by Olbers 6520 5814 1807

Table of some other remarkable events, relating chiefly to

the Arts and Sciences.

Use ofbells introduced into churches .

Alexandrian library destroyed and Egypt conquered

by the Saracens ·

Organs first used in churches

Glass invented by a bishop and brought to England

·by a Benedictine monk

Arabic cyphers introduced into Europe by the Sa-

racens

Astronomy and Geography brought to Europe by

the Moors .

Algebra brought to Europe from Arabia .

Silk manufacture introduced at Venice from Greece

Spectacles invented by a monk of Pisa
"

·

The mariner's compass invented or improved by
t

Flavio •

A.D.

605

641

660

663

991

1120

1200

1209

· 1299

1302
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Gunpowder invented by a monk of Cologne

The art of weaving cloth brought from Flanders

to England

A.D.

• • 1330

1331

· 1383

Cannon first used in the English service by the Go-

vernor of Calais

First company of linen-weavers settled in England 1386

Cards invented for the amusement of the French

king
• 1391·

Great guns first used in England at the siege of

Berwick . 1405•

Paper made of linen rags invented

Printing invented in Germany

Engraving and etching invented

Cape of Good Hope discovered .

Geographical maps and sea charts brought to Eng-

land •

America discovered by Columbus

First voyage round the world by Magellan

Variation of the compass discovered by Cabot

Iron cannon and mortars made in England

Glass first manufactured in England •

First proposal of settling a colony in America

Bomb-shells invented at Venloo •

Telescopes invented by Jansen, a spectacle-maker

ofHolland .

1417•

• • • 1440

1459

• 1488

• 1489

1492• •

1522· •

• • 1540

· · 1543

• 1557

• 1583•

1588

1590

Art of weaving stockings invented by Lee in Cam-

•bridge

Watches brought to England from Germany

Thermometers invented by Drebbel , a Dutchman

Galileo first observed three of Jupiter's satellites ,

Jan. 7th

Logarithms invented by Lord Napier of Scotland

Circulation of the blood discovered by Harvey .

Gazettes first published at Venice .

1590

• • 1597

1610

1610

· 1614

1619

• 1630

Transit ofMercury over the sun's disk first observed

by Gassendi, Nov. 17th 1631
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Galileo condemned bythe inquisition .

French academy established , January

A.D.

• 1633

1635

Transit of Mercury observed by Cassini , Nov. 11th 1636

Polemoscope invented by Hevelius • • 1637

1639

1643

Transit of Venus observed by Horrox , Nov. 24th .

Barometers invented by Toricelli
·

. . 1649

Royal academy of painting founded by Louis XIV. 1643

Galileo first applied the pendulum to clocks

Air pump invented by Otto Gueric of Magdeburg 1654

Huygens first discovered a satellite of Saturn,

March 25th

Royal Society of London established , July 15th

Royal academy of inscriptions and belles-lettres

founded .

Academy for sculpture established in France

The observatory of Paris founded

Magic lantern invented by Kircher .

· •

Academy of sciences established in France •

• 1655

• 1663

1663

• • 1664

1664

1665

1666

Cassini discovered 4 of Saturn's satellites in the

• 1671

· · • 1676

1680

• · · 1686

· • 1701

• 1724

· 1727

course of a few years

The royal observatory at Greenwich built

The anatomy of plants made known by Grew .

The Newtonian philosophy was published

The academy of Sciences founded at Berlin

Academy of sciences established at Petersburg

Aberration of the fixed stars discovered and ac-

counted for by Bradley

Transit of Mercury observed by Cassini, Nov. 11th 1736

Academy of sciences founded at Stockholm.

•

• 1750

New style introduced into Great Britain, Sept. 3d

being reckoned Sept. 14th
1752·

British Museum established at Montague-House

Transit of Venus over the sun, June 6th

Royal academy of arts established at London

Transit of Venus over the sun's disk, June 3d .

· 1753

• 1760.

· 1768•

· 1769
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Eminent British Philosophers and Mathematicians.

Arbuthnot, John , M.D.

Died.

1705

Bacon, Roger, philosopher

Bacon, Lord , ditto

Barrow, Isaac, mathematician

Boyle, Robert, phil.

1294·

1626

· 1677

· 1691

Brerewood, Edward , phil . and math.

Briggs, Henry, math..

Cheyne, George, phys. and phil .

Clark, Samuel, phil. and math.

Cook, James, navigator

Derham, William, phil.

1613·

1630·

1748·

· 1729

1779

· 1735

Dudley, Sir Robert, phil . and math .

Evelyn, John, phil..

1639·

• 1706

Ferguson, James , phil . and mech.
1776

Graham, George, math. and mech .
1751•

Gregory, James, prof. St. Andrew's

Gregory, David, prof. Oxford, astronomy

Gunter, Edmund, astron.

•Hales, Stephen, phil.

Halley, Edmund, astron.

Harriot, Thomas, math.

•

·

·

Harrison , John, inventor of the time-keeper

Harvey, William , phys. dis. circ . of the blood

Horrox, Jeremiah, astron.

Keil, John, math, and astron .

Locke, John, phil. ·

Long, Robert, astron .

Lyons, Israel, math.

Maclaurin, Colin, math,

•

Newton, Sir Isaac, math. and phil.

Pell , John, math.

1675

· · 1708

1626·

1761

1742•

1621

· 1776

• 1657

1641

1721

1704•

• 1770

1775

1746

· 1727

1685



L

·

PHILOSOPHERS, & c.

·Pemberton, Henry, phil.

Ray, John, phil.

Simpson, Thomas, math.

Watts, Isaac, phil . and math.

Whiston, William, astron.

Wilkins, John, phil . •

·

Wren, Sir Christopher, math.

·

209

Died,

1771

· 1705

· 1761

· · 1748

· 1752

· 1672

1723

VOL. JII.
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TABLE OF THE

For every year since the birth of Christ,

The centenary years ; that

is, the last years of each

century.
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20 39 58 77 96
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3 22 41 60 79 98
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GOLDEN NUMBERS,

to theyear 5600.
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TABLE OF THE

from 1700

1700 2100

2500 2900

Centenary years ; that is, the 3300 3700

last years of each century.
4100 4500

4900 5300

Intermediate years. C

1
2
3
+

29 57
85 B

30 58 86 A

31 59 87 G

4 32 60 88 FE

5
6
9
8

33 61 89 D

34 62 90

7 35 63 91 B

36 64 92 AG

9 37 65 93

10 38 66 94 E

11 39 67 95 D

12 40 68 96 CB

13 41 60 97 A

14 42 70 98 G

15 43
71 99 F

16 44 72 ED

17 45
73 C

18 46 74 B

19 47 75 A

20 48 76 GF

21 49 77

22 50 78

23 51 79 C

24 52 80 BA

2.5 53 81

26 54 82

27 55 83

C
F
E

G

28 56 84 DC
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DOMINICAL LETTERS,

to 5600.

1800 2200 1900 2300 2000 2400

2600 3000 2700 3100 2800 3200

3400 3800 3500 3900 3600 4000

4200 4600 4300 4700 4400 4800

5000 5400 5100 5500 5200 5600

E G BA

D F G

C E F

B D E

AG CB DC

B

E

D

CB

F
R
A
S F

A
G
R

A
G

ED FE

A

G

F

ED

C
B
A
G

D

C

Α B

GF AG

C
R
A
C

E F

B D E

C D

GF BA CB

G

D

M
A
U
N

G

BA

༤
༢
༦

F

DC ED

G B

F A B

E G Α

DC FE

C
P
A
G

GF

В

B
A
G
Ê D E

C

B C

FE AG BA
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TABLE OF THE INDEX LETTERS,

from 1700 to 5600.

C
1700 Metemptosis * P 3700

Met.

1800 M. proemtosis †
n 3800 Met.

1900 Met. n 3900 Met. & proem.

B 2000 Bissextile n 4000 Bissextile

B 2100 Met. & proem. m 4100 Met.

Α 2200 Met. 4200 Met.

u 2300 Met. 4300 Met. & proem.

A 2400 Bissex. &
proem.

1 4400 Bissextile

u 2500 Met. k 4500 Met.

t 2600 Met. k 4600 Met. & proem.

t 2700 Met. & proem. 4700 Met.

t 2800 Bissextile 4800 Bissextile

2900 Met. 4900 Met. & proem.

S 3000 Met. & proem. h 5000 Met.

r 3100 Met.

r 3200 Bissextile

r 3300 Met. & proem.

q
3400 Met.

p 3500
Met.

q 3600 Bissext. & proem. f

6
0

5
0
4

Chad
Stad

5100 Met.

5200 Bissext. & proem.

5300 Met.

5400 Met.

5500

5600

Met. & proem.

Bissextile.

* Metemptosis, or the solar equation, is the suppression of a day. There

was a metemptosis in the year 1800 , because that year, which ought naturally

to have been bissextile, was not so. Since the reformation of the calendar it

takes place three times in 400 years.

+ Proemptosis, or the lunar equation, is the anticipation of the new moon.

There is a proemptosis in about every 300 years, because the new moon takes

place then a day sooner than it ought to do.
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ranged together in one cell. Those which have c for do-

minical letter in the first, those which have E in the se-

cond, those which have G in the third , and those which

have BA in the fourth. As in 40 centenary years, the

number comprehended in this table, there are 10 bissex-

tiles, these 10 years have been placed in the fourth cell,

and the other 30 in the first three. The intermediate years

placed horizontally in the same cell differ by 28 years, be-

cause the solar cycle contains only that number. Thus

the difference between 1 and 29 in the first cell , is 28, and

the case is the same with 29 and 57, &c. Each collateral

cell contains four perpendicular rows, consisting each of

four numbers, because a bissextile recurs every four years.

The four first dominical letters, in the four upper cells,

viz, B, D, F, G, correspond to the numbers 1 , 29, 57, 85,

in the first cell of intermediate years ; the case is the same

with the dominical letters in the next row, A, C, E, F, in

regard to the numbers 2 , 30, 58 , 86 ; and so on through-

out the table.

I. To find the dominical letter of a centenary year,

1800 for example. Look for 1800, which stands in the

second cell at the top, and immediately below it will be

found the letter E.

II. To find the dominical letter of an intermediate year,

as 1813. First find the centenary year 1800 in its proper

cell ; then look for 13 among the intermediate years, on

a line with which, and below the cell containing 1800, will

be found the letter c.

3d. Table ofthe Index Letters, and Table ofthe Epacts.

The use of the first of these tables will readily appear,

when we have explained the nature of the second. The

table of the epacts contains the golden numbers in the ho-

rizontal column at the top : the index letters are arranged

in the first perpendicular column, and the epacts in co-

lumns parallel to it. Now if the epact of any year be re-
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quired ; first find the golden number of the proposed year,

and, in the table of index letters, the letter corresponding

to the century ; then look for the same letter in the table

of the epacts, and also for the golden number at the top;

and on a line with the index letter, and directly below the

golden number, will be found the epact required .

Let it be proposed, for example, to find the epact of

1813, the golden number of which is 9. Look in the table

of the index numbers, and it will be found that the letter

corresponding to 1800 is c ; then find c in the first co-

lumn on the left of the table of epacts ; and on a line with

it, and directly below ix among the golden numbers, will

befound xxviii, the epact of the year 1813. The epact of

any other year, till the year 5600, may be found in like

manner.

4th. Table ofthe Calends, Nones, and Ides.

This table requires little explanation : look for the given

month at the top, and in the column below it, and oppo-

site to the proposed day, will be found the corresponding

day of the Roman calendar. The day of our calendar,

corresponding to any given day of the Roman calendar,

may be found with the same ease.
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MATHEMATICAL

AND

PHILOSOPHICAL

RECREATIONS.

PART SEVENTH.

Containing the most useful and interesting Problems in

Gnomonics or Dialling.

GNOMONICS or Dialling is the art of tracing out on a

plane, or even on any surface whatever, a sun- dial ; that is,

a figure, the different lines of which, when the sun shines,

indicate by the shadow of a style the different hours of the

day. This science depends therefore on geometry and

astronomy, or at least on a knowledge of the sphere.

As many people construct sun-dials without having a

clear idea of the principle which serves as a basis to this

part of the mathematics, it may not be improper to begin

with an explanation of it .

The General Principle of Sun-Dials.

Conceive a sphere, with its 12 horary circles or meri-

dians, which divide the equator, and consequently all its

parallels, into 24 equal parts. Let this sphere be placed

in a situation suited to the position ofthe dial ; that is, let
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its axis be directed to the pole of the place for which the

dial is constructed, or elevated at an angle equal to the

latitude. Now if we suppose a horizontal plane cutting

the sphere through its centre, the axis of the sphere will

represent the style, and the different intersections of the

horary circles with that plane will be the hour-lines ; for

it is evident, that if the planes of these circles were infi-

nitely produced, they would form in the celestial sphere

the horary circles , which divide the solar revolution into

24 equal parts. When the sun therefore has arrived at

one of these circles, that of 3 in the afternoon for example,

he will be in the plane of the similar circle of the sphere

above mentioned ; and the shadow of the axis or style will

fall upon the line of intersection, which that circle forms

with the horizontal plane : this line then will be the line

of 3 o'clock ; and so ofthe rest.

All this is illustrated in fig. 1 plate 1 , which represents

a part of the sphere, with six of the horary circles. Ppis

the axis, in which all these circles intersect each other ;

AHB h the horizontal plane, or horizon of the sphere, in-

definitely continued ; AB the meridian ; DE the diameter

of the equator, which is in the meridian ; and DHEh the

circumference of the equator, of which DHE is a half, and

DH a quarter. This quarter of the equator is divided

into six equal parts, D 1 , 1 2, 23, 34, 4 5, 5 6, and through

these passthe horary circles, the planes of which evidently

cut the horizon in the lines c 1 , c 2, c 3, c4, c 5, c 6 :

these are the hour-lines ; and if we suppose them conti-

nued to AF, which is perpendicular to the meridian ca,

they will give the hour-lines c1, CII, CIII, CIV, CV,

CVI. The style will be a portion cs of the axis of the

sphere ; which consequently ought to form with the me-

ridian, and in its plane, an angle sca, equal to the height

of the pole or PCA.

Should this reasoning appear too dry and tedious, an-

other method may be employed to acquire a clear idea of
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the principles of dialling. Construct a solid sphere, di-

vided by its 12 horary circles, and cut it in such a manner

that one of its poles shall form with the plane of the section

an angle equal to the height of the pole ofthe given place.

If the sphere, cut in this manner, be then made to rest

on a horizontal plane, with its pole directed towards the

pole of the world, the points where the horary circles in-

tersect the horizontal plane, will be readily seen ; and the

common section of all the circles , which is the axis, will

show the position of the style.

For the sake of illustration, we have here supposed the

section of the sphere to be formed by a horizontal plane ;

but if the plane were vertical , the case would be similar ,

and the lines of intersection would be the hour-lines of a

vertical dial. If the plane be declining or inclining, we

shall have a declining or inclining dial : it may even be

easily seen that this holds good in regard to every surface,

whatever be its form, convex , concave, or irregular, and

whatever may be its position.

The style is an iron rod , generally placed in an inclined

direction, the shadow of which serves to point out the

hours : as before said , it is a portion cs of the axis of the

sphere ; and in that case it shows the hour by the shadow

of its whole length.

An upright style, however, such as so, is sometimes

given to dials ; but in that case it is only the shadow ofthe

summit s that indicates the hour, because this summit is

a point of the axis ofthe sphere.

The centre ofthe dial is the point c where all the hour-

lines meet. It sometimes happens, however, that these

lines do not meet. This is the case in dials which have

their plane parallel to the axis of the sphere ; for it is evi-

dent that in such dials the intersections ofthe horary cir-

cles must be parallel lines. These dials are called dials

without a centre. Vertical east and west dials, and dials

turned directly towards the south, and inclined to the ho-
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the moment at which the elevation of the sun above that

plane is greatest. Care however must be taken not to

confound this meridian with the meridian of the place, or

the south line of the dial; for the latter is the intersec-

tion of the plane of the dial with the meridian of the

place, which is the plane passing through the zenith of

the place and the pole ; whereas the meridian ofthe plane

of the dial, is the intersection of that plane with the meri-

dian, or the horary circle passing through the pole and

the zenith ofthe plane.

In the horizontal plane, or any other which has no de-

clination, the substyle and the meridian of the place co-

incide ; but in every plane not turned directly towards the

south or the north, these lines form greater or less angles.

Lastly, the equinoctial is the intersection of the plane

of the equator with the dial : it may easily be seen that

this line is always perpendicular to the substyle;
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PROBLEM I.

Tofindthe Meridian Line on a Horizontal Plane.

To find the meridian line, is the basis of the whole art

of constructing sun-dials ; but as it is at the same time the

basis of all astronomical operations, and as we have al-

ready treated of it at full length in that part of this work

which relates to astronomy, it would be needless to repeat

here what has been already said on the subject. We shall

therefore confine ourselves to one ingenious and little-

known operation.

We shall give also hereafter a method of determining

the position of the meridian line at all times, and in all

places, provided the latitude be known.

PROBLEM 11.

To find the Meridian by the Observation of three Unequal

Shadows.

The meridian line on a horizontal plane is found ge-

nerally by means of two equal shadows of a perpendicular

style ; the one observed in the forenoon and the other in

the afternoon . For this purpose, several concentric cir-

cles are described from the bottom of the style ; but not-

withstanding this precaution , it may happen that it will

be impossible to have two shadows equal to each other.

This inconvenience however may be remedied by three

observations, instead of two. For this ingenious method,

we are indebted to a very old author on Gnomonics ,

named Muzio oddi da Urbino, who published it in a trea-

tise entitled Gli Orologi solari nelle superficie piane.

author was exceedingly devout ; for he piously thanks

Our Lady of Loretto for having communicated to him, by

inspiration, the precepts he has taught in his work. The

operation is as follows.

This

Let p (pl. 2 fig. 2) be the bottom of the style, and ps its

height ; and let three shadows projected by it be pá , pb

VOL. III. 2
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and PC; which suppose to be unequal, and let PC be the

shortest of them. From the point P draw PD, PE and PF

perpendiculars to PA, PB and Pc, and all equal to each

other, as well as to Ps. Draw also the lines DA, EB and

FC, on the two largest of which, viz, DA and EB, assume

DG and EH equal to FC ; then from G and H draw GI

and HK perpendiculars to PA and PB, and join the points

I and K by an indefinite line : make Iм and KL perpendi-

cular to IK, and equal to GI and кн ; and draw ML,

which will meet IK in the point N : if through N and c

the line CN be drawn, it will be perpendicular to the me-

ridian ; consequently by drawing, from P, the line Po ,

perpendicular to CN, it will be the meridian required.

As the demonstration of this problem would be too

long, we must refer the reader to the fifth book of a work

by Schooten, entitled Exercitationes Mathematica.

PROBLEM III.

Tofind the Meridian on a Plane, or the Substylar Line.

After what has been already said in regard to the sub-

stylar line, this operation will be easy ; for since this line

is the meridian of the plane, nothing is necessary but to

consider it as if it were horizontal, and to trace out on it

the meridian by the same method : the line resulting will

be the substyle, the determination of which is very neces-

sary for constructing inclined or declining dials , and those

which are both at the same time.

"

PROBLEM IV.

To describe an Equinoctial Dial.

From any point c (pl. 2, fig. 3) , as a centre, describe a

circle AEDB ; and having drawn the two diameters in-

tersecting each other at right angles in the centre c , di-

vide each quadrant into six equal parts ; and draw the

radii c1 , c2 , c3 , and so on as seen in the figure. These

radii will show the hours by means of a style perpendicu-
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lar to the plane of the dial, which must be placed in the

plane of the equator ; that is , in such a manner as to form

with the horizon an angle equal to the complement ofthe

latitude. The line AD must coincide with the plane of

the meridian, and the point A must be directed towards

the south.

REMARKS.-I. When this equinoctial dial is erected,

ifthe hour-lines look towards the heavens, it is called a

superior dial, but if they are turned towards the earth , an

inferior.

II. A superior equinoctial dial shows the hours of the

day only in the spring and summer ; and an inferior one

only during the autumn and winter ; but at the equinoxes,

when the sun is in the equator, or very near it, equinoctial

dials are of no use, as at those periods they are never il-

luminated by the sun.

III. It is well known that at London the elevation of

the plane of the equator is 38° 29′, which is the comple-

ment of the elevation of the pole : the angle therefore

which the plane of an equinoctial dial at London should

form withthe horizon , ought to be 38° 29'.

IV. It hence appears that it is easy to construct a uni-

versal equinoctial dial , which may be adjusted to any ele-

vation of the pole whatever. For this purpose, join toge-

ther two pieces of ivory, or copper, or any other matter,

ABCD and CDEF, ( pl . 2 , fig. 4), by means of a hinge at

CD: then describe on the two surfaces ofthe piece ABCD,

two equinoctial dials ; and in the centre 1, place a style

extending both ways in a direction perpendicular to ABCD .

At e, in the middle of the piece CDEF, fix a magnetic

needle, covered with a plate of glass, and towards the edge

of the same piece apply a quadrant HL divided into de-

grees, and passing through an aperture н, made to receive

it in the upper piece ABCD. The degrees and minutes.

must begin to be counted from the point L.

When this dial is to be used, place the needle in the

Q 2
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meridian, making a proper allowance for the declination ;

and cause the two pieces ABCD and CDEF to form an

angle BCF, equal to the elevation of the equator at the

given place ; that is , equal to the complement of the lati-

tude. If care be then taken to turn the quadrant towards

the south, either of these equinoctial dials will show the

hours at that place, except on the day of the equinox .

PROBLEM V.

Tofind the divisions of the hour-lines on a horizontal dial,

with only two extents of the compasses.

Draw the meridian SM, (pl. 2, fig. 5), and from the point

c, assumed towards the middle, as a centre, describe the

circle ETOP with the radius CE, the first opening of the

compasses; then from o as a centre, with a radius equal

to the diameter OE of the first circle, describe the circle

EAMB ; and from the point E as a centre, with the same

radius, the circle AOBS : these two circles will cut each

other in A and B, which will be the centres of two other

equal circles, XIEF and ZLEG . Through the points of

intersection F and G, draw the lines EG and EF ; and

through the points A and B the straight line xACBZ .

This line, which will be the equinoctial, will be cut both

by the above circles, and by the lines EG and EF, and

the centre c of the first circle, in 11 points, which will be

those of the hours : they must therefore be marked with

the numbers 7, 8, 9 , 10, 11 , 12 , 1 , 2, 3, 4, 5.

The next thing is to find the centre of the dial , of which

the above points are the horary divisions ; this is to be

done in the following manner :

In the circle ETOP assume, towards T or P, an arc EK

equal to the complement ofthe latitude or elevation of the

pole, that is, equal to 38° 29′ if the latitude be 51 ° 31′, and

draw CK : if KV be then drawn perpendicular to CK, it

will cut the meridian in v, which will be the centre ofthe

dial ; so that by drawing, from the point v, the lines v 7 ,
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v 8, v 9, &c, we shall have the hour-lines from 7 in the

morning till 5 in the afternoon. If a line be drawn through

the point v parallel to the equinoctial, it will be the line

of 6 o'clock . The hour-lines of 7 and 8 in the morning,

continued beyond the centre v, will give those of 7 and 8

in the evening ; and those of 4 and 5 in the evening, if

continued in the same manner, will give 4 and 5 in the

morning. In the last place, if from the point v, or any

other taken at pleasure , two circles be described , they will

serve to terminate the hour-lines, and to contain the num-

bers belonging to the different hours.

PROBLEM VI.

To construct the same Dial with one Opening ofthe

Compasses.

Through the point c (pl. 3 , fig . 6) draw two lines SM,

7 5, perpendicular to each other ; and, from the same point

as a centre, describe the circle ETOP, with any opening of

the compasses whatever : then , keeping the opening the

same, place one point of the compasses in o and the other

in 9, from o turn to the point 4, and making two turns

from 4 to 5, proceed back from 5 to 11 by four turns.

Then, placing the compasses on o and N , turn from N

to 8, and making two turns from 8 to 7, proceed from 7

to 1 by four turns. If the lines EN and EQ be then drawn,

which will give, on the line 7 5 , the hours of 2 and 10, the

dial will be constructed. The centre of it may be found

by the operation described in the preceding problem.

PROBLEM VII.

Construction of the most important of the other Regular

Dials.

Regular dials are those which have the hour-lines, form-

ing equal angles on each side of the meridian : these dials

therefore are, the equinoctial, the horizontal, the north

and south vertical, and the polar. Having already spoken
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of the equinoctial and horizontal, we shall now proceed to

the north and south vertical dials.

Ofthe South Vertical Dial.

If the vertical dial be turned directly towards the south;

then make the angle ECK or the arc EK (pl . 2 , fig. 5) equal

to the height of the pole ; if CKV be then made a right

angle, the point v will be the centre of the dial ; and the

angle CVK, which will then be equal to the complement of

the latitude or of the elevation of the pole, will denote the

angle which the style, in the plane of the meridian, ought

to form with the plane of the dial .

Ofthe North Vertical Dial.

If the vertical dial be north ; make, as before, the angle

ock (pl. 2, fig. 5) equal to the height of the pole, and the

angle ckи a right angle : the point н will be the centre of

the dial ; and the angle cнk will be that which the style

forms with the meridian. The style, instead of being in-

clined downwards, must be turned in a contrary direction,

as may be readily conceived when we consider the position

of the pole in regard to a vertical plane turned directly

towards the north.

Of Polar Dials.

Tomake a polar dial , draw, as before directed , the meri-

dian x11 x11, (pl. 4 , fig. 8 ) , and xz perpendicular to it.

From the point м, in this line , make on each side the same

construction as that taught at prob. v ; if parallel lines be

then drawn through the points of division , they will bethe

hour-lines. For it may be easily seen that, as the pole is

in the continuation of this plane, they cannot meet but at

an infinite distance, or that the centre of the dial is at an

infinite distance ; whence it follows that the lines must be

parallel.

The style must be placed in a perpendicular direction in

the point м; and in height must be equal to the distance
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between 12 and 3 ; or if an iron spike be placed at that

distance from the meridian XII XII, and parallel to that

line, it will show the hour by its whole length.

PROBLEM VIII.

OfVertical East and West Dials.

Next to the dials already described, the simplest are

those which directly front the east or the west. The

method ofconstructing them is as follows :

Draw the horizontal line HR, (pl. 3 , fig . 7 , n°. 1 ) , and

assume in it any point P, for the bottom of the style, the

upper extremity of which is intended to show the hours.

At the point P, make, towards the left for an east dial , and

towards the right for a west one, the angle HPE, equal to

the complement of the latitude , or the elevation of the

pole above the horizon ; and continue EP to N. The line

EN will be the equinoctial. Then through the point P

draw the line CA, in such a manner as to form with the

line HR the angle APH, equal to the elevation of the pole ;

then AC, which will intersect the equinoctial EN at right

angles, will be the hour-line of vi in the morning, and also

the substylar line.

When these lines have been traced out, the hour-lines

may be drawn in the following manner. In the substylar

line AC, assume a point A, at any distance from the point

P, according to the intended size ofthe dial ; and from A,

as a centre, describe a semicircle of any radius at pleasure.

Divide this semicircle into 12 equal parts, beginning at

the point P, and then from the centre a draw dotted lines

through each of the points of division in the semicircle,

till they meet the equinoctial EN : if lines parallel to the

substylar line be then drawn through the points where

these dotted lines cut the equinoctial, they will be the

hour-lines required , the substylar line being that of vi in

the morning. The parallels above the substylar line, in
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the east dial, will correspond to Iv and v in the morning ;

those below it to VII, VIII, &c, in the afternoon.

The style, the figure of which is seen in the plate, is

placed parallel to the line of vi, on two supports raised

perpendicular to the plane of the dial, and at a distance

above it equal to that of vi hours from III or from Ix. It

is here evident that a west is exactly the same as an east

dial ; only in a contrary situation (see pl . 4 , fig. 7, n°. 2) ;

but instead of marking on it the morning hours, as iv, v,

vi, &c, you must inscribe on it those of the afternoon, as

I , II , III , IV, &c. If an east dial be traced out on a piece

of oiled paper, and if the paper be then inverted, but not

turned upside down, on holding it between you and the

light, you will see a west dial.

It may be easily seen that these dials cannot show the

hour ofnoon: for the sun does not begin to illuminate the

latter till that hour, and the former ceases to be illuminated

at the same period.

PROBLEM IX.

To describe a horizontal, or a vertical south dial, without

having occasion tofind the horarypoints on the equinoctial.

Letthe line AB, pl . 5 , fig. 9, be the meridian of the dial,

which we suppose a horizontal one ; and let c be its centre :

make the angle нCB equal to the elevation of the pole, in

order to find the position of the style ; and from the point

B, assumed at pleasure, but in such a manner that CB shall

be of a proper length, draw BF perpendicular to CH. If

we conceive the triangle BFC raised vertically above the

plane of the dial , it will represent the style.

From the point c, with the radius CB, describe a circle

BDAE; and from the same centre, with the radius BF,

describe another circle MONP,

Divide the whole circumference ofthe first circle into 24

equal parts, BO, oo , oo, &c, and then divide the second
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circle into the same number of equal parts, NR, rr, &c :

from the points of division o , of the great circle , draw

lines perpendicular to the meridian ; and from the corre-

sponding points R ofthe less circle , draw lines parallel to

that meridian. These parallels and perpendiculars will

meet in certain points, which will serve to determine the

hour-lines. For example, the lines o 3, R 3, which proceed

from the third ofthe corresponding points of division , will

meet in the point 3 ; through which if c 3 be drawn , it will

be the position of the line of 3 o'clock ; and so of the rest.

It is evident that the larger the circles, the more distinct

will be the intersections, formed by the lines drawn through

the points of division o and R.

It is remarkable that all these points of intersection are

found in the circumference of an ellipse, the greater axis

of which is equal to twice CB ; and the less ro to twice

CN, or twice BF.

The reason of this construction will be easily discovered

by geometricians. ༥

PROBLEM X.

Totrace out a dial on any plane whatever, either vertical or

inclined, declining or not, on any surface whatever, and

even without the sun shining.

This problem, as may be seen, comprehends the whole

ofGnomonics; and the operation may be practised by any

person who knows how to find the meridian, and to con-

struct an equinoctial dial. The solution of it is as follows.

Having made the necessary preparation, pl . 5 fig. 10,

trace out a meridian line on a table, accordingto the method

taught in the first problem ; and , by means of this meridian,

place an equinoctial dial in such a situation , that the plane

of it shall be raised at the proper angle ; that is, at an

angle equal to the elevation of the equator, or complement

of the latitude, and that its south line shall coincide with

the above meridian. Adjust along the axis a piece of



234 DIALLING.

packthread, which being stretched shall meet the plane on

which the dial is to be described : the point where it meets

this plane is that where the style or axis ought to be

placed, so as to form one straight line with the packthread

and the style of the equinoctial dial .

When this is done, and when the axis of the dial has

been fixed , hold a candle or taper before the equinoctial

dial , in such a manner, that the style shall show noon ; the

shadow projected, at the same time, by the packthread,

or the axis of the dial about to be constructed, will be the

south line. You must therefore assume a point which,

together with the centre, will determine that line. If you

then change the position of the taper , so that the equi-

noctial dial shall show one o'clock, the shadow projected

by the packthread , or the axis of the proposed dial , will

be the hour-line of 1 ; and so ofthe rest.

REMARKS.-I. If the plane, on which the dial is to be

described, be situated in such a manner that it cannot be

met by the axis continued, according to the preceding

method, two supporters must be affixed to the plane, for

the purpose of receiving a rod of iron , so as to make one

line with the packthread ; and the operation may then be

performed as above described .

II. Instead of an equinoctial dial , a horizontal one may

be employed ; provided it be placed in such a manner,

that the south line corresponds with the meridian which

has been traced out.

III. This operation may be performed in the day-time

when the sun shines. In this case you must employ a

mirror, the reflection of which will produce the same effect

as the taper or candle.

PROBLEM XI.

To describe a horizontal dial in a parterre, by means of

plants.

A horizontal dial might be described by the usual ·
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methods in a parterre, the hour-lines being formed of box,

&c ; and a very straight tree terminating in a point, such

as the cypress or sycamore, planted on the meridian line

being employed as a style.

Instead of a tree, a person might act the part of a style,

by standing in a very erect position , in a place marked

out on the meridian, proportioned to his height ; because

according to this height the place must vary. For a short

person, it will be near the centre of the dial ; and for a tall

one, at a greater distance from it. A figure placed on a

pedestal might serve at the same time as a style, and

as an ornament to the
parterre.

PROBLEM XII.

To describe a vertical dial on a pane ofglass, which will show

the hours without a style, by means of the solar rays.

Ozanam relates that he once constructed a vertical

declining dial on a pane of glass in a window, which had

no style ; and by which the hours could be known when

the sun shone.

I detached, says he, from the window frame on the out-

side a pane of glass, and described on it a vertical dial ,

according to the declination of the window and the height

of the pole above the horizon ; taking as the height of the

style the thickness of the window frame. I then fixed the

pane ofglass against the frame in the inside ; having given

to the meridian line a situation perpendicular to the hori-

zon, as it ought to have in vertical dials. I then cemented

to the window frame on the outside, opposite to the dial,

a piece of strong paper, not oiled , in order that the sur-

face of the dial might be more obscure. And that I might

be able to know the hours without the shadow of a style,

I made a small hole in the paper with a pin, opposite to

the bottom of the style, which I had marked out. As this

hole represented the extremity of the style , the rays of

the sun passing through it formed on the glass a luminous
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point ; which, while the rest of the dial was obscure, indi-

cated the hours in an agreeable manner.

PROBLEM XIII.

To describe three, and even four dials, on as many different

planes, on which the hours may be known bythe shadow of

only one axis.

Provide two rectangular planes, ABCD and CвEr , (pl . 6,

fig. 11 and 12) , equal in size , and join them together by

the line CB ; so as to form with each other a right angle,

the one being horizontal, and the other vertical.

Then divide their common breadth BC into two equal

parts in 1 ; and draw the perpendiculars IG , IH , as the

meridians of the two planes. Assume the point & at plea-

sure, as the centre of the horizontal dial, and if GI be

madethe base of a right-angled triangle GIH, in which the

angle & is equal to the height of the pole, the point u will

be the centre of a south vertical dial for that latitude.

Describe these two dials, viz, a horizontal and a south

vertical one, which will have the same points of division

in their common section BC ; and extend a piece of iron

wire, as an axis , from the point H to the point G ; this

wire will be the common axis and style of the two dials.

Lastly, having with any radius at pleasure described a

circle, trace out on it an equinoctial dial , which must be

placed on the axis GH, in such a manner that it shall pass

through its centre, and be perpendicular to its plane, and

that the line of 12 o'clock shall be in the plane of the

triangle GIH.

If this triple dial be exposed to the sun, so that the line

GI shall be horizontal and in the plane of the meridian, it

is evident that the shadow of the axis GH will show the

hour on the three dials at the same time.

If it be required to have a fourth dial, to show the hour

by means of the same style ; in the plane of the triangle

GIH draw a line parallel to GH, and through that line a
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plane perpendicular to the plane of the meridian, which

will cut the vertical plane in the line KL, and the horizontal

plane in MN: the hour-lines of both dials will be cut by

these two lines in points, every two corresponding ones of

which must be joined by transversal lines ; for example,

the point of section of 11 hours on the one, with the point

of section of 11 hours on the other, which will give on that

plane parallel hour-lines , such as ought to be on a polar

dial that has no declination : these four dials will show

the hour at the same time, and by means ofthe same style

or axis GH.

'Another method.

Provide a cube ABCED, (pl. 6, fig. 13), and having

divided the sides AB, CE, and ED, into two equal parts, in

the points H, G, and I, draw the lines GH and GI ; then

assuming these lines as the meridians of the horizontal

plane cp, and of the vertical one CA, and the point G as

the centre, describe on the former a horizontal dial, and

on the latter a vertical dial, each adapted to the latitude of

the place. Assume the lines EM and EN, in such a manner,

that the angle ENM shall be equal to the latitude of the

place ; make co and CP equal to them; and let a plane

pass through MN and OP, so as to cut off that angle of the

cube: this plane will intersect the hour-lines of the two

dials already traced out in certain points, the correspond-

ing ones of which will give the hour-lines of a third dial.

Nothing then remains but to fix the style, which will

not be attended with any difficulty. For this purpose,

having drawn EQ perpendicular to MN, fix in a perpen-

dicular position on the meridian KL, and in its plane, two

supporters equal in height to EQ , bearing the style RS ,

prolonged towards each end, and parallel to KL : the

shadow of this style will show the hours on the three dials

at the same time.
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PROBLEM XIV.

In any latitude, to find the meridian by one observation of

the sun, and at any hour of the day.

Provide an exact cube, each side of which is about 8

inches ; and describe on the upper face a horizontal dial ,

adapted to the latitude of the place. On the vertical face,

which stands at right angles to the meridian of this dial ,

describe a vertical one ; on the adjacent face to the left an

east dial , and on the opposite one a west dial, each of

which must be furnished with the proper style.

When you are desirous of finding the meridian on a

horizontal plane, place this quadruple dial on it , so that

the vertical one shall nearly face the south ; and gradually

turn it till three of these dials all show the same hour :

when this takes place, you may be assured that the three

dials are in their proper position . If a line be then drawn

with a pencil, or other instrument, along one of the lateral

sides of the cube, it will be in the true direction of the

meridian.

It is indeed evident that these three dials cannot show

the same hour unless they are all placed in a proper

position in regard to the meridian ; their concurrence

therefore will show that they are properly placed ; and

that their common meridian is the meridian of the place.

PROBLEM XV.

Tocut a stone into severalfaces, on which all the regular dials

can be described.

Let the square ABCD ( pl . 7 , fig . 14) , be the plane of the

stone, which is to be prepared so as to receive all the

regular dials. If we suppose the stone to represent an

imperfect cube, or any other irregular solid , after all its

faces have been smoothed , it must be squared , and reduced

to an uniform thickness. When this is done, proceed as

follows : On the plane ABCD describe the circle HELF,
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with as large a radius as the stone will admit ; and draw

at right angles the two diameters FE and HL. Then make

the angle foi equal to 38 degrees, which is the comple-

ment of the latitude of London nearly, and draw the

diameter IOM ; make the angle EOG equal to the latitude

51 degrees, and draw the diameter GOK ; then through

the points I , G, м, K, draw tangents to the circle HELF,

which will meet the other tangents passing through the

points H, E, L , F, and form part of the sides of the square

ABCD, that represents the plane of the stone. Cut the

stone square, according to these tangents, in order to

obtain planes or faces perpendicular to the plane of the

stone ABCD, and the stone will then be prepared for re-

ceiving on all its faces the dials which belong to them.

On the face or plane which passes through the line vx,

describe a horizontal dial ; on that passing through xN,

an upper equinoctial dial, and on the opposite plane, pass-

ing through SR, an inferior equinoctial dial. An upper

polar dial must be described on the plane passing through

TV, and an inferior one on the plane passing through op.

On the plane passing through Ts make a south vertical

dial, and on the opposite plane NP a north vertical one :

Lastly, if an east vertical dial be described on the side of

the stone IM, and on the opposite side a west vertical one,

the whole will be complete.

If it be required to have the stone hollow, or rather cut

through, nothing will be necessary but to draw lines

parallel to these tangents, and to cut the stone square ac-

cording to these lines, which will give, in the inside of the

stone, surfaces parallel to those on the outside. On these

internal surfaces, dials similar to those on the opposite

external surfaces may then be described.

It is here to be observed, that when the stone is thus

made hollow, neither an east nor a west dial can be described

on it ; but if it be placed on a pedestal in the form of a

regular octagon, having one of its faces turned directly
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towards the south, different kinds of vertical dials may be

described on this pedestal, viz , a south, a north, an east,

and a west dial, together with four vertical declining dials ;

so that on this stone and its pedestal there may be 20 or

25 dials.

If the south vertical dial be placed directly south, and if

the horizontal one be perfectly level, all these dials together

will show the same hour.

PROBLEM XVI.

To construct a dial on the convex surface ofa globe.

This dial, which is the simplest and most natural of all ,

is formed by dividing the equatorial circle into 24 parts.

If a globe be placed on a pedestal , in such a manner that

its axis shall be in the plane of the meridian, and exactly

elevated according to the height of the pole of the place,

nothing then willbe necessary to complete the dial, but to

divide its equator into 24 equal parts.

The globe, pl. 7 , fig. 15 , in this state, may be used

without any farther apparatus ; for one half of it being

enlightened by the sun, the boundary of the illumination

will exactly follow on the equator, the motion of the sun

from east to west. At noon , it will fall on those points of

the equator turned directly to the east and west. At one

o'clock, it will have advanced 15° ; and so on. To render

this globe then fit for being employed as a dial ; vi must

be inscribed at the division which corresponds with the

meridian ; vII at the following one, and so of the rest ; so

that the 12th will be exactly in the point turned towards

the west ; then I , II , III , &c, will be under the horizon.

Nothing then will be necessary, but to observe what di-

vision corresponds with the boundary of the light and

shadow ; for the number belonging to that division will

be the hour.

This dial however it attended with a very great incon-

venience : as the boundary between the light and shadow

is always badly defined, it cannot be precisely known where
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it terminates ; it will therefore be better to employ this dial

in the following manner.

Adapt to this globe a half meridian, made of a piece of

flat wire, 7 or 8 lines in breadth, and half a line in thick-

ness, and moveable at pleasure around its axis, which must

be the same as that of the globe. Then, when you wish

to know the hour, move the half meridian in such a manner,

that it shall project the least shadow possible, and this

shadow will show the hour on the equator. In this case

however it is evident that the numbers naturally belonging

to the points of division in the meridian, should be in- .

scribed on them ; that is, x11 at the meridian, 1 at the

following division, towards the west, and so on.

PROBLEM XVII.

Another kind of dial, in an armillary sphere.

This dial is equally simple as the preceding, and is at-

tended with this advantage, that it may serve by way of

ornament in a garden.

Conceive an armillary sphere, pl . 7, fig. 16 , consisting

only of its two colures, its equator, and zodiac , and fur-

nished with an axis passing through it. If we suppose

this sphere to be placed on a pedestal , in such a manner

that one of its colures shall supply the place of a meridian,

and that its axis shall be directed towards the pole of the

place, it is evident that the shadow of this axis, by its uni-

form motion, will show the hours on the equator. If the

equator therefore be divided into 24 equal parts, and if the

numbers belonging to the hours be inscribed at these di-

visions, the dial will be constructed.

But as the equator, in general, is not of sufficient thick-

ness, the hours must be marked on the inside of the zone

which represents the zodiac, and which on that account

should be painted white. But in this case, care must be

taken not to divide each quarter of the zodiac into equal

parts ; for the shadow of the axis, which passes over equal

VOL. III. R
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latitude of the place in which it is to be used. Thus, for

example, if it has been constructed for the latitude of Paris,

which is 49° 50' , and you wish to employ it at London, in

latitude 51 ° 31' ; as the difference of these two places is 1º

41', the plane of the dial must make with the horizon an

angle of 1° 41′, as seen in the figure , pl . 8 fig . 17, where

SN is the meridian, ABCD the plane of the dial, and ABE,

or abe, the angle of the inclination of that plane to the

horizon. Ifthe latitude of the primitive place of the dial

be less than that of the place for which it is used, it must

be inclined in a contrary direction .

2d. When the second method of rendering a horizontal

dial universal is employed, the hour-lines must not be de-

scribed on it, but only the points of division in the equinoc-

tial line, as taught in the 5th problem. In regard to the

style, it must be moveable in the following manner. Let

ABC, pl . 8 fig. 18, represent the triangle in the plane ofthe

meridian, where NBC is the axis or oblique style, and AB

the radius of the equator. The style must be moveable,

though it always remain in the plane of the meridian , so

that the radius AB of the equator, having a joint in the

point a, may form the angle BAC equal to a given angle ;

that is, equal to the complement of the latitude. For this

reason a groove must be formed in the meridian, so as to

admit this triangle to be raised up or lowered, always re-

maining in the plane of the meridian.

When every thing has been thus arranged , to adapt the

dial to any given latitude, such as that of 51° 31 ′, for ex-

ample, take the complement of 51 ° 31 ', which is 38° 29′,

and make the angle BAC = 38 ° 29'. The style then will be

in the proper position , and the dial being exposed to the

sun, with its meridian corresponding to the meridian ofthe

place, the shadow of the style, which ought to be pretty

long, will show the hour at the place where it intersects

the equinoctial.
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PROBLEM XX.

Method ofconstructing some tables necessary in thefollowing

problems.

There are three tables frequently employed in Gno-

monics, and which we shall have occasion to make use of

hereafter. These are,

1st. A table ofthe angles which the hour-lines form with

the meridian on an horizontal dial, according to the dif

ferent latitudes.

2d. A table of the angles which the azimuth circles,

passing through the sun at different hours of the day, form

with the meridian, according to the different latitudes, and

the sun's place in the ecliptic.

3d. A table of the sun's altitude at different hours, on a

given day, and in a place of a given latitude.

From the latter is deduced the sun's zenith distance, at

different hours of the day in a given place, and on a given

day for the sun's zenith distance is always the complement

of his altitude.

The first of these tables may be easily calculated by

means of the following proportion :

As radius,

Is to the sine of the latitude of the given place,

So is the tangent of the angle which measures the sun's

distance from the meridian, at a given hour,

To the tangent of the angle which the hour-line forms

with the meridian.

By means of this analogy, we have calculated the fol-

lowing table, which we conceive will be sufficient ; as it

comprehends the whole extent of Great Britain ; and par-

ticularly the latitude of London.
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will be the horary points of 1 and x1 hours, 11 and x

hours, &c.

Let us suppose, for example, that a south vertical dial

is to be constructed for the latitude of 51 ° 31′, the com-

plement of which is 38° 29'. A vertical south dial for lat.

51° 31', may be considered as a horizontal dial for the lati-

tude of 38° 29′. But the angles whichthe hour-lines form

with the meridian on a horizontal dial , for that latitude,

are 9° 28' ; 19° 46 ' ; 31 ° 53′ ; 47° 9' ; 66° 42' ; 90° 0' , the

tangents ofwhich, radius being divided into 1000 parts,

are 166, 359, 622, 1078 , 2321 , infinite. If the portion of

the meridian therefore, comprehended between the centre

and the equinoctial, be divided into 1000 parts , and if 166

of these parts be set off on each side of the meridian, we

shall have the points of x1 and 1 hours ; if 559 parts be

then laid off in the same manner, we shall have the points

of x and 11 hours ; and so of the rest. Straight lines drawn

from the centre, to each of these points, will be the hour-

lines.

The last tangent, which corresponds to vi hours, being

infinite, indicates that the hour-line corresponding to it

must be parallel to the equinoctial.

In order to give an idea ofthe construction of the second

table, let the circle MBND, pl. 9 fig. 19, represent the

horizon of the place ; z its zenith, p the pole, Zв the

azimuth circle passing throughthe sun , and PSA thehorary

circle in which the sun is at any proposed time ofthe day ;

it is here evident, that if the hour be given, the angle zps

is known ; that the day of the year being given, the sun's

distance from the equator is known , and consequently the

arc ps, which in our hemisphere, is the 4th part of a great

circle minus the sun's declination, if it be north, or plus

that declination if it be south ; and lastly, that if the eleva-

tion of the pole be given, the arc Pz, which is its comple-

ment, is also known. In the spherical triangle zps , we

have therefore given the arcs zp and Ps, with the included

angle zps ; and hence we may find the angle pzs , which
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subtracted from 180 degrees, will leave the angle мZB or

MCB, the sun's azimuth from the south.

In the same triangle, we can find the side Zs, the com-

plement of the sun's altitude at the same time ; and con-

sequently the altitude itself,

By these means the following tables have been con-

structed, for the latitude of London 51 ° 31′. Those who

are tolerably versed in spherical trigonometry may easily

construct similar tables for any other latitude.

A TABLE ofthe Sun's azimuth from the South, at his en-

trance into each of the twelve signs, and at each hour of

the day,for the latitude ofLondon 51 ° 31 '.

Hours. ந

XI.

X.

IX.

O

6
9

пл

0

I 28 2 26

8 mr xm ~ ↑ W

922 1819 1310 1914 4614 9

742 936 25 31 49 28 53 27 4911 50 50 48

111 68 11 65 2258 4951 5746 342 740 39

VIII. IV 82 2 79 2772 5565 4159 054 24

VII.

VI.

V.

IV.

V 93 54 91 25 85 2878 1071 8

VI105 7102 5497 890

VII116 5114

VIII127 23

A TABLE of the Sun's altitude at his entrance into each of

the twelve signs, and at each hour of the day, for the la-

titude ofLondon 51 ° 31 '.

Hours. g N8mr+ xm ~ ↑

$

0 O 0 0

5138 2926 43 18 1715 2

230 57 25 30 17 32 13 54

432 37 21 42 13 40 10 32

61 57 58 4149

159 4056 34 +8

1153 4450 5643

11145 4143 735 5226

IV 36 4034 1427 2118

v27 22 24 5618 12 9 17

VI18 1015 41 8 53

XII.

XI.

X.

X.

VIII.

VII.

VI.

v. VII 9 26 6 50

IV. VIII 1 311

715 50 8 15 5 17

8 8 18 1 16

1 17
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PROBLEM XXI.

Another method ofconstructing a universal horizontal Sun-

dial.

In one of the two preceding constructions, the equinoc-

tial line was divided in such a manner, as to be calculated

for showing the hours in every latitude, by removing to a

greater or less distance the centre of the dial : but in the

present case, we suppose this centre to be fixed, and that

the inclination of the style, which ought always to be di-

rected to the pole, can be varied in that point. The me-

thod of constructing a sun-dial of this kind is as follows.

Through the point c, assumed as the centre of the dial,

pl. 9 fig. 20, draw the two perpendiculars AB and EF ; the

first of which being made to represent the line of 6 hours,

the other will represent the meridian ; from the point B,

assumed at pleasure, set off, on the meridian, as many

equal parts as you choose ; for example 6, and through

the points of division describe 7 concentric circles, which

will represent the circles of latitude for every 5 degrees,

from 30° to 70°, in order that the dial may answer for the

greater part of Europe. This division at every 5 degrees,

will be sufficient ; because the intermediate points maybe

easily distinguished by the eye. We shall suppose then

that the smallest circle passing throughthe point D, repre-

sents that of the latitude of 60°. Set off on that circle,

counting from each side of the meridian, the angles form-

ed by the hour-lines of 1 and x1 hours, II and x hours, &c,

on a horizontal dial corresponding to the latitude of 60°.

I

Perform the same operation on the next circle, which

corresponds to the latitude of 55° ; and thus in succession

for all the rest. Then join the similar points of division

by a curved line , and the dial will be constructed.

Having placed the dial properly , that is in such a man-

ner, that its meridian may coincide with the meridian of

the place, and that its axis be directed to the north, ele-
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vate the style at an angle equal to the latitude, and then

examine where the shadow of the style falls on the circle

corresponding to that latitude : the point where it falls will

indicate the hour.

REMARK .-That these portable dials may be easily

placed in the proper position, a small compass is generally

adapted to them ; but those who think it sufficient to make

the needle coincide with the meridian of the dial, will be

deceived ; for there is scarcely a place on the earth where

the needle does not decline more or less towards the East

or West. At London for example it declines at present

about 24 degrees and a quarter to the west side.

To place a dial , therefore, of this kind in its proper

situation at London, it must be disposed in such a manner,

that the needle of the small compass shall form with the

meridian an angle of 244 degrees nearly, and be on the

west side of it ; the meridian of the dial will then coincide

with that of London. This example will be sufficient to

show what method must be pursued in other places, where

the declination is greater or less, or in a contrary direc-

tion ; that is , to the East, as it was at London about two

centuries ago.

PROBLEM XXII.

1

The Sun's altitude, the day of the month, and the elevation

of the pole, being given ; to find the hour by a geometrical

construction.

We give this construction merely as a geometrical

curiosity ; for it is certain that the same thing can be per-

formed with much greater accuracy by calculation. How-

ever, as the solution of this problem forms a very ingeni-

ous example of the graphic solution of one of the most

complex cases of spherical trigonometry, we have no doubt

that it will afford gratification to our readers ; or at least

to such of them as are sufficiently versed in geometry to

comprehend it.
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Let us return then to fig. 19 pl . 9, in which rz repre

sents the complement of the latitude or elevation ofthe

pole ; zs the complement of the sun's altitude, which is

known, being given by the supposition ; and Ps the sun's

distance from the pole, which is also given, since the de-

clination of the sun, or his distance from the equator each

day, is known. In the triangle zps therefore, there are

given the three sides, to find the angle zps , the hour angle,

or angle which the horary circle, passing through the sun,

forms with the meridian. This case then is one of those

in spherical trigonometry, where the three sides ofan ob-

lique triangle being given, it is required to find the angles ;

and which may be solved geometrically in the following

manner.

In the circumference of a circle, which must be suffici-

ently large to give quarters of degrees, pl. 9 fig. 19 and

21 , assume an arc equal to pz, and draw the two radii cr

and cz. On the one side of this arc make PS equal to the

arc PS, and on the other ZR equal to the arc zs : from the

points R and s let fall , on the radii pc, cz , two perpendi-

culars ST and RV, which will intersect each other in some

point x: then, if ST be radius, we shall have тx for the

cosine ofthe required angle , which may be constructed in

the following manner :

From the centre T, with the radius Ts, or Ts, which is

equal to it, describe a quadrant, comprehended between TP

and TX continued ; if xy be then drawn parallel to TP, the

arc ys will be the one required, or the measure ofthe hour

angle spz ; therefore YTX will be equal to that angle.

By a similar construction we might find the angle z, the

complement of which is the sun's azimuth ; but this is suf-

ficient in regard to an operation which is rather curious

than useful.

This construction is much simpler, and far moreelegant,

than that given by Ozanam, for the solution of the same

problem.
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PROBLEM XXIII.

Toconstruct a horizontal dial, to show the hours by means

ofa vertical immoveable style in the centre.

In the construction of this dial , the table of the sun's

azimuths, given in prob. 20, must be employed.

Along the bottom ofthe style, pl. 10 fig. 22, draw the

meridian line AB, of any length at pleasure ; and from the

centre c describe, through the extremity B, the arc of a

circle, which must be assumed as the tropic of cancer .

Having then made CD equal to about a third of CB, divide

the interval DB into 6 equal parts ; and from the centre

describe, through the points of division , circles concentric

to the first : the smallest will represent the tropic of ca-

pricorn ; the rest the parallels of the intermediate signs.

In the exterior circle, beginning at the point в, assume
圈

the angles or arcs B1 , B XI, equal to those given in the

table for the hours of 1 and XI, when the sun is in ≈,I and

mark these points with 1 and x1 hours ; do the same in

regard to II and x hours, and so ofthe rest.

Take, from the same table, the angles or arcs cor-

responding to the hours x1 and 1, x and 11 , 1x and 111 , &c,

when the sun enters gemini and leo, . Do the same

thing on the third circle, which corresponds to the sun's

entrance into taurus and virgo, 8 m, and so of the rest.

By these means, you will have the hour points on each

circle ; and if the points of the similar hours be then joined

by a curved line, the dial will be completed. The hour

may be known by observing the shadow on the circle

which denotes the sun's place in the zodiac on the given

day. For the greater exactness, the small intervals be-

tween these circles may be divided into 3 equal parts ;

through which if dotted circles be described, they will

serve for those days whenthe sun occupies mean positions

in the zodiac.

REMARK. By this method, the edge of the shadow of
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one of the upright bars of a window, might be employed

to show the hours in a room ; for ifthe bar be exactly per-

pendicular, it will represent an indefinite vertical style ;

and circles corresponding to the sun's place in the zodiac,

and the hour-lines, may by the above process be traced

out on the floor. The hour will be known by observing,

on the circle corresponding to the sun's place, the point

where it is intersected by the shadow.

PROBLEM XXIV.

To construct a moveable horizontal dial, to show the hours

merely bythe Sun's altitude.

This dial seems to be very ingenious, and convenient,

as it requires neither a meridian line nor a compass , and as

nothing farther is necessary to be known, but the sign and

degree ofthe sun's place in the zodiac : this however we

shall render much easier by substituting, for the sun's

place, the day of the month. It is attended with one in-

convenience, which is, that the hours near the rising and

setting ofthe sun cannot be marked upon it ; but we shall

show how this defect may be remedied.

Having assumed the point a, pl . 10 fig. 23 , as the place

ofthe style AB, which we shall here suppose to be an inch

in height, draw the indefinite line DAC , and AG perpendi-

cular to it : draw also the lines AI , AH, AF and AE, making

the equal angles CAI , IAH, HAG, &c. Having then as-

sumed the line AC, as that corresponding to the 21st of

December, the day of the winter solstice, take, from the

third table, the sun's zenith distance for each hour of the

day, when he enters capricorn, and make the angles AB

12 , AB 11 , AB 10, &c, equal to those found in the table.

On the line AD, destined to represent the 21st of June,

the day of the summer solstice, assume ▲ 12, ▲ 1 , a 2, a 3,

A 4, A 5, &c, ofsuch a length, that the angles AB 12, ab 1 ,

AB 2, AB 3, &c. may be equal to the sun's zenith distances

at the hours of 12 at noon, 1 or 11 , 2 or 10, and so on.
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In like manner, having raised , on the line A1, a perpen-

dicular AK, equal to the height of the style AB, make the

angles AKL, AKM, AKN, &c, equal to the sun's zenith

distances at the hours of 12 , 1 , 2 , &c, when the sun enters

aquarius or sagittarius ; and on that line mark the points

L, M, N, &c : these points will be those of noon, the hours

of 1 or 11 , 2 or 10, and so on.

On each of the lines AH, AG, AF, &c, do the same thing :

which will give on these lines the hours of the day ; and

if the similar horary points, such as those of noon, those of

1 or 11 , 2 or 10, &c, be joined by a curved line, the dial

will be constructed.

The method of knowing the hour on this kind of dial ,

is as follows. Let us suppose, for example, that the given

day is the 21st of October ; expose the dial to the sun on

a horizontal plane, so that the shadow of the style may

fall on the line AH, or that marked 21 October, and ob-

serve where the shadow terminates ; for that point will

indicate the hour.

If the proposed day be different from those correspond-

ing to the lines AC , AI , AH, &c, the intermediate line, on

which the shadow of the style ought to fall, may be easily

found, by counting the number of days elapsed between

the given time, and the 21st of the nearest month. Let

the proposed time, for example, be the 10th of April. Be-

tween the 10th of April and the 21st of March, there are

19 days ; consequently the line of the shadow ought to

form with the line AG an angle of 19 degrees. From A

then as a centre describe a semicircle , and having divided

it into degrees, draw dotted lines through every 5 of these

divisions. The shadow may then be made to fall on the

proper line without much difficulty.

REMARKS.- I. It may be readily seen, that in regard

to the hours near sun-rise or sun-set, the length of the

shadow will make them fall without the dial. But this

inconvenience may be remedied in the following manner :
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Adapt to the dial a circular rim, concentric with the style,

and of the same height : it will be easy to find on this

rim, the points where the shadow terminates at the dif-

ferent hours till sun-set.

II. This dial may be made concave , so as to form a por-

tion of a spherical surface, pretty deep, that the summit

ofthe style may be on a level with the edge. The horary

points may be found bythe method above described ;

those near sun-set or sun-rise excepted, for it is evident

that the shadow of the style will never go beyond the

extent of this spherical concave surface.

PROBLEM XXV.

To construct a horizontal dial, to show the hours by means of

the sun, without the shadow ofany style.

Theinvention of this dial is very ingenious ; but Oza-

nam did not attend to one very essential circumstance ;

namely, the declination of the magnetic needle, which in

his time was considerable, and which being at present 244

degrees at London, would occasion a very great error,

without employing the expedient which we shall here

apply to the construction of it. But we shall first sup-

pose the needle to have no declination.

Describe, on a moveable horizontal plane, pl . 11 , fig. 24,

the right-angled parallelogram ABCD ; and having divided

each ofthe two opposite sides, AB and CD, into two equal

parts, in the points E and F, join these points by the

straight line EF, which will be the meridian. On this line

assume at pleasure the point &, as the place of the style,

and the points F and H as the solstitial points of cancer

and capricorn ; through which, from the point & as a cen-

tre, describe two circles, representing the tropics, or the

commencement of these signs.

Then divide the space HF into 6 equal parts; and

through the extremities of these parts describe 5 other

circles representing, in order, the circles of declination at
1

1
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the commencement of the other signs, taken two and two ;

for the sun's declination corresponding to the first degree

of leo, is the same as that corresponding to the first degree

ofgemini ; that corresponding to the first degree of tau-

rus, the same as that corresponding to the first degree of

virgo ; and so of the rest.

Then, on the circle representing the tropic of cancer,

set off, on each side ofthe line GH, arcs equal to the sun's

azimuth, as given in the above table, at the hours of 11

and 1 , 10 and 2, 9 and 3, &c ; do the same thing in regard

to the circle representing the commencement of gemini

and leo ; and so of the rest : if the similar hour points be

then joined by a line , which must necessarily be a curve,

if the lines are equally spaced, the dial will be con-

structed.

To supply the place of a style, fix a small pin in G,

and suspend from it a magnetic needle, so as to play

freely, and be able to assume its natural direction.

To know the hour, expose the dial to the sun in such a

manner, that the side AB shall be opposite to the sun, and

that the sides CB and DA shall project no shadow : the

point where the magnetic needle intersects the arc, cor-

responding to the sign in which the sun's place then is,

will indicate the hour. According to the figure, if we

suppose the sun in the beginning of cancer, it would in-

dicate about three quarters after 9 in the morning.

-
REMARK. We have already observed, that this would

be true only in case the magnetic needle had no declina-

tion ; but as its declination at present at London is 244

degrees west, the following correction will be necessary.

As the needle will always be 244 too far towards the

west, instead of making the angles C , B, A, and D, right

angles, cut the board in such a manner, that the angles B

and D shall be 114° 15' , and the angles c and A 65° 45'.

This will rectify the error in declination ; and nothing

then will be necessary, but to expose the dial, as above

VOL. III. S
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mentioned, in such a manner that the sides CB and AD

shall project no shadow.

PROBLEM XXVI.

To constructa dial to show the hours byreflection.

A dial to show the hours by reflection may be described

in the following manner, on a dark wall or ceiling. De-

scribe a dial on a horizontal plane, that can be illuminated

by the rays ofthe sun, such, for example, as the bottom

of a window ; but in such a manner, that the centre of

the dial may be towards the north, and the equinoctial

towards the south ; which will give to the hour-lines a po-

sition contrary to that which they ought to have in com-

mon horizontal dials. When the dial has been thus con-

structed, and furnished with a small upright style, apply

a piece of thread to any point at pleasure, of one ofthe

hour-lines, and extend it over the end of the style, till it

reach any point of the wall or ceiling : this point will be

one of those of the hour-line to which the end of the

thread was applied. If four or five points be determined ,

in the same manner, for each hour-line, by then drawing

lines through these points, the required dial will be con-

structed.

,
To know the hours by reflection ; adapt a small mirror,

an inch or two in diameter, to the summit of the style,

and let it be fixed in a position exactly horizontal : the

light reflected from it will indicate the hour.

Instead of a mirror, a small goblet, an inch or two in

diameter, may be applied to the summit of the style, and

be filled with water till its surface be exactly on a level

with the extremity of the style : the light reflected from

it will indicate the hours in the same manner, and will be

more easily observed in cloudy weather, when the sun

scarcely appears ; because the surface of the water will

generally have a small movement, which by making the

light tremulous, will render it perceptible, notwithstand-

ing its weakness.
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Another Method.

Place, in any part of the bottom of a window, a small

goblet; and fill it with water to a given height. Place

also, on the bottom of the window, a sun-dial , and when

the shadow ofthe style falls on the hour of noon, mark on

the ceiling or wall, which receives the reflected light of

the sun, the central point of the image of that luminary :

do the same thing in regard to all the other hours, and

mark these points with the hours to which they cor

respond.

Two or three months after, when the sun's declination

has considerably changed, if the same operation be per-

formed, you will have two points of each hour-line, and

if the surface, on which they are traced out, be a plane,

to obtain the required hour-line, nothing will be neces-

sary but to join them by a straight line.

But if the surface, which receives the reflected light, be

curved or irregular, to obtain the hour-line a greater

number of points will be necessary. To trace it out ex-

actly, the operation of finding a point for each hour-line

ought to be repeated for five or six months, from the one

solstice to the other : if these points be then joined by a

curve, they will give the hour-lines required.

Third Method.

Having described the hour-lines, in the usual manner,

on a horizontal plane ABCD, pl. 11 fig. 25 , turn the dial

in a direction contrary to that which it ought to have, and

from a point of the meridian raise a perpendicular style

of such a height, as it ought to have to indicatethe hours :

to this style apply a small mirror, so as to be exactly ver-

tical, having its plane perpendicular to that of the meri-

dian, and its centre corresponding to the summit of the

style, as seen in the figure ; the reflected light of the sun

will then indicate the hours on the dial.

$ 2
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minating in a round button, 7 or 8 lines in diameter, so

that the centre of this button shall form with that of the

dial a line parallel to the celestial axis.

Then set off the length of this style, taken from the

centre ofthe button, from P to A ; and through the point

p draw the horizontal line QR.

Let it now be required to trace out, for example, the

line of 4 o'clock in the afternoon. Consider AP as radius,

and from A, as a centre, with the distance AP, describe a

quadrant. Then find the sun's azimuth at 4 o'clock in

the afternoon when he enters capricorn, for the latitude

of48° 50′, and the same azimuth at the same hour when

he enters aquarius or sagittarius, libra or aries , taurus or

virgo : these four azimuths will serve to give four points

for the line of 4 hours, which will be sufficient. The

sun's azimuth at 4 in the afternoon when he enters capri-

corn, for lat. 48° 50′ , will be found to be 52° 35' ; for this

reason draw AK, in such a manner, that the angle KAT

shall be equal to 52° 35′ ; that is, lay off an angle equal to

that quantity by means of a protractor, or make the arc

rk equal to that number of degrees and minutes . Draw,

in like manner, for the other three signs, the lines AL,

AM, and AN , making the angles PAL, PAM, PAN, respect-

ively equal to 54° 28′, 60° 30′, 74° 21 ′, and then draw the

indefinite verticals KF, LG, MH, and NI.

Next find the sun's altitude at 4 in the afternoon when

he enters capricorn : this altitude, for lat. 48° 50′ , will be

found to be 40' , the tangent corresponding to which is

1153, radius being supposed equal to 100000 parts ofthe

same kind. But as 1153 is the 86th part of 100000,

divide AK into 86 parts, and set off one from K tof: the

pointƒwill be one of the required points ofthe hour-line

of 4 o'clock.

In like manner, to determine the point g, find the sun's

altitude at the same hour when he enters aquarius, which

is 3° 10′, and as the tangent corresponding to this altitude
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fis 5532, which is the 18th part of the radius, if AL be di-

vided into 18 parts, and one of them be set off from Lto g,

you will have the second point required.

Having found the other two by the like process, draw

through these four points a line somewhat curved, and

you will have the hour-line of 4 o'clock.

If a similar operation be performed for all the other

hour-lines, the dial will be constructed.

*
If a curved line be made to pass through the points of

each hour-line, corresponding to the commencement of

each sign, you will have what are called the arcs of the

signs, traced out much more exactly than by the com-

mon method ; as the shadow of the summit of the style,

when the sun is near the horizon, must deviate from the

track marked out for it.

REMARK. It will be best to begin by tracing out the

hour-lines according to the usual method, but only with a

pencil ; because the difference between the hour-lines, as

described by both methods, can by these means be better

observed.

PROBLEM XXVIII.

To describe a dial on the convex surface ofa fixed cylinder,

perpendicular to the horizon.

This dial, which is exceedingly ingenious, is attended

with this peculiarity, that the hour is shown, not by the

shadow ofa style, but by that of a horizontal circle, which

intersects the sun's parallel. It may be employed as an

ornament in a court or garden, or may serve as a pedestal

to a statue, or to another dial, such as the spherical one

described in prob. 16. This dial is represented fig . 27,

pl. 13. Matters may be so arranged, that the circular

cornice, which surrounds this pedestal, shall perform the

part of a circular style : this will produce a much better

effect, than could be produced by a detached horizontal

circle or hoop. A dial ofthis kind, constructed withgreat
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care, was seen formerly in the garden of the Benedictines,

at the abbey of Saint-Germain-des-Prés. It was the work

ofFather Quesnet, a monk of that order, who made many

improvements in what Kercher and Benedict had before

taught, in regard to dials of this kind.

The tables ofthe azimuths and apparent altitudes ofthe

sun, already given , are employed in the construction of

this dial. We here make use of the term apparent alti-

tudes, because it is evident that what we have said, re-

specting refraction, is applicable in the present case ; and

besides, the apparent altitudes may be employed with the

same ease as the real altitudes, as has hitherto been done.

Let AB, pl. 14 and 15 fig. 27, be the diameter of the

cylinder, on which the dial is to be described. Having

drawn, from one ofits extremities A, the tangent AE, equal

to the semi-diameter AC , draw the secant CE, which will

intersect the cylinder in D : the line DE will be the length

ofthe style. The style however might be longer or shorter :

but this length appears to be the most convenient. Then

from the centre c describe, through the point E, a circle

concentric to the first, and which will represent the ex-

tremities of all the styles supposed to be implanted quite

round the cylinder. An iron circle of the same size,

placed around the cylinder, in such a manner as to be

kept at an equal distance from it by means of spikes, will

serve to indicate the hours ; but it will be better to crown

the cylinder with a circular piece of marble, having such

a projection as may render it fit for the same purpose.

Then on KF, fig. 28, made equal to the line DE describe

the quadrant FN, and having divided it into degrees, count

from F towards N the sun's greatest altitude above the

horizon of the place, which being at Paris 64° 39', will

give the arc FM, equal to that number of degrees and

minutes. Through the point м, draw the secant KI , which

meeting the cylinder in the point 1, will give FI the tangent

of 64° 39', as the height ofthe dial ; which however ought

$
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to be made somewhat greater, in order to leave, between

the lowest shadowand the bottom of the cylinder, sufficient

room for inscribing the hours and the signs. The cylinder

also ought to be of such a size, that the hours may be

distinctly marked on its surface.

As the operation on the body of the cylinder, though

performed in the same manner, is attended with incon-

venience, it may be supposed expanded into a rectangle

FHLI, the length of which is equal to its circumference

ADBF, and the height LH tothe above tangent at least.

Having divided FH into two equal parts at G ; through

that point draw G XII perpendicular to it ; then divide

each of the two spaces HG, GF into 180 parts or degrees,

reckoning on both sides from the point G, which is the

south point: the points of 90 degrees, which divide each

ofthe intervals HG, GF into two equal parts, are the points

of 6 in the morning and 6 in the evening, which on the

cylinder will be diametrically opposite ; as the south line

G XII is diametrically opposite to the line F1 or HL, which

we must suppose to be joined, and on the cylinder to form

only one line.

Then through each degree of the arc FM draw secants,

which will mark out in succession, on FI, the tangents of

1, 2, 3, &c, degrees, to 64° 39', beyond which it is need-

less to go, as a greater number cannot be employed.

To inscribe the hours on the dial , and to mark, for ex-

ample, the point of x in the morning and II in the after-

noon, for the time when the sun enters the sign , look

in the table ofthe sun's azimuths, and opposite to x and II,

you will find 53° 49', the sun's azimuth at x or II, when

he enters into . In the table of altitudes, look also for

the sun's altitude at the same period and hour, which will

be found to be 55° 22'. Then count, on the horizontal

line FH of the dial, from the south point & towards F, 53°

49 forthe sun's azimuth, and on the vertical line FI, count

from Fthe altitude 55° 22′; then through the points where
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these numbers terminate, draw two lines parallel to the

respective sides of the rectangle, and the point where they

intersect each other will give the hour-point required .

It is here to be observed, that the evening hours must

be on the right of the south line , and the morning ones

on the left.

That the reader may be better enabled to comprehend

this operation, we shall suppose, for example, that it is

required to find the point corresponding to vII in the

morning, or v in the afternoon, when the sun enters the

signs orm . By inspecting the before-mentioned tables,

it will be found that the sun's azimuth, at vii in the morn-

ing and v in the afternoon, is 86° 23', and that his altitude

at the same time is 18° 29' . Count therefore on FG, from

e, 86° 23' for the sun's azimuth, and on the line F1, from

F, 18° 29' for his altitude : the point where the two lines

drawn parallel to the sides of the rectangle, through these

divisions, intersect each other, will be that of VII in the

morning or v in the evening, when the sun enters 8 or m .

If the points thus found, for each hour, at the sun's

entrance into each of the signs , be then joined, which will

require only seven operations, the lines that join them will

be the hour-lines ; and if all the hours of the day, when

the sun enters each sign, be joined also by curved lines,

these seven lines will intersect the hour- lines, and be the

parallels of the commencement of the signs.

To know the hour on this dial, it will be first necessary

to find in which parallel the sun is, and to observe where

that parallel is intersected by the shadow : the hour-line

passing through the point of intersection will indicate the

hour. Let us suppose, for example, that the shadow of

the style, on the day when the sun enters virgo, intersects

the parallel of that sign POR, in the point o , which is the

mean distance between the points where that parallel is

cut bythe lines of the hours VIII and Ix: we may therefore

conclude that it is half an hour past 8 o'clock.
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The hour may be known also by observing, as taught

by Ozanam, where the line of the shadow of the cylinder

intersects the parallel of the sun ; but as this line is never

well terminated, as already mentioned in regard to dials

constructed in the form of a globe, this is not to be recom-

mended.

REMARKS.-I. The use of this dial will be more com-

modious, if, instead of the signs of the zodiac, the mouths

ofthe year be employed ; for every one knows the day of

the month ; but few except astronomers know the sign cor-

responding to each month, or to what third or quarter of a

sign any day belongs. For this purpose it is necessary to

consult an almanac.

嘎

This change on dials of this kind may be easily made ;

for we may assume as true, without any sensible error, that

the tenth degree of each sign corresponds to the first day

of each month, as the equinox falls, for the most part, on

the 21st ofMarch. Instead then of taking the sun's azimuth

and altitude at the commencement of the signs, nothing

will be necessary but to take it at every tenth degree of

each sign. Then by performing the same operation as

that above taught, and joining the points belonging to the

first of each month, you will have the parallels ofthe com-

mencement of each month, and the hour may be known

with great ease.

II. Small portable cylindrical dials, which show the

hour by means of a style affixed to the moveable top of

the cylinder, are also used. The style is placed on the

current sign ; and being turned directly to the sun, the

length of the shadow on the azimuth, parallel to the axis

of the cylinder, shows the hour. As this dial may be

easily constructed, we shall say nothing farther on the

subject. A description of it may be seen in most books

on Gnomonics.
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PROBLEM XXIX.

To describe a portable dial on a quadrant.

As the construction of this dial depends also on the sun's

altitude at each hour of the day, in a determinate latitude,

according to his place in the zodiac, the tables before

mentioned must be employed here also.

Let ABC then, pl. 15 fig. 29 , be a quadrant, the centre

of which is A. From the centre a describe, at pleasure,

seven quadrants equally distant from each other, to re-

present the commencement ofthe signs of the zodiac ; the

first and last being assumed as the tropics, and that in the

middle as the equator. Mark on each of these parallels of

the signs, the points of the hours, according to the altitude

which the sun ought to have at these hours , which may be

found in the table above mentioned. To determine for

example, the point of II in the afternoon, or x in the

morning, for the latitude of London , when the sun enters

leo ; as the table shows that the sun's altitude is at that

time 50° 56', make in the proposed quadrant the angle

BAO equal to 50° 56′, and the place where the parallel of

the commencement of leo is intersected by the line ao,

will be the required point of 11 in the afternoon and x in

the morning.

Having made a similar construction for all the other

hours, on the day of the sun's entrance into each sign,

nothing will be necessary but to join, by curved lines,

all the points belonging to the same hour, and the dial

will be completed. Then fix a small perpendicular style

in the centre A, or place on the radius ac, or any other

line parallel to it, two sights , the holes of which exactly

correspond ; and from the centre A suspend a small plum-

met by means of a silk thread.

When you use this instrument, place the plane of it in

such a manner as to be in the shade ; and give such a

direction to the radius that the shadow of the small style
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shall fall on the line Ac, or that the sun's rays shall pass

through the two holes of the sights : the thread from which

the plummet is suspended will then show the hour, by the

point where it intersects the sun's parallel.

To find the hour with more convenience, a small bead

is put on the thread, but in such a manner as not to move

too freely. If this bead be shifted to the degree and sign

of the sun's place, marked on the line AC, and if the in-

strument be then directed towards the sun, as above men-

tioned , the bead will indicate the hour on the hour-line

which it touches.

REMARK.-To render this dial more commodious, and

for reasons already mentioned in describing the cylindric

dial, it will be better, instead of the signs, to mark the days

ofthe month on which the sun enters them . For example,

instead of marking the small circle with the sign ➜, mark

December21 ; close to the second place on one side January

21 , instead of , the sign of aquarius ; and on the other

November 21 , instead of , the sign of sagittarius, &c ;

for ifwe suppose the equinoxes invariably fixed at the 21st

of March and the 21st of September, the days on which

the sun enters the different signs of the Zodiac will be

nearlythe 21st of each month: to use the dial, nothing will

then be necessary but to know the day of the month.

PROBLEM XXX.

To describe a portable dial on a card.

This dial is generally called the Capuchin, because it

resembles the head of a Capuchin friar with the cowl in-

verted. It may be described on a small piece of paste-

board, or even a card , in the following manner.

B

Having described a circle , pl . 15 fig. 30 , at pleasure,

the centre of which is A, and the diameter в 12, divide the

circumference into 24 equal parts, or at every 15 degrees,

beginning at the diameter B 12. If each two points of

division, equally distant from the diameter в 12, be then
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PROBLEM XXIX.

To describe a portable dial on a quadrant.

As the construction of this dial depends also on the sun's

altitude at each hour ofthe day, in a determinate latitude,

according to his place in the zodiac, the tables before

mentioned must be employed here also.

Let ABC then, pl. 15 fig. 29 , be a quadrant, the centre

of which is A. From the centre A describe, at pleasure,

seven quadrants equally distant from each other, to re-

present the commencement of the signs of the zodiac ; the

first and last being assumed as the tropics, and that in the

middle as the equator. Mark on each of these parallels of

the signs, the points of the hours, according to the altitude

which the sun ought to have at these hours, which may be

found in the table above mentioned. To determine for

example, the point of II in the afternoon , or x in the

morning, for the latitude of London , when the sun enters

leo ; as the table shows that the sun's altitude is at that

time 50° 56′ , make in the proposed quadrant the angle

BAO equal to 50° 56′, and the place where the parallel of

the commencement of leo is intersected by the line ao,

will be the required point of 11 in the afternoon and x in

the morning.

Having made a similar construction for all the other

hours, on the day of the sun's entrance into each sign,

nothing will be necessary but to join, by curved lines,

all the points belonging to the same hour, and the dial

will be completed. Then fix a small perpendicular style

in the centre A, or place on the radius Ac, or any other

line parallel to it, two sights, the holes of which exactly

correspond; and fromthe centre A suspend a small plum-

means of a silk thread.
T

use this instrument, place the plane of it in

er as to be in the shade ; and give such a

the radio at the shadow of the small style
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shal' fal: on the line ac, or that the n

through the two holes of the suits the tr

the plummet is suspended will

point where it intersects the sun's parade.

To find the hour with more convenience,

is put on the thread, but in such a manner as ne

too freely. If this bead be shifted to the degree

of the sun's place, marked on the line ac, and f

strument bethen directed towards the sun, as above nem

tioned, the bead will indicate the hour on the war- e

which it touches.

Gre

REMARE-To render this dial more commodzes, and

for reasons already mentioned in describing the

dial, it willbebetter, instead of the signs, to mark the days

ofthemonth on whichthe sun entersthem. For exame

instead of markingthe small circle withthe sign ,mark

December 21; close to the secondplaceonone side January

21 , instead of , the sign of aquarius ; and on the other

November 21 , instead of , the sign of
sagittarius, &c;

for if we supposetheequinoxes invariably fixed atthe gist

of March andthe 21st of September,the days on which

the sun enters the different signs of the Zodiac will be

nearlythe 21st of eachmonth: touse thedial, nothingwill

then be necessary but toknowtheday ofthemonth.

PROBLEM XXX.

To describe aportable dial on a card.

This dial is generally called the Capuchar, because it

resembles the head of a
Capuchin friar with the tw

verted. It maybe
described on a

salt & paste

board,
or even a card, inthe followi

Having described a circle, p . 2553

the centre ofwhichis A,andthe t

circumference into 24

beginning at the damer & 1

maly disall. Hut for w

te the hour on
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Iniversal recti-
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joined by parallel lines, these parallels will be the hour-

lines; and that passing through the centre a, will be the

line of six o'clock.

Then at the point 12, make the angle в 12 equal to

the elevation of the pole, and having drawn through the

point , where the line 12 intersects the line of 6

o'clock, the indefinite line , perpendicular to the line

12 , draw from the extremities of the line ,the

lines 12 and 12 , which will each make with the line

12 Y , an angle of 23 degrees, which is the sun's greatest

declination.

The points ofthe other signs may be found on this per-

pendicular , by describing from the point , as a

centre, through the points , , the circumference of a

circle, and dividing it into 12 equal parts, or at every 30

degrees, to mark the commencement of the 12 signs. Join

every two opposite points of division , equally distant from

the points ,, by lines parallel to each other, and per-

pendicular to the diameter : these lines will deter-

mine, on this diameter, the commencement of the signs ;

from which, as centres, if circular arcs be described through

the point 12, they will represent the parallels of the signs ;

and therefore must be marked with the appropriate cha-

racters as seen in the figure.

A slit must be made along the line , to admit a

thread furnished with a small weight, sufficient to stretch

it ;
and in which it must glide, but not too freely ; so that

its point of suspension can be shifted to any point of the

line at pleasure.

•
These arcs of the signs will serve to indicate the hours

when the sun shines, in the following manner : Having

drawn at pleasure the line c , parallel to the diameter B

12, fix at its extremity c a small style in a perpendicular

direction, and turn the plane of the dial to the sun , so that

the shadowofthe style shall cover the line c : the thread

and plummet being then freely suspended from the sun's
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place marked on the line , will indicate the hour on

the arc of the same sign at the bottom.

The thread may be furnished with a small bead, to be

used as in the preceding problem.

REMARK. This dial originated from a universal recti-

lineal dial constructed by Father de Saint-Rigaud, a jesuit,

and professor of mathematics in the college of Lyons,

under the name of Analemma Novum. But though Ozanam

has given a conspicuous place to it in his Recreations, as

well as to another universal rectilineal analemma, it ap-

peared to us that his description of them was too complex

to be admitted into a work of this kind.

PROBLEM XXXI.

Method ofconstructing a Ring-Dial.

Portable ring-dials are sold by the common instrument

makers ; but they are very defective. The hours are

marked in the inside on one line, and a small moveable

band, with a hole in it, is shifted till the hole correspond

with the degree and sign of the sun's place marked on the

outside. Such dials however, as already said, are defective;

for as the hole is made common to all the signs of the

zodiac, marked on the circumference of the ring, it indi-

cates justly none of the hours but noon : all the rest will

be false. Instead of this arrangement therefore, it will be

necessary to describe, on the concave surface of the ring,

seven distinct circles, to represent as many parallels of the

sun's entrance into the signs ; and on each of these must

be marked the sun's altitude on his entrance into the sign

belonging to the parallel to which the circle corresponds.

When these points are marked, they must be joined by

curved lines, which will be the real hour-lines, as has been

remarked by Deschales.

Having provided a ring, pl. 16 fig. 31 , or rather de-

scribed a circle of the size of the ring which is to be

divided ; and having fixed on в as the point of suspension,
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make BA and Bo, on each side of B, equal to 51 ° 31', for

the latitude ofthe place, suppose London, that is, equal to

the distance of the zenith from the equator: then through

the points A and o draw the chord Ao, and AD perpen

dicular to it: if the line A 12 be then drawn through A

and the centre of the circle, the point 12 will be the hour

of noon on the day of the equinox .

To find the other hour-points for the same day, at the

commencement of aries and libra ; from the centre A de-

scribe the quadrant OD ; and from the point o, set off to-

ward p the sun's altitude at the different hours of the day,

as at 1 and 11 , 2 and 10, &c ; the lines drawn from the

centre a through these points of division, if continued to

the circumference of the circle в 12 A, will give the hour-

points for the day of the equinox.

To obtain the hour-divisions on the circles correspond-

ing to the other signs, first set off, on both sides of the

point A, pl. 16 fig. 32 , the sun's declination when he en-

ters each of the signs, viz, the arcs AE and A1 of 23 de-

grees, for the commencement of taurus or virgo ; of scor-

pio or pisces ; AF of 40° 26' for the commencement of ge-

mini and leo ; AK equal to it for the commencement of

sagittarius and aquarius ; and AG and AL of 47° for the

commencement of cancer and capricorn .

Now to find the hour-points on the circle, that cor-

responding to the commencement of aquarius, for ex-

ample, through the point K, which corresponds to the

sun's entrance into that sign, draw KP parallel to ao, and

also the line K 12 : from the same point к describe, be-

tween K 12 and the horizontal line KP, the arc OR ; on

which set off, from R towards q, the sun's altitude at the

different hours of the day, when he enters sagittarius and

aquarius, as seen in the figure ; and if lines be then drawn

from Ktothese points of division, you will have the hour-

points ofthe two circles corresponding to the commence-

ment of sagittarius and aquarius. By proceeding in the
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same manner for the sun's entrance into the other sigus,

you will have the hour-points of the circles which cor-

respond to them.

Then trace out, on the concave surface of the circle,

seven parallel circles, pl . 16, fig. 33 , that in the middle

for the equinoxes ; the two next on each side for the com

mencement of the signs taurus and virgo, scorpio and

pisces ; the following two on the right and left for gemini

and leo, sagittarius and aquarius ; and the last two for

cancer and capricorn : if the similar hour-points be then

joined by a curved line, the ring-dial will be completed.

The next thing to be done, is to adjust properly the

hole which admits the solar rays ; for it ought to be

moveable, so that on the day of the equinox it may be at

the point a ; on the day of the summer solstice at G ; on

the day of the winter solstice at L ; and on the other days

of the year in the intermediate positions. For this pur-

pose the exterior part of the ring CBD must have in the

middle of it a groove, to receive a small moveable ring or

hoop, with a hole in it. The divisions L, K, I , A, E, F, G,

must be marked on the outside of this part of the ring by

parallel lines, inscribing on one side the ascending signs,

and on the other the descending : when this construction

has been made, it will be easy to place the hole of the

moveable part A on the proper division , or at some inter-

mediate point ; for if the ring be pretty large, each sign

may be divided into two or three parts.

To know the hour ; move the hole A to the proper di-

vision, according to the sign and degree of the sun's place ;

then turn the instrument in such a manner, that the sun's

rays, passing through the hole, may fall on the circle cor-

responding to the sign in which the sun is : the division

on which it falls will show the hour.

REMARKS.-I. To render the use of this instrument

easier, instead of the divisions of the signs, the days cor-

responding to the commencement of the signs might be

VOL. III.

C

T
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marked out on it : for example, June 21 instead of ;

April 20, August 20, instead of 8 and m , and so on.

II. The hole A might be fixed, and the most proper po-

sition for it would be that which we originally assigned to

the day ofthe equinox ; but in this case, the hour of noon,

instead of being found on a horizontal line , for all the

circles of the signs, according to the preceding method,

would be a curved line ; and all the other hour-lines would

be curved lines also. As this would be attended with a

considerable degree of embarrassment and difficulty, it

will be better, in our opinion , that the hole a should be

moveable.

PROBLEM XXXII.

How the shadow of a style, on a Sun-dial, might go back-

wards, without a miracle.

This phenomenon, which on the first view may appear

physically impossible, is however very natural , as we shall

here show. It was first remarked by Nonius or Nugnez,

a Portuguese mathematician, who lived about the end of

the sixteenth century. It is founded on the following

theorem .

In all countries, the zenith of which is situated between

the equator and the tropic, as long as the sun passes be-

yond the zenith, towards the apparent or elevated pole,

he arrives twice before noon at the same azimuth, and the

same thing takes place in the afternoon.

Let z, pl. 17 fig. 34 , be the zenith of any place situated

between E the equator, and T the point through which

the sun passes on the day of the summer solstice ; let the

circle HAQвкн represent the horizon ; REQ one half of

the equator ; TF the eastern part of the tropic above the

horizon, and GT the western part. It is here evident,

that from the zenith z there may be drawn an azimuth

circle, such as zi, which shall touch the tropic in a point

o, for example ; and which shall fall on the horizon in a
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point 1, situated between the points o and F, which are

those where the horizon is intersected by the equator and

the tropic ; and, for the same reason, there may be drawn

another azimuth, as zн, which shall touch in o the other

part of the tropic.

Let us now suppose that the sun is in the tropic, and

consequently rising in the point F ; and let a vertical style,

ofan indefinite length, be erected in c. Draw also the

lines ICK ,
and FCN ; it is evident that at the moment of

sun-rise the shadow of the style will be projected in CN ;

and that when the sun has arrived at the point of contact

o, the shadow will be projected in ck. While the sun is

passing over Fo, it will move from CN to CK, but when the

sun has reached the meridian, the shadow will be in the

line св ; it will therefore have gone back from CK to CB :

from sun-rising to noon then it will have gone from CN to

CK and from CK to CB ; consequently it will have moved

in a contrary or retrograde direction ; since it first moved

from the south towards the west, and then from the west

towards the south.

Let us next suppose that the sun rises between the points

F and 1. In this case the parallel he describes before noon

will evidently cut the azimuth zi in two points ; and

therefore, in the course of a day, the shadow will first fall

within the angle KCL ; it will then proceed towards CK,

and even pass beyond it, going out of the angle ; but it

will again enter it, and, advancing towards the meridian,

will proceed thence towards the east, even beyond the line

CL, from which it will return to disappear with the setting

of the sun within the angle LCB.

It is found by calculation, that in the latitude of 12 de-

grees, when the sun is in the tropic on the same side , the

two lines CN and CK form an angle of 9° 48′ ; to pass over

which the shadow requires 2 hours 7 minutes.

T2
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PROBLEM XXXIII.

To construct a dial, for any latitude, on which the shadow

shall retrograde or move backwards.

For this purpose incline a plane, turned directly south,

in such a manner, that its zenith shall fall between the

tropic and the equator, and nearly about the middle of

the distance between these two circles : in the latitude of

London, for example, which is 51° 31 ', the plane must

make an angle ofabout 38 ° . In the middle of the plane,

fix an upright style of such a length, that its shadow shall

go beyond the plane ; and if several angular lines be then

drawn from the bottom of the style towards the south,

about the time of the solstice the shadow will retrograde

twice in the course of the day, as above mentioned.

This is evident, since the plane is parallel to the hori

zontal plane having its zenith under the same meridian, at

the distance of 12 degrees from the equator towards the

north the shadows of the two styles must consequently

move in the same manner in both.

PROBLEM XXXIV.

To determine the line traced out, on the plane of a dial, by

the summit ofthe style.

We here suppose that the sun, in the course of a di-

urnal revolution, does not sensibly change his declination ;

for if he did, the curve in question would be of too com-

plex a nature, and very difficult to determine.

Let the sun then be in any parallel whatever. It may

be easily seen that the central solar ray, drawn to the

point of the style, describes a conical surface, unless the

sun be in the equator ; consequently the shadow pro-

jected by that point, which is always directly opposite to

it, passes over, in its revolution, the surface of the oppo-

site cone, which is united to it by its summit. Nothing

then is necessary but to know the position of the plane
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which cuts the two cones ; for its intersection with the co-

nical surface, described by the shadow, will be the curve

required.

Those therefore who have the least knowledge of conic

sections will be able to solve the problem. For, 1st, If

the proposed place be under the equator, and the plane

horizontal ; it is evident that this plane intersects the two

opposite cones at the summit : consequently, the track of

the shadow will be an hyperbola BCD, fig. 17 pl . 35,

having its summit turned towards the bottom of the style.

But it may be easily seen, that as the sun approaches

the equator, this hyperbolic line becomes flatter and

flatter ; and at length, on the day of the equinox, is

changed into a straight line ; that it afterwards passes to

the other side, and always becomes more and more curved,

till the sun reaches the tropic , &c.

We shall here add , that the sun rises every day in one

ofthe asymptotes of an hyperbola , and sets in the other.

2d. In all places situated between the equator and the

polar circles, the track of the shadow, on a horizontal

plane, is still an hyperbola ; for it may be easily seen that

this plane cuts the two opposite cones, united at their

summits, which are described by the solar ray that passes

over the point of the style ; since in all these latitudes the

two tropics are intersected by the horizon .

3d. In all places situated under the polar circle, the

line described by the shadow on a horizontal plane, when

the sun is in the tropic, is a parabolic line : but that de-

scribed on other days is hyperbolic.

4th. In places situated between the polar circle and the

pole, as long as the sun rises and sets , the track described

by the shadow of the summit of the style , is an hyperbola :

when the sun has attained to such a high latitude that he

only touches the horizon, instead of setting, the track is

a parabola ; and when the sun remains the whole day

above the horizon, it is an ellipsis , more or less elongated.
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5th. Lastly, it may be easily seen that under the pole

the track of the shadow of the summit ofthe style is al-

ways a circle ; since the sun, during the whole day, re-

mains at the same altitude.

-
COROLLARY. As the arcs of the signs are nothing else

than the track of the shadow of the summit of the style ,

when the sun in his diurnal motion passes over the paral-

lel belonging to the commencement of each sign, it fol-

lows that these arcs are all conic sections, having their

axis in the meridian or substylar line. In horizontal dials,

constructed for places between the equator and the polar

circles, and in all vertical dials, whether south, north, east,

or west, constructed for places in the temperate zone,

they are hyperbolas. This may be easily perceived, on

the first view, in most of the dials in our latitudes.

These observations, which perhaps may be considered

by common gnomonists as of little importance, appeared

to us worthy the consideration of those more versed in

geometry; especially as some of them may not have at-

tended to them. For this reason we resolved to give

them a place in this work.

PROBLEM XXXV.

Toknow the hours on a sun-dial, by the moon shining on it.

This problem will not appear difficult to those who

know that the moon's passage by the meridian is every

day later by about 48 minutes ; that when new, she passes

the meridian exactly at the same time as the sun ; and

when full, 12 hours after.

First, find the moon's age, which is given in every com-

mon almanac, where the days and hours of the new and

full moon are always marked. Let us suppose then , that

at the time when you wish to know the hour, 6 days and

a half have elapsed since new moon. Multiply 48 mi-

nutes, or of an hour, by 6 , and the product will be ,

or 5 hours 12 minutes, which must be added to the hour
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indicated by the dial. If the dial therefore indicates 4

hours, the real time will be 9 hours 12 minutes.

But the hour may be found much more exactly in the

following manner. First find at what hour of the day the

moon has passed, or will pass the meridian ; which may

be determined by the help of a common almanac, where

the times of the moon's rising and setting are marked ; for

if the interval between the rising and setting be halved , it

will give the time of the moon's passing the meridian

nearly.

Let us suppose then, that the moon has passed the meri-

dian at 3h 30m in the afternoon ; the difference of this

passage from that of the sun, were the moon fixed in the

heavens, would be 3 hours later than the sun. Conse-

quently if the moon indicates, on a sun-dial, 7 in the

evening, we may conclude, on the supposition ofthe moon

being motionless , that it is eleven at night. But since ,

in this interval of 7 hours , the moon has had a retrograde

motion towards the east, which occasions in her passage of

the meridian a retardation of 48m daily ; which is at the

rate of 2 minutes per hour, we shall have for 7 hours

15m, which must be added to the hour indicated by the

moon, over and above the quantity by which her passage

over the meridian has been later than that of the sun.

If the moon had passed the meridian before the sun, it

would be necessary to deduct from the hour indicated by

the moon the quantity by which she preceded the sun,

and to add to the remainder as many times two minutes as

the hours she indicated. But this calculation, however

short, may be avoided by means of the following small

machine.

This machine consists of two circular plates of brass or

wood, or paste-board, pl. 18 fig. 36 , one of which AIGH is

fixed, and the other befl moveable. On the fixed plate

is described a circle a ig h, divided into 24 equal parts,

representing the 24 hours of the day ; each of which must
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be subdivided into halves and quarters. Above' this piece

is applied the other plate befl, in such a manner as to be

moveable around the centre c, which is common to both :

and the circumference of the latter is divided into parts

which represent the hours indicated by the moon on a

sun-dial. These hours are not equal to those of the sun

described on the fixed plate, but must be each 2 minutes.

larger ; since the moon's daily retardation is about 48 mi-

nutes, or 12 minutes in 6 hours. Therefore, since the

degree of a sign is equal to 4 minutes in time, it is evi-

dent that 3 degrees are equivalent to 12 minutes of time.

For this reason, having drawn the south-line ACG, set off

on each side from the point b, to e and 1 93 degrees for

6 hours; and divide each of these spaces into six equal

parts, to represent as many hours ; then into halves and

quarters, as seen in the figure.

To use this instrument, place the index n b of the move-

able piece at the hour of the moon's passing the meridian

on the proposed day ; then observe the hour indicated by

the moon on a horizontal sun-dial, and opposite to the

same hour on the moveable piece, you will find, on the

other, the true hour of the day.

PROBLEM XXXVI.

To construct a dial to show the hour by the Moon.

To employ a dial of this kind, it is necessary to know

the moon's age, which may be always found either by a

common almanac, or by some of the methods we have

already pointed out, under the head astronomy .

To describe a lunar dial on any plane whatever, such

for example as a horizontal one, first trace out on it a ho-

rizontal sun-dial for the given latitude, and draw the two

lines 5 7, 3 9 parallel to the equinoctial, pl. 18 fig. 37 ; the

first of which being assumed as the day of full moon, the

second will represent that of new moon, where the lunar

hours correspond with the solar ; and hence the hour-
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points marked on those two parallels, by lines proceeding

from the centre of the dial A, are common to the sun and

the moon.

Then divide the space bounded by the two parallel

lines 39, 57 into 12 equal parts ; and through the points

ofdivision draw as many parallel lines, which will repre-

sent those days of the moon when she successively recedes

an hour by her own motion towards the east, and on which

she consequently passes the meridian every day an hour

later. The first parallel, 4, 10, being the day on which

the moon passes the meridian an hour later than the sun,

the point B of 11 hours, by the moon, will be the point

of noon or 12, according to the sun ; as the next 5, 11

represents a day on which the moon passes the meridian

2 hours after the sun , the point c of 10 hours by the moon,

will be the point of noon by the sun ; and so of the rest.

It is now evident, that if the points 12, B, C, and all the

others belonging to noon, which can be found by the

same method, be joined by a curved line, this curve will

be the lunar meridian. The other lunar hour-lines may

be easily traced out also by a similar process.

Because the interval between the moon's conjunction

with the sun and her opposition , that is, between the time

of new and full moon, or that when she is diametrically

opposite to the sun, so that she rises when the sun sets , is

about 15 days, all the preceding parallels, except the two

first 58 , 39, must be effaced ; and instead of dividing the

interval into 12 equal parts, it must be divided into 15 ;

in order that you may draw, through the points of divi-

sion, other parallels, which will represent the days ofthe

moon's age; and which therefore must be marked with

the proper figures along the meridian line, as seen in the

plate ; by which means the true hour ofthe night may be

known, when the moon shines, in the following manner.

In the centre of the dial a, fix an axis or pin, so as to

form at that centre with the line A 12 an angle equal to the
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elevation of the pole above the plane of the dial, which we

suppose to be horizontal : this axis, by its shadow on the

current day of the moon, will indicate the hour as re-

quired.

PROBLEM XXXVII.

To describe the arcs ofthe signs on a sun-dial.

Of the appendages added to sun-dials, the arcs of the

signs may be classed among the most agreeable ; for by

their means we can know the sun's place in the different

signs, and as we may say can follow his progress through

the zodiac. We therefore thought it our duty not to omit,

in this work, the method of describing them.

For the sake of brevity, we shall suppose that the plane

is horizontal. First describe a dial such as the position of

the plane requires, that is, a horizontal one, and fix in it

an upright style , terminated by a spherical button , or by

a circular plate, having in its centre a hole, of a line or two

in diameter ; according to the size of the dial . Then pro-

ceed as follows :

Let it be required , for example , to trace out the arc

corresponding to the commencement of scorpio or pisces.

First find, by the table of the sun's altitude , at each hour

of the day in the latitude of London , for which we suppose

the dial to be constructed, the altitude when he enters

these two signs . As this altitude is 26° 43', make the tri-

angle STE, pl. 19 fig. 38 , in which ST is the height ofthe

style, and such that the angle SET shall be equal to 26° 43′:

the point E will be the first point of the arc of these two

signs.

Then find, in the same table, the sun's altitude at one

in the afternoon of the same day , which will be found equal

to 25° 30' ; and construct the triangle STF, in such a man-

ner that the angle F shall be 25° 30′ ; then from the bottom

of the style s , as a centre, with the radius sr, describe an

arc ofa circle, intersecting the lines of 1 and x1 hours in
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the two points G and H: these will be the points ofthe arc

of those signs on the lines of 1 and x1.I

Ifthesame operation be repeated for all the other hours,

you will have as many points, through which if a curved

line be drawn, by means of a very flexible ruler, you will

obtain the arc of the signs scorpio and pisces.

By employing the like construction , the arcs belonging

to the other signs may be obtained .

Another Method.

According to this method, the table of the sun's altitude

at the different hours of the day is not requisite. A simple

graphic operation is sufficient ; but as a figure called the

triangle of the signs is employed, it is necessary that we

should first show how it is constructed .

Draw the line AB , pl. 19 fig . 39 , of an indefinite length ;

and from the point A, as a centre, with any radius AB, de-

scribe an arc ofa circle : makethe arcs BE and Beeach equal

to 11° 30′ , which is the sun's declination at the commence-

ment of taurus and virgo, scorpio and pisces , the two

former northern, and the two latter southern ; and draw

the lines AE, Ae ; the former of which will belong to the

first two signs, and the latter to the other two.

In like manner make BF and вf equal to 20° 12′ , and

draw AF, and Af; the former of which will correspond to

the signs gemini and leo , and the latter to sagittarius and

aquarius.

Lastly, ifBG and вg be made equal to 23° 28′ ; the line

AG will correspond to cancer, and Ag to capricorn.

We shall now suppose that it is required to describe the

arcs ofthe signs on a horizontal dial : having fixed in the

proper place, as above directed, an upright style ST, fig.

39 and 40, draw the equinoctial and hour-lines ; and on

AB raise a perpendicular AD, equal to TP the distance of

the summit ofthe style from the centre ofthe dial P.

Now, if you are desirous of having marked on the me
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ridian the seven points of division of the arcs ofthe signs ,

make Ac , fig. 39, equal to RT, the distance of the summit

ofthe style from the equinoctial ; and draw the line DC,

which will intersect the lines of the signs, in the points 6,

4, 2, c, 1 , 3 , 5 : if these points be transferred in the same

order to the meridian , fig. 40, making R 6 equal to c 6,

R4 to C4, R2 to C2, R1 to c 1 , &c, you will have the

points through which the sun passes at noon, on the days

when he enters into the different signs.

Let it now be required to find the same points on one

of the hour-lines, that for example of III and Ix . From

the bottom ofthe upright style s let fall on that hour-line

Pм a perpendicular sv, fig. 40, and continue it till it meets,

in the point N, the semicircle described on PM as a dia-

meter : then make Aн, fig . 39 , equal to PN, and AI equal

to PM ; and draw HI through the triangle of the signs :

this line will be intersected by the seven lines of the signs

in seven points , which being transferred , in the same order,

to the hour-line proposed , will determine those where it

will be met by the shadow of the summit of the style, on

the sun's entrance into each of the signs.

If all the points, corresponding to the same sign on the

hour-lines, be then joined, by making a curved line to pass

through them, it will be the parallel of that sign.

Ofthe different kinds ofHours.

Every thing hitherto said has related only to the equi-

noctial and equal hours ; such as those by which time is

reckoned in England , the day being supposed to begin at

midnight, and the hours being counted to the following

midnight, to the number of 24, or twice twelve. This is

the most common method of computing the hours in

Europe. The astronomical hours are almost the same ;

the only difference is , that the latter are counted, to the

number of 24, from the noon of one day to the noon of

the day following.
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But there are some other kinds of hours, which it is pro-

per we should here explain ; because they are sometimes

traced out on sun-dials : such are the natural or Jewish

hours, the Babylonian, the modern Italian, and those of

Nuremberg.

The natural or Jewish hours begin at sun-rise ; and there

are reckoned to be 12 between that period and sun-set :

hence it is evident that they are not of equal length, except

on the day of the equinox : at every other time of the year

they are unequal. Those of the day, in our hemisphere,

are longer from the vernal to the autumnal equinox : those

of the night are, on the other hand , longer while the sun

is passing through the other half of the zodiac.

The Babylonian hours were of equal length, and began

at sun-rise ; they were counted, to the number of 24, to

sun-rise of the day following.

The modern Italian hours, for the ancient Romans

counted nearly as we do from midnight to midnight, are

reckoned to the number of 24, fromsun-set to sun-set of

the day following ; so that on the days of the equinox noon

takes place at the 18th hour, and then, asthe days lengthen,

the astronomical noon happens at 17 hours, then at 17

hours, &c ; and vice versa . This singular and inconvenient

method has had its defenders, and that even among the

French ; who have found that with a pencil , and a little

astronomical calculation , one may fix the hour of dinner

with very little embarrassment.

However, as these hours are still used throughout almost

the whole of Italy, we think it our duty to show here the

method of describing them, by way of a Gnomonical

curiosity.

PROBLEM XXXVIII.

To trace out, on a dial, the Italian hours.

Describe first on the proposed plane, which we here

suppose to be a horizontal one, a common horizontal dial,
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hours, and so on ; marking only the points where they in-

tersect the tropic of capricorn ; then, if the corresponding

points of division, on the two tropics and the equinoctial,

be joined by a curved line, the dial will be described, as

seen plate 21 fig. 44.

"
If more exactness be required , it will be necessary to

trace out two more parallels of the signs, viz, those of

taurus and scorpio, and to find on each, by a similar pro-

cess, the points corresponding to the natural hours : the

natural hour-lines may then be inade to pass through 5

points, by which means they will be obtained with much

more exactness.

PROBLEM XL.

Tofindthe hour, by means ofsome of the circumpolar stars.

The hour may be known by a star's passage by the me-

ridian, or even by its altitude ; for by means of any Ephe-

meris, and a short calculation, we can easily determinehow

muchany star precedes or is behind the sun in culminating,

or coming to the meridian ; and when this is known, to-

gether with its declination , the hour may be found by ob-

serving its altitude. But as this process would be too

complex for the generality of our readers, we shall con-

fine ourselves to a solution of the above problem ; to fa-

cilitate which, a small instrument, called the nocturnal,

has been invented. It is adapted for employing the most

brilliant of the two last stars in the little bear, which are

called its guards. The construction of it is as follows.

Provide a circular piece of wood or metal, pl . 20 fig. 42,

and having described on it a circle, divide its circumfer-

ence into 365 parts, corresponding to the days of the year;

which must be afterwards distributed into months, accord-

ing to the number that each contains .

To this circular piece apply another, moveable around

the centre, and divide the circumference of it into 24 equal

parts, denoting the 24 hours of the day. At each of these
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divisions there must be a small notch on the edge, in order

that these parts may be counted in the dark bythe touch.

One of these notches however must be longer than the

rest, for a purpose which will be explained hereafter.

Then affix to the edge of the lower piece a small handle ;

the middle of which ought to be in a line with the centre

of the instrument, passing through the 7th of November ;

because on that day the above star passes the meridian at

the same time as the sun : that is , above the pole at noon,

and below it at midnight.

Lastly, adapt to the instrument an index, moveable

around a pin in the centre ; and let a hole be pierced in

the pin, in order to apply the eye to it.

Touse this instrument, first make the edge ofthe longest

notch correspond with the day of the month : then apply

your eye to the centre, and, turning towards the north,

look at the pole star, holding the plane ofthe instrument

in a direction as perpendicular as possible to the visual

ray, and the handle of it in the vertical plane ; then move

the index till the edge of it touches the above star, or the

brightest of the guards of the little bear, and count the

number of notches between the index and the longest

notch this number will be that of the hours elapsed after

midnight.

The instrument might be easily adapted to any other

star: nothing would be necessary but to make the small

handle of the instrument correspond with the day of the

month when the star passes the upper meridian with the

sun : in every thing else the construction would be the

same.

We shall terminate this part of our work with a sort of

gnomonical pleasantry .

PROBLEM XLI.

To tell thehour ofthe day by means ofthe left hand.

It may be easily conceived that there can be very little

VOL. III. U
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precisionin a method of this kind ; and therefore we attach

no more value to it than it deserves.

Extend the left hand in a horizontal position , so that the

inside ofit shall be turned towards the heavens : then take

a bit of straw or wood , and place it at right angles, at the

joint, between the thumb and the fore-finger : it must be

equal in length to the distance from that joint to the end

ofthe fore finger, and must be held upright, as represented

in the figure, pl. 20 fig. 43, at A : this piece of stick or

straw supplies the place of a style.

Turn the bottom of the thumb towards the sun, the

hand being still extended, till the shadow of the muscle

which is below the thumb terminate at the line of life,

marked c. If the wrist or bottom of the hand be then

turned towardsthe sun , the fingers being kept equally ex-

tended, the shadow of the bit of straw or stick will indi-

cate the hour. When the shadow falls at the tip of the

fore finger, it denotes 5 in the morning or seven in the

evening ; at the end of the middle finger, it denotes 6 in

the morning and evening ; at the end of the next finger,

7 in the morning and 5 in the evening ; at the end of the

little finger, 8 in the morning and 4 in the afternoon ; at

the nearestjoint of the little finger, 9 in the morning and

3 in the afternoon ; at the next joint ofthe little finger, 10

in the morning and 2 in the afternoon ; at the root of the

little finger, 11 in the morning and 1 in the afternoon ; in

the last place, when the shadow falls on that line of the

hand marked D, which is called the table line, it will indi-

cate 12 o'clock or noon.

Some curious operations in regard to Gnomonics we

have been obliged here to omit ; as it would have been

necessary to add the demonstrations. We however think

it our duty to terminate this article with a list of the prin-

cipal works on Gnomonics, which may be consulted by

those who are desirous of farther information on this

subject.
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We shall not speak here of the Gnomonics of Clavius,

because that mathematician seems to have studied the art

of rendering what is simple of itself exceedingly obscure.

We shall even confine ourselves to French and English

works, as our object is not to give a complete bibliography

of the art.

La Gnomonique of M. de la Hire, which appeared in

1683, in duodecimo, is worthy of attention ; though a cer-

tain kind of obscurity generally prevails throughout the

works of that mathematician ; it contains the solution of

a great many problems relating to the astronomical part

of dialling .

Ozanam's work on the same subject is clearer, and bet-

ter adapted to the capacity of common readers ; it still

holds a place among other works of the same kind, of a

more modern date. The celebrated Picard did not think

it beneath him to teach the method of constructing large

sun-dials by trigonometrical calculation. This treatise may

be found in the 7th volume of the old Memoirs of the

Academy.

An academician of Montpellier, published in the Me-

moirs of the Royal Academy of Sciences, for the year

1707, the analogies employed to determine the hour-angles

for all dials, however situated ; together with the demon-

strations of them.

After that period a great many treatises on gnomonics

appeared in France ; such as La Gnomonique de M. Rivard,

Paris 1767, 8vo. A clear and methodical work, which has

gone through several editions : that of M. de Parcieux, at

the end of his Trigonometrie Rectiligne et Spherique, pub-

lished at Paris in 1741 , 4to ; a work which ought to be

studied by all those who wish to acquire a correct know-

ledge of this part of the mathematics. The article on

gnomonics in the 4th volume of Wolf's Course of the

Mathematics is exceedingly clear and concise. We can

recommend also to those desirous of delineating sun-dials

U 2
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ар-

with great exactness, La Gnomonique pratique, ou l'Art de

tracer les Cadrans solaires avec beaucoup de precision, &c,

par Dom Bèdos de Celles ; a work first printed in 1770,

8vo, and afterwards in 1774 with a great many additions.

The author employs chiefly trigonometrical calculation,

and enters into minute details respecting every thing that

relates to practice ; for one may be perfectly well ac-

quainted with the theory, and yet embarrassed in the

plication of it. Useful tables , calculated for the whole

extent of France, will be found in La Gnomonique mise à

la portée de tout le monde, par Joseph-Blaise Garnier, Mar-

seilles, 1773, 8vo. In other respects, this work is of no

great value. In regard to the Horlogiographie of Father

de la Madelaine, though very common, we can say no-

thing farther than that it is fit only for country stone-

masons, who make it a part of their business to construct

sun-dials.

We cannot here help taking notice of the ingenious

manner in which the celebrated S’Gravesande, in his Essay

on Perspective, printed at Leyden in 1711 , considers the

general problem of tracing out a sun-dial : he reduces it

to a simple problem of perspective, which he solves ac-

cording tothe principles of that branch of optics. This

part of his work is remarkable for its elegance, its pre-

cision, and its universality. To the above list of works on

gnomonics, we shall add in English , Emerson's Dialling,

published along with his Mathematical principles of Geo-

graphy ; also Martin's Principles of Dialling ; and , for

those who wish to describe dials merely by the rule and

compasses, Leadbetter's Mechanic Dialling.
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APPENDIX.

Containing ageneral method of describing sun-dials what-

ever be the declination or inclination of the plane.

WHEN this part of our work was nearly printed off, it

occurred to us that our geometrical readers might perhaps

find fault with us for omitting to give a geometrical me-

thod of describing inclining and declining dials. Finding

that the matter destined for this volume would leave us

sufficient room, we shall therefore here describe a very

simple and ingenious method for that purpose ; as by

means of a few calculations , the construction of any dial,

however complex be the inclination and declination of its

plane, will be as easy as that of a common horizontal or

vertical dial.

.

This method is founded on a very ingenious considera-

tion, viz, that any plane whatever is always a horizontal

plane to some place of the earth ; for a plane being given,

it is evident that there is some point of the earth the tan-

gent or horizontal plane of which is parallel to it. It is

evident also, that two such parallel planes will show the

same hours at the same time. Thus, for example, if we

suppose at London a plane inclining and declining in

such a manner, as to be parallel to the horizontal plane of

Ispahan ; then a dial traced out on that plane, as if it were

horizontal, will give the hours of Ispahan ; so that when

the shadow falls on the substyle, we may say that it is

noon at Ispahan, &c.

But as the hours of Ispahan are not those wanted at

London, it is necessary that we should find outthe means

ofdelineating those of London, which will not be attended

with much difficulty, when the difference of longitude be-

tween these two cities is known. Let us suppose then that

it is exactly 45 degrees, or 3 hours : when it is noon at

London then, it will be 3in the afternoon at Ispahan ; and
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when it is 11 in the forenoon at the former, it will be 2 in

the afternoon at the latter, &c. Consequently, on this

dial, which we suppose to be horizontal , if we assume the

line of 3 o'clock as that of noon , and mark it 12 ; and if we

assume the other hour-lines in the same proportion , we

shall have at London the horizontal dial of Ispahan, which

will indicate not the hours of Ispahan, but those of London,

as required.

We flatter ourselves that we have here explained the

principle of this method in a manner sufficiently clear, to

make it plain to such of our readers as have a slight know-

ledge ofgeometry or astronomy; but to render the appli-

cation of it more familiar, we shall illustrate it by an

example.

Let us suppose then, at London, a plane forming with

the horizon an angle of 12 degrees, and declining towards

the west 221 degrees.

The first operation here is, to find the longitude and

latitude of that place of the earth where the horizontal

plane is parallel to the given plane.

For this purpose, let us conceive an azimuth AI per-

pendicular to the given plane, pl . 22 fig. 45, and in this

azimuth, which we suppose to be traced out on the sur-

face of the earth, let us assume on that side which is to-

wards the upper part of the plane, an arc AH, equal to the

inclination of that plane to the horizon : the extremity of

this arc, that is the point н, will be that point of the earth

where the horizon is parallel to the given plane. This is

so easy to be comprehended that it requires no demonstra-

tion. Let us next conceive a meridian PH, drawn from

the pole P tothe point H : it is evident that this will be

the meridian of the given plane ; and that the angle APH,

formed by this meridian and that of London, will give the

difference of longitude of the two places. We must there-

fore determine this triangle, and to find it we have three

things given, viz, 1st, AP the complement of the latitude
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ofLondon, which is 38° 29' ; 2d, AH the distance of Lon-

don from the place, the horizontal plane of which is

parallel to the given plane, and which is 12° ; 3d, the

angle PAH, comprehended between these two sides, which

is equal to the right angle HAL plus PAL, or that which the

plane forms with the meridian.

By resolving this spherical triangle, it will be found,

that the angle at the pole APH, or that formed by the two

meridians, is 5° 59′ ; which is the difference of longitude

between the two places A and н.

The latitude of the place н will be found also by the

solution of the same triangle ; for it is measured by the

complement ofthe arc PH, of the triangle PAH : according

to calculation it is 40° 15' *.

Thus, a plane inclining 12° at London, and declining to

the west 223 degrees, is parallel to the horizontal plane of

a place which has 5° 59′ of longitude west from London,

and 40° 15′ of latitude. The latter also is the angle which

the style ought to form with the substyle ; for the angle

which the axis ofthe earth forms with the horizontal plane

is always equal to the latitude.

It is here evident, that when it is noon at the place н, it

will be 23m 56s after noon at the place A; for 5° 59′ in

longitude correspond to 23m 56s in time. Consequently,

at the place A, when the shadow of the style falls on the

* Trigonometrical calculation may be avoided by means of a graphic

operation exceedingly simple, and which is a consequence of that taught in

Prob. XXII. In a circle of a convenient size, pl. 22 fig. 46, assume an arc

pa equal to PA, fig. 45 ; make ah equal to AH ; and from the point h let fall

a perpendicular hi, on the radius ca. On hi describe a quadrant, or make

hk equal to the arc which measures the declination of the plane, or equal to

the supplement of the angle PAH ; draw kl perpendicular to hi, and from the

point l, draw Im perpendicular to the radius cp, and let lm be continued till

it meet the circle in n : the arc pn will be equal to гH; and if an are of a

circle be described on mo, and if lx be drawn perpendicular from the point

1, so as to meet this arc in 7, the angle ml will be equal to the required

angle r ofthe triangle APH.
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substyle, which is the meridian of the plane, it will be 23m

56 after twelve at noon. To find therefore the hour of

noon, it will be necessary to draw, on the west side of the

substyle, an hour-line corresponding to 11h 36m 4³, or 11ª

36m. By the like reasoning, it will be found that 11 in

the morning, at the place A, will correspond to 10h 36m, at

the place н, &c. In the same manner, 1 in the afternoon,

at the place A, will correspond to 12h 36m, or 36m after

twelve, at the place н : 2 o'clock will correspond to 1h 36m ;

3 o'clock to 2h 36m, and so of the rest.

Thus, if we suppose the substyle of the plane, on which

the dial ought to be described , to be the meridian, it will

be necessary to describe a dial which shall indicate, in the

forenoon, 11h 36m ; 10h 36m ; 9h 36m ; 8h 36m ; &c ; and in

the afternoon 12h 36m; 1h 36m; 2h 36m ; 3h 36m ; 4h 36m;

&c.

When these calculations have been made, the dial may

be easily constructed . For this purpose, first find, by

prob. 3, the substyle, which is the meridian of the plane.

We shall suppose that it is PE, fig. 47, and that è is the

centre of the dial. Having assumed PB of a convenient

length, draw, through the point B, the line ABC, perpen-

dicular to PE: if A be the western side, the line pd, which

corresponds to 11 hours 36 minutes, or which is distant

from the meridian 24 minutes in time, may be found by

making use of the following analogy :

As radius,

Is to the cosine of the latitude, which is 40° 15′;

So is the tangent of the hour-angle corresponding to 24m

in time, or the tangent of 6°,

To a fourth term, which will be the tangent of the angle

BPd.

By this analogy, it will be found equal to 80 parts of

which PD contains 1000 : if 80 of these parts therefore,

taken from a scale, be set off from в towards d, and if pd
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be then drawn, we shall have the hour-line of 11 hours 36

minutes, for the plane of the dial , or of the place н.

The line pe, of 10 hours 36 minutes, will be found in -

like manner, by this analogy:

As radius,

Is to the cosine of 40° 15';

So is the tangent of the hour-angle corresponding to 10

36m, or the tangent of 21 ° , to the tangent of the angle

Bpe.

This tangent will be found equal to 293 of the above

parts : if this number of parts therefore, taken from the

same scale, be laid off from в to e, we shall have the hour-

line re, corresponding to 10 hours 36 minutes.

The lines ofthe other hours before noon may be found

in the like manner: the two first terms ofthe analogy are

the same, and the third is always the tangent of an angle

successively increased by 15° : these tangents therefore

will be those of 6° , 21 ° , 36°, 51 °, 66°, the logarithms of

which must be added to the cosine of 40° 15′ ; and if the

logarithm of radius be subtracted, the remainders will be

the logarithms of the tangents of the hour-lines : these

tangents themselves will be for вd, ве, &c, 80, 293, 554,

942, 1732, 4814, &c, in parts of which the radius or PD

contains 1000.

A similar operation must be performed for the hours in

the afternoon. As 36m in time correspond to 9°, the first

hour-angle will be 9º ; the second, by adding 15°, will be

24° ; the third 39° ; the fourth 54° ; &c. The following

proportions then must be employed :

As radius,

Is to the cosine of 40° 15';

So is the tangent of 9°, or 24°, or 39° , &c.

To a fourth term ,

Which will be the tangent of the angle Brl, or BPM, or

BPn, &c.

Hence, if the logarithm of the sine of 49° 45′ be suc-
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cessively added to the logarithmic tangent, of 9°, 24°, 39º,

54°, &c, and if radius be subtracted from the different

sums, we shall have the logarithms of the tangents of the

angles which the hour-lines pl, rm, pn, &c, form with

the substyle ; and these tangents themselves will re-

spectively be 121 , 339, 618 , 1050, 1988 , 7268 , parts, of

which PB contains 1000. If these numbers therefore,

taken from the same scale as before, by means of a pair of

compasses, be set off from в to l, from в to m,from в ton,

&c, and if the lines pl, pm, pn, Po, &c, be then drawn,

the dial will be nearly completed ; as nothing will be

necessary but to mark the point d with XII, because pd is

the meridian of the place A ; and to mark the other hour-

points with the numbers which belong to them, as seen in

the figure.

To avoid the trouble of tracing out more hour-lines

than are necessary , it will be proper first to determine at

what hour the sun rises and sets on the given plane, at the

time of the longest day ; which may be easily done by

means ofthe following consideration.

It may be readily seen that if we suppose two parallel

planes, in two different places of the earth, the sun will

begin to illuminate both of them at the same moment ; and

that he will also set to both at the same time. The plane

of the dial in question, being parallel to the horizontal

plane ofa place which has 40° 15′ of north latitude, nothing

is necessary but to know at what hour the sun will rise in

regard to that plane on the longest day. But it will be

found, that in the latitude of 40° 15′ the longest day is 15

hours 24 minutes, or that the sun rises on that day 7 hours

42 minutes before noon, and sets at 42 minutes past 7 in

the evening. It will be sufficient then, on the dial in

question, to make the first hour-line in the morning that of

4 hours 15 minutes, and the last in the evening 7 hours

30 minutes.
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MATHEMATICAL

AND

PHILOSOPHICAL

RECREATIONS.

PART EIGHTH.

Containing some of the most Curious Problems in Navi-

gation.

NAVIGATION may be classed among those arts which

do the greatest honour to the human invention ; for in no

department of science is the ingenuity of man displayed

to more advantage than in this art, by which he conducts

himself through the wide expanse of the ocean, without

any other guide than the heavenly bodies and a compass ;

by which he subdues the winds, and even employs them

to enable him to brave the fury of the ocean, which they

excite against him ; in short , an art which connects in so-

cial intercoursethe two worlds ; forms the principal source

of the industry, commerce, and opulence of nations.

Hence one of our poets very justly says,

Le trident de Neptune est le sceptre du monde.

But, this is not a proper place for entering into a disser-

tation on the utility of navigation. As mathematicians
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navigation may be

According to the

therefore, we shall only observe, that

considered under two points of view.

first, it is a science which depends on astronomy and geo-

graphy: considered in this manner it is called piloting,

which is the art of determining the course that ought to

be pursued in order to go from one place to another, and

of knowing at all times that point of the earth at which a

ship has arrived. According to the other, it is an art

founded on mechanics and the moving powers of the ves-

sel: considered under this point of view, it is called ma-

noeuvring, and teaches how to give to that ponderous mass,

which cleaves the billows, the necessary direction by means

ofthe sails and the rudder.

We shall here present the reader with every thing most

curious in both these parts of navigation.

PROBLEM I.

Ofthe curve which a vessel describes on the surface ofthe

sea, when she sails on the same point ofthe compass.

When a ship is about to set sail, it is necessary to find

out the proper course ; that is, to determine the direction

in which she ought to proceed, in order to arrive, in the

shortest time and with the greatest safety, at the place of

her destination. When this direction , or the angle it forms

with the meridian , has been determined, it is always pur-

sued, unless particular circumstances prevent it. A vessel

by thus steering for several days, on the same point of the

compass, describes a line which alwaysformsthe same angle

with the meridians : this is what is called the lo.rodromic

line, or oblique course ; and there hence results on the

surface of the earth a peculiar curve, the nature and pro-

perties of which have excited the attention of mathemati-

cians. On these properties the practical rules of naviga-

tion have been founded ; and, as they are very remarkable,

they deserve to be explained.

We presume that the reader is acquainted with the na-
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ture of the compass, the different points, &c ; and with

the elements of navigation ; for it is impossible that we

should here enter into details merely elementary.

Let us suppose that the sector ACB, pl. 1 fig. 1 , repre-

sents a portion of the spherical surface of the earth , of

which c is the pole, and AB the equator ; or only the arc

of a parallel comprehended between two meridians, as AC

and BC ; and that CD, CE, and CF, represent so many me-

ridional arcs, very near to each other.

Let a vessel depart from the point A of the arc AB, the

meridian of which is AC ; and proceed on a course forming

with that meridian the angle CAH , less than a right angle,

for example an angle of 60 degrees ; the vessel will de-

scribe the line AH, by which means she will always change

her meridian. When she arrives at н, under the meridian

CD, let her continue in the same course, making with the

meridian the angle CHI , equal to the former ; and so on ,

describing the lines AH, HI , IK, &c, always making the

same angle (60°) with the meridians CA, CH, CI, CK, &c.

As her course is continually inclined to the meridian at an

angle of 60 degrees, it may be readily seen that the line

AHIK, will not be the arc of a great circle on the surface

ofthe sphere ; for it is demonstrated in spherics, that if

AHK were a circle of this kind , the angle CHI would be

greater than CAH, and CIK greater than CHI , and so on.

The case would be the same if the curve AHIK were an

arc of a lesser circle of the sphere ; hence there is reason

to conclude, that the curve described by a ship, when she

always proceeds on the same course, is a peculiar curve,

which constantly approaches the pole .

REMARKS.-I. It is here evident, that when the loxo-

dromic angle vanishes ; that is, when the vessel steers di-

rectly north or south , the loxodromic line is an arc ofthe

meridian.

But, ifthe angle be a right angle, and if the vessel be

under the equator, she will describe an arc of the equator.
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In the last place, if out of the equator, she will describe a

parallel.

II. If the loxodromic line AKL, be divided into several

parts, so small that they may be considered as straight

lines, and if as many parallels or circles of latitnde be

made to pass through the points of division H, I , K, &c,

all these circles will be equal and equally distant from

each other ; so that, by making meridional arcs to pass

through the same points of division, the portions of these

meridians, such as DH, мI , NK , &c , will be equal, as well

as the corresponding arcs AD, HM , IN , &c. This equality

however will not be in degrees, but in miles, as may be

easily demonstrated ; for the triangles ADH, HMI , INK,

&c, are evidently similar, because the hypothenuses, AH ,

HI, IK, &c, being equal in length, the other sides will be

respectively equal also. On the other hand, it is evident

that if AD, which is part of a great circle , be equal in

length, or in miles, to Hм, which is part of a lesser circle,

the latter must contain a greater number of minutes or de-

grees than the former.

III. When a very small portion of the loxodromic line,

such as AH, has been passed over, always pursuing the

same course, on the vessel's arrival at H, if the difference

of latitude, or the arc DH, be determined by observation,

it will be easy to find the distance sailed AH ; since DH is

to AH, as the sine of the angle HAD, which is known, is to

radius. If the angle CAH, for example, be 60 degrees,

and consequently HAD 30 degrees ; and if DH be equal to

half a degree, or 30 nautical miles, the distance AH will be

60 nautical miles ; for the sine of 30 degrees is exactly

equal to half the radius.

IV. Ifthe course and distance sailed be known, the dif-

ference of latitude may be found in like manner.

V. The loxodromic angle CAH, or HAD, being known,

as well as the difference of latitude DH, the value of the

arc AD may be found ; for DH is to AD as the sine of the
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angle HAD is to its cosine. But when the length of the

arc of a parallel , or the number of miles it contains, is

known, the degrees and minutes it contains may be deter-

mined also. In this manner, the difference of longitude

produced by the vessel's change of position, while passing

over the small loxodromic arc AH, is obtained ; and if the

same operation be performed in regard to all the other

small arcs HM , IN, &c, we shall have the whole difference

of longitude, produced by the vessel's passing over any

loxodromic arc-AK. The difficulty of this operation arises

from these arcs being dissimilar , though equal in length.

But geometricians have found means to avoid these calcu-

lations, by ingenious tables or other operations, the ex-

planation of which does not fall within the plan of this

work.

VI. This curved line has one property which is very

singular, that it always approaches the pole without ever

reaching it. This evidently follows from the nature of it ;

for if we suppose it to arrive at the pole, it will intersect

all the meridians in that point ; consequently, since it

cuts each meridian under the same angle, it will cut them

all at the pole under the same inclination , which is absurd ;

since they are all inclined in that point to each other. It

will therefore approach the pole more and more, making

an infinite number of circumvolutions around it, but with-

out ever reaching it. Hence, according to mathematical

rigour, a ship which continually pursues the same course,

the cardinal points excepted , will always approach the

pole, without ever arriving at it.

VII. Though the loxodromic line, when it forms an

acute angle with the meridians, must make an infinite

number of circumvolutions around the pole before it

reaches it, its length is however finite ; for it can be de-

monstrated, that the length of a loxodromic line , such as

AKL, is to the length of the arc of the meridian that indi-

cates the difference of latitude, as radius to the cosine, or



304 NAVIGATION.

sine complement, of the angle which the loxodromic line

forms with the meridian ; consequently the difference of

latitude is to the loxodromic distance sailed , as the cosine

of the above angle is to radius.

The above remark is principally intended for geome-

tricians ; and exhibits a kind of paradox which must

astonish those to whom truths of this kind are not familiar :

those, however, who comprehend the preceding demon-

strations, can entertain no doubt of it. But, for the sake

- of farther illustration, let us suppose à loxodromic line

inclined to the meridian at an angle of 60 degrees, with

its infinite circumvolutions around the pole ; if we employ

the following proportion, As the cosine of 60 degrees, or

the sine of 30°, is to radius ; so is 90 degrees difference of

latitude to a fourth term, this fourth term will be the abso-

lute length of the loxodromic line. But the sine of 30

degrees is equal to half the radius ; and hence it follows

that the fourth part of the circle is the half of the above

loxodromic line ; or this line, notwithstanding the infinite

number of its circumvolutions, is exactly equal to a semi-

circle of the sphere.

PROBLEM II.

How a Vessel may sail against the Wind.

What is here proposed, will no doubt seem a paradox

to those unacquainted with the principles of mechanics.

Nothing however is more common in navigation, as this is

always done when a vessel, according to the nautical term,

is beating up on different tacks, or keeping as near to the

wind as possible. But when we say a vessel can sail against

the wind, we do not mean that she can proceed on a course

directly opposite to the point from which the wind blows ;

it is only by making an acute angle with the rhumb line

passing through that point, which is sufficient ; for by

several tacks she can then advance in a direction contrary

to that of the wind.
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Let us suppose a vessel, pl. 1 fig. 2, the keel of which is

AB, and let one of the sails CD be set in such a manner, as

to form with the keel an angle BED of 40 degrees : ifthe

direction of the wind be EF, making with the same keel an

angle of 60 degrees, for example, it is evident that the

angle DEF will be 20 degrees ; consequently the sail will

be impelled by a wind falling on it at an angle of 20

degrees. But according to the principles of mechanics,

the action of a power falling obliquely on any surface, is

exercised in a direction perpendicular to that surface, and

therefore if EG be drawn perpendicular to CD, theline EG

will be the direction according to which the effort of the

wind is exercised on the sail CD, but with a diminished

force on account of the obliquity ofthe stroke.

If the vessel were round, it would proceed in that di-

rection ; but as, in consequence of its length, it can move.

with much greater facility in the direction of its keel Eн,

than according to any other, it will assume a direction EK,

somewhere between EG and EH, but much nearer to the

latter than to the former, almost in the ratio of its facility

to move according to EH and EG. The angle KEF there-

fore, which the ship's course forms with the direction of

the wind, may be an acute angle. If the angle KEH, for

example, be 10 degrees, the angle KEF will be 70 degrees,

consequently the vessel will lie almost two points nearer

to the wind. But it is shown by experience, that a vessel

may be made to go on a course still nearer to the direction

of the wind, or to lie closer to it by about one point more;

for ifthe vessel be well constructed, there are 22, of the

32 points comprehended in the compass, which may serve

to make her proceed to the same place.

It is indeed true, that the nearer a ship lies to the wind,

or to speak in common terms, the sharper the angle of the

wind's incidence on the sail , the less will be its force to

push the vessel forwards ; but this is compensated by the

quantity of sail that may be set, for in this case none of

VOL. III. X
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the sails hurt each other, and a vessel can absolutely carry

all her sails. What therefore is lost in consequence ofthe

weakness of the force exerted on each, is gained by the

quantity of surface exposed to the wind.

It may be easily conceived how advantageous this

property of vessels is to navigation; for whatever be the

wind, it may be employed to convey a ship to any deter-

minate place, even if it should blow directly from that

quarter. For let us suppose, pl. 1 fig. 3, that the direct

course is from E to F, and that the wind blows in the di-

rection Fs ; the vessel must be kept as near the wind as

possible, to describe the line EG, making with EF the acute

angle FEG; having proceeded some time in the direction

EG, the vessel must then tack about, to run down GH ;

then HI ; then IK ; and so on ; by which means she will

always approach nearer to the place of her destination.

PROBLEM III.

Oftheforce ofthe Rudder, and the manner in which it acts.

The force, by which the rudder of a ship makes her

move in any direction , at pleasure, excites no small degree

of astonishment ; especially when we consider the weak

action of the enormous rudders with which some of the

barges that navigate our rivers and canals are furnished.

The cause of this phenomenon we shall here endeavour to

explain and illustrate.

The rudder of a barge or vessel has no action unless

impelled by the water. It is the force resulting from this

impulse, which being applied in a direction transversal to

the poop, tends to make the vessel turn around a point of

its mass, called the spontaneous centre of rotation. The

prow of the vessel describes around this point an arc of a

circle, in a direction opposite to that described by the

poop; hence it follows that the prow of the vessel turns

towards that side to which the rudder is turned, con-

sequently opposite to that side towards which the tiller
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or lever of the rudder is moved . Hence, when the tiller

is moved to the starboard side, the vessel turns towards

the larboard, and vice versa.

A force, and even a certain degree of intensity, must

therefore be applied to the rudder to make the vessel turn ;

and on this account the construction of the vessel is so

contrived, as to increase this force as much as possible ;

for while the barges which navigate our rivers are in gene-

ral very broad behind, and screen as we may say the

rudder, so that the water flowing along their sides can

scarcely touch it, the sterns of vessels intended for sea are

made narrow and slender, so that the water flowing along

their sides must necessarily strike against the rudder, if in

the least moved from the direction of the keel. Let us

therefore endeavour to estimate nearly the force which

results from this impulse.

A vessel of 900 tons, when fully laden , draws 13 or 14

feet of water, and its rudder is about 2 feet in breadth.

Let us now suppose that the vessel moves with the velocity

of 2 leagues per hour, which makes 176 yards per minute,

or about 9 feet per second ; if the rudder be turned in

such a manner as to make with the keel continued an

angle of 30 degrees, the water flowing along the sides of

the vessel will impel the rudder under the same angle, that

is 30 degrees. The part of the rudder under water being

14 feet in length and 2 in breadth, presents a surface of 28

square feet, impelled at an angle of 30 degrees, by a body

of water flowing with the velocity of 9 feet per second.

But the action of such a current, if it impelled a similar

surface in a perpendicular direction, would be 2205 pounds,

which must be reduced in the ratio of the square of the

sine of incidence to that of radius, or in the ratio to 1,

since the sine of 30 degrees is , radius being 1. The

effort therefore of the water will be 551 pounds. Such is

the force exercised perpendicularly on the rudder ; and to

find the quantity of this force that acts in a direction per-

x 2
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pendicular to the keel, and which makes the vessel turn,

nothing is necessary but to multiply the preceding effort

by the cosine of the angle of inclination of the rudder to

the keel, which in this case is ✔ or 0.866, which will give

477 pounds.

Theabove computation is made on the old supposition,

that the force of the water is diminished in proportion as

the square of the sine of the incident angle is less than the

square of the radius. But, by more accurate experiments

it is found (Dr. Hutton's Math. and Philos. Dictionary,

Tab. 3, Resistance) , that at an angle of 30 degrees, the ab-

solute force is diminished only in the ratio of 840 to 278 ;

hence then, the whole force 2205 pounds, reduced in this

ratio, comes out 730 pounds, for the effective or perpen-

dicular force on the rudder, to turn it or indeed the ship

about, supposing the rudder held or fixed firm in that

position.

But there is one cause which renders this effort more

considerable : the water which flows along the sides of the

vessel does not move in a direction parallel to the keel , but

nearly parallel to the sides themselves, which terminate in

a sort of angle at the stern-post, or piece of timber which

supports the hinges of the rudder ; so that this water bears

more directly on the rudder by an angle of about 30 de-

grees : hence, in the above case, the angle under which the

water impels the rudder will be nearly 60 degrees : we

must therefore make this proportion, as the square of radius

is to the square of the sine of 60 degrees, or as 1 is to ;

so is 2205 to 1653. The force therefore which acts in a

direction perpendicular to the keel, is 1653 pounds. Or,

by the table in the dictionary above quoted, as 840 is to

729 (for 60°), so is 2205 to 1913 pounds, the perpendicular

force.

This effort will no doubt appear very inconsiderable

when compared with the effect it produces, which is to

turn a mass of 900 tons ; but it must be observed that this
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effort is applied at a very great distance from the point of

rotation and from the vessel's centre of gravity; for this

centre is a little beyond the middle of the vessel towards

the prow, as the anterior part swells out, while the posterior

tapers towards the lower works in order that the action

of the rudder may not be interrupted . On the other

hand, it can be shown that what is called the spontaneous

centre of rotation , the point round which the vessel turns,

is also a little beyond the middle and towards the prow;

hence it follows, that the effort applied at the extremity

of the keel, towards the stern, acts to move the vessel's

centre of gravity, by an arm of a lever 12 or 15 times as

long as that by which this centre of gravity, where the

weight of the vessel is supposed to be united, exerts its

action. And lastly , there is no comparison between the

action exercised by this weight when floating in water,

and that which it would exert if it were required to raise

it only one line. It needs therefore excite no surprise,

that the weight of one ton, applied with this advantage,

should make the vessel's centre of gravity revolve around

its centre of rotation.

If the ship, instead of going at the rate of 2 leagues per

hour, sails at the rate of 3, the force applied to the rudder

will be to that applied in the former case, in the ratio of

9 to 4 ; consequently, if the position of the rudder be as

above supposed , the actual force will be 3719 pounds, or

rather 4304 pounds : if the velocity of the vessel were 4

leagues per hour, this force in the same position of the

rudder, would be 4 times as much as at first, or 6612

pounds, or rather 7652 pounds.

Hence it is evident why a vessel, when moving with

rapidity, is more sensible to the action of the helm; for

when the velocity is double, the action is quadrupled : this

action then follows the square or duplicate ratio of the

velocity.
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PROBLEM IV.

*What angle ought the rudder to make in order to turnthe

vessel with the greatestforce?

If the water moves in a direction parallel to the keel

when it impels the rudder, it will be found that this angle

ought to be 54 degrees 44 minutes ; but, as already ob-

served, the water is carried along in an angular manner

towards the direction of the keel continued ; which renders

the problem more difficult. If we suppose this angle to

be 15 degrees, which Bouguer considers as near the truth,

it will be found that the angle in question ought to be 46

degrees 40 minutes .

Ships do not receive the whole benefit of this force ; for

the length of the tiller does not permit the helm to form

with the keel an angle of more than 30 degrees.

PROBLEM V.

Can a vessel acquire a velocity equal to, or greater than that

ofthe wind?

This can never take place in a direct course, or when

the ship sails before the wind ; for besides that in this case

a part of the sails hurt or intercept the rest, it is evident

that if the vessel should by any means acquire a velocity

equal to that of the wind, it would no longer receive from

it any impluse ; its velocity then would begin to slacken

in consequence of the resistance ofthe water, until the wind

should make an impression on the sails equal to that resist-

ance, and then the vessel would continue to move in a

uniform manner, without any acceleration, with a velocity

less than that of the wind.

But, when the course of the vessel is in a direction

oblique to that of the wind, this is not the case. Whatever

may be its velocity, the sail is then continually receiving

an impulse from the wind, which still approaches more to

equality, as the course approaches a direction perpen-
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dicular to that of the wind: therefore, however fast the

vessel advances, it may continually receive from the wind

a new impulse to motion, capable of increasing its velocity

to a degree superior to that even of the wind itself.

But for this purpose it is necessary that the construction

of the vessel should be of such a nature, that, with the

same quantity of sail, it can assume a velocity equal to

or that of the wind. This is not impossible, if all the

canvas which a vessel can spread to the wind, in an oblique

course, were exposed in one sail in a direct course. This

then being supposed , Bouguer shows, that if the sails be

set in such a manner, as to make with the keel an angle of

about 15 degrees, and if they receive the wind in a perpen-

dicular direction, the vessel will continually acquire a new

acceleration, in the direction of the keel, until her velocity

be superior to that of the wind, and that in the ratio of

about 4 to 3..

It is indeed true, that , as the masts of vessels are placed

at present, it is not possible that the yards can form with

the keel an angle less than 40 degrees ; but some navigators

assert, that by means of a small change this angle might

be reduced to 30 degrees. In this case, and supposing

that the vessel could acquire in the direct line a velocity

equal to that of the wind, the velocity which it would

acquire by receiving the wind on the sails at right angles,

might extend to 1'034 that of the wind, which is a little

more than unity, and therefore somewhat more than the

velocity of the wind.

If we suppose the same velocity possible in the direct

course, and that the sail forms with the keel an angle of

40 degrees, it will be found that the velocity acquired by

the vessel in an oblique course, will be nearly

velocity of the wind.

the

This at least will be the case, if in this position of the

sails, in regard to the wind, they do not hurt or obstruct

each other. If all these circumstances therefore be com-
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bined, it appears that thoughit is possible, speaking mathe-

matically, that a vessel can move with the same velocity

as the wind, or even with a greater, it will be very difficult

to produce this effect in practice.

PROBLEM VI.

Giventhe direction ofthe wind, and the course which a vessel

must pursue in order to reach a proposed place ; what

position of the sails will be most advantageous for that

purpose?

Let us suppose that the wind blows fromthe north, and

that the ship's course is due east. If the ship , when her

head is directed to that point, has her yards parallel to the

keel, her progress will be = 0 ; as she will receive no

impulse but in a direction perpendicular to the keel. On

the other hand, if the yards be perpendicular to the keel,

as the sails will not catch the wind, the vessel in this case

again will not move. Thus, from the first position to the

latter, the impulse in the direction of the keel, and conse-

quently the velocity, goes on first increasing, and then

decreasing. There is some position therefore at which this

impulse is strongest, or what is called a maximum, and

which will make the vessel move with the greatest velocity.

The question is to determine it.

⚫ Geometricians baye solved the problem, and have found,

that to determine this angle, that between the wind and

the proposed course must be divided in such a manner,

that the tangent of the apparent angle, which the wind

forms with the yard, shall be double to that which the yard

forms with the course, or with the keel. In this case

therefore, the sail at first must be placed in such a situa-

tion, as to make with the keel an angle of 35 degrees 16

minutes, and consequently with the wind an angle of 54

degrees 44 minutes.

We say the sail at first must be set in this manner ; for

as soon as the vessel has acquired a greater velocity, this
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angle will cease to be the most favourable, and will become

less so, the more the velocity is accelerated, as must be

the case, till the impulse of the wind be in equilibrio with

the resistance which the vessel suffers fromthe water; but

in proportion as the velocity is accelerated, the wind strikes

the sail more obliquely, and loses its force : for this reason,

the sail must be disposed in such a manner, as to form with

the keel an angle always more acute, and this angle may

be reduced to 30 degrees and less ; so that the wind shall

make with the sail an angle of 60 degrees and more.

We have here considered the question independently of

lee-way; but if this be taken into account, supposing it

for example in the present case to be one point, it will be

necessary to make the vessel's head lie a point nearer to

the wind: the angle then which the wind forms with the

course will be from 78 to 79 degrees ; and it will be found

that on the outset, the angle formed by the wind and the

sail ought to be 48° 45' ; and that of the yard with the keel

29° 45′, which must gradually be reduced to 24 or 25 de-

grees. Bythen steering wNww, the vessel will really

proceed East with the greatest velocity possible, or nearly

so ; and as in the neighbourhood of those points which

give a maximum, the progressive increase is insensible,

this greatest velocity will always be nearly obtained, even

when the above angles are not very exact.

PROBLEM VII.

In what manner must a vessel at sea be directed, so as to

* proceed from any given place to another bythe shortest

›course possible?

•

As the loxodromic line, which navigators generally

follow at sea, is not the shortest way from one place to

another, it is natural to ask whether there be not some

means by which the shortest course can be pursued ; for it

is evident, cæteris paribus, that the way being shorter, the

voyage would be sooner ended.
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As this is no doubt possible , we shall first show howit

may be done, and then examine with what advantage it is

attended.

Every one knows that the shortest way from one place

to another, on the surface of the earth, is the arc of a great

circle drawn from the one to the other. Nothing then is

necessary but to keep the vessel continually on the arc of

a great circle, or at least to deviate very little from it.

Let us suppose then, that a vessel is bound fromLondonto

the island of Trinidad. It will be found by trigonometrical

calculation, that the arc of a great circle drawn from Lon-

don to Trinidad, makes at London with the meridian, an

angle of 69° 44' , and at Trinidad of 37° 30' ; while that of

the loxodromic line with the meridian is at London 50° 40′.

The angle formed by the course with the meridian , at the

time of departure, ought therefore to be 69° 44'.

But to keep the vessel in this great circle, it will be

necessary to change the angle every day; and strictly

speaking every hour and every moment, otherwise the

vessel will describe small loxodromic lines, and not the

arc of a great circle. The following method, which, if

not perfectly exact, approaches very near the truth, may

be employed to effect this change.

As the angle at Trinidad is 37° 30' , it may be easily seen,

that from the time of the vessel's departure, till that of her

arrival at the place of destination, the angle of the course

must be gradually diminished, from 69° 44′ to 37° 30′.

Let us divide the difference, which is 32° 14', into 10 equal

portions, which will each be 3° 13' . Every time then that

the difference of longitude is one tenth of the whole, or

about 5° 37', that is when the vessel has made about 111

leagues of departure towards the west, it will be necessary

to keep 3° 13′ more to the south. By these means the

vessel will be kept nearly on the arc of a great circle,

passing through London and Trinidad.

These angles might be more exactly determined by
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means of trigonometry; that is by drawing a meridian at

about every4 degrees oflongitude, and successively solving

the spherical triangles thence resulting ; but we confess that

we never had the courage to attempt a calculation so use-

less. For, if we examine what advantage would arise from

this operation, it will be found of very little importance.

The distance from Plymouth to Trinidad, measured on a

great circle drawn from the one to the other, is about

1212 leagues ; and if the loxodromic line drawn from the

one to the other be measured, it will be found to be about

1254. It is therefore not worth while to seek for the

shortest course to save about 40 leagues ; especially as in

sea voyages, the principal object is not to pursue the

shortest route, but to take advantage of the wind what-

ever it may be, in order to complete the voyage.

PROBLEM VIII.

What is the most advantageous form ofconstruction for the

prow of a vessel, in order that she may sail better, or be

easier steered?

If one only of these objects were to be attained, that for

example of cleaving the water with the greatest facility,

the problem might be easily solved. The sharper a vessel

is at the prow, the easier she can cut the water, and con-

sequently will be better calculated for moving with

rapidity.

But an object still more important than velocity , is that

of being easily worked : without this property, a vessel,

like a refractory horse, would render useless the whole art

of the navigator. But it is shown both by experience and

reason, that a vessel, to be manageable, must be narrow

towards the stern in the part immersed , in order that the

water which runs along her sides may strike the rudder

with more facility. She will also be managed with more
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ease, the farther the centre of gravity is from the stern ;

and for this reason the most obtuse and the widest part of

the vessel must be towards the head . This is actually the

case in regard to all vessels destined for voyages.

Nature, in regard to this point, seems to have provided

man with a model in the form of fishes ; for it may be

readily seen that the thickest part of the fish is towards

the head, which in general is even pretty obtuse. Like

our ships, they have much more need of being able to

turn and direct themselves with ease, than to move with

rapidity. The best vessel perhaps would be that con-

structed according to the exact dimensions of a migrating

fish, such as the salmon ; which seems to enjoy, in a

greater degree than any other, the two properties of

moving quick and directing itself with ease.

M. Camus, a gentleman of Lorraine, gives an account,

in his Mechanics, of several experiments, from which he

endeavours to show, that the model of a vessel will move

faster with the thick end foremost, than when cleaving

the waves with the other, which is sharper : he even as-

signs reasons for this idea, but they are certainly ill

founded. These experiments are in absolute contradic-

tion to sound theory ; and if ships have that form, it is

not that they may move faster, but in consequence of

the necessity which has been found, of sacrificing the

advantage of velocity to that of being easily manoeuvred.

M. Montucla here, rather injudiciously, opposes theory

to experiment, and censures Camus improperly, whose

experiments and reasonings have been confirmed by the

more accurate and extensive ones made, in the years

1793-1798, by the English Society for the improvement

of Naval Architecture, and may be seen at large in the

Report of their Committee, printed in the year 1800.
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PROBLEM IX.

What is the most expeditious method of coming up with a

vessel which is chased, and which is to the leeward?

When a vessel is descried at sea, and you are desirous

of coming up with her, you would be much mistaken if

you directed the head of your own vessel towards the one

you are pursuing ; for unless the chace were proceeding

on the same course exactly, you would either be obliged to

change your direction every moment, or you would lose

the advantage of the wind by falling to the leeward.

If a body a, pl . 1 fig. 4 , moves in the line abcd, and if

it be proposed that another body a should come up with

it, the body a ought not to be impelled in the direction

Aa ; for in a few moments a will have advanced on the

line in which it moves, and will have reached the point b,

for example. Hence ifwe suppose that the body a always

changes its course, directing itself towards the one it pur-

sues, it will describe a curve such as ABCDE, and will at

length reach the body a by going faster, but not by the

shortest way. If it does not change its direction every

moment, it will arrive at a point in the line ad, whichthe

body a has already left, and will pass it, unless it set out

to pursue it along the line a d, which would still make it

lose time.

To cause the body a therefore to come up with a, in the

least time possible , a must be directed to a point in the

line a e, fig. 5, so situated , that AE and'a e shall be to each

other inthe ratio of their respective velocities. But these

lines will be in this ratio , if the body A, at every moment

in its course, is that which it pursues similarly situated , in

a direction parallel to the direction Aa ; that is, aa being

directed to the south, if the body a, when it reaches b , is

to the south of the body a when it arrives at B ; for it is

evident that the lines AE, ae, will then be proportional to
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the velocities of the two bodies, and they will arrive at the

same time at E or e.

Navigators are sensible of this, both from practice and

reason ; for if a vessel at a espies another at a, the course

ofthe latter ae, may be ascertained nearly without much

difficulty, and the ship in chase, instead of directing her

head towards a, will follow a course such as AB, inclined

from a, and at the same time the bearing of the vessel in

the direction Aa will be taken by means of the compass ;

when a has proceeded some time, and reached в, for ex-

ample, while a has reached b, the bearing of the vessel a

in the direction вb will be again taken : if it be still the

same, it is a sign that A is gaining ground, for aа and âb

are parallel. Ifthe chace falls a little behind, it shows that

she may be pursued in a line making with the direction of

her course, a less acute angle ; but if she has got a-head, a

line more inclined must be pursued to reach her ; and if

the line be as much inclined as possible, and approaches to

parallelism, there is reason to conclude that the chace is

a better sailer, and that all hope of reaching her must be

given up.

It is here supposed that the chasing vessel has the ad-

vantage, or is to windward ; for if she be to leeward, the

manœuvring must be different, unless she has a great ad-

vantage in being able to lie near the wind. But this is not

the proper place for enlarging on these manœuvres ofthe

most ingenious of all arts.

PROBLEM-X.

On determining the Longitude at Sea.

The determination of the longitude at sea, has afforded

no less exercise to mathematicians, than the perpetual mo-

tion, the quadrature ofthecircle, and the duplication ofthe

cube, but with more reason ; for no great advantage would

be derived from a solution of the two latter, whereas that
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ofthe former would be attended with the greatest benefit

to navigation. Navigators might at all times, when the

heavens are visible, determine the place at which they have

arrived, by observing the longitude and latitude ; while in

the present state of navigation the longitude can be esti-

mated only in a very vague manner ; and nothing is more

common, in long voyages from east to west, or the con-

trary, than for navigators to err a hundred leagues and

more in their longitude. The British parliament there-

fore, many years ago, offered a reward of 20,000), to the

person who should point out a certain method, practicable

for common navigators, of determining the longitude at

sea.

The problem of the longitude consists in determining

the difference between the time reckoned in a vessel at

sea, and that reckoned at any determinate place, such as

the port whence the vessel sailed , and of which the longi-

tude is known. But the time may be ascertained on board

a vessel without much difficulty, provided the sun can be

observed at noon, and also the latitude ; for, by means of

the instruments now employed at sea, the point of noon

can be determined within about 2 minutes. By knowing

the latitude in which the vessel is, and the sun's declination ,

the hour can be determined also by the setting of the sun.

The operations relating to this subject may be seen in all

good works on navigation.

But the difficulty is to find what the hour is, at the same

time, in the port from which the vessel sailed . There are

however two methods of accomplishing this object, which

mathematicians have endeavoured to render certain and

practicable : one of them depends on mechanics, the other

is purely astronomical .

If the instruments constructed for measuring time, pre-

served at sea the same regularity of motion as at land, it

would be easy on board ship to find on every occasion the

hour at a determinate point. For this purpose, a navigator
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on leaving the Lizard, for example, would set his time-

keeper to the exact hour at that place, and if the time-

keeper were always regularly wound up, it would continue

to indicate the hour at the Lizard. When it should bere-

quired then to determine the ship's longitude, nothing

wouldbe necessary but to observe exactly the time ofnoon,

and then to examine the hour indicated by the time-piece :

the difference between these would be the difference of

longitude. Thus, after the end of a fortnight, if the time-

keeper indicated 2 hours 10 minutes, when it was noon on

board the ship, there would be reason to conclude that the

difference in time, between the Lizard and the place at

which the ship had arrived, was 2 hours 10 minutes, which

are equal to 32 degrees 30 minutes west from the Lizard :

then by means of the latitude, found by observation, it

would be easy to determine exactly the ship's place on the

earth.

But as a pendulum clock cannot be used, and as the best

watches get entirely deranged at sea, it becomes necessary.

to discover some method of measuring time not subject to

this inconvenience ; or to improve the instruments already

employed so far as to remove it entirely.

Various inventions, supposed to be less subject to the

irregularities occasioned by the rolling of a ship at sea,

have been proposed for this purpose. It is said , in the

preceding editions of this work, that nothing is necessary

but to take a good clock of the common construction, to

change its large spring for eight others of less force, which

together shall exert the same action, to wind them up in

successive order, that is one every twenty-four hours, and

to substitute for the pendulum a spiral spring with a scape-

ment à rochet ; in the last place, to preserve this instru-

ment, or several of them, in one or two boxes, deposited

in some part ofthe vessel less sensible of its motion, taking

care to keep the air within these boxes at a uniform tem-

perature, which might be easily done by a thermometer,
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By these means, says the author, you will have an instru-

ment which will indicate the hour at sea exactly. If an

apparatus so simple were sufficient to solve this problem,

it would not have occupied so long the talents of mecha-

nicians and astronomers.

Others have had recourse to sand-glasses : the descrip-

tion of one of these, invented by the abbé Soumille, may

be seen in the Mémoires adressés à l'Academie Royale des

Sciences, par des Sçavans étrangers , vol. 1. It is ingenious,

but we do not know whether it was ever tried , and whether

it was attended with success.

Many years ofresearch however gave birth , in England,

to the invention of a marine time-keeper, which has the

advantage of preserving its uniformity of motion at sea.

For this invention we are indebted to Mr. Harrison, who

proposed it about the year 1737. Though at that time it

did not appear to possess the required regularity, the

Board of Longitude conferred a reward on the author, to

encourage him to improve his work ; and at length after

twenty years employed in this labour, and in making vari-

ous experiments, he again presented it in 1758 to the

Board , who gave orders for trying it in a voyage from

England to Jamaica. This trial was made with every pre-

caution and formality necessary to ascertain the result ;

and towards the end of the year 1761 , it appeared that

Mr. Harrison's time-keeper gave the longitude of Jamaica

nearly within 5 seconds in time. On the return of the

vessel dispatched for this purpose, the error, notwithstand-

ing the violent storms experienced during the voyage,

was only 1 minute 54 seconds in time, or about 33 En-

glish miles ; and a reward was adjudged to the author in

consequence of his having constructed a machine which in

such a passage did not err much more than 30 miles.

Mr. Harrison therefore received 5,000l. sterling as part

of the reward of 20,0001, offered by the British parliament,

VOL. III. Y
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which was to be paid to him after a new experiment, and

on his making known the mechanism of his time-keeper,

and teaching artists how to construct others of the like

kind. This second trial was made in 1765, in a voyage

from Portsmouth to Barbadoes, and the result of it having

confirmed the success of the former, Mr. Harrison received

5000l. more, He was to be paid the remainder when he

had taught a certain number of artists to construct such

machines, for the use of navigators. A full account of this

interesting discovery, and a description of the mechanism

invented by Mr. Harrison, may be seen in various pamph-

lets, and other works, published on the subject. Naviga-

tion however is indebted to England for a certain method

ofknowing at sea the time at the port of departure ; which

is an inestimable advantage, and will certainly be the means

ofpreserving many navigators from shipwreck.

Mr. Harrison's invention having been long kept a secret,

the French watchmakers, who had already made many at-

tempts to solve the problem, redoubled their efforts to dis-

cover it, or to find out some means ofthe same kind. In

order to encourage them, the Academy of Sciences at

length proposed, in the years 1767 and 1773, a prize for

the construction of a time-keeper similar to that of Mr.

Harrison. This prize was gained by M. le Roy ; son of

the celebrated Julian le Roy, who showedthat he had long

before that time discovered the principle ofthe compensa-

tion balance, necessary for constructing his time-keeper.

It was partly for the purpose of trying it that the Marquis

de Courtanveaux caused to be built and fitted out, at his

own expence, the Aurora frigate , in which he made a voy-

age to the Texel in the year 1767. During this voyage,

M. le Roy's time-keeper always went with the greatest re-

gularity, notwithstanding the violent agitation which the

vessel continually experienced, in a sea where a heavy

swell generally prevails ; and therefore, though the merit
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of the discovery must be allowed to Mr. Harrison and to

England, we may say that France had nearly fallen upon

it at the same time.

We must here observe that there is another French

artist, who has followed so closely the steps of Mr. Harri-

son, that he disputes with M. le Roythe honour of having

made the first time-keeper in France : the artist here al-

luded to is M. Berthoud , whose time-keepers, tried during

the long voyage of M. de Fleurieu , seem also to have an-

swered all the required conditions.

Wehave already mentioned another method of consider-

ing the problem of the longitude , which is merely astro-

nomical. It is therefore necessary that we should make

known what astronomers have done in this respect.

When Galileo discovered the satellites of Jupiter, the

eclipses of which are so frequent, he conceived an idea of

employing them in the solution of the problem respecting

the longitude. It is indeed evident, that if the theory of

the satellites of Jupiter be brought to sufficient perfection,

to determine for any given place, such as London , the mo-

ment when they will be eclipsed, and if an eclipse of one

of these small planets be observed at sea, together with the

exact time when it is seen, nothing will be necessary but

to compare that time with the hour and minute at which

it has been previously announced for the meridian of Lon-

don : the difference of time will give the difference of lon-

gitude. Thus for example, if an eclipse of the first satel

lite has been observed at 10h 20m in the evening ; and if

it is found, by consulting the Nautical Almanac, that the

eclipse is announced for Greenwich observatory at 11h 55m

in the evening ; it is evident that the difference 1h 35m, is

the difference of time, as reckoned at Greenwich and on

board the vessel ; which makes 23° 45′ difference in longi-

tude.

Several obstacles however prevent this method from

being much employed ; for, in the first place, these eclipses

Y 2
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do not happen often enough, as there is only one of the

first satellite every 42 hours ; and besides, they are not

visible during several months, when Jupiter is too near

the sun, &c. 2dly. To observe them , telescopes of a cer-

tain length are necessary, and it is well known that the

rolling of a ship renders it very difficult to observe Jupiter,

or any celestial body whatever, with a telescope of con-

siderable length.

Attempts have indeed been made to remedy this incon-

venience. Mr. Irwin, an Irish gentleman, proposed in the

year 1760, his marine chair ; that is to say, a chair sus-

pended in a vessel in such a manner, that á person seated

in it can observe, with tolerable ease, the satellites of

Jupiter, especially with an achromatic telescope, which

will produce the same effect as a much longer one con-

structed in the usual manner. A trial of it was made by

order ofthe Lords of the Admiralty, and according to the

accounts published at that time, it succeeded pretty well ;

but it would appear that after Mr. Harrison proposed his

time-keeper, Mr. Irwin's marine chair was laid aside.

It has been known for more than a century, that if the

theory ofthe moon were brought to sufficient perfection,

the problem of the longitude at sea would be solved ; for

the moment ofthe moon's appulse to some of the zodiacal

stars of the first or second magnitude , might be calculated

for any determinate place. Besides, the motion of the

moon is so rapid, that her change of position, in a short

time, is very sensible . On this account, astronomers, for

several years past, have employed themselves with great

assiduity, to improve the theory of the moon ; and they

have indeed so far succeeded, that ,the errors in calculat-

ing the moon's place, do not exceed 2 or 3 minutes in the

most unfavourable parts of her orbit ; whereas formerly,

they amounted to several degrees. The British parlia-

ment thought it necessary, by voting a sum of money to

the widow and heirs of the late Tobias Meyer, of Gottin-
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gen, to reward the successful efforts of that indefatigable

and able astronomer, to whom we are indebted for the best

tables ofthe moon ever published . They received there-

fore a present of 2500l . sterling , and as Euler also had la-

boured with the greatest success in improving the theory

of the moon, the parliament voted him the sum of 5001 .

Such examples of justice and generosity towards those

who have exerted themselves in promoting the general

good of mankind, do nations the utmost honour.

Another necessary step was, to render the calculation of

these observations sufficiently easy for practice, if not to

all seamen, at least to the more enlightened part of them .

The Abbé de la Caille is among those who exerted them-

selves with the greatest success in the accomplishment of

this object. He gave formulæ and operations for perform-

ing these calculations, in which a ruler and a pair of

compasses only are employed, and which require but a

moderate knowledge of geometry and astronomy. They

may be seen in the edition which he published of Bou-

guer's Traité de Navigation, as well as in the Connoissance

des Temps, for the years 1765 and 1766. A Nautical Al-

manac, which contains the moon's appulse to various fixed

stars, calculated for the meridian of Greenwich, as well as

the instructions and formulæ necessary for employing the

observations of the moon in determining the longitude ,

has been published for several years past at London, under

the direction of Dr. Maskelyne, astronomer-royal .

*
Some time ago a new instrument, for observing the

distances of the moon from the fixed stars, was proposed.

This instrument, to which the inventor, M. Charnieres, an

officer in the French navy, gave the name of Megametre,

was employed by him to make observations, during avoy-

age from Europe to America, and in 1768 he published the

result of them, which seems to prove, that the instrument

may be useful at sea. We do not find however that it
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ever met with a favourable reception from navigators ; nor

do we know the reason.

PROBLEM XI.

Ifa vessel should be able to reach either of the poles, what

method ought the commander to pursue, in order to steer

in the direction ofa determinate Meridian ?

The difficulty which this problem seems, on the first

view, to present, arises from this circumstance, that if a

vessel were at either of the poles, to whichever side she

might turn, her head would be directed towards the south

or north. Every line drawn from that point, to any point

whatever in the horizon, is a meridian ; and consequently

at the pole there is neither east nor west. But if there is

neither east nor west, how would she steer, or how would

it be possible, all the meridians being similar, to find that

in the direction of which it would be necessary to proceed,

in order to reach the proposed place ?

This however is not all : if a vessel should reach one of

the poles, it is probable that the compass would become

useless, or as the sailors say run entirely mad ; and there

are only two ways of navigating a vessel, either by the

magnetic needle, or by observing the stars, or rather by

both these methods combined.

Such is the problem, which the astronomer who accom-

panied the Hon. Capt. Phipps, afterwards Lord Mulgrave,

sent out to attempt a passage through the northern ocean,

would have had to solve, had the expedition succeeded.

If the progress of the vessel had not been stopped by the

ice, he would have proceeded to the 90th degree of lati-

tude, in order to arrive by the shortest passage at the strait

which separates Asia from America-a strait, the existence

of which is now confirmed by the expeditions of the Rus-

sians , and by the researches of Captain Cook, and which

lies in about the 176th degree of longitude. I proposed
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this problem to myself, in consequence of a new attempt

which was about to be undertaken in France, by M. de

Bougainville. I have heard that it was proposed to a

celebrated astronomer, a member of the Royal Academy

of Sciences : I do not know what answer he returned : but

my solution is as follows :

Had I been the navigator intrusted with the expedition,

that I might not be taken by surprise, I should have pro-

vided myself with two or three good time-keepers, all ex-

actly set to the time at the port of departure, which I sup-

pose to be Brest.

Let us now suppose that the sea was found open, and

that I had arrived at the north pole. I shall suppose also

that my compass had become entirely useless ; but that I

had the sun on the horizon, which is the case in summer,

and therefore such an expedition ought never to be under-

taken but at that period, during which the sun is visible

in those regions for several months. It is evident that by

consulting my time-keepers, the moment when they indi-

cated noon would be that when the sun was on the meri-

dian of Brest ; consequently had I been desirous of return-

ing thither, nothing would have been necessary but to turn

the ship's head towards the sun, and to steer on that course,

in such a manner, as to have the sun at the end of an hour

15 degrees to the starboard ; at the end of two hours 30

degrees, &c. It may be readily conceived that by these

means, though destitute of a compass, I should have kept

my vessel pretty exactly on the line of the determinate

meridian.

Now, ifthe meridian, on which it was necessary I should

steer, had been distant from that of the place of departure

176°, as seems to be the case with that of the strait which

separates Asia from America, it may be easily seen that I

should have had nothing to do, but to direct the ship's head

within about 4 degrees of the point diametrically opposite

to the sun, when the time-keepers indicated noon ; or to-
1
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wards the sun itself when they indicated 16 minutes after

midnight, and then to keep on this course by the method

above described ; changing every hour the angle formed

by the ship's course with the azimuth passing through the

sun. If we suppose the mouth of the strait in question to

be, in regard to Brest, in the longitude already mentioned ,

it is evident that I should not have failed to enter it.

But it is to be observed, that this expedient would be

necessary only when very near to the pole : at the distance

of ten degrees from it , other means of directing the ship's

course might be employed . We shall not however enlarge

farther on this subject ; for it would be of very little use

to point out these means, since the latest voyages seem to

prove that the arctic pole, at the most favourable seasons,

that is to say during the summer of our hemisphere, is

surrounded by a covering of ice ten degrees at least in dia-

meter, and which even extends farther towards Asia and

America ; or, in all probability, adheres to these two con-

tinents, except perhaps during some excessively hot sum-

mers. In short, I am fully persuaded that the idea of tra-

versing the frozen ocean, in order to proceed to the seas

of China and Japan, is a mere chimera ; and that if a vessel

should even be able to get thither, by steering close along

the shores of Asia or America, to the strait above men-

tioned, the voyage would be attended with so many dan-

gers, and require circumstances so favourable, that it would

be madness to attempt it. What indeed would become of

a ship if, retarded by any of the accidents so common in

those seas, she should be obliged to winter, nearly a whole

year, in any port of the almost uninhabited northern coast

of Asia ? What assistance could she expect from the Sa-

moiedes, or any other of these nations, still more bar-

barous? Ifthe crew remained there, how could they secure

themselves from the intense cold of these climates ? Ifthey

quitted their vessel, to take up their lodging in a close

hut, after carrying thither their provisions, would not the
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vessel be exposed to the danger of being plundered or

burnt ? Such an enterprise would require, that the com-

mercial nation which undertook it , should have a port be-

longing to it in some advantageous situation , that ships

obliged to winter in those cold regions might have a con-

venient place of shelter. But what appearance is there

that Russia, the sole mistress ofthese countries, will ever

consent to such a measure ; especially as the Russian go-

vernment so long concealed the information it had obtained

in regard to the strait above mentioned ?
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MATHEMATICAL

AND

PHILOSOPHICAL

RECREATIONS.

PART NINTH.

Some curious particulars in regard to Architecture.

ARCHITECTURE may be considered under two points

ofview. According to the first it is an art, the object of

which is to unite utility and grace ; to give to an edifice

that form fittest for the purpose to which it is destined,

and at the same time the most agreeable by its propor-

tions ; to strike the beholder by magnitude or extent, and

to please by the harmony of the different parts and their

relation to each other : the more an architect succeeds in

uniting all these requisites, the more he will be entitled to

rank among the eminent men who have distinguished them-

selves in this art.

But it is not under this point of view that we here con-

sider it we shall confine ourselves to the geometrical and

mechanical part of architecture, as it presents us with se-

veral curious and useful questions, which we shall lay

before the reader.
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PROBLEM I.

To cut a Tree into a Beam capable ofthe greatest possible

resistance.

This problem belongs properly to mechanics ; but on

account of its use in architecture, we thought it might be

proper to give it a place here, and to discuss it both geo-

metrically and philosophically. We shall first examine it

under the former point of view.

Galileo, who first undertook to apply geometry to the

resistance of solids , has determined on a very ingenious

train of reasoning, that when a body is placed horizon-

tally, and fixed by one of its extremities, as is the case with

a quadrangular beam projecting from a wall, if a weight

be suspended from the other extremity, in order to break

it, the resistance which it opposes is in the compound ratio

ofthe horizontal dimension and the square of the vertical

dimension. But this would be more correctly true, if the

matter of the body were of a homogeneous and inflexible

texture.

It has been shown also, that if a beam is supported at

both extremities, and if a weight, tending to break it, be

suspended from the middle, the resistance it opposes, isin

the ratio of the product of the breadth and square of the

depth, divided by half the length.
•

To solve therefore the proposed problem, we must cut

from the trunk of the tree a beam of such dimensions, that

the product of the square of the one by the other shall be

the greatest possible.

Let AB then, pl . 1 fig. 1 , be the diameter of the circle,

which is the section of the trunk ; the question is, to in-

scribe in this circle a rectangle, as AEBF, of such a nature,

that the square of one of its sides AF, multiplied by the

other side AE, shall give the greatest product. But it can

be proved that, for this purpose, we must first take, in the

f
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diameter AB, the part AD equal to a third of it, and raise

the perpendicular DE, till it meet the circumference in E:

if BE and EA be then drawn , and also AF and FB parallel

to them, we shall have the rectangle AEBF, of such a na-

ture, that the product of the square of AF by BF, will be

greater than that given by any other rectangle inscribed

in the same circle. If a beam of these dimensions, cut

from the proposed trunk, be placed in such a manner, that

its greatest breadth AF shall be perpendicular to the hori-

zon, it will present more resistance than any other that

could be cut from the same trunk ; and even than a square

beam cut from it, though the latter would contain more

matter.

REMARK. Such would be the solution of this problem,

if the suppositions from which Galileo deduced his princi-

ples, in regard to the resistance of solids , were altogether

correct. He indeed supposes that the matter ofthe body

to be broken is perfectly homogeneous, or composed of

parallel fibres, equally distributed around the axis, and

presenting an equal resistance to rupture ; but this is not

entirely the case with a beam cut from the trunk of a tree

which has been squared.

By examining the manner in which vegetation takes

place, it has been found, that the ligneous coats of a tree,

formed by its annual growth, are almost concentric ; and

that they are like so many hollow cylinders, thrust into

each other, and united by a kind of medullary substance,

which presents little resistance : it is therefore these lig-

neous cylinders chiefly, and almost wholly, which oppose

resistance to the force that tends to break them.

But, what takes place when the trunk of a tree is

squared, in order that it may be converted into a beam ?

It is evident, and it will be rendered more sensible by in-

specting fig. 2 , that all the ligneous cylinders, greater than

the circle inscribed in the square, which is the section of

the beam, are cut off on the sides ; and therefore the
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whole resistance almost arises from the cylindric trunk in-

scribed in the solid part of the beam. The portions of

the cylindric coats which are towards the angles, add

indeed a little strength to that cylinder, for they cannot

fail of opposing some resistance to the breaking force ;

but it is much less than ifthe ligneous cylinder were entire.

In the state in which they are they oppose only a moderate

effort to flection, and even to rupture. For this reason,

there is no comparison between the strength of a joist

made of a small tree, and that of another which has been

sawn, or cut with several others from the same beam or

block. The latter is generally weak and so liable to break,

that joists, and other timber of this kind, ought to be care-

fully rejected from all wooden work which has to support

any considerable weight.

We shall here add , that these ligneous and concentric

cylinders are not all of equal strength. The coats nearest

the centre, being the oldest, are also the hardest ; while ,

according to theory, the absolute resistance is supposed to

be uniform throughout.

It needs therefore excite no surprise, that experience

should not entirely confirm, and even that it should some-

times oppose the result of theory. Hence we are under

considerable obligations to Duhamel and Buffon, for baving

subjected the resistance of timber to experiments ; as it is

of great importance in Architecture to know the strength

of the beams employed , in order that larger and more

timber than is necessary may not be used.

But notwithstanding what has been said, it is very

probable that the beam capable of the greatest resistance ,

which can be cut from the trunk of a tree, is not the

square beam ; for the following experiments made by

Duhamel seem to prove, the size being the same, that the

beam which has more depth in proportion than breadth,

whenthe depth is placed vertically, presents so muchmore

resistance ; and even without deviating very much from



THE STRONGEST BEAMS. 335

the law proposed by Galileo, viz , the compound ratio of

the square of the vertical dimension and that of the

breadth .

Duhamel indeed caused to be broken twenty square

bars of the same volume, to determine what form of dress-

ing would render them capable of the greatest resistance.

They all had 100 square lines of base, and four of each

sort were employed ofthe different dimensions, to compose

the same area.

The first four, which were 10 lines in every direction ,

sustained a weight of 131 pounds.

Four others which were 12 lines in one direction and 8

in another, sustained each 154 pounds. The above law

would give 157 pounds.

The next four, which were 14 lines in height and 7; in

breadth, supported each 164 pounds. Calculation would

give 183 pounds.

Four more, which were 16 lines in height and 64 in

breadth, sustained each 180 pounds. According to calcu-

lation they ought to have supported 209 pounds.

The last four, which were 18 lines in height and 5½ in

breadth, sustained each 243 pounds. Calculation would

have given only 233 pounds. It is very singlar that in

this case calculation should give less than experience ;

while in the other cases the result was contrary.

Buffon began experiments on a larger scale, in regard

to the resistance of timber, an account of which may be

seen in the Memoirs of the Academy of Sciences for the

year 1741. It is to be regretted that he did not pursue

this subject, on which no one could have thrown more

light. It appears to result from these experiments, that

the resistance increases less than in the square of the

vertical dimension , and decreases in a ratio somewhat

greater than the inverse of the length.

In short, the result of the whole is, that to solve the

proposed problem, it would be necessary to have physical
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data of which we are not yet in possession ; that the beam

capable of the greatest resistance, that can be cut from the

trunk of a tree, is not a square beam ; and that in general

many researches are to be made respecting the lightening

of carpenter's work, which often contains forests of timber

in a great part useless .

PROBLEM II.

Of the most perfect form of an arch. Properties of the

catenarian curve, and their application to the solution of

this problem.

The most perfect arch, no doubt, would be that, the

voussoirs of which being exceedingly thin, and even smooth

on the sides in contact, should maintain themselves in com-

plete equilibrium. It may easily be perceived that, in

consequence of this form, very light materials might be

employed ; and we shall show also that its push or thrust

on the piers would be much less than that of any other

arch of the same height, constructed on the same piers.

This property and this advantage are found in a curve

well known to geometricians under the name of the cate-

narian, and called by the French la Chainette. This name

has been given to it because it represents the curve assumed

by a chain ACB, pl . 1 fig. 3 , composed of an indefinite

number of infinitely small and perfectly equal links, or by

a rope perfectly uniform and exceedingly flexible, when

suspended freely by its two extremities.

The determination of this curve was one of those pro-

blems which Leibnitz and Bernoulli proposed towards the

end of the 17th century, in order to show the superiority

of their calculation over the common analysis ; which in-

deed is hardly sufficient to solve a problem of this nature.

But we must here confine ourselves to a few ofthe proper-

ties of the curve in question.

If the curve ABC, fig. 3 and 4 pl. 1 , be disposed in such

a manner, that its summit shall be uppermost ; and if a
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multitude of globes be so arranged , that their centre shall

be in the circumference of this curve, they will all remain

motionless and in equilibrium : much more will this equi-

librium subsist, if, instead of balls, we substitute thin vous-

soirs, the joints of which will pass through the points in

contact, as they will touch each other in a surface far

more extensive than the points in which we suppose the

balls to touch each other.

Now to describe a curve of this kind is attended with

no difficulty ; for let us suppose that the space AB, com-

prehended between the two piers A and B of fig. 5, is to

be covered with an arch, and that the elevation of this arch

is to be sc. Trace out on a wall a horizontal line ab , fig.

6, equal to AB; then fromthe middle of ab draw c perpen-

dicular to it, and equal to sc ; and having fixed to the

points, a and b, the two ends of a very flexible rope or

chain, formed of small links perfectly equal and very

moveable, so that when suspended freely it shall pass

through the point c, mark out onthe wall a sufficient num-

ber of the points or eyes of these links, without deranging

them : the curve described through these points will be

the one required ; and nothing will be easier than to trace

out the plan of it on the wall as represented by ACB fig. 5.

Then trace out at an equal distance, both without and

within ACB, two curves, which will represent the extrados

and intrados of the arch to be constructed. Divide the

curve AC into any number of equal parts at pleasure ; and

through these points of division draw lines perpendicular

to the curve, which may be done mechanically with suf-

ficient exactness for practice : these perpendiculars will

divide the arch into voussoirs ; and you will thus have a

plan of the arch described on the wall. From this plan it

will be easy to construct the pannel or model boards for

cutting the stones according to the proper form. Ifthese

operations are accurately performed, were the line AB a

VOL. III. 2
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1

hundred feet, and the height sc still more, the voussoirs

of this arch would maintain themselves in equilibrium,

however small the part in contact might be: for, mathe-

matically speaking, they ought to maintain themselves in

equilibrium even if the surfaces in contact were highly

polished and slippery : consequently the equilibrium will

subsist much more when cut in the usual manner.

Nowto find the force with which an arch of this kind

pushes against its piers, or tends to overturn them, draw a

tangent to the point a the commencement of the curve,

fig. 6, which may be done mechanically by assuming two

points very near the curve, and drawing through these

points a line which will meet in t, the axis sc continued*.

This tangent being given, it can be demonstrated in me-

chanics that the whole weight of the semi-arch ac, is to

the weight or force with which it pushes the pier in a hori-

zontal direction , as st is to sa. On the other hand, we

must add to the weight of the pier, the force with which

the semi-arch presses upon it perpendicularly ; that is to

say, the absolute weight of the semi-arch: in this manner

the thickness of the pier may be found, by the following

arithmetical operation , which we shall here substitute for

a geometrical construction, as the latter might appear too

complex to the generality of our readers.

We shall suppose the span AB to be 60 feet, pl. 1 fig. 5

and 6, and consequently As will be 30 feet ; we suppose

sc to be 30 feet also , in order that we may compare the

push or thrust of this arch with that of a semi-circular one.

Let the length AC be 45 feet 1 inch 8 linest, and the

breadth of the arch 1 foot ; for, on account of the reasons

This tangent may be drawn geometrically in the following manner :

make use of this proportion, as 2sc is to ac + sc, so is ac — sc to a fourth

term, which we shall call cu; if you then say, as cu is to ac, so is as to st,

the point will be that where the tangent to the point a will meet the axis.

+ It is found by calculation that this ought to be the length.
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above mentioned, it may be constructed with safety in

this light manner. If the height of the pier then be 40

feet, required the thickness it ought to have in order to

overcome the thrust of the arch.

It will be found, on this supposition, that the tangent of

the point a, the commencement of the catenarian curve or

arch, will meet its axis sc produced , in a point t so situated,

that st will be 71 % feet. If sa be then divided by st, we

shall have the number 399, which must be reserved, and

which we shall call N.

Now take a fourth proportional to the height of the

pier, the length AC of the semi-arch, and to its thickness,

and let the half of this fourth proportional, which in this

case is , be called D.

Then multiply AC by the thickness I , and the product

by double the reserved number N, which will give 37 ;

to this number add the square of D, and extract the square

root ofthe sum, which will be 64: if the above number D

be taken from this root , we shall have 5 feet 7 inches, for

the breadth of the pier*. The pier being constructed of

materials homogeneous to the arch, it is certain that it will

resist the force with which the latter tends to throw it

down ; for, to simplify the calculation , we have made a

supposition which is not altogether exact, but which in-

creases in some measure the breadth of the pier. This

observation we think necessary, that we may not be ac-

cused of committing a wilful error.

If this breadth be compared with that necessary to sup-

port a circular arch forming a complete semicircle, the

latter will be found to be much greater, for it ought to be

near 8 feet.

The push of an arch constructed on a circular founda-

tion, such as the arch of a dome, being only about one half

* This determination of the breadth or thickness of the pier, if not ma-

thematically correct, may at least be considered as sufficiently near for

practical purposes.

z 2
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of that exerted on its piers by a vault arch of the same

thickness, it thence follows that, on the above supposition,

the side of such a dome would require only 333 inches in

thickness. But it can be demonstrated, even by the figure

of the catenarian curve, that the arch may be but about a

foot in thickness. Hence we may see how ill founded was

the objection made to the architect of the church of Saint

Genevieve, of its being impossible to construct, on the

base he employed, the dome which he projected ; for he

could have done it even if we suppose his construction to

be such as the author of the objection traced out to him,

according to the precepts of Fontana, or rather according

to the mode which that architect followed in the construc-

tion of his domes. What then would have been the case,

had the architect alluded to, instead of first constructing a

cylinder of 36 feet, which it however appears was never

his design , made his arch rise immediately in a catenarian

curve, above the circular cornice, which crowned his pen-

dentives, or above a socle of small height ? It is evident

that the push of this arch would have been much less ; and

it would not be surprising if it should be found by calcula-

tion that his piers would have been capable of sustaining

the arch raised above them, even supposing them insulated,

and not allowing them any support from the re-entering

angles of the church, which might have been made to rest

against them.

We shall conclude with observing, that if it were re-

quired to find, by principles similar to those which gave

rise to the discovery of the catenarian curve, the most ad-

vantageous form for a dome, the problem would be ex-

ceedingly difficult ; for if we suppose this arch divided

into small sectors , it will be evident that the weight of the

voussoirs is not equal, and that their relation depends even

on the form given to the arch. What has been here said,

ought therefore to be considered only as an approximation

of the most advantageous figure which the arch, in that

case, ought to have.
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PROBLEM III.

How to construct a hemispherical arch, or what the French

Architects call an arch en cul-de-four, which shall have no

thrust on the piers.

The dispute carried on , some years ago, with a consider-

able degree of warmth, respecting the possibility of execut-

ing the cupola of the new church of Saint Genevieve , gave

me an opportunity of examining whether, even on the

supposition that the supporters would be necessarily too

weak to resist the thrust of an arch 63 feet in diameter,

there might not be found some resources to render the

construction of the cupola possible. I soon found that it

was possible, by means of a very simple artifice, to con-

struct an hemispherical arch , or an arch in the form of a

semi-spheriod, which should have no sort of thrust on its

piers, or on the cylindric tower by which it is supported.

This will be readily conceived from the following reason-

ing and illustration.

It is evident that a hemispherical arch would exert no

thrust on its support, if the first row were of one piece.

be sup-
But though this is impossible, the deficiency may

plied, and such an arrangement may be made, that not

only the first row, but that several of those above it, shall

be disposed in such a manner, that their voussoirs can have

no movement capable of disjoining them, as we shall here

show. The hemispherical arch will then exert no kind of

thrust on its supporters ; so that it may not only be sus-

tained by the lightest cylindric pier , but even by simple

columns, which would furnish the means of rearing a work

Let usvery remarkable on account of its construction .

see then, how the voussoirs of any row can be connected

in such a manner as to have no motion tending to make

them recede from the centre. There are several methods

ofaccomplishing this object.
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1st. Let ▲ and в, pl. 2 fig. 7 n° 1 , be two contiguous

voussoirs, which we shall suppose to be 3 feet in length,

and a foot and a half in breadth. Cut out on the conti-

guous sides two cavities in the form of a dove-tail , 4 inches

in depth, with an aperture of the same extent at ab ; 5 or

6 inches in length, and as much in breadth at cd. This ca-

vity will serve to receive a double key of cast iron, as ap-

pears in the same figure n°. 2 ; or even ofcommon forged

iron, which will be still more secure, as the latter is not so

brittle as the former. These two voussoirs will thus be

connected together in such a manner, that they cannot be

separated without breaking the dove-tail at its re-entering

angle ; but as each of its dimensions in this place will be 4

inches, it may be easily seen that an immense force would

be required to produce that effect ; for we are taught, by

well-known experiments on the strength of iron , that it re-

quires a force of 4500 pounds to break a bar of forged iron

an inch square by the arm of a lever of six inches : conse-

quently 288000 would be necessary to break a bar of 16

square inches, like that in question. Hence there is reason

to conclude that these voussoirs will be connected together

by a force of288000 pounds, and as they will never expe-

rience an effort to disjoin them nearly so great, as might

easily be proved by calculation, it follows that they may

be considered as one piece.

They might even be still farther strengthened in a very

considerable degree : for the height of these dove-tails

might be made double, and a cavity might be cut in the

middle of the bed of the upper voussoir , fit to receive it

entirely the dove-tail could not then be broken without

breaking the upper voussoir also. But it may be easily

seen that, to produce this effect, an immense force would

be required.

2d. But as some persons may condemn the use of iron

in works of this kind, we shall propose another method,

not attended with the same inconvenience, if it really be

1
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one* ; and in which nothing is employed but stone com-

bined with stone.

Let A and B, fig. 8, be two contiguous voussoirs of the

first row, and c the inverted voussoir of the upper next

row which ought to cover the joining. Each of the two

former voussoirs being divided into two, cut out in the

middle of each half a hemispherical cavity, half a foot in

diameter ; then take with great exactness the distance of

the centres of the cavities a and c, which are in two con-

tiguous voussoirs, and by these means cut out two similar

cavities in the lower bed of the voussoir, which is to be

placed in connection on the preceding. Then fill the ca-

vities a and c with two globes of very hard marble, and

place the upper voussoir in such a manner that these two

globes shall fit exactly into the cavities of its lower bed.

If this operation be dexterously performed throughout the

whole range of the first , second, and third rows, it maybe

easily perceived, that all these voussoirs will form together

one solid body, the parts of which cannot be separated ;

forthe two voussoirs A and B cannot be disunited without

breaking either the balls of marble which connect them

with the upper voussoir, or breaking the upper voussoir

through the middle. But even if we suppose this effect,

which could not be produced without a force almost in-

conceivable, or at least far superior to the action of the

arch, the two halves of the broken voussoir being them-

selves sustained in a similar manner by the superior vous-

soirs, no tendency to separate from each other could thence

result the three rows therefore of the arch would form

* All architects , indeed, are not so nice in their choice of materials ; but

it appears to us that the frequent use of iron for strengthening buildings is

subject to much inconvenience and danger. We at least wish that public

monuments were constructed without it : for ifthey can support themselves

without iron it is needless : if iron is essential to strength, it will certainly

be consumed in the course of time by rust, and the edifice will then tumble

to pieces, or be greatly injured. The use of iron then in this case is attended

with bad consequences.
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only one piece, and there would be no thrust. It will be

sufficient if the base of this arch have such a thickness as

to prevent it from being crushed by its absolute weight ;

and a very moderate thickness, if the materials be good,

will answer this purpose.

We think we have proved therefore, by these two me-

thods, that a hemispherical arch might be constructed

without any thrust on its supporters ; consequently, if we

even suppose that the Architect of Saint Genevieve had

adopted the form of Fontana's domes, and had begun by

raising on his pendentives a tower of about 36 feet in

height, to be crowned by a hemispherical dome, it would

not have been impossible to give it a solid construction.

PROBLEM IV.

In what manner the thrust ofarches may be considerably

diminished.

Architects, in our opinion, have not considered with suf-

ficent attention the resources afforded by mechanics, for

diminishing, on many occasions, the thrust ofarches. We

shall therefore present the reader with some observations

on that subject.

When the manner in which an arch tends to overturn

its piers is analyzed, it appears that the arch necessarily

divides itself somewhere in its flanks, and that the upper

part acts in the form of a wedge or a lever on the remain-

der of the arch, and on the pier, which are supposed to

form one body. This consideration then suggests, that to

diminish the thrust of the arch, or increase the stability of

the pier, the commencement of the flanks ought to be

loaded ; and that the thickness of the voussoirs near the

key ought to be considerably lessened : in short, to make

the arch, instead of having a uniform thickness throughout

its whole extent, to be very thick at its origin, and at the

key to be no thicker than what is necessary to resist the

pressure of the flanks. It may be easily perceived, that
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as by this method a part of the force which acts to overturn

it, is thrown upon that which resists being overturned , the

latter will gain a great advantage over the former.

It is to arches in the form of a dome, in particular, that

this consideration is applicable ; and not only might this

method be employed , but also heterogeneity of materials.

For this purpose, let us suppose ourselves in the place of

the architect of Saint Genevieve, and that it is necessary

tò construct his dome by first raising a round tower 36

feet in height, to be afterwards crowned by an arch, which

we shall suppose to be hemispherical, though he was al-

lowed to make it a little more elevated than that form, in

order that it might appear hemispherical when seen at a

moderate distance. It is found that giving to this arch

the uniform thickness of a foot and a half, the tower ought

to be 4 feet in thickness at the utmost, which added to

some necessary enlargement at the foundation, for the

sake of solidity, exceeds the breadth of the basis which

might be given to it in a part of its circumference . But,

according to the above considerations, what would prevent

this tower, and the first rows, even as far as towards the

middle ofthe flanks ofthe arch, from being constructed of

materials much more ponderous than the rest of the arch ?

For we are acquainted with some stones, such as hard and

coarse marble, which weigh 230 pounds the cubic foot ;

while the Saint Leu , in the neighbourhood of Paris, weighs

only 132, and brick much less. Instead of giving to the

arch the uniform thickness of a foot and a half, why might

it not be made 3 feet at the spring, and only 8 inches to-

wards the summit ? But by making the following supposi-

tions, namely that the tower and the first rows of the arch,

as far as the middle of the flanks , are of the hard stone in

the neighbourhood of Paris, which weighs 170 pounds the

cubic foot, and the rest of brick which weighs only 130 ;

and that the arch at its spring, as far as the middle, is 24

feet in thickness, and only 8 inches towards the summit ;
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we have found that the tower in question ought to be only

1 foot 8 inches in thickness, to be in equilibrium with the

thrust of the arch. If this tower therefore were made 3

feet in thickness, it is evident to the most timid architect,

that it would be more than sufficient to counteract every

effect of lateral pressure ; and it would be still more so

were it made 3 feet in thickness to a certain height, such

as that of 9 feet , for example, and then 3 feet or 2 feet 9

inches to the commencement of the arch ; as a pier is

strengthened by throwing to its lower part a portion of its

thickness, instead of making it equally thick throughout ;

since the point on which it ought to turn, in order to be

thrown down, is removed farther back.

But this is enough on a subject which we have intro-

duced here occasionally.

Two

PROBLEM V.

persons, who are neighbours, have each a smallpiece of

ground, on which they intend to build ; but, in order to

gain as much room as possible, they agree to construct a

stair common to both houses, and ofsuch a nature, that the

inhabitants shall have nothing in common except the en-

trance and the vestibule. What method must the archi-

tect pursue to carry this plan into execution ?

The stairs here proposed may be constructed in the fol-

lowing manner, of which there are some examples.

Let fig. 9 nº. 1 , pl . 2 , be a plan of the stairs, the form

of which is of such a nature as to ascend, without being

too steep, from the lower to the first story in one revolu-

tion, or somewhat less. In a common vestibule A, the en-

trance to which is through a common door P, construct on

the right at в the commencement ofthe ramp intended

for the house on the right ; and make it circulate from

right to left, as far as a landing place, which must be con-

structed above the landing place в : the stairs may thenbe

continued in the same manner to a second or third story.
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The commencement of the other stair-case must be on

the side diametrically opposite at c ; and must circulate

in the same direction , in order to arrive, after one revolu-

tion, at a landing place forming the entrance to the first

story ofthe house on the left ; so that if the inside railing

of these stair- cases be open, as it may be easily made, those

who ascend or descend by one of them, can see those who

are on the other, without having any communication but

by the common vestibule A and the door of entrance. A

section of this double stair-case is seen fig. 9 n°. 2.

At the castle of Chambord there is a stair-case nearly of

this form, which serves for the whole building. For, as

this edifice consists of four grand vestibules, or immense

saloons, placed opposite to each other, in the form of a

Greek cross, and into which all the apartments open, Ser-

lio, the architect, constructed the stair-case in the centre

of this cross ; and, by means of a double ramp, those who

enter from the south vestibule on the ground floor, and

who front the stair-case before them, arrive after one re-

volution at the southern vestibule or saloon of the first

story, and vice versa.

But though the form of this stair-case is very ingenious,

it has some great defects, which might have been easily

avoided. 1st. The entrance of the stair-case, instead of

being directly opposite to the middle of each saloon , is a

little on one side. 2d . There is no landing-place before

the door which forms the entrance into this story. 3d.

The interior railing, which might have been light, and al-

most entirely open, has only a very small number of aper-

tures.

If the ground would admit, the same artifice might be

employed to construct a stair-case with four ramps, all se-

parate from each other , in order to ascend to four different

apartments. The plan of a stair of this kind, which is

said to have been constructed at Chambord, may be seen

in Palladio. That of Serlio, on account of the four gal
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leries to be entered, would no doubt have been much more

beautiful, had it been built on the same plan ; but we can

assert that the stair of Chambord has only two ramps aз

above described.

REMARK.- Some stairs are distinguished by another pe-

culiarity, namely, the boldness of their construction. Such

are those stairs in the form of a screw, the helix of which

forms a spiral entirely suspended, so that there remains in

the middle a vacuity of greater or less extent. This bold

construction depends on the manner in which the steps are

cut, and their being fixed by one end in the wall, which

on one side supplies the place of a rail. A full account

of the mechanism of them may be seen in most works on

architecture.

PROBLEM VI.

To construct a floor withjoists, the length of which is little

more than the halfofthat necessary to reachfrom the one

wall to the other.

Let the square ABCD, pl. 2 fig. 10, be the frame ofthe

floor, which is to be covered with joists a little more in

length than the half of one of the sides AB. On the sides

of this square assume the parts AG, BI , CL, and DE equal

to the given length of the joists, which must be arranged

as seen in the figure ; that is, first place EF, and introduce

below it GH, with its end н resting on IK ; and let к, the

end of IK, rest upon LM, the end of which м must be made

to rest upon the first joist EF. It may be easily proved,

that in this position these joists will mutually support each

other without falling.

It is almost needless to observe that the end of each joist

must be cut in such a manner, as to enter a notch made

for it in the joist on which it rests, and into which it ought

to be well fitted. However, as a notch cut into a joist

must lessen its strength, it would perhaps be better to
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make the end of each joist rest on an iron stirrup ofa suf-

ficient size, and affixed to them in a secure manner.

But it is not necessary that the joists should be a little

longer than half the breadth of the frame to be covered :

a floor may be constructed with pieces of wood much

shorter, ifthey be cut and arranged in a proper manner.

Let us suppose, for example, that an area of 12 feet

square is to be covered, and that the pieces of wood, in-

tended to support the floor, are only 2 feet in length. Cut

the extremities of one ofthese pieces of wood in an oblique

form , or into a bevel, as represented by the section ACD

or BEF, fig. 11 ; and in the middle of the same piece, form

on each side a notch, for receiving the end of another

piece cut in like manner. If the same operation be per-

formed on all the rest, they may then be arranged as seen

in the figure ; a bare view of which will give a better idea

of the artifice here employed, than a long description.

The oblong spaces, which remain along the walls, may be

filled up with pieces of wood half the length of the for-

The scaffolding may then be removed with great

safety, for these pieces of wood will form a solid floor, and

will mutually support each other, provided none of them

is destroyed for it is to be observed, that the breaking of

one would make the whole fall to pieces.

mer.

Dr. Wallis, at the end of the third volume of his works,

gives a great variety of these combinations, and he says

that this invention was employed in some parts of England.

But on account ofthe reasons already mentioned, it is to

be considered rather as ingenious than useful, and fit only

to be adopted when there is a great scarcity of timber,

and for floors which have very little weight to support.

REMARK. Instead of pieces of wood, if we suppose

stones to be cut in the same manner, it is evident that they

would form a flat arch ; but in this case, to avoid the

danger of breaking, it would be necessary that they should

be at most 2 feet in length, and of a suitable width and
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thickness. An arch of this kind is generally called the flat

arch of M. Abeille ; because it was proposed by that en-

gineer, to the Academy of Sciences, in 1699. It is at-

tended with this advantage, that its whole thrust is exerted

on the four walls, which serve to support it ; whereas a

flat arch, constructed according to the usual method , ex-

erts its thrust or push only against two. But this advan-

tage is more than overbalanced by the danger ofthe whole

tumbling to pieces, if one stone only should be deficient.

Frezier has treated on this subject at some length, in his

work on cutting stones ; and has shown how to vary the

compartments of the intrados, or lower part, as well as of

the extrados, or upper part, which might be formed with

these arches. But we must here repeat, that these things

are more curious than useful , or rather that this construc-

tion is very dangerous.

PROBLEM VII.

Ofsuspended Arches, called by the French Trompes dans

l'Angle.

One of the boldest works in masonry, is that kind of

arch called, by the French, Trompe dans l'Angle*. Let us

suppose a conical arch, as SAFBS, pl . 3 fig. 12, raised on

the plane of a triangle ASB ; if from the middle of the base

there be drawn two lines EC and ED, which in general are

parallel to the respective sides SD and sc ; and if upon

these be raised two planes DEF and CEF, perpendicular to

the base ; these two planes will cut off, towards the sum-

mit s, a part of the arch, as FDSCF,the half of which CFDC

will be suspended, or project beyond the foundation . This

truncated part of the conical arch FDSCF, is what is called

a trompe dans l'Angle ; because in general it is constructed

in a re-entering angle to support some projecting part of

* These arches are called trompes, because they have a resemblance to

the mouth ofatrumpet.
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an edifice. For this purpose, on the curvilinear planes cr

and DF, there are raised walls which, though suspended,

have sufficient strength, provided the voussoirs be exactly

cut ; are long enough to be inserted in the half which is

not suspended ; and provided also that this part is properly

loaded.

Works ofthis kind are common ; but the most singular

is one at Lyons ; which supports a considerable part ofa

house, situated on the stone-bridge. One cannot see,

without some uneasiness, the corner of this edifice, which

is three or four stories in height, project several yards over

the river. It is said to be the work of Desargues, a gen-

tleman of the Lyonnese, and an able geometrician, who

lived in the time of Descartes. In that case, this work

must have stood about 150 years ; which seems to prove

that this kind of construction has a real and greater solidity

than is commonly supposed.

REMARK.-If the suspended arch be a right arch, that

is to say a portion of a right cone ASBF; and if the section

planes FED and FEC be respectively parallel to sc and SD,

the curves FC and FD, as is well known , will be parabolas,

having their summit in D, and CE or DE for their axis.

We must here take notice of a geometrical curiosity,

which is, that the conical surface FCSDF, though a curve,

and terminated in part by curved lines , is equal to a recti-

lineal figure ; for if DG be drawn parallel to the axis se,

it can be demonstrated , that the conical surface in question,

is equal to one and a third of the rectangle of SB or SFby

EG.

1

PROBLEM VIII.

A gentleman has a quadrangular irregular piece ofground,

as ABCD, in which he is desirous ofplanting a quincunx,

in such a manner, that all therows oftrees, whether trans-

versal or diagonal, shall be rightlines. How must he pro-

ceed to carry this plan into execution ?



352 ARCHITECTURE.

We shall suppose this quadrilateral to be so irregular,

that the opposite sides AB and DC , pl . 3 fig. 13, meet in a

point F, and the sides AD and CB in another point E. Con-

tinue these sides , two and two, to the points of meeting,

E and F, which must be joined by a straight line EF ; then

through the point D draw a line parallel to EF ; continue

BC and BA till they meet that parallel, in н and G, and

divide GD and DH into the same number of equal parts,

which we shall suppose to be four ; if through the points

of division in GD, as many straight lines be drawn to the

point F; and if straight lines be drawn , in like manner,

throughthe points of division in DH to the point E, these

lines will intersect the sides of the quadrilateral, and each

other, in points, which will be those where the trees must

be planted, in order to solve the problem .

For the demonstration we might refer to prob. 24 of

Optics, where we have shown how a quadrilateral, such

as ABCD, may be the perspective representation of a paral-

lelogram. We shall however here repeat it.

Through the points D and н draw the lines Da and нb,

inclined to GH at an angle of 45 degrees from right to left ;

and through the points G and D two other lines, & b and

DC, inclined also 45 degrees to GH, but in a contrary di-

rection : these four lines will necessarily cut each other at

right angles, and form a rectangle abc D, of which, ac-

cording tothe rules of perspective, the quadrilateral ABCD

would bethe representation, to an eye situated in the point

1, which divides EF into two equal parts, and is at a distance

from the plane of the picture equal to IE or IF.

Let us suppose then that the oblong abc D is divided

into similar oblongs, by four lines parallel to its sides : these

lines, if continued till they meet GD and DH, will divide

them into the same number of equal parts ; and as DC and

GAB are the perspective representations of Dc and Gab,

the lines proceeding from the equal divisions of GD, and

ending at the point F, will be the perspective representa-
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tions of lines parallel to ab or DC. The case will be the

same with the lines parallel to the two sides Da and c b.

The small quadrilaterals then formed by these lines cutting

each other in the quadrilateral ABCD, will be the perspec-

tive pictures of the oblongs into which a b c D is divided.

But all the points which are in a straight line in the object,

will be in a straight line in the picture ; consequently, as

the rows of trees planted at the angles of the divisions of

the oblong abcD necessarily form straight lines , both

transversely and diagonally, their places in the quadrila-

teral ABCD, which are the pictures of these angles in the

oblong, will also form straight lines in the same direction ;

for, in perspective representations, the pictures of straight

lines are always straight lines.

If the opposite sides a b and c D, of the given quadrila-

teral, be very unequal, they must not be divided into the

same number of parts ; for in that case they would be too

unequal, since in a plantation of this kind the quadrilaterals

ought to be nearly perfect squares. For example, if one

side ab be 100 yards, and the other 40, by dividing each

of them into 20, the divisions on one side would be 5 , and

on the other 2 yards, which would form figures too ob-

long. On this supposition, it would be much better to

divide the first into 16 and the second into 6 , which would

give divisions almost square, namely of 64 yards in one

direction, and 63 in the other, but in this case there would

be no diagonal row of trees, either in the oblong abc D, or

in the proposed quadrilateral ABCD. In short, by dividing

one of the lines GD or DH into 16 parts, and the other into

6, all the rows of trees in the irregular figure will be

straight lines.

To have a real quincunx *, it will be sufficient, after this

operation, to draw, in each small quadrilateral of the plant-

* A real quincunx is that where there is a tree in the middle of each

square ; for the word quincunx means five trees in a square, which cannot

be arranged otherwise..

VOL. III. A A
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ation, two diagonals, and to plant a tree in the point

where they intersect each other : all these new trees will

form straight lines also.

PROBLEM IX.

To construct theframe ofa roof, which, without tie-beams,

shall have no lateral thrust on the walls on which it rests.

We have seen at Paris, in a garden of the faubourg

Saint-Honoré, a small building , in the form of a tent, the

walls of which were only a few inches in thickness, and

which were covered by a roof without tie-beams ; the

whole being lined in the inside, it had the real appearance

of a tent. It was used as a summer apartment in the day-

time, and formed a retreat truly delightful .

What surprized those who had any knowledge of archi-

tecture, was, how the roof of this small edifice could be

constructed without tie-beams : for however light it might

be, the walls were so thin , that any common roof must

have overturned them. The artifice, said to have been the

invention of M. Arnoult, superintendant of the theatres

des Menus-Plaisirs, was as follows :

Tworafters, CD and ED, pl. 3 fig. 14 , resting on the two

beams AB and ab, were strongly joined together at the

summit D. From the angles, which these two rafters formed

at c´and E, proceeded two other pieces of timber, which

were well united to the beams at F and G, to the rafters at

H and I, and also to each other at к, by means of a double

notch. For the sake of greater security , the pieces CD and

FH, and ED and GI, were bound together by two cross

pieces at 1 and M. It is evident that these four inclined

pieces can have no tendency to separate, or to exert any

lateral thrust on the walls upon which the beams AB and

ab are placed : for they cannot separate without render-

ing the angle D more obtuse. For this purpose, it would

be necessary that the angle K should become more obtuse

also ; but the junctions at 1 and Hн oррose any movement

L

?
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ofthis kind : consequently this frame work will rest on the

beams AB and ab, without separating in any manner, and

will exert no lateral pressure against the walls.

It is hence evident that this artifice might be of great

use in architecture, especially when it is required to cover

an extensive building, the walls of which are thin, and to

avoid the disagreeable effect produced by tie-beams, when

not concealed from the sight.

PROBLEM X.

On measuring arches en cul-de-four, surhaussé, and sur-

baissé.

The appellation of cul-de-four is applied to vaults on a

plan commonly circular, a section of which through the

axis is an ellipsis, or as the French architects call it an anse

de panier. They differ from hemispherical arches in this,

that in the latter the height of the summit above the plane

of the base is equal to the radius of that base ; while in the

former this height is greater or less : if greater, the arch

is called cul-de-four surhausse ; if less , it is called cul-de-

four surbaissé. Both these arches are represented pl, 4

fig. 15 and 16. The first is an arch en cul-de-four surhaussé;

the second arch en cul-de-four surbaissé. In the language

of geometry, the one is an elongated semi-spheroid , or an

archformed by the circumvolution of a semi-ellipse around

its greater semi-axis ; the other a semi-spheroid formed by

the circumvolution of the same semi-ellipsis about its less

semi-axis,

Books of architecture contain, in general, rules so false

for measuring the superficial content of these arches, that

we think it necessary to give here methods more correct.

Bullet and Savot, for example, say that nothing is neces-

sary but to multiply the circumference ofthe base by the

height ; as if the arch to be measured were hemispherical.

This is an egregious error, and it is surprizing that those

authors did not observe that if this rule were correct, the

AA 2



356 ARCHITECTURE.

superficial content of some arches en cul-de-four surbaissé,

would be less than the circle covered by them, which is

absurd.

For let us suppose, by way of example, an arch of a

foot in height, on a circle of 7 feet diameter : the area of

this circle, according to the approximation of Archimedes,

will be equal to 383 square feet ; but if the circumference,

22 feet, be multiplied by one foot in height, we should

have only 22 square feet ; which is not two-thirds of the

base. In this case , the builder would be cheated of more

than two-thirds of what he ought to receive. We shall

therefore give rules for measuring such arches, sufficiently

correct to be employed in the common purposes of archi-

tecture.

I. For arches en cul-de-four surhaussé, or the Oblong

Spheroid.

The radius ofthe base and the height of the arch being

given, first make this proportion : As the height is to the

radius of the base, so is the latter to a fourth term, the

third of which must be added to two-thirds of the radius

of the base.

Then find the circumference corresponding to a radius

equal to that sum, and multiply this circumference by the

height : the product will be the superficial content or curve

surface nearly.

Example.-Let the height be 10 feet, and the radius of

the base 8. Then say as 10 is to 8 , so is 8 to 63, the third

of which is 2 : two-thirds of 8 are 5 , which added to

2 , make 77 feet, or 7 feet 5 inches 7 lines.

But the circumference corresponding to 77, feet radius,

or 14 feet diameter, is 46 feet, which multiplied by 10

feet, the height ofthe arch, gives for product 469+ square

feet, or 52 yards 14 foot .

By Bullet's rule, the superficial content would have been

55 yards 7 feet ; the difference of which in excess is 3
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yards 6 feet, or about a 14th of the whole ; and this in an

arch which does not deviate much from a hemisphere : if

it deviated more, the error would be considerably greater.

II. For arches en cul-de-four surbaissé, or the Oblate

Spheroid.

The rule for these arches is nearly the same as the pre-

ceding. Find a third proportional to the height and the

radius of the base ; and add two-thirds of it to the radius

of the base ; then find the circumference corresponding

tothe sum as a radius, and multiply it by the height : the

product will be the superficial content nearly of the given

arch.

Let the radius of the base of an arcken cul-de-four sur-

baissé be 10 feet, and the height be 8. As 8 is to 10, so

is 10 to 121 , two-thirds of which are 8 ; on the other

hand, the third of 10 is 34, which added to the former,

gives 112 feet.

But the circumference corresponding to 113 feet radius,

or 23 diameter, is 733, which multiplied by the height,

that is 8 feet, gives for product 5864 feet , or 65 yards 13

foot the superficial content of the arch.

According to Bullet's rule the superficial content would

have been 55 yards 7 feet ; which makes an error in de-

fect of 9 yards 33 feet, or above a 6th part of the whole

surface.

REMARK. It would be easy to give, for those who are

geometricians, rules still more exact ; as it is well known

that the dimensions of prolate spheroids depend on the

measurement of a truncated elliptical or circular segment ;

and that of the surface of an oblate spheroid, on the

measurement of an hyperbolical space ; consequently the

former may be determined by means of a table of sines

and circular arcs, and the other by employing a table of

logarithms.

In regard to the method above given , it is deduced from
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the same principles ; but by considering a segment of a

circle or hyperbola of a moderate extent, as a parabolic

area, which when this segment forms but a small part ofthe

space to be measured , is liable only to a very small error :

in many cases this consideration supplies practical rules

exceedingly convenient.

Some architects may perhaps ask : Of what advantage

is it to be able to ascertain with precision the superficial

content of these domes, as a few yards more or less can be

of little importance ? But it may be said in reply, that for

the same reason, accurate measurement in general is of

little utility. To such persons it is of no consequence that

Archimedes has demonstrated that the surface of a hemi-

sphere is equal to that of a cylinder of the same base and

height ; or, to speak according to their own terms, that

the surface of a hemispherical arch is equal to the product

of the circumference of the base by the height. If they

employ, in regard to the arches in question, rules so er-

roneous, it is because they consider them as exact, and

because they have been taught themby people so ignorant

ofgeometry, as not to be able to give them better ones.

PROBLEM XI.

To measure Gothic or Cloister arches, and arches d'aréte, or

Groin Arches.

It frequently happens that on a square, an oblong, or

polygonal space or edifice, an arch vault is raised , con-

sisting of several berceaux or vaults, which commencing

at the sides of the base, unite in a common point as a sum-

mit, and form in the inside as many re-entering angles or

groins, as there are angles in the figure which serves as a

base. These arches are called arcs de cloître, cloister

A representation of them is seen fig. 17 pl. 4.

But if the space or edifice , a square for example, be

covered with two berceaux or vaults , (fig. 18) , which seem

to penetrate each other, and which form two ridges or re-

arches.
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entering angles, intersecting each other at the summit of

the vault, such an arch is called an arch d'arête, or a groin

arch. The most remarkable properties ofthese arches are

as follow.

1st. The superficial content of every circular cloister

arch, on any base, whether square or polygonal, is exactly

double that of the base, in the same manner as the super-

ficial content of a hemispherical arch, or arch en cul-de-

four or en plein ceintre , is double that of the circular base.

It may indeed be said, that a hemispherical arch is only

a cloister arch on a polygon of an infinite number of

sides.

• Whenthe superficial content therefore of such an arch is

to be measured, nothing will be necessary but to double

the surface of the base, provided the berceaux be en plein

ceintre, or a complete semi-circle ; for if they are greater

or less, they will have to the base, the same ratio that an

arch en cul-de-four surhaussé, or surbaissé, has to the circle

of its base.

2d. A cloister arch, and a groin arch on a square, form

together the two complete berceaux or vaults, raised upon

that square.

This may be readily seen in fig. 19. Therefore if from

two berceaux or vaults, the cloister arch be deducted , there

will remain the groin arch, which in this case gives a

simple method for measuring groin arches ; for if the

superficial content of the cloister arch be subtracted from

the superficial content of the two vaults, the remainder

will be that of the groin.

If the base, for example, be 14 feet in both directions,

the circumference of the semi-circle of each will be 22 feet,

and the superficial content will be 22 by 14 or 308 square

feet ; consequently the superficial content of both the

berceaux will be 616 square feet. But the interior surface

of the gothic arch is twice the base, or twice 196, that is

392; and if this number be subtracted from 616, we shall
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•

have 224 square feet, for the superficial content of the

groin arch.

3d. If the solid content of the interior of such an arch

be required. Multiply the base by two-thirds of the height.

This is evident from the reason already given in regard

to the superficial content ; for arches of this kind, both in

regard to their solidity and superficial content, are to a

prism of the same base and height, in the same ratio as the

hemisphere to the circumscribed cylinder.

4th. The solidity of the space contained by a groin arch

on a square or oblong plane, is of the solid having the

same base and height, supposing the approximate ratio of

the diameter of the circle to the circumference, to be as 7

to 22. This may be easily demonstrated also, by observ-

ing, that the interior solid of such an arch, is equal to the

sum ofthe two vaults or demi-cylinders, minus once the

solidity of the cloister arch, which is twice comprehended

in this double, and consequently ought to be deducted.

PROBLEM XII.

How to construct a wooden bridge of 100 feet and more in

length, and of one arch, with pieces of timber, none of

which shall be more than afewfeet in length.

We shall here suppose, that the pieces of timber in-

tended for a bridge of this kind , are 12 or 14 inches

square, and only about 12 feet in length : or that par-

ticular circumstances have prevented rows of piles from

being sunk in the bed of the river , to support the beams

employed in constructing the work. In what manner must

the architect proceed to build the bridge, notwithstanding

these difficulties ?

The execution ofthis plan is not impossible : for it might

be accomplished in the following manner. First trace out,

on a large wall, a plan of the projected bridge, by de-

scribing two concentric arches at such a distance from

each other, as the length of the pieces of timber to be em-
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ployed will admit ; which we shall suppose,
for example,

to be 10 feet , giving them the form of an arc of 90 degrees

from one pier to another : then divide this arc into a cer-

tain number of equal parts, in such a manner, that the arc

of each shall not exceed 5 or 6 feet.

On the supposition here made, of the distance of 100 feet

between the two piers, an arc of 90 degrees which covers

it would be 110 feet in length, and its radius would be 70

feet. Divide then this arc into 22 equal parts , of 5 feet

each, and with the above pieces of timber, joined together,

form a kind of voussoirs, 8 or 10 feet in height, 5 feet in

breadth at the intrados, and 5 feet 8 inches 6 lines at the

extrados ; for such are the proportions of these arcs, ac-

cording to the above dimensions. Fig. 20 represents one

of these voussoirs, which, as it is evident, consists offour

principal pieces of strong timber, at least 10 inches square,

which meet two and two at the centre of their respective

arcs ; of three principal cross bands at each face, as ac,

BD, EF, ac, bd, ef, which must be exceedingly strong,

and therefore ought to be 12 or 14 inches in height, and

10 inches in breadth ; and, lastly, of several lateral bands,

between the two faces, to bind them together in different

directions, and to prevent them from giving way. A

voussoir of this kind may be about 6 feet in length, that

is between the two faces AEFB and aefb.

An arch must then be formed of these voussoirs , exactly

in the same manner as if they were stone, and when they

are all arranged in their proper places, the different pieces

maybe bound together according to the rules of art, either

with pins or braces. Several arches or ribs of this kind

must be formed, close to each other, according to the in-

tended breadth of the bridge ; and the pieces may be bound .

together in the same manner as the first , so as to render

the whole firm and secure. By these means we shall have

a wooden bridge of one arch, which it would be very diffi-

cult to construct in any other manner.
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It now remains to be examined whether these voussoirs

will have sufficient strength to resist the pressure which

they will exert on each other. The following calculation

will show that there can be no doubt of it.

It appears from the experiments of Muschenbroeck *,

and the theory of the resistance of bodies, that a piece of

oak 12 inches square, and 5 feet in length, can sustain

in an upright position , without breaking, 264 thousand

pounds ; hence it follows that a cross band, as AC or EF,

5 feet in length and 12 inches by 10, can support 220000 ;

but for the greater certainty we shall reduce this weight

to 150000 : therefore, as we have six bands of this length,

a few inches more or less, in each of these voussoirs, it is

evident that the effort which one of these voussoirs is ca-

pable of sustaining, will be at least 900 thousand pounds.

Let us now examine what is the real effort to be resisted.

We have found, by calculating , the absolute weight of

such a voussoir, and even supposing it to be considerably

increased, that it will weigh at most between 7 and 8

thousand pounds or 7500. The weight then resting on

one of the piers, most loaded , having 10 voussoirs to sup-

port, will be charged only with the weight of75000 pounds ;

a weight however which, on account ofthe position of the

voussoirs , will exert a pressure of 115000 pounds ; but we

shall suppose it to be even 120000. There is reason there-

fore to conclude, from this calculation, that such a bridge

would not only have strength to support itself, but also to

bear, without any danger of breaking, the most ponderous

burthens : it even appears that it would not be necessary

to make the pieces of timber so strong.

Ifthe expence of such a bridge be compared with that

attending the common method , it will perhaps be found

to be much less ; for one of these voussoirs would contain

no more than 140 or 150 square feet of timber, which at

Essais de Physique, vol . 1. chap. ii.
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the rate of 2sh. per foot, would be only 15£; so that the

22 voussoirs, of one course or rib, would cost 330£; con-

sequently, if we suppose the breadth of the bridge to

consist of four courses or ribs, the whole would amount

only to 1320£. It must indeed be allowed that to com-

plete such a bridge, other expences would be required ;

but the object here proposed, was to showthe possibility

of constructing it, and not to calculate the expense.

The idea ofsuch a bridge first occurred to me in conse-

quence of a dangerous passage I met with in the province

of Cusco,in Peru ; where I was obliged to cross a torrent,

that flows between two rocks, about 125 feet distant from

each other, and more than 150 feet in height. The in-

habitants ofthe country have constructed there a Travita*,

where I was in danger of perishing. When I arrived at

the next village , I began to reflect on the best means of

constructing in this place a wooden bridge, and I contrived

the above expedient. I proposed my plan to the Cor-

regidor, Don Jayme Alonzo y Cuniga, a very intelligent

man, who, being fond of the French, received me with

great politeness. He approved of my idea, and agreed

that, at the expence of a thousand piasters, a bridge of 12

feet in breadth, which all Peru would come to see through

curiosity, might be constructed in that place. But as I

set out three days after, I do not know whether this pro-

ject, with which this worthy man seemed highly pleased ,

was ever carried into execution.

It may here be remarked, that it would be easy to

This is an Indian bridge, the very idea of which is enough to make one

shudder. A man is placed in a large basket, fastened by a pulley to a rope

which is extended from the one side of a torrent to the other. The basket and

rope are both constructed of those creeping plants, which the inhabitants of

America employ in almost all their works. As soon as the man has got into

the machine, it is drawn over to the opposite side, by means of a rope

fastened to the pulley. If the rope, used for dragging over the machine,

should break, the man must remain suspended for some hours, until means

have been found to relieve him from his painful situation.
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arrange the voussoirs of a bridge of this kind , in such a

manner that, in case of necessity, any one of them might

be taken out, in order to substitute another in its stead ;

which would afford the means of making all the necessary

repairs.

PROBLEM XIII.

Is it possible to construct a Plat-band, or Frame, which shall

have no lateral thrust?

It would be of great advantage to be able to execute a

work ofthis kind ; for one of the obstacles which architects

experience, when they employ columns, arises from the

thrust of their architraves, which requires that the lateral

columns should be strengthened by different means. This

embarrassment they are particularly liable to, when they

make detached porches to project before an edifice, like

that of Sainte-Genevieve : the two frames, that of the face

and the side, exert such a push on the angular column or

columns, that it is very difficult to secure them ; and it is

even sometimes necessary to renounce them, if stones

cannot be found sufficiently large to make architraves of

one piece, from column to column, at least in the spaces

nearest the angles.

These difficulties would be obviated, if frames could be

made without any thrust . This we do not think impossible;

and we propose the problem to architects in the hope that

some ofthem will be able to solve it.

PROBLEM XIV.

Is it aperfection, in the Church of St. Peter at Rome, that

those who see it, for the first time, do not think it so large

as it really is; and that it appears of its real magnitude

after they have gone over it?

Though we announced, in the beginning of this work,

that we meant to exclude from it whatever was mere

matter of taste ; as the above question is connected with
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physical and metaphysical reasons, we are of opinion that

it may be admitted .

The impression which the church of St. Peter at Rome

makes, on the first view, has been boasted of as a per-

fection. Every person, as far as we have heard or read,

who enters this edifice, for the first time, conceives the

extent of it to be far less than it is generally accounted to

be by public report. To have ajust idea of its grandeur,

one must have seen, and in some measure studied , every

part of it.

Before we venture to say any thing decisive on this

subject, it may perhaps be of some use to examine the

causes of this first impression. In our opinion, it arises

from two sources.

The first is the small number of principal parts into

which this immense edifice is divided ; for, from the

entrance to the middle, which constitutes the dome, there

are only three lateral arcades. But, though dividing a

large mass into many small parts tends, in general, to

diminish its effect, there is still a medium to be observed ;

and it appears to us that Michael Angelo kept too far

below it.

The second cause of the impression which we here ex-

amine, is the excessive size of the figures and ornaments,

which serve as appendages to the principal parts. We

can indeed judge of the size of objects beyond our reach,

only by comparing them with neighbouring objects, the

dimensions of which are familiar to us. But if these ob-

jects, the dimensions of which are known, or are nearly

given by nature, accompany others to which they have a

ratio that approaches too near to equality, it must neces-

sarily follow that the latter, in the imagination of the

spectator, will lose a part of their magnitude. Such is the

case with the church of St. Peter at Rome : the figures

placed in niches, which decorate the spaces between the

pillars of the arcades ; those between the pilasters and
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those which ornament the tympana of the lateral arcades,

are truly gigantic ; but they are human figures ; they are

besides, forthe most part, raised very high; consequently

they appear less, and make the principal parts which they

accompany to appear less also.

By some people, this illusion is considered to be a

master-piece of the art and genius of the celebrated

architect, the principal author of this monument. Shall

webe permitted to differ from them ? For what is the

object which the constructors of this immense edifice had

in view ; and which will be the aim of all those who raise

edifices that exceed the usual measures ? Doubtless to

excite astonishment and admiration . We are convinced

that Michael Angelo would have been much mortified,

had he heard a stranger, just arrived at Rome, and enter-

ing St. Peter's for the first time, say publicly: " This is

the church respecting the immensity of which we have

heard so much: it is a large building ; but not so large as

generally reported ."

In our opinion, it would display much more ingenuity to

construct an edifice which, though of a moderate size,

should immediately excite in the mind the idea of consider-

able extent ; than to construct an immense one which, on

the first view, should appear of a moderate size. We do

not think that on this subject there can be any difference

of opinion. Whatever then may be the perfection, which

it must be allowed the church of St. Peter possesses, so far

as harmony of proportion, beauty and magnificence of

architecture, are concerned , we are of opinion that Michael

Angelo missed his aim in regard to the object in question;

and it is probable that he would have approached much

nearer to it, had he employed less gigantic appendages.

If the children, for example, which support the bénitiers*

had been of less size; if the figures which accompany the

* Benitiers are vases for holding holy-water.
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archivaults of his lateral arcades, as well as those which

decorate the niches between the pilasters, had been on a

scale not so enormous, a comparision of the one with the

other would have made the principal parts appear much

greater. Those who turn their eyes from these gigantic

objects, and direct them towards a man near the middle, or

at the extremity of the church, experience this effect : it

is then, by comparing their own size with that of the

principal parts of the edifice in the neighbourhood, that

they begin to form an idea of its extent, and are struck

with astonishment; but this second impression is the effect

of a sort of reasoning, and the sensation, when produced

in this manner, has not the same energy, as when it is the

effect of a first view.

While we are on this subject, we shall take the liberty

of offering a few observations on the means of enlarging,

as we may say, any space by the help of the imagination.

In our opinion, nothing contributes more to produce this

effect, than insulated columns ; that is to say, columns

not regularly connected ; for , when coupled or grouped,

they always produce this effect more or less, though it

would doubtless be much better to employ them single.

The result is, that every time the spectator changes his

position, different openings occur ; and a variety ofaspects

which astonish and deceive the imagination.

But when columns are employed , they ought to be large;

for in the same degree as they have a majestic appear-

ance when constructed on a grand scale, they are, in our

opinion, mean and diminutive when small, and particularly

when supported on pedestals. The court of the Louvre,

though in other respects beautiful , would have a much

more striking effect, if the columns, instead of being

mounted on meagre pedestals, rose from the ground sup-

ported merely by a socle, like those in some of the vesti-

bules of that palace. One might almost say, and there is

some reason to think, that pedestals were invented to
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render fit for use columns collected at hazard, and which

have not the requisite dimensions.

If Michael Angelo then , instead of forming his lateral

spaces ofimmense arcades supported by pillars, decorated

with pilasters , had employed groupes of columns ; if in-

stead of placing only three rows of lateral arcades, between

the entrance and the part of the dome, he had placed a

greater number, which this arrangement would have allow-

ed him to do ; and if the figures employed amidst this

decoration had not far exceeded the natural size, we enter-

tain no doubt that the spectator would have been struck

with astonishment on the first view, and that the edifice

would have appeared much larger.

But it is to be observed , at the same time, that the know-

ledge which we now possess, in regard to the resistance of

materials, and the philosophy or mechanical part of archi-

tecture, was not known at the time when Michael Angelo

lived. It is probable that he durst not venture to load

columns, even when grouped, with a weight so consider-

able as that which he had to raise upon these pillars . But

it is proved, by late experiments in regard to stones, that

there is no weight that an insulated column, six feet in

diameter, made of very hard stone, well chosen and pre-

pared, is not capable of supporting. Our ancient churches,

called improperly gothic, are a proof of it ; for there are

some of them, the whole mass of which rests on pillars

scarcely six feet in diameter, and often less : they there-

fore in general convey an idea of extent, which the Greek

architecture, employed in the same places, does not

excite.

& C....
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MATHEMATICAL

AND

PHILOSOPHICAL

RECREATIONS.

PART TENTH.

Containing the most curious and amusing operations in

regard to Pyrotechny.

WHY it has been usual to consider pyrotechny as a

branch of the mathematics, we do not know. The least

reflection will readily show, that it is an art by no means

mathematical, though dimensions, proportions, &c, are

employed in it. There are a great number of other arts

which have a much better claim to be included among

these sciences.

However, as we might be blamed for omitting an art

which affords a considerable field for amusement, and as

it is connected, at least, with natural philosophy, we shall

make it the subject of one of the divisions of this work.

But as we do not intend to give a complete treatise of

pyrotechny, we shall confine ourselves to those parts

which are most common and most curious : we shall also

avoid every thing that relates to the fatal art of destroying

men. We can see no amusement in the motion ofa bullet,

VOL. III. B B
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which carries off files of soldiers, nor in the action of a

bomb or shell that sets fire to a town. The preceding

editors and continuators of Ozanam,seemto have possessed

a very military spirit, if they considered all these things

as harmless recreation. For our part, having imbibed

other principles in that happy country, Pennsylvania, we

shudder even at the idea of introducing such atrocities

under the form of amusement.

Pyrotechny, as we consider it in this work, is the art of

managing fire, and of making, by means of gunpowder

and other inflammable substances, various compositions,

agreeable to the eye, both by their form and their splen-

dour. Of this kind are rockets, serpents, sheaves of fire,

fixed or revolving suns, and other pieces employed in

decorations and fireworks.

Gunpowder being the most common ingredient in pyro

techny, we shall begin with an account of its composition.

ARTICLE I.

OfGunpowder.

Gunpowder is a composition of sulphur, saltpetre, and

pounded charcoal : these three ingredients mixed together,

in the proper quantities, form a substance exceedingly in-

flammable, and of such a nature, that the discovery of it

could be owing only to chance. A single spark is sufficient

to inflame, in an instant, the largest mass of this compo

sition. The expansion, suddenly communicated either to

the air, lodged in the interstices of the grains of which it

consists, or to the nitrous acid which is one of the elements

of the saltpetre, produces an effort which nothing can

resist ; and the most ponderous masses are driven before

it with inconceivable velocity. We must however observe

that this invention, to which the epithet of diabolical is fre

quently applied, is not so destructive to the human race as

it might at first appear : battles seem to have been attend-

ed with less slaughter since gunpowder began to be used;
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and, as is remarked by the celebrated Marshal Saxe, the

noise and smoke produced by fire arms, during a battle,

are more terrible than the execution they make. We

must however except cannon when well directed : but let

us return to our subject, and give an account of the process

for making gunpowder.

Sulphur is found ready formed , and almost in its last

degree of purity, in volcanic productions. It is found

also, and much more frequently, in the state of sulphuric

acid ; that is to say combined with oxygen : it is in this

state that it is found in argil, gypsum, &c. It may be

extracted likewise from vegetable substances and animal

matters:

To purify sulphur, melt it in an iron pan ; by which

means the earthy and metallic parts will be precipitated ;

and then pour it into a copper-kettle, where it will form

another deposit of the foreign matters, with which it is

mixed. After keeping it in fusion some time, pour it into

cylindric wooden moulds, in order that it may be formed

into sticks .

Saltpetre, or, as it is called in the modern chemistry,

nitrate of potash, exists in a natural state, but in small

quantities. It is found sometimes at the surface of the

ground, as in India, and sometimes on the surface of cal-

careous walls, the roofs of cellars, under the arches of

bridges, &c.

To extract the saltpetre fromthe lime of walls, or other

earths impregnated with it, the earths are put into casks,

placed on timbers, and water is poured over them to the

height of about three inches. When the water has re-

mained in that state five or six hours, it is suffered to run

off by apertures made in the bottom of the casks, from

which it falls into a gutter that conveys it to a common

reservoir sunk in the earth. When the sediment has been

deposited, the clear liquor is drawn offinto a proper vessel,

in order to be evaporated.

BB 2
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*
When the liquor is in a state of ebullition , in proportion

as it evaporates, there is precipitated calcareous earth,

and then muriate of soda. To know when it is sufficiently

evaporated, put a drop of it on a piece of cold iron, and if

it becomes fixed, and assumes a white solid globular form,

it is time to slacken the fire. The liquor must then be left

at rest for twenty-four hours, after which it is run off, and

set to crystallize.

It is needless to describe charcoal, as it is every where

known. We shall only observe, that the charcoal found

by experience to be fittest for the composition of gunpow-

der, is that made from the alder, willow, or black dog-

wood.

To make gunpowder, mix together 6 parts of pounded

nitre, well purified , 1 part of pounded sulphur, exceed-

ingly pure, and 1 part of pounded charcoal , adding a

quantity of water sufficient to reduce them to a soft paste.

Put the whole into a wooden or copper mortar, and with

a pestle of the same materials, to prevent inflammation,

pound these ingredients for 24 hours, to mix them tho-

roughly ; taking care to keep them always moderately

moist. When they are well incorporated, pour the mass

upon a sieve pierced with small holes of the size which

you intend to give to the grains of the powder. If it be

then pressed, shaking the sieve, it will pass through in

grains, which must be dried in the sun or over a stove

without fire. When dry, it ought to be put into vessels

capable of preserving it from moisture.

Every one knows that, in consequence of the great con-

sumption of gunpowder, certain machines, called powder

mills, have been invented. These machines consist of a

beam turned by means of a water wheel, and furnished

with a great number of projecting arms, which raise up

and let fall in succession a series of pestles or stampers,

below which are placed copper vessels or mortars contain-

ing the matter to be pounded and incorporated. These
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mills however are exceedingly disagreeable neighbours ;

for notwithstanding the precautions taken, there are few

of them which do not some time or other blow up. On

this account they ought always to be erected at a distance

from towns or dwellings.

As the enlarged state ofchemistry has introduced some

improvements in the art of making gunpowder, we shall

here, in addition to what has been above said, give the

following account ofthe process employed for this pur-

pose in some ofthe English manufactories.

Gunpowder is made of three ingredients : salt-petre,

charcoal, and brimstone ; which are combined in the fol-

lowing proportions : for each 100 parts of gunpowder,

saltpetre 75 parts , charcoal 15 , and sulphur 10.

The saltpetre is either that imported principally from

the East Indies , or that which has been extracted from da-

maged gunpowder. It is refined by solution, filtration,

evaporation, and crystallization ; after which it is fused ;

taking care not to use too much heat, that there may be

no danger of decomposing the nitre.

The sulphur used , is that which is imported from Sicily,

and is refined by melting and skimming ; the most impure

is refined by sublimation.

The charcoal formerly used in this manufacture, was

made by charring wood in the usual manner. This mode

is called charring in pits. The wood is cut into pieces of

about three feet in length ; it is then piled on the ground,

in a circular form, three, four , or five cords ofwood making

what is called a pit, and then covered with straw, fern , &c .

kept down by earth or sand ; and vent-holes are made, as

may be necessary, in order to give it air. As this method

is uncertain and defective, the charcoal now used in the

manufacturing of gunpowder, is made in the following

manner. The wood to be charred is first cut into pieces

ofabout nine inches in length, and put into an iron cylin-
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der placed horizontally. The front aperture of the cylin-

der is then closely stopped : at the other end there are

pipes connected with casks. Fire being made under the

cylinder, the pyro-ligneous acid, attended with a large

portion of hydrogen gas, comes over. The gas escapes,

and the acid liquor is collected in the casks. The fire is

kept up till no more gas or liquor comes over, and the

carbon remains in the cylinder.

The several ingredients, being thus prepared, are ready

for manufacturing. They are first ground separately to a

fine powder ; they are then mixed together in the proper

proportions ; and the composition in this state is sent to

the gunpowder mill, which consists of two stones placed

vertically, and running on a bed-stone. On this bed-stone

the composition is spread out, and moistened with as small

a quantity of water as will reduce it to a proper body, but

not to a paste : after the stone runners have made the pro-

per revolutions over it, it may then be taken off.

A powder mill is a slight wooden building, with a

boarded roof. Only about 40 or 50 lb. of composition is

worked here at a time, as explosions may happen by the

runners and bed-stone coming into contact, and even from

other causes. These mills are worked either by water or

by horses.

The composition, when taken from the mill, is sent to

the corning house, to be corned or grained. Here it is

first formed into a hard and firm mass, it is then broken

into small lumps, and afterwards grained , by these lumps

being put into sieves, in each of which is a flat circular

piece of lignum vitæ. The sieves are made of parchment

skins, having round holes punched through them. Se-

veral ofthese sieves are fixed in a frame, which by proper

machinery has such a motion given to it, as to make the

lignum vitæ runner in each sieve go round with great ve-

locity, so as to break the lumps of powder, and by forcing
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It through the holes to form it into grains of several sizes.

The grains are then separated from the dust by sieves and

reels made for that purpose.

The grains are next hardened, and the rougher edges

are taken offby shaking them a sufficient time in a close

reel, moved in a circular direction with a proper velocity.

The powder for guns, mortars, and small arms, is gene-

rally made at one time, and always of the same composi-

tion. The only difference is in the size of the grains,

which are separated by sieves of different fineness.

The gunpowder thus corned, dusted and reeled, which

is called glazing, as it gives it a small degree of gloss , is

then sent to the stove and dried ; care being taken not to

raise the heat so much as to decompose the sulphur. The

heat is regulated by a thermometer placed in the door of

the stoves, if dried in a gloom-stove *.

Agunpowder stove dries the powder either by steam or

by the heat from an iron gloom, the powder being spread

out on cases, placed on proper supports around the room.

Ifgunpowder is injured by damp in a small degree, it

may be recovered by again drying it in a stove ; but if the

ingredients are decomposed , the nitre must be extracted,

and the gunpowder re-manufactured.

There are several methods of proving and trying the

goodness and strength of gunpowder. The following is

one by which a tolerably good idea may be formed of its

purity, and also some conclusion as to its strength.

Lay two or three small heaps, about a dram or two of

* This kind of stove consists of a large cast-iron vessel , projecting into

one side of a room, and heated from the outside, till it absolutely glows.

From the construction it is hardly possible that fire can be thrown from the

gloom, as it is called; but stoves heated by steam passing through steam-

tight tubes, or otherwise, ought certainly to be preferred ; for the most cau-

tious workman may stumble, and if he has a case of powder in his hand,

some ofit may be thrown upon the gloom ; and it is not improbable that

some ofthe accidents which have happened to powder mills may have been

Decasioned in this manner.
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the powder, on separate pieces of clean writing paper;

fire one of them by a red hot wire ; if the flame ascends

rapidly, with a good report, leaving the paper free from

white specks, and without burning holes in it ; and if

sparks fly off and set fire to the adjoining heaps, the good-

ness of the ingredients and proper manufacture of the

powder may be safely inferred ; but if otherwise, it is

either badly made, or the ingredients are impure.

The editor ofthis English edition ofthe Recreations, has

been fortunate enough to succeed in constructingthe most

convenient and most accurate eprouvette that has perhaps

ever been contrived , for accurately determining the com-

parative strength of gunpowder. It consists of a small

cannon, or gun, suspended freely, like a pendulum, with

the axis of the gun horizontal. This being charged with

the proper charge of powder, and then fired, the gun

swings, or recoils backward, and the instrument itself

shows the extent of the first or greatest vibration , which

indicates the strength to the utmost nicety.

*
Having thus given an account of almost every thing ne-

cessary to be known in regard to the process for making

gunpowder, we shall now say a few words respecting the

physical causes of its inflammation and exploding.

Gunpowder being composed of the above ingredients,

when a spark, struck from a piece of flint and steel , falls

on this mixture, it sets fire to a certain portion of the

charcoal, and the inflamed charcoal causes the nitre with

which it is mixed or in contact to detonate, and also the

sulphur, the combustibility of which is well known. Por-

tions of the charcoal contiguous to the former take fire in

like manner, and produce the same effect in regard to the

surrounding mass : thusthe first portion inflamed , inflames

a hundred others ; these hundred communicate the inflam-

mation to ten thousand ; the ten thousand to a million , and

so on. It may be easily conceived that an inflammation,

the progress of which is so rapid, cannot fail to extend it-
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selfin the course of a very short time, from the one extre-

mity to the other ofthe largest mass.

We shall observe in support of this inflammation, that

granulated powder inflames with much more rapidity than

that which is not granulated. The latter only puffs away

slowly, while the other takes fire almost instantaneously ;

and of the granulated kinds of gunpowder, that in round

grains, like the Swiss powder, inflames sooner than that in

oblong irregular grains, like the French. The reason of

this is, that the former leaves to the flame of the grains,

first inflamed, larger and freer interstices, which produce

the inflammation with more rapidity.

In regard to the expansion of inflamed gunpowder, is it

occasioned by the air interposed between its grains, or by

the aqueous fluid which enters into the composition ofthe

nitre ? We doubt much whether it be the air, as its ex-

pansibility does not seem sufficient to explain the phenome-

non ; but we know that water when converted into vapour

by the contact of heat, occupies a space 14000 times

greater than its original bulk, and that its force is very

considerable.

In the foregoing account however Montucla seems to

have missed the true cause of the expansive force of fired

gunpowder, the discovery of which is chiefly due to the

English philosophers, and particularly to the learned and

ingenious Mr. Robins. This author apprehends that the

force offired gunpowder consists in the action of a perma-

nently elastic fluid , suddenly disengaged from the powder

by the combustion , similar in some respects to common at-

mospheric air, at least as to elasticity. He showed, by

satisfactory experiments, that a fluid of this kind is actually

disengaged by firing the powder ; and that it is perma-

nently elastic, or retains its elasticity when cold, the force

of which he measured in this state. He also measured the

force ofit when inflamed , by a most ingenious method, and

found its strength in that state to be about a thousand times
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the strength or elasticity ofcommon atmospheric air. This

however is not its utmost degree of strength, as it is found

to increase in its force when fired in larger quantities than

those employed by Mr. Robins ; so much so indeed , that,

by more accurate and effectual experiments, we have

found its force rise as high as 1600 or 1800 times the force

ofatmospheric air in its usual state. Much beyond this it

is not probable it can go, nor indeed possible, if there be

any truth in the common and allowed physical principles

ofmechanics. With an elastic fluid , of a given force, we

infallibly know, or compute the effects it can produce, in

impelling a given body ; and on the other hand, from the

effects or velocities with which given bodies are impelled

by an elastic fluid , we as certainly know the force or

strength of that fluid . And these effects we have found

perfectly to accord with the forces above mentioned. If

any gentleman therefore thinks he has discovered that fired

gunpowder is 50 or 60 times as strong, as above stated, he

must have been deceived by mistaking or misapplying his

own experiments ; and we apprehend it would not be dif

ficult, if this were the proper place, to show, that this has

actually been the case.

Mr. Robins's discovery and opinion have also been cor-

roborated by others, among the best chemists and philoso-

phers. Lavoisier was of opinion that the force of fired

gunpowder depends, in a great measure, on the expansive

force of uncombined caloric, supposed to be let loose, in

a great abundance, during the combustion or deflagration

of the powder. And Bouillon Lagrange, in his Course of

Chemistry, says, when gunpowder takes fire, there is a dis-

engagement of azotic gas, which expands in an astonishing

manner, when set at liberty ; and we are even still igno-

rant of the extent of the dilatation occasioned by the heat

arising from the combustion. A decomposition of water

also takes place, and hydrogen gas is disengaged with

elasticity ; and by this decomposition of water there is
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formed carbonic acid gas, and even sulphurated hydrogen

gas, which is the cause of the smell emitted by burnt pow-

der.

REMARKS.- I. It is ridiculous therefore to believe in

the existence of white gunpowder ; that is, a kind of pow-

der which impels a ball without any noise ; for there can

be no force without sudden expansion, nor sudden expan-

sion without a concussion of the air, which produces

sound.

II. It was childish to give precepts, as in the preceding

editions of this work, for making red, blue, green, &c,

gunpowder ; as they could answer no good purpose.

We shall now proceed to our principal object, the con-

struction ofthe most common and curious pieces of fire-

works.

ARTICLE II.

Construction ofthe Cartridges of Rockets.

A rocket is a cartridge or case made of stiff paper, which

being filled in part with gunpowder, saltpetre, and char-

coal, rises of itself into the air, when fire is applied to it.

There are three kinds of rockets : small ones, the calibre

of which does not exceed a pound bullet ; that is to say,

the orifice of them is equal to the diameter of a leaden

bullet which weighs only a pound : for the calibres , or ori-

fices of the moulds or models used in making rockets, are

measured by the diameters of leaden bullets . Middle

sized rockets, equal to the size of a ball of from one to

three pounds. And large rockets, equal to a ball of from

three to a hundred pounds.

To give the cartridges the same length and thickness , in

order that any number of rockets may be prepared ofthe

same size and force, they are put into a hollow cylinder

of strong wood, called a mould. This mould is sometimes
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of metal ; but at any rate it ought to be made ofsome very

hard wood.

This mould must not be confounded with another piece

ofwood, called the former or roller, around which is rolled

the thick paper employed to make the cartridge . If the

calibre of the mould be divided into 8 equal parts, the di-

ameter of the roller must be equal to 5 of these parts. See

fig. 1 pl. 1 , where A is the mould, and в the roller. The

vacuity between the roller and the interior surface of the

mould, that is to say ofthe calibre of the mould, will be

exactly filled by the cartridge.

As rockets are made of different sizes, moulds of differ-

ent lengths and diameters must be provided. The calibre

ofa cannon is nothing else than the diameter of its mouth ;

and we here apply the same term to the diameter of the

aperture of the mould .

The size ofthe mould is measured by its calibre ; but

the length of the moulds for different rockets, does not al-

ways bear the same proportion to the calibre, the length

being diminished as the calibre is increased. The length

of the mould for small rockets ought to be six times the

calibre, but for rockets of the mean and larger size, it will

be sufficient ifthe length of the mould be five times or even

four times the calibre of the moulds.

At the end of this section we shall give two tables, one

of which contains the calibres of moulds below a pound

bullet ; and the other the calibres from a pound to a hun-

dred pounds bullet.

For making the cartridges, large stiff paper is employed.

This paper is wrapped round the roller в, fig. 1 pl. 1 , and

then cemented by means of common paste. The thickness

of the paper when rolled up in this manner, ought to be

about one eighth and a half of the calibre of the mould, ac-

cording to the proportion given to the diameter of the

roller. But if the diameter of the roller be made equal to
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the calibre ofthe mould, the thickness of the cartridge

must be a twelfth and a half of that calibre.

When the cartridge is formed, the roller B is drawn out,

by turning it round , until it is distant from the edge of

the cartridge the length of its diameter. A piece ofcord

is then made to pass twice round the cartridge at the ex-

tremity ofthe roller. And into the vacuity left in the car-

tridge; another roller is introduced, so as to leave some

space between the two. One end of the pack-thread must

be fastened to something fixed, and the other to a stick

conveyed between the legs, and placed in such a manner,

as to be behindthe person who choaks the cartridge. The

cord is then to be stretched by retiring backwards, and the

cartridge must be pinched until there remains only an

aperture capable of admitting the piercer DE. The cord

employed for pinching it is then removed, and its place is

supplied by a piece of pack-thread, which must be drawn

very tight, passing it several times around the cartridge,

after which it is secured by means of running knots made

one above the other.

Besides the roller в, a rod c, pl . 1 fig. 1 , is used, which

being employed to load the cartridge, must be somewhat

smaller than the roller, in order that it may be easily in-

troduced into the cartridge. The rod c is pierced length-

wise, to a sufficient depth to receive the piercer De , which

must enter into the mould A, and unite with it exactly at

its lower part. The piercer, which decreases in size, is

introduced into the cartridge through the part where it has

been choaked, and serves to preserve a cavity within it.

Its length, besides the nipple or button, must be equal to

about two-thirds that of the mould . Lastly, if the thick-

ness of the base be a fourth part of the calibre of the

mould, the point must be made equal to a sixth of the

calibre.

It is evident that there must be at least three rods, such
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as c, pierced in proportion to the diminution of the

piercer, in order that the powder which is rammed in by

means of a mallet, may be uniformly packed throughout

the whole length of the rocket . It may be easily per-

ceived also, that these rods ought to be made of some very

hard wood, to resist the strokes of the mallet.

In loading rockets, it is more convenient not to employ

a piercer. When loaded on a nipple, without a piercer,

by means of one massy rod, they are pierced with a bit and

a piercer fitted into the end of a bit-brace. Care however

must be taken to make this hole suited to the proportion

assigned for the diminution of the piercer. That is to

say, the extremity of the hole at the choaked part of the

cartridge, ought to be about a fourth of the calibre of the

mould ; and the extremity of the hole which is in the inside

for about two thirds of the length of the rocket, ought to

be a sixth of the calibre. This hole must pass directly

through the middle of the rocket. In short, experience

and ingenuity will suggest what is most convenient, and

in what manner the method of loading rockets, which we

shall here explain, may be varied .

After the cartridge is placed in the mould, pour gradu-

ally into it the prepared composition ; taking care to pour

only two spoonfuls at a time, and to ram it immediately

down with the rod c, striking it in a perpendicular direc-

tion with a mallet of a proper size, and giving an equal

number of strokes, for example, 3 or 4, each time that a

new quantity of the composition is poured in.

When the cartridge is about half filled , separate with a

bodkin the halfof the folds of the paper which remains, and

having turned them back on the composition, press them

down with the rod and a few strokes of the mallet, in order

to compress the paper on the composition.

Then pierce three or four holes in the folded paper, by

means of a piercer, which must be made to penetrate to
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the composition of the rocket, as seen at A, fig. 2 pl. 1 .

These holes serve to form a communication between the

body ofthe rocket and the vacuity at the extremity ofthe

cartridge, or that part which has been left empty.

In small rockets this vacuity is filled with granulated

powder, which serves to let them off: they are then cover-

ed with paper, and pinched in the same manner as at the

other extremity. But in other rockets, the pot containing

stars, serpents, and running rockets, is adapted to it, as

will be shown hereafter.

It may be sufficient however to make, with a bit or

piercer, only one hole, which must be neither too large

nor too small, such as a fourth part of the diameter of the

rocket, to set fire to the powder, taking care that this hole

be as straight as possible, and exactly in the middle of the

composition. A little of the composition of the rocket

must be put into these holes, that the fire may not fail to

be communicated to it.

It now remains to affix the rocket to its rod, which is

done in the following manner. When the rocket has been

constructed as above described, make fast to it a rod of

light wood, such as fir or willow, broad and flat at the end

next the rocket, and decreasing towards the other. It

must be as straight and free from knots as possible, and

ought to be dressed, if necessary, with a plane. Its

length and weight must be proportioned to the rocket ;

that is to say, it ought to be six, seven, or eight feet long,

so as to remain in equilibrium with it, when suspended on

the finger, within an inch or an inch and a half of the neck.

Before it is fired, place it with the neck downwards, and

let it rest on two nails, in a direction perpendicular to the

horizon. To make it ascend straighter and to a greater

height, adapt to its summit A à pointed cap or top, as c

made of common paper, which will serve to facilitate its

passage through the air.
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These rockets in general are made in a more complex

manner, several other things being added to them to ren-

der them more agreeable, such for example as a petard,

which is a box of tin-plate, filled with fine gunpowder,

placed on the summit. The petard is deposited on the

composition, at the end where it has been filled ; and the

remaining paper of the cartridge is folded down over it to

keep it firm . The petard produces its effect when the

rocket is in the air and the composition is consumed .

Stars, golden rain, serpents, saucissons, and several other

amusing things, the composition of which we shall explain

hereafter, are also added to them. This is doneby adjust-

ing to the head of the rocket, an empty pot or cartridge,

much larger than the rocket, in order that it may contain

serpents, stars, and various other appendages, to render it

more beautiful.

*
Rockets may be made to rise into the air without rods.

For this purpose four wings must be attached to them in

the form of a cross, and similar to those seen on arrows or

darts, as represented at a plate 1 fig. 3. In length, these

wings must be equal to two-thirds that of the rocket ; their

breadth towards the bottom should be half their length,

and their thickness ought to be equal to that of a card. But

this method of making rockets ascend is less certain, and

more inconvenient than that where a rod is used ; and for

this reason it is rarely employed.

We shall now show the method of finding the diameters

or calibre of rockets, according to their weight ; but we

must first observe that a pound rocket, is that just capable

of admitting a leaden bullet of a pound weight, and so of

the rest. The calibre for the different sizes may be found

by the two following tables, one of which is calculated for

rockets of a pound weight and below ; and the other for

those from a pound weight to 50 pounds.
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I. Table ofthe calibre ofmoulds ofa pound weight and

below.

Ounces. Lines. Drams. Lines.

16 19 14

12 17 12

8 15 10

7 143

6 144

5 13

4
3
2
1

121

4
2
0
8
6
&
&

7

7

63

6 ,

5吋

4.3

323/20

111

9/1/

6

The use of this table will be understood merely by in-

spection; for it is evident that a rocket of 12 ounces ought

to be 17 lines in diameter ; one of 8 ounces, 15 lines ; one

of 10 drams, 6¹ lines ; and so of the rest.

On the other hand, if the diameter of the rocket be

given, it will be easy to find the weight of the ball corre-

sponding to that calibre. For example, if the diameter be

13 lines, it will be immediately seen, by looking for that

number in the column of lines, that it corresponds to a ball

of 5 ounces.

VOL. III.
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II. Table ofthe calibre ofmoulds from 1 to 50 pounds ball.

Pounds. Calibre . Pounds . Calibre. Pounds. Calibre Pounds. Calibre.

1
2
3
4
5

100 14 241 27 300 .40 341

126 15 247 28 304 41 344

144 16 252 29 307 42 347

158 17 257 30 310 43 350

171 18 262 31 314 44 353

6 181 19 267 32 317 45 355

7 191 20 271 33 320 46 358

8 200 21 275 34 323 47 361

9 208 22 280 35 326 4.8 363

10 215 23 284 36 330 49 366

11 222 24 288 37 333 50 368

12 228 25 292 38 336

13 235 26 296 39 339

Theuse ofthe second table is as follows : Ifthe weight of

the ball be given, which we shall suppose to be 24 pounds,

seek for that number in the column of pounds, and oppo-

site to it, in the column of calibres, will be found the num-

ber 288. Then say, as 100 is to 193 , so is 288 to a fourth

term , which will be the number of lines of the calibre re-

quired ; or multiply the number found , that is 288 , by 191,

and from the product 5616, cut off the two last figures :

the required calibre therefore will be 56.16 lines, or 4

inches 8 lines.

On the other hand, the calibre being given in lines, the

weight of the ball may be found with equal ease : if the

calibre, for example, be 28 lines, say as 19 is to 28, so is 100

to a fourth term, which will be 143.5 , or nearly 144. But

in the above table, opposite to 144, in the second column,

willbe found the number 3 in the first ; which shows that

a rocket, the diameter or calibre of which is 28 lines, is a

rocket ofa 3 pounds ball.
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ARTICLE III.

Composition of the Powder for Rockets, and the manner of

filling them.

The composition of the powder for rockets must be dif-

ferent, according to the different sizes ; as that proper for

small rockets, would be too strong for large ones. This

is a fact respecting which almost all the makers of fire-

works are agreed. The quantities of the ingredients,

which experience has shown to be the best, are as follow :

For rockets capable of containing 1 or 2 ounces ofcomposition.

To one pound of gunpowder, add two ounces of soft

charcoal ; or to one pound of gunpowder, a pound of the

coarse powder used for cannon ; or to 9 ounces of gun-

powder, 2 ounces of charcoal ; or to a pound of gun-

powder, an ounce and a half of saltpetre, and as much

charcoal.

For rockets oftwo or three ounces.

To 4 ounces of gunpowder, add an ounce of charcoal ;

or to 9 ounces of powder, add 2 ounces of saltpetre.

For a rocket offour ounces.

To 4 pounds of gunpowder, add a pound of saltpetre,

and 4 ounces of charcoal : you may add also, ifyou choose,

halfan ounce of sulphur ; or to one pound two ounces and

a half of gunpowder, add 4 ounces of saltpetre, and 2

ounces of charcoal ; or to a pound of powder, add 4

ounces of saltpetre , and one ounce of charcoal ; or to 17

ounces of gunpowder, add 4 ounces of saltpetre , and the

same quantity of charcoal ; or to 3 ounces and a half of

gunpowder, add 10 ounces of saltpetre, and 3 ounces and

a half of charcoal. But the composition will be strongest,

if to 10 ounces of gunpowder, you add 3 ounces and a half

of saltpetre, and 3 ounces of charcoal.

CC 2
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recoil in fire-arms, it is necessary we should first explain

the latter.

When the powder is suddenly inflamed in the chamber,

or at the bottom of the barrel, it necessarily exercises an

action two ways at the same time ; that is to say, against

the breech ofthe piece, and against the bullet or wadding,

which is placed above it. Besides this, it acts also against

the sides of the chamber which it occupies ; and as they

oppose a resistance almost insurmountable, the whole

effort of the elastic fluid, produced by the inflammation,

is exerted in the two directions above mentioned. Butthe

resistance opposed by the bullet, being much less than that

opposed by the mass of the barrel or cannon , the bullet is

forced out with great velocity. It is impossible, however,

that the body of the piece itself should not experience a

movement backwards ; for if a spring is suddenly let loose,

between two moveable obstacles, it will impel them both,

and communicate to them velocities in the inverse ratio of

their masses : the piece therefore must acquire a velocity

backwards nearly in the inverse ratio of its mass to that of

the bullet. Wemake use of the term nearly, because there

are various circumstances which give to this ratio certain

modifications ; but it is always true that the body of the

piece is driven backwards, and that if it weighs with its

carriage, a thousand times more than the bullet, it acquires

a velocity, which is a thousand times less , and which is

soon annihilated by the friction of the wheels against the

ground, &c.

The cause of the ascent of a rocket is nearly the same.

At the moment when the powder begins to inflame, its ex-

pansion produces a torrent of elastic fluid, which acts in

every direction ; that is, against the air which opposes

its escape from the cartridge, and against the upper part

of the rocket ; but the resistance of the air is more con-

siderable than the weight of the rocket, on account of the

extreme rapidity with which the elastic fluid issues through
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the neck of the rocket to throw itself downwards, and

therefore the rocket ascends by the excess of the one of

these forces over the other.

This however would not be the case, unless the rocket

were pierced to a certain depth. A sufficient quantity of

elastic fluid would not be produced ; for the composition

would inflame only in circular coats of a diameter equal to

that of the rocket ; and experience shows that this is not

sufficient. Recourse then is had to the very ingenious idea

of piercing the rocket with a conical hole, which makes the

composition burn in conical strata, which have much

greater surface, and therefore produce a much greater

quantity of inflamed matter and fluid . This expedient

was certainly not the work of a moment.

ARTICLE V.

Brilliantfire and Chinesefire.

As iron-filings, when thrown into the fire, inflame and

emit a strong light, this property, discovered no doubt by

chance, gave rise to the idea of rendering the fire of rockets

much more brilliant, than when gunpowder, or the sub-

stances of which it is composed, are alone employed.

Nothing is necessary but to take iron-filings, very clean

and free from rust, and to mix them with the composition

of the rocket. It must however be observed, that rockets

of this kind will not keep longer than a week ; because the

moisture contracted by the saltpetre rusts the iron-filings ,

and destroys the effect they are intended to produce.

But the Chinese have long been in possession of a me-

thod of rendering this fire much more brilliant and varie-

gated in its colours ; and we are indebted to father d'In-

carville, a jesuit, for having made it known . It consists in

the use of a very simple ingredient ; namely, cast iron re-

duced to a powder more or less fine : the Chinese give it

aname, which is equivalent to that of iron sand.
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to be equal to two of these diameters, and its diameter to

that ofthe rocket.

Having rolled the thick paper intended for making the

pot, and which ought to be of the same kind as that used

for the rocket, twice round the cylinder, a portion of it

must be pinched in that part of the cylinder which has the

least diameter ; this part must be pared in such a manner,

as to leave only what is necessary for making the pot fast

to the top of the rocket, and the ligature must be covered

with paper.

To charge such a pot, attached to a rocket ; having

pierced three or four holes in the double paper which

covers the vacuity of the rocket, pour over it a small quan-

tity of the composition with which the rocket is filled, and

by shaking it, make a part enter these holes ; then arrange

in the pot the composition with which it is to be charged,

taking care not to introduce into it a quantity heavier than

the body of the rocket.

The whole must then be secured by means ofa few small

balls of paper, to keep every thing in its place , and the pot

must be covered with paper cemented to its edges ; if a

pointed summit or cap be then added to it, the rocket will

be ready for use.

We shall now give an account of the different artifices

with which such rockets are loaded.

§ I. Of Serpents.

Serpents are small flying rockets , without rods, which

instead of rising in a perpendicular direction , mount ob-

liquely, and descend in a zig-zag form without ascending

to a great height. The composition of them is nearlythe

same as that of rockets ; and therefore nothing more is ne-

cessary than to determine the proportion and construction

of the cartridge, which is as follows.

The length AC pl . 1 , fig. 7 , of the cartridge may be

about 4 inches ; it must be rolled round a stick somewhat
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larger than the barrel of a goose quill, and after being

choaked at one of its ends, fill it with the composition a

little beyond its middle, as to в ; and then pinch it so as

to leave a small aperture. The remainder BC, must be

filled with grained powder , which will occasion a report

when it bursts. Lastly, choak the cartridge entirely to-

wards the extremity c ; and at the other extremity a place

a train of moist powder, to which if fire be applied , it will

be communicated to the composition in the part AB, and

cause the whole to rise in the air. The serpent, as it falls,

will then make several small turns in a zig-zag direction ,

till the fire is communicated to the grained powder in the

part BC ; on which the serpent will burst with a loud re-

port before it falls to the ground .

If the serpent be not choaked towards the middle, in-

stead of moving in a zig-zag direction , it will ascend and

descend with an undulating motion, and then burst as

before.

The cartridges of serpents are generally made of play-

ing cards. These cards are rolled round a rod of iron or

hard wood, a little larger, as already said, than the barrel

ofa goose quill. To confine the card, a piece of strong

paper is cemented over it.

The length of the mould must be proportioned to that

of the cards employed , and the piercer of the nipple must

be three or four lines in length. These serpents are loaded

with bruised powder, mixed only with a very smail quan-

tity of charcoal. To introduce the composition into the

cartridge, a quill , cut into the form of a spoon, may be

employed: it must be rammed down by means of a small

rod, to which a few strokes are given with a small mallet.

When the serpent is half loaded , instead of pinching it

in that part, you may introduce into it a vetch seed , and

place granulated powder above it to fill up the remainder.

Above this powder place a small pellet of chewed paper,

and then choak the other end of the cartridge. Ifyou are
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desirous of making larger serpents, cement two playing

cards together ; and , that they may be managed with more

ease, moisten them a little with water. The match consists

of a paste made of bruised powder, and a small quantity

of water.

§ II. Marroons.

Marroons are small cubical boxes, filled with a compo-

sition proper for making them burst, and may be con-

structed with great ease.

Cut a piece of pasteboard, according to the method

taught in geometry to form the cube, as seen fig. 8 pl. 1 ;

join these squares at the edges, leaving only one to be ce-

mented, and fill the cavity of the cube with grained

powder ; then cement strong paper in various directions.

over this body, and wrap round it two rows of pack-thread,

dipped in strong glue : then make a hole in one of the

corners, and introduce into it a match.

If you are desirous to have luminous marroons , that is

to say marroons which, before they burst in the air, emit

a brilliant light, cover them with a paste the composition

ofwhich will be given hereafter for stars : and roll them

in pulverised gunpowder, to serve as a match or com-

munication.

§ III. Saucissons.

Marroons and saucissons differ from each other only in

their form. The cartridges of the latter are round , and

must be only four times their exterior diameter in length.

They are choaked at one end in the same manner as a

rocket ; and a pellet of paper is driven into the aperture

which has been left, in order to fill it up. They are then

charged with grained powder, above which is placed a ball

of paper gently pressed down, to prevent the powder from

being bruised ; the second end of the saucisson being after-

wards choaked, the edges are pared on both sides, and
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the whole is covered with several turns of pack-thread,

dipped in strong glue, and then left to dry.

When you are desirous of charging them, pierce a hole

in one of the ends ; and apply a match, in the same man-

ner as to marroons.

§ IV. Stars.

Stars are small globes of a composition which emits à

brilliant light, that may be compared to the light of the

stars in the heavens. These balls are not larger than a

nutmeg or musket bullet, and when put into the rockets

must be wrapped up in tow, prepared for that purpose.

The composition of these stars is as follows.

To a pound of fine gunpowder well pulverised, add

four pounds of saltpetre, and two pounds of sulphur.

When these ingredients are thoroughly incorporated , take

about the size of a nutmeg of this mixture, and having

wrapt it up in a piece of linen-rag, or of paper, form it

into a ball ; then tie it closely round with a pack-thread,

and pierce a hole through the middle of it , sufficiently

large to receive a piece of prepared tow, which will serve

as a match. This star, when lighted , will exhibit a most

beautiful appearance ; because the fire as it issues from

the two ends of the hole in the middle, will extend to a

great distance, and make it appear much larger.

If you are desirous to employ a moist composition in

the form of a paste, instead of a dry one, it will not be

necessary to wrap up the star in any thing but prepared

tow ; because, when made of such paste, it can retain its

spherical figure. There will be no need also of piercing

a hole in it, to receive the match ; because, when newly

made, and consequently moist, it may be rolled in pul-

verised gunpowder, which will adhere to it. This powder,

when kindled, will serve as a match , and inflame the com-

position ofthe star, which in falling will form itself intotears.

•
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Another method ofmaking rockets with stars.

Mix three ounces of saltpetre, with one ounce of sulphur,

and two drams of pulverised gunpowder ; or mix four

ounces of sulphur, with the same quantity of saltpetre,

and eight ounces of pulverised gunpowder. When these

materials have been well sifted, besprinkle them with

brandy, in which a little gum has been dissolved, and then

make up the star in the following manner.

Take a rocket mould , eight or nine lines in diameter,

and introduce into it a nipple, the piercer of which is of a

uniform size throughout, and equal in length to the height

of the mould. Put into this mould a cartridge, and by

means of a pierced rod load it with one ofthe preceding

compositions ; when loaded, take it from the mould, with-

out removing the nipple, the piercer of which passes

through the composition, and then cut the cartridge quite

round into pieces of the thickness of three or four lines.

The cartridge being thus cut, draw out the piercer gently,

and the pieces, which resemble the men employed for

playing at drafts, pierced through the middle, will be

stars , which must be filed on a match thread, which, if you

choose, may be covered with tow.

To give more brilliancy to stars of this kind, a cartridge

thicker than the above dimensions, and thinner than that

of a flying-rocket of the same size, may be employed ; but,

before it is cut into pieces, five or six holes must be pierced

in the circumference of each piece to be cut. Whenthe

cartridge is cut, and the pieces have been filed, cement

over the composition small bits of card , each having a hole

in the middle, so that these holes may correspond to the

place where the composition is pierced.

REMARKS.-I. There are several other methods of

making stars, which it would be too tedious to describe.

We shall therefore only show how to make étoiles à pet,
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or stars which give a report as loud as that of a pistol or

musket.

Make small saucissons, as taught in the third section ;

only, it will not be necessary to cover them with pack-

thread : it will be sufficient if they are pierced at one end,

in order that you maytie to it a star constructed according

to the first method , the composition of which is dry ; for

ifthe composition be in the form of a paste, there will be

no need to tie it. Nothing will be necessary in that case,

but to leave a little more of the paper hollow at the end

of the saucisson which has been pierced , for the purpose

ofintroducing the composition ; and to place in the vacuity,

towards the neck of the saucisson, some grained powder,

which will communicate fire to the saucisson when the

composition is consumed.

II. As there are some stars which in the end become

petards, others may be made, which shall conclude with

becoming serpents. But this may be so easily conceived

and carried into execution , that it would be losing time

to enlarge further on the subject. We shall only observe,

that these stars are not in use, because it is difficult for a

rocket to carry them to a considerable height in the air :

they diminish the effect of the rocket or saucisson, and

much time is required to make them.

SV. Shower ofFire.

To form a shower of fire , mould small paper cartridges

on an iron rod, two lines and a half in diameter, and make

them two inches and a half in length. They must not be

choaked, as it will be sufficient to twist the end of the

cartridge, and having put the rod into it to beat it , in

order to make it assume its form. When the cartridges

are filled, which is done by immersing them in the compo-

sition, fold down the other end, and then apply a match.

This furniture will fill the air with an undulating fire. The

し
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following are some compositions proper for stars of this

kind.

Chinese fire. Pulverised gunpowder one pound, sulphur

2 ounces, iron sand ofthe first order 5 ounces.

Ancient fire. Pulverised gunpowder one pound, char-

coal 2 ounces.

Brilliant fire. Pulverised gunpowder one pound , iron

filings 4 ounces.

The Chinese fire is certainly the most beautiful.

S VI. OfSparks.

Sparks differ from stars only in their size and duration ;

for they are made smaller than stars ; and are consumed

sooner. They are made in the following manner.

Having put into an earthen vessel an ounce of pulverised

gunpowder, two ounces of pulverised saltpetre, one ounce

of liquid saltpetre , and four ounces of camphor reduced to

a sort of farina, pour over this mixture some gum-water,

or brandy in which gum-adraganth or gum-arabic has

been dissolved , till the composition acquire the consistence

of thick soup. Then take some lint which has been boiled

in brandy, or in vinegar, or even in saltpetre , and then

dried and unravelled, and throw into the mixture such a

quantity of it as is sufficient to absorb it entirely, taking

care to stir it well.

Form this matter into small balls or globes of the size of

a pea; and having dried them in the sun or the shade, be

sprinkle them with pulverised gunpowder, in order that

they may more readily catch fire.

Another Method ofmaking Sparks.

Take the saw-dust of any kind of wood that burns

readily, such as fir, elder-tree, poplar, laurel, &c, and

boil it in water in which saltpetre has been dissolved.

When the water has boiled some time, take it from the
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fire, and pour it off in such a manner that the saw-dust

may remain in the vessel. Then place the saw-dust on a

table, and while moist besprinkle it with sulphur, sifted

through a very fine sieve : you may add to it also a little

bruised gunpowde
r

. Lastly, when the saw-dust has been

well mixed, leave it to dry, and make it into sparks as

above described .

§ VII. OfGolden Rain.

There are some flying-rockets which, as they fall , make

small undulations in the air like hair half frizzled . These

are called fusées chevelues, bearded rockets ; they finish

with a kind of shower of fire, which is called golden rain.

The method of constructing them is as follows.

Fill the barrels of some goose quills with the composition

of flying-rockets, and place upon the mouth of each a

little moist gunpowder, both to keep in the composition,

and to serve as a match. If a flying-rocket be then loaded

with these quills , they will produce, at the end , a very

agreeable shower of fire , which on account of its beauty

has been called golden rain.

ARTICLE VII.

Of some rockets different in their effect from common

rockets.

Several very amusing and ingenious works are made by

means of simple rockets, of which it is necessary that we

should here give the reader some idea.

§ I. OfCourantins, or Rockets which fly along a rope.

For

A common rocket, which however ought not to be very

large, may be made to run along an extended rope.

this purpose, affix to the rocket an empty cartridge, and

introduce into it the rope which is to carry it ; placing the

head ofthe rocket towards that side to which you intend

it to move: if you then set fire to the rocket, adjusted in

VOL. III. D D
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REMARK.-Rockets of this kind are generally employed

for setting fire to various other pieces when large fire-

works are exhibited ; and to render them more agreeable,

they are made in the form of different animals, such as

serpents, dragons, &c ; on which account they are called

flying dragons. These dragons are very amusing, especially

when filled with various compositions, such as golden rain,

long hair, &c. They might be made to discharge serpents

from their mouths, which would produce a very pleasing

effect, and give them a greater resemblance to a dragon.
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ume, the latter will make the other revolve

e rope, while it advances along it.

§ III. Of rockets which burn in the water.

Though fire and water are two things of a very opposite

nature, the rockets above described, when set on fire , will

burn and produce their effect even in the water ; but as

they are then below the water, the pleasure of seeing them

is lost ; for this reason , when it is required to cause rockets

to burn as they float on the water, it will be necessary to

make some change in the proportions of the moulds, and

the materials of which they are composed.

In regard to the mould , it may be eight or nine inches

in length, and an inch in diameter : the former, on which

the cartridge is rolled up, may be nine lines in thickness,

and the rod for loading the cartridge must as usual be

somewhat less. For loading the cartridge, there is no

need of a piercer with a nipple.

The composition may be made in two ways ; for if it be

required that the rocket, while burning on the water,

should appear as bright as a candle, it must be composed

of three materials mixed together, viz, 3 ounces of

pulverised and sifted gunpowder, one pound of saltpetre,

and 8 ounces of sulphur. But if you are desirous that it

should appear on the water with a beautiful tail, the com-

position must consist of 8 ounces of gunpowder pulverised

and sifted, one pound of saltpetre, 8 ounces of pounded

and sifted sulphur, and 2 ounces of charcoal.

DD 2
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this manner, it will run along the rope without stopping,

till the matter it contains is entirely exhausted.

If you are desirous that the rocket should move in a

retrograde direction ; first fill one half of it with the com-

position, and cover it with a small round piece ofwood, to

serve as a partition between it and that put into the other

half; then make a hole below this partition , so as to corre-

spond with a small canal filled with bruised powder, and

terminating at the other end of the rocket : by these

means the fire, when it ceases in the first half ofthe rocket,

will be communicated through the hole into the small

canal, which will convey it to the other end; and this end

being then kindled , the rocket will move backwards, and

return to the place from which it set out.

Two rockets of equal size, bound together by means of

a piece of strong pack-thread, and disposed in such a

manner that the head of the one shall be opposite to the

neck of the other, that when the fire has consumed the

composition in the one, it may be communicated to that

in the other, and oblige both of them to move in a retro-

grade direction, may also be adjusted to the rope by means

of a piece of hollow reed . But to prevent the fire of the

former from being communicated to the second too soon,

they ought to be covered with oil-cloth, or to be wrapped

up in paper.

REMARK.-Rockets ofthis kind are generally employed

for setting fire to various other pieces when large fire-

works are exhibited ; and to render them more agreeable,

they are made in the form of different animals, such as

serpents, dragons, &c ; on which account they are called

flying dragons. These dragons are very amusing, especially

when filled with various compositions, such as golden rain,

long hair, &c. They might be made to discharge serpents

from their mouths, which would produce a very pleasing

effect, and give them a greater resemblance to a dragon.
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§ II. Rockets whichfly along a rope, and turn round at the

same time.

Nothing is easier than to give to a rocket of this kind a

rotary motion around the rope along which it advances ;

it will be sufficient for this purpose, to tie to it another

rocket, placed in a transversal direction . But the aperture

of the latter, instead of being at the bottom, ought to be

in the side, near one of the ends. If both rockets be fired

at the same time, the latter will make the other revolve

around the rope, while it advances along it.

§ III. Of rockets which burn in the water.

Though fire and water are two things of a very opposite

nature, the rockets above described , when set on fire, will

burn and produce their effect even in the water ; but as

they are then below the water, the pleasure of seeing them

is lost ; for this reason, when it is required to cause rockets

to burn as they float on the water , it will be necessary to

make some change in the proportions of the moulds, and

the materials of which they are composed.

In regard to the mould, it may be eight or nine inches

in length, and an inch in diameter : the former, on which

the cartridge is rolled up, may be nine lines in thickness,

and the rod for loading the cartridge must as usual be

somewhat less. For loading the cartridge, there is no

need of a piercer with a nipple.

The composition may be made in two ways ; for if it be

required that the rocket, while burning on the water,

should appear as bright as a candle, it must be composed

of three materials mixed together, viz, 3 ounces of

pulverised and sifted gunpowder, one pound of saltpetre,

and 8 ounces of sulphur. But if you are desirous that it

should
appear on the water with a beautiful tail , the com-

position must consist of 8 ounces of gunpowder pulverised

and sifted, one pound of saltpetre, 8 ounces of pounded

and sifted sulphur, and 2 ounces of charcoal .

DD 2
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When the composition has been prepared according to

these proportions, and the rocket has been filled in the

manner above described, apply a saucisson to the end of

it ; and having covered the rocket with wax , black pitch,

rosin, or any other substance capable of preventing the

paper from being spoilt in the water, attach to it a small

rod of white willow, about two feet in length , that the

rocket may conveniently float.

If it be required that these rockets should plunge down,

and again rise up ; a certain quantity of pulverised gun-

powder, without any mixture, must be introduced into

them , at certain distances, such for example, as two, three,

or four lines, according to the size of the cartridge.

REMARKS.-I. Small rockets of this kind may be made,

without changing the mould or composition, in several

different ways, which, for the sake of brevity , we are

obliged to omit. Such of our readers as are desirous

of further information on this subject , may consult those

authors who have written expressly on pyrotechny, some

ofwhom we shall mention at the end of the 12th section.

II. It is possible also to make a rocket which, after it

has burnt some time on the water , shall throw out sparks

and stars ; and these after they catch fire shall ascend into

the air. This may be done by dividing the rocket into two

parts, by means of a round piece of wood, having a hole

in the middle. The upper part must be filled with the

usual composition of rockets, and the lower with stars,

which must be mixed with grained and pulverised gun-

powder, &c.

III. A rocket which takes fire in the water, and, after

burning there half the time of its duration , mounts into

the air with great velocity, may be constructed in the

following manner.

Take a flying rocket, furnished with its rod , and by

means of a little glue attach it to a water rocket, but only

at the middle A, pl. 1 fig. 9, in such a manner, that the
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latter shall have its neck uppermost, and the other its neck

downward. Adjust to their extremity в a small tube, to

communicate the fire from the one to the other, and cover

both with a coating of pitch, wax, &c , that they may not

be damaged by the water.

Then attach to the flying rocket, after it has been thus

cemented to the aquatic one, a rod of the kind described

in the 2d article, as seen in the figure at D ; and from

suspend a piece of pack-thread , to support a musket bullet

E, made fast to the rod by means of a needle or bit of iron

wire. When these arrangements have been made, set fire

to the part c after the rocket is in the water ; and when

the composition is consumed to в, the fire will be com-

municated through the small tube to the other rocket : the

latter will then rise and leave the other, which will not be

able to follow it on account of the weight adhering to it.

§ IV. By means of rockets, to represent several figures in

the air.

If several small rockets be placed upon a large one,

their rods being fixed around the large cartridge, which

is usually attached to the head of the rocket, to contain

what it is destined to carry up into the air ; and if these

small rockets be set on fire while the large one is ascend-

ing, they will represent, in a very agreeable manner, a

tree, the trunk of which will be the large rocket, and the

branches the small ones.

If these small rockets take fire when the large one is.

half burned in the air, they will represent a comet ; and

when the large one is entirely inverted, so that its head

begins to point downwards, in order to fall , they will re-

present a kind of fiery fountain.

If the barrels of several quills, filled with the composi-

tion of flying rockets, as above described , be placed on a

large rocket ; when these quills catch fire, they will re-

present, to an eye placed below them, a beautiful shower
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of fire, or of half frizzled hair if the eye be placed on one

side.

If several serpents be attached to the rocket with a piece

of pack-thread, by the ends that do not catch fire ; and if

the pack-thread be suffered to hang down two or three

inches, between every two, this arrangement will produce

a variety of agreeable and amusing figures.

§V. A rocket which ascends in the form ofa screw.

A straight rod, as experience shows, makes a rocket

ascend perpendicularly, and in a straight line : it may be

compared to the rudder of a ship , or the tail of a bird, the

effect of which is to make the vessel or bird turn towards

that side to which it is inclined : if a bent rod therefore

be attached to a rocket, its first effect will be to make the

rocket incline towards that side to which it is bent ; but

its centre of gravity bringing it afterwards into a vertical

situation, the result of these two opposite efforts will be

that the rocket will ascend in a zig-zag or spiral form. In

this case indeed, as it displaces a greater volume of air,

and describes a longer line , it will not ascend so high, as

if it had been impelled in a straight direction ; but, on

account of the singularity of this motion , it will produce

an agreeable effect.

1

1

ARTICLE VIII.

OfGlobes and Fire Balls.

We have hitherto spoken only of rockets, and the differ-

ent kinds of works which can be constructed by their

means. But there are a great many other fireworks, the

most remarkable of which we shall here describe. Among

these are globes and fire balls ; some of which are intended

' to produce their effect in water ; others by rolling or leap-

ing on the ground : and some, which are called bombs, do

the same in the air.
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§ I. Globes which burn on the water.

These globes, or fire balls, are made in three different

forms ; spherical , spheroidal , or cylindrical ; but we shall

here confine ourselves to the spherical .

Tomake a spherical fire ball , construct a hollow wooden

globe of any size at pleasure, and very round both within

and without, so that its thickness AC or BD, pl. 1 , fig. 10,

may be equal to about the ninth part of the diameter AB.

Insert in the upper part of it a right concave cylinder

EFGH, the breadth of which EF may be equal to the fifth

part of the diameter AB ; and having an aperture, LM or

ON, equal to the thickness AC or BD, that is, to the ninth

part of the diameter AB. It is through this aperture that

fire is communicated to the globe, when it has been filled

with the proper composition, through the lower aperture

IK. A petard of metal, loaded with good grained powder,

is to be introduced also through the lower aperture, and

to be placed horizontally, as seen in the figure .

When this is done, close up the aperture IK, which is

nearly equal to the thickness EF or GH, of the cylinder

EFGH, by means of a wooden tompion dipped in warm

pitch ; and melt over it such a quantity of lead that its

weight may cause the globe to sink in water, till nothing

remain above it but the part GH; which will be the case if

the weight of the lead, with that of the globe and the

composition be equal the weight of an equal volume of

water. If the globe be then placed in the water, the lead

by its gravity will make the aperture IK tend directly

downwards, and keep in a perpendicular direction the

cylinder EFGH, to which fire must have been previously

applied.

To ascertain whether the lead, which has been added to

the globe, renders its weight equal to that of an equal

volume of water, rub the globe over with pitch or grease,

and make a trial, by placing it in the water.

The composition with which the globe must be loaded ,
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is as follows: to a pound of grained powder, add 32 pounds

of saltpetre reduced to fine flour , 8 pounds of sulphur, 1

ounce scrapings of ivory, and 8 pounds of saw-dust pre-

viously boiled in a solution of saltpetre, and dried in the

shade or in the sun.

Or, to 2 pounds of bruised gunpowder, add 12 pounds

of saltpetre, 6 pounds of sulphur, 4 pounds of iron filings,

and 1 pound of Greek pitch.
1

It is not necessary that this composition should be beaten

so fine as that intended for rockets : it requires neither to

be pulverised nor sifted ; it is sufficient if it be well mixed

and incorporated. But to prevent it from becoming too

dry, it will be proper to besprinkle it with a little oil , or

any other liquid susceptible of inflammation .

§ II. OfGlobes which leap or roll on the ground.

I. Having constructed a wooden globe a , pl . 1 , fig . 11 ,

with a cylinder c, similar to that above described, and

having loaded it with the same composition, introduce into

it four petards, or even more, loaded with good grained

gunpowder to their orifices, as AB ; which must be well

stopped with paper or tow. If a globe, prepared in this

manner, be fired by means of a match at c, it will leap

about, as it burns, on a smooth horizontal plane, accord-

ing as the petards are set on fire.

Instead of placing these petards in the inside, they may

be affixed to the exterior surface ofthe globe ; which they

will make to roll and leap as they catch fire . They may

be applied in any manner to the surface of the globe, as

seen in the figure.

II. A similar globe may be made to roll about on a

horizontal plane, with a very rapid motion. Construct

two equal hemispheres of pasteboard, and adjust in one of

them, as AB, fig. 12 , three common rockets C, D, E, filled

and pierced like flying rockets which have no petard :

these rockets must not exceed the interior breadth of the
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hemisphere, and ought to be arranged in such a manner,

that the head of the one shall correspond to the tail of the

other.

The rockets being thus arranged, join the two hemi-

spheres, by cementing them together with strong paper,

in such a manner, that they shall not separate, while the

globe is moving and turning, at the same time that the

rockets produce their effect. To set fire to the first, make

a hole in the globe opposite to the tail of it, and introduce

into it a match. This match will communicate fire to the

first rocket ; which, when consumed , will set fire to the

second by means of another match, and so on to the rest ;

so that the globe, if placed on a smooth horizontal plane,

will be kept in continual motion .

It is here to be observed , that a few more holes must be

made in the globe, otherwise it will burst.

The two hemispheres of pasteboard may be prepared in

the following manner : construct a very round globe of

solid wood, and cover it with melted wax ; then cement

over it several bands of coarse paper, about two inches in

breadth, giving it several coats of this kind , to the thick-

ness of about two lines. Or, what will be still easier and

better, having dissolved , in glue water, some of the pulp

employed by the paper-makers, cover with it the surface

of the globe ; then dry it gradually at a slow fire, and cut

it through in the middle ; by which means you will have

two strong hemispheres. The wooden globe may be easily

separated from the pasteboard by means of heat; for if

the whole be applied to a strong fire the wax will dissolve,

so that the globe may be drawn out. Instead of melted

wax, soap may be employed.

§ III. Of Aerial Globes, called Bombs.

These globes are called aerials , because they are thrown

into the air from a mortar, which is a short thick piece of

artillery of a large calibre .
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Though these globes are of wood, and have a suitable

thickness, namely, equal to the twelfth part of their di-

ameters, if too much powder be put into the mortar, they

will not be able to resist its force ; the charge of powder

therefore must be proportioned to the globe to be ejected .

The usual quantity is an ounce of powder for a globe of

four pounds weight ; two ounces for one of eight, and

so on.

As the chamber of the mortar may be too large to con-

tain the exact quantity of powder sufficient for the fire

ball, which ought to be placed immediately above the

powder, in order that it may be expelled and set on fire at

the same time, another mortar may be constructed of

wood, or of pasteboard with a wooden bottom, as AB, fig.

13, pl. 1 : it ought to be put into a large iron mortar, and

to be loaded with a quantity of powder proportioned to

the weight of the globe.

This small mortar must be of light wood, or of paper

pasted together, and rolled up in the form of a cylinder,

or truncated cone, the bottom excepted ; which, as already

said, must be of wood. The chamber for the powder Ac

must be pierced obliquely, with a small gimblet, as seen at

BC ; so that the aperture в, corresponding to the aperture

of the metal mortar, the fire applied to the latter may be

communicated to the powder which is at the bottom of the

chamber Ac , immediately below the globe. By these

means the globe will catch fire , and make an agreeable

noise as it rises into the air ; but it would not succeed so

well, if any vacuity were left between the powder and the

globe.

A profile or perpendicular section of such a globe is

represented by the right-angled parallelogram ABCD, fig.

13 n°. 2 ; the breadth of which AB is nearly equal to the

height AD. The thickness of the wood, towards the two

sides, L, M, is equal, as above said, to the twelfth part of

the diameter of the globe ; and the thickness, EF, of the
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cover, is double the preceding, or equal to a sixth part of

the diameter. The height GK or HI of the chamber, GHIK,

where the match is applied, and which is terminated by the

semicircle LGHM, is equal to the fourth part of the breadth

AB ; and its breadth GH is equal to the sixth part of AB.

We must here observe that it is dangerous to put wooden

covers, such as EF, on aerial balloons or globes ; for these

covers may be so heavy, as to wound those on whom they

happen to fall. It will be sufficient to place turf or hay

above the globe, in order that the powder may experience

some resistance.

The globe must be filled with several pieces of cane or

common reed, equal in length to the interior height of

the globe, and charged with a slow composition , made of

three ounces of pounded gunpowder, an ounce of sulphur

moistened with a small quantity of petroleum oil, and two

ounces ofcharcoal ; and in order that these reeds or canes

may catch fire sooner, and with more facility, they must

be charged at the lower ends, which rest on the bottom of

the globe, with pulverised gunpowder moistened in the

same manner with petroleum oil, or well besprinkled with

brandy, and then dried .

The bottom of the globe ought to be covered with a

little gunpowder half pulverised and half grained ; which,

when set on fire, by means of a match applied to the end

of the chamber GH, will set fire to the lower part of the

reed . But care must have been taken to fill the chamber

with a composition similar to that in the reeds, or with an-

other slow composition , made of 8 ounces of gunpowder,

4 ounces of saltpetre, 2 ounces of sulphur, and one ounce

of charcoal : the whole must be well pounded and mixed.

Instead of reeds, the globe may be charged with running

rockets, or paper petards, and a quantity of fiery stars or

sparks mixed with pulverised gunpowder, placed without

any order above these petards, which must be choaked at
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unequal heights, that they may perform their effect at dif-

ferent times.

These globes may be constructed in various other ways,

which it would be tedious here to enumerate. We shall

only observe that when loaded , they must be well covered

at the top ; they must be wrapped up in a piece of cloth

dipped in glue, and a piece of woollen cloth must be tied

round them, so as to cover the hole which contains the

match.

ARTICLE IX .

Jets ofFire.

Jets offire are a kind of fixed rockets , the effect of which

is to throw up into the air jets of fire, similar to jets of

water. They serve also to represent cascades ; for if a

series of such rockets be placed horizontally on the same

line, it may be easily seen that the fire they emit, will re-

semble a sheet of water. When arranged in a circular

form, like the radii of a circle, they form what is called a

fixed sun.

To form jets of this kind, the cartridge for brilliant fires

must, in thickness, be equal to a fourth part of the diame-

ter, and for Chinese fire, only to a sixth part.

The cartridge is loaded on a nipple, having a point

equal in length to the same diameter, and in thickness to

a fourth part of it ; but as it generally happens that the

mouth of the jet becomes larger than is necessary for the

effect of the fire, you must begin to charge the cartridge,

as the Chinese do, by filling it to a height equal to a fourth

part of the diameter with clay, which must be rammed

down as if it were gunpowder. By these means the jet

will ascend much higher. When the charge is completed

with the composition you have made choice of, the car-

tridge must be closed with a tompion of wood, above

which it must be choaked.
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The train or match must be of the same composition as

that employed for loading ; otherwise the dilatation ofthe

air contained in the hole made by the piercer, would cause

the jet to burst.

Clayed rockets may be pierced with two holes near the

neck, in order to have three jets in the same plane.

If a kind of top, pierced with a number of holes, be

added to them, they will imitate a bubbling fountain .

Jets intended for representing sheets of fire ought not

to be choaked. They must be placed in a horizontal

position, or inclined a little downwards.

It appears to us that they might be choaked so as to

form a kind of slit, and be pierced in the same manner ;

which would contribute to extend the sheet of fire still

farther. A kind of long narrow mouths might even be

provided for this particular purpose.

Principal Compositionsfor Jets ofFire.

1st. Forjets of 5 lines or less, ofinterior diameter.

Chinesefire. Saltpetre 1 pound, pulverised gunpowder

1 pound, sulphur 8 ounces, charcoal 2 ounces.

Whitefire. Saltpetre 1 pound, pulverised gunpowder

8 ounces, sulphur 3 ounces, charcoal 2 ounces, iron sand

of the first order 8 ounces.

2d. For Jets offrom 10 to 12 lines in diameter.

Brilliant fire. Pulverised gunpowder 1 pound, iron-

filings of a mean size , 5 ounces.

Whitefire. Saltpetere 1 pound , pulverised gunpowder

1 pound, sulphur 8 ounces, charcoal 2 ounces.

Chinesefire. Saltpetre 1 pound 4 ounces, sulphur 5

ounces, charcoal 5 ounces, sand of the third order 12

ounces.

3d. For Jets of 15 or 18 lines in diameter.

Chinesefire. Saltpetre 1 pound 4 ounces , sulphur 7
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ounces, charcoal 5 ounces, of the six different kinds of

sand mixed 12 ounces.

Father d'Incarville, in his memoirs on this subject, gives

various other proportions for the composition ofthese jets ;

but we must confine ourselves to what has been here said,

and refer the reader to the author's memoirs, which will be

found in the Manuel de l'Artificer.

The saltpetre, pulverised gunpowder, and charcoal, are

three times sifted through a hair sieve. The iron sand is

besprinkled with sulphur, after being moistened with a

little brandy, that the sulphur may adhere to it ; and they

arethen mixed together : the sulphured sand is then spread

over the first mixture, and the whole is mixed with a ladle

only; for if a sieve were employed, it would separate the

sand from the other materials. When sand larger than that

of the second order is used , the composition is moistened

with brandy, so that it forms itself into balls , and the jets

arethen loaded : ifthere were too much moisture, the sand

would not perform its effect.

ARTICLE X.

OfFires of Different Colours.

It is much to be wished that, for the sake of variety,

different colours could be given to these fire-works at

pleasure ; but though we are acquainted with several

materials which communicate to flame various colours, it

has hitherto been possible to introduce only a very few

colours into that of inflamed gunpowder.

To make white fire, the gunpowder must be mixed with

iron or rather steel-filings.

To make red fire , iron sand of the first order must be

employed in the same manner.

As copper filings, when thrown into a flame, render it

green, it might be concluded , that if mixed with gun-

powder, it would produce a green flame : but this ex-

periment does not succeed. It is supposed that the flame

"
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is too ardent, and consumes the inflammable part of the

copper too soon. But it is probable that a sufficient

number of trials have not yet been made ; for is it not

possible to lessen the force of gunpowder in a considerable

degree, by increasing the dose of the charcoal?

However, the following are a few of those materials

which, in books on pyrotechny, are said to possess the

property of communicating various colours to fire-works.

Camphor mixed with the composition , makes the flame

to appear of a pale white colour.

Raspings of ivory give a clear flame of a silver colour,

inclining a little to that of lead ; or rather a white dazzling

Aame.

Greek pitch produces a reddish flame , of a bronze

colour.

Black pitch, a dusky flame, like a thick smoke, which

obscures the atmosphere.

Sulphur, mixed in a moderate quantity, makes the flame

appear bluish.

Sal ammoniac and verdigrise give a greenish flame.

Raspings of yellow amber communicate to the flame a

lemon colour.

Crude antimony gives a russet colour.

Borax ought to produce a blue flame ; for spirit of wine,

in which sedative salt, one ofthe component parts ofborax,

is dissolved by the means of heat, burns with a beautiful

green flame.

Much, however, still remains to be done in regard to

this subject ; but it would add to the beauty of artificial

fire-works, if they could be varied by giving them differ-

ent colours ; this would be creating for the eyes a new

pleasure.

ARTICLE XI.

Composition ofa Paste proper for representing animals and

other devices infire.

It is to the Chinese also that we are indebted for this

*
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method of representing figures with fire. For this pur-

pose, take sulphur reduced to an impalpable powder, and

having formed it into a paste with starch, cover with it

the figure you are desirous of representing on fire : it is

here to be observed , that the figure must first be coated

over with clay, to prevent it from being burnt.

When the figure has been covered with this paste, be-

sprinkle it while still moist with pulverised gunpowder ;

and when the whole is perfectly dry, arrange some small

matches on the principal parts of it, that the fire may be

speedily communicated to it on all sides.

to
The same paste may be employed on figures of clay,

form devices and various designs. Thus, for example,

festoons, garlands, and other ornaments, the flowers of

which might be imitated by fire of different colours, could

be formed on the frieze of a piece of architecture covered

with plaster. The Chinese imitate grapes exceedingly

well, by mixing pounded sulphur with the pulp of the ju-

jube, instead of flour paste.

ARTICLE XII.

OfSuns, both Fixed and Moveable.

None of the pyrotechnic inventions can be employed

with so much success, in artificial fire-works, as suns ; of

which there are two kinds, fixed and revolving : the me-

thod of constructing both is very simple.

For fixed suns, cause to be constructed a round piece of

wood, into the circumference of which can be screwed

twelve or fifteen pieces in the form of radii ; and to these

radii attach jets of fire , the composition of which has been

already described ; so that they may appear as radii tend-

ing to the same centre, the mouth of the jet being towards

the circumference. Apply a match in such a manner,

that the fire communicated at the centre may be conveyed,

at the same time, to the mouth of each of the jets , by

which means, each throwing out its fire , there will be pro-

duced the appearance of a radiating sun.
We here sup-
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where they rest on the table, ought to be furnished with a

very moveable roller.

We shall say nothing farther on artificial fire-works ;

because it is not possible in this work to give a complete

treatise of pyrotechny. We shall therefore content our-

selves with pointing out, to those who are fond of this art,

a few ofthe best authors on the subject. One is, Traité

des Feux d'artifice de M. Frezier, a new edition of which

was published in 1745. We shall mention also the work

of M. Perrinet d'Orval, entitled Traité des Feux d'artifice,

pour le Spectacle et pour la Guerre. To these we may add

Le Manuel de l'Artificier, Paris 1757 , 12mo. which con-

tains, in a very small compass, the whole substance ofthe

art of making artificial fire-works : it is an abridgment of

the latter work, augmented with several new and curious

compositions, in regard to the Chinese fire, by Father

d'Incarville.

ARTICLE XIII.

Of Ointmentfor Burns.

It is proper that we should terminate a treatise on pyro-

techny by some remedy for burns ; as accidents must often

take place in handling such a dangerous element as fire.

We shall therefore not hesitate to follow the example of

Ozanam, who in this respect is himself a follower of Sie-

mienowitcz, and the greater part of those who have writ-

ten on this subject : we shall even confine ourselves to the

remedy he proposes.

Boil fresh hog's lard in common water, over a slow fire ;

skim it continually till no more scum is left, and let the

melted lard remain in the open air for three or four nights

Melt it again in an earthen vessel , over a slow and mode-

rate fire, and strain it into cold water through a piece of

linen cloth ; then wash it well in pure river or spring

water, to free it from its salt, and to make it become white ;

then press it into a glazed earthen vessel and preserve it

for use.
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It generally happens, in cases of burning , that the skin

rises in blisters, which however must not be opened till the

third or fourth day after the ointment has been applied.

ARTICLE XIV.

Pyrotechny without Fire, and merely Optical.

As the inventions which we have here described are ne-

cessarily attended with considerable expense, and are be-

sides dangerous, attempts have been made in modern times,

and with a considerable degree of success, to imitate the

different kinds of fire-works by optical effects, and to give

them the appearance of motion, though in reality fixed.

By means of this invention, the spectacle of artificial fire-

works may be exhibited at a very small expence ; and if

the pieces employed are constructed with ingenuity, if the

rules of perspective are properly observed, and if, in view-

ing the spectacle , glasses which magnify the objects and

render them somewhat less distinct be employed, a very

agreeable illusion will be produced.

The artificial fire-works imitated with most success by

this invention, are fixed suns, gerbes and jets of fire, cas-

cades, globes, pyramids, and columns moveable around

their axes. Torepresent a gerbe of fire, take paper black-

ened on both sides , and very opake, and having delineated

on a piece of white paper the figure of a gerbe of fire,

apply it to the black paper, and with the point of a very

sharp penknife make several slashes (pl . 2 , fig. 14) in it,

as 3, 5, or 7, proceeding from the origin of the gerbe :

these lines must not be continued but cut through at un-

equal intervals. Pierce these intervals with unequal holes

made with a pinking iron, pl . 2 fig. 14, in order to repre-

sent the sparks of such a gerbe. In short you must endea-

vour to paint, by these lines and holes, the well-known ef-

fect of the fire of inflamed gunpowder, when it issues

through a small aperture.

According to the same principles, you may delineate the
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cascades (fig. 13) and jets of fire which you are desirous

ofintroducing into this exhibition , which is purely optical ;

and those jets of fire which proceed from the radii of suns,

either fixed or moveable. It may easily be conceived that

in this operation taste must be the guide.

If you are desirous of representing globes, pyramids, or

revolving columns, draw the outlines of them on paper,

and then cut them out in a helical form ; that is , cut out

spirals with the point of a pen-knife, and of a size propor-

tioned to that of the piece.

It is to be observed also, that as these different pieces

have different colours, they may be easily imitated, by

pasting on the back of the paper, cut as here described,

very fine silk paper coloured in the proper manner. As

jets, for example, when loaded with Chinese fire , give a

reddish light, you must paste to the back of these jets

transparent paper, slightly tinged with red ; and proceed

in the same manner in regard to the other colours by which

the different fire-works are distinguished.

When these preparations have been made, the next

thing is to give motion, or the appearance of motion, to

this fire, which may be done two ways according to cir-

cumstances.

If a jet of fire, for example, is to be represented, prick

unequal holes, and at unequal distances from each other,

in a band of paper, pl. 2 fig. 17 , and then move this band,

making it ascend between a light and the above jet : the

rays of light which escape through the holes of the move-

able paper will exhibit the appearance of sparks rising into

the air. It is to be observed that one part of the paper

must be whole, that another must be pierced with holes

thinly scattered ; that in another place they must be very

close, and then moderately so : by these means it will re-

present those sudden jets of fire observed in fire-works.

To represent a cascade, the paper pierced with holes,

instead of moving upwards, must be made to descend.

This motion may be easily produced by means of two



OPTICAL PYROTECHNY. 421

rollers, on one of which the paper is rolled up while it is

unrolled from the other.

Suns are attended with some more difficulty ; because

in these it is necessary to represent fire proceeding from

the centre to the circumference. The artifice for this
pur-

pose is as follows.

On strong paper describe a circle, equal in diameter to

the sun which you are desirous to exhibit, or even some-

what larger ; then trace out on this circle two spirals, at

the distance of a line or half a line from each other, and

open the interval between them with a penknife, in such

a manner, that the paper may be cut from the circum-

ference, decreasing in breadth to a certain distance from

the centre, pl. 2 fig. 18 ; cut the remainder of the circle

into spirals of the same kind, open and close alternately,

then cement the paper circle to a small iron hoop, sup-

ported by two pieces of iron, crossing each other in its

centre, and adjust the whole to a small machine, which will

suffer it to revolve round its centre. If this moveable pa-

per circle, cut in this manner, be placed before the repre-

sentation of your sun, with a light behind it, as soon as it

is made to move towards that side to which the convexity

ofthe spirals is turned, the luminous spirals, or those which

afford a passage to the light, will give, on the image of

the radii or jets of fire of your sun, the appearance of fire

in continual motion, as if undulating from the centre to

the circumference.

The appearance of motion may be given to columns,

pyramids, and globes, cut through in the manner above

described, by moving upwards, in a vertical direction , a

band ofpaper cut through into apertures inclined at an

angle somewhat different from that of the spirals. By

these means the spectators will imagine that they see fire

continually circulating and ascending along these spirals ;

and the result will be a sort of illusion , in consequence of

which the columns or pyramids will seem to revolve with

them.
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But we shall not enlarge farther on this subject ; it is

sufficient to have explained the principle on which this

cheap kind of pyrotechny can be exhibited ; the taste of

the artist may suggest to him many things to give more

reality to this representation, and to render the deception

stronger.

We shall however add a few words respecting illumina-

tions which form a part of pyrotechny.

Take some prints representing a castle , or palace, &c ;

and having coloured them properly, cement paper to the

back of them, in such a manner that they shall be only

semi-transparent ; then, with pinking irons of different

sizes, prick small holes in the places and on the lines where

lamps are generally placed, as along the sides of the win-

dows, on the cornices , or balustrades, &c. But caremust

be taken to make these holes smaller and closer, according

to the perspective diminution of the figure. With other

irons ofa larger size, cut out, in other places, some stronger

lights ; so as to represent fire-pots , &c. Cut out also the

panes in some of the windows, and cement to the back of

them transparent paper of a green or red colour, to repre-

sent curtains drawn before them, and concealing an illu-

minated apartment.

When the print is cut in this manner, place it in the

front ofa sort of small theatre, strongly illuminated from

the back part, and look at it through a convex glass of a

pretty long focus, like that used in those small machines

called optical boxes. Ifthe rules of perspective have been

properly observed in the prints, and if the lights and

shades have been distributed with taste, this spectacle will

be highly agreeable. It may be intermixed with some of

the pyrotechnic artifices above described ; as such illumi-

nations are in general accompanied with fire-works.
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