\therefore

,

ANNEX

418

$$
\begin{aligned}
& \text { PRefry Arx. } \\
& \text { Brantio 大能 } \\
& 185 \\
& \text { - }
\end{aligned}
$$

RECREATIONS

 mathematical ANDP HY'S I CAL; Laying down, and Solving
Many Profitable and Delightful Problems OF

By Monfieur $0 Z A N A M$, Profeffor of the Mathematiciesat Paris.

Done into Englifh, and illuftrated with very Many C U T S.

Printed for R. Bonwtck, W. Freeman, Tim. Goodvin, F. Walltbor M:Wotton, S.Marnhip, F. Nicholfon, R. Parker, B: Tooke, and Ralph. Smitb: 1708. Where may be had Propoofls for Printing his whole courle of Mathemintitiks; in Englih, in 5 Volumes in 8 'o.

To the

R E A D E R.

THE Author of the following Treai tife, Monfieur Ozanam, isa Perfon fo well known, and defervedly efteem'd, amongीt the Learned who underftand him in his Native Language, that, if all others were alike acquainted with his Worth, his Name would be a fufficient Re-commendation:-However, having fo well acquitted himfelf in the Preface, in giving a true Reprefentation of his Defign, with the Ufes and Advantages thereof; nothing remains to be added, but a general Idea of the Subject, and Method; with a Word or two concerning the Tranflation.
As to the firft ; This Book is fuch a Collection of the moft curious, moft furprizing, moft ufeful, and moft agreeable Performances of the Arts and Sciences under which they are feverally rang'd, as may prove a Spring of Invention to the Ingenious, furnihhing 'em with Hints of innumerable other

$$
\left[\begin{array}{ll}
A & 2
\end{array}\right] \quad \text { Difco- }
$$

To the READER.

Difcoveries and Contrivances ferviceable to. the Neceflity, or the Conveniency, or the Pleafure of human Life. It is parted into Eight Divifions or Sections, according to the Number of general Heads under which the Problems are reduc'd. Problems of Arithmetick make the firft Clafs, being the moft ufeful, moft pleafant, and leaft embarraffing of thofe that belong to that Art; with certain and never-failing Rules of Solution : The Demonftrations, which would have interrupted the defigned ilcafure, are here, and every where elfe, omitred. Under this firt Head the Reader will find the Subftance of what is contain'd in.Dr.Arlurthnet's Laws of Chance; with Variation of Examples. The Second fort are Problems of Geometry, which are very numerous; but here only the moft uncommon, molt curious, and, withal, moft entertaining, are to be found. To Problems of the Opticks, being a Third Head, pertain thofe of Perfpective, of Dioptricks, and Catoptricks, all extreamly diverting. Gnomonicks, or Diailing, is a moft pleafant part of Mathematicks, depending on a very profound Theory, bandled at large by the Author in his Matbematical Courfe; but under Problems of Dialling, in the Fourth Rank, are placed only fuch as may be perform'd with Eafe and Delight. Problems of Cofmography are the Fifth in order, and include thofe of Aftronomy, Geography, Navigation, and Cbronology. The

To the READER:

Problems of Mecbanicks follow in the Sixth place, being generally more ufeful than curious, becaule converfant about Things neceffary to Life; and to thefe are referred thofe of Staticks and Hydrofaticks. Problems of Pbyficks, which are a Seventh Kind, comprehend not only thofe of Natural Pbilofophy, which is nearly ally'd to the Mathematicks, but alfo thofe of Cbymiftry, Surgery, and Medicine, which admit of Experience only for their Demonftration. The Problems of Pyrotechiny come laft of all, where is to be feen what is mof uleful and diverting in Artificial Fire-works, whether for Service or Recreation.

Bur to come to the prefent Tranflation; the Reader is to know, That thofe concern'd in the Publication, confidering the great Ufe and Excellency of Mathematical Sciences, upon which, whatever is of Certainty in others, purely Human, generally depends, thought they could do nothing of more univerfal Advantage, than to promote the Acquifition of a Knowledge fo vaftly beneficial, by all Methods within the Sphere of their Bufinefs. To this Purpofe nothing appear'd more proper, than fome entire Syftem of Mathematicks, that might lead the Studious of fuch Knowledge, from the very firt Principles, to the higheft Pinnacle of Perfection, without being oblig'd to interrupt their Progrefs, by turning afide after other Books and Authors. Many Trea[A3] tifes

To the READER.

tifes on fome particular Parts of Mathematicks occur'd, fome in Englifh, fome in Latin, and other Languages, accurately compos'd, and excellent in their Kind; but none feeming fo peculiarly adapted to the Defign, as the Mathematical Courfe of Monfieur Ozanam, it was refolv'd to publifh it in Englijh. However, it was thought fit firft to make Tryal, in a fmaller Undertaking. what Entertainment this Author might here receive, and to that End his Mathematical Recreations were pitch'd on; the Care of Tranflating being committed to a Gentleman of grear Ingenuity, and well-vers'd in thefe Sciences ; who had not yet compleated the Copy, and had feen but a few Sheets from the Prefs, when he was fnatch'd from hence by untimely Death. This melancholy Event put a tedious Paufe to the Work, and is the Caufe it appears fo late in publick, tho' Notice of it was given fome confiderable Time ago.

In this one Englifb Volume, the Reader has all that's contain'd in the two French ones of the Original, that is Monfieur Ozanam's : Where he will find whatever is in Van Eton, Oughtred, and others that have writ on this Subject: All that belongs thereto being herein comprehended, and much better explain'd than any where elfe.

Thefe Matbematical and Pbyfical Recreations were defign'd by the Author, to ferve, in fome fort, as a Supplement to his Mathema-

To the READER.

tical Courfe, where many Problems, which are here to be found, were left out, that it might not make above Five Volumes in Ottavo; of which we will here give the General Contents.

The Firft Volume contains an IntroduCion to the Mathematicks, with the Elcments of Ewclid. The Introduction begins with the Definitions of Mathematicks, and their moft general Terms; which are followed by a little Treatife of Algebra, for underftanding what enfues in the Courfe; and ends with many Geometrical Operations, perform'd both upon Paper with Ruler and Compaffes, and upon the Ground with a Line and Pins. The Elements of Ewolid comprehend the firft Six Books, the Eleventh, and Twelfth, with their Ufes.
In the Second Volume we have Arithmetick and Trigonometry, both Rectilineal and Spherical, with the Tables of Sines and Logarithms. Arithmetick is divided into Three Parts; the Firft handles whole Numbers, the Second Fractions, and the Third Rules of Proportion Trigonometry has alfo Three Divifions or Books; the Firft treats of the Confruction of Tables, the Sccond of Rectilimeal, and the Third of Spherical Trigonometry.

The Third Volume comprehends Geometry and Fortification. Geometry is diAributed into Four Parts, of which, the Firft teaches Surveying or Meafuring of [A 4] Land;

To the READER.

Land; the Second Longimetry, or Meafuring of Lengths; the Third Planimetry; or Meafuring of Surfaces; and the Fourth Stereomerry, or Meafuring of Solids. Fortification confifts of Six Parts: in the Firft is handled Regular Fortification; in the Second, the Conftruction of Out Works; in the Third, the different Merhods of Fortifying; in the Fourth, Fortification Irregular; in the Fifth, Fortification Offenfive ; and in the Sixth, Defenfive Fortification.

The Fourth Volume includes the Mechanicks and Perfective. In Mechanicks are Three Books ; the Firt, is of Machines Simple and Compounded; the Second, of Staticks ; and the Third, of Hydroftaticks. Perfpective gives us firf the General and Fundamental Principles of that Science, and then treats of Perfective Praclical, of Scenograply, and of Shading.

The Fifth Volume confifts of Geegraphy, and Dialling. Of Gcography there are Two Parts ; the Firft, concerning the Celeftial Sphere ; and the Second, of the Terreftrial. Gnomonicks or Dialling hath Five Chapters ; the Firt, contains many Lemma's neceffary for underflanding the Practice and Theory of Dials' ; the Second, treats of. Horizontal Dials ; the Third, of Vertical Dials ; the Fourth, of Inclined Dials ; and the Fifth, of Arches, of Signs, and of other Circles of the Sphere.

To the READER.

If the prefent Undertaking meet with a fuitable Encouragement, thofe concern'd defign, with all poffible Expedition, to publifh, in Englifh, this Mathematical Courfe, in Five Volumes, in $8^{\circ 0}$, as it is in the Original ; each containing more Sheets, and Cuts than are in this Treatife. It is propos'd by Sublcription, at 1 l. 2 s. 6% in Quires: Any Perfon that enters his Name with any of thofe concern'd in this Book, laying 5 s . down, fhall receive, on p̀aying 17 s. 6 d . more, a complear Set of the Volumes, which, confidering the vaft Charge of the Cuts, and what it contains, is cheaper than any thing ever yet offered: And thofe that fublcribe, fhall have their Names printed before the fame, as Encou: ragers of fo ufeful a Work.

THE

THE
 AUTHOR's PREFACE.

TT bas been an Opinion of long ftanding, That there was fome fecret Art amongt the moft learned of the Jews, of the Arabians, and of the Difciples of that antient Academy, which was in Egypt when Mofes was there educated, and filll flaurifh'd in the Time of Solomon; infomuch, that it bath excited the Curiofity of the fineft Wits to endeavour the Difcovery of it : But is it poffible to learn an Art without a Mafter, and without Books? The Learned of that Time committed nothing to Writing; or if they did, it was enigmatical, and fo remote from what a Reader did expect, that of them it may be faid, Their Silence was more inftructive than their Dijcourfes.

Fatber

The Author's Preface:

Father Schote faith there are Three Sorts of Cabala, (\int_{0} is that fecret Art of the Orientals call'd;) that of the Rabbies, that of Raimond Lully, and that of the Algebrifts. The firf be knows not what it is; the two laft are Recreations in Numbers and Figures: and no doubt is to be made but the firt is of the fame Sort. Jofephus, who was a Levite, writes with Confidence, That by Right of bis Birth be bad been inftructed in all the Myfteries of the Jews, and bad been taught all the Secrets of their Art. He boafed, from a Courtly Principle which fway'd him more than bis Confcience, That, by bis Art be had fore-told the Elevation of Titus to the Imperial Dignity. He conceald bis Game, as Men of Cumning foould, and as our Mafters teach us. He gives out bimself for a Miraculoss Perfon; and wher be relates the Adverture where be hoould bave loft his Life by the Defpair of the Saldiers, refolv'd to cut one another's. Throat ratber. than furrender to the Romans, be attributes bis Deliverance to Chance and a Miracle. Notwithftanding Hegefippus, who wrote the fame Hifory, fays, That Jofephus did that Miracle by the Knomledge of Numbers and Figures: For he made thefe Defperado's to be rang'd in fich an Order, that the Lot fell apoin thofe, whom the Commander defir'd to bave deftroy'd: He fav'd his omn Life, not by reafon of being a Levite, lut becaufe be was a Matbematician. Monficur Bacher, in his 23. Probl. defcribes this

The Author's Preface.

this Secret; who, had be then liv'd, would have been accounted as great a Magician as Jofephus. Hence it appears, that the moft abAtracted Knowledge may be reduc'd to Practice, and wobat feems most remote may become of UJe.
'Tis' moft aftonifhing to find, that is the Time of the Emperours Dioclefian assd Conftantin, the Mathematicks were probibited by the Laws, as a Dangerous Science, under the Same Penalties as Sorcery or Magick; being reputed equally criminal and pernicious to civil Society; as appears from the 17 th Title of the 9 th Book of Juftinian's Code. No dowbs this:was an Effect of the Ignorance which at that Time reign'd; and becaufe of the great Number of Impoftons, whe us'd the Mathematicks to cheat, and deceive the Credulity of the Illiterate. Neverthelefs, the Stupidity of thofe is to be blam'd, who fuffer'd themfelves to be gull'd; and their Negligence is not to be allow'd, who will not fufficiently improve their Undor/tanding, fo as to be in a Condition not to be ábus'd. There bave been States wherein Tricks and little T'hefts, ileverly perform'd, were permitted, that all might be on their Guard, and accuftom'd to a reguifite Precaution.

Ignorance keeps the World in perpetual Admiration, and in a Diffdence, which ever pron duces an invincible Inclination to blame and perfecute thofe that buow any Thing above the Vulgar ; who, being niwaccu, tom'd to raife their Thoughts beyord Things fenfible, and unable to imagin that Nature imployeth Agents that are invifible

The Author's Preface.

Envifible and impalpable, afcribe moft an end to Sorceries and Demons, all Effects whereof they know not the Caufe. To remedy thefe Incomveniencies is the Defign of thefe Mathematical Recreations, and to teach all to perform thefe Sorceries which were dreaded by the Councit of Juftinian : And hereby will be vindicated the Fime of Thomas Aquinas, Albertus Magnus, Solomon, and many ot her great Men; who bad mever been accus'd for Magicians, but becaufe they knew fomething more than others; 'more fiffeetually than has been done by the Learned, who bave been fatisfi d, by Dint of Argument onli, to plead their Cayfe.

It will, perhaps, be bere objected, That by the Paftimes of Mind, prefented to the World in the enfuing Book, the Reader is diverted from thit t Study and Application, to which be might bitive been engag'd by Treatifes of a ferious Nature, which fix the Thoughts, rendring 'em penefrating and inguiftive. To this it might fuffice to alledge the Example of Men famous for Lieatning, whofe like Practice in tbis Matter, may feem a Fuftification beyond any other could be brougbt. The learned Bachet, Sieur de Meziriac, famous for bis excellent Works, began to make himSelf known to the learned World, bja Collection which be intitled, Pleafant Problems perform'd by Numbers; by which be defign'd to make Trial of bis own Ability, and the Opiwion of the World, before be publift'd bis Commentaries on the Aritbmetick of Diophantus of Alexandria, and his other Works by which be bath

The Author's Preface.

bath purchafed to bimfelf immortal Glory: Many other Authors of this Age, as the famous Father Kircher, the Fatbers Schott and Bettin, bave gain'd no lefs Renown by the diverting Problems in their Works, than by their ReaJonings, and more ferious Obfervations.

But left thefe illuftrious Men, adduc'd as Precedents, pould themgelves be expos'd to the Cernfure of thofe who would accufe them of Novelty; Inftances much more ancient, grounded on folid Reafon, Jhall be bere produc'd, whereby it will appear, that in all Times this bas been done by the greateft Men; being perfuaded, that the fame Source of Reafon that makes Mess take Pleafure in Admiration, caufes 'em, in like manner, to find Delight in things which are the,Object of that Paffion.

The Enigmatical Sentences and Propoftions, So much admir'd and promoted by the Kings of Syria, which occaforid the Continuance of the Parabolical Stile fo long after, were nothing elfe but Paftimes of Mind, and Entertainments equally fitted to excite Pleafure, and to give Enlargement of Underftanding. Perfons of higher Birth and Rank were of the Same Make at that Time, as thofe of our own are now: What was painful and laborious did difcourage'em: To engage them to Studioufnefs and Reflexion, by Pleafure and Curiofty, was a Piece of extraordinary Skill and Dexterity. Doubtlefs, the Edycation Nathan, by this means, gave to Solomon, did mightily conduce to that Grandure of Soul, and to that admirable Wifdom which con-

The Author's Preface.

fitutes the Character, and is the Glory of that Prince.

It mas alfo by way of Diverfion the Chaldeans and Egyptians, the Inventers of Aftronomy, did fore-tell to their Friends the Time, and other Circamftances, of Eclipfes, and erected Syftems which fhewed the Length of the Days, demonArated the Courfe of the Stars, and reprefented all the Varieties of the Celeftial Motions; being perfuaded, no lefs than the Grecians, that the firft intellectual Pleafures are thofe which proceed from Mathematical Sciences, is which they edwcated their Cbildren. They were convinc'd, that Childrens Reafon, tho not yet in Action, was not without its Strength, and wanted only to be put in Motion, in order to its Progrefs towards Perfection; which might be effected by exciting in 'em a Curiofity, that would do the Same with them, which a long Train of Neceffities does in thofe of mere advanced Tears. Herein lay the Secret of Socrates, who taught Childrein to refolve the greateft Diffculties of Geometry and Arithmetick: This was the Key with which be laid open their Underffanding, knew its Strength, and predicted their Deftiny: This mas inftead of that Demon or Genius be is Jaid to bave confulted, axd which is reported ever to have accompanied him.

Tho' thefe Plays of the Intellect, here jpoken of, feem only Amufements to pafs amay the Time; yet are they pofficly of no lefs Advantage than thofe Exercifes in which the Touths of 2 wality are bred up at Academies, mbich fabbion as well

The Author's Preface:

as ixvigorate their Bodies, and give them a grace. ful Air in their Deportment: For to be accuftom'd to difcern the Proportions, and the Force of Mixtures; to find out an unknown Point requir'd, amongft a confus'd Infinity of others; to sake a right Method in refolving the moft intricate and perplexing Propofitions; is to have the Mind fitted for Bufinefs, to be armid againft Surprizes, and prepared to overcome unexpected Difficulties; Things of no lefs Confequence, one would think, than adjufting the Motions of the Body by the Inftructions of a Dancing Master, or the Tone of the Voice by that of a Mufician. Behdes, are not Diverfons fometimes neceffayy? And can any one be diverted by what he der spijes, or is afham'd of? Would a Statefman choofe to be performing at Dancing Matches, in the Intervals of Conncils, and of important Bwfiness? Or were it becoming for bim to be found in thofe Exercifes wherein be fpent the time of his Touth? Decency, Bufinefs, and Health, would in no wife allow it. But Paftimes of Mind are for all Seafons and all Ages: They inftruct the Toung, and divert the Old; They are not beneath the Rich, nor above the Ability of the Poor: They may be ufed by eitber Sex without tranfgreffing the Bounds of Modefy. Thofe Diverfions bave this further and peculiar Advantage, that there can be no Excefs in them: For feecing there is a ree? gular Conduct of Reafon therein, through all the Steps it Joould take, it can't be conceiv'd bow it Mould toweh upon any Extreme, its Exercife being within the due Medium, where the So[B] lution

The Author's Preface

lution of the propoofed Problem is to be found.
Thofe who bave had the Curiofity to obferve the Conduct of great Men in their private \boldsymbol{A} ctions, bave found that they are diftinguibht as well in their Recreations as in their Bufinefs. Auguftus u'd to exercife bimfelf in the Evenings with bis Family at thefe Diverfions, not judging it beneath him; and recorded with no lefs Exacinnes the Particulars of his Recreations, than thofe of his important Affairs. That learned Lanyer Mutius Scevola, after bis Confultations were over, diverted himself by Playing at Chefs, and became one of the beft Players of bis Time. Pope Leo X. one of the greateft Men of his Age, play'd Jomet imes at Chefs, if we may believe Paulus Jovius, to recreate bimfelf after the Fatigues of Bufinefs,
'T is certain the Game of Chefs mas invented for Inftruction as well as Diverfion. The Attacks and Defences, the diverfe Steps and Advantages of the different Yieces, may furnif the Confiderate with Political and Moral Reflexions. By the Difafter of the King, we may learn, that a Prince miuft infallibly fall under his Enemies Pomer, when depriv'd of his Soldiers; and that he cannot neglect the Prefervation of'em, without expofing bimfelf and his Dominions.

All Games that are, or may be invented, may be reduc'd to three Ranks. The Firft is of thole that depend altogether on Numbers and Figures; as the Chefs, the Draughts, and foime others : The Second of thole that are govern'd. by Chance; as the Dice, and fach like: The Third Sort is

The Author's Preface.

of thofe that are fubjected to the Lams of Motion, and require an Exactne s_{s} and Regularity thereof; fuch as Shooting with Guns, and with Bows, the Tennis, and Billiards. There are fome Plays of a mixed Nature, depending partly on Skill, partIy on Chance; as the Tables, the Cards, and moff otbers. But'tis certatn, there is none of 'em which might not be fo far fubjected to the Rules of the Matbematicks, that one might be aflured of the Victory, bad he but all the Underfanding requifite. Games of Dexterity depend So much upon Principles of Staticks and Mechanicks, that 'tis only the Want of a due Knowledge of their Rules, or of the Way of reducing 'em to Practice, that makes a Man fall poort of Conquef.

In all Plays of Chance whatever, the Victory depends upon the coming up of a certain Number, upon Weight, or upon the Dimenfions of a Figure. The Gamefer that gives the Motion, might at pleafure determine the End of it, were bis Skill and Dexterity perfect; and tho' this does not feem to be polfable, there being none to be found Mafter of So much Cunning ; yet 'tis true that this might be done, and that an infallible Method of Winning, at Chels for inftance, is not abfolutely impofible: But no Body has bitherto found it out; nor perbaps ever will, feeing it depends on too great a Number of Combinations. 'Tis enough that the Point of Perfection is polfis. ble, to encourage the Labour of the Curious. "A perfect Orator, Jaid Tully, never was, \because and yet is poffible. His Picture drawn by [B 2] "t th at

The Author's Preface.

that famons Mafter,' may be a Pattern for the Imitation of thofe who fudy to excel in Elo. gwence. The like may be faid of a Poet, a Painter, an Arcbitect, a Phyfician, and all others. In like manner, the' 'tis trwe that no one bas astained an infallible Metbed in all Plays, nor perbaps in any one; this ougbt to hinder none from endeavowring to become as skilful as he can, aysd to come up as near as may be to the Idea of that Method, which, becaufe fownded upon Principles of Mathematicks, muft participate of a Matbematical Certainty.

It may poffibly be thought an Extraordinary Attempt to endeavour to profelyte Gameffers to this Opinion, and to engage Statefmen and great Commanders in the Study of Mathematical Recreations: Notwithffanding there can be no Harm in Carrying the Light, let who will follow after it: Tea, is it poffible to binder Maxkind from learning what is built on the moft. natural Principles, and on Truths flowing froms tbe Efence of Things? Should they be deprived of Pleafures So inviting by their Utility; and which are fo familiar, fo eafie, and fo futted to all endowed with Reafon, that to bereave Men of them, were to rob'em of what is moft agreeable in Life.

CONTENTS.

Arithmetical Problems.

PROBL.

I. ABlind Abbefs, bisfiting ber Nums, who werere oc qually diftributed in Eigbt Cells built at Four Corners of a Square, andin tbe middle of eacb. fide; finds an equal Aumber of Perfons in eacb Row or Side containing Tbree Cells: Ai a fecond Vifit, So finds the fame Number of Perfons in each b Row. sbo' tbeir Number was enlarg'd by tbe Acceffion of Four Men: And corming a tbird time, Sbe filll finds the Same Number of Perfons in each Row', tho' tbe Four Men wiere tben geve, and biad carrid each of 'em a Nun pioth 'em. Pag. I
1I. To. fuberait, mitb one single Oparation, feveral Sums, from foveral otber Sumis given.
11I. Compendious Ways of Multiplication 3
IV. Dioijfon fiorten'd.
V. Of fama Properties of Numbers. $\$$ $\$$
Table of tbe Prime Numbers. 19
VI. Of Rigbt-Angled Triangles in Numbirro. 22
VII. of Aritbmetical Progreflian. 25
VIII. of Geometrical Progrefion. 29
IX. of MagicalSquares. 33
X. Of an Aritbmatical Triangle. 37
XI. Saveral Dice being tbrown, to find the Number of Pointsthat arifo from tbew, after fome Operations. 4^{8}
XII. Tivo Dice being tbroese, to find tbe upper Points ofeacb Dye without feaing them,49
XIII. Upon tbe Throw of Tibree Dicc, to find tbe upper,
[2] Raimes

CONTENTS.

PROBL.

Points of each Dye, witbout feeing 'em, Pag. 50
XIV. To find Number thought of by another, 51
XV. To find the Number remaining after fome Ope. rations, witbout asking any Queftions,

54
XVI. To find the Number thougbe of by another, witbout asking any Q"ieftions,
XVII. To find out Two Numbers stougbe of by any one,: 57
XVIII. To find fereral Numberrs thoig $b t$ of by anotber, 59
XIX. A Perfon bas in one Hand a certain oven Number of Pijtoles, and in the otber an odd Number; 'tis required to find tout in wbich band is the even or odd Number,
XX. To find two Numbers, the Ratio and Difference of mbich is given, 62
XXI. Two Perfons baving agreed to take at pleafure lefs Numbers than a Number propos'd, and in continue it alternately, till all the Numbers make together, a determin'd Number greater than the Number propos'd; 'tis required bosw to do it,
XXII. To divide a given Number into Tuoo Parts, the Ratio of which is equal to that of Two Numbers given,
XXII. To find a Number, which being divided by given Numbers Separately, leaves I Remainder of each Divifion ; and when divided by another Number given, leaves no Remainder,
XXIV. Of feveral Numbers given, to divide each into tsio Parts, and to find two Numbers of fucb a Q"ality, that wben the firft part of each of the given Numbers is mullipized by the firft Namber given, and the fecond by the fecond, the Sum of the tapo Products is fill the Same, 68
XXV. Out of Several Numbers given in Arithuetical Progreffion, and rang'd in a Circular Order, the firft of wobich is an Unit; to find tbat whicls one bas thought of.

71
XXVI. Among Three PerCons, to find bote many Cards or Compters each of them bas got,

72
XXVII. Of Threc unkroown Cards, to find what Card each of the Three Perfons bas taken up,
XXVIII. Of Three Cards known, to find wobich and wobich is taken up by each of the Three Perfons, 74

CONTENTS.

PROBL:
XXIX. To find out ammong feveral Cards, one that ano: ther bas thougbt of, Pag. 75 XXX. Several Parcels of Cards being propos'd or 乃eewn, to as many different Perjons, to the ond that
$\therefore \quad$ each Perfon may think upon one, and keep it in bis mind, To guefs tbe refpective Card thas each Perfon bas thougbt of, 76
XXXI. Several Cards being forred into Tbreo equal Heaps, to guefs the Card tbat one thinks of, ibid.
XXXII. To guffs the Number of a Card drawn out of a compleat Stock, 77^{\prime}
XXXIII. To guefs the Number of the Points or Drops of Tivo Cards dram out of a compleat Stock of Cards, 78
XXXIV. To guefs the Number of all the Drops of tbree Cards dran at pleafure out of a compleat Stock of Cärds.
7.9
XXXV. Of the Game of the Ring, 8 I
XXXVI. After filling one Veffel, with Eight Pints of any Liquor, to put juft one balf of that Quantity into another Veffel that bolds five Pints, by means
\because of a third Veffel that will bold three Pints, 82

Geometrical Problems.

PROBL.

I. TO raise a Perpendicular on one of the Extre-: mities of a Line given, 84

> 1I. To drawt from a point given, a Line parallel to a Line given, 185
III. To divide, stith the Same Aperture of the Compafs, a given Line, into as many equal parts as you woill. 86
IV. To make an Angle equal to the Half, or to the Half, or to the Double of an Angle given, 87
V. To make an Angle equal to tbe tbird part, or to the Triple of an Angle given,
VI. To find a tbird Proportional to two Lines givent, and as many otber Proportionals as you mill, 88
VII. To defcribe upon a Line given as many different Triangles as you pleafe witb equal Area's, 89

CONTENTS.

PROBL.

VIIL. To defcribe upon a given Line any domiaded Number of different Triangles, the Circumforemces of mbicb are equal, ibid.
1X. To deferibe two different Ifofaeles Triangles, of the fame Area, and tbe fame Circumference, 91
X. To deforibe tbree difforems Re\&angle-Triangles, with eqral Area's,'

93
XI. To defcribe tbree equal Triangles, the firft of whick foall be Riphtangled, the focond an $0 x y$ gonium, and the tbird'an Amblygonium, 94
XII. To find a Rigbe Line equal to the Arch of a Circle given,

96
XIII. To find One, Two, or Three mean Proportionals to tevo Lines given, 97
XIV. To defcribe in a given Circle four equal Circles that mutually toucb one anotber, and likewifo the Circumforence of abe given Circle, 99 XV. To defcribe in given Semicircle tbree Circles that toucb the Circumference and Diameter of the given Semicircle; and of wbich, that in the middle, being the biggef, cauches the two otbers that are equal,

100
XVI. To defcribe Eour proportional Circles, in Jucb a manner, that tbeir Sum fball be equal to a given Circle, and that the Sum of tbeir Radius's be equal to a Line given,

101
XVII. Upon the Circumference of a Circle given, to find an Arch, tbe Sinus of which is equal to the Cbord of the Complement of abat Arch, 102"
XVIII. To defcribe a Recaangle Triangle, the tbree fides of wobich are in Geometrical Propertion, 103
XIX. To defcribe four equal Circles mibich mutually toucb one anotber, and on the outfide toucb the Circumference of a Circle given,

104 XX. To defcribe a Rectangle Triangle, 'sbe tbree Sides of which are in Arstbmetical Proportion, 105
XXI. To defaribe fix equal Circles wbicb mutually toucb one anotber, and likewife tbe three Sides, and tbree Angles of an Equilateral Trianglegiven, 106
XXII. Several Semicircles being given whicb touch one another at the Right-Angle of two perpendicular Lines, and bave their Centers upon one of thefo eqo Lines; to find tbe Points where tbefo Semicire

CONTENTS:

PROBL:
cles may be toucb'd by fraigbt Lines dramenfrom tbefe Points to a Point given upon anotber perpendicular Line. 108
XXIII. To deforibe a ReEtangle Triangle, tbe Area of which in Numbers is equal so its Circumference,

109
XXIV. To deforibe witbin an equilateral Triangle Three equal Circles wbich touch one anoober, and likewife the tbree Sides of the Equilateral Triangle,

110
XXV. To defcribe a Rectiangular Triangle, the Area of sobich, in Numbers, is one and an balf of tbe Circumference,
XXVI. To infcribe in a Square given four equal Circl's which touch one another, and likewife the Sides of the Square,
XXVII. To defribe a ReClangle-Parallelogram, the Area of wbich in Numbers is,equal to its Circumfen rence, 113
XXVIII. To meafure with a Hat, a Line upon the Ground acceflible at one of its Extremities, 114
XXIX. To meafure with two unequal Sticks a Forizontal Line accef(ible at one of its Extremities, ils
XXX. To meafure an acceffible Heigbt by its Shadows, 116
XXXI. To find a Fourtb Line proportional to three Lima given, 117
XXXII. Upon a Line given to defcribe a Rectangle-Pa. rallelogram, the Area of which is the Double of tbat of a Triangle gieen, ibid.
XXXIII. To cbange a Triangle given into anotber Triangle, each fide of which is greater than each fide of the Triangle givèn,

118
XXXIV. Two Semicircles upon one Rigbt Line being given, wobich touch one anot ber on the infide; to defcribo. a Circle that toucbes both the Rigbt Line and ibe Circumferences of the two Semicircles given, IIq
XXXV. Tbree Srmicircles upon one Righe Line being given, wbich toucb withing to defcribe a Circle tbas toucbes the Ciroumferences of the Tbree Semicircles, 121
YXXXVI. Tbree Semicircles upon onée Atraigbe Line, wbich souch on the infide, being given, with anotber fight tine drawn from the Point of Censalt of
$\left[\begin{array}{ll}a & 3\end{array}\right]$

$$
\left[\begin{array}{ll}
2 & 3
\end{array}\right]
$$

CONTENTS.

PROBL:
the twoo interiour Circles perpendicular to the firft Rigbt Line given: To defcribe tavo equal Circles wbich touch that Perpendicular and the circumferences of the twoo Semicircles, $\because \because 122$
XXXVII. To defcribe a Triangle, the Area and Circumference of wbich are one Square Number, 124
XXXVIII. To make the Circumference of a Circle pafs tbrough three Points given aitbout knowing the Center,
XXXIX. Two Lines being given perpendicular to one Line drawn tbrough tbeir Extremities, to find upon that Line a Point equallj remov'd from each of the two other Extremities,
XL. To defcribe tavo Righe-Angled Triangles, the Lines of cshich bave tbis Quality, That the Difference of the two Smalleft lines of the firft is equal to the Difference of the two greateft of the Socond; and Reciprocally tbe Difference of the two fmalleft of the lecond is equal to that of the twoo greatéft of the firft,
XLI. To divide tbe Circumference of a Semicircle given into troo anequal Arches, in fucb a manner, that the Semi-Diameter may be a Mean Proportional between the Chords of thefe two Arches, 128
XLII. A Ladder of a known length being fot fo as to reft upon a Wall at a certain Diftance from the Wall; to find bow far 'twill defcend when mov'd a little further from the Foot of the Wall, 129
XLIII. To meafure an acceffible Line upon the Ground, by the means of Liglot, and the Report of a Canon,

CONTENTS.

PROBL. Problems of the Opticks.

1. TO make an Object to appear fill of the fame Magnitude, when feen at a difance, or nearer,
II. To find a Point, from which the teto unegual parts of a Rigbt Line fhall appear equal,. 195
III. Tbe point of any Object being given, and the place of the-Eye, to find the point of Reflexion upon the furface of a flat Looking-Glafs, 196
IV. To fboot a Piffol behind ones Back as true as if the Perfon took bis aim with bis Face to the Object.

198
V To meafure a beigbt by Reflexion,
199
VI. To reprefent any tbing in Perfpective, witbout making ufe of the point of Sigbt, $\quad 200$
VII. To reprefent in Perppetive an Equilateral Polyedron, terminated by fix equal Squares, and by eighe regular and mutually equal Hexagonis, 201
VIII. To reprefent in 'Perfpective an Equilateral Polyedron, terminated by jx equal Squares, and by sight equilateral and mutually equal Triangles,

205
IX. Tis reprefent in Perfpeaive an equilateral Polyedron terminated by fix equal fquares, and by twelve Ifofceles andrequal Triangles, the beight of tubich is equal to the Bafe,
X. To reprefent in Perfpective an Equilateral Polye. dron, limited by tpelve equal fquares, by eigbs Regular and egual Hexagons, and by fix Regular and equal OEtogons,

209
XI. The Points of the Eye, and of fome Object, being given, together with the point of Reffexion upon the furface of a plain Looking.glafs; to determine the place in the Glafs of the Image of the Obje ct propinfed,

211
XII. The Points of the Eye and of fome Objeet being given, togetber with the Point of Reflexion upon tbe Convex Jurface of a Sfberical Lookingglafs to determine the Image. or Reprefentation of the propos'd Object either mithin or outs of tbe Glafs,

213
[a4] XIII. T_{T}

CONTENTS.

PROBL:

XIII. To determine the place of an Objeat feen by Re: flexion upon the furface of a Cylindrical Look ing-glafs,

215
XIV. The Points, of the Ege and of an Objea baing gieen, togetber with the Point of Reflexion upows the Concave furface of a fpherical Looking-glafs: to determine tbe Image of the propajd Obje a witbin or witbout the Glafs,
XVI. Of the fpheres of Gla $f s$, proper to produce Fire by the Rays of the Sums

223
XVII. Of the Lens's of Glalsproper to produce Fire with the Rays of the Sun,
XVIII. To reprefent is a dark Room tbe Objects witbout, with their natural Colours, by the means of a Lens of Glafs that's Convex on botb fides, 236
XIX. Io reprefort on a Plain a difguifed or deform'd Figure, To as to appear in its natural Pofition, when view'd from a determin'd Point,
XX. To defcribe upon a Plain a deform'd Figure that appears in its natural Perfection, when feen by a Reflexion in a plain Looking-gla/s, 239
XXI. To defcribe upon a Horizontal Plain a deformed Figure which appears natural upon a vertical Tranfparent Plain, placed between, the Eye and the deformed Figure.
24°
XXII. To defcribe upon a Convex Surface of a Sphere a difguis'd Figure that jball appear natural when look'd upon from a desermin'd Point, 242
XXIII. To defcribe upon the Convex Surface of a Cylinder a deform'd Figure, that appears bandfom and well proportion'd when feen from a determin'd Point,

244
XXIV. To defcribe appon the Convex Surface of a Come a difguis'd Figure, which appears natural when look'd upon from a determind Point,

245
XXV. To defcribe upon a Horizontal Plain a difguis'd Figure, which will appear in its juft proportions' upon the Convex Surface of a Righe Cylindrick Looking-jlafs, the Eye feeing it by Reflexions from a Point given,
XXVI. To defcribe upon an Horizontal Plain a difguis'a Figure that appears in its juft propartions uposa

CONTENTS:

PROBL:

the Convex Surface of a Conical Glafs, feo up at Right Angles upon that Plain, being Jeen by Reflexion from a Point given in the prolong'd Axis of this Specular Cone, 250 XXVII. To defcribe an Artificial Lantern, by wbich one may read at Nigbt at a great diftance, 252 XXVIII. By the means of two plain Looking.glafes to make a Face appear under different Forms, 253
XXIX, By the means of Water to make a Counter appear, that while the Veffel was empty of Water wate bid from the Eye,
XXX. To give a perfect Reprefentation of an Iris or Rainbow upon the Cieling of a dark Room, ibid.

Problems of Dialling.

PROBL:

1. TO defrribe an Horizontal Dial witb Herbs uf: on a Parterre, 255
II. To defgribe an Horizonsal Dial, the Center of wbich and the Equinoctial Line are given, 257
III. To defcribe an Horizontal Dial by the means of a Qyadrant of a Circle, 258
IV. To defcribe an Horizontal Dial, and a Vertical South Dial, by the means of a Polar Dial, 259
V. To defcribe an Horizontal Dial and a Vertical South Dial, by means of an Equinoctial Dial,260
VI. To defcribe a Versical Dial upou a Pane of Glaf'so as to denote the Hours without a Gnomon, ibid.
VII. To defcribe tbree Dials upon three different Plains, denoting the Hours of the Sun, by only one Gnomon, 265
VIII. To draw a Dial upon an Horizontal Plain by means of two Points of a Shadow mark'd upon that Plain at the times of the Equinoxes, 263
IX. To draw a Dial upon an Horizontal Plain, is mbich the Points of s and 7 a Clack are given upon the Equinodial Line,
X. A Dial being given, whether Horizontal or Vertical, to find what Latitude'tis made for, after knowing the length and root of the Gnomon, 267

CONTENTS.

PROBL:

XI. To find the Root and Length of a Gnomon in a Vertical declining Dial,

269
XII. To defcribe a Portable Dial in a Quadrant, 272
XIII. To defcribe a portable Dial upon a Cärd, 278
XIV. To defcribe an Univerfal Rectilineal Horizontal Dial,

282
XV. To defcribe an Univerfal Elliptick' Horizontab
Dial,
XVI. To defcribe an Univerfal Hyperbolick Horizental Dial,
ibid.
XVII.'. To defcribe an Univerfal Parabolick Horizontal Dial,

287
XVIII. Todefcribe a Dial upon an Horizonsal Plain, in which the Hour of the Day may be known by the Sun without the 乃adow of any Gnomon, 288
XIX. To defcribe a Mooh-Dial, 292
XX. To defcribe a Dial by Reflection, 293
XXI. To defcribe a Dial by Refraction, .. 294

Problems of Cofmography.

1. TO find in all parts and at all times, the four Cardinal Poins of the World, without fecing the Sun, or the Stars, or making ufe of a
Compafs,
298
II. To find the Longitude of a propos'd Part of the Earth,
III. To find the Latitude of ary part of the Earth, 302
IV. To know the Length of the longeft Summer Day at a certain Place of the Earth, the Latitude of which is known,
V. To find the Climate of a propos'd Part of the ${ }^{303}$ Earth, the Latitude of which is known, 306
VI. To find the Extent of a Degree of a great Circle of the Earth, 308
VII. To know the Circumference, the Diameter, the Surface, and the Solidity of the Earth, 309
VIII. To know the extent of a Degree of a propos'd fmall Circle of the Earth,

313
IX. To find the diffance of two proposid places of the Earth,

CONTENTS.

Earth, the Longitude and Latitude of whish are knewn, 316
X. To defcribe the Curve-Line, that a Ship in the Sea noould defcribe infteering its courfe upon the the Jame Rumb of the Compafs, 323
XI. To reprefent the Curve-Line, that by vertue of the Motion of the Earth, a beavy Body would deScribe in falling freely from the upper furface to the Center of the Earth, 325
XII. To know wben a propos'd Tear is Bifextile or Leap-year, 326

XIII. To find the Golden Number in any' Year pro-
XIV. posd,
To find the Epact for a propos'd Year,
229

XIII. To find the Golden Number in any' Year pro-
Posd,
XIV. To find the Epact for a propos'd Year,
328
XIII. To find the Golden Number in any' Year pro-
Posd,
XIV. To find the Epact for a propos'd Year,
328
XV. To find the Age of the Moon on a given Day of a Tear propos'd,

332
XVI. To find the Dominical Letter, and the Solar Cycle of a propos'd Year, 333
\{XVII. . To find on what Day of the Week a given Day "of a given Year will fall, 335 XVIII. To find the number of the Roman Indition far. a Tear propos'd,
XIX. To find the Number of the Julian Period for a propos'd Tear,
XX. To find the number of the Dionyfian Period for a Year propos'd, 337
XXI. To know what Months of the Year have 31 days, and what have 30 , 340
XXII. To find what Day of each Month, the Sun enters a Sign of the Zodiack,

341
XXIII. To find what degree of the Sign the Sun is in on a given day of the Year,
ibid.
XXIV. To find the place of the Moon in the Zodiack, on a given day of a given Tear,

342
XXV. To find to what Month of the Year a Lunacion belongs,

343
XXVI. To know wobich Lunar Years are Common, and which Embolifmal,

344
XXVII. To find the time of a given Night when the Moon gives Light,
ibid.
XXVIII. To find the beigbt of the Sun and the Meridian

$$
\text { Line, } 345
$$

XXIX. To know the Calends, Nones, and Ides of every Montb of the Year. Problems

CONTENTS.

Problems of the Mechanicks:'

PROBE:
I. TO keep a heavy Body from falling, by adding another heavier Body to that fade on which is inclines to fall,
II. By means of a small Weight and a small pair of
Scales, to move another Weight as great as you will,
III. To empty all the Water, contain'd in a Veffelo. with a Syphon or Crane,

3504
IV. To make a deceitful Ballance, that Bail appear juft and even, both when empty, and whew, loaded with unequal Weights,
V: To make a new Steelyard for carrying in one's Pocket,
VI: To abferve the various Alterations of the Weighs of the Air,
VII. To know by the Weight of the Air, which is the highest of two places upon the Earth, 356
VIII: To find the Gravity of the whole Mars of Air, 357
IX. To find by the Gravity of the Air the Thickness of its Orb, and the Diameter of its Sphere, 358
X. To fill a Cask with Wine; or any other Liquor, by a Tap in the lower part,

359
XI. To break with a Stick another Stick reffing upon s two Glaffest without breaking the claffes, ibid.
XII. To find the Weight of a given number of Pounds, by the means of one other different Weights, 360
XIII. A Pipe full of Water being perpendicular to the Horizon, to find to what diftance the Water will flow through a bole made in a given Point of the Pipe,

361
XIV. To contrive a Veffel, which keeps its Liquor, when filled to a certain height, but loses or Spills it ally, whenfill'd a little fuller with the Same Liquor, 362
XV. To make a Lamp fit to carry in one's Pocket, that Shall not go out, tho you roll it upon the Ground,

363
XVI. To place three Sticks upon an Horizontal Plain, in Such a manner, that each of 'em refs with one end upon the Plain, and the other ftands up. right,

CONTENTS.

PROBL:

XVII. To make tbree Knives turn upon tbe point of a Needle,
$36 \dot{4}$
XVIII. To take up a Boat that's funk with a Cargo of Goods,

365
XIX. To make a Boat go of it Jelf up a rapid Current, ibid.
XX. To find the weight of a Cubical foot of Water, 366
XXI. To make a Coach that a Man may travel in witbout Horfes,

367
XXII. To know wbich of two different Waters is the lighteft, witbout any Scales, 368
XXIII. To contrive a Cask to bold three different Liquors, that may be drawn, unmixid, at one and the Same Tap,
XXIV. To find the refpective parts of a Weighs that two Perfons bear upon a Leaver or Barrow, ibid.
XXV. To find the Force neceflary for raijing: a Weighe with a Leaver, the length and fixd point of mbich are given, 370
XXVI. To contrive a Veffel that bolds its Liquor when it fands upright, and Jpills it if it be inclin'd or foop'd but a little, \quad ibid.
XXVII. To find the Weight of a piece of Metal or Stome witbout a pair of Scales, 371
XXVIII. To find the folidity of a Body, the LWCight of which is known. 372 XXIX. A Body being given that's beavier than Watsir, to find wbat heigbt the Water will rife to, in a $V e f f e l$ filld to a certain part with Water, when the Body is thrown into it,

374
XXX: A Body being given of lefs Specifick Gravity than Water, to find bow far 'twill fink in a Veffel full of Water,

375
XXXI. To know if a su/picious piece of Monev is good or bad, ibid.
XXXII. To find the Burden of a Sbip at Sea, or in a River, 376
XXXIII. To make a paund of Water meigh beavier, or as much more as you will, 377 XXXIV. To know bow the Wind ftands, without firring
378.

CONTENTS.

PROBL:

XXXV. To contrive a Fountain, the Water of tobich.jlag and 今ops alternately,
XXXVI. To make a Fountain by Attration,
XXXVII. To make a Foumtain by Compreffion,
XXXVIII. To contrive a Fountain by Rarefaction,
XXXIX. To make a Clock with Water,
XL. To contrive a Water Pendulum,
XLI. To make a Liquor afcend by the vertue of and ther Liquor tbat's beavier,

XLII. When two Vefels or Cbefts are like one anotber and of equal weight, being filld witth diffe. rent Metals, to diftinguif the one from the otber, 394

XLIII. To meafure tbe deptb of the Sea,
XLIV. Two Bodies being given of a greater Specifich Gravity than zhat of Water, to diftinguifo which has the greateft Solidity,
XLV.; To find the Center of Gravity common to feveral 39 Weights sufpended from different points of a Ballance,

PROBL:

Problems of Phyficks.

${ }^{1 .} \mathbf{T}^{0}$prefent Lightning in a Room, 396 To melt at the flame of a Lamp a Ball of Lead in Paper, without burning the Paper, 397 II. To reprefent an Iris or Rainbow in a Room, ibid. III. Of Profpective Glafles or Telefcopes, 398 IV. To make an Inftrument by which one may be beard at a great diftance,
V. To make a Confort of Mufick. of feveral parts, with only one Voice,
VI. To make the String of a Viol Sake without touch- 410
VII. To make a Deaf Man bear the Sound of a MII fical Inftrument,
VIII. Jical inftrument, 412

412
, 1 b.
To make an Egg maunt up of it Self, . 412
X. To make Water freeze at any time in a bot XI. Room, XII. To kindle a Firg by the Sun-beams, ibid. XIII. ${ }^{4 I_{0}^{4}}$

CONTENTS.

XIII: To make a Fowl roaffing at the Fire, turn round of it Self with the Spit,
XIV. To make an Egg fand on its fmalleft end, without falling, upon a fmooth Plain, fucb as Glafs, ib.
XV. To make a piece of Gold or Silver dijappear, without altering the pofition of the Eye or the Pieco, or the intervention of any tbing,

416
XVI. To make a Loaf dance while 'tis baking in the Oven,
ibid.
XVII. To jee in a dark Room what paffes abroad, ibid.
XVIII. To bold a Glafs full of Water with the Mouth down, So as that the Water Shall not run out, 417
XIX. To make a Veffel or Cup that fball throw Water in the Face of the Perfon that drinks out of it, 418
XX. To make a Veffel tbat will produce Wind, 419
XXI. To make Glafs-Drops, 420
XXII. To make new Wine keep its Sweetnefs for feveral rears,

421
XXIII. To know when there is Water in Wine, and to feparate it from the Wine,

422
XXIV. Having two equal Bottles full of different Liquors, to make a mutual exchange of Liquor. without making iffe of any other Veffel, 423
XXV. Tomake a Metallick Body fwim above Water, 424
XXVI. To make Aquafortis put up clofe in a Bottle boil without Eire,

425
XXVII. To make the Fulminating or Tbundring Powoder,

426
XXVIII. To make the Aurum Fulminans, or Thundring Gold,

427
XXIX. To make the Sympathetick Powder, ibid.
XXX. Of the Magnetical Cure of Difeafes by Tranfplantation,
XXXI. To fop-a Bleeding at Nofe, or at any other part of the Body,

430
XXXII. To prepare an Ointment that will cure a Wound at a Diftance,

431
XXXIII. When an Object appears confufedly by being too near the Eye, to gain a diftinct viewo of it, without changing the place eitber of the Eye or the Object, 432
XXXIV. Of tbe Origin of Springs and Rivers, ibid.
XXXV.. To know in wotiat part of the Earth, Sources of Water lie,

436

CONTENTS.

PROBE:

XXXVI. To difitinguifb those parts of the Earth, in which are Mines or bidden Treasures, 44°
XXXVII. To measure at all times the Dryness and Humedity of the Air,
XXXVIII. Of Pbofphorus's,

444
XXXIX. To make the Sympathetick Ink, 449
XL. Of the Sympathy and Antipathy obferod between 454 Animate and Inanimate Bodies,
$\begin{array}{ll}\text { Animate and Inanimate Bodies, } & 455 \\ \text { XII. Of the Loadfone. } & 457\end{array}$
XLII. Of the Declination and the Inclination of she Laadftone, 463
XIIII. To find the two Poles of a Spherical Loadffone, 463 ,
with its Declination and Inclination,
XII IV. To reprefent the Four Elements in
XLIV. To represent the Four Elements in a Vial, 473
XLV. Several ways of Prognofticating the Changes of Weather,

475
XIVI. Of the Magical Lantern,
478
XLVII. To pierce the Head of a Pullet with a Needle, without killing it,
XL VIII. Io spake bandfom Faces appear pale and bideozes in a dark Room,

CONTENTS.

probx: Problems of Pyrotechny.

1. TO make Gun-Powder, 481 lour, 485

 III. To make Silent Powder, or fucb as maj be difcharged witbout a Naj $\mathrm{f}_{\text {o, }}$486
IV. To know tbe Defeats of Gun-Powder, 487
V. To amend tbe Defots of Gun-Powder, and so reftore it wben decai'd,

488
VI. To prepare an Oyl of Sulphur, requir'd in Fireworks,
489
VII. To prepare tbe Oyl of Salt-petre, \cdot uffeful in Fire- works,

ibid.
VIII. To prepare tbe Oyl of Sulphiur aud Salt-petre muix'd togetber,

490
IX. To make Moulds, Rowlers, and Rammers for Rockers of all forts, ibid.
X. To prepare a Compoition for Rockets of any fize, 492
XI. Tg make a Rocket, 495
XII. To make Sky-Rockets, that mount into tbe Air witb Sticks, 496
XIII. To make Sky-Rockets wbicb rife into the Air mitbout a Stick,

497
XIV. To make Ground-Rockets, wbich run upon tbe Eartb, 498
XV. To make Rockets that fy on a Line, calld Air- Rockets, 50.0
XVI. To make Rockets tbat burn in tbe Water, call'd Water-Rockets, sox
XVII. To make Fire-Links, 502
XVIII. To make Serpents for artificial Fire-WTorks, 504
XIX. To make Fire-Lances, ibid.
XX. To make Fire-Foles or Perches, 506
XXI. To make Petards for Fire-works of Diverfion, 507
XXII. To make Stars for Sky-Rockets, 508
xxIII. To make prepared Tow for Priming to Fire-monks,509
XXIV. To make Fire-Sparkles for Sky Rockets, 510
XXV. To make Golden Rain for Sk Reckets, 519
[b] To

CONTENTS.

PROBL.
XXVI. To reprefent, witb Rockets, Several Figures in ebe Air,

511
XXVII. To make Fire-Pots for Fire-works of Diverfion,

512
XXVIII. To make Fire-Balls for Diverfion, that burn fwimming in tbe Water,
XXIX. To make Fire-Balls for Diverfon, that will dance upon an Horizontal Plain, ${ }^{2} 16$
XXX. To make Sky-Hire-Balls for Eire-works of Diverfion,
XXXI. To make Shining Balls, for Diverfion, and for Service in War,

520
XXXII. To make a Wheel of Fire-works, $\quad 521$
XXXIII. To make a Balloon, or fiery Foot-ball, $\quad 522$
XXXIV. To make Pyrorechnical Maces or Clubs, and otber Fire-Macbines, for nocturnal Combats, ibid.
XXXV. To make Fire-Pots for Service in War, 525 XXXVI. To make Fire-Crowns for Service in War, 526 XXXVII. To make Fire-Barrels for Defending a Breach, ${ }^{\prime}$, and Ruining tbe Enemies Works, 528 XXXVIII, To make an Ointment excellont for Curing all Sorts of Burnings,

PROBLEMS

Mathematical and Pbyfical

RECREATIONS.

Arithmetical P_{r} овиемs.

PROBLEMEI.

A blind Abbefs, vifiting ber Nuns, who were equally diftributed in eigbt Cells built at the four Corners of a Square, and in the Middle of each Side; finds an equal Number of Perfons in each Roos or Side containing tbree Cells: At a fecond Vijit, 乃he finds the fame Number of Perfons in each Rowt, tho' their Number was enlarg'd by the Aow ceffion of four Men: And coming a third time, 乃e fitll finds the fame Number of Perfons in each Rorn. tho the four Men were then gone, and bad carry'd each of 'em a Nun with' 'em.

TO refolve the frit Care, when the four Men were got into the Cells, we mu't concerve it $f 0$, that there was a Man in each Corner-Cell, and that two Nuns remov'd from thence to each of the Mid-dle-Cells: At this rate, each Corner-

-3	3	3
3		3
3	3	3

Middle-Cell, and two Perfons, viz. a
 Man and a Nun in each Corner-Cell; which fill makes nine Ptrfons in cach Row.

To account for the fecond Cafe, when the four Men were gone, and four Nuns with them ; each CornerCell mult have contain'd one Nun more than at the firt Vifir, and each Middle-Cell two fewer: And thus, according to the Suppofition laid down, each CornerCell contain'd four Nuns, and there was only one in each Middle-Cell:; which ftill make nine in a Row, tho the whole Number was but twenty.

PROBLEMEII.

To fubftract, with one fingle Operation, feveral Sums, from Several otber Sums given.

Operation of $\mathbf{T O}$ fubfract all the Sums which are under the Line Subfiration 1 ar B, from all the Sums above the Line at A; begin by adding the Numbers or Figures of the Righthand. Column under the Line, faying, 8 and $56243 \quad 4$ is 12 , and 2 makes 14 ; which taken from 84564 A the neareft Tens, viz. 20, there temains 6 ; $3252^{\text {A }}$ which we add to the correfponding Column 26848 abdve, faying, 6 and 8 make 14 and 2 is 16, and 4 make 20 , and 3 make 23 : here

> 3242 3654 B there are juft two Tens, as before, we re2308 tain or carry nothing. This done, we add after the lame manner, the Numbers of the next lower Column, faying, 0 and 5 is 5 , and 4 make 9 ; which taken from the neareft Ten, leaves I ; which we add, as above, to the fuperior correfponding Column, faying, 1 and 4 make 5, and 5 makes 10 , and 6 makes 16 , and 4 makes 20 : here we fer o underneath; and there being here two Tens; whereas in the inferior correfponding Column there was but one, we keep or carry the Difference I to be taken from
from the next inferior Column, becaule we found more Tens in A than in B: For had we found fewer in A than in B, we mult bave added the Difference; and if it thould fo fall out, that this Difference can not be taken from the inferior Column, for want of Gignificant Figures, as it happens bere in the fifth Column ; we mult add it to the fuperior Colurin, and write the whole Sum under the Line. Thus in the Example propos'd, we have $\mathbf{1 6 2 0 0 3}$, for the Remainder of the Subftraction.

PROBLEME III.

Compendious Ways of Multiplication.

TO multiply any Number, 128 for inftance, by a CompendiNumber that's the Product of the Multiplication of cusways of two other Numbers; 24 for initance, the Product of the timm. Multiplication of 4 and 6, or of 3 and 8 : we multiply the Number proposid 128 by 4, and the Product 512 by 6 , (or elfe 128 by 3 , and the Product by 8) and tave 3072 for the requir'd Multiplication.

Hence it follows, that to multiply a Number propas'd by 2 fquare Number, we muft multiply the Number propos'd by the Side or Roor of the Square, and then the Product by the fame Side again. Thus to muliply 128. by 25, we multiply it by 5 , and the Product by 5 again.
To multiply any Number, 128 for inftance, by a Number that's the Product of the Multiplication of tbree other Numbers, as 108 the Product of 2,6 and 9 , or of 3,6 , and 6 : we multiply 128 by 2, the Product by 6, and the fecond Product by 9 ; or elfe 128 by 3, the Prioduct by 6 , and the fecond Product by 6 .
The Confequence of this is, that to multiply any Number propos'd, by 2 Cube-Number, we mutt multiply it firt by the Side or Root of the Cube ; then the Product of that Multiplication by the lame Roor, and the fecond Product by the Side again. As, to multiply 128 by 129 , the Cube-Root of which is ς, we multiply 128 by 5. and the Product 640 by 5 again, and the fecond Product 3200 by 5 again. Thus to find how many Cubical Feet are in 32 Cubical Toifes, we multiply 32 by 6 , the Product of :hat by 6 , and the fecond Produat by 6 .

A 2
To

Mathematical and Pbyfical Recreations.

To multiply any Number by what Power you will of ;, add to the Number propos'd, on the Right-band, as many Cyphers as the Exponent of the Power contains Unites, as, one Cypher for 5, two for its Square 25, three for its Cube 125, and fo on; and divide the Number thus augmented by the like Power from 2 ; that is, 2 for 5, 4 for its Square 25, 8 for its Cube 125, and fo on.

Thus to multiply 128 by 5, we divide 1280 by 2, and the Quotient 640 is the Product of the Multiplication: But to multiply 128 by 25 the Square of 5 , we divide 12800 by 4 the Square of 2, and the Quotient is the Pioduct demanded; and to multiply the fame Number 128 by 125 the Cube of 5 , we divide 128000 by 8 the Cube of 2. And fo on.

To know how many Inches are in 53 Foot, we multiply 53 by 12 ; or it might be done by multiplying 53 by 2, and the Product by 6 ; or 53 by 3, and 53 the Preduct by 4. But there's a way of doing
53 it without any Multiplication; viz. by fetting 53 down 53 under 53 , and then 53 again under - both, advancing it a Column to the Left, fo as 636 to make 3 ftand under 5 ; for the Sum of thefe three is 636 , the Number of Inches contain'd in 53 Foot, or of Pence in 53 Shillings.

To multiply together two Numbers compord of feveral Figures, 12, for Inftance, and 18 ; we reduce the firt Number, 12 , into thefe three p rts, each of which confifts only of one Figure, 2, 4, and 6; and in like manner, the 1 cond Number, 18 , into $4,6,8$; each of which laft mult be multiply'd by 2 , the firlt part of the firlt Number; and then by 4, the 2d Figure of the fame firl Number; and at laft by 6, the third part: and the Sum of all thefe Products anfwers the Demand.

PROBLEMEIV:

Divifion Jborten'd.

TO divide a laige Number by a fmaller, by only Divifon Addition and Subftraation, as 1492992 by 432 ; we thorten'd. commonly put the Divifor to the Left, under I492, to know how many times 'tis contain'd in that Number. But yet we may fave our felves that Labour, by making a Tariff of the Divifor ; for which end we place it on the Right over-againft 1 ; then add ir to itfelf, or double it, and place that over-againt 2 : Then we add it to the Double, and place the Sum oppofite to 3; adding it to the Triple, we have its Quadruple oppofite to 4 ; as the Additional of itfelf to the Quadruple, gives the Quintuple oppofite to 5 ; and fo of the other Multiples oppofite to $6,7,8,9,10:$ The laft of which, viz. the Multiple correfponding to 10 , ought, if the T_{2} ble is right done, to be the fingle Divifor with a Cypher on the Right-hand.

1	432	1492992
2	864	$1296 \ldots$
3	1296	1969
4	128	1728
5	2160	2419
6	2592	24
7	3024	2160
8	3456	2592
9	3888	2592
10	4320	2

Having thus prepar'd your Table, proceed in the common way of Divifion; and every time you have occafion to know how often your Divifor is contain'd in the correfponding Number, look in your Table for the neareft Number that does not exceed; and the Number to which that is oppofite gives you at one view the Figure you're to pur in your Quotient. As, in the beginning of the Divifion here exemplify'd, you want to know how often 43^{2} is to be found in 1492 ; A 3
in your Table, you find 1296 (the neareft Number to 1492 and not exceeding it) oppofite to 3 , and accordingly 3 is the firlt Figure of your Quotient; and lo of all the reft.

This Way is very convenienr, when we have occafion to divide large Numbers by a fmaller Number; for the Tarift if our Divifor keeps us from being at a fand, by refolving us readily upon all our Divifions. This is frequently the Care of Surveyors of Land, who have occafion to divide large Numbers by 144, when they want to reduce fquare Inches into fquare Feet; or by $17: 8$. when they want to reduce cubical Inches into cubical Feet.

To divide any Number by whar Power you will of 5 , multiply it by the like Power of 2, and cut off from the right band of the Product as many Figures as there are Unites in the Degree of the Power; the remaining Figures on the left, will reprefent the Quorient of the Divifion, and thofe ftruck off, will be the Numerator of a Fraction, the Denominator of which will be the like Power of 10 .
To divide any Number by a fmaller, that is the Product of the Multiplication of two yet fmaller Numbers, divide the Number propos'd, by one of the two fmaller, and the Quotient by the other ; and the fecond Quotient arifing from the latt Divificn, is what you want.

Thus to divide 20736 by 24 , the Product of 3 and 8, or of 4 and 6 , we take the 8 th part of it's 3 d , or the $6: \mathrm{b}$ part of it's 4 th, or, (which is the fame thing) we take the $3^{3 d}$ of it's 8 th part, or the 4th of it's 6 th , and our Quo- . tient proves 1728 .

Hence to reduce fquare Feet to fquare Toifes, (a Toife is 6 Foor) we muft take the 6 ch part of the 6 th part of the Number propos'd of fquare Feet, becaufe a fquare Toite is 36 fquare Foor, and 6 times 6 is 36 . Thus to reduce 542 fquare Feet to fquare Toifes, we mult rake the 6 h part of $90 \frac{3}{5}$ (the 6th part ot 54%) and to have is fquare Toifes and 2 fquare Feet, as the Value of $s 42$ fquare Yeet.

PROBLEME V.

Of Some Properties of Numbers.

${ }^{1} \cdot \mathrm{~N}$Umber 9 has this Property; that when it multiplies Propertie of any number of Integers whatfoever, the Sum of Nmmber. the Figures in the Product is diviable by 9: Thus 53, multiplied by 9, makes the Product 477 ; the Figures of which, added together, viz. 7 and 7 and 4 make 18 , which is ezactly divifible by 9 .
II. Take any two Numbers whatfoever, either one of the two, or their Sum, or their Difference is divigble by $3:$ Thus, of the two Numbers 6 and s, 6 is divifible by 3 ; of 11 and 5 the Difference 6 is divifible by 3 ; of 7 and 5 the Jum 12 is divifible by 3 .
III. The Product ariling from the Multiplication of two Numbers, the Squares of which make a joint fquare Number, is divifible by 6 : Thus 12 the Product of 3 and 4 the Squares of which, viz. 9 and 16, make together the. Cquare Number 25 ; this 12 , I fay, is divifible by 6.

To find tweo Numbers, the Squares of wobich make together a Square Number, multiply any two Numbers, the one by the other, and the Double of the Product will be one of the two Numbers demanded, and the Difference of their Squares will be the orher. Thus in 2 and 3, the Double of their Product 12, and s the Difference of their Squares (4 and 9) are two Numbers of that Quality, that their Squares 144 and 25 make together the fquare Number 169 , the Root of which is 13. See Prob. 6 and 7.
IV. The Sum and the Difference of any two Numbers, the Squares of which differ by a fquare Number, are, each of 'em, either a fquare number or the half of gne: Thus, take the Numbers 6 and 10, their Squares 36 and 100 differ by the qquare Number 64 ; their Sum is 16 , and their Difference 4, each of which is a fquare Number: Then take 8 and 10 for the two Numbers, their Squares 64 and 100 , differ by the fquare Number 36 ; and the Sum 18, and the Difference 2, are the Halfs of the two Square Numbers 36 and 4°.

Mathematical and Pbyfical Recreations.

To finl two To find two Numbers, the Sum and Difference of which,

Numbers, the S im and Dff rence if whilh, are toth fyuare INumbers. are, each of 'em, a Square Number, In which Cafe, the Squares of thefe two Numbers will likewife differ by a iquare Number : pitch upon any two Numbers, as 2 and 3, the Product of cheir Multiplication is 6 , their Squares are 4 and 9 ; 13 the Sum of the two Squares, and 12 the Double of the Product of their Multiplications, are the Numbers we look for; for their Sum 25 , and their Difference 1 are both fquare Numbers; and further, their Squares 169 and 144 differ by the Square Number 25.

To fint two Numbers. tleS.m and Pifference of which, are eath the Half or Double of a Syuare.

To find two Numbers, the Sum aid Difference of which, are each of em the Half or the Duble of a Square Number, In which Cafe, their Squares will likewile differ by a quare Number ; Take any two Numbers, as 2 and 3, the Squares of which are 4 and 9 ; Fr_{3} the Sum of thefe two Squares, and 5 the Diffierence, are the two Numbers demanded for their Sum 18 and their Difference 8, are the Halfs of the two fquare Numbers 36 and $16 /$ and the Doubles of the two fquare Numbers 9 and 4 ; and far*her, their Squares 169 and 25 , differ by the iquare Number 144, the Root of which is 12.
How to $\mathrm{Kn}_{\mathrm{n}} \mathbf{w}$ thet a N mher is rot iquare.
V. Every fquareNuinber ends either with two Cyphers, or with one of the five Figures $1,4,5,6.9$, which terves for a Rule To diftinguifo mben a Number propis'd is not Square, viz. when it does not end as above; nay, if it does end with two Nougits, and thefe are not preceded by any of the foregoing 5 Figures, we may relt affured 'tis nor fquare.
How th Vl. Every fquare Fracion, that is, every Fraction that know that a has irs fquare Roor, is fuch, that the Product of the Mul-
Frictio is not iy iare. tiplication of the Numerator by the Denominator is fquare. Thus ave knows a Fraction is not fouare, when that does not happen. Take the Fraction $\frac{24}{3}$, we know it to be fquare, bicaufe ${ }_{17} 74$, the Product of 28 , multiplied by 63 , is 2 fquare Number having 42 for it's Roor; and fo the fquare Root of the propos'd Fraction is $4 \times$, retaining the fame Denominator; or $\frac{2 x}{+2}$, retaining the fame Numerator, for either of thefe is equivalent to $\stackrel{2}{3}$, for the fquare Koot of the propos'd Fracion $\frac{28}{5}$ or 4.
Whena fra- VII. Any cubical Fraction, i.e. any that has its Cubectiw ia cubi- Roor, is fuch, that if you multiply the Numerator by the Square of the Denominator, or the Denominator by the Square of the Numerator, the Product has its CubeRhoot; a!d 'tis by this Rule that tpe know when a Fraction
i_{s} a Cube Fration, fuch is $-\frac{24}{75}$ for 3375000 , and 216000 , the two Products of the two ways of Mulciplication jult mention'd, have 150 and 60 for their Cube Roots, and fo the Cube Root of the Fraction $\frac{24}{3} \frac{4}{5}$ is $\frac{1}{3} \frac{1}{5} \frac{0}{5}$ retainingthe fame D nominator, or $\frac{24}{8} \frac{4}{6}$ retaining the fame Nurnerator, for each of thefe Fractions is equal to $\frac{2}{5}$ as the Cube Root of the propos'd Fraction $\bar{z}^{\frac{2}{5} \frac{1}{7}}$.
VIII. Tho' 'tis not poffible to find rwo "Homogéne-' ous Powers, the Sum and difference of which, are each of 'em a power of the fame degree, that is, fquare Numbers if the two firt are Squares, and Cube-Numbers if they are Cubical. E'c. yet'tis porfible and very eafy to find tovo Tri $i-$ angular Numbers, the Sum and difference of which, are each of 'em a Triangular Number.

Thus 15 and 21 are two Triangular Numbers, the fides of which are 5 and 6 ; and their Sum 3,6 , and the difference 6, are likewile Triangular Nurr bers, having 8 and 3 for numbers, their fides. Again, 780 and 9 yo are Triangular Numbers, the fides of which are 39 and 44 ; and their Sum 1770 and the difference 210 are likewife Triangular Numbers, having 59 and 20 for their fides. Once more, 1747515 and 2185095 are Triangular Numbers, having 1869 and 2090 for their fides; and their Sum 3932610 and the difference 437580 are likewile Triangular Numbers, the fides of which are $2 \mathrm{SO}_{0}$ and 935 .

By a Triangular Number we underftand the Sum of the what we natural Numbers, $1,2,3,4,5,6$, beginning with Unir, and rifing to what Number you will, the laft and the greateft of which is call'd the fide. Thus we know that 10 is 2 Triangular Number, the fide of which is four, by reafon that 'tis equal to the Sum of the firft four natural Numbers, 1, 2,3,4, the lalt and greatelt of which is 4 . cail a Tri; ngular Number; which are Triangular Numbera.
 Namber,

- Iwas call'd Triangular, becaufe you may difpofe ro points in the form of an Equilateral Triangle, each fide of which contains 4, and hence 'rwas that 4 got the Name of the fide of the Triangular Number 10.

To know if a Number propos'd is Triangular, you mult T, know if a multiply it by 8 , and add 1 to the Product, for if the Number pro. Sum be Square, the propos'd Number is Triangular. posidis tio, Thus we know that 10 is Triangular, becaufe 81 (the Sum of irs Multiplication by 8, with the addition of 1) is a Square Number, having 9 for its Roor.
IX. The difference of two Homogeneous Powers, as of two Square-numbers, of two Cube-numbers, EJc. is divilible find that $2!$ the difference of the two Square-numbers 25 and 4 , the fides of which are ς and 2 , is divifible by 3 the difference of the Sides or Roors, the Quorient 7 being always equil to the Sum of the fame Sides or Roots; and that 117, the difference of the Cubes 125 and 8 , the K oors of which are 5 and 2 , is divifible by 3 the difference of the Roots, the Quotient! 39 being equal to the Prod, t of the faid Roots multiplied one into another, viz. $\mathbf{1 0}$, auc d to 29 the Sum of their Squares 25 and 4.
X. The difference of two Homogeneal Powers, the common Exponent of which is an even number, is divifble by the Sum of their Roots. Thus, 21 the difference of the two Square-numbers, 25 and 4 the Rooss of which are 5 and 2 , is divitible by 7 , the Sum of the faid Roots, the Quotient 3 being equal to the difference of the Roots; and 609 the difference of the Bi-quadrats 625 and 16 , the Koots of which are 5 and 2 , is divifible by 7 , the Sum of the Koots, the Quotient 87 being equal to the Product arifing from 3 :he difference of the Roots, multiplied with 29 the Sum of their Squares 25 and 4.
XI. The Sum of two Homogeneal Powers, the common Exponent of which is an odd number, is divifible by the Sum of their Roots. Thus we know that 133° the Sum of the two Cubes 125 and 8 , the Roors of which are 5 and 2 , is divifible by 7 the Sum of thele Roots, the (Quotient 19 being equal to the Excefs of the Sum of the Squares of the Roots (29) above the Product of the Roots (10) And that 3157 the Sum of the two Surfolids 3125 and 32, the Roots of which are 5 and 2 , is divifible by 7 the Sum of the Roois ; the Quotient 45 I being equal to the Exceff of 74 I the Sum of the Bi quadrat Powers of the Roors 5 and $2(625,16)$ and of the Square of the Product of the fame Roots (100 ,) its Excefs 1 fay above 290 the Product of the Sum of the Squares of the fame Roors(29) multiplied by 10 the Product of the Roors themfelves.
XII. All the powers of the natural Numbers I, 2, 3, 4, 5,6, Ec. have as many Differences as their Exponents contain Units, the laft Differences being always equal among themfelves in each Power, that is, the fecond Differences, or the Differences of the Differences, in the Squares $1,4,9,16,25,36$, $)^{\circ}$. for thefe fecond Differences make i, the fiflt being the uneven Numbers 3, $7,9,1$,

E3c. The third Differences, or the Differences of the Differences of the firtt Differences in the Cubes $1,8,27$, 64, $129,216, \mathcal{G} c$. for thefe third Differences make 6, the firtt being $7,19,37,61,91$, छc. and the fecond Differences, i. e. the Differences of thefe Differences being 12, 18,24.30. ઉc. which rife by 6 for the third Difference, and fo of the relt.

The fame thing happens to Polygon Numbers form'd by

Gnomen
add Prami: dial Num. the continual Action of Numbers in continual Arith-bert metical Progreffion, which are calld Gnomons, and of which the firft is alwaps an Unit, which is virtually any Polygon Number. The lame is the cafe with Pyramidal Numbers, which are form'd by the continual Addition of Polygon Numbers confider'd as Gnomons, the firtt of which is always Unit: And in like manner with the PyramidoPyramidal Numbers, which are produced by the continual Addition of Pyramidal Numbers, confider'd as Gnomons, the firtt of which is always Unity.

When the Guomons rife, or exceed one another by One, as 1, 2, 3, 4, 5, 6, E6c. the Polygon Numbers $1,3,6,10,15,31, \mathcal{E}^{\circ} c$. which are form'd from them are calld Triangular, the Property of which is fuch that each of 'em being multiplied by 8, and the Product inlarged by Unity, the Sum is a Square-pumber, as we intimated above. And farther, 9 the Sum of the fecond and the third, omitting the firtt, is a Square number, and 36 the Sum of the fifth and the fixth, omiting the fourth, is likewife Square, and fo on. .

Whes the Gnomons rife, or exceed one another by two Units, as the odd Numbers 1, $3,5,7,9,11$, EJc. the Polygon Numbers form'd from'em $1,4,9,16,25,36$, EGc. are Square-numbers; and when the Gnomons ingreafe by three Units, as $1,4,7,10,13,16, \mathcal{E}_{c}$. the Numbers form'd from 'em, $1,\{, 12,22,35,51$, E'c. are call'd Pentagons, and have this peculiar Quality that each of 'em being multiplied by 24, and 1 added to the Product, the Sm is a Square-number, by which Rule we know when a propos'd Number is Pentagon, and fo of the others.

To find tbe Sum of as many Triangular Numbers as you will, commencing from τ 'nist, of thele eight for Inftance, 1, 3, 6, 10, 15, $21,28,36$, multiply the given Number 8 by the next follower 9, and the Product 72 by the next after that 10 , and divide the fecond Product 720 by 6, the Uuotient gives you 120 the Sum demanded.
-438 The

The Sum of all thefe infinite Fractions $\frac{1}{2} \frac{1}{6}, \frac{1}{2}, \frac{1}{3},-\frac{1}{2}$ E'c. the common Numerator of which is I , and the De nominators of which are Triangular Numbers, their Sums: 1 lay, is juft I .

To find the Sum of as many Square.numbers from an $\tau_{\text {nia }}$ as you will, of the fe eight, for Example, 1, 4, 9, 16, 25, 36, 49. 64, take 36 the laft of as many Triangular Numbers viz. $1,3,6,10,15,21,28,36 x$ from 240 the double of this Sum 120 , and the remainder O_{4} is the Sum you want.
XIII. The Cubes, $1,8,27,64,125,216,80$. of the natural Numbers, 1, 2, 3, 4, 5, 6. E'c are fuch, that the firft I is a Square-number, the Ron of which I i the firt Triangular Number; the Sum of the rwo firit, I and 8 , $v_{1 z}$. 9 , is a Square-number, the Root of which 3 is the fecond Triangular Number; 36 the Sum of the rhree firft, I, 8, 27 , is a Square number, the Root of which 6 is the third Triangular Number, and fo on. And rherefore if ,)u want to find the Sum of any Number of Cuivick Num. ers from an Unit, of thefe fix for Example, 1, 8, 27,64, 25,216 , the Square of the fixth Triangular Number 21 44 I) is the Sum you defire.
XIV. Among who!e Numbers, there's only 2 that being added to its felf, makes as much as when multiplied by ies ielf, viz. 4, for all other Numbers make more by Multiplication than by Addition.

Tho' we can't find two whole Numbers, the Sum of Which is equal to the Product of their Multiplication, yet we can eafily find two fractional Numbers, and even in a ;iven Ratio, the Sum of which is equal to their Product, viz. by dividing the Sum of the two Terms of the given Ratio by each of the two Terms; thus, if you give 'em the Ratio of the two Numbers, 2,3 , divide their Sum 5 feparately by 2 and by 3 , and you'll have the two Numbers $2 \frac{1}{2}, r_{i}^{2}$, which make as much when added together, as when multiplied togerher, viz. $4 \frac{1}{5}$.
XV. Any Number is the half of the Sum of two othes equaily remore, the one in the way of defect, and the δ. ther in Excels. For Example, 6 is the half of 12, the Sum of the two Numbers equally :emote, 5 and 7 , or 4 and 8.
XVI. The Number 37 has this Property, that being multiplied by any of thele Numbers, 3, 6, 9, 12, 15, 18,21,24, 27, which are in continual Arithmetical

Progreffion, all the Products are compos'd of one Figure chrice repeated.

37	37	37	37	37	37	37	37	37
3	6	9	12	15	18	21	24	27
111	222	333	444	555	666	777	898	999

XVII. The two Numbers 5 and 6 are call'd Spherical, spherical becaule their Powers terminate in thefe very Numbers. Numbers The Powers of 5, viz. $25,125,625, \mathrm{E}_{\mathrm{c}} \mathrm{t}$ terminate in 5 , and in like manner the Powers of $6, v i z .36,216,1296$, Ejc. end with 6.

5 has that peculiar Quality, that when multiplied by an odd Number (as 7) its Product terminares in 5 (as 35 ,) and when multiplied by an even Number (as 8) its Pro-46l \ddagger duct ends in a Cypher, (as 40 .)

The other Number, 6 , has likewife this fingular Quality, whar we that 'tis the firt of the Numbers which we call perfed, as Number. being equal to the Sum of their Aliquot parts, for 6 is equal to the Jum of its Aliquor parts $1,2,3 ; 28$ is likewife a perfeat Number, in regard 'tis equal to the Sum of its Aliquot parts 1, 2, 4, 7, 14: And one may find an infinity of other perfect Numbers, as 496 , which is equal to the Sum of its Aliquot parts $1,2,4,8,16,3 x, 62$, 124, 248.

To find all the perfect Numbers in order, make ufe of the Powers of 2, viz. $2,4,8,16,32, \mathcal{G} c$. and fee which of thefe Powers, when an Unit is taken from them, makes a prime Number, and you'll find in $4,8,32, \mathcal{E}^{\prime} c$. that if you fubltract 1 from each of 'em, the Remainders 3, 7, 31, Ec. are prime Numbers, each of which ought to be multiplied by the half of the corref. ponding Power, that is, 3 by 2,7 by 4,31 by 16, Ejc. in order to obtain the perfect Numbers 6, 29, 496, EGc.

To find all the Aliquot Parts, or all the Divifors of a propos'd Number, of which an Unit is always one. If the Number be 8128 (for txample) which is likewife a perfect Number, divide it by the lealt Number that offers, viz. 2, which is eafily done, becaufe 8 I 28 is an even Number, fo the Quotient will be 4064 , which let down over againft 2

To find all the Aliquor Pasts of a Number.
for your fecond Divifor, which may fill be divided by the firf Divifor i, and fo its Square 4 may likewife be a Di vifor, which fet down under 2, over againft the fecons Quotient $i 032$ for another Divifor, which may ftill be dij vided by the firt Divifor i, and rherefore its Cube 8 wis likewife be a Divifor, which you are to write under the Square 4, and oppofite to the third Quotient 1016 for another Divifor: Thus you go on, till you come to the laft Divifor that can't be divided by 2, viz, the fixth Quotient 127, which being a prime Number, that is, a Number that can be divided by nothing but an Unit, gives us to know that we have traced all the Divifors of the Number propos'd 8128, and here yon fee the Sum of the Divifors is equal to the Number propos'd, and by confequence 'is 2 perfect Number.

By the fame Method did we

1	
i	1048064
4	524032
8	262016
16	131008
32	65504
64	32752
128	16376
256	8188
512	4094
1024	2047
2047	2094081

1	
2	4064
4	2052
8	1016
16	508
32	254
64	127
127	8001
	127
	8128

XVIII. The Number i20 is equal to the half of 240 , the Sum of its Aliquot parts $1,2,34,5,6,8,10,12$, 15, 20, 24, 30, 40, 60. The Number 672 is likewife equal to the half ofr 344 the Sum of its Aliquot parts, as will appear by obferving the Method above prefcrib'd, which we thall not now repeat. We may find a great many other Numbers that have the fame Quality; nay fome may be found to be the third, or oy other part of the

Sum of their Aliquor parts, which we thall not now infirt apon.
XIX. The two Numbers 220 and 284 are call'd Amia- Amiable ble, becaufe the firft 220 is equal to the Sum of the Ali- Numberb quot-parts of the latter, $1,2,4,71,142$; and reciprocally the latter' 284 is equal to the Sum of the Aliquor-parts of the former, $1,2.4,5,10,11,22,44,55,110$. Thele Aliquot-pars are eafily found by what we have faid before, efpecially if we confider that all Numbers that end in 5 or in o, are divififle by 5 .

To find all the Amiable Numbers in order, make ufe of the Number 2, which is of fuch 2 Quality, that if you take 1 from its Triple 6 , from its Sexturiple 12, from the OCtodecuple of its Square, 72, the remainders are the three prime Numbers 5,11 , and 7 x , of which 5 and 11 being multiplied together, and the Product s 5 being multiplied by 4 the double of the Number 2 , this fecond Product 22.0 will be the firt of the two Numbers we look for; and to find the other 284, we need only to multiply the third prime Number 71, by 4 , the fame double of $\mathbf{2}$, that we ufed before.

To find two other Amiable Numbers, inftead of 2 we make ufe of one of its powers that poffeffes the fame $\mathrm{Qua}-$ liver fuch as its Cube 8; for you fubitract an Unir from irs Triple 24. from its Sextuple 48, and from 1352 the Octodecuple of its Square 64, the Remainders are the three prime Numbers viz. 23, 47, 1151 , of which the two firt $23, \div 7$ ought to be maltiplied together, and their Product ro81 ought to be multiplied by 16 the double of the Cube 8. in order to have $\mathrm{I}_{\mathrm{I}} \mathbf{7 2 9 6}$ for the firft of the two Numbers demanded. And for the other Amiable Number, which is 18416 we muft maltiply the third prime Number 1151 by 16 the fame double of the Cube 8.

If you ftill want other amiable Numbers, inftead of $\boldsymbol{2}$, or its Cube 8, make ufe of its Square Cube 64 , for ir has the fame Quality, and will anfwer as above.

In regard, 'tis difficult to know whether a Number is prime if it be a large Number, we fhall at the end of this Prohlem Sabjoyn a Table of all the prime Numbers berween I and 10000.
XX. The Squares of the two Numbers 31, 34, viz. 961,1156 , are fuch, that the firlt 961 , with its Aliquor parts, $\mathrm{x}, 31$, makes 2 Sum (993) equal to $1,2,4,17,34$, $68,289,578$ the Aliquor parts of the fecond 1156.
XXI. The two Numbers 26, 20, make, each of em with their Aliquor parts the fame Sum; the firlt 26 with its Aliquot-parts 1, 2, 13, makes 42, and the fecond (20) with its Aliquot-parts $1,2,4,5,10$, makes likewile 42.

The fame is the cafe of 48 , and 464 , each of 'em with their Aliquor-parts making 9;0: of 11 and 6, each of 'em with their Aliquat-parts making 12 ; and in fine of 17 and 10, which with therr Aliquor-parts make 18 a piece.

Nay, we may find three Numbers, each of which with its Aliguot-parts makes the fame Sum, as 20, 26 and 4 r , as alfo 23 , 14, 15, and 46, 51.7 .

We may find rwo Square-numbers of the lame Quality, parricularly 16 and 25 the Squarer of 4 and 5 ; which are the loweft that can be, and by virtue of which we come at as manymore as we will of the fame Quality, viz. by multiplying them hy fone odd Square-number, that is not div fible by 5. For Example, if we multiply each of 'em by the Square-number 9 , we obtain two other Square-numbers $14+$ and 225 , each of which with its Aliquot-parts makis jult 403 .
XXII. 8 I the Square of 9 , with its Aliquot-parts 1 , 3, 9, 27, makes a Square-number (121) the Roon of which is 11.400 the Squate of 2 C , with its Aliquor-parts makes the Square of 31 (961)
XXIII. 666 the Sum of thefe three Triangular Numbers $15,21,630$, the fides of which are $5,6,35$, is likewile a Triangular Number, the fide of wheb is 36 . The fame is the cale of thele three Triangular Numbers 210, 780, 1711 , and likewife of thefe $666,2628,5886$.
XXIV. 49 the Square of 7 has this Uuality, that 8 the Sum of its Aliquor parts, 1, 7, is the Cube of 2, and 343 the Cube of the fame Number 7, does with its Aliquor parts, 1, 7, 49, make the Square-number 400 , the Koot of which is 20. I do not here pretend to direct you how to find out others of the fame (uality, for unlefs you light on them by chance, 'tis very dificule to trace 'em without Algebra, which 1 prupult not to mention in this Performance.
XXV. 9 the Square of 3 has this Quality, that 4 the Sum of its Aliquot-parts 1,3 , is the Square of 2. 2401 the Square of 49 has the fame Qality, for $4 c 0$ the Sum of its Aliquot-parts $1,7,49,345$ is the Square of 20 .

XXV1, The
XXVI. The two Numbers 99, 63, have this Quality, that (37) the Sum of the Aliquor-parts of the firt, $1,3,9,11,33$, furpaffes (41) the Sum of the Aliquotparts of the fecond, $1,3,7,9,2$ i, by the Square-number 16, the Roor of which is Four. The lame is the condition of 325 and i 15 ; for the Sum of the Aliquor parts of the firtt exceeds that of the Aliquor-parts of the other, by the Square-number 36.
XXVII. The Sum of Two-numbers that differ by Unity, is equal to the Difference of their Squares; and the Sum of the Squares of their Triangular-ntmbers is likewife a Jriangalar-number. Thus 5 and 6 make the Sumi 11 equal to the difference of their Squares 25,36 , and their Triangular-numbers 15, 21, are fuch, that 666 the Sum of their Squares, 225, 441, is likewife a TriangularNumber, the fide of which is 36 .
XXVIII. The two Triangular-numbers, 6; 10, of the Two-numbers, 3,4, the Differencelof which is likewife an Unity, have this Qnality, that their Sum 16, and their Difference 4, are Square-numbers, having 4 and 2 for Roots; and 136 the Sum of heir Squares (36,100) is a Triangular-number, the fide of which 16 is likewife a Square-number, the Root of which is at the fame time a Square number, having 2 for its fide or Root.

The fame is the Quality of the two orher Triangular Numbers, 36,47 , the fides of which, 8, 9 , differ only by Unity, for their Sum 81, and their Difference 9 , are Square-numbers, the Rooos of which are 9 and 3 , and 3321 the Sum of their Squares (1296,2025) is a Trian-gular-number, the fide of which is 8 I , and that has its Square Koor 9 , which again is the Square of 3 :

There are many other Triangular-numbers of this Quality, that may be found out by fubftracting and add ing any Square-number to its Square, the halves of the Remainder and of the Surm being the two TriarigularNumbers demanded. For Example, if you fubrract 8 the Square-number 16 from and add it to, irs Square 256 , balf the Remainder 240, and half the Sum 272j prefent us with 120 , and ${ }^{136}$, for the two Triangularnumbers thought for, the fides of which arej 15 , 16 , the difference conifinting fill in Unity:

Thefe two Triangularitrmumbers this found, liave thid farther Quality, that the greateft of their Sides is always a Sguare-number, and the Differetice of their Squares is Biquadrate, ¢qual to the Square of their Difference, and at the fame time to the fide of the Triangular-niumber that compofes the Sum of their Squares.
XXIX. The Difference of the Squares of two Nume bers in a duplicate Ratio, is equal to the Sum of their Cubes divided by the Sum of their Two-numbers, and that very Sum of their Cubes is the third of a Cube.

Accordingly, 4 and 8 being in a duplicate Ratio, the difference 48 of their Squares, 16,64 , is equal to the Quotient refulting from the Divifion of 576 (the Sum of their Cubes, 64, 512) by 12 the Sum of the Two-numb bers, and the very Sum of their Cubes 596 is the third part of the Cube 1728, the Root of which 12 is always equal to the Sum of the Two-numbers.

I hould never have done, if I pretended here to fetch in all the Properties of Numbers, which indeed are infinite, and upon that confideration I thall now conclude this Prublem with the Table of the Prime-numbers that I promis'd above.

Table of the Prime Numbers between i and I ooooo.

B

Mathematical and Pbyfical Recreations.

Table of the Prime Numbers between 1 and 10000.

			423						
						5347	569		
3221									
3251			4271						
53									
57									
		39	4297			54			
3299					5039	54			
						5			
		398	43			37			
3307									
3313									
		40							
3331									
3347		4027							
		4057							
		4079				5521			
		4091							
		4093				553			
		099							
			44						
		4127							
		129							
46		4133				5591			
3463 3467		41						23	
3467		4153					59	9	
		4157	4519					337	
49	3821	4159	4523	4919		54		343	
	3823	4177	4547	4931		5647		635	
	咗		5	2037		5651		53	
351	38	4201	4561	4937		5			
3517		4211	4567	4943		56.57			6763
3527		4217							
352									

Table of the Prime Numbers between I and 10000:

	7109	7477	772						
	7121	748!	7741		842				
	7127		7753						
23	712	7489	7757		8443				
27	7151	7499							
6829	7159			$8{ }^{12}{ }^{1}$		8783			
6833	7177		7793	8:	8467				
${ }_{41}$	7187								
57	7193								
6863		$\begin{aligned} & 7523 \\ & 7529 \end{aligned}$							
71	7207	75		91	52				
83	72				537				
6899	72								
6911	7237	756							
6917	7243	7573			58				
6947	7247								
	72	7589		8243	859	888		33	
	7297	7591							
					62		9241		
			7933					87	
	73			82					
	73								
97	7333	76	7963				9293		
	73		7993						
7013			8009	8317	8681	8999			
7019	7393	7681					9323		
7027		7687	8						\%
7043	411	7699	80	8369					997
	417	7699							
69	7433			838					
79									

PROBLEM VI,

Of Right Angled Triangles in Numbers.

BY a Rectangular Triangle in Numbers, we mean three unequal Numbers, the greateft of which is fuch that its Square is equal to the Square of the other two, Such are 3, 4, 5, for 25 the Square of 5 the greareft, which we call the Hypotbenufe, is equal to the Sum of 9 and 16, the Squares of the cther Two numbers, 3, 4, which we call the Sides, taking one for the Bafe of the Righr-Angled-Triangle, and the other for the Altitade. or Height. Half the Product of the Bafe and the Altitude, is call'd the Area, and is always divifible by 3. The Reader will obferve all along that by the Product of Two-numbers, we underftand the Number arifing from their mutual Multiplication.

There's an infinite number of Right-Angled Triangles, of divers forts, both in whole and in broken or Fractionalnumbers, bur we generally conceive them in integers, among which the firlt and the leaft of all is that now mention'd, 3, 4, 5, which has an infinity of fine Properties, but 'twould be tedious to enumerate 'em, and therefore I thall content my felf with obferving, that the Sum (216) of the Cubes $(27 ; 64,125)$ of the rwo fides, 3,5 , and of the Hyfotbenufe (s) is a Cube, the Root or Side of which (6) is equal to its Area.

To find in Numbers as many Rigbt-Angled Triangles as you moll: Take any Two rumbers, for Example 2 and 3, which we call Generating. Numbers, multiply 'em the one by the other, and (1,) the double of their Product (6) is the fide of a Right-lined-Triangle, the other fide being equal to (5) the difference of the Squares (4,9) of the Generating numbers, 2, 3, and the Hypothenufe being equal to (13) the Sum of the fame Squares, 4.9. And thus you have this Righr-Angled-Triangle $5,12,13$, for 169, the Square of the Hypotben"Se 13, is equal to the Sum of 25,'144, the Squares of the two Sides 5, 12 .

The firft Right-Angled-Triangle, having 1, 2, for its Generating numbers is fuch, that the difference of the two Sides 3,4, is 1 ; and if you want to find anotber of the farse Ruality, take ? the greateft of thele Generating-

Numbers

Numbers for the leaft of the Two in the Triangle demanded; and in order to find the greateft for this lecond Triangle, add 1 the leaft of the firft to 4 the double of the greateft of the firft; and fo you have s for your greatelt Generating-number of the fecond Right-angled Triangle, which confequently is $20,21,29$, where the difference of the two Sides 20,21 , is again r .

If you defire a third Right-angled-triangle of the fame Quality, make ufe of the laft $20,21,29$, after the fame manner as you did the firf, taking its greateft Generating Number for the leaft of the Third, and adding its lealt to the double of the greateft, for the greatelt of this your Third Triangle; and fo oblerving the fame Method you may find a fourth, fifth, EOc. as appears by this Table.

	Sides		Hypoth	Generat-numb.
3	4	5	1	2
20	21	29	2	5
119	120	169	5	12
696	697	1025	12	29
4059	4060	5741	29	70
23660	23661	33461	70.169.	

The firt Right-angled-triangle 3, 4, 5, has likewife this Quality, that the Excefs of the Hypothenufe s above the Side 4; is alfo I, for as much as the difference of the two Generating-numbers is 1 , and for this reafon you may find an infinite number of other Rigbt-angled-triangles of this Quality, if for their Generating-numbers you take two that differ only by Unity, as you fee in this Table.

Bafes	Altitude.	Hypoth.	Generat-numb	
3	4	5	1	2
5	12	13	2	3
7	24	25	3	4
9	40	41	4	5
11	60	61	5	6
14	84	85	6	7

Here you fee the firft Differences of the Bales, 3, ;, 7, 9 , Ojc. are equal, and the fecond Differences of the Altitudes, $4 ; 12,24,40, \mathcal{E}^{3}$ c. are likewife equal; and the fame is the cafe of the Hypothenufes, $5,13,25, E^{3} c$. Sem tbe Squares of thefe odd Numbers, only take the Altitudes and Hypothenufes for the Generating-numbers of the Triangles you propofe, which by coniequence will run thus

Bales	Heighrs	Hypoth.	Gen.pumb.
9	40	41	4 S
25	312	313	$12 \quad 13$
49	1200	1201	$24 \quad 25$
81	3280	3281	4041
121	7320	7321	60.61
169.	14280.	14281.	84. 85.

If inftead of one fide you would have the Hypotbenufe to be the Square-number, then your Generating numbers muft be the Sides of a Right-angled-triangle, as in the following Scheme, where you fee the Hypothenufe is the Square of the greareft Generating-number, with the addition of r .

.	Sides		Hypoth
7	24	Gen. numb.	
119	120	169	3
336	527	625	5
720	1519	1681	7.
1320	3479	3721	11
2184	6887	7225	13

The Right-angled Triangle, 21, 28, 35, has this Quality, that the two Sides 21, 28, are Triangular-mumbers, the Siss of which, 6 and 7 , differ only by Unity, and the Square (1225) of the Hypothenule (35) is likewife 2 Triangular-number, the Side of which is 49 .
The fame is the Quality of the Triangle 820, 86r, 1189, as alfo of the Triangle '28413, 28680, 40391. and of orhers.
The following Right angled Triangles, which may be continued in Infinitum, are fuch that their Bales and Hyporhenufes are Triangular-numbers, and their Heighths Cubick-numbers.

Bafés	Heighths	Hypoth.	Gen.numb.	
6	8	10	1	3
36	27	45	3	6
120	64	136	6	10
300	125	335	10	15
630	216	666	15	25
1176	343	1225	21	28

You may find as many fucb Triangles as you toill, by adding and fubtracting a Square-number from its Square, for in the addition half the Sum is the Hyporhenufe, and in fuberacting half the Remainder is the Bafe, the Heigbth being equal to the Cube of the Root of the firft Squarenumber: or, which is the fame thing, by taking for the Generating-numbers the Triangular-numbers in order, as you fee in the Scheme before us, where the leatt Gene-rating-numbers of one Right Angled Triangle is the greateft of the preceding Triangle.

PROBLEM VII.

Of Aritbmutical Progreffion.

BY Arithmetical Progreffion, we mean a Series of Quantities call'd Terms, that rife continually by an equal Exceff, as $1,3,5,7,9,15$, छ ©. where the Excels is 2 ; or $1,4,7,10,13,16, \mathcal{E}^{3}$. where the Excefs is 3 ; or 2,6, 10, $14,18,22$, E'c. where they rife by 4 at a time. And fo of the reft.

The principal Property of Arithmetical Progreflion, is this. Take three continual Terms, as $6,10,14$, the Sum (20) of the two Extremes (6,14) is equal to the doube of the Middle-term (ro.) Take four continual Terms, as 6,$10 ; 14,18$, the Sum (24) of the two Extremes $(6,18)$ is equal to that of the two Middle-terms, (10, 34.) In fine, in a larger Number of continual Terms, fix for Inflance, as 2, $6,10,14,18,22$, the Sum (24) of the two Extremes (2,22) is equal to that of any two Terms that lie at an equal dittance from them, as 6,18 , and 10, 14. From whence 'tis eafie to conclude, that when a multitude of Progreffive Terms
is an odd Number, the Sum of the Extremes, or of thofe equally remore, is the double of the Middle-term, as in thefe five Terms, 2, 6, 10, 14, 18; for the Sum (20) of the Extremes 2, 10, 18, or of the two equally remote, 6 , 14. is the double of he Middie-term, 10.

You may readily find fuch Numbers as have this Quality, that the fum of their Squares makes a Square-numaber, or, which is the fame thing, the Sides of a Right-angled Triangle in Nambers; and that by vertue of this double Arithmetical Progreffion, $1 \frac{1}{2}, 2 \frac{2}{3}, 3^{\frac{3}{2}, 4^{4}, G^{2} c \text {. where }}$ the Excels is 2 in Fractions, and is in Whole-numbers, for if you reduce the Integer with its Fraction to a Fraction only, as $1 \frac{1}{2}$ to $\frac{4}{5}$, the Numerator 4 and the Denominator 3 will be the Sides of the Right-angled Triangle 3, 4, 5 ; and in like manner if you reduce $2 \frac{3}{3}$ to $\%$ (which is done by multiplying the Whole-number 2 by the Denominator 5, and adding to the Product to the Numerator 2) the Denominator 5 and the Numerator 12 , will be the Sides of the Right-angled Triangle 5, 12, 13. And fo of the reft. Here you may fee any odd Number may be one of the Sides of a Righr angled Triangle in Whole-numbers.

Intead of the double Arithmetical Progreffion, you
 the Excefs is 4 in Fractions, and 1 in Whole-numbers, for if you reduce 1 if to ' $£$, the Denominator 8 , and the Numerator 15, will be two Sides of the Right-angled Triangle 8, 15,17 ; and in like manner if you reduce $2 \frac{12}{1 \frac{1}{2}}$ to $\frac{3}{2} \frac{3}{3}$, the Denominator 12, and the Numerator 35, will be two Sides of another Triangle 12; 35, 37. And fo on. Here you fee any odd Number may be one of the Sides of a . Right-Angled Triangle in Whole-numbers
\downarrow In an Arithmetical Progreffion, the Sum of the Terms is equat to the Sum of the two Extremes, multiplied by half the number of all the Terms. And for this Reafon, in order to find tbe Sum of any number of Terms in Aritbmetical Progreffion, for Example, the Sum of thefe eight, 3, $5,7,9,11,13,15,17$, you muit multiply the Surn (20) of the two Extremes $(3,17)$ by the number of the multirude of the Terms (8) for then half the Product (80 the half of 160) is the Sum you inquire for.
If on the other hand you know the Sum of the Terms, the firt Term it felf, and the number or multitude of the Terms, you may find out what the Terms are,', by tracing the Excefs in this manner. Suppofe the given Sum of the

Terms to be 80, the Number of ${ }^{\circ} \mathrm{em} 8$, and the firft Term given 3, divide (160) the double of the Sum given (80) by the Number given (8) then iubrrast from 20 the Quotiens, 6 the double of the firft Term given 3, a nd at latt divide the remainder i4 by the given Number wanting 1, that is 7 , and the Quotient 2 is the Excels you look for, which added to the firf Term gives you s for the feeond, and added to the fecond 7 for the third and fo on.

If the Sum of the Terms, their Number, and the Excefs be given, we find out the firt Term, and by confequence all the reft after the manner of the third Queftion enfuing.

Queftion I. A Gentleman barg ains with a Bricklayer to bave a Well funk upon tbefe Terms; be's to allow bim three Livres for the firt Toife (a Toife is 6 Foot) of depth, s for the fecond, freen for the tbird, and $f 0$ on, rifing two Lieres every Toife till the Well is twenty Toifes deep: OHery, bows much will be due to the Bricklayer, when be bas dig'd twenty Toifes deep?

To refolve this Queftion, multiply the 2 Livres Augmen-tation-Mony at every Toile, by the number of the Toifes, bating 1 , that is by 19 , to the Product 38 add 6 the double of 3 the number of Livres. promis'd for the firt Toile, then multiply the Sum 44 by half the number of all the Toifes, viz. 10, and the Product hews you 444 Livres due to the Bricklayer for finking the Well 20 Toifes deep.

Queft. II. 1 Gentleman travelld s oo Leagues in eigbe. Days, and every Day travell'd equally fartber than the preceding Day. Nows it being diffover'd that the firft Day be travellf dtwo Leagues, the 品efion is boto many Leagues be travell'd on each of the otber Days.

To refolve this Queftion, divide 200 the double of the Leagues given 100 , by 8 the number of Days given, and from the Quotient 15 , fubrract 4, the double of 2 the given number of Leagues that he travell'd the firf Day. Divide the Remainder 21 by 7, the given number of Days wanting one ; and the Qiotient 3 flews that he travell'd every Day three Leagues more than the Day before, from whence 'tis eafy to conclude, that fince he travell'd 2 Leagues the firt Day, he travell'd s the fecond, 8 the third, and fo on.

Queft. III. A Traveller went 100 Leagues in 8 Days, and every Day, tbree Leagues more than the preceding Day. 'Tis ask'd bow many Leagues be travell'd a Day ?

Divide 200 the double of the Leagues given 100, by 8 the number of Days given, and from the Quotient 25 fubtract 21, the Product of 3 the number of the daily increafe multiplied by 7 the given number of Days bating one. The Remainder being 4 half it , and that Thews you he travel'd 2 Leagues the firtt Day; from whence' 'tis eafy to gather that he travell'd s the fecond, 8 the third, and fo on.

Queft. IV. A Robber being purfued travell'd 8 Leagues a Day; an Archer, wbo was the purfuer, made but 3 Leagues the firft Day, s tbe Second 7 the third, and fo on increafing 2 Leaguesevery Day. The Queftion is in bow many Days the Arcber will come up witb the Robber, and bow many Leagues they will bave travel'd?

To refolve this and fuch like Queftions, add 2 the namber of the daily increafe of Leagues, by the Archer, to 16 the double of 8 the number of Leagues made every Day by tie Robber: From the Sum 18 fubtract 6 the duplicate of 3 the number of Leagues thar the Archer travel'd the firt Day. The Remainder 12, divide by 2 the numsber of the Archer's daily increafe; and the Quotient 6 will thew yon, that the Archer will come up with the Robber at the end of fix Days, and confequently both of 'em muft by that time have travel'd 4^{8} Leagues, for fix times 8 is $\mathbf{4 8}^{8}$, and the fame is the Sum of thefe fix Terms of Arithmetical Progreffion, 3, 5, 7, 9, 11, 13 .
Queft. V. W'll fuppofe, 'tis' 100 Leagues from Paris to Lions, and that two Couriers fet out at the fame time, and took the Jame Road; one to go from Paris to Lions, makng every Day 2 Leagues more than the Day before, and the other from Lions to Paris travelling every Day 3 Leagwes fartber than tle preceding Day; And that they met exatily balf tyyy, the firft at the end of 5 Days, and the otber at the end of fur Days. $Q \mu \cdot r y$, bow many Leagues th: \int e troo Couriers travell'd each Day?

To find how many Leagues the Courier travel'd every Day that was s Days upon the Road before he met the other; fubtract 5 the number of Days from 25 the Square of ir, and having mu!tiplied the Remainder 20 by 2 the number of the daily increafe of Leagues for this Couricr; fubtract the Product 40 from 100 , the number of Leagues between Paris and Lirns; and divide the Remainder 60 by 10 the double of s the number of Days; and the Quatient 6 will hew you, that the Courier travel'd
vel'd 6 Leagues the firt Day, and confequently 8 the fe- . cond, 10 the third, 12 the fourth, and 14 the fifth.

In like manner with reference to the orher Courier, that arriv'd half way in 4 Days, fubrract 4 the number of Days from 16 its own Square, and having multiplied the Remainder 12 by 3 the number of his daily increafe of Leagues, fubtract the Product 36 from 100, the diffance of Leagues from Paris to Lions; and divide the Remainder 64 by 8 the double of 4 the number of Days, and the Quotient 8 will hew you that this Courier travel'd 8 Leagues the firft Day, and confequently 11 the fecond, 14 the third, and 17 the fourth.
Queft. VI. There's a bundred Apples and one Basket, ranged in a frait Line at the diftance of a Pace one from anotber; the Queftion is, how many Paces muft be walk tbat, pretends to gatber the Apples one aftor anotber, and So put 'em into tbewBasket, wbich is not to be mov'd from its place?
'Tis certain, that for the firft Apple he muft pake 2 Paces, one to go and another to return; for the fecond 4; two to go, and two to return; for the third 6, three to go, and 10 on in this Arithmetical Progreffion, $2,4,6,8$, 10, छc. of which the laft and greareft Term will be 200, that is, double the number of Apples. Ta 200 the laft Term, add 2 the firft Term, and multiply the Sum 202 by 50 , which is half the number of Apples, or the number of the multitude of the Terms; and the Product 10100 will be the Sum of all the Terms, to the number of Paces demanded.

PROBLEM VIII.

Of Geometrical Progrefion. $3<$

BY Geometrical Progreffion we underftand a' Series of feveral Quantities that grow or rile continually thro the multiplication of one and the fame Number, as 3, 6 , 12, 24, 48, 96, छc. where each Term is the doubte of the precedent Term; or, as 2, 6, 18, 54, 162, 486, छic. where each Term is the rriple of its Antecedent. And fo of others.

The principal Property of Geometrical Progreffion, is, that in three Terms continually proportional, as 3, 6. 12, the
the Product 36 of the two Extremes, 3, 12 , is equal to the Square of the middle Term 6: And that in four Terms in con!inual Proportion, as 3, 6, 12, 24, the Product 72 of the two Extremes 3, 24, is the fame with the Product of the two means, 6, 12 : And in fine, That in a greater number of Terms in continual proportion, as in thefe fix, 3,6,12,24, 48, 96, the Product 288 of the two Extremes 3, 96 , is the lame with that of 22, 24, two equally remore from it. From hence 'ris eafy to conclude that when the number of the Terms is odd, this Product is equal to the Square of the Mean, as in thefe five Teims, 3, 6, 12, 24, 48 ; for 144 the Prom duct of the two Extremes 3.48 , or of the two equally remore, 6, 24, is the Square of the Mean 12.

Thus you fee that whit Arithmetical Progreffion has by Addıtion. Geometrical Progrerion has it by Multiplication: But there's another confiderable difference between thele two Progretfions, confilting in this; that in Arithtictical Progreffion the Differences of the Terms are equal, and in Geometrical Progreffion they are always unequal, and keep up among themfelves the fame Geometrical Progreff n, by continuing in infinitum, the Differences of Differences, without ever coming to equal Differences. Accordingly we fee in this Geometrical Progreffions $2,6,18,54,162,486$, the Differences of the Terms make jutt fuch another Geo.netrical Progreffion, 4, 12, 36, 108, 324 ; and in this laft Progrelfion the Differences of the Terms make again the like Geometrical Progreflion, 8, 24, 72, 216, and fo on.

In three Proportional. Terms, fuch as 2, 6, 18, the Cube 2,6 of the Mean 6, is equal to the folid Product of the three Terms multiphed rogether: And in four Numbers in conrinued proportion, fuch as 2,6, r8, 54, the Cube 216 of the fecond 6, is equal to the folid Product arifing from the Multiplication of 54 the fourth Term, by the Square of t ne firt 2 ; and in like manner 5832 the Cube of the third Term 18, is equal to the folid Product of the firlt Term 2 multiplied by 2916 the Square of the fourth 54.

From whar has been laid 'ris ealy to find a Geomerrical Mean proportional beexpeen two Numbers given, by multiplying the one Nunber by the otber, and extractig the Iquare Root for the Mean proportional: And 'tis equally eafy to find two Means in continued Gometrical Proporions to two Numbers given, as 2 and $s t$; by multiplying the laft

Artitmetical Problems.

laft 54 by the Square of the firt, and extracting the Cube Roor (6) of the Product (216) for the firlt Mean proportional, which multiplied by the fecond Number 54, makes 324, and 18 the Square Roor of that Pro-. duct is the fecond Mean proportional.

But to find an Aritbmetical Mean Proportional to tees Numbers given, take half the Sum of the two Numbers for the Niean required; as in 2,8 given, 5 the half of 10 is the Mean: And to find tato Aritbmetical Means in continued Proportion as between 2 and 11, we fubtract the leaft Number 2 . from the greateft 11 , and add 3 a third part of the. Remainder 9 , to the leaft Number 2, which gives us 5 for the firf Mean; as the addition of 6 , the double of that third part, to the lame leaft Number 2% does 8for the lecond. Or, if you will, you may add 4, the doable of the lealt 2 , to 11 the greateft, and reciprocally 22 , the double of 1 I the greateft, to 2 the leaft, and the thirds of the two Sums make 5 and 8 for the two Means demanded.
'Tis evident that all the Powers of the fame Number, as 2, rifing in order, make a Geometrical Progreffion, fuch as this, where you fee the Exponents of the Powets

(1) (2)		(4)					8)
2; 4,	89	16,	32,	64,	128,		56, 区゙e
1		1					1 !
5		17.	\cdots				57

(1) (2)(4)(8) are the Terms of a Geometrical Pro: portion, viz. 2, $4,16,256, \mathcal{E}^{3}$. and all the Powers are fuch that if you add an Unit to each of 'em, the Sums 32 $5,17,257, E_{3}$ c. are prime Numbers: And fo 'tis, eafy to find a prime Number greater than any Nmuber given.

If you continue a Geometrical Progreffion upon the decreafe in infinitum, as $6,2, \frac{2}{3}, \frac{2}{3}, \frac{2}{27}, \mathcal{E}^{\mathcal{G}}$ c. the Difference 4 of the two firit Terms 6 and 2 is to the firft 6, as the fame Number 6 is to the Sum of all the infinite Terms. And therefore, tofind the Sum of all the infinite Terms of a decreafing Geometrical Proportion, as that above, you mult divide 36 the Square of the firft Term 6, by 4 the Difference of the two firft Terms, and the Quorient 9 is the Sum you want. If you take from this Quotient, 8 the Sum of the two firft Terms 6 and 2, the remainder I is the Sum of the infinite Fractions continually proportional, $\frac{2}{3}, \frac{2}{3}, \frac{2}{27}, \mathcal{E}^{3} c$. And by the fame means we are taught that the Sum of orher infinite Fractions in concinued gives the Solution of the following Queftion: But before I propofe it, I muit a cquaint you, that,

When we Ipeak of Quantities in Proportion, without fpecifying, we always mean Geometrical Proportion. Here I muft oblerve by the by, that taking an Unit for Numerator, and the narural Numbers, 1, 2, 3, 4, 5 , Éc. for Denominators, if you make the following Series of Fractions, $\frac{1}{2} \frac{1}{2} \frac{1}{4} \frac{1}{5}$, $\mathcal{E}^{2} c$. which ftill decreafe, thefe three taken confecutively from three to three at pleafure, will be in Harmonick Proportion ; that is, the firft of the three will be to the third, as the difference of the two firft is to the difference of the two laft; as will better appear by reducing thefe Fractions to the fame Denomination, or to Integers, by multiplying them by the Number 60, which is divifible by all the Denominators 2, 3, 4, 5, for inftead of the five Fractions you have the five Whole-numbers, $60,30,20,15,12 ;$ of which the three firf 60, 30,20 , are fairly in Harmonick Proportion, for the firft 60 is to the third 20 which is its third part, as 30 the difference of the two firft is to 10 the difference of the two laft, which is likewife the third part of 30 . By the fame confideration you will perceive that thele three, 30,20, 15 are in Harmonick Proportionas wellas the other three $20,15,12$.

Queftion, A great Sbip purfues a little one, fteering the fame may, at the diffance of four Leagues from it, and fails twice as faft as the fmall Sbip. 'Tis ask'd bow far the great Sbip muft fail before it owertakesabe leffer.

The diftance of the two Ships being 4, and their Celerities being in a double Ratio, continue in infinitum, the double Geomerrical Progreffion, 4, ${ }^{2}, 1, \frac{1}{2} \frac{1}{4} \frac{1}{8}$, \boldsymbol{E}^{3}. the firlt and the greatelt Term of which is 4 ; and find the Sum of all the infinite Terms, by dividing 16 the Square of the firlt 4 , by 2 the difference of the two firf, and the Quotient 8 directs that the great Ship muft make δ Leagues before the can come up withthe other.

PROBLEM IX.

Of Magical Squares.

BY a Magical Square we underftand a Square divided into leveral other fmall equal Squa-es, filld with Terms of an Arithmetical Pregrefion, fo tranfpos'd, that all of the fane Lise or Rüiv, whether longirudinal, tranfver!e, or diagonal; make the lame Jum.

This is the Square here annext, divided into 25 little Boxes or Squares, in which the firit 25 natural Numbers are fo tranfpos'd, that the Sum of each Rank from above downward, or from the right to the left, or along the Diagonals or Diameters of the Squares, is every way

11	24	7	20	3
4	12	25	8	16
17	5	13	21	9
10	18	1	14	22
23	6	19	2	15

in all an odd fquare Number, that is, it contains an odd fquare Number of Places, viz. 25. and is equal to the Product arifing from 5, he koor of the fquare Number 25 ; multiply'd by 13 the middie Term of the Arithmetical Progreffion, $1,2,3: 4, \mathcal{E} c$.

This Surn is likewife found, by difpofing the given Terms of the Arithmetical Progretion, according to their natural Series 1, 2, 3. 4 E̋c. in the quare places, as you lee here; for then the Sum of each diagonal Rank, that s, the Kank extending from one corner of the Square to the other, s the Sum demanded. This will likewife hold

In order to difpofe magically in the Boxes of an odd Square: For Inftance, that of 25 Boxes, having 5 for its Side; to difpofe, I fay, as many given Number, in Arithmetical Progreflion, as, $1,2,3,4,5$, and fo on till you come to the laft, and greatelt 25 Write the firft and the leaft immediately under the middle Box, or that which poffeffes the Center of tho Square ; and moving Diagonal-wife to the Right, write the fecond Term 2 in the adjacent Box, the lowermoft of the next Right.Hand Rank. Here proceed. ing in the courfe of the Diagonal from Left to Right you find no place for Number 3, and fo are to place it in the oppofite or uppermof Box of the Rank into which it fhould have fallen. In like manner, finding no place for 4, you are to place it in the oppofite Box of the Rank that it falls to on the outfide.

11	24	7	20	3
4	12	25	8	16
17	5	13	21	9
10	18	1	14	22
23	6	19	2	15

Thus you continue proceeding ftill diagonal-wife to the right; but in regard 6 falls to a place that's already filld with I, you mult there take a retrograde diagonal-Courld from the right to the left, and write 6 in the lowermof ftation of the Rank in which the foregoing Term 5 wal plac'd, and fo there will remain an empty place betweed 5 and 6. This retrograde Courfe mult always be obferv'd when you fall in with a Sration already poffefs'd. Con tinue to place the reft in order, according to thefe Rules cill you come to the Angle of the Square, where in the Example ftands 15: Then forafmuch as you can no lond ger move diagonalwife to the right, you mult place tho Tera Rank; this done, the reft may be placed as the former, without any Difficulcy.

There are feveral Magical Difpofitions both for odd and even Squares; but thefe being difficult to underftand, we reckon them improper for Matbematical Recreations.

This Square was call'd Magical, from its being in great Veneration among the Egyptians, and the Pythagoreans their Difciples, who, to add more Efficacy and Virtue to this Square, dedicated it to the Seven Planets divers ways, and engrav'd it upon a Plate of the Metal that fympathiz'd with the Planer. The Square thus dedicated, was inclos'd with a regular Polygon, infrrib'd in a Circle divided into ras many equal Parts as there were Units in the fide of the Square; with the Names of the Angels of the Planet, and the Signs of the Zodiack written upon the void Spaces between the Polygon and the Circumference of the Circle circumfcrib'd. Through vain Superftition they believed that fuch a Medal or Talilman would befriend the Perfon that carried it about him upon occafion:

They atributed to Saturn the Square of 9 Places or Boxes, 3 being the fide, and 15 the Sum of Numbers in each Row or Column; to Jupiter the Square of 16 places, 4 being the fide, and 34 the Sum of the Numbers in each Row; to Mars the Square with 25, 5 being the fide, and 65 she Sum of Numbers in each Rank; to the Sun the Square with 36, 6 being the Side, and 11 I the Sum of each Row; to Venus that of 49, 7 being the Side, and 175 the Sum of Numbers in each Rank or Column; to Mercury that of 64, 8 being the Side, and 260 the Sum of each Column; to the Moon the Square with $8 \mathbf{r}$ lodges, having 9 for its Side, and 369 for the Sum of each Column.

In fine, they attribured to imperfect Matter, the Square with 4 Divifions, having 2 for the Side ; and to God the Square of only I Lodge, the Side of which is an Unir, which multiplied by it felf, undergoes no Change. By virtue of this Problem, we are taught to refolve the following Quettion.

Quettion, To drate up in three Ranks the Nine firft Cards; from an Ace to a Nine, in fuch a manner that all the Points of each Rank, taken eitber length-wife or breadsb: wife, or diagonat mifg, may make the fame Sum.

C 2 Difpofe

Difpofe the Nine firf natural

8	256	2
4	16	64
128	1	32

Intead of an Arithmetical Progreffion, you may take a Geometrical; for initance, this double Progreflion, $1,2,4,8,16,32,641$ 128, 256, E'c. and placing them Magically, as above, you'll find the Product of each Rank will be equal, viz.4096. which is juft the Cube of the Middle Term 16.

Here we mall add by the by, one Square more of 9 Stations, in which the Numbers of each Rank taken any way, as above, are in -harmonical Propurticn; and you may find as many other Numbers of the fame quality, as you wil!, if intlead of the forcsing Numbers you put letters, as you fee it done underneath, where the literal Magnitudes of each Rank are Harmonically proportional; and fo by giving different Value to the three underermin'd Letters a, b, c, you'll have, inflead of literal Quantities, Numbers that will always preferve an Hamonick Proportion in each Kank.

PROBL.

Arithmetical Problems.

846
$2,-637$

PROBLEM X.

BY an Arithmetical Triangle we mean the half of 2 Square, like a Magical Square, divided into several fall and equal Stations or Points, which contain the Natural Numbers $1,2,3,4, \mathcal{E}^{c}$. the Triangular Nombert $1,3,6,10$, \mathcal{E}^{c}. which are form'd by the continual addition of the foregoing Numbers ; the Pyramidal Numbers i, $4,10,20, \mathcal{E}^{\circ}$. form'd by the continual addition of the Triangular ; the Pyramido-Pyramidals $\mathbf{1}, 5$, 15,35 , \mathcal{E}^{2}. formed by the continual addition of the Pyremidal; and fo on, as you fee in the following Cut.

C 5
Among

Mathematical and Pbyfical Recreations.

Among the different Ules of the Arithmetical Triangle, I fhall only fingle out thofe relating to Combinations, Permutations, and the Rules of Game; the reft being too fpeculative for Mathematical Recreations.

By Combinations we underftand all the different Choices tbat can be made of feveral things, the Multitude of which is known, by takiog them divers ways, one by one, two and two, three and three, छ'c. without ever taking the fame twice.
of cumb:na. For Example, If you have four things exprefs'd by rame. thefe four Letters, $a, b, c, d ;$ all the different ways of joyning two of them, as $a b, a c, a d, b c, b d, c d$; or three of them, as abc, abd, acd, bcd; thefe, I fay, are call'd Combinations. And from hence 'tis cafie to apprehend, that when Four things are propos'd; you may take' 'em one by one four ways; two and two fix ways; three and three four ways; and by fours only one way; fo that I in 4 combines four times; 2 fix times; 3 four times; and 4 only once.

To find in a greater number of different things, fuch as Seven; the divers Combinations that may be made by taking them divers ways, whether by Addition or Multiplication ; as, if you would know all the poffible C.junctions of the Seven Planets, taking them two by two; that is to fay, if you would know how often 2 combines in 7 ; add an Unit to each of the two Numbers given, 2, 7, and fo you have 3,8 , which gives us to know, that in the third Station (reck'ning from below upwards, or from above downwards) of the eighrh Diagonal of the Arithmetical Triangle, you'll have the Number of Combinations demanded, viz. 2 I.

Or elfe, the two Numbers given being' 2 and 7 , add together all the Numbers of the fecond Rank, till you come at the feventh Diagonal, viz $1,2,3,4,5,6$, and the Sum 21 is what you want.

When the Number of things propoied goes beyond 9 , the Triangle here delineated can't ferve you ; and therefore we thall give this General Rule for any Number whatfoever.

The two Numbers given being 2 and 7 , to know how often 2 the leaft will combine in 7 the greateft ; make of thein thefe two Arithmetical Progreffions 2,1 , and 7,6 , which decreafe by an. Unit, and ought to have but two Terms, that is, as many as the leaft Number 2 has Units.

Then

Then multiply together all the Terms of each Progreffion, that is, 7 by 6 , and 2 by 1 ; and divide the firt Product 42 by the fecond 2, and the Quotient 21 fatisfies the Demand.

By this, or the foregoing Method, you'll difcover, that 3 combines in 7,35 times; 4 likewife 35 times; 5,22 times; and 6 only 7 times. Whence it follows, that the Number of all the Combinations poffible of feven differeat things, taken one by one, by two's, by threes, by fours, by fives, by fixes, and fevens, amounts to 127 , as appears by the addition of all the particular Combirizions, 7, 21, 35,35,21, 7, 1, which anfver the Numbiers i, 2, $3,4,5,6,7$. But you may find this Total yet eanier, by forming this double Geomertical Progreffion, $1,2,4,8$, 16, 32,64, confifting of feven Terms, anfwerable to the number of things combined, viz. 7 ; for the Sum of thefe Terms, 127, is the Number you look for ; which may till be found yet an eafier way, viz. . Subrract if from the propos'd number of things 7 , and the Remainder, 6 , directs you to take the fixth Power (64) of the Number 2; and the double of that Power, bating an Unit, 127, is the Number defired.

Before I difmifs this Subject, I hall here fet down two Methods peculiar to 2 and 3, for finding out how ofren thefe two Numbers may be combin'd in any number of things. Suppofe the number of things given is 7 , you'll find how often 2 will combine in it, by fubtracting the given Number 7 from its Square 49 ; and taking (21) the half of the remainder, 42 , for the Number defired. You'll ind how often 3 may combine in 7, by adding 14, the double of 7 to 343 , the Cube of the fame givenNumber 7 , and fubtracting from the Sum (357) the triple (147) of the Square (49) of the fame Number (7) for then the fixth part (35) of the remainder (210) thews you, that 3 will combine in 735 times.

There's another fort of Combinations, that may be call'd of Permu: Permutation, in which we take the lame thing twice; as, tatium. if you would combine thefe three Numbers by two's, 2, 5,6 , in order to know what different Quantities they can produce, if you confider the two firt thus, 25 , you'll call 'em twenty five; if thus, 52 , you'll call 'em fifty two; in like manner, the firt and third taken thus, 26, is 2 quire different Quantity from the fame two taken thus, 62 ; and fo of all others. From whence' it apC_{4} pears

Matbomatical and Pbyfical Recrea pears, thit the Multitude or Nu)er of Permatations is the Double of that of Combinations.

Permutations are of very good ufe in making Anagrams, and fomerimes give very lucky Hirs; as in the Word ROMA, the Letters of which being tranipofed make this other Word A MOR: but 'is a much luckier Hit that we meet with in thele iwo Latin Verfes;

Signa te, figna, temere me tangis \mathfrak{E}^{2} angis, Roma tibi fubito motibus ibut amor.

the Ietters of which being read backwards, form the fame Verfos.

We likewife make ufe of Pernurations in playing at Dice, to know the Number of r hances that attend the engaging to throw with two Dire, 9 for Inftance; it being ce:tain, that the Perfor: who engages has four Chances for it; for 9 may come un frur ways, by quatre cingue, by cinque quatre, by tres fix, and again by fix rres (according as the firit or fecond Dye happens to appear.)

To give the joynt Combinations of feveral Letters; for example, thefe four AMOR, that is, th find the Number of their fimple Permutaions, by tranfpofing them all poffible ways; make this Arimhnerical Progreffion, confilting of as many Terms as rhere are Letters to combine tog ther, which in this Example are Four ; fo that the firft T.rm is always an Unir, and the laft denotes the Number of 1 etters; then multiply ucenther all the Terms, and the Product 24, is the Number of Permutations or different Changes that thele four Letiers AMOR can undergo, as you fee here;

A M OR	MARO	O	A
A MRO	MAOR	O ARM	KOAM
AOMR	MOAR	OMAR	R M AO
AORM	MORA) MRA	RMOA
A R M O	MRAO	ORAM	R A MO
AROM	MROA	ORMA	KAOM

By the fame way do we find the number of Permutarions of any other.number of Letters, viz. By making 2 Progreffion of as many natural Numbers as there are Letters to combine, and multiplying together all the Terms of the Progreffion. Thus you'll find that Five Letters may be tranfpos'd 120 ways; Six 720; and fo on, as in the following Table, where you fee the Twenty Three Letters of the Alphabet may be combined $258520167388849766_{40000}$ ways.

I. A.$4^{2} 7$	
a10111213141416161718192021222324	2. B.
	6. C.
	24. D.
	120. E.
	720. F.
	5040. G.
	40320. H.
	362880. 1.
	3628800, K.
	39918800. L.
	479.001600. M.
	6227020800. N.
	87178291200. O.
	1307674368000. P.
	20922789888000. Q .
	359687428096000. R:
	6402373705728000. S.
	121645100408832000. T.
	${ }^{2432902008176640000 . ~} V_{\dot{X}}$
	51090942171709440000, X.
	$1124000727777607680000 . \mathrm{Y}$.
	25852016738884976640000. Z .
	620448401733239439360000.
	1551i210043330985984000000.

This Table is eafily calculated; for having difcoverd that Four Letters, for Example, may be combin'd or tranfos'd 24 ways; if you multiply 24 , the number of Combinations, by 5 the next Number, you have 120 for the Combinations of Five Letters ; and that multiplied by the next Number 6, makes 720 . for the Combinations of Six Letrers ; and fo on through all the fucceeding Letters,

Mathematical and Pbyfical Recrec ions:

of the Psur- By Parti, in the way of Gaming, we underftand the ${ }^{n}$'s or Di- juft Dittribution or Adjuftment of what Money out of vilion of Game. the Stakes belongs to feveral Players, whe piay it it 0 many Games, or a certain number of \mathbf{P} us seits, in proportion to what every one has ground to hope from Fortune, upon the Setts he wants to be up.

For Example, If two Gamefters have ftaked down 40 Piftols, which is then no longer their Property, only by way of Retaliation, they have 2 right to what Chance may bring 'em, upon the Conditions ftipulated at the firft Agreement; fuppofe they were to play for thele 80 Pi ftols three Setts, that the firt had gain'd one Sett;- and the fecond none; that is, the firft wants two Serts to be out, and the fecond three; thefe Suppofitions being laid down, and the Gamefters having a mind to draw their Stakes, without ftanding to their Chances, the juft Quota appertaining to each, is what is call'd Parti, and is found out by the Arithmerical Triangle, after this manners

Since the Suppofition runs, that the firf Gamefter wants 2 Setrs, and the other 3, and the Sum of the two Numbers 2 and 3 is 5 ; we muft turn to the Fifth Diagonal of the Arithmetical Triangle, and there take 5 the Sum of the two firlt Numbers 1,4 , by reafon of the two Setts that the firlt Gamefter is thort ; and is the Sum of the other three, 6, 4, 1, by reafon of the three Setts that the fecond Gamefter is thort : And thefe two Sums 5 and in give the reciprocal Ratio of the two Parti's inquired for ; fo that the Parti or Ruota of the one or firft is to that of the fecond, as in to 5 .

But to adjult thefe Quota's, that is, to affign each Gamefter his pofitive Share of the 80 Piftoles at Itake, this Number 80 mult be divided into two parts proportional to the two Terms 1 I, 5 ; and this is done by muliplying 80 by the two Sums 11 , 5, leparately, and dividing each of the two Products, $(880,400$) by 16 , the Sum of the two Terms 11, 5 ; by which means you have 5 s for the Number of Piitoles due to the firlt Gamefter that gain'd a Sett ; and 25 for the other that gain'd none.

In like manner, if the firf wants but x Sett to be out, and the fecond 2, we add together thefe two Numbers, 1, 2, and their Sum being 3, turn to the Third Diagonal of the Arithmetical Triangle, and there take the firt Number 1, nad the Sum 3 of the two others 2,1 ; from thele
thefe two Numbers 1, 3, we learn that the firft his Quota is to that of the fecond as 3 to 1 ; and fince the Sun of theife two Terms is 4 , the Confequence is, that the firft Gamefter ought to have $\frac{3}{4}$ of the 80 Piftoles ftaked, and the fecond only $\frac{1}{4}$, that is, the firft 60 Piftoles, and the other 20.

Hence it appears, that when the Game is at this pass, the firt may lay upon the Square 3 to 1 : And this we can likewife make out without the Arithmetical Triangle, after the following manner.

Since the firft wants One Sett to be out, and the fecond Two, we muft confider, that if they went on with the Game, and the fecond gain'd a Sett, then the two Gameflers would have equal Cypaces, and fo their Quota's or Dividends would be equal,' it being a conftant and a general Rule, that the one Share of the firft is to that of the fecond, as the Chances of the one are to thofe of the other. And fo in this Suppofition, each of 'em has a Title to an equal Half of the Money. 'Tis therefore certain, that if the firt gains the Sett that's to be play'd, he fweeps all; but if he lofes it, he has a Title to an equal Half; and therefore if they have a mind to draw without playing the -Sett, the firft ought to have half the Money ar ftake, and the balf of the remaining Half, that is $\frac{3}{4}$ of the Whole; fo that $\frac{1}{4}$ remains to the fecond ; for 'tis evident, that if 2 Gamefter has a Right to a certain Sum, in cafe he gains, and to a leffer, in cafe be lofes, he has a Right to the Half of thofe two taken togerher, if the Game is thrown up.
This firt Cafe directs us to the Solution of the fecond, which fuppoles the firft to want one Sett to be out, and the fecond three; for if the firft gains the Setr, he fweeps all the 80 Piftoles; if he lofes, it turns to the firft Cafe, as above, that is, he has a Right only to $\frac{3}{4}$; and therefore, if the Stakes are drawn withour playing that Sett, his Right is Half of thefe two Sums taken together, i. e. $\frac{7}{8}$ or 70 Piftoles, $\frac{1}{8}$ or 10 Piftoles remaining to the fecond.

This leads us to a Refolution of a third Cafe. Suppo-
II. Cafe.
III. Cafe. fing the firtt to be two Setts fhort, and the fecond three; for if the firtt gains the next Sett, he has a Right to $\frac{7}{8}$ of of the Money, by the Second Cafe ; if he loofes it, fo that the fecond wants only two to be our, as well as he, the Money is to be equally divided between them. Upon the whole, the Game flands thus; if the firt wins, he claims $\frac{7}{8}$:
if he loofes, he claims $\frac{1}{2}$; and therefore, if the Game is thrown up without playing this Sett, he slaims the Half of thefe two Sums put together, i.e. $\frac{1}{10}$ or is Pithoks, leaving or 25 to the fecond.

The fecond Cafe leads us likewife to the Solution of a fourth Care, in which the firft is fuppos'd to be one Sete fhort of the Whole, and the fecond four ; for if the firt gains 2 Sett, he carries the 80 Piftoles; it he lofes it, to that the fecond lacks only three to be our, he claims $\frac{7}{8}$ by the fecond-Caie. Now fince, in cafe of winning, he takes 80 Pittoles, and in cafe of lofing $\frac{7}{8}$ of them, his Dividend, upon throwing up, is the Half thefe two Sums put together, that is, $\frac{1}{15}$, or 75 Pittoles, and fo he leaves $\frac{1}{5}$, , or 5 Pitoles for the fecond.
v. caféc.

The fourth and third Cafeshed us, after the fame manner, to the Solution of a fifth, which Suppofes, that the firft Gameiter is two Jetts fhort, and the fecond four ; for it the firt gains a Sect, and fo lacks but one to be our, he claims : $: 5$, by the fourth Cafe ; and if he loofes it, fo that the feconds wants but chree, he claims $\frac{1}{5} \frac{1}{5}$, by the the third ; and confequently, in cale of drawing, his Due is the Half of thele two Sums put together, that is, $\frac{13}{16}$, or 65 Pilkies, $\frac{3}{15}$, or 15 Pittoles being left for the fecond, And fo of the other Cales.
Another ard All thefe, and an infinite Number of orher Cafes that an caien ay
of iov vires
may happen, are folvable without the Arithmetical Triof tolviris thefe Calcs.
cafe \mathbf{V}. angle, after a different and an ealie manner, as follows;

Taike the fifith Cafe for Intance, which fuppofes the firt to be two Setts fhort, and the fecond four; in this Suppofition the rwo Gamefters want between 'em fix Setts to be out: Take 1 off the 6 , and, fince the Remainder is 5 , fuppole thete five Letters of the fame form a a a a a, to favour the firft Gamefter; an ithefe five $b b b b b$, to favour the fecond; make Combinations of thefe ten Letters, as you fee it here done; where, of 32 Cornbinations, the firft 26 to the Left, having at lealt two a, are taken for the Number of Cbances that can make the fir!t to win; becaule he lacks two Sttts; and the remaining 6 to the Righr, or where there are at lealt four b, are taken for the Number of Chances upen which the fecond may win; becaufe he wants four to be out.

casaa	a a abb	acbbb	abbbb
a aaab	a abba	abbba	bbbba
aaaba	abbaa	bbbaa	babbb
aabaa'	bbaac	ababb	bbabb
abaaa	a $a b a b$	abbab	bbbab
baaaa	abaab	ababb	66666
	baab	baabb	
	baaba	babba	
	babaa	bbaba	
	ababa	babab	

Thus it is plain, that the firft his Due is to that of thefe: cond as 26 to 6 , or, as 13 to 3 .

In like manner to loive the third Cafe, which fuppo- cafe IIL. fes the firft to want two Setts to be up, and the fecond three, fo that they want five between 'em ; take I from the faid Sum 5, and fince the Remainder is 4, fuppofe thefe fimilar Letters a a a a to be favourable to the firft, and thefe four $b b b b$ to the fecond, and combine thefe eight Letters rogether, as you fee ir here done; where, of the 16 Combinations, the firf 11 to the Left having at leaft two $a^{\prime} s$, mult reprefent the Number of Chances that the firlt has for Game, two Sets

aaaa	$a a b b$	$a b b b$
$a a, b$	$a b b a$	$b b b a$
$a a b a$	$b!\cdot a a$	$b b a b$
$a b a a ̈$	$b a a b$	$b a b b$
$b a a a$	$b a b a$	$b b b b$

The fame 16 Combinations will ferve for the Solution of the fourth Cafe, in which the firft was fuppofed to be one Set fhort, and the fecond four; fo that s is the Number of Setts wanted between 'em, as in the third Cafe. For among thefe 16 you will find 15 that have at leaft one a, (anfwerable to the one Sett that the firtt wants) for the Chances upon which the firlt will win; and only one that has four b 's, the fecond being four Setts thort, which thews there is but one Chance that can fave the fecond. Thus the firlt Share is to that of the fecond, as is to 1. And fo of all other Cafes.

To know, when two are at play, what Advantage one has, that engages to throw 6, for Example, with one Dye, at a certain Number of Throws, and frt of all, at the firft Throw; we mut confider, that his Cafe is I to 5 ; for he has but one Chance to win, and 5 to loofe upon; and consequently if he lays upon one Throw, he ought to lay but ito 5 .

To engage to throw 6 with one Dye at two Throws, is the fame thing, as to throw two Dyes at a time, one of which is to be a 6 ; and in that Cafe, he who throws has but ir Chances to win upon, fince he may throw the firft 6 , and the Second $1,2,3,4$, or 5 ; or the fecond 6 , and the frt $\mathbf{i}, \mathbf{2 , 3 , 4 , \text { or } 5 \text { ; or elf both Dyes fixes ; }}$ whereas he has 25 to lore upon, as you fee here. Where 'is eafie to conclude, that he who offers to throw with one Dye at two Throws, ought to jet

I. 1	2.	1	3.	1	4.	1	5.	1	
I.	2	2.	2	3.	2	4.	2	5.	2
I.	3	2.	3	3.	3	4.	3	5.	3
1.	4	2.	4	3.	4	4.	4	5.	4
I.	5	2.	5	3.	5	4.	5	5.	5

When you lay upon 6 at two Throws, take notice that 36 , the Sum of all the Chances, 15,25 , is the Square of the given Number 6; and that 25, the Number of Chance against him who throws, is the Square of the fame Number, wanting 1, that is, 5. And therefore to find the Number of Chances that favour him who is to throw, you need only to take I from 12, the Double of the Number given, and the remainder 11 is the Number required; which being subtracted from 36, the Square of the former Number 6, leaves 25 the Remainder, which will always be a fquare Number, and denote the Chances against him.

To lay upon 6 at three Throws with one Dye, is the fame as to lay upon 6 at. one Throw with three Dice; and in that Cafe, he who throws has 91 favourable Chances, and 125 againit him, and fo ought to et but 91 to 125 ; thus you fee he is at a lolls who lays upon the Square for 6 at three Throws of one Dye.

Take notice that the Sum 216 of all the Chances gr; 125, is the Cube of the given Number 6, when you engage to throw 6 at the ce Throws with one Dye; and that 125 , the Number of the Chances against you, is the Cube of the fame Number given, left I, i.e. 5. And therefore,
to find the Number of Chances that favour the Perfon that throws, you need only to fuberact 125, the Cube of the given Number 6, wanting I (i.e. 5) from 216 the Cube of the fame Number given.
By the fame Method we find out what Advantage he has who proffers to throw 6 with one Dye at four Throws; for if we fubtract from the fourth Power or Biquadrate 1296 of the given Number 6, if we fubrratt, I fay, from that, 625 the Biquadrate of the fame Number, lefs one, or of 5 , the Remainder thews us 67 I favourable Chances for him that throws; the Biquadrate 625 being the Number of the Clances againft him : So that he who lays upon 6 at four Throws has the Odds on his fide.
But he has a much greater Advantage upon 6 at five Throws with one Dye, as appears by fubtracting 3125, the fifth Power of s (the given Number, bating I) from 7776, the fifth Power of the given Number 6; for the Remainder 465 I, is the Number of favourable Chances, and 3125 , the fifth Power fubtracted, is the Number of thofe againt him who throws.
If you want to know whar Advantage he has, who offers, with two or feveral Dice, to throw at one Throw a derermin'd Raffle; for Example two Tres; you muft confider, that with two Dice he has but one Chance to fave him, and 35 to loofe upon, fince two Dice can combine 36 different ways, that is, their 6 Faces may have 36 different Poftures, as you fee by this Scheme;

1	1	2	1	3	1	4	1	5	1	6	1
1	2	2	2	3	2	4	2	5	2	6	2
1	3	2	3	3	3	4	3	5	3	6	3
1	4	2	4	3	4	4	4	5	4	6	4
1	5	2	5	3	5	4	5	5	5	6	5
1	6	2	6	3	6	4	6	5	6	6	6

This Number 36, is the Square of 6, the Number of Faces, there being but two Dice; but if there were three, the Cube of 6,216 , would be the Number of Combinations; and if there were four, the Biquadrate of 6,1296 would be the Number. And fo on.
From what has been faid, 'tis evident, that in engageing a determin'd Rafleat one Throw with two Dice, one oughr to lay but Ito 35 ; and by a Parity of Reafon, that he ought to lay 3 to 213 upon a decermin'd Raffle or
Pair=

Matbematical and Phyjical Recreations.

Pair-Royal with three Dice; and 6 to 1290 with four ; for of the 216 Chances of three Dice, there's only three that can favour him, fince three things can combine by two's only 3 ways; and of 1296 Chances of four Dice, only 6 can favour the Thrower, fince four things combine by two's 6 ways.

But if you want to know what Odds be lies under who proffers to throw a Raffle of one fort or tother at the firit Throw of two or more Dice; you may find, without Difficulty, that he ought to fett but 6 to 30 , or 1 to s upon two Dice, fince of the 36 Chances of two Dice, there's only 6 that can make 2 Raffe ; and that upon three Dice, his Cafe is 18 to 198, or 1 to 11 , fince of the 216 Chances, that three Dice can fall upon, only 18 can produce a Raffle.

PROBLEM XI.

Several Dice being thrown, to find the Number of Points that arife from them, after fome Operations.

SUppofe three Dice thrown upon a Table, which we fhall call A, B, C; bid the Perfon that threw 'em add together all the uppermolt Points, and likewife thife underneath of any two of the three: For Inflance, B and C, A being fer apars, withour altering its Face. Then bid him throw again the fame two Dice, B and C , and make him add to the foregoing Sum all the Points of the upper Faces, and withal the lowermolt Points, or thofe underneath of one of them, C for Inftance, B being fet apart near A without changing its Face, for giving a fecond Sum. In fine, order him once more to throw the laft Dye \mathbb{C}, and bid him add to the foregoing fecond Sum the upper Points, for a third Sum, which is thus to bedifcovered. After the third Dye C is fet by the other two, without changing its Polture, do you come up, and compute all the Points upon the Faces of the three Dice, and add to their Sum as many 7's as there are Dice, that is, in this Example 21, and the Sum of thefe is what you look for; for when a Dye is well made, 7 is the Number of the Points of the oppolite Faces.

To exemplifie the matter; Suppofe the firft Throw of the three Dice, A, B, C, brought up 1,4,5; fetting
the firft s apart, we add to thefe three Points i, 4, 5, the Points 3 and 2 that are found under or oppofite to the upper Points 4 and 5 of the orher two Dice; and this gives me the firt Sum is. Now fuppofe again that the two laft Dice are thrown, and thew uppermoit the two Points 3 and 6, we fet that with the three Points apart, near the Dye that had 1 before, and add to the foregoing Sum (15) thefe two Points 3 and 6, and withall I the Point that's found lowermoft in the Dye that's ftill kepr in fervice, and had 6 for its Face at this Throw; thus we have 25 for the fecond Sum. We fuppole at laft, that this third and laft Dye being thrown a third time, it comes up 6, which we add to the fecond Sum 25, and fo make the third Sum 31. And this Sum is to be found out by adding 21 to 10 the Sum of the Points $1,3,6$, that a ppear upon the Faces or uppermolt Sides of the three Dice then fet by.

PROBLEM XII.

Two Dice being tbrown, to find the upper Points of easb Dye pithout feeing them.

MAke any one throw two Dice upon a Table, and add s to the Double af the upper Points of one of 'em, and add to the Sum multiplied by 5, the Number of the uppermot Points of the other or the fecond Dye; after that, having ask'd bim the joint Sum, throw out of it 25 , the Square of the Number 5 that you gave to him, and the Remainder will be a Number confilting of two Figures; the firlt of which to the left reprefenting the Tens, is the Number of the upper Points of the firtt Dye; and the fecond Figure to the Right reprefenting Units, is the Number of the upper Points of the fecond Dye.

We'll fuppofe that the Number of the Points of the firft Dye that comes up is i, and that of the fecond 3 ; we add 5 to 4, the Double of the Points of the firft, and multiply the Sam 9 by the fame Numbers, the Product of which Operation is 45 , to which we add 3, the Number of the μ pper Points of the fecond Dye, and fo make it 48 ; then we throw out of it 25 , the Square of the fame Number 5 , and the Remainder is 23 , the firlt Figure of which 1 reprefents the Number of Points of the firt Dye, and other Dye, initead ot adding the Excefs i, to the Sum 9 fubrract ir out of 9 , and take the Remainder 8 our of 14, 6 is the Remainder, the Half of which, 3, is the Number of the upper Points of the fecond Dye.
At bird was. A Third Way is this; Bid the Perfon who threw the Dice, add together the upper Points, and rell you their Sum, which we here fuppofe to be 5 ; then give him Orders to multiply the Number of the upper Points of one Dye by the Number of upper Points of the othen Dye, and to acquaint you in like manner with their Pro duct, which we here fuppofe to be $6:$ Now having this Product 6, and the preceeding Sum 5, fquare 5, and from its Square 2f fubrract 34, the Quadruple of the Produc 6, and the Remainder is I: Then take the fquare Roo of the Remainder, which in this Cafe is 1, and by ad ding it to and fubtracting it from the foregoing Sum you have thefe two Numbers, 6,4 , the Halfs of whid 3, 2, are the Numbers of the usper Points of each Dys

PROBLEM XIII.

> Upon the Thrown of Three Dice, to find the upper Points of each Dye, wilbout feeing them.

ORder the Perfon that has thrown the Dice, to plad 'em near one another in a Atreight Line, and ask bia the Sum of the lowermoof Points of the firft and fecon Dye, which we here fuppole to be 9 ; then ask him th Sum of the Points underneath of the fecond and third which we here fuppofe to be s; and at laft the unde Points of the firft and third, which we put 6. Nord having thefe Numbers given you, $9,5,6$, fubtract thx fecond Number sfrom 15 , the Sum of the firtt and third 9 and 6 ; and the Remainder 10 from 14 ; fo there red
mains 4 ; the Half of which 2 is the Number of the upper Points of the firft Dye. To find the Number of the upper Points of the fecond, fubtract the third Number 6 from 14, the Sum of the two firt 9 and s; and the Remainder 8 from 14 again; fo you have a fecond Remainder 6, the Half of which, 3 , is the Number demanded. At laft for the third Dye, lubtract the firft Number g from in, the Sum of the fecond and third, 5,6 , and the Remainder 2 from 14; fo you have a fecond Remainder ${ }^{12}$, the Half of which, 6 , is the Number of the upper Points of the third Dye.

PROBLEM XIV.

To find a Number thougbt of by anotber.

ORder the Perfon to take I from the Number thought upon, and after doubling the Remainder, to take $:$ from it, and to add to the laft Remainder, the Number thought upon. Then ask him what that Sum is, and afrer adding 3 to it, rake the third part of it for the Number thought of. For Example, Let 5 be the Number, take 1 from it, there remains 4 ; then take If from 8 , the Double of that 4, and the Remainder is 7 , which becomes 12, by the Addition of 9 , the Number thought of; and that 12, by the Addition of 3 , makes 15, the third part of which, 5 , is the Number thought of.

Another Way is this: After taking 1 from the Num- Ancher ber thought of, let the Remainder be tripled; then let Way of find him take 1 from that Triple, and add to the Remaino ing 2 Numder the Number thought of. At laft, ask him the Num- of. ber arifing from that Addition, and if you add 4 to it, you'll find the fourth part of the Sum to be the Number thought of. Thus 5, bating 1, makes 4, that tripled makes 12, which loofing 1, finks to 11, and enlarg'd by the Acceffion of 5 , comes to 16 , which, by the Addition of 4 , is 20 , and the fourth part of that, viz. 5 , is the Number thought of.

Add I to the Number thought of, double the Sum, and add I more to ir, and then add to the whole Sum the Number thought of. Having learn'd the Sum-Toral, take 3 from it, and the third part of the Remainder is what You look for: Thiss 1 and I is 6 , and the Double of
that, enlarg'd by 1 , is 13 , which, by the Addition of 5 , comes to 18 ; take 3 from that, the Remainder is 15 , the third part of which, 5 , is the Number thought of.

The Fourth Way.

The Ffib Way.

The Sixth Way.

Or elfe, after adding I to the Number thought of, bid the Perfon triple the fame, and add firft I to it, and then the Number thought of. At laft, ask the Sum of this laft Addition, and after robbing it of 4 , take the fourth part of the Remainder for the Number thought of. Thus, s and 1 is 6 , the Triple of which and I is 19 , which with 5 is 24 , and that bating 4 is 20 , the fourth part of which, 5, anfwers the Problem.

Take i from 5, the Number thought of, double the Remainder, 4 , from which, 8 , take 1 , and likewife the Number thoughr of; after which, ask for the Remainder 2, and add 3 to it, fo you have your Number.
Let the Perfon that thinks add I to the s, the Number thought of, and to the Double of thar, 12, 1 more; and fubtract from the Surs, 13, the Number rhoughr of; then ask for the Remainder 8, and taking 3 from ir, what you leave behind, 5 , is the Number thought of.
The Seventh Bid the Perfon that thinks take i from 5, the Number Way.

The Eighah W..

The Nim:h W.y.

THe Te:~: Was. thought of ; and I from 12, the Triple of the Remainder ; and then the Double of the Number thought of, 10 , from 11 , the laft Remainder. This done, ask for the Remainder of the third Subtraction, vir. I. and adding 4 to is, you'll find Satisfaction.

Add I to the Number thougbt of s, adding 1 more to the Triple of that you have, 19, from which take 10 , the Double of the Number thought of ; then ask for the Remainder, 9, from which take 4, and fo you're right.

Order the Perfon to triple the Number thought of (5) and out of the triple Number (is) to caft away the Half, if 'twere poffible; and fince in this Example 'tis not, to add 1 to it fo as to make it 16 ; the Half of which, 8, muft be tripled, and that makes 24. The Perfon that thinks having done this, ask him how many 9 's are in the laft Triple (24); he aniwers two; fo you're to take 2 for every 9, which in this Example makes 4, and by reafon of the I you gave to make the 15 an even Number, you're here to repay it by Addition to the 4, and fo you have 5 , the Number thought of. If there happen to be no 9 in the laft Triple, the Number thought of is .r.

Bid him add I to to the Number thought of (which makes 6); then lubtract it from it, and lo it leaves (4)
a Remainder; then bid him multiply the Sum (6) into the Remainder (4) and tell you the Product. To this Product 24 add 1 , and of the Sum 25 take the fquare Roots.

Bid the Perfon that thinks add I to the Number thought An Eleverth of (which we all along fuppole to be s) and multiply way. the Sum (6) by the Number thought of (5); then let him fubrract the Namber thought of (s) from the Product (30) and rell you the Remainder (25) the fquare Root of which s is the Number thought of.

After taking I from the Number thought of, bid him A Twelfib multiply the Remainder (4) by the Number thought of Way. (5) and add to the Product (20) the fame Number thought of, and tell you the Sum 25, of which you're to extract the Square Root 5 .

Bid him add $\&$ to the Number thought of, and clap a Cypher to the Right of the Sum, which makes 70; and

A Thirteenth Way. to that add 12, to the Sum of which Addition (82) let him clap another Cypher, fo as to make it 820 . From this Decuple (820) let him fubtract 320, and tell you the Remainder 500 , from which you are to cut off the two Cyphers (each of which did ftill decuple the Number it was put to), and fo you have the Number thought of 5 ,

Let him add s to the Double of the Number thought a Fourrembh of; to the Sum 15 let him add a Cypher on the Right Way. Hand to decuple it; then ler him add 20 to the Sum (150) and to the laft Sum (170) fet another decupling Cypher; at laft let him fubrract 700 from the laft Sum of all (1700) and difcover to you the Remainder 1000, from which you are to frike off two Cyphers to the Right, and take the half of the Remainder (10) for the Number thought of.

Thefe two laft Merhods are not very fubtile; for the Laft Number being known, 'tis an eafie matter, by a retrograde View, to find our the other Numbers, and by confequence the Number thought of. And upon that Confideration we fhall here fubjoyn two other Methods that are more myyterious.

Bid the Perfon that thinks add ito the Triple of the a Eiftemb Number thought of, and triple the Sum (16) again; to and maremy. which laft Sum (4^{8}) bid him add the Number thought ${ }^{\text {ferinw Wyy }}$. of (5); then ask him the Sum of all (53) and from that take of 3, and the Right Hand Cypher from the Remainder 50 ; which leaves you 5 to the Left for the Number thought of,

A Sixteenth Way:

Corallary I.

From thele two laft Methods we may draw this Infe: rence, that If we add an Unit to the Triple of any Number (as to 18 the Triple of 6) and the fame Number (6) to the Triple of the Sum (57) the Second Sum (63) will always terminate with 3.
Eorall. II.
Another Inference is, that If we fubtract an Unit from (18) the Triple of any Number (6) and add the Same Number (6) to the Triple of the Remainder (5 I the Triple of 17) the Sum (57) will always end with the Figure 7.
Coroll. III.
Bid him take I from the Triple of the Number thought of (15) and multiply the Remainder (14) by 3; and add to (42) the Product, the Number thought of (s); then ask the Sum of the Addition, 47, to which add 3, and cut off from the Sum so the Cypher, which muft needs be on the Right-Hand, and fo leaves to the Left the Number thought of. The latt Inference is, That this double Problem is im-

Mathematical and Pbyfical Recreations. poffible, viz. To find a Number of fucb a Quality, that if you add to, or fuberact from its Triple, an Unit, and add the Same Number to the Triple of the Sum of the Remainder, the laft Sum will be a perfet Souare Number; for as we Thew'd at Probl. V. no Number ending in 3 or 7 can be a true Square. See the following Problem.

PROBLEM XV.

To find the Number remaining after fome Operations, witbout asking any lueftions.

LET another think of a Number at pleafure; bid him add to the Double of it an even Number, fuch as you have a mind to. For Example 8 ; then bid him fubtract from half the Sum the Number thought on, and what remains is the Half of the even Number that you order'd him to add before; and fo you may roundly tell him you are fure the Remainder is 4. Tho' the Demonftration of this is eafie, yet thofe who are not apprifed of the Reafon will be furprifed at it. However that you may light exactly on the Number thought of, conceal your Knowledge of the Remainder 4, and bid him fubtract that Remainder, whatever it is, from the Number thought of, if fo be it be larger; or elfe, if the Number be lefs, to fubtract ir from the Remainder; and then ask him for the Kemainder

Remainder of the laft Subrraction; for, if you add this Remainder to the Half of the even Number you gave him (i.e. 4 the Half of 8) when the Number thought of is larger than that of the Half of the even Number ; or if you fubtract the Remainder from the fame Half (4) when the Number thought of is lefs than it, you'll have the Number thought of. To exemplifie the matter, let 5 be the Number thought of, and 8 added to its Double 10, which makes 18 ; the Half of that is 9 ; and ς, the Number thought of, fubtracted from 9 leaves 4 , the Half of the additional Number 8 ; and if you take this Half 4 from the Number thought of 5 , there will remain I, which being added to the fame Half 4 (the Number thought of being greater than that Half) gives 5 , the Number thought of. In like manner, if to rio, the Double of 5, the Number thought of, you add 12, you'll have 22, the Half of which is II; and from thence taking the Number thought of 5 , there remains 6 , the Half of the addirional Number 12 ; and if from that Half 6 you take the Number thoughe of, s, (which in this Example is lefs than the faid Half) there will remain 1, which being taken from the fame Half, fince the Number thought of is lefs than that Half (6) leaves 5 for the Number thought of.
But an eaficr Way to anfwer the Problem is this: Bid the Perfon that thinks, take from the Double of the Number thought of, any even Number you will that is lefs, for Example 4; then let bim take the Half of the Remainder from the Number thought of, and what remains will be 2, the Half of the firlt Number fubrracted 4; and therefore to find the Number thoughr of, bid him add the, Nuinber thought of to that Half 2, and then ask the Sum, 7 , from which yourre to take the fame Half, and fo there will remain 5 for the Number thought of.
But another, and yet eafier, way is this : Bid him add what Number you will to the Number thought of, and multiply the Sum by the Number thought of ; for if you make him fubtract the Square of the Number thought of frem the Product, and rell you the Remainder, you have nothing to do but to divide that Remainder by the Number you gave him to add betore; for the Quotient is the Number thought of. Thus 4 added to 5 (the Number thought of makes 9 , which being multiplied by 5 , makes

Mathematical and Phyfical Recreations.

49 ; from which take 25, the Square of the Number thought of ${ }_{2}$ and there remains 20, which being divided by 4, leaves 5 in the Quotient.

Or elfe, bid the Perfon that thinks, take a certain leffer Number from the Number thought of, and multiply the Remainder by the fame Number thought of ; for if you make him take the Square of the Number thought of from the Product, and tell you the Remainder ; by dividing that Remainder by the Number you ordered to be taken from the Number thought of, you have the Number thought of in the Quotient.

But of all the Ways for finding out a Number thought of, the following is certainly the eafieft ; make him take from the Number thought of what Number you pitch upon that's lefs than it, and fet the Remainder apart; then make him add the fame Number to the Number thought upon, and the preceding Remainder to the Sum, for a fecond Sum; which he is to difcover to you, and the Malf of that Sum is the Number thought of. Thus 5 being thought of, and 3 taken from it, the Remainder is 2 ; and the fame Number 3 added to 5 makes 8, and that, with the preceding Remainder, 10, the Half of which, 5 , is the Number thought of.

PROBLEM XVI.

To find the Number thought of by anotber, witbout asking any Queftions.

BID the other Perfon add to the Number thought of, its Half if ir be even, or its greateft Half if it be odd; and to that Sum its Half or greateft Half, according as tis even or odd, for a fecond Sum, from which bid him fubrract the Double of the Number thought of, and take the Half of the Remainder, or its leaft Half, if the Remainder be odd; and thus be is to continue to take Haif after Half, till he comes to an Unit. In the mean time you are to oblerve how many Subdivifions he makes, retaining in your Mind for the firl Divifion 2, for the fecond 4, for the third 8, and fo on in a double Proportion, remembring itill to add I every time he took the lealt Half ; and that when he can make no Subdivifion, you're to retain only 1. By this means you have the Number
that he has halfed fo often, and the Quadruple of that Number is the Number thought of, if to be he was nor obliged to take the greateft Half at the beginning, which can only happen when the Number thought of is evenly even, or divifible by 4 ; in other Cafes, if the greatelt Half was taken 2t the firt Divifion, you mult fubtract 3 from that Quadruple; if the greateft Half was taken only at the fecond Divifion, you fubtract but 2 ; and if he took the greatert Half at each of the two Divifions, you are to fubtract 5 from the Quadruple, and the Re: mainder is the Number thought of.

For Example, Let 4 be the Number thought of, which by the Addition of its Half, 2, becomes 6, and that, by the Addirion of its Half, 3, is 9 ; from which, 8, the Double of the Number thought of, being fubtracted, the Remainder is. 1, that admits of no Divifion ; and for this reaton you retain only x in your Mind, the Quadruple of which, 4, is the Number thought of.

Again; let 7 be the Number thought of; this being odd, the greateft Half of it, 4, added to it makes in, which is odd again; and fo the greateft Half of 11 added to 11 , makes 17, from which we take 14, the Double of the Number thought of, and fo the Remainder is 3, the leait Half of which is 1, that admits of no further Divifion. Here there being but one Sub-divifion, we retain 2, and to that add ifor the lealt Half taken, fo we have 3, the Quadruple of which is 12. But becaufe the greateft Molety was taken both in the firft and fecond Divifion, we muft fubrract 5 from 13, and the Remainder 7 is the Number thought of.

PROBLEM XVII.

To find out Two Numbers thougbt of by any One.

HAving bid the Perfon that thinks add the two Numbers thought of (for Example, 3 and 5 ;) order him to multiply their Sum (8) by their Difference (2) and to add to the Product (16) the Square (9) of the leaft of the two Numbers (3) and tell you the Sum, 25, the Square Root of which, 5 , is the greateft of the two Numbers thought of. Then for the leaft, bid him fubtract the firt Product (16) from the Square (25) of the greateft mainder, 9 , of which the Square Root 3 is the leat Number thought of.

An eafier Way of doing it is this: Bid him add to the Sum of the two pur together (8) their Difference (2) and tell you the laft Sum, io, for the Half of ir, 5 , is the greateft Number thought of. And as for the leaft, bid him fabtract the Difference of the two Numbers thought of from their Sum, and ask him the Remainder, 6, the Half of which, 3 , is the Number you look for.
This Problem may likewife be folv'd after the fuliow. ing mannet: Bid him fquare the Sum of the two Numbers (wbich is 64 in this Example;) then bid him add to the leaft Number thought of (3) the Double (10) of the greateft (5) and multiply the Sum (13) by the leaft (3) and fubtract the Product (39) frem the foregoing Square (64) and difcover the Remainder 25 , the Square Roor of which is the greateft Number thought of ; and as for the leaft, order him to add to the greateft (5) the Double (6) of the leaft (3), and multiply the Sum (II) by the greateft (5) and fubtract the Product 55 , from the foregoing, Square (64) and tell you the Remainder (g) the Square Root of which is 3, the lealt Number thought of.
Another, and a very eafie Way, is this: Bid him multiply the two Numbers (5,3,) togerber; and then multiply the Sum of the two Numbers (8) by the Number you want to find, whether the greater or leffer, and ?ubtract the Product of the two Numbers (15) from that Product (which is 40 , if you want the grearer, and 24, if you look for the leffer Number) and tell you the Remainder, 25 , or 9 , the Square Roors of which fetisfies the Demand.
Or elfe, bid him firf take the Product of the two Numbers (15), then multiply their Difference (2) by the Number enquired for (3 or 5) and add to that Product the Product of the two Numbers (is) if you want the greateft, or fubtract that Product from the Product of the two Numbers, if you look for the leaft. Then he telling you the Sum, or the Remainder, their Square Roots are the Numbers in queftion.
When the leaft of the two Numbers does not exceed 9 , 'tis eafie to find 'em out after this manner: Let I be added to the Triple of the greatelf, and the two Num-
bers thought of to the Triple of that Sum, and the Total Sum dilcover'd ; from which you are to take off 3, and then the Right-band Figure is the leaft, and the Left-hand Figure the greateft Number thought of. Thus 5 and 3 being thought of, 1 added to the Triple of 5 , is 16 , and the Triple of that (48) added to 8, the Sum of the two Numbers, makes 56 , which loofing 3, is 53 ; 3 the Right-hand Figure being the leaft, and s on the Left the greateft Number thought of.

PROBLEM XVIII.

To find feveral Numbers tbougbt on by arootber.

IF the Quantity of Numbers thought of is odd, ask for the Sums of the firft and fecond, of the fecond and the Sum of the firt and laft; and having written all thefe Sums in order, fo that the laft Sum is that of the firft and laft ; fubtract all the Sums of the even Places from all thofe in the odd Places; and the Half of the Remainder is the firt Number thought of, which being fubrracted from the firft Sum, leaves the fecond Number remaining, and that fubtracted from the fecond, leaves the third Number remaining; and fo on to the laft. For Example, fuppofe thefe five Numbers thought of, $2,4,5,7,8$, the Sums of the firft and fecond, of the fecond and third; and fo on to the Sum of the firt and laft, are $6,9,12$, 15, 10; and 24 the Sum of the even Places, 9 and 15, being taken from 28, the Sum of the odd places, there remains 4, the Half of which 2 is the firt Number thought of, and that being taken from the firft Number 6, leaves 4 for the fecond Number, and 4 taken from the fecond, 9 , leaves 5 for the third, and fo on.

If the Quantity of Numbers thoughr upon is even, ask for the Sums of the firft and fecond, of the fecond and third, of the third and fourth, and fo on to the Sum of the fecond and the laft; write them all in order, fo that the Sum of the fecond and laft may be laft in order ; take all the Sums in the odd Places (excepting the firft) from thofe in the even, and the Half of the Remainder is the fecond Number thought of, and that taken from the firlt Sum, leaves the firf Number, which taken from the third Sum, on. Thus 2, 4, 5, 7, 8, 9, being the Numbers thought of, the Sums propofed, as above, are $6,9,12,15,17$, 13. Then take 29 the Sum of 12 and 17 the odd Places (excepting the firft) our of 37 the Sum of $9,15,1 \cdot 3$. the three even Stations, and the Remainder is 8 , the Half of which, 4 , is the fecond Number thought of; and that taken trom 6, the firft Sum, leaves 2 the firft Number, 25 the fame fecond Number 4, taken from the fecond Sum 9 , leaves 5 for the third Number, which taken from the third Sum 12, leaves 7 for the fourth, and fo on.

When each of the Numbers thought of confifts only of one Figure, they are cafily found in the following manner : Let the Perfon add I to the Double of the firt Number thought of, and multiply the Sum by 5 , then add to the Produt the ficond Number thought of. If there's a third Number, add 1 to the Double of the preceding Sum, and after multiplying the whole by s, add to the Product the third Number thought of. In like manner, if there's a fourth Number, bid him add I to the Double of the laft preceding Sum, and after multiplying the whole by s, add to the Product the fourth Number thought of, and fo on, if there are more Numbers. This done, ask for the Sum arifing from the Addition of the laft Number thought of, and lubtract from it s for two. 55 for three, and 555 for four Numbers thought of, and fo on, if there are more ; and then the firft Lefr-hand Figure of the Remainder is the firft Number thought of, the next (moving to the Right) is the fecond, the next to that the third, and fo on till you come to the laft Right-hand Figure, which is the laft Number thought of.
For Example, Let 3, 4, 6,9, be the Numbers thought of, and 1 added to 6 , the Double of the firtt 3, and the Sum 7 multiplied by 5 , the Product of which, 35 , with xhe Addition of the fecond Number, 4 , is 39 ; then I being added to 78 , the Double of 39, and the Sum 79 multiplied by 5 , the Product 395, with the Addition of the third Number 6. is 401 ; and the Double of that, with the Addition of an Unit is 803, which multiplied by s is 4015 , and with the Addition of the fourth Number, 9,4024 . Now, if from this Sum 402 t, we take 555 , the Remainder is 3469 , the four Figures of which are fhe four Numbers fhought of.

Arithmetical Problems.

But there's a Method for this purpofe that's ftill eafier, viz. Let I be fubtracted from the Double of the firtt Number, and she Remainder multiplied by 5 , to the Product of which Multiplication, let the fecond Number thought of be added. Then, if there be more Numbers than two, let him add s to the laft Sum for a fecond Sum; let i be taken from the Double of this fecond Sum, and the Remainder mulkiplied by 5, and the third Number added to that Product ; this done, if there are no more Numbers thought of (otherwife you muft add 5 , and go on again) ask for the laft Sum, add s to it, and the Figures of the whole Sum will reprefent the Numbers thought of, as above.

For Intance, Let 3, 4, 6, 9, be thought of; take 1 from 6, the Double of the firft 3, multiply the Remainder 5, by 5 , add to the Product 25, the fecond Number 4; to the Sum 29 add 5, which gives you 34 for a fecond Sum; take 1 from 68, the Double of this fecond Sum, multiply the Remainder 27 by 5, and to the Product 335 , add the third Number 6, which makes 341 ; add 5 to this laft Sum, then it makes 3\{6, the Double of which, wanting 1 , is 691 , and that multiplied by 5,3455 , which, with the Addition of the fourth Number 9, is 3464. Now adding 5 to this Sum, you have 3469, the four Yigures of which reprelent the four Numbers thought of.

PROBLEM XIX.

A Perfon bas in one Hand a certain even, Number of Pifoles, and in the other an odd Number; 'tis required to find out in which Hand is the even or the odd Number.

LET the Number in the Right-hand be multiplied by any even Number you will, as 2, and the Number in the Left by fuch an uneven Number as you pitch upon, as 3 ; then order the Perion to add together the two Products, and take the Half of their Sum, and if he can take an exact Half, fo that the Sum is even, you'll know by that, that the Number in the Right-hand being multiplied by an even Number is odd, and confequently that in the Left multiplied by an odd Number is even. But on the contrary, if he can't take an exact Half, the Number in the Right is even, and that in the Leff odd.

Mathematical and Phyfical Recreations:

For Example : Suppofe 9 Piftoles in the Right-hand, and 8 in the Left ; multiply 9 by 2 , and 8 by 3 ; the Sum of the two Products 42 being an even Number, fhews that 9 the odd Number multiplied by the even 2. is in the Right hand, and confequently 8 the even in the Lefr. This Prol blem directs us to the Solution of the following Queftion

Queftion. A Man baving a piece of Gold in one Hawd and Silver in the otber, 'tis ask'd what Hand the Gold a Silver is in?

Fix a certain Value in an even Number, as 8, on the Gold, and an odd, as ς, upon the Silver. Direct the Pera fon to multiply the Number anfwering to the Right-hand by any even Number, as 2 ; and that in the Left by a determin'd odd Number, as 3, and ask him whether the joynt Sum of the Products is even or odd; or bid him half it, and fo you'll learn whether 'ris even or odd, without asking. If this Sum is odd, the Gold is in the Right-hand; if even, è conera.

PROBLEM XX.

To find two Numbers, the Ratio and Difference of which is given.
T O find two Numbers, the firit of which, for Example, is to the fecond, as 5 to 2, and the Difference or Excefs 12 : Maltiply the Difference 12 by 2 , the leaft Term of the given Ratio, and divide the Product 24, by 3, the Difference of the two Terms 5,2 , and you'll find the Quotient 8, the leaft of the two Numbers look'd for, and that added to the Difference 12, viz. 20, the greatelt.

If you will, you may multiply the given Difference by the greateßt Term of the given Ratio, and after dividing the Product by the Difference of the two Terms of the Ratio, you'll find the Quotient the great Number, which, upon the fubtraction of 12 , leaves the leffer remaining. Or you may take this Way; Multiply each of the two Terms of the given Ratio, by the Difference given, and divide each of the Products by the Difference of the two Terms, and the Quotients are the Numbers demanded. This Problem furnifhes an eafie Solution to the following Queftion.

- Queftion. If a Man has as many Pieces of Money in one Hand as in the other, bose fall wee know bet much is in each Hand?

Bid him put two out of the Left into the Right-hand; which by that means will have 4 more than the Left, and ask for the Ratio of Number of Pieces in the Right to that in the Left, which we hall here fuppofe to be as 5 to 3. Then multiply 4, the Difference of the two Hands, by 3, the leapt Term of the given Ratio, and divide the Product 12 by 2, the Difference of the two Terms of the Ratio 5, 3: The Quotient 6 is the Sumbet of Pieces in the Left, to which if you add the Differene 4, you have io for the Right. There two put toether make 16, and consequently at firft the Man had 8 in each Hand.

PROBLEM XXI.

Too Perfons having agreed to take at pleafure leafs Nom= Gers than a Number propos'd, and to continue it alternately, till all the Numbers make together a determin'd Number greater than the Number proposed; 'is requir'd bose to do i.

$\mathbf{S}^{\mathbf{U}}$Uppofe the first is to make up 100, and both he and the fecond are at liberty to take alternately any Number under 11; let the firft take in from 100 as often as he can, and thee Numbers will remain, \mathbf{x}, 12 , $23,34,49,56,67,78,89$, which he is to keep in mind ; and frt take 1 , for then let the fecond take what Numbbeer he will (under in) be cant hinder the firth to come at the fecond Number 12; for if the Second takes 3, for Example, which, with I makes 4, the firth has nothing to do but to take 8 , and fo reach 12. After that, let the fecond Perron rake what Number he will, he cant hinder the first from coming at the third Number $23 ;$ for, if he takes 1 , for Inftance, which with 12 is 13, the frt takes 10, and fo makes 23 . In like manner, the frt cant be kindred to reach the fourth Number 34, then the fifth 45 , then $\rho 6$, then 67 , then 78 , then 89, and at lat 100 .

As for the fecond Perron, he can never touch at 100 , if the frit t undertands the Way: Indeed if the frit takes in upon 12, with the famie Advantage the firt had above. But if the firtt is acquainted with the Artifice, be'll be fure to take 1 , and fo the fecoind can never make 1i, nor 2ξ, Ge. nor, in fine, 100.

If the firft would be fure to win, he muft take care that the leffer Number propos'd does not meafure the greater ; for if it does, he has no infallible Rule to go by. For Example, If, inftead of 11 , so were the Number propos'd; taking 10 continually from 100 , you have thele Numbers, $10,20,30,40,50,60,70,80,90$; now the firt being obliged to pitch under 10, can't hinder the other from making 10 , and $1020,30, \mathcal{E}^{\circ}$. and in fine 10.

You need not be at the pains to make a continued Subtraction of the leffer Number from the greater, in order to know the Numbers the firft is to run upon; for if you divide the greater by the leffer, the Remainder of the Divifion is the firt Number you're to take. Thus divide 100 by 11, 1 is the Remainder for the firt Number, add to that is, it makes 12 for the fecond, and 12 with is makes 23 for the third, and fo on to 100 .

PROBLEM XXII.

To divide a given Number into Two Parts, the Ratio of of which is equal to to that of Two Numbers given.

SUppofe 60 is to be divided into Two Numbers, the leaft of which mult be to the greater as 1 to 2 : Add together the two Terms of the given Ratio $\mathbf{1 , 2}$, and divide 60 by their Sum 3; the Quotient 20 is the leaft Number wanted, and that fubtracted from 60 leaves 40 the grearer. Or, multiply the two Terms 1 , 2 , feparately, by 60, and divide each of the Products, 60, 130; by 3, the Sum of the Terms; and the two Quotients, 20, 40, are the Numbers you look for. This Problem gives an eafie Solution to the following Queftion.
Queftion. To divide tbe Value of a Crown into Two different Species or Denominations, the Number of wbich fhall be equal.

The Solution being demanded in Integers, 'tis impofa fible to folve this or the like Queftion, unlefs the Sum

Of the two Terms of the Ratio of the different Species propos'd, does exactly divide the Crown when reduc'd to fmaller Money. Thus 'tis imporible to divide an Englifh Crown according to the tenour of the Quetion, into Shillings and Pence; becaufe the Ratio of thefe Species or Denominations is $12, I_{j}$ and 13 , the Sum of thefe two Terms, does not exactly divide 60 Pence, the Value of the Crown : But make the two Species Pence and Farthings 'twill do, fince 4,1 , the Terms of their Ratio, make together 5 , which exactly divides 240 , the Value of the Crown in Farthings ; and the Quotient 48, folves the Queftion, that is, 48 Pence, and 48 Fathings, make a Crown.

PROBLEM XXIII.

To find a Number, which being divided by given Numbers Separately, leaves I the Remainder of each Divifion; and zoben divided by anotbor Number given, leaives no Remainder.

TO find a Number which leaves i remaining, when divided by 5 and by 7 , and Nothing wihen divided by 3 : Multiply into one another the two firt Numbers given, 5,7 ; to their Product 35 , add I, which makes 36, the Number demanded. For, if you divide 36 by $\$$ and by 7 , the Remainder is 1 ; and when you divide it by 3, there is, as it happens, no Remainder.

After finding this firft and loweft Number of the pro:pos'd Quality ${ }^{36}$, you may find 2n infinite Quantity of greater Numbers of the fame Quality, and that in the following manner: Add the firtt Number found 36, to 105, the Product of the three given Numbers 5, 7, 3; and the Sum 141 is a fecond Number of the fame Quab lity ; then add to 141 the Product abovemention'd ros, and you have 246 for a third; which, with the addition of ro5, makes 35 I for a fourth Number; and fo ori،

To find a Number that divided feparately by i, 3, 3, leaves 1 remaining, and no Remainder when divided by 11: If you take 30 , the Product of the firft three Numbers 2, 3, 5, and add I to it, you have the Number 311 which divided by each of the three firt Numbers, 2 , 3, 5 , there thould remain II, and by ii, the fourth Number, Nothing : but foit is, that 31, when divided by 11 ,
E Peare?
leaves 9 remaining, and therefore 31 is not the tight Number ; but in order to find out the right Number, take 30 the Product of the three Terms 2, 3, 5, and quadruple it, which makes 120 , which with the addition of 1 , is the Number required 121 , and that added to 1320, the Product of the four Numbers given 2,3,5.11, makes 1441 for a fecond Number of the fame Quality; and fo on, as above. In this Cafe, 30 , the Product of $2,3,5$, being divided by II, left 8 remaining, and the Quadruple of that $8,3^{2}$, being but 1 thort of 33 , the Multiple or Triple of II, we quadrupled the 30 , and added to the Sum.

In like manner, to find a Number, that divided fepsrately by $3,5,7$, leaves 2 remaining, and no Remainder when divided by 8: Divide 105, the Product of the three firlt Numbers 3,5,7, by the fourth 8; and becaufe there remains 1 , multiply the Product ios by 6 , that the Product 630 divided by 8 , may leave a Remainder of 6 , which is lefs than 8 by 2 , and then adding 2 to the laft Product 630, you have 632 the Number required, which added to the Product of the four given Numbers, makes a fecond Number of the fame Quality; and that, with the fame Addition, a third, and fo on.

To find a Number that divided feparately by $3,5,7$, leaves 2 remaining, and divided by it leaves no Remainder : Divide 105, the Product of the firft three Numbers given $3,5,7$, by the fourth 11 ; and in regard there remains 6, the Double of which, 12, furpaffes the Divifor 1 I by 1 ; multiply the Product 105 by 2 , that 210 being divided by 11, there may remain 1; and fince 'tis defized that 9 may be the Remainder, which is lefs than the Divifor is by 2, multiply the laft Product 210 by 9, and then the Product 1890 being divided by 11 , the Re-mainder will be 9 ; and therefore adding 2 to that laft Product, you'll have a Number 1892, which leaves no Remainder, being divided by II.

In like manner, to find a Number that being divided by 5 , or 7 , or 8 , leaves 3 remaining, and nothing when divided by 11: Multiply by 9, 280 the Product of the firlt three Numbers given, $5,7,8$, and the Product 2520 being divided by 11 , there remains I, upon which you may make the Remainder 8, which is lefs than II by the given Number 3, by mulciplying the foregoing Product 2520 by 8 , which makes 20163 , and confequently that: Sum $_{2}$

Sum; with the addition of 3, vit. 20163 . is the Number fought for. This Problem directs us to folve the following Queftion.

Queft. To find bow many Pifoles were in a Purfe tbat a Mas bas loft, but remembers, that, when be told them by Two's, or by Tbrees, or by Fives, there alroays remain'd an odd one; and when be counted 'em by Sevens, there remain'd none.

Here we are to find a Number, thar, when divided by either 2, or 3, or 5, ftill leaves I Remainder ; and when divided by 7 , leaves 0 . Now there are feveral Numbers of that Quality, as appears from the foregoing Problem; and therefore to find the Number that really was in the Purle, it behoves us to be directed by the Bulk or Weight of the Purle, in order to determine that real Number.

Now to find the lealt of all thefe Numbers, let's firft of all try for a Number that's exactly divifible by 2, by 3 ;and by 5 , and likewife by 7 when 1 is added to it. If you multiply together the three firft Numbers given, 2, 3, 5 , their Product 30 will be divifible by each of thefe chree Numbers; but when you have added 1 to it, the Sum 31 is not divifible by the fourth Number given, 7, for there remains 3 ; and fince the Product 30, when divided by 7 leaves 2 , its Double 60 will leave 4 upon the like Divifion, and by the fame Conlequence is Triple 90 will leave 6 remaining. Now 6 wanting but 1 of 7 , add that I to this triple Number 90 , and fo 91 will be exactly divíible by 7, and confequently is the Number fought for.

To find the next larger Number that anfwers the QueAtion, multiply rogether the four given Numbers $2,3,5,7$, and to their Product 210 add the firft and leaft Number found 91 ; the Sum 301 is the fecond Number fought for ; and if you add to this fecond Number the foregoing Product 210, the Sum 511 will be the third Number that folves the Queftion; and fo on in infinitum.

Thus, to refolve the Queftion, you may anfwer, that there might be in the Purfe 91 Louis d'Ors, or 301, or 511; and the Bulk of the Purfe will ferve to direct you which of the Numbers was really in it.

$$
\text { E } 2 \quad \text { PROBL }
$$

PROBLEM XXIV.

Of Several Numbers given to divide eacb into two part $)_{\text {; }}$ and to find two Numbers of fuch a Quality, that when tbe firft part of each of the given Numbers is multiplied by the firft Numver given, and the fecond by the. fecond, the Sum of the two Products is ftill the Same.

S
UPpofe, for Example, thefe three Numbers given, 10 ;
25, 30, and the Solation is requir'd in entire Numbers; Take any two Numbers for the two Numbers fought for, provided their Difference be 1, or fuch as may exactly divide the Product under the greatef of thefo two Numbers and the Difference of any two of the three given Numbers, and fo, that the greateft of thefe two Numbers multiplied by the leatt given Number 10, may be greater than the lealt of thele two Numbers multiplied by the greateit given Number 30 ; fuch are 2 and 7.

The two Numbers requir'd. 2 and 7, being thus found; the firt part of the firt: given Number 10, may be taken at pleafure, provided 'tis lefs than 1o, and than the Number arifing from the Subtraction of the leaft foned Number 2, multiplied by the greatelt given Number 30, from the greateft found Number 7, multiplied by the lealt given Number 10; and than the Number that arifes from the Divifion of the remainder 10 by 5 the Difference of the two Numbers found $2,7,1$ that is, lefs than 2, which is 1 , which being fubtracted from the firt given Number 10, leaves the Remairder 9 for the other part $;$ and that being multiplied by the fecond Number found $\overline{7}$, and the firit part I being nultiplied by the firft Number found 2, the Sum of the two Products 63 and 2 is 65 .

To find the firt part of the fecond Number given, 25 , multiply 15, the Difference of the firt two Numbers given, 10,25 , by the greateit Number found 7; and divide the Product ios by 5 the Difference of the two Numbers found 2,7 ; then add the Quotient 21 to 1 , the firgt part found of the firf Number given 10 ; and the Sum: 22 will be the firft part of the fecond Number given 25 , and confequently the orher part will be 3, which being multiplied by the fecond Number found 7, and the firtt part 22, being muliplied by the firf Number given 2 , the Sum of their two Products 21, 44, makes likewife 65.

Laft of all, To find the firft part of the third Number given 30, multiply 5 , the Difference of the two laft Numbers given 25,30 , by the greateft Number found 7 , and divide the Product 35 by 5 , the Difference of the two Numbers found 2, 7 ; then add the Quotient 7 to 22, the firlt part of the fecond Number given 30, and the Sum 29 will be the firit part of the third Number given 30 , and conlequently the other part will be 1, which being multuplied by the fecond Number found 7, and she firtt part 29 being multiplied by the firt Number found 2, the Sum of the two Products 7,58 , makes ftill 65 .

Or elfe multiply 20, the Difference of the firft and the third Number given, by the greareft Number found 7 , and divide the Produci 140 by 5 , the Difference of the two Numbers found 2,7 ; then add the Quotiemess to x, the firft part of the firt Number given ro, and you'll have 29, as above, for the firt part of the third Number given 3°.

If you take I and 6 for the two Numbers fought for; and 4 for the firt part of the firt Number given 10, in which Cafe the other part will be 6, which being multiplied by the fecond Number found, 6 , and the firlt part 4 by the firft Number found 1 , the Sum of the rwo Products 36, and 4, is 40: Upon this Suppofition, I fay, the firft part of the fecond Number given 25, will be 22, and confequently the other part 3, which being multiplied by the fecond Number found 6, and the firt part 22 by the firlt found Number , the Sum of the two Products $\mathbf{8 8}, 22$, is likewife 40°; and in fine, the firft part of the third Number given 30 , will be 28 , and the other 2, which being multiplied by the fecond Number given 6, wud the firlt 28 by the firft 1 , the Sum of the two Products is ftill 40. This Problem directs us to the Solution of the following Queftion.

Queft. One Woman fold at Market io Apples at a certain rate apiece; anoother fold 25 at the Jame rate; and a third jold 30 fill at the Same Price; and yet each of them brougbt the fame Sum of Mony bome with tbem. The Ruefion is, bow this could be ?
' T is manifeft, That to fave the Pofibility of the Queftion, the Women muft fell their Apples at two different Sales, and at two different Rates, feeing at each Sale or Divifion, they fell at the frame Rate. Let the two dif we found in the foregoing Problem; and we'll !uppofo

that at the firt Sale they fold at 2 Farthings an Apple; and that at this rate the firft fells i Apple, the fecond 22, and the third 29 ; the three Numbers 1, 22, 29, being the firft Parts of the three given Numbers X, XXV, XXX, which were found in the foregoing Problem; in this Cafe the firf Woman will take 2 Farthings, the fecond 44, and the third 58 . In the next place, if we fuppofe they fell the relt of their Apples at 7 Parth. then the firt W'oman will take 63 Farthings for the 9 Apples the had left, the fecond will take 21 Farthings for the 3 Apples the had leff, and the third 7 Farthings for the 1 Apple the had left; and fo each of 'em will take in all 65 Fartbings.

Or, if you will, make the two different Rates 1 and 6 , which were the two Numbers found in the laft Problem; and fuppofe at the firt Sale they fell at a Farthing an Apple, at which Price the firt fells 4 , the fecond 22,

and the third 28 ; thefe three Numbers 4, 22,28, being the firlt parts of the given Numbers X, XXV, XXX, which were found in the lalt Problem; the firt Woman will take 4 Farthings, the fecond 22, and the third 28. Then fuppofe again, that they fell the reft of their Apples at 6 Fartbings apiece, the firt Woman will take 36 Farthings for the 6 Apples the had lefr, the fecond 18 for the 3 Apples fhe had left, and the third 12 Farthings for 2 Apples the had left. And thus every one of 'em will take in all 40 Farthings!

PROBLEM XXV.

Düt of Several Numbers given in Aritbmetioal Progreffion, and ranged in a Circular oider, the forft of whicb. is an Unit; to find that mbich one khe sboultht of.
T O find the Number thought uporf, of TediNatural 9, 10, difpore ' em in a Circular Order, as you fee in the annext Cut; which Numbers may reprefent Ten different Cards, the firt of which correfponding to A, may be the Ace, and the laft reprefented by K , may be the Ten.

Bid him who thinks of one, touch any one Number or Card, which be pleafes; add
 to the Number of the touch'd Card the Number that expreffes the Multitude of the Cards, which in this Inftance is 10 . Then make him whe thinks of a Card, count that Sum backwards, or contrariwife to the Order of the Cards, beginning from the Card he touch'd, and afrribing to it the Number thought of : For, by counting in this Order, he'll juft finifh or make up the Sum at the very Card thought of.
For Example, Let the Number thought of bee 3 , reprefented by the Letter \mathbf{C}; and the Number touch'd be 6 , correfponding to F; if you add 10 to 6 , the touch'd Number, it makes 16 ; and reckoning 16 backwards from the touch'd Card F, by E, D, C, B, A, and 10 on in a Retrograde Order, fo as to begin the Number 3 upon the touch'd Card $\mathbf{F}, 4$ upon \mathbf{E}, 5 upon D, 6 upon C, and fo on to 16 , the 16 Number will fall upon C , which thews that 3 , its refpective Number, was the Number thought of,

$$
\text { E } 4 \quad \text { PROBL }
$$

PROB.LEM XXVL

'Among Tbrec Perfons, to find bow many Cards or Cousitert? cacb of 'em bas got.

LE T the thisd Perfon take what number of Cards os Counters he pleafes, provided it be evenly even, that is, divifible by 4 ; let the fecond take as many 7 's as the other has taken 4 's; and the fir ℓ as many ${ }^{13}{ }^{\circ} \mathrm{s}$. Then bid the firtt give to the other two as many of his Counters as each of 'em had before; and the fecond to give to the remaining two as many of his Counters as each of 'em ; and in like manner, the third to give to each of the other the fame Number that they have. By this means 'twill fo fall our, that they will all have the fame number of Counters, and each of 'em will have double the Number that the third had at firt. And for this realon, if you ask one of the three how many Counters he has gor, half his Number is the Number the third had at firft; and if you take as many 7 's, and as many 14 's as there were 4's in the third Perion's Number, you'll have the number of Cards or Counters that the fecond and firft took.

For Example, If the third took 8 Cards, it behor'd the fecond to take 14 , that is, twice 7 , becaufe there's twice 4 in 8 ; and the firft mult Ift. 2d. 3d. take 26 , that is twice 13 by the fame realon. If the firlt who has 26 Cards, gives to the fecond 14 that is, as many 23 he had at firt ; and to the third 8 , that being his firt Number, he will have only 4 left to himfelf; and the fecond will have 28 ; and the third 16. But if the fecond, who has 28 Cards, gives oat of his Cards 4 to the firft, who had juft as many before; and 16 to the third, who had likewife as many; he will have 8 left to himfelf, and the firft will have 8 , and the third 32. In fine, if the third, who has got 32, gives 8 to each of the others, all the three will have 16 , which is the Double of 8, the Number that the third took up as firlt.

PROBLEM XXVIÍ.

of Tbree unknown Cards, to fnd wbat Card each of Tbreee Perfons bas taken up.

THE Number of each Card raken up muft not exi ceed 9 . Then, to find out that Number, bid the firft fubtract 1 from double the Number of the Points of his Card, and after multiplying the remainder by 5, add to the Product the Number of the Points of the fecond Perfon's Card. Then caufe him to add to that Sum 5, in order to have a fecond Sum; and after he has taken I from the Double of that fecond Sum, make him to multiply the Remainder by 5 , and add to the Produat the Number of the Points of the third Perfon's Card. Then ask him the Sum arifing from this lat Addition ; for if you add s to it, you'll have another Sum compos'd of three Figures, the firtt of which towards the Left is the number of the Points of the Card that the firft Perfon took up; the middle Figure will be that of the fecond Perfon's Card; and the latt towards the Right directs you to the third Perfon's Card.

For Example, If the firft took 2 3, the fecond a 4, and the third a 7 ; by taking 1 from 6, the Double of the firt 3 , and multiplying the Remainder s by 5 , we have 25 Product, to which we add 4, the Number of the fecond Perfon's Card, which makes 29, and thar, with the Addizion of 5 , makes the fecond Sum 34, the Double of which is 68 , and taking if from that, there remains 67 , which being multiplied by 5 , makes 335 , and this, by the Addition of 7 , the Number of the third Perfon's Card, and 5 over and above, makes the laft Sum 347, the three Figures of which feverally reprefent the Number of each Card.

Or, if you will, you may bid the firt add I to the Another Double of the Number of the Points as his Card, and multiply the Sum by 5 , and add to the Produat the fwering tho Number of the fecond Perfon's Card. Then bid him add in like manner I to the Double of the preceding Sum, and multiply the whole by 5, and add to the Produck the Number of the third Perfon's Card. Then ask him the Sum ariing from the laft Addition, and fubtract bove, the Number of each Card.

As in the foregoing Example, by adding 1 to G the Double of 3, the Number of the firft Perfon's Card, and by multiplying the Sum 7 by 5, we have 35; which, with the Addition of 4 , the Number of the fecond Perfon's Card, makes 39, the Double of which is 78, to which if we add 1 , and multiply the Sum 79 by 5 , we have 395 ; to thar we add 7 , the Number of the third Perfon's Card, and fo have 402 , from which if we fubtract 5 , the Remainder is 347 , the three Figures of which feverally reprelent the Number of each Cerd.

PROBLEM XXVIII.

Of Three Cards known, to find whick and which is taken up by each of three Perfons.

O^{-}F the three known Cards, we thall call one \mathbf{A}, the other B, and the third C, and leave each of the three Perfons to pitch upon one of the three, which may be done fix different

1f.	2d.	3d.	
12	24	36	Sums.
A	B	\mathbf{C}	23
A	\mathbf{C}	\mathbf{B}	24
\mathbf{B}	\mathbf{A}	\mathbf{C}	25
\mathbf{C}	\mathbf{A}	\mathbf{B}	27
\mathbf{B}	\mathbf{C}	\mathbf{A}	28
\mathbf{C}	\mathbf{B}	\mathbf{A}	29

PROBLEM XXIX.

To find out among Several Cards, one 'tbat awobtber bait tboughe of.

HAving taken out of a Pack of Cards a certain Num-: ber of Cards at pleafure, and fhewn them in order upon the Table, before the Perfon that is to think, beginning with the lowermoft, and laying them cleverly one above another, with stheir Figures and Points upwards, and counting them readily, that you may find out the Number; which, for Example, we fhall here fuppofe to be 12; Bid him keep in mind fhe Number that exprefles the Order of the Card he has thought of, namely 1, if he has thought of the firft, 2, if he has thought of the fecond, 3 , if he has thought of the third, Ξ^{c}. Then lay your Cards, one after another, upon the reft of the Pack, in a contrary Situation, putting that upon the Pack firft that was firft thewn upon the Table, and that laft that was laft fhewn. Then.ask the Number of the Card thought of, which we fhall bere fuppofe to be 4; that is, the fourth Card in order of laying down, is the Card thought of. Lay your Cards, with their Faces up, upon the Table, one after another, beginning with the uppermoft, which you're to reckon 4 , the Number of the Card thought of; To the fecond next to it will be 5 , and the third under that 6, and fo on, till you come to 12, the Number of the Cards you firft pitch'd upon to Thew the Perfon; and you'll find the Card that the Num: ber 12 falls to, to be the Card thought of.

PROBLEM XXX.

Several Parcels of Cards being propos'd or Sheronn, to al: many differint Perfons, to the end that each Perfors may think upon one, and keep it in his mind; To gue $\sqrt{3}$ the refpective Card tbat eacb Perfon has thougbt of.

W
Ell fuppofe there are 3 Perfons, and 3 Cards thewn to the firft Perfon, thaf he may think upon one of 'em, and thefe three Cards laid afide by hemfelves; Then 3 other Cards beld betore the fecond Prifon, for the fame end, and laid apart ; And at latt, 3 different Cards again to the third Perfon, for the fame end, and likewife laid apart. This done, turn up the 3 firft Cards, laying them in three Stations; upon thefe three lay the next three other Cards that were thewn to the fecond Perfon; and above thefe main the three lait Cards. Thus you have your Cards in three Parcels, each of which confifts of 3 Cards. Then ask each Perfon in what Lift is the Card he thought of; after which 'rwill be eafie to diftinguish it ; for the firft Perfon's Card will be the firlt of his Heap; and in like manner the fecond's will be the fecond in his; and the third Perfon's Card will be the third in his.

PROBLEM XXXI.

Several Cards being forted into Tbree equal Heaps, it guefs the Card that one thinks of.

TIs evident that the Number of Cards muft be diviGble by 3 , fince the three Lifrs are equal. Suppole then there are 36 Cards, by confequence there are 12 in each Lift; ask in what Lift is the Card thought upon; then put all the Heaps together, fo as to pur that which contain'd the Card thought upon between the other two; then deal off the 36 Cards again into three equal Hands, oblerving that order, of the firt Card to the firf, the fecond to the fecond, the third to the third, the fourth to the firft again, and fo round, dealing one
'ard at 2 time, till the Cards are dealt off. Then ask again; what Hand or Heap is the Card thought upon, and afer laying together the Cards, fo as to pur that Lift which onrain'd the Card between the other two, deal off again, 0 you did before, into three equal Lifss. Thus done, sk once more, what-Lift the Card is in, and you'll ealy ditinguith which is it, for ir lies in the middle of the ift to which it belongs; that is, in this Example, 'tis he fixth Card; or, if you will, to cover the Artifice the eeter, you may lay them all together, as before, and he Card will be in the middle of the whole, that is, he Eighteenth.

PROBLEM XXXII.

To guefs the Number of a Card drawn out of a compleat stock.

AFter one hath drawn what Card he pleafes out of a compleat Stock of 5_{2} Cards, for Lnitance, fuch as we play at Ombre with, you may know how many Points are in the Card thus drawn, by reckoning every fac'd Card 10, and the reft according to the Number of their Points; Then looking upon the reft of the Cards one after another, add the Points of the firlt Card to the Points of the fecond, and the Sum to the Points of the third, and fo on, till you come to the laft Card, taking care all along to calt out so, when the Number exceeds it; upon which account you fee 'tis needlets to reckon in the 10° s or the faced Cards, fince they are to be calt out bowever. Then if you fubtract your laft Sum from 10 , the Remainder is the Number of the Drops of the Card drawn.
'Tis eafie to know, that when Nothing remains, the Card drawn is either a 10 or a faced Card; and that in this Cafe, if it be a faced Card, one can't dittinguith whether is be King, Queen, or Knave : Now, in order to be Mafter of that Diftinction, the beft way is, to make ufe of a Stock of 36 Cards only, fuch as we formerly us'd for Piquet, and reckon a Knave 2, 2 Queen 3, and a King 4.

If you make ule of a Srock of 3_{2} Cards only, fuch as is now uled for Piquet, you're to. follow the fame Courfe

Courfe as is above prefcrib'd, only, you muft always add 4 to the laft Sum, in order to have another Sum, which being fubtracted from 10 if it be lefs, or from 20 if it furpaffes 10, the Remainder will be the Number' of the Card drawn ; fo that if 2 remains 'tis a Knave, if 3 a Queen, if 42 King, $\mathcal{E}^{\circ} \mathrm{c}$.

If the Stock is not full, you muft take notice what Cards are wanting, and add to the laft Sum the Number of all the Cards that are wanting, after fubtracting from that Number as many 10's as are to be had; upon which, the Sum arifing from this Addition, is to be fubtracted, as above, from 10 or from 20, according as 'tis above or under 10. This done, 'tis evident by calting your Eye once more upon the Cards, you may rell what Card was drawn.

PROBLEM XXXIII.

To guefs the Number of the Points or Drops of Two Cards draten out of a compleat Stock of Cards.

LET a Man draw at pleafure Two Cards out of a Srock of 52 Cards; bid him add to each of the Cards drawn as many other Cards as his Number is under 25, which is the half of all the Cards, wanting 1, fixing upon each faced Card what Number be pleafes; as if the firft Card be 10, add to it is Cards; and if the fecond Card be 7, add to it 18 Cards; fo that in this Example there will remain but ${ }_{7} 7$ Cards in the Stock, the whole Number taken out amounting to 35 . Then taking the remainder of the Pack into your hands, and finding they are but 17 , conclude that 17 is the joint Number of all the Points of the two Cards drawn.

To cover the Artifice the better, you need not rouch the Cards, but order the Drawer to fubtract the Number of the Points of each of the two drawn Cards from 26, which is half the Number of all the Cards, and di-

- rect him to add together the two Remainders, and acm quaint you with the Sum, to the end you may fubtract it from the Number of the whole Stock, i.e. 52 ; for the Remainder of that Subtraction is what you look for.

For Example, Suppoie a 10 and a 7 are the Cards drawn; take 10 from 26, there remains 16 ; and taking

I from 26, the Remainder is 19 : the Addition of the two Remainders 16, 19 , makes -2 Sum of 35, which fubtracted from 52, leaves 17 for the Nuniber of the Drops of the two Cards drawn.

The fame is the Management in a Stock of 36 or 32 Cards; only to colour the Trick the better, inftead of 26, the half of the Cards, when they make ρ_{2}, take another leffer Number, but greater than 10 , as 24 , from which taking 10 and 7 , there remains 14 and 17 , the Sum of which, 31, being fubtracted from 52 , the Sum of all the Cards, , leaves is the Remainder; from which frabtract again 4, which is the Double of the Exceff of 26 above 24 , and fo the Remainder is 17 , the Number of the Points of the two Cards drawn, viz. 10 and 7.
If you make ufe of a Piquet Srock, confilting of 36 Cards, inftead of 18 , the Half of 36, the Number of all the Cards, take in like manner a leffer Number, fuch as 16, from which take 10 and 7 , and there remains 6 and 9 , the Sum of which, 15 , being fubtracted from 36, the Number of all the Cards, leaves 21 remaining; from which fubtract again 4, the Double of the Excefs of 18 above 16 , and fo the 17 remaining is the Number of the Poigts of the two Cards drawn.

In like manner, if this Piquet-Stock confifts only of 32 Cards, inftead of 16 , the Half of 32, the Number of the whole Stock, take any leffer Number you will, provided it be greater than 10, fuch as 14 , from which take 10 and 7 , and the Remainders are 4 and 7 , the Sum of which, 11, being taken from 32, leaves 21, and taking from that 4, the Double of the Excels of 16 above 14, you have 17 remaining, the Number of, the Prints of the 10 and the 7 drawn.

PROBLEM XXXIV.

To guefs the Number of all the Drops of Three Cardj draten at pleafure out of a compleat Stock of Cards.

T.O folve this Problem as the former, after the fhorteft way, the Number of Cards contain'd in the Stock mult be divifible by 3 ; fo that neither a Stock of 52 , nor one of 32 , are proper; but one of 36 is, in regard 36 , the Number of all the Cards, has 12 for irs Queftion, as follows:

Let a Man draw at pleafure Three Cards out of a Piquet-Stock of 36 Cards, bid him add to each of thefe Cards as many other Cards as the Number of their Puints falls fhort of 11 , whioh is the third part of the Number of all the Cards, wanting one, allotting, in the foregoing Problem, to each faced Card whas Number he pleafes: As if the firft Card is 9, he adds, to it 2 Cards'; if the fecond is 7 , he adds to it 4 ; and if the third is 8 , be adds 5 , which make in all 14 Cards; fo that in this Example, the Remainder of the whole Stock is 22 Cards, which denotes the Number of all the Points of the Three Cards drawn.

The better to colour the Artifice, you need not touch a Card, but bid him fubtract the Number of the Points of each of the three drawn Cards, from 12, the third part of 36, the Number of the whole Srock, and add rogether the three Remainders, and tell you the Additional Sum, which you're to fubtract from 36, and the Remainder of that Subtraction is what you look for.

As in this Example; Suppofe be drew a Nine, a Seven; and a Six ; raike 9 from 12 , there remains 3; take 7 from 12, there remains 5 ; and take 6 from 12 , there remains 6 ; add the three Remainders, 3, 5, 6, the Sum is 14, which taken from 36 leaves 22 for the Number of the Drops of the three Cards drawn.

To colour the Trick the better, and to apply the Rute to a Stock that confifts of fewer or more than 36 Cards, fuch as one of s_{2} Cards, make ule of a Number greater than 10, and leffer than 17, the third part of 52 , for Inflance 15: Bid him who drew the three Cards, add to each of his drawn Cards as many other Cards as the Number of their refpectıve Points is under 15 : For Example, if the firft Card be 9, he adds to it 6 Cards; if the fecond is 7, he adds 8 ; if the third is 6 , he adds 9 , which makes in all' 26 Cards ; fo that in this Example there will remain in the main Stock 26 Cards. Taking the main Stock into your hands, and finding you have 26 Cards, fubtract from 26 the Number 4 , which is the Excels of 52, the Number of the whole Srock, above the Triple of $15,+3$, ie. 48 ; and the Remainder 22, is the Number of all the Points of the three Cards drawn!

Or elfe you need not touch the Cards, but bial the Perfon that draws fubtract the Number of the Drops of each of the three Cards drawn, from 16, which is imore than the firft Number 15, and add together all the:Remainders, and acquaint you with the Sum ; then do you fubtract that Sum from the Number above-mention'd, $4^{8,}$ and you'll find the Remainder to be the Number of all the Points of the three Cards drawn.

For Example, Suppofe he drew a 9, 27, and 26 ; take 9 from 16 there remains 7 ; take 7 from 16 there remains 9 ; take 6 from 16 there remains 10 ; add thefe three Remainders, 7,9 , 10, the Sum is 26, which fubtracted from 48, leaves 22 for the Number of the Points of the three Cards drawn.

In like manner, in a Pack of 36 Cards, take a larger Number than 10, for Inftance 15; and taking notice of the Additional Cards, which amount to 26, as you faw but now, fubrract that Number, 26, from 36, the Number of the whole Pack, and to the Remainder 10 add 12 , which is the Excefs of the Triple of $15,+3$, i.e. 48 , above 36, the Number of the whole; and yoùjl find the Sum 22 to be the Number of Points enquired after. In a Piguet Pack of ${ }_{32}$ Cards, inftead of 12 you mult add 16, by reafon that 16 is the remainder of 32 fubtracted from 48.

In imitation of this and the foregoing Problem, 'twill be eafie to folve the Queftion upon four, or more, Cards drawn.

PROBCEM XXXV.

Of the Game of the Ring.

THIS is an agreeable Game in a Company of feveral Perfons, not exceeding 9, (unlefs you have a mind to it) in order to the eafier Application of the 18th Problem, vir. by reckoning the firft Perfon 1 , the fecond 2 , the third 3, and fo on; and in like manner, reckoning the Right-hand 1 , the Left-hand ${ }_{2}$; the Thumb of the Hand 1, the Fore-finger 2, the third Finger 3, the fourth 4, and the little one s; the firf Joynt r , the fecond 2, and the third 3. For, if you put the Ring to one in the Company, for Inftance, the fifth Perfon, and that upon the firf Joynt of the fourth Finger of the Lefr-hand. y 'tis
evident, that in order to quels who has the Ring, and upon which Hand, which Finger, and which Joynt, ore has only thefe four Numbers to guefs, $5,1,4,2$, he firt Number 5 reprelenting the fifth Perfon; the fecond I , the firt Joynt ; the third 4, the fourth Finger ; and the 1aft 2, the Left-hand. Now this is perform'd by obleoving the laft Merhod of Problem 18. foregoing, as appears from the following Operation.
Taking ifroni io, the Double of the firt Number s; and multiplying 9, the Remainder, by 5 , you bave 4 ; adding to that the fecond Number 1 , you have 46 , 10) which if you add 5 , you have si for a fecond Sum: The Double of this fecond Sum is 102, from which rake I, there remains 101 , which being multiplied by 5 , makes 505, and that with the Addition of 4 , the third Number, makes 509 , to which if you add 5, you have this fecond Sum s 14 , the Double of this 1028 leffned by 1, and the Remainder multiplied by 5 , makes $\$ 135$, to which ad. ding the fourth Number 2, you have this Sum 5137 , and that augmented by 5 , gives this fecond Sum 5142 , the four Figares of which reprefent the four Numbers inguired for, and by confequence denote, that the Ring is up on the firft Joynt of the fourth Finger of the Left-hand of the fifth Perion,

PROBLE.M XXXVI.

After filling one Veffel with Eigbt Pints of any Liquor to put juft one balf of that Quantity into anotber Vefeld. that hoids Five Pints, by means of a third Veffel thad woll hold three Pints.

THIS Queftion is commonly pur after the following manner: A certain Perfon having a Bottle fill'd with 8 Pints of excellent Wine, has a mind to make a Prefent of the Half of it, or 4 Pints to one of his Friends; but he has nothing to mealure it out with but two other Bote tles, one of which contains 5 , and the other 3 Pinss. Quere, how be fhall do to accomplifh it?

Aritbmetical Problems.

To anfwer this Queftion ; let's call the Bortle of 8 Pints A, the s Pint-Botrle B, and the 3 Pint-Bottle C. We fappofe there are 8 Pints of Wine in the Bottle A , and the other two, B and C, are empty, as you fee in D. Having filld the Bottle B with Wine out of the Bottle A, in which there will then remain but ${ }_{3}$ Pints, as you fee at E ; fill the Bottle C with Wine out of the Bottle B, in which, by confequence, there will then remain but 2 Pints, as you fee at

	8	5	3
	A	B	C
D	8	0	0
E	3	5	0
F	3	2	3
G	6	2	0
H	6	0	2
I	1	5	2
K	1	4	3

If, inftead of the Botule B, you would have the 4 Remark.
Pints to remain in A, which we fuppofed to be fill'd with 8 Pints; fill the Bortle \mathbf{C} with Wine out of the Bottle A, and fo there will remain 'bur 5 Pints in it, as you fee ar D; 3 pour the three Pints of the Bottle. C into the Bottle B, which will then have $;$ Pints of Wine, as you fee at E; and having again fill'd the Bottle \mathbf{C} with Wine our of the Bottle A, where there will then remain but 2 Pints, as you lee at \mathbf{F}; fill up the Bottle B with Wine our

	8	5	3
	A	B	C
	8	0	0.
D	5	0	3
E	5	3	0
F	2	3	3
G	2	5	I
H	7	0	2
I	7	1	0
K	4	1	3

PROBLEMS
 0 F
 GEOMETRY.

G
EOMETRY is not lels fertile than Aritbmetick, but 'tis not fo eafily underfood, and confequently not equally agreeable, by reafon that withour Demonftration it does not lay open the Proof of its Operations fo exactly as Arithmetick ; upon this Confideration, I thall here take in only fuch Prov blems as feem to be the plaineft and moft entertaining.

PROBLEMI.

To raife a Perpendicular on one of the Extremities of a Line given.

T N order to draw a Line perpendicular to the given Line A B, at its Exuremity A, take ar pleafure three equall parts of it, exten-
 ding the Line to B, fo as to make the laft part terminate in B . Thefe equal parts being A C, CD, and DB, defcribe at the Interval $C B$, from the Points B and C, two Arches of a Circle that cur one another at the point E; and

Geometricel Problems:

and from the two points \mathbf{E} and \mathbf{C}, defcribe with the fame Estent of the Compafs rwo other Arches of a Circle that cut one another ar the point F, to which from the given End A, draw the freight Line AF which is perpendicular to the given Line A B.

If you have a mind to draw another Line equal and perpendicular to AB , upon B , the other end of the given Line A B, divide the given Line into three equal parts at the points C and D, and after finding the point F, as above directed, draw, with the Interval A F, upon the Extremity B, the Arch of a Circle GHI, and fer off the fame Aperumre of the Compafs twice upon the fame Arch, viz from G to H , and from H to I . Then keeping filll the fame Aperture, defcribe from the two points H and I, two Arches of a Circle that cur one another ar the point K, and draw the freight Line AK, which is equal and perpendicular to the Line given A B.

PROBLEMII.

To dram from a point given, a Line parallel to a Line given.
LET the point given be C, and the Line given be A B; take ar pleafure two points upon the given Line near the two Extremities A and B, fuch as D and \mathbf{E}; with the diflance DE, defribe an Arch of a Circle from the point given C ; then delcribe from the poilit
 E, with the Aperture CD, another Arch of a Circle, that meets the firft at the point \mathbf{F}, from which to the point \mathbf{C} draw the freight Line CF; 'twill be parallel to the Line giyen AB. *
If you would have the parallel Line equal to the Line given $A B$, inftead of making ufe of the two poins D and E, pirch at A and B , that is, defcribe from the given point C with the dianace of the Line given $A B$, an Arch of a Circle; and anorher from the Extremity B at the diflance AC ; thefe two Arehes will meet ar G, to which from the point given C, draw the ftreight Line $C G$ equal and parallel to the Line given AB.

PROBLEM III.

To divide, with the fame Apercure of the Compafs, a given Line, into as many equal parts as you will.

I^{F}F you would divide the given line $A B$, into four equal parts, for Inftance; prolong the fame Line, and run our upon it the four equal parts $A B, B C, C D, D E$;

and continuing the fame Aperture of the Compafs, raife upon theie equal parts the four Equilateral Triangles $A B F, B C G, C D H, D E I$; lattly, draw the RightLines AG, AH, AI, and then the Line HM will reprefent one of the four equal parts of the given Line AB ; the Line DM will conlequently reprefent the remaining $\frac{3}{4}$, and the Line FK, or BK will reprefent two of 'em.

But the Line AI alone is fufficient for the Operation; for it cuts off the Line $B 1$ equal to the fourth part of the Line $A B$, the Line C_{2} equal to the half of AB, and the Line D_{3} equal ta $\frac{3}{4}$ of A B. The Line A H divides the given Line AB into three equal parts, of which the Line GL reprefents one, and by confequence CL reprefents two: But the Line A I gives likewille the Divifion of $A B$ into three equal parts; for the line BN reprefents one, CO two, and by confequence HO allo reprefents $\frac{1}{3}$.

PROBL.

PROBLEM IV.

To make an Angle equal to the Half, or to the Double, of an Angle given.

TO make an Angle equal to the half of the given Angle ABC, defcribe upon its point B what SemiCircle you will, as DEF, and draw the right Line DE, which will form at the point D, the Angle ADG equal to the half of the given Angle ABC.

For an Angle equal to the double of the given
 Angle ADG, fix the point B upon any part of the Line $A D$, and from thence 'at the Diftance D defcribe the Semicircle DEF, and joyn the Line BE, which will form at B the Angle ABC, equal to the double of the Angle given AD G .

PROBLEM V.

To make an Angle equal to the third part, or to the Triple of an. Angle given.
IIRST, for an Angle equal to the third part of the Angle given ABC, defribe at plealure from its point B the Semicircle DE F, and apply a freight Ruler to E, in fuch a mannex, that its part GI, terminated by the Circumference DEF, and by the Line AD pro-
 long'd, may be equal to the Semidiameter BD or BE; then draw the right Line $G E$, which will form at the point G the Angle AGH, equal to of the Angle ABC; and confe quently the Arch I'D will likewife be equal to a third F 4
pars Angle A B C.

In the fecond place, for an Angle equal to the triple of the Angle given AGH, take the point I at difcretion upon the Line GH_{2} upon which Point I, fet one Foot of your Compaffes, and with the Diftance IG, make an Arch which will cut the Line A G in the Point B, upon which, with the fame Diftance, defcribe the Semicircle DEF, which will pals through the point I, and give upon the Line GH the point E, to which, from the point B, draw the right Line $B E$, which will form the Angle ABC, the triple of the given Angle AGH.

PROBLEM VI.

To find a sbird Proportional to tano Lines givern, and as many otber Proportionals as you with.

LET the two lines given be $A B, A C$, to find 2 third Proportional to $\left.{ }^{3} \mathrm{~cm}\right)_{2}$ defribe from B, the end of the firt line, at the di-
 ftance A the other end, the Arch of a Circle AF; upon that Arch take the Length of the fecond Line AC, from A to F; then fet off from F the fame Length upon the Line AC prolong'd as far as you have occafion, which will reach to D , and AD will be a third Proportional to the two Lines given A B, AC.

In like manner, to find 2 fourth Proportional to the three Lines AB, AC, AD, (which is the fame thing as a third Proportional to the two, lines AC, AD) defcribe from C the end of the firft Line AC with the Compaffes open'd to A the Arch of a Circle AG, upon which fet off the Length of the other Line A D Atretch:ing from A to G; and upon the Line $A D$, being prolong'd, Yet off the fame Diftance from ' G, 'which will reach to E, and-the Line $A E$ will be the Line you want Brd fo of the other Proportionals.

PROBLEM VII.

To defcribe upon a Line given as many differemt Triaina gles as you pleafe witb equal Area's.

FF the Line given be $A B$, draw at plealure the $P_{a}=$ rallel CD, upon which mark, at difcrerion, as nany different points as you would have equal Triangles, as

E, F, and G, for three Triangles. Draw from thefe three points right Lines to A and B , the Extremities of the given Bale AB, and then you have three equal Triangles $A E B, A F B, A G B$, upon the fame Bafe - A B.

PROBLEM VIII.

To defcribe upon a given Line any demanded Number of. dityerent Triangles, the Circumferences of mbich are equal?

F the Bare given is AB, divide it equally into two al the point C , and lengthen it on each hand, at pleaj

Matbematical and Pbyfical Recreations.

fure, to D and E, for Inftance, making the two Lines ${ }^{\circ}$ CD and C E equal, and taking the whole Line DE for the Sum of the two Gides of each Triangle, that's to be defcrib'd on the given Bafis AB, after this manner :

From the point A defcribe, with the Compaffes a little more opened than AD, the Arch of a Circle, and apply the lame Aperture to the line D E, fretching from D to 1; then with the Aperture or Diftance I E, defcribe from the Centre B another Arch of a Circle, which here cuts the firlt at F , and that thall be the top of the firft Triangle ABF.

In like manner, draw from the point A, with an Aper: ture fomewhat larger than A F, an Arch of a Circle, and fetting off the fame Diftance upon the Line DE from D to K_{0} defcribe from the point B at the Diftance KE, another Arch of a Circte, that cuts the former at G, which will be the top of the fecond Triangle A G B, the Circumference of which will be equal to that of the firft AFB.

If you defire a third Triangle, draw from the point A, an Arch of a Circle, with the Compaffes open'd a litte more than the length of ΛG, and having fet off the fame Dittance, as above, upon the Line D E, from D to L; defcribe from the point B with the Interval LE another Arch of a Circle that here cuts the former ar H , which will be the top of the third Triangle AHB, the Circumference of which is the fame with that of the two preceding. Triangles. And to of the reft.
Ramark. $\quad \mathrm{F}_{2} \mathrm{G}$, and H , the rops of all thefe Triangles fall upon the Circumference of an Ellynfis', the great Axis of which is DE, and the two Rorus's A, B.

PROBLEM IX.

To defcribe two different Ifofceles Triangles, of the fame Area, and the Jame Circumference. is

HAving prepared a Scale of equal parts of what Length you pleafe, take upon the Bare A B, the two parts or Segments $G A$ and $G B$, each of which is equal to 12 parts.

upon the Scale. From the point Gupon the Bafe A B raife the Perpendicular GC equal to 35 of the fame parts, and joyn the two equal Lines A C, BC, and fo you'll have the firft Ifofceles Triangle ABC, in which each of the two equal Sides A C, BC, will be found 37 parts, as will appear by. adding 144 the Square of the Segment A G, to 1225 , the Square of the Perpendicular $C G$, and by taking the Square-Root of the Sum 1369.

Now, to have a Triangle of the fame Area and Circumference with that now defcrib'd, take upon the Bale DE, the two Segments HD, HE, of 20 parrs each; and having rais'd from the point H upon the Bafe DE, the Perpendicular HF of 21 parts, joyn the equal Lines EF, DF, each of which will be 29 parts, as will appear by adding 400 the Square of the Segment DH , to $4+1$, the Square of the Perpendicular HF, and extracting the Square-Roor of the Sum 841.

Thus you'll have the lfofceles-Triangle DEF, the Circumference of which, 99 , is equal to the Circumfesence, that is, the Sum of the three Sides of the firft Ifo-fceles- Area of the Triangle A B C.

You may defribe as many Couples as you will of frow fceles-Triangles with the fame Area and Circumference, by finding their Numeral Quantities; and that is done by finding the two Generative Numbers of the swo Halfs AGC, DHF, which are two equal RectangleTriangles, that may then, by the means of their Generative Numbers, be exprefs'd in Numbers, as was fhewn above, Probl. VI. Aritbm. Now, thefe two Generative Numbers will be found by this General Rule, which is demonftrable:

If you divide tbe Difference of two Cubes by the Difference of their Sides, and multiply that Difference of the Sides by tbe Sum of the fame Sides, you'll bave the twoo Generative Numbers of the firt Rectangle-Triangle AGC; and if you divide the Difference of the Same two Cubes by the Difference of tbeir Sides, as above, and multiply the Sum of the leffer Side and the Double of the larger, by the leffer Side, you bave the two Generative Numbers of the ficond Ręangle-Triangle DHF.

You may find to Infinity the two fame RectangleTriangles, by this ocher Canon: If, of tavo Numbers, the greateff of which is lefs than the Quintuple of the leaff, you multiply tbe Sum by tbe Difference; and if you mul tiply tbe Sum of the greater, and of the Septuple of the leaft, by the Double of the leffer, you bave tbe twon enerative Numbers of tbe firt Rectangle-Triangle A GC; and if from the Square of the Sum of the greateff, and of the Double of the leaft, you fubtrait the Sguare of tbe leaft, and multiply the Excefs. of the Quintuple of ithe loaft above the greateft, by tbe Double of the leaff, you'll bave the two Ge-. werative Numbers of the fecond Rigbtangled Triangle DHF.

PROBLEM X.

To defcribe tbree different Reflangle-Tviaugles, with equal Areás.

FROM a Scale of equal parts take the Bafe A B of 42° parts, and the Altitude or the Perpendicular AC of 40 parts ; and then BC the Hypothenufe of the firf Righrangled Triangle ABC will befound of $s 8$ Parts,as appears by adding 1764 , the Square of the Bafe A B, unto 1600, the Square of the Perpendicular AC, and extracting the Square
 Root of the Sum 3364.

Then lay down DE, the Bafe of the fecond Right-angled-Triangle, of 70 parts, and the Altitude DF of 24 , and the Hypothenufe will be found to be 74, as appears by adding together 4900 , the Square of the Bafe DE, to 576 the Square of the Altitude D F, and extracting the Square Root of the joynt Sum 5476. Thus the Area of this fecond Rightangled-Triangle DEF will be equal to that of the firit, each being 840, as appears by multiplying the Bafe by the Height, and halving the Product.

At laft rake FG, the Bafe of the third RightangledTriangle F GH of ${ }_{11}{ }_{2}$ parts, the Altitude FH of 15 , and the Hypothenule B C will be 113, as appears by adding 12544 the Square of the Bale F G, to 225 the Square of the Altitude F H, and exrracting the Square Roor of the Sum 12769. Thus the Area of this third Triangle is likewife 840 :

Thefe three Triangles bave thus been found in Integers, by the Rule drawn from Algebra, which fhews, that in order to find three equal Righrangled Triangles in entire Numbers, we muft firft find three Numbers that will ferve for Generative Numbers, and that after this manner:
If you add the Product of any two Numbers, to the Sum of their Squares, you bave the firft; The Difference of tbeir Squares is tbe fecond; and the Sum of their Product
duct and of the Square of the leaft is the third Generdtive Number.

If of the tbree Numbers tbus, found you form three Rigbtangled Triangles, viz. one of the twoo firft, anotber df the tuso Extremes, and a third of the firft and the Sum of the otber two, tbefe tbree Rigbtangled-Triangles will be equal one to anotber.

You may find in Fractional Numbers as many Right. angled Triangles as you will,' whofe Area's are equal to one another, and equal to one of the three foregoing, by finding from this Rightangled Triangle another Kight-angled-Triangle equal, after the following manner :

From another Redangle-Triangle of the Hypotbenufe of the Rectangle-Triangle propos'd, and the Quadruple of its Area. Divide the Triang's thus form'd by the Double of the Product arifing from the Multiplication of the Hypotbenufe of the ReEtaingle Triangle proposd, by the Difference of tbe Squares of the two otber Sides of the Same Rectangle-Triangle. Tbus you'l bave a Rightangled Triangle equal to the propos'd Triangle.

PROBLEM XI.

To defcribe tbree equal Triangles, the firft of wbich Jcall be Rigbtangled, the fecond an Oxygonium, and the third an Amblygonium.
F ROM 2 Scale of equal parts which may reprefent Feet, Fathoms, or what you will, take AB. the Bale of the Right-angled Triangle A B C of 24 parts, and the Altitude AC of 7 , and then
 - the Hypothenufe B C will be 25 , as appears by adding 576 , the Square of the Bafe AB to 49 the Square of the Altitude AC, and extracting the Square Root of the Sum 625 .

Then upon DE the Bafe of the,Acute-angled Triangle DE F, take the Segment K D of s parts, and the Segment KE of 9 ; and from the point K, upon the Bafe DE, raife the Perpendicular KF of 12 parts, and
then the fide DF will be found 13 , as appears by adding 25, the Square of the Segment DK, to 144 the Square of the Altitude FK, and extracting the Square Roor of the Sum 169: And the other fide will be found 15 , by adding the Square 81 of the Segment KE, to 144 the Square of the Perpendicular K F, and extracting the Square Root of the Sum 225.

Ar laft, upon GH the Bafe of the Obtufe-angled Triangle GHI, take the Segment L G of fix parts, the Segment LH of 15 , and from the point L upon the Bale GH raife the Perpendicular LI of 8 parts; and the fide GI will be found 10 , by adding and extracting as before; as the fide HI will be 17 by the like Operation.

Now we know the Triangle A BC is right-angled at A, becaufe 625 the Sum of the Squares of the two fides $A G_{9}$, AB, is equal to the Square of the third fide BC. We know that the Triangle DEF is acute-angled, becaule the Sum of the Squares of any two fides is larger than the Square of the third. And in fine, That the Triangle GHI is an Amblygonium, and the Angle I is the obtufe ; becaule 441 the Square of its oppofire Side G H is greater than 389 , the Sum of the Squares of the two other fides GI and HI.

In fine, We know that thefe three Triangles ABC, DEF, GHI , are equal, that is, their Area's are equal among themfelves; becaufe, in multiplying the Bale AB by the Altitude AC, we have the fame Product. as in multiplying the Bafe DE by the Altitude FK, or the Bafe © H by the Altitude LI; viz. 168 the Double of the Area of each Triangle, which by confequence is 84. The three fides of the Oxygonium DEF, and the Perpendicular $\mathbf{F} \mathrm{K}$, are in a continual Arithmetical Proportion.

PROBLEM XII.

To find a Rigbt Line equal to the Arch of a Circle giocimi

IET the given Arch be BCD, the Centre of the Circle A, and AB or AD the Radius or Semidiameter; divide this Arch
 into two equal parts at the point C, and draw the Chords BC, C D, B D. Extend the Chord BD to \mathbf{E}, fo that the Line BE may be the Double of one of the two equal Chords $B C, C D$; ie. may be equal to the Sum of thele two Chords. Prolong the Line BE to F, fo that the Line EF may be equal to the third part of the Line DE, and the Line BF thall be almoft equal to the Curve B CD. I laid almoft, becaure the Line BF is a very little lefs than the Arch BCD; but when the Arch does not exceed 30 Degrees, the Difference is fo fmall, thar, of a Hundred Thoufand parts that thay be given to the Radius AB or AD , the Difference will not amount to One.

Thofe who underftand Trigonometry, will find that if the Arch BCD is precifely 30 Degrees, or the 12 th part of the Circumference of the whole Circle; and if the Radius A B be 50000 parts, and confequently the Diameter 100000, each of the two Chords BC, CD, will be 13053 , and confequently their Sum, or the Line BE, will be 26106 ; from which, if you fubtract the Chord B D, which will be found 25882 , there will remain 224 for the Line DE, the third part of which is 74 for the Line EF; and that Line EF being added to the Line BE or 26106 , their joynt Sum will be 26180 for the Line BF, or for the Arch BC D, which multiplied by 12 , gives 314160 for the Circumference of the Circle. And thus we know, that when the Diameter of a Circle confifts of 100000 parts, the Circumference is about 3 raf 160 fuch like parts, and confequently the Diameter of a Circle is to the Circumference, very near, as 100000 is to 314160 , or as 10000 to 31416. 3 This

This puts us in 2 way to find the Circumference of a Circle, the Diameter of which is known, by multiplying the Diameter by 31416 , and dividing the Product by roooo; for if we cut off from the Product the four Right-hand Figures, the Figures to the Left will give the Circumference of the Circle, and the Figures cut off will be the Numerator of a Fraction, the Denominator of which is 10000 .

To find, for Inftance, the Ci:cumference of a round Vafe of a Fountain, the Diameter of which is 64 Foor, we multiply 64 by 31416 , and tron the Yroduct 2010624 cut off four Figures to the Right-hand, which leaves us zor Foot and $\frac{\text { cot }}{1000}$ for the Circumierence demanded.

If we want to know the Diarreter of a Circle or Ball by the Circumference given, we muft reverie the Operation; that is, multiply the Circumference by icooo, which is done by adding to it fuur Cyphers to the Right, and dividing the Product bs $\$ 1416$.

Thus to know the Dainetes of a round Tower, the exrernal Circuir of which is by a lony fonc found to be $\mathbf{1 5 4}$. Foot, we add four No:gnts ro che Rigite of 154 , and divide 1540000 by $314 i 6$, which gives 49 Foor for the Diameter we look for.

PROBLEM XIII.

To find One, Two, or Three mean Proportionals to two Lines given.

TO find in the firf place one mean Proportional be: two Lines given A B, AC, wedefcribe round the greatef AB the Semicircle tD B, and from C the end of the leaft A C raife the Perpendicular CD,
 and draw the right Line A D, which is a mean Proportional between the two Lines A B, AC.

To find two Means continually proportional between the two given Lines $A B, A C$; we make of thefe two Lines the Rectan-
 gle Parallelogram A B DC, and from its Centre E defcribe the quarter of a Circle GHP, of fuch a bignefs, that the: Right Line FG drawn through the two Points where the Curve cuts the two given Lines AB, A C prolong'd, paffes by the Right Angle D; for then the two Lines C F, BG, will be the mean Proportionals enquired for, and the four Lines $\mathrm{AB}, \mathrm{C}, \mathrm{BG}, \mathrm{AC}$, will be continually proportional.

In fine, To find rhree Means continually Proportional between the two Lines given A B, A C, we firft find one mean Proportional AD, as was above directed; and then purfue the lame Method in finding AE, (See the laft Fig. but one) another mean Proportional berween A D, and AC the firft given Line, and ar laft A G yet another meean Proportional berween $A D$ and $A B$; and thus the three Lines AF, AD, AG, will be the Mean Proportionals demanded; fo that the five Lines $A C, A F, A D, A G, A B$, will be in continual proportion.

If the two Lines AB, A C, are given in Numbers, 23 if $A B$ were 32 , and $A C_{2}$, we may exprefs in! Numbers the three Means AP, AD, AG, by multiplying together 32 and 2 the two Numbers of the two given Lines, and taking the Square Koot of the Product $6+$, viz. 8 for the Mean AD; which being multiplied by AC the firft, and AB the laft, feparately, tre Square Roots of the two Products 16 and 256, make 4 for AF, and 16 for A G.

But to find in Numbers only two Means proportional between the two given Lines $A B, A C$, fuch as $C F$, and BG (See the laft Fig.) Suppofing A B the leaft to Square of the firft AB, by the laft AC, and take the Cube Roor of the Product 64 ; thus you have 4 for the firft Mean Proportional CF, which follows in proportion the firf of the given Lines. Then multiply in like manner 256 the Square of the laft given Line AC, by the firft A B, and extract the Cube-Roor of the Product 512 , which brings you 8 for the other Mean Proportional BG.

PROBLEM XIV.

To defcribe in a given Circle four equal Circles that muä tually touch one another, and likewife the Circumference of the given Circle.

\mathbf{T}HE Circle given being ABCD, the Centre of which is \mathbf{E}, divide it into four equal parts by the two perpendicular Diameers A C, BD, upon :he Diameter BD :ake the Line DF ejual to the Line CD, which is the Subender or Chord of :he quarter of the Zircle, and the Line E will give the Length of the Ralius of each of the equal Circles demanled. So if you fet
 off the Length of EF apon the perpendicular Diameters AC and BD, as from A to K, from B to G, from C to H, from D to I, and apon the Centres K, G, H, I, defcribe through the Points A, B, C, D, four circular Circumferences, they will both puch one another, and touch the Circumference of the. Circle given ABCD.
If you joyn any two Centres, as I, K, with the Right Renarke ine IK, this Right Line will be parallel to its correponding Chord D A, and will pafs through the point of be Contact O ; and confequently 'wwill make at I , half

$$
\text { G? } \quad \text { aRight }
$$ 45 Degrees, as well as the Arch MO, the whole Arch $L \mathrm{M}$ being a quarter of a Circle. From whence it fol lows. that if you draw the Righr Line CF the Angle ECF will be 22 Degrees 30 Minures, which afforth another Conftruction for the Refolution of the Problem

PROBLEM XV.

To defcribe in a given Semicircle three Circles that touct the Circumference and Diameter of the given Semicin cle ; and of which, that in the middle, being the bigt geft, touches the two others that are equal.

F
R OM the Centre D of the Semicircle given ABC upon the Diameter A C raife the Perpendicular DB

and divide it equally at the Point E, which will be that Centre of the greateft of the three Circles demanded viz. BIDK. For the other Circles, which are equal one to another, divide the Semidiameter DE into two equal Halves at the point H ; and with the Interval BH defribe on each fide of the two Points E D, two Arche of a Circle which here cut one anorher at the Poinss FG for the Centres of the two equal Circles; which mafl eafily be defrrib'd, in regard the Radius of each of 'em it equal to the Line DH, or the fourth part of the Diameter BD , or, which is the fane thing, to the eighth part of the great Diamerer AC.
-Tis evident that the Semicircle ABC is the Double Romark: of the Circle BIDK, fince the Diameter AC is the Double of the Diameter BD ; and in like manner, that the Semicircle BID is the Double of the Circle $1 \mathbf{L} \mathbf{O}$, fince the Radius DE is double the Radius PI or 1 L. From thence 'tis eafie to conclude, that the Mixti-lineal-Triangle ABID is equal to the Semicircle BDI, and confequently, that the Semicircle ABC is divided into four equal parts by the Diameter $B D$, and the Circumference BIDK.

PROBLEM XVI.

To defcribe Four proportional Circles; in fuch a mainer, tbat tbeir Sum Shall be equal to a given Circle, and that the Sum of their Radius's be equal to a Line given.

ET the given Circle be ABCD, the Centre of which is O , and one Diameter $A C$; and let the

Line given be AE greater than the Radius AO, and lefs than the Diameter A C, if the four Circles demanded are required to be unequal. The Diameters of thele four Circles will fall thus:
Having drawn at pleafure in the Circle given ABCD the Line FG parallel to the Diameter AC; and having cut off from the Line given A E the part $E H$ equal mity of the Diameter AC, the Line AI equal to the Line AH, and perpendicular to the Diamerer AC; and from the point I draw 1 B parailel to the fame Diat meter AC; which Parallel Line here meets the Circumference of the given Circle at \mathbf{B} : from that point \mathbf{B} draw BD perpendicular to the Line FG, and the four Lines KF, KB, KG, KD, will be the Diameters of the four Circles fought for.
It may fo fall out, that the two fmaller Circles KF, K B, thall be equal, as well as the two larger K G, KD; namely. when the Line FG is equal to the Line given AE. And confequently when you would have all the four Circles unequal, it behoves you to draw the Line F G either greater or leffer than the Line given AE, and in that cafe the Circle KF will be the leaft of 'em all, and the Circle K D the greateft.

PROBLEM XVII.

Upon the Circumference of a Circle given, to find an Arch the Sinus of which is equal to the Chbord of the Complement of that Accb.

LET the Quadrant of a Circle be given ABC, the Centre of which is A ; from B the Extremity of the
 Radius AB raife the Perpendicular BG equal to BC the Chord of the Quadrant; then from the Centre A to the points G draw the Right Line AG, and having taken upon the $\mathbf{R a}$ dius $A B$, the part $A F$ equal to the part GH , raile from the point F upon the line A B the Perpendicular FD, which will determin the Arch demanded, viz. CD, the Sinus of which is equal to BD the Chord of the Complement of that Arch. the Radius AH , being 100000 parts, the Line $\mathbf{A G}$, contains

Geometrical Problems.

contains $\mathbf{1 7 3 2 0 5}$, from which if you take AH or 100000 , the Sinus E D of the Arch C D, which will be $47.3^{\prime} \cdot 32^{1^{\prime \prime}}$. and by confequence its Complement BD is $42^{\circ} .56^{\prime} .29^{\circ \prime}$. Thus we know that the Sinus of an Arch of 47. $3^{\prime} .31^{\prime \prime}$. is equal to the Chord of an Arch of 42 . 56^{\prime}.29'。. which is its Complement.

PROBLEM XVIII.

To defcribe a Rectangle-Triangle, the thres fides of which are in Geometrical Proportion,

HAving drawn at pleafure the Semicircle ABC; the Centre of which is \mathbf{D}; and of which the Diameter AC thall be taken for the Hypothenufe of the Rectangle-Triangle defir'd; draw from C, the Extremity of the Diameter AC, the Line CE equal and per, pendicular to the Diameter it felf AC, and joyn the Right-Line DE, which is here cut by the, Circumference of the Semicircle A B C at the Point F. Take the Length of the pait E F upon the Circumference
 $A B C$, extending from A to B, and joyn the Right-Lines AB, BC, which at the Point B will form a Right-Angle, and the RectangleTriangle, A B C will be the Triangle enquired for ; and fo there will be the fame Ratio between the Side A B and the Side BC, as there is between BC and the Hypothenufe AC.

If from the Right-Angle B you draw the Line $B G_{\text {Remark }}$ perpendicular to ine tijpothenufe A C, the greater Scg ment CG will be equal to the leat Sile oppofire $A B$, or to the part E.F; from whence we draw another Conftruction for the Kefolution of this Problem, namely, by taking upou the Dizmierer AC the part CG equal to the part EF, and letting fall from the Puint G the Perpendicular G B, EGes
G_{4}

A third Conäruition may be obrain'd, if we confider that the Hypothen fe $+C$ is cut at the Point G by its Perpendicular BG in the mican and exream Ratio; that is, the Hyporhanfe AC is ro is greate! Seginent CG as the fame preateit Segmer: $C G$ is to the leffer $A G$.

If you dedice a f with Cuntinuciuen, let fall from the Extrenitiy, , the Line A G perorndicular to the Diameter $A C$, and equ:al to the third oatt of the fame Dis. meter AC; a.d fom the Punt G draw the Line $G H$ parallel to che Dism cer A C; this Parallel $G H$ will be equal to the thura puic of the leffer Segment AG, Éc.

PROBLEM XIX.

To defcribe Four equal Circlus which mutually touch one anotber, and on the out/ide touch the Circumference of a Circle given.
H
Aving divided the given Circle $A B C D$ into four equal parts by the two Diameters $A C, B D$, which cut one another at
 Right-Angles at the Ceture E; take upon the Diameter AC prolong'd, the Line AF equal to the Line $A B$, or to the Chord of the Quadrant of the Circle; and the Line EF will give the Length of the Radius of each of the four equal Circles demanded. So run the Length of EF upon each of the two Dizmeters prolong'd, $A C, B D$, from the Circumference ${ }^{\circ} \mathrm{f}$ the Circle given A B C D to the Points $\mathrm{C}, \mathrm{H}, \mathrm{I}, \mathrm{K}$; and from thefe Points or Centres defribe by the Points A. ${ }^{2}, \mathrm{C}, 1 \%$, as mary equal Circles, which will mutually touch on" ancther, and likewife the Circumifercace of the Carie given A BCD.

If you joyn any two Centers, as \mathbf{G}, H, by the Right- Rumark. Line GH , this Line $\mathbf{G H}$ will be parallel to the correponding Chord AB , and will pafs through the Point of Contact \mathbf{O}; and by confequence will form at the Points G, H, half Right-Angles, or Angles of 45 degrees ; fo that each of the Arches, AO, BO, will be likewile 45 degrees.

PROBLEM XX.

To defribe a Rectangle-Triangle, the Tbree Sides of wbicb are in Aritbmetical Proportion.

TAKE the Indefinite Line AB, and mark upon it five equal parts of what length you will, from A to B; and let this determin'd Line A B be the Hypothenufe of the Rectangle-Triangle demanded. From the Extremity A, ar the Interval of three of the parts defribe an Arch of a Circle, and from the other Extremity B, at
 the diftance of four parts defcribe another Arch, which will cut the firlt at a Point, as at C; and from this Point C if you draw to the two Extremities of the Hypothenufe A B, the Right-Lines AC, BC, you have a RectangleTriangle ABC, the three Sides of which, AB, BC, A C, are in Arithmerical Proportion, that is, they equally rife one above another in length, the Side A B containing 5 parts, the Side BC 4 , and the Side AC 3

Thefe Rectangle-Triangles, the Sides of which are Ramark. Arithmetically Proportional, have this peculiar Property, That the Sum of their Cubes in Numbers is 2 perfect Cube: For, A B being 5, its Cube is 125 ; B C being 4, its Cube is 64 ; and AC being 3, irs Cube is 27 ; and 216 the Sum of the three Cubes, 125, 64, 27, has 6 for its Cube-Root, which in this Rectangle-Triangle is equal to its Area.

If you-double all the Sides of the Triangle ABC, and to make the Side AB to contain 10 parts, the Side BC 8, and the Side A C 6. you'll have another RectangleTriangle fimilar to the former;
 and the Sum of their Cubes is a perfect Cube, viz. 1728, the Cube-Root of which is 12 . Befides the Area and the Circumference of this fecond Rectangle-Triangle are equal, each of 'em being 24. See Probl, XXIII.

PROBLEM XXL

To defribe Six equal Circles wobicb mutually touch one anotber, and likewije the Three Sides, and Tbree Angles of an Equilateral-Triangle given.

L
ET the Equilateral-Triangle given be A BC, and its Center D. From the Center D draw by the Three Angles A, B, C, and by E, F, G, the middles of the three Sides, as many Right lines; in order to mark upon

3
'em K, L, M, N, O, P, the Centers of the Six Circles demanded, and that in the following manner.
Upon the Side A B take the part EH equal to the half of the Perpendicular DE; and baving joyn'd the Right Line DH, prolong it to I , fo as to make the pare H 1 equal to the part HE, the whole Line DI will give the Length of the Radius of each of the fix equal Circles to be defcrib'd, the Centers of which will be found by ranning the length of $D I$ from E to K, from B to L, छic.
If you joyn the two Centers P, L, by the Right-Line Remark: PL, this Line PL will be parallel to the Side A B, and by confequence will divide the Radius E K at Right-Angles, and into two equal Halfs. Hence it-follows, that if you draw the Right-Line E L, and the Right-Line K L, which will pals through the point of Contact R, the Triangle ELK will be a_{n} Ifolceles-Triangle, each of the two equal Sides, EL, KL, being double the Bafe $\mathbf{E K}$; and the Arch EK will be $75.31^{\prime} .20^{\prime \prime}$, as the Arch BR will be 44. $28^{\circ} .40^{\circ}$. So that thefe two Arches will make together juft 120 Degrees, that is, 25 much as the Angle PD L.

PROBL:

PROBLEM XXII.

Several Semicircles being given which touch one änotber ä́ the Right-Angle of two perpendicular Lines, and bave their Centers upon one of thefe troo Lines; to find the Points where thefe Semicircles may be touch'd by fraigbt Lines draton from thefe Points to a Point given upon an other perpendicular Line.

1ET the given Semicircles ABC, ADE, AFG, AHI; AKL, the Centers of which are upon the Line AL, perpendicular to the Line AM, touch one another at the

Right-Angle A. And let it be requir'd to find the Points at which all the Semicircles may be touch'd by 2 RightLine for each drawn from the Point M.

From the Point given M, as a Center, and through the Point of Contact A, defcribe the Arch of the Circle A K, wtich will cut the Circumferences of the given Se micircles at Points, as here, at B, D, F, H, K; and thefe will be the Points of Contact requir'd.
When the Divifions of the Line AL are equal, you may make ufe of thefe Semicircles to divide a Line given inro equal parts, viz. by applying that Line, fuppofe AK or AO, from the Point A to the Circumference of the fifth Semicircle; when you have a mind to divide it inte five equal parts, for the Circumferences of the other
other Semicircles will mark upon it fo many Divifions. By the like Merhod any Line may be divided into any other number of Parts.

PROBLEM XXIII.

To defribe a Rectangle-Triangle, the Alta of which in Num: bers is equal to its Circumference.

DRAW the two Perpendicular Lines AB, AC, makiag the firt, A B, to contain sparts, taken by a Scale of equal Parts, and the other 12 from the fame Scale; then draw the Hypothenufe BC, which will contain 13 equal parts, as is eafily found out by adding 25, 144 , the Squares of the two Sides A B, A C, and extracting the Square-Roor of their Sum. The Area of this Re-Ctangle-Triangle will be equal to its Circumference, or to the Sum of its three Sides, viz. 30. The fame is the Qualisy of a Rectangle-Triangle made of 6, 8, 10 , in Numbers, the Area and Circumference being
 either of 'em, 24 .

No Rectangle-Triangles, in entire Numbers, enjoy Remark: this Quality, but the Two now mention'd, viz. 6, 8, 10, and 5,12, 13. But in the Fractional-Numbers we may find an Infinity of this fort, and that by following this General Rule, which is grounded on Demonitracion.
Form a Retangle-Triangle from any Jquare Number, and How to find the fame Square augmented by the Addition of 2 ; then di- Reetanglevide this Triangle by the Square Number, in order to bave a the Areas, Second Rectangle-Triangle, the Area of which is equal to its and Circump: Circumference. For Example, Take 9 and II, and form $\begin{aligned} & \text { ference of } \\ & \text { whi } \\ & \text { are }\end{aligned}$ this Rectangle-Triangle $40,198,202$, and divide it by whinh
9; you have another Rectangle-Triangle $\frac{40,198,202,}{9}$ the Area and Circumference of which are equal, each of them being $\frac{440 \cdot}{9}$ In like manner, if from 16 and 18 vide it by 16 , you have this other Triangle $\frac{17,144,145 \text {, }}{4}$ the Circumfereace and Area of which are equally $\frac{135}{2}$. And fo on.

PROBLEM XXIV.

To defcribe witbin an Equilateral-Triangle Tbree equal Cir: cles wbich touch one anotber, and likervife the Tbree Sides of the Equilateral-Triangle.

L
ET the Equilateral-Triangle be ABC; divide each of iss Sides into two equal parts at the Points $\mathrm{D}, \mathrm{E}, \mathrm{F}$, and through
 thele Points draw to the oppofite Angles as.. many ftraight Lines, upon which you are to take the Centers $\mathrm{G}, \mathrm{H}, \mathrm{I}$, of the three Circles demanded, by fetting off upon éach Perpendicular Line, half the fide of the Equilateral - Triangle from the refpective middle Point, namely, from D to G, from E to H, from F to I, \mathcal{O}^{c}. Lines which pafs through the Points of Contact, you have the Equilateral-Triangle GH1, whofe Sides will be parallel to thole of the given Triangle ABC, and three equal Trapezia AHIB, BHGC, CGIA, each of which hath Three Sides equal to thofe of the EquilateralTriangle GHI, and the Area's of which, are, each of 'em, equal to the eighth part of the Square of A B, the Side of the Triangle given ABC.

PROBLEM XXV.

To defcribe a Rectangular-Triangle, the Area of which, in Numbers, is one and an balf if the Circumference.

DRAW two Perpendicular-Lines AB, AC, the firf of which contains 8 parts, taken from a Scale of equal parts, and the other 15 ; joyn the Two Extreminies with the Hyporhenufe BC, which will contain 17 parts, as is cafily perceiv'd, by adding 64,225 , the Squares of the cwo Sides AB, AC, and extracting the Square-Root of the Sum 289. Here 60, the Area of the Right-An-gled-Triangle ABC, is to the Circumference 40 , as 3 is to 2 . The fame is the Quality of this other Rightangled-Triangle 7,24,25; the Circumference 56 being two Thirds of the Area 84.

Befides the two Rightangled-Triangles now mention'd, viz. $7,24,25$,
 and 8, 15, 17 ; we have no other in entire Nambers that poffefs this Quality; but many in Fractional-Numbers, which are found by the following General-Rule taken from Algebra. Form a Rigbtangled- How to find Triangle of any fauare Number, and the fame Number, wistb Trianonger ${ }^{\text {Rid }}$ the Addition of $\mathbf{3}$; and divide the Triangle by the fame the Areas, Square Number; you bave a fecond Rightangled-Triangle, ,nd Circumtbe Area of which leaves a Sefquialteral Proportion to the wherences of Circumference. Thus, if from 4 and 7 you form the shefichailereal Rightangled-Triangle, $33,56,65$, and divide ir by 4, Proporition. you have this other Rectangle-Triangle $\frac{33,56,65 \text {, }}{4}$ the Area of which $\frac{231}{4}$ is to the Circumference $\frac{77}{2}$ as 3 is to 2. In like manner, if from 16 and 19 you form the Rectangle.Triangle, 105, 608, 617, and divide it by 16, you have this orher Rightangled.Triangle $\frac{105,608,617}{16}$ the Area of which $\frac{1995}{16}$ is to its Circumference $\frac{665}{8}$ as 3 is to 2 . And foof the reft. PROBL.

PROBLEM XXVI.

Tirjecribe in a Square given four equal Cirales which toucb vine another, and likewife the Sides of the Square.
ET the Square given be A B CD, divide each of its Sides into equal Parts at the Points F, G, H, I, and draw the Right Lines FH, G I, which will cut one ano:

ther at Right-Angles into two equal parts at E the Cen: ter of the Square. Upon thefe two Lines FH, G I, you are to mark out the Points L, M, N, O, for the Centers of the Four Circles required, and that in the following manner.
Joyn with a fraight Line H and I, and cut off from that Line the part I K equal to IE or GE, the halves of the Line IG, or of the fide of the given Square ; and the Remainder, HK, will be the Radius of each of the Four Circles you would draw. And fo if you take the Length of HK upon the Lines FH, GI, from their Extremities F, G, H, i, to the Points N, M, L, O, the Problem is refolv'd.

An eafier Method is this: From the Line IG cut off the Part IT equal to the Line IH; and make the Lines EL, EM, EN, EO, each of 'em equal to the Remainder T G, in order to have as before, the Centers $\mathbf{L}, \mathbf{M}, \mathbf{N}, \mathbf{O}$, of the four Circles to be delcribed, which are found by making the Lines FN, GM, HL, IO, equal, each of 'em, to the part E T.

Or elfe, make the Four Lines A P, $\AA \mathrm{Q}, \mathrm{CR}, \mathrm{CS}$, equal, each of 'em, to the Line I H, and draw the Right Lines PQ. R S, which will give you upon the two Lines FH, G I, the Centers L, M, N, O, for thr Four Circles required.
'Tis evident that each of the two Lines PQ,RS, is Retarte equal to the Side A B of the Square given A BCD ; and each of the two Lines $P R, Q S$, is equal to the Diameter of each of the equal Circles, which mutually touch. 'Tis likewife evident, that each of the two Ifofceles RightAngled Triangles AP Q, CRS S, is equal to the Square DIE H, or to the fourth of the propofed Square ABCD; and that the Ifofeles Righr-Angled Triangle OEN is equal to the Square of the Radius \mathbf{O} I.

PROBLEM XXVII.

To defcribe a Rectangle-Parallelogram, the Area of which in Numbers is equal to its Circumference.

D^{1}Raw the Two Perpendicular Lines A B, AD, fo as to make the firt contain 3 Parts taken from a Scale of equal Parts, and the other 6 . From the Point D, with the Aperture of the Compafs A B defcribe an Arch of 2 Circle; and from the Point B , with the Di ftance A D defribe another Arch of a Circle, which here meets the firft at the Point C, from which you are to draw the two Lines BC, CD, to perfect the Rectangle $A, B C D$, the Area of which is equal to the Circumference, each of "em bẹing 18.

In Integers we have only this Rectangle, and the Square of 4 that admit of this Quality of having their Area equal to the Circumference; but in Fractions there are many; the Length and Breadth of which is thus determin'd.
How to fird. Fix upon the fide A D what Number you pleafe, onRetangles ly it muit be larger than 2 ; fupfofe then 8 ; divide its wilk the A rea's equal to the Circum. ferences. Double 16 by the fame fide wanting 2, i. e. by 6, and the Quotient $\frac{8}{3}$ is the other Side AB. Thus you have in Numbers a Rectangle Parallelogram, which has for its Length 8, for its Breadth $\frac{8}{3}$; and for either its Circumference or its Area $\frac{6}{4}$, or $21 \frac{1}{3}$.

PROBLEM XXVIII.

To meafure with a Hat, a Line upon the Ground acce fible at one of its Extremities.

THE Line to be meaxured muft not be extravagantly long, otherwife 'twill be hard to meafure it exactly

with one's Hat ; for the leaft Failure of a juft Aim, or departure from an upright Pofition, would make very fenfible Errors in the Meafure of a very long Line, efpecially if the Ground is fomewhat uneaven.

To meafure then with the Hat the Line A B acceffibe at the Extremity A, fuppofe the Breadth of a fmall River, he who pretends to meafure, muft ftand very Atraight at the Extremity A, and fupport his Chin with a little Stick, refting upon one of the Buttons of his Coat, fo as to keep his Head fteddy in one Pofition. Thus po-: fited, he mult pull his Har down upon his Forehead, till the Brim of his Hat cover from his View the inacceffible Extremity B of the Line to be meafured AB; then he muft turn himfelf to 2 level uniform piece of Ground, and with the fame Pofition of his Hat obferve the Poist
of the Ground where his View terminates, ass C; then meafuring with a Line or Chain the Diftance $A C$, be has the Length of the Line propos'd, A B.

PROBLEM XXIX.

To meafure witb two unequal Sticks Horizontal Line accefflble at one of its Extremities.

T^{O} know the Length of the Horizontal-Line AB; which reprefents the Breadth of the Ditch $A B C D$, and is acceffible at its Extremity A ; fer up, perpendicularly, at that Extremity A, the leaft of the two Sricks A E; and the greater of the two FG, upon a ftreight Line with the line to be meafured, at fuch 2
 Diftance from the firft, A E, that you may juft perceive the inacceffible Extremity B, over the two Ends EG of the two Sticks thus fixed. Then take an exact Meafure of the Dittance A F, which we here fuppofe to be 12 Foot; and of the Length of the two Sticks AE, FG, of which we here fappofe the leaft, AE, to be 3 Foor; and the greateft, FG, s; fo that by this Suppofition, the Exceefs of the greater Stick above the leffer is 2 Poor. Now, let this Excefs 2 be the firt Term of an Operation of the Rule of Three Direct ; the fecond being 12, or the Dittance $A P$; and the third 3, or the leatt Stick AE; and the fourth the Line A B enquir'd after, which is thus found to be 18 Foor; for if you multiply the fecond Term 12 (the Diftance AF) by the third 3 (thie leaft Stick AE) and divide the Product 36 by 2 (the Excefs of the greater Stick beyond the leffer) you have 18 Foot for the Lengit of the Line propored AB.

PROBLEM XXX.

To meafire an acceflible Heigbe by its Sbadow.

Tmeafure the acceffible Height A B by iss Shadow A C, rerminated by the Ray of the Sun B C. Set up perpendicularly a. Stick D E, of what Length you

will, fuppofe 8 Foot; and meafure the Extent of its Sbadow DF, which we thall here fappofe to be 12 Foot. At the fame time meafure the Shadow AC, which we here fuppole to be 36 Foor; I fay, at the fame time, for otherwife, the Ray varying either by the Motion of the Sun, or that of the Earth, the Rays B C, E F, would no longer be parallel, and fo would prevent the Operation of the Rule of Three Direct, which runs thus; If 12 Foot of Shadow arife from the Height DE of 8 Foot, from what Height mult the Shadow AC of 36 Foor proceed? Here you'll find the Height A B, in queftion, to be 24 ; for multiplying the third Term 36 by the fecond 8, and dividing the Product 288 by the firf 12, you have the Quotient 24 for 2 fourth Proporfional Term, $i_{i} e_{\text {, the }}$ the propoled Height AB.

PROBLEM XXXI.

To find a Fourtb Lim proportional to three Lines given.
T HREE Lines being given $A B, A C, A D$, to find 2 fourth Proportional: Upon the two Extremities
B, D, of the firt and the third Line given, defrribe, from the common Extremity A, the two Arches of a Circle A EF, AGH, and having apply'd to the. firft Arch A EP, the Line AE equal to the fecond Line given AC, prolong the Line $A E$ till it meets the fecond Arch A GH in
 fome Point, as in G, and the whole Line AG will be the fourth Proportional de: manded.

PROBLEM XXXII.

Upon a Line given to defcribe a Retangle-Parallelogram, the Area of mbich is the Double of that of a Triangle given.

\mathbf{L}ET the Triangle given be ABC, and the Line given BE ; draw EF perpendicular to it, and a fourth proportional to the Bale given BE, the Bafe A B of the Triangle given ABC; and the Height CD; then fininh the ReCtangle BEFG, which folves the Problem. This Pro-
 blem is placed here only as fublervient to that which follows.

PROBLEM XXXIII.

To cbange a Triangle given into anotber Triangle, eacb fide of wbich is greater than each fide of the Triangle given.

1P the Triangle given be $A B C$, prolong its Ba (e AB on both Sides to D and E, fo, that the Line $A D$ - may be equal to the Side AC, and the Line BE to the

Side BC ; and by the Direction of the foregoing Problem, defcribe upon the Line DE the Rectangle Parallelogram DEGF, the Double of the Triangle given A BC. This done, take upon the Line DE, between the Points A, B, a Point at difcretion, fuch as H, from which draw to the two Extremities F, G, the Right Lines FH, GH. Thus you have the Triangle FGH, equal to the propos'd Triangle ABC, each of 'em being the half of the Rectangle FGED, and each of the Sides of the one being greater than each of thofe of the other, which was to be done.
Remarke
You may have a Triangle lefs than the propos'd Triangle, with all its Sides longer than thofe of the Triangle A BC, viz by taking H the top of the Triangle FGH under the Bafe AB,

PROBLEM XXXIV.

Ino Semicircles upon one Right Live being given, wbich touch one anotber on the infide; to defcribe a Circle that toucbes both the Right Line and the Circumferences of the two Semicircles given.
I Suppofe the two Semicircles ABC, ADE, are placed upon the Right Line AC, and touch one another at the Point A. To delcribe a Circle that

touches the two Circumferences A B C, A D E, and the part EC of the Right Line AC; lay the Length of the Semidiameter AG of the great Semicircle ABC, from F the Center of the leffer Semicircle ADE ro O, in order to have the Line AO equal to the Sum of the Semidiameters A F, A G, of the two Semicircles given, ABC, ADE. From the Point E upon AC raife the Perpendicular EB, and joyn A and B. Then to the two Lines A O, AB, find 2 third Proportional A H, and to you have in H the Point of Contact between the Circle to be defcribed and the Right-Line EC. From this Point H raile upon EC the Perpendicular HI, a fourth Proportional to the three Lines given, AO, AH, FG; and fol gives you the Center of the Circle you want to defcribe, the Circumference of which muft pafs through the Point H.

If within the fpace terminated by the two Circumfesences A BC, ADE, you defribe a fecond Circle that touches the firft defrib'd from the Center 1, and the two Circumferences ABC, ADE; and if from the Center K of this fecond Circle, you let fall the Right Line K L perpendicular to the Diameter A C, that Perpendicular KL., will be the Triple of the Radius of the Circle defrrib'd upon the Ceriter K: And if within the fame fpace you draw a Circle that touches both the fecond drawn from the Center K, and the Circumferences A B C, A DE, the Perpendicular drawn from the Center M of that third Circle to the Diamerer AC, will be the Quintuple of the Radius of the fame Circle: And in like manner, if within the fame fpace you defcribe a fourth Circle, that touches both the third drawn upon the Center M , and the Circumferences of the two Semicircles, the Perpendicular let fall from P, the Center of that fourth Circle, upon the Diameter AC, will be the Septuple of the Radius of the fame Circle; and fo on in the Progreffion of the uneven Numbers 3, 5, 7, 9, Éc,

Here we fhall take notice by the bye, for the lake of the Learned, that all the infinite Circles that can rouch the two Circumferences ABC, ADE, have their Centers in the Circumference of an Ettypfis the Axis of which is O , which has the Line AH for its Parameter.

PROBL.

PROBLEM XXXV.

Tbree Semicircles upot one Right Line boing given, wbich touch witbin, to defcribe a Circle that touches the Circunferences of the Three Semicircles.

F the three Semicircles are ABC, ADE, EIC, the Centers of which F, G, H, are upon the Right Line $A C$; having found to the Line FG and the Radius

AF a third Proportional AL; find $\overline{\text { a }}$ fourth Proportional to the Sum of the two Lines AL, AG, the Radius A G, and the Radius AF. This fourch Proportional will be the Length of K I, the Radius of the Circle to be delcribed, and that Length mult be taken upon the Line AC, from G to M, and from F to N, in order to defrribe upon the Center \mathbf{N}, and with the Diftance NE an Arch of a Circle, and from the Center H, with the Interval MF another Arch of a Circle, which might likewife be drawn from the Center G, with the Aperture MC. Here K, the common Interfection of thefe two Arches, gives you the Center of the Circle to be defcribed; which is readily done, now the Radius is known, viz. GM, or F N.

If you joyn the Center K with the Centers F, G, H, ramerke of the three Semicircles given, by the flraight Lines FK, GK, HK, you'll have two Triangles, FKG, GKH , of the Came Circumference; the Circumfe- the great Semicircle given ABC, by reafon of the two equal Lines AF, GH.
If between the two Circumferences ABC, ADE, you delcribe, as in the foregoing Problem, as many Circles as you will that touch one another, and the two Circumferences ABC, ADE; and if from their Centers O, P, Q, K, you let fall upon the Diameter AC as many Perpendiculars, the Perpendicular K V will be equal to the Diameter of its Circle, the Perpendicular QT will be the Double of the Diameter of its Circle, the Perpendicular PS will be the Triple of the Diamerer of its Circle, the Perpendicular OR will be the Quadruple of the Diameter of its Circle, and to on, according to the Series of the natural Numbers $1,2,3,4,5,6, \mathcal{E}^{\text {c. }}$

PROBLEM XXXVI.

Tbree Semicircles upon one fraight Line, wobich toucb on the infide, being given, woitb another Right Line drawn from the Point of Contact of the two interiour Circles perpendicular to the firft Right Line given: To defcribe two equal Circles which touch that Perpendicular and the circumferences of the two Semicircles.

LET the three Semicircles given be ABC, ADE, EOC ; of which the Centers F, G, H, are plac'd upon the Right Line A C, which is cut at Right-Angles

$2 t$
at the Point \mathbf{E} by the Right"Line BE: The common Radius of the two equal Circles which muff touch the Perpendicular BE, and the Circumferences of the two Semicircles, will be found by defcribing from the Point A through the Center F the Arch of a Circle FI, and from the Point I by the Point A, the Arch AK; for the Line KF is the Length of the Radius of the two equal 'Circles,' the Centers of which, M and N, are found out as follows:

Having drawn the Line GL equal to the Line $\mathrm{K} F$, defcribe from the Center G with the Aperture LC the Arch MN, and from the Center F with the Aperture K E, another Arch of 2 Circle, which will cut the firlt Arch at M; this \mathbf{M} is the Center of a Circle that thall touch the Circumferences of the two Semicircles A BC, A DE, and the Perpendicular E B. Defcribe likewife from the Center H with the Aperture FL another Arch of a Circle that thall cut the firft $\mathbf{M N}$ at N , the Center of the other Circle that fhall touch the Perpendicular BE, and the two Circumferences ABC, EOC.

If you joyn the two Centers MN with the three ramark: Centers F, G, H, by ftraight Lines, you'll have the two Triangles FMG, GNH, of equal Circumferences, the Circuit of each being equal to rhe Diameter AC of the greateft Semicircle given ABC, by reafon of the two equal Sides $\mathbf{G M}, \mathbf{G N}$, of the Bare $\mathbf{G H}$ equal to the Radius AF, and of the Bare FG equal to the Kadius EH. Befides, MN or NO, is a fourth Proportional to the three Lines A G, AF, FG. In fine, if you draw the Right Lines A O and CD, theyll be perpendicular to their Radius's, tbat is, the Line AO will be perpendicular to the Radius HO or NO , and by conlequence will touch the Circumferences of thefe two Radius's at the Point \mathbf{O}; and the Line CD will be perpendicular to each of the two Radius's FD, MD, and by confequence will touch the Circumferences of thefe two Radius's at the Point D. From hence we may draw another Conftruction for the Refolution of the Problem.

PROBLEM XXXVII.

To defcribe a Triangle, sbe Area and Circumerereno of mbicib are one Square Number.

TAKE from 2 Scale of equal Parts 17 for the Bafe AB; from the Extremity of which, A, with the Aperture of 9 Parts defcribe an Arch of a Circle, and from the Extremity B,

and the Triangle ABC is the Triangle you want, its Area and Circumference being, either of them, 36, the Square-Root of which is 6 .

> Remoark: with the Interval of 10 Parts, defcribe another Arch of 2 Cir cle, which will cut the firt at a Point, which we here fuppofe to be C. Then draw the ftraight Lines AC, BC, This Triangle has been found in Numbers by the means of thefe two Numeral Right-Angled Triangles of the fame height,
 72, 135, 153, and $72,154,170$; the Generating Numbers of which are 12, 3, and II, 7 . It has been found, I fay, by joyning together thefe two Right-Angled Triangles, in order to have the ObliqueAngled. Triangle $A B C$, the Height of which CD, is 72 ; the Bafe A B, being 289 ; and by dividing each Side by the Square-Root 17 of that, Bare 289, E®c.

PROBLEM XXXVIII

To make the Circumference of a Circle pafs tbrough three Points given without knowing the Center.

TO draw an Arch of a Circle through three Points given; for infance, the three Angles of the Triangle ABC, without knowing its Center, make an Angle equal to C of fome folid Matter, fuch as Paftboard, and apply feveral ways one fide of this Angle to the Point A, fo that the other fide may fall on the Point B, and then the Point of the fame Angle will mark out the Points of the Arch demanded; which is eafily drawn
 out by joyning all its diverfe Points, which may be found in infinitum, by a curve Line, ©̌c.

PROBLEM XXXIX.

Two Lines being given perpondicular to one Line drawn tbrougb tbeir Extremities, to find upon that Line a Point equally remov'd from each of the two otber $E x$ tremities.

IVE the two Lines A B, CD, perpendicular to the Line AC, which paffes through their Extremities A, C, you'll find upon that Line a C, the Point F equally remov'd from the two other Extremities $\mathbf{B}_{\mathbf{y}}$ D; you'll find ir, I fay, by joyning thefe two Extremities with the Rightline $B D$, and drawing to

the which will mark our upon AC the Point \mathbf{F} required the two Lines F B, FD being equal.

This Problem is commonly propos'd after the follow ${ }^{d}$ ing manner: The Heights A B, CD, being given, withe their Diftance A C, to find upon the Ground A C, Point F, from which the Ropes extended to the tops B and D Sall be equal.

When the Heights AB,CD, and their Diftance A 9 are known in Numbers; as if the Height A B were s Foot, the Height CD63, and the Diftance A C 49 ; thot Part AF is found by taking from the Sum of the two Squares AC, BD, the Square AB, and dividing the Remainder by the Double of AC; and in like manner, the Part C F is found by fubtracting from the Sum of the Squares A C, AB, the Square CD, and divi-i ding the Remainder by the Double of AC. Thus the Part AF will be found 33 Foot; the other Part CF 16 Foot ; and each of the two equal Chords FC, FD, 65 Foot, as is eafily computed, by adding the two Squares AB, AF, or the two CD, CF, and exuracting the Square-Root of the Sum 4225, ©̌.

PROBLEM XL.

To defrribe two Right-Angled Triangles, the Lines of abbich bave this Quality, That the Difference of the two fmalleft Lines of the firft is equal to the Difference of the twoo greateft of the Jecond; and Reciprocally the Difference of the troo (malleft of the Second is equal to that of the twoo greateft of the firf.

DRAW firt the two perpendicular Lines AB, AC, of fuch 2 fize that the firft AB contains 60 Parts of a Scale of equal Parts, and the
 fecond AC II; in which Cafe the Hypothenare BC will be 6 I , as appears by adding the Squa res of $A B, A C$, and extracting the Square-Root of the Sum 372I.

Geometrical Problems.

Then draw the two perpendicular Lines DE, EF, aaking the firft DE 119 Parts, and the fecond 120 ; in which Cafe the Hypothenule will be 169, as appears by idding the Squares $\mathbf{D E}, \mathbf{E} F$, nd extracting the Square-Root ff 28561. This done, the two Right-Angled Triangles ABC, D EF, will refolve the Problem; ior the Difference, 49, of the :wo fmalleft Lines AB, A C in che firlt Triangle ABC, is equal to the Difference of the
 two greateft DE, EF, in the Cecond Triangle DEF; and Reciprocally, the Difference I of the two fmalleft DE, EF in the fecond is equal to that of the greateft $A B, B C$ in the firf.

Thefe two Differences 49, 1 , happen bere to be Remark. \{quare Numbers, and will always be fuch in all RightAngled Triangles calculated according to the following General Rule taken from Algebra. The Double of the a General Product arijing from the greateft of any two Numbers, Rule for aud their Sum, and the Sum of the Squares of the fame led Triantwo Numbers, are the two Generative Numbers of one gles, the Reof the Rigbt-Angled Triangles to be defcrib'd; and the ciprocal DifDouble of the Product arifing from the leaft of the Same ference of Doule Pre whore sides two Numbers and their Sum, and the Sum of the Same are equal. Squares, are the two Generating Numbers of the otber. Right-Angled Triangle demanded.

Of thefe three Generating Numbers, that which is common to two Right-Angled Triangles, is the Hypothenufe of a third Right- led Triangle ; and of the other two, one is the Cilumference of that third Triangle ; and the other is the fame Circumference, only the greateft Generating Number of that third Triangle is then changed into the leaft.

PROBLEM XLI.

To divide tbe Circumference of a Semicircle given into tivd unequal Arebes, in fucb a maniner, that the Semi-Diameter may be a Mean Proportional Between the Cbords of thefe two Arches.

1
F the Semicircle given is ABC, the Center of which is D, defcribe through the Center D from B the Ex.

tremity of the Diameter AB, the Arch of a Circle. DE, and having divided the Arch BE into two egual perts at C, draww the two Cbords A C, B C, between which the Semi-Diameter $A D$, or $C D$, is 2 MeanProportional.
'Tis evident, that the Arch BE contains 60 Degrees, and confequently, its Half BC or CE is 30 , and the other Arch A EC is an Arch of 150 Degrees. From whence we may readily conclude, that Gince the Sinus of an Arch is the Half of the Chord of a double Arch, and the Half of Radius or Sinus Total, is she Sinus of $2 n$ Arch of 30 Degrees; this Sinus of an Arch of 30 Degrees is 2 Mean Proportional between the Sinus of an Arch of 15, and the Sinus' of. its Complement, or the Sinus of an Arch of 75 Degrees.

PROBLEM XLII.

'A Ladder of a known Length being fet, fo as to reft upon a Wall, at a certain Diftance from the Wall'; to find bow far 'twill defcend when mov'd a little farther from the Foot of the Wall.

WE'll fuppofe the Ladder E F ftanding againft the Wall ABCD, to be 25 Foot long, and at the diftance of ? Foot from the Foot of the Wall, and confequently FG perpendicular to the Wall to be juft 7 Foor. Suppofe again, that the Ladder is mov'd 8 Foor from F to H , fo that the Situation being as H ; the part FH muft be 8 , and by confequence the whole Line GH is Foor in which Cafe the Ladder will have defcended from \mathbf{E} to \mathbf{I}, which is found thus:

Multiply E F, the Length of the ladder, by it felf, i. e. 25
 by 25 , and fo you have irs Square 625 ; multiply likewife the Diftance FG by ir felf, i.e. 7 by 7 , and fo you have its Square 49 to be fubtracted from the foregoing Square 625, and the Remainder 576 is the Square of the Height $\mathbf{E G}$; becaufe \mathbf{G} is the Right. Angle of the Triangle EFG; fo that 24 the Square Roor of the Remainder 576 is the Height E G.

In like manner, multiply the Diftance HI by it felf, i.e. 25 by $2 ;$; fo you have 625 for its Square; then multiply the Diftance HG by it felf, or 15 by 15 , and its Square is 225 ; which fubtracted from the other Square 625 , leaves for a Remainder 400, the Square of the Height I G; and fo 20 the Square-Root of 400 , (i.e. the Height IG) fubtracted from 24 the Height EG found above, leaves 4 the Length of EI, which anfwers the Problem,

Mathematical and Pbyfical Recreations.

PROBLEM XLIII.

To meafure an acceffible Line upon tbe Ground by meass of tbe Flafs and the Report of a Canon.

WITH a Mufquet-Ball make a Pendulum ri Inches and 4 Lines long, calculating the Length from the Center of the Motion to the Center of the Ball; and the very moment that you perceive the Flafh of the Canon (which muft be at the very place, the Diftance of which, from the place where you are, is inquir'd after) pur the Pendulam in motion, fo as that the Arches of the Vibrations do not excede 30 Degrees; multiply by 200 , the Number of the Vibrations from the moment yoa perceiv'd the Fiafh to the moment in which you hear the Report, and fix Fout. reckon as many * Paris-Toifes for the Diftance of the place where the Gun was fired, from the place where you ftood.
nerperti. Much after the fame manner you may meafure the Height of a Cloud, when'tis near the Zenith,and at a time of Thunder and Lightning. Bur this way of mealuring Diftances is very uncertain, and I only mention'd it here as a Recreation.
A furer way is that of meafuring a tolerable Diftance upon the Ground, the Extremities of which can't be feen one from another ; but then, in this Cafe, inftead of a Cannon, 'twould do better to make ufe of an Arquebufe, the Report of which goes 230 Toifes in one Second of Time. And fo to meafure fuch a Diftance, you mont have a Pendulum-Clock, and count the Seconds of Time running from the Flath of the Gun let off at one of the Extremities of the Line propofed, and the Perception of the Report in the Ears of another Perfon placed at the other Extremity of the fame Line. Thus the Multiplication of the Seconds of Time by 230 , gives you the Length of the propofed Line or Diftance in Toifes.

Father Schot fays, That 'ris known by feveral Experiments; that a large Cannon-Ball Horizontally directed, will fly a German League of 4000 Geometrical Paces in two Seconds of Time; fo that this may ferve for the Menfuration of Diftances upon the Ground, if it be true, that the Velocity of the Sound is equal to that of the Ball; for then we may compure, That the Diftance in Geomerrical Paces is to the Number of the Seconds of Time (run between the Flafh and the Perception of the Report) 254000 is to 2, or 2000 to 1 , Éc,

PROB-

PROBLEmS

OFTHE

O P TICKS

THE Opticks, according to the Etymology; is a Science of Vifion, which- is- perform'd three different ways. The firft is by direct Rays or Rays fent directly from the Object to the Eye; and this makes what we call Per $/$ petive, which deceives the imagination very agreeably by reprefenting in a Picture which it fuppofes Tranfparent, all forts of Objects, not as they really are, but as they act upon the Eye, and appear in the Picture. The fecond way of Vifion is by Reflex Rays, that is, by Rays that rebound when they ftrike upon any Body that they can't penetrate ; and this is the Object of what we call Catoptrice, which fuppofes the Angle of Reflexion to be equal to the Angle of Incidence. The third way is perform'd by Refracted Rays, or Rays that break in' paffing through Tranfparent Bodies. Abour this the Dioptrice is imployed, which fuppofes that when a Riay paffes from one Medium, which it penetrates eafily; to another that's more difficult to penerrate, it breaks off approaching to a Perpendicutar; and on the contrary, when it paffes from a difficult to an eafie Medium, it Refraets, departing from the Perpendicular. The Opticks fuppofes likewife, that the Ohjects feen under the fmalleft Angles, appear fmallett, which ordinarily happens, when they are moft Remore. Upoh thefe Suppofitions we fhall now refolve feveral ufeful and agrecable Problems.

0
 PRO-

PROBLEMI.

To make an Object to appear fill of the Same Magnitude, when feen at a diftance or nearer.

TO make the Line AB appear to the Eye pofited ar C always of the fame Magnitude, place it in what part you will of the Circumference
 of a Circle that paffes by the Eye C. For if you place it as D E at the remoteft part from the Eye, its apparent Magnitude will ftill be the fame, becaufe the Eyecontinuing fill ar \mathbf{C}, fees thefe two equal Lines AB, DE, under the equal Angles ACB, DCE.

Remark.
'Tis evident that the Line propofed $A B$, will always be feen under the fame Angle, and confequencly will always have the fame apparent Magnitude, at any diftance from the Eye, provided it never departs from the Circumference of the Circle that paffes thro the two Extremities A, B; and confequently, That withour altrering the firuation of the Line AB, you may change that of the Eye, by placing it in what point you will of the Circumference of any Circle that paffes thro' the two extremities of the Line or Body propos'd $A B$, as in F or in G, the vifual Angles $A F B, A G B, A C B$, being ftill equal.
' T is likewife evident that the fame Line $A B$, will retain the fame apparent Magnitude when brought nearer to the Eye, with-
 out being placed in the Circumference of the Circle, provided its two extremities continue in the fame Vifual Rays, A C, BC.; as it happens in the fituation $A D$, for in that fituation tis beheld under the fame Vifual Angle ACB, and fo its apparent Magnitude is not alser'd,

Problems of the Opticks.

ter'd, notwithftanding that 'tis brought nearer to the Eye.
'Tis by this equality of the Vifual Angles that one may write upon a.Wall Characters, which tho very unequal, thall appear equal when feen from a cerrain Point ; and that one may place upon a Pinacle or fome high Frontifpiece, a Statue of fuch a length and fuch a thicknefs, that when 'tis feen from below, it appears of a bignefs proportional to the heighth of the Place, without any neceffity of poliming the Figure much, and far lefs of touching up the mufcles of the Body on the plaits of the Drapery, which they would be obliged to do if 'twere to undergo a nearer view.

PROBLEM II.

To find a Point, from which the two unequal parts of a Right Line Sall appear equal.

THere's an infinite number of different Points; from which if the two unequal parts $A B, B C$, of the Right Lsine AC be view'd, they:will appear equal, as being in the Circunference of a Circle: Bitwithout infifting upon the Theory, I thall here fubjoyn a very fhort merhod for finding one of thefe Points. -

From the two extremities A, B, with the aperture. or diftance AB, defcribe two Arches of a Circle, which bere cut one another at the point D; and from that point D, draw another Arch or a Circle with the fame aperture of the $\mathbf{C o m p l i f s}$. In like manner from the two Extremities B, C, with the aperture B C, de-fcribe two Arches of a Circle, which here cut one another ar \mathbf{E}; and from thar point \mathbf{E}, with the fame diftance defcribe another Arch which here cuts that defcribed from D at F. Now F thus found is the poins ? O 2 from feen, they will appear equal by reafon of the equality of the two Vifual Angles AFB, BFC.

PROBLEM III.

The point of any Objeit being given, and the place of the
Eye, to find the point of Reflexion upon the Jurface of a flat Looking-Glafs.

F the point of the Object be B, and the place of the Eye A, and if the furface of the Glais be reprefented by the Right Line CD; the point of Reflexion will be found by drawing from the two Points A and B, the two Lines $A C, B D$ perpendicular to the Plain CD, and finding a fourth Proportional to the Sum of the two Perpendiculars AC, BD, their di-

Etance CD, and the Perpendicular AC. The length of this fourth Proportional being taken upon CD, from the point C, terminates in E, the point of Reflexion Sought for. So if you draw the two Lines AE, BR, the Angle of Incidence AEC, will be found equal to the Angle of Reflexion BED; as 'rwere eafie to demonftrate.
In my Mathematical Dictionary, you'll find this
The Prö: Problem applyed to a Spherical Looking-Glals; but blem arply- it might eafily be applied to the Billiards. For the. ed to the Billiards. putpofe ; if the Line $C D$ reprefent the fide of the Bibliards Balls, of which the one A could not be made to frike directly apon the orher B, by reafon of the Intervention of the Port, the Player's bufinefs is to find our the Point E by the foregoing Directions, againft which Point when his Ball frikes, 'twill by a back-Atroke hit the other Ball at B. But in Practice there's a way of doing it eafier, as follows.

Let CD be the fide of the Billiard-Table, and fuppore the Gamefter has a mind with one Ball at A, to hit the other Ball at B by Reflexion. To find the Point E of the fide, from which the due Reflexion muft be, let him prolong in his mind the Perpendicular BD to F, fo that D P may he equal to $B D$, and after 2 vifible mark plac'd at F, let him Arike his Ball A in the full direction of the Line AF, and then the Ball meering with the fide of the Table ar E will reflect, and of neceffiry bit the Ball at B, efpecially if 'rwas ftruck with fuch force as to conquer the defects of the Table.

But in regard 'ris not always allowed at this Game to put a vifible mark at F, becaufe the oppofite party may remove it if he pleafes; the Gamefter muft content himfelf with taking the aim of his Ball from the Point F, and by the Vifual Ray AF, obferve the Point E upon the fide of the Table, where his Ball muft reflect to B.
If you want to find the point of Reflexion E, with intent to make the Ball A hit B by two back-ftrokes ;

Jraw from the Point A, the Line AC parallel to the Line DG, and from the Point B, the line GB paral-
\mathbf{Q}_{3} tional to the fum of the two Parallel Lines AC, DG, to the Line AC, and to the fum of the two Parallel Lines, CD, BG; and taking the length of that fourth Proportional upon CD, fix your point of Reflexion where is terminates, viz. at E .

PROBLEM IV.

To Boot a Piftol bebind one's Back as true as if the Perfon took bis aim with bis face to the ObjeCt.

MAke ufe of a plain Looking-Glafs here reprefented by the ftraight Line AB, a PerpendicuJar to which is the Line CD drawn from the Point C, which repre-
 fents the Butt to be thot at ; the Image or Reprefentation of which in the Glass is fuppofed to be D, at an equal diftance from the Glafs with the Point C, with refpect to the Eye placed at \mathbf{E}, from whence the Perfon that is to thoor fees by Reflexion the Point C, by the Ray of Reflexion EFD, the Ray of Incidence being the Line CF, according to which the Piftol GH muft be placed and turn'd till its reflexive appearance $I K$, agrees with the Line of Reflexion EFD, and covers D the appearance or reprefentation of the Point $\mathbf{C}_{\text {; }}$ and then twill hit the Mark.

PROBLEM V.

To meafure a beight by Reflexion:

FIrt, if the Eminence is acceffible, as $A B$ acceffible at B, fo as to give one an opportunity of knowing how far they are from it upon an Horizontal Plain, level with the Bafe of the Eminence : Make

upon this Horizontal Plain at a known diftance from the Point B, a fmall Cavity or Hole, which fill with Water, that fo you may fee the top A of the Eminence to be meafured AB, by the Ray of Reflexion CE which paffes to the Eye fuppofed to be at E; then meafure exactly the height of your Eye ED, and the diftance CD from the Point of Reflexion C. We'll fuppofe the height of the Eye ED to be 4 Foot, the diftance CD_{3} Foor, and the diftance BC 4^{8} Foor. Now, fay, by the Rule of three direct; If the Difance CD of 3 Foot gives 4 Foor for the height ED, how much will be given by the Diftance BC of 48 Foot? And you'll find the Eminence 64 Foot high, which is the Solution of the Problem; for if you multiply the two laft Terms, 4 and 48, and divide their Product by the firf Term, 3, you have 64 for your fourth Proportional.

But if the Eminence is inacceffible, fo that you can't actually meafure the Diftance BC, dig another Hole in the fame Plain in a ftraight Line, and at a O_{4} known

Remark:
How to know the Ditances. alfo with Water, that you may fee the fame top A by the Ray of Reflexion FH, reaching the Eye fuppoled to be at H . Here take notice that the Perfon who fees this Reflexion at H , mult be the fame that faw it at E, that the height of the Eye from the Ground or Plain may be the fame, which we fuppofed to be 4 Foot. As we fuppofed the Diftance CD to be 3 Foot, we thall now luppofe the Diftance CF to be 32 Foor, and the Diftance FG 5 Foot; fo we multiply the Line ED into the Line CF, i. e. 4 by 32, and divide the Product 128 by 2, the excefs of the Diftance FG above the Diftance CD, and the Quotient gives 64 the height of the Eminence.
If you would know the diftance BC withour knowing the height $A B$, multiply the diftance $C D$ by the diftance CF, i.e. 3 by 32, and divide the Product 96 by 2, the excels of the diftance FG above the diftance CD, and the Quotient gives you 64 for the diftance BC.

PROBLEMVI.

To reprefent any thing in Perfpective, without making use of the point of Sight.
T
O find in the Picture the appearance of any Point of a Geomerrieal Plan, of \mathbf{E} for inftance, draw

from

Problems of the Opticks.

from that Point E, the Line EG Perpendicular to the Ground-Line CD, and take the length of the Perpendicular EG, on each fide the Point \mathbf{G} in the GroundLine CD, extending is from G to F and to D. Fix at pleafure two Poines of diftance upon the Horizontal Line AB, for inftance A and B; then draw from thefe Points A and B to the Points D and F, the Right Lines:AD, BF, which by their Interfection will give the appearance H of the Point propofed E. By the fame method one may find the appearance of any other Point ofa Geometrical Plan, and by confequence the Reprefentation of the Bafe of any Body whatfoever, which by another Confequence may eafily be reprefented in Perfpective, by drawing from all the Points of its pofture or perfpective Plan, Perpendicular Lines to the Ground-Line CD, and thofe equal in appearance to the height of the propos'd Body; which is done after the following manner.

Having laid down the natural height of the propofed Body upon the Ground Line CD, from \mathbf{C} for inftance to K, draw from thefe two Points, C, K, to the Point L taken at difcretion upon the Horizontal Line AB, the Right Lines LC, LK, which will determine the apparent heights of all the Points of the propos'd Body, by Lines drawn from thefe Points parallel to the Earth or Ground-Line CD; as to find the height of the Paint H , the Perpendicular HO is rais'd equal to the part MN, E'c.

PROBLEMVIL

To Reprefent in Per/pection an Equilatexal Polyedron, terminated by fix equal Squares, and by eigbt regular and mutually equal Hexagons.

THofe who underftand Perfpective will readily reprefent this Body in the Picture, in which the Point of Sight is V, and one of the two Points of diftance is D, mark'd upon the Horizental Line DV, which is parallel to the Ground-Lise AB; they'll readily do it, I fay, if they know how to draw a Plan and a Prafil ; which is done after the following manacr.

How todraw - Plan.

In the firt place, if you would have the Body to reft upon one of its eight Hexagons, as $1,2,3,4,5$, 6. delcribe from its Center \mathbf{C}, a Circle, the Radins or Semidamieter of which, C8, or C, 9 , is fuch, that irs Square is to that of the Hexagon, as 7 is to 3 ; fo that if theRadius or fide $\mathrm{I}, 2$,of theHexagon is 65465

equal Parts, the Radius $\mathbf{C} 8$ or $\mathbf{C} 9$ of the great Cir: cle, is 100000.
Having thus drawn the great Circle, divide it unequally, as you fee it done in the Figure, fo as to make the leaft fide, 3,9 , and the other five, equal each of :em
'em to the fide of the Hexagon; and the greateft, 7,10 , and the other five, double, each of 'em, of the fmalleft fide; in which cafe, the leaft fide will fubrend an Arch of 38. 12 '. and the greateft (i.e. the double of the leaft) an Arch of $8 \mathrm{I} .48^{\prime}$. But without this trouble 'twere an eafie matter to defcribe this by the fole infpection of the Figure.

For the Profil, defcribe round the fmalleft fide 21, How to draw i 5, the Semi-Circle 21, O, 15 ; and after defcribing from ${ }^{2}$ Profil. the Point 4 thro' the Point is the Arch of a Circle 15, O; draw the Right Line 21, O , and this ftall be the heighth of the Points $9,8,14,13,20,17$; the heighth of the Points, $7,12,15,21,16,10$, being equal to double the Line 21, O ; and the heighth of the Points, $1,2,3,4,5,6$, being equal to the triple of the fame Line 21, O .

Now if you put the Plan'thus defcrib'd in Perfpective, and from all irs Angles raife Perpendiculars to the Ground-Line, for laying down the hegibs fuitable to thofe of the Profil, you have nothing more to do but to joyn the fides as in the foregoing Figure,

and yet more diftinctly in this here annex'd, which we have made larger for the diftincter apprehenfion of the fides. that are to be joyn'd ; of which thofe mark'd with black Lines, are the fides that appear to the Eye; and the others mark'd with Points are thofe which are not feen.

Mathematical and Pbyfical Recreations:

In a fecond place if you would have the Body to reft upon one of its fix fquare furfaces, as upon the Square $a, b, 15,21$,
 the Plan or Pofture of the Polyedron will be changed into that repretented in this Figure, which any one may apprehend by the bare infpection, efpecially when they know, that the great fide of the Irregular Octagon, d 12. is equal to the Diagonal, a1s orb 21 , of the inner fquare that
Serves for the bafis of the Polyedron.
The Profil likewife cbanges; for the height of the Points, $3,7,6,10$, is equal to cd the half of d 12 the great fide of the irregular Octagon; the height of the Points, $4,5,17,6, \mathrm{~m}$, d , is equal to the whole fide d 12 ; the height of the Points $14,20, n, c$, is equal to the fame fide $d r^{\prime}$, and its half cd_{a}; and in fine the heighth of the Points $a, b, 15,21$, is the double of the fame fide d 12, the fquare of which is to the fquare of the Radius of the Irregular Octagon, as 4 is to 5 ; and confequently if the Radius be 100000 equal parts, the great fide d 12 is 89442 , and fubtends an Atch of 53. 8^{\prime}; and the little fide d m is 63245 parts and fubtends an Arch of 36. 52°.

By the means of this Plan and Profil we have put the Polyedron in Perfective, as you fee it in the annexed Cur.

PROBLEM VIII.
To reprefent in Perfpective an Equilateral Polyedron, terminated by fix equal (quares and by sigbt equilateral and mutually equal Triangles.

Iyou would have the Polyedron reft upon one of its fix equal Squares, as $9,10,11,12$, you have nothing to do but to Circumfcribe another Square about it, and then your Plan's fininh'd, the Profil of which is as followeth.

The height of the Points, 5, 6,7, 8 , is equal to 3, 5. the half of the fide 6,5 , of the circumfcribed Tquare $;$ and the

height fide 6,5 , or the Diagonal 11,9 , or 10,12 , of the infcribed fquare, which ferves for a bafis to the Polyedron.

By the means of this Plan and this Profil we have pur this Polyedron in Perfpective, as you ree it in the annexed Figure, where you nave a diftinct view of the fides you are to joyn, when once you have found in the Picture the appearance of the Points that limit the Extremities.

PROBLEM IX.

To reprefent in Perfpective an Equilateral Polyedron ter-- minated by fix equal Squares, and by twelve Ifofceles and equal Triangles, the beigbth of which is equal to the bafe.

IN the firft place, if you would have the Polyedron to infitt upon one of its fix equal qquares, as $3,6,9$, 12, its pofition will be fuch as you fee in this Figure, in which the Plan is made plain by the femicircles defcrib'd from the four Right Angles of the bafe, 3, 6, 9 , 12, and from the middle Points \mathbf{A}, \mathbf{B}, of the two oppofite fides 5,2 , and 12,9 .

As for the Profil ; the height of the Points, 4, it; $7,8,1,14$, is equal to the Tangent 7,15 ; and the. height of the Points, $5,6,13,12$, is double to the Tangent 7, 15. There remains nothing further, but to look upon the two annex'd Figures, for anderftanding the manner of reprefenting this Polyedron in Perfpective; which you have all over fladed in the one, and after another manner in the other.

I

Matbematical and Phyfical Recreations.

In the fecond place, if you have the Polyedron raifed upon one of its folid Angles, as 1 , in this care its pofture will be the fingle Regular Hezagon, 2;
 3, 4, $5,6,7$, the Center of which will be the Point 1 , and the Profil fuch as folb loweth.

The height of the Points, 8, 9, 10, 11, 12, 13i, is equal to half the Gide of the Hexagon; the height of the Points, 2, 3. $4,5,6,7$, is equal to the triple of that, i.e. three half fides of the Hexagon; and the heighth of the Point 1 is double the fide of the Hexagon, or equal to the Diamerer, 4,7 .
Withour infifing further upon the Perpective of this Polyedron, I hall content my felf with leaving with you the baxe Rigure of is.

PROBLEMGX:
To Raprefent in PerfRecive an Eqiibztral polyedran fi-: mised ay xpeilve equal fquares, lior eight Regular ind equal Hexagons, and by fix'式名ulax and equal oftagons.

IF you would have tho bate of tof tody to be one of its fix Octagons, for inftance r; $2,3,4,5,6,7$, 8, the Center of which is O ; joyn the extremities of the two oppofite and parallel fides by Right Lines paradlel to one another, which by their mutual inteffea Cions will form a fquare, fuch as ABCD. Prolong the two oppofite and parallel fodes, 1, 2, and 3,6 ; and bikewife the two oppofite and parallel fides, 3; 4, and 9, 8 ; which metring with the two former will forth another larger fquare EFGH:. This done, 'twill be ith ealy maxter to finilh the Plan, namely, by making the Line:E20 equal va she part $E_{7}, 80^{\circ} \mathrm{c}$

For a more exact defcription of this Plan, let's conrider, That in -fuppofing the Radius O_{1} or O_{2} to contain 1000 equal parts, the Radius O_{13} or Or 6 of the mean.Circle muft contain 1514 of thofe parts, and the Radius Or2 or Ois of the greateft mutt be 1731: That the fmalleat fide fubtends in the greateft Circle an Arch ($11,-12$, or:i14, 15) of $25,32^{\prime}$; in the mean Circle an Arch (1, 2)-of 29, 16'; and in the leaft Circie an Arch, 1, 2, of 45 Degrees: And that the greateft fide fubtends in the greateft Circle, an Arch, 14, 1 1, of 64. 28. and in the mean Circle an Arch, 10, 13 , or 9,16 , of 60.44°. the Chord of which is double the leaft fide, 9. 10 .

For the Profil ; we'll allow the whole Line 15, 12, for the heighth of the Points, $1,2,3,4,5,6,7,8$, the Pofture of which is the Interior Octagon, or the leaft Regular Octagon. We'll allot the part, $15, \mathrm{G}$, for the heighth of the Poinfs $9,10,13,25,22,21,18$, 16,

16 , the form of which is the mean Octagon : we'll allot the part 15,2 , for the heighth of the Points $14,11_{3}$ 12, 24, 23, 20, 19, 15, the pofition of which makes the greateft Octagon. We'll allow the part is, 1 , for the heighth of the Points $26,27,30,31,34,35,38$, 39, the Pofture of which is the greateft Octagon: And the part $15, \mathrm{H}$ for the heighth of the Points 40, $41,28,29,32,33,36,37$, the Pofture of which is the mean Octagon.

The heighrh 15 . 12 , will be 2930 parts, the Radius Or of the leaft Octagon 1000 ; The heighth is, G, 89, the heighth $19,2,1848$; the heighth $15,1,1082$; and in fine the heighth $15, \mathrm{H}$, will be 541 .

When the Plan of this Polyedron rerminated by twenty fix faces is put into Perfpective, and the pofition of the folid Angles determin'd according to the different beighths pointed to in the foregoing Profile; you muft joyn the folid Angles by Right Lines, which will be the equal fides of the Polyedron.

PROBLEM.XI.

The Points of the Eye and of Some Object being given, together with the point of Reflexion upon the furface of a plain Looking-glafs; to determine the place in the Glafs of the Image of the Object propofed.
L ET the Eye be A, the Object B, and the point of Reflexion E upon the furface CD of a plain Look-ing-glafs; draw from the Object B the Line $B F$ per: pendicular to that furface; and prolong the Ray of Reflexion AE till it meets that Perperdicular in a Point, as at \mathbf{P}; or, which is the fame thing, make DF equal to DB, and the Point F is the
 where the Object B will be feen by the Eye in the plaip Looking-glafs CD, according to the Principles of Opticks, from which we learn that the Image of an Object is made ar the concurfe of the Ray of Reflexion, and a Right Line drawn from the Object Perpendicular so the furface of the Glafs, whether Plain or Spherical. From hence we may readily conclude by the equality of the Aogles of Reflexion and Incidence, shat, when the Glafs is plain, as we here fuppofe it to be, the Object ought to appear as deep funk in the Glals as' tis diftant from it; and for that Reafon we ordered the Line DF to be made equal to the Perpendicular DB.

Another Cunféguence, is, Thas the diftance AF of the Image F of the Qbject B, to the Eye at A, is 'equal to the Ray of Incidence BE and the Ray of ; Reflexion AE fhe Ray of Incidence BE being equal to the Line EF, by reafon of the equality of the two Righr Angled Triąngles EDB, EDF.

A Third-Inference, is, TGat 6 B thé Eye moves any certain fpace nearer or further from the Point of Reflexion E in the farme Ray of Reffexion AE, the Imàge F of the Objqes B will make exactly the fame.approaches or departure wirh refpect to the Eye, becaufe the diftance EF continuing till the fame, the diflance AF will increafe or decreafe as the dittance AE do's.

We inay infer futther, that whent he plain Looking-1 -glars is paratolita the Horizonn as CD, a magnitude perpendicular: to the Horizon muft appear inverted and when the plain Glafs is perpendicular to the Hori zon, the right of the Perfon feems to be on the left of bis Image, and è contra.

The laft Inference I thall here make, is, that the di-1 ftance of the Eye from the Image of the Object feen in the laft Glafs by vertue of: feveral-reflexions from Teveral plain Glafles, is equal to the fum of all the: Rays of Incidence and Reflexion ; and rbac an Object may:fomerimes be-mutteiplied in $\mathbf{2}$ plain Looking-glafs, or reflecting furface, when 'tis made of Glafs.

Thus 'tis that we fomerimes fee a lighted Flambears appear double in a Looking plafs shat's fomewhar thick, by reafon of the double Refiexion there made ; : namely, one upon the external furface of the Glaise

Rroblems of the Opticks.

and another in the batrom or inner part of the Glafs; for the lighe can't be all reflected upon the external furface of the Glals; but it penerrapes the icy fubftance of the Glafs (I fpeak only of thofe made of Glafs) till ic. meets that pquter leaf that's done over the back of the Glass to hinder the paffing of the Rays, where by confequence it fuffers a fecond Reflexion, and the Eye falling in with a concourfe of two Rays of Reflexion that can't be parallel, 'tis no wonder the Object feems to be double, or appears in two different places of the Glafs. Fis manifed that the various irregularity of the Glals and the divers Reflexions, may multiply the Object yecmore, efpecially when tis feen a little fodeways.

PROBLEM XII.

The Points of the Eye and of Some Object being given, together with the' Point of Reflexion upon the Convex furface of a fpberical Looking iglafs to determine the Homage or Repridentation: af the ipropos'd Object kither. mitbin or out of: the Glafs.

I ET the Eye be A, and the Object B, and the of a Sherical Lookingeglafs, the Eeniter ot which is

C; draw from the Center \mathbf{C} to the Object B, the Right Line BC Perpendicular to the furface of the (pherical Looking-glafs, in which by coméquence will be P. 3
the prolonging the Ray of Reflexion AE which here meers within the Glass the Cathete of Incidence BC at the Point H , but might have met it at the Point D of the furface of the Glafs, and even out of the Glafs when the Angle of Incidence BEF, or the Angle of Reflexion AEG is very fmall: So that the Object B may be feen either within the (pherical Glafs, as here, or upon its furface or out of it .

The Tangent FG which paffes by the Point of Reflexion, derermines as' you lee the Angles of Incidence and Reflexion, and cuts the Cathete of Incidence BC in I, and that in fuch a manner, that the four Lines, $\mathrm{BC}, \mathrm{CD}, \mathrm{BI}, \mathrm{DI}$, are proportional, and confequently the Line BC is cut at the Points I, D, in the mean and extreme proportional Ratio, that is, the-Rectangle of the whole Line BC and its mean part DI is equal to a Rectangle of the two other extreme parts BI, CD; as is eafily demonftrated by drawing from the Point \mathbf{B} the Line BK parallel to the Radius of Reflexion AE.
:'Tis evident from the property of the focus's of an Ellypfis, that the two Points A, B, are the two focus's of an Ellypfis, which touches the fpherical Glals at the Point of Reflexion, E; and which has for its great Axis the fum of the twa Rays, AE, BE, of Reflexion and Incidence; So that, to find the Ppint of Reflexion E, one needs only ro defcribe an Ellypris that touches the Circumference DEL, and has for its two focus's the Points A and B; which is eafily done by the interfection of the Circumference, and of an Hyperbola between its Alympores, of which the oppofite paffes thro' the Center C of the fame Circumference DEL, as I have demonftrated in my Mathematical Dictionary.
\because Tis evident alfo, That the appearance H of the Object B is nearer to the Point of Reflexion E than to the Center C , that is, the Line CH is always greater than the Limé EH, becaufe the Angle CEH is always greater than the Angle ECH, as appears by prolonging towards \mathbf{L} the Ray of Incidence, BE , "and drawing from the Center MN parallel to it.
a 'Tis further euldent that the fame appearance H of - the Objeit B is likewife nearer to the Point of Redexion E, or the Roint D of the furface of the Glafs,

Problems of the Opticks.

 than the Ray of Incidence BE, and that the Line DH is lefs than the Cathete of Incidence BD.'Tis evident once more, that if the magnitude OE is perpendicular to the furface of the Spherical Glafs DEL; fo that being prolong'd it pafles thro' the Center C, the Point \mathbf{P} neareft the Glafs muft appear lefs fonk or deep in the Glafs'than the remoter Point \mathbf{O}; and that: the magnitude $O E$ muft appear inverred and lefs.

- A Confequence of this, is, that in a pherical Convex Glafia Magnitude muft appear ftill greater as it approaches nearer to :che Glafs parallel wife to it relf, for then it appears tefs funk or lefs deep in the Glafs, and confequently is nearer the Eye, and inclofed in a larger Angle. The fame thing will bappen if the Object continues unmoved, and the Eye approaches nearer to the Glafs, and that for the Reafons mention'd but nows.

PROBIEM.XIII.

To determine the place of an Object Seen by Reflexion upon the furface of a Cylindrical Looking-glafs.

THIS Problem is none of che eafieft, by reafon that a Cylindrical Looking-qlafs raken lengthways may be confider'd as a plain Cliffs ; and taken

precifely according to its roundnefs, it may be confider'd as a Spherical ; and again, when taken in ano- and of a Ppherical Glafs

For, this Redfon, if the Point of an Object and the ifye are in a plain that pafles thito' the Axis of a Cylindrical Glaifs, that Pbint will be feen by Reflexion in the Cylindrical Glałs as in a plain Glafs; that is, as deep in the Glafs as 'ris diftant from it:

Thus, if we fuppofe a Point A of ha Object, and the Eye \mathbf{B}, in a plain that paffes thro' the Axis CD of the Cylindrical Glafs EFGM, that Point A will be reen in H by the Ray of Reflexion BIH, i.e. at the concurfe of this Ray of Reflexion and phe Line ALH perpendicular to the common feetion EM of the Gla/s and the plain which paffes thro" the Eye atd the Point of the Object A: And in this cafe, "tis evident that the Object A appears as deep in the Glafs as 'tis remore from it; that is, AL, LH, are equal by reaion of the two equal Rightangled Triangles, ALI, HLI.

But if the Tye and the Point of the Object are in a plain parallel to the bafe of the Cylindrical Glafs, the Section of that plain and the Glafs being a Circle, the Object muitt appear in the Cylindrical Glats as in a fpherical one. The Confequence of which is, that the magnitudes parallel to the bafe of a Cylindrical Glafs, 'appear there much coneracted, whereas thofe which are parallel to the axis of the fame Gliff' appear a'moft of the fame magnitude as in a plain Gla/s. This holds likewife in a Conical Glafs, as 'twere eafy to demonftrate.

PROBLEM XIV.

The Points of the Eye and of ar Object being given, together with the Point of Reflexion upon the Concave Jurface of 4 Spherical Looking-ghefs; to determine tbe Image of the propos'd Objeet within or witbout the Glafs.

LET the Eye beA, the Object B, and the Point of Reflexion E upon the concave furface. FEG of 2 Iphericad Glafs, the Center of which is \mathbf{C}; draw from
the Center C to the Object B, the Right Line BC; whict being prolding'd meers here the Ray of Reflexion

AEdikewife prolong'd, at the Point $\mathrm{H}_{\text {; }}$; which muft be the Image or reprefentation of the propos'd Object B , becaule that Point H is the concurle of the Ray of Reflexion AE , and the Cathere of Incidence CD drawn from the Censer C thro the Object B.

If the Object had been nearer the Glafs, as at K , Remark: its appearance I had been on the other fide, viz. at the concurfe of the. Ray of Reftexion AE and the Cathere of Incidence CI draw.n from the Center C thro' the Object K: And if the Object had been ac L, ic had not appear'd at all in, the Glafs, becaule in that cafe the Cathete of Incidence FG drawn from the Cester C thro' the Object L, being parallel to the Line of Reflexion AE would never meet it: And in fine, if the Object were at M, its appearance N would be withour the Glafs, at: the Concurfe of the Ray of Reflexion AE and the Cathere of Incidence CN drawn from the Center C thro the Object M.

Here we fee the Reafon of whehat Experience thews us every Day; viz. That an Object may be feen by Reflexion in a. Concave Glafs, as well as in a Convex Glals, both out of the Curface of the Glafs, as here at N which is the reprefentation of the Object M; and within the Glas $s_{\text {, }}$ as ap H , which is the reprefentation of the Object $\mathrm{B}_{\text {; }}$ and at I which reprefents the Object K, thefe two Images H and I appearing funk in the Glafs, but never fo deep as in a plain Glafs; which is owing flexion, and the Catheres of Incidence, which can make Objects appear, fomerimes upon the furface of a Glafs, fomerimes within or behind the Glass, and fomerimes withour or before the Glafs lefs or more ; fo that fometimes the Images are feen between the Object and the Glafs; fometimes at the very place where the Object is, (and thus it comes that one may handle the Image of his own Hand or Face off of the Glass,) fomerimes à̀ a greater difitance from the Glars than the Object really is, and fometimes at the very fpor where the Eye is placed, and hence it comes that thofe who are unacquainted with the Reafon of it, are affraid and retire when they fee the reprefennation of a Sword or Dagger, that fome body holds behind them, advance out of the Glais.
'Tis evident that the Tangent OP which paffes thro' the Point \mathbf{E} of 'Reflexion, determines the Angle of Incidence BEP. and, which is equal to it, the Angle of Reflexion AEO ; and that the Line CE which is Perpendicular to the Tangent OP, divides into two equal Parrs, the Angle AEB made by the Rays of Incidence and Reflexion. The Confequence of which, is, that if you divide that Angle by a ftraighr Line into two equal Parts, that Right Line will pafs' thro' the Center C of the fpherical Glafs, by reafon of its being per ${ }^{2}$ pendicular to the Tangent.

We may eafily apprehend, That the Object B may Be feen by Reflexion in two different parts, when the Eye is placed at a certain point ; for if you draw the Ray of any Incidence BE, with irs Ray of Reflexion AE, and another Ray of Incidence BQ with irs Ray of Reflexión QR, which will cut the former ar A; where the Eye being placed will fee the Object B thro ${ }^{\circ}$ the two Rays of Reflexion AE, AQ, and confequenntly in two different places, vit. At the points H and R within and without the Glals.

We may with equal facility conceive, That if the Object is placed at the Center C of the Glafs, its Image will Reflect back upon it felf, becaufe in that cafe the Angle of Ircidence is Right: And therefore he who places his Eye at the Center C of the Glafs, will fee nothing bur himfelf.
©....
PRO:

PROBLEM XV.

Of Burning Glaffes.

IN the foregoing Probleme we faw, that two Rays of Reflexion belonging to one Object, as AE, AQ retaining to the Object B, will meet and unite in the point A, before a Glafs. Now this can't be in plain Glaffes, in which the Rays of Reflexion fall off from one another, and far lefs in Conver Glaffes, in which the Rays of Reflexion run much farther afunder, and reunite behind the Glafs. Hence it appears that by the means of thefe we can't produce Fire, as we do with the help of a Concave Glafs which is call'd a Burningglafs, and may be Parabolick and fpherical. The fpherical ones are eafily made becaufe the Turn or Turn-ing-wheel may eafly ferve for making a model for them, and they are eafily polifhed: But when the Glaffes are Parabolick or of any other Figure, the Turn can't be fo eafily made ufe of for making a model for them; and bence it comes-that they are very fcarce, and indeed are not fo good as the Spherical, tho' act cording to the Theory they ought to be better. And upon this confideration we thall here confine our felves to the fpherical Burning Giafles.

Let the Concave furface of a fpherical well polifh'd Glais be ABC, the Center of which is D.. Let a Ray of Light EF be Parallel to the femidiamerer BD, which reflecting hy the Ray of Reflexion FG fhall' curt the femidiameter BD in a point, viz. G, dearer the furface than the Center of the fpherical Glafs; that isf the Line BG will be always leffer than the Line DG, as appears by drawing
 the femidiámerer DF , which makes the Iforceles Triangle FGD, EGc.

We may readily apprehend, that, on the other hand if there's a Ray of Light parallel to the fame femidi- thro' the fame point G; and that if, the Ray of Light were more or lefs diftant from the femidiameter BD its Ray of Reflection would not. cut the Semidiamerer BD zit the fame point G; but where-ever it cuts it, the point of concurfe will always be remoter from the Center than from the farface of the Glars. Now fince we can conceive an infinite number of different Rays parallet one to another, and to the femidiameter BD, tis evident that all thefe Rays muft reflect in one point, as G, which is calld the focus; and at which one may by the Rays of the Sun light a Wax-Candle or a Flambean, and melt in 2 fmall fpace of time any Metal whatfoever, and virrify Stone if the Glals is pretry large.

Trigonomerry will readily lay open to us the diftance of the focus from the furface of the Glass, the diftance of the Ray of Incidence or Light being once known in degrees, and the femidiameter of the Glafs in Feet or Inches. For inftance; If the Ray of Incidence EF is diftant from the femidiameter BD 5 degrees, fo that the Arch BF or the Angle BDF is 5 degrees, and if the femidiamerer DB or DF be 100000 parts, we may find the diftance DG in the fame patts, by drawing from the focus G the Line GK perpendicular to the femidiamerer DF, which will then be equally divided at the point K, and confequently its half DK will be 50000 parts, and in the Triangle DKG the Analogy will run thus,

As the wbole fine	100000
To the foeant of the Angie D	100382
So is the Line DK	50000
To the Line DG	50191

Now the Line DG being fubftracted from the femidiameter DBor 100000 , there remains 49809 for the Line GB or the diltance of the focus from the Concave furface of the Glats.
'Twas by this method that we calculated the following Table, in which we fee the foc̣us G ftill afproaches nearer to the Coicave furface of a fpherieal

Glals

Qlafs, as the Rays of Incidence inlarge their diftance

 from the Center; fo that when the Rays are 60 degrees diftant, the focus G is exactly at the point B of the Concave furface of the Glafs.| | 49992 | | 47985 | 31 | 41668 | 46 | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2 | 49970 | 17 | 47715 | 32 | 44041 | | 26686 |
| 3 | 49932 | 18 | 47427 | 33 | 40382 | 48 | 25276 |
| 4 | 49878 | 19 : | 47269 | 34 | 396\%9 | 49 | 23787 |
| 5 | 49809 | 20 | 46791 | 35 | 38961 | 50 | 22214 |
| 6 | 49725 | It | +6443 | 36 | 38.497 | 51 | 20 |
| 7 | 49627 | 22 | 46073 | 37 | 37393 | 52 | 18787 |
| 8 | 49509 | 23 | 45682 | 38 | 36549 | 53 | 16918 |
| 9 | 49377 | 24. | 45268 | 13.9 | 35662 | 54 | 14935 |
| 10 | 49399 | 35 | 4483I | 140 | . 34730 | 55 | 12828 |
| 11 | 49064 | 26 | 44370 | 41 | 33749 | 56 | 10586 |
| 12 | 48883 | | 43884 | 42 | 32798 | 57 | 8196 |
| 13 | 48685 | 78 | 43372 | 43 | 31634 | 58 | 5646 |
| 14 | 148.468 | 29 | 42832 | 44 | 30492 | 59 | 2920 |
| 115 | 48236 | 30 | 42265 | 45 | 29 | 60 | 0000 |

We may likewife obfetve in this'Table that the Rays of Incidetice from r to 15 degrees of diftance, unite by Reflexion almoft in the fame point, becaufe the di'Stance of the focus G does not decteafe fenfibly. And hence 'tis, that fuch a quantity of Rays darted from the Sun upon the Concave furface of a:fpherical Glafs, which may pafs for parallel confidering the grear diCtance of the Sun from the Earth ; hence tis, I fay, that fuch a quantity of Rays is reflected a'moft in the Came point, and confequently all the Rays of Reflexion compreinended in a Concave part of the fphere of abour 30^{\prime} degrees, may by their union produce fire, as experience thews.

We oblerve further in the foregoing Table that the focus G is diftant from the Concave furface of the Glafs abour the fourth part of the Diameter,' or half the femidiamerer DB, and by confequence thar a Concave foherical Glals will' burn at to much the greater diftande as its Diameter is greater. But after all we muft nos imagine twill basn at a valt unreaforable diftance, for befides of Reflexion which unite in the fame point in a litule Glafs, from 1 to 15 degrees diftance, keep the focus G from any fenfible change, and would not unite fo perfectly in a great Glafs, the confequence of which is a fenfible change in the diftance, and a diminution -of the force of the Rays. So that what is written of Archimedes can't be credited, vit: That by the means of a Concave Glafs he burnt with the Rays of the Sun the Naval force of the Romans, at 2 diftance of 375 Geomerrical paces, which amount to 1875 Fect.

COROLLARY.

From what has been faid in this and the foregoing Problem, we infer, that if one purs a Laminous body, as a Candle, to the focus \mathbf{G}, its Rays will be reflected in Lines very near parallel to one another and to the-femidiameter DB; and if one puts the fame Capdle to the Center D its Rays will reflect upon themfelves, as being then perpendicular to the furface of the Glafs.

By fuch a Glafs and the advantage of the Rays of the Sun, one may reprefent what Characters they will upon a dark Wall at a moderate diftance from the Glafs, viz. By writing upon the Concave furface of the Glals with W,ax or otherwife, the Letters revers'd of a pretry large Character, and holding the Glafs directly oppofite to the Sun, for then the Letters will appear by Reflexion in their ufual pofition upon the propofed Wall.

With the help of the fame Glafs one may increafe the light in a large Room, by applying a lighted Candle to the focus of the Glars, for then the Rays of the Candle will reflect all over the Room, and thine fo bright that one may eafily read againtt a Wall.

In fine this Glafs may be made ufe of for giving light in the Night-time, and for feeing what paffes at a diftance; jt may be of ufe to thole who mean to preferve their fight by ufing a Lamp fer to the focus of .the Glafs, which ought to be placed a little high and afide, that it may conveniently convey the light of the Lamp to the Table where the Perfon Reads or Writes.

The Burning Glaffes are ufually made of Mettal, for the greater facility of Reflexion, and that it may

Problems of the Opticks.

be more (peedy and vigorous; tho' there may be made of Glafs fuch as will make a very handfom Reflexion, provided the Glafs is very clean and Comewhat thin, and that its cover is good to hinder the Rays of Incidence to traverfe and refract:

You may eafily find the focus of a Concave Glafs, when oppos'd to the Rays of the Sun, if you take a piece of Wood or any other folid matter, and move is to ot ftom the Glats, till the difcus of light that appears by Reflexion againft the piece appears as fmall as poffible, for then the piece is at the focus. Or elfe, put hot water near the Glafs on that fide of its concavity that points directly to the Sun, for the fmoak that rifes from the hot warer, will give you the pleafant thew of the Cone of Reflexion, the top of which is the focus. Another way is this. Throw fome duft before the concavity of the Glafs that lies directly to the Sun, for in that duft as well as in fmoak you'll oblerve the Cone of Light Reflected, and confequently its point which is the focus you look for: Nay in Winter when the Air is thick and condenfed by cold you may obferve the focus and the whole Cone of Reflexion, without the help either of duft or fmoak.

Tho one would think that fire can't be produced by a Concave Glafs, withour it be illuminated with the Beams of the Sun in order to Reflexion, yet 'tis poffible to produce fire in a dark place, namely by conveying the Rays of the Sun to the Concave Glafs by the means of a plain Glafs, which ought to be fomewhat large, that fo the greater number of Rays uniting at the focus may burn more forcibly.

PROBLEM XVI.

Of the Spheres of Glafs, proper to produce Fire by the Rays. of the Sum.
W. E may likewife produce fire by the Sun Beamis with a fphere of Glafs or Cryftal, or of any other matter that's readily penetrable by light, as water in a very round Borcle, or with a fphere of Ice: Not by means of Reflexion, bur by Refraction, which can allo gather into one point fekeral paralled Rays of

Light;
light ; for when they enter the fphere they bend or break off approaching to a Perpendicular, and in flowing out of the fphere they refract again departing from the Perpendicular, which makes them approach to the Diameter of the fphere to which the Rays of Incidence are parallel, and to meet it without in 2 point which is the focus; but the effect of this is neither fo quick nor fo vigorous as in a Barning Glafs.
Let the fphere or Ball of Glafs be BCD, the Center of which is F :and the Diamerer CD. Ler AB be a Ray of Light or of Incidence which meetiog the furface of the Ball
 of Glafs at B, penetrates and enters it, but inttead of going on in the ftraighr line ABH, (which iswould do if it met with no refiftabce) it breaks off in the point B, which is therefore call'd the point of Refrattion, and approaching to the Perpendicular GBF towainds the Center, cotirinues in the Line BI, which being prolong'd meets che Diameter CD likewife prolong'd to E , which would be the focus if the Refracted Ray did not refract a-frefh at the point I^{\prime}, into the Line IO, which moving from the Perpendicular IL meets the Diameter CD: at the point O, which is the focus,

Before I thew you how to find this focus O , or its diftance DO from the furface of the Ball of Glars, I thall explain fome terms and properties of broken Angles and Angles of Refraction in a Glafs, which are not the fame in the other Diaphanous Bodies, as Experience fhews.

If then the Line $A B$ is a Ray of Incidence, the Line BI is call'd the Ray of Refradion, and the Angle HBI the Angle of Refrattion. The Righr Line BG, which is perpendicular to the furface of sthe Ball, and by coniequence paffes thro its Center F, is call'd the Axis of Incidence, and being prolong'd witbin the Ball, is call'd the Axis of Refraction.

The Plan imagin'd to be form'd by the Ray of In_{n} cidence AB , and the Ray of Refraction BF, is call'd the Plan of Refracion, which is always perpendicular to the furface of the Ball, which is call'd the breaking furface, becaufe the Ray of Incidence breaks when it arrives there. 'Tis evident that the Plan of Refraction paffes thro' the Axis's of Incidence and of Refraction, and that it contains the Angle of Refraction HBI, and the Angle IBF which is call'd the Broken Angle, and likewife the Angle ABG, which is call'd the Angle of Inclination, and which is always equal to the Complement of the Angle of Incidence ABP.

The broken Angle increafes and decreafes as the Angle of Inclination is greater or leffer, fo that when one of thefe two Angles is funk, the other is likewife funk. Thus if the Perpendicular BG is a Ray of Incidence, there will be no Angle of Inclination, and the Ray of Incidence GB will not break in penetrating the Glafs, but continue in a ftraight Line rowards the Center \mathbf{F}, and fo there's no broken Angle neither. Thus you fee that when the Ray of Incidence is perpendicular to the breaking Surface, it makes no Refraction, becaufe there's nothing to determine the Refraction more to one fide than another.

Tho the broken Angle increafes in proportion with the Angle of Inclination, yer it does not increafe after the fame manner, that is, it the Angle of Inclination increafes a Degree (for Example) the broken Angle will not alfo increafe a Degree, but its augmentation is fuch, That the Sinus's of the Angles of Inclination in the fame Medium are proportional to the Sinus's of their broken Angles in another that's eafier or harder to be penetrated; fo that the Sinus of the Angle of Inclination is to the Sinus of the broken Angle, as the Sinus of anotlter Angle of Inclination is to the Sinus of its broken Angle. And hence ir comes, that if once one knows by experience one broken Angle for any, one Angle of Inclination, he may eafily know by computation the broken Angles for all the other Angles of Inclination.

In regard the two Lines AH, CD, are paratlel, the Angle \mathbf{E} is equal to the Angle of Refraction HBE and forafrauch as in all Rectilineal Triangles the Sinus's of Angles are proportional to their oppofite
fides, we know that the Sinus of the broken Angle EBF is to its oppofite fide EF, as the Sinus of the Angle BFC or of the Angle of Inclination ABG, to the Ray of Refraction BE: And fince we know by Experience, that when the Ball BCD is of Glafs, the Sinus of the broken Angle EBF is to the Sinus of the Angle of Inclination ABG or BFC, as 2 is to 3, it follows from thence that if the Line EF is 200 parts, the Ray of Refraction BE is 300, and fo by Trigonomerry one may eafily find the Angle E, or the Angle of Refraction HBE, the broken Angle EBF, and the Semidiameter BF, having once difcover'd the Angle of Inclination ABG , or its equal BFC in the Amblygonium BFE, where three things are known, namely, the Side BE of 300 parts, the Side EF of 200 , with the Angle BFE, Which is the remaining Part or the Complement of 80 degrees from the Angle BFC which is equal to the Angle of Inclination ABC, which is fuppos'd.

Suppofe the Angle of Inclination ABG to be 10 degrees, in which cafe the Angle BFE will be 170 ; and that one wants to know the broken Angle EBF : The Analogy is this:

As the Side BE	300
To the Sinus of the oppofite Angle BFE	17365
So is the Side EF	200
To the Sinus of the broken Angle EBF	11577 *

which will be found to be abour 6. 39^{\prime}. and which being fubftracted from the Angle BFC, or the Angle of Inclination ABG, which we fuppofed to be 10 degrees, the Remainder is 3.21^{\prime}. for the Angle of Refraction HBE, or for the Angle E, which will ferve for finding the Semidiameter BF, by this Analogy :

As the Sinus of the Angle BFE	17365
To the oppofite Side BE	300
So is the Sinus of the Angle E	5843
To its oppofite Side BF	101

But if the Semidiameter BF is already known, as containing 100 parts, the Cortent of the Line EF in the fame parts may be found by making the following Analogy in the lame Triangle BEF:

As the Semidiameter BF	101
To the Line EF	200
So is the Semidiameter BF	100
To the Same Line EF	198

To which if you add the Semidiameter FC or 100 , you have 298 for the Line CE.

By this Method did we calculate the following Ta_{a} ble, in which you'll find oppofite to the Angle of In-

$\underline{\text { ABG }}$	EbF						CE
1 2	0.40	0.4	300		7.18		297
3	2. 0	0.40	300	${ }_{1}^{12}$	7.58 8.38 8	22	297
4	2.40	1.20	300	14	9.16	444	296
5	3.20	1.40	300	15	9.56	5	295
	4.40	2.2	299	17	10.35 11.14	5.46	295
8	5.19	2.41	298	18	11.53		294
9 10	5.59		${ }_{298}^{298}$	19	12.32		292

clination ABG the Quantity of the broken Angle EBF, and of the Angle of Refraction HBE, with that of the Line CE, the Diameter CD of the Sphere of Glafs being fuppofed 200 parts.

We have not prolong'd the Table beyond the 2oth degree of Inclination, this being fufficient to let you fee to what Proportion the Line CE decreafes; by which you'H oblerve that ir decreafes very flowly, as being always equal to about 3 Sernidiamerers, finde the greareft difference is but about the 2 sth part of a Diameter, whence it comes that the Line DE is almoft equal to the Semidiameter of the fame Sphere, i. c. to the Line DF.

This Line DE, which is found to be 98 parts for an Inclination of 20 degrees, as appears by fubftracting CD from CE, will ferve for finding the Focus O, as I am abour to thew you, after taking notice that the broken Angle EBF is abour double of the Angle of Refraction HBE, and that by confequence this Angle of

Q 2
Refraction

Refraction HBE is almoft equal to the third part of the Angle of Inclination ABG, as appears at frift view in the foregoing Table.

Now to find the Focus \mathbf{O}, we muft confider that the Lines DE, DF, are almoft equal, the Angles IEF, IFE, are almoft equal, and confequently that the Angle EIL which is equal to them, is about the double of each, and by coniequence of the Angle E. This Suppofition laid down, if we confider the Line OI as a Ray of Incidence, fo that the Angle OIL will be an Angle of Inclination, in which cafe the Line IB will be a Ray of Refraction, the Angle OIE an Angle of Refraction, and the Angle ELL a broken Angle; we will find that this broken Angle EIL is likewile the double of the Angle of Refraction EIO, as we obferved before. Whence if follows that the two Angles E, EIO, are equal one to another, and confequently that the Lines OE, OI, are likewife equal; and forafmuch as the Line OI is almoft equal to the Line OD, the Line OE will be likewife almoft cqual to the Line OD ; and fo the Focus O is about the middle of the Line DE , and confequently the Line DO is abour equal to half the Line DE, or half the Semidiameter DF. If thenyou take upon the prolong'd Diameter the Line DO equal to half the Semidiameter DF or to the quarter of the Diameter CD, you have in O the Focus you demand.

The Angle EBF, which is the broken Angle with refpect to the Ray of Incidence $A B$ that advancing from the Air to enter the Glafs refracts to the Line BE the Ray of Refraction: This Angle, I fay, EBF becomes an Angle of Inclination with refpect to the Ray of Incidence IB, which advancing out of the Glafs ro. enter the Air, refracts reciprocally in the Line $A B$ a Ray. of Refraction: and in regard this Angle EBF is double the Angle of Refraction HBE, 'tis plain that when the Ray of Incidence flies out of the Glafs to enter the Air, the Angle of Inclination is double the Angle of Refraction; which we defire the Reader to take norice of, upon the confideration that 'twill be of ufe in the infuing Problem.

PROBLEM XVII.

Of the Lens's of Glafs'proper to produce Fire with the Rays of the Sun.

THE Sparks of Glafs which are capable of producing Fire, when expos'd directly to the Rays of the Sun, may be flat on one fide and convex on the other, as the Segment of a Sphere; or elfe convex on both fides, as your Old Mens Spectacles and the Microfcopes that magnify Objects very much, and are of ufe for difcovering the fmalleft and minutent parts of Nature; or elfe convex on one fide and concave on the other, which are not fo ufeful as the former, becaufe they can't produce Fire butwhen their Convexity points directly to the Sun, for when their concave part is turn'd to the Sun, the Rays of Refraction inftead of conserging, diverge, that is they feparate one from another, and fo for want of Union can't produce Fire, as thall be fhewn in the Seguel.

To begin with the firft fort, viz. thole made in form of the of a Sphere; Let's expofe to the Sun the plain furface FC of the Lens of Glafs FBC, the Convexity of which FBC has its Cenrer E in the Axis of its Incidence EBH, which divides the Arch FBC into two equal parts at the Point B, and its Chord FC likewile into two equal parts at the Point I. In this Axis of Incidence is the Focus H of all the Rays of Incidence which are parallel to the Axis of Incidence EH, and confequently perpendicular to the sefracting Surface FC. This Facus H or iss Diftance BH from the Convexity of the Glafs, is adjufted after the following manner.

$$
Q_{3} \quad \text { Len }
$$

Let DA be a Ray of Incidence, which being parallel to the Axis of Incidence EH will cut the refracting fubftance FC at right Angles. and confequently will go thro withour refracting, till it arrives at the Point A of the convex Surface, where 'twill refract upon its egreis from the Glais, and inftead of going ftraight to \mathbf{G}, 'twill turn off by the Ray of Refraction AH, which will cut the Axis of Incidence EH at the Point H ; where all the orther Rays of Incidence that are parallel to the Ray DA, will unite in Refraction, ar leaft if the Arch BC or BF do's not exceed 20 degrees; for, as we Thew'd in the foregoing Problem, the Rays of Refraction wou'd not unite at the fame Point H, but nearer to the Point B, if thefe Arches exceeded 20 degrees. So the Point H will be the Focas, that being the Place where the Rays of the Sun uniting by Refraction are able to produce Fire.

This granted, we muft confider that the Angle of Inclination DAE, or irs equal AEH being double the Angle of Refraction GAH or AHE irs equal, as we proved in the foregoing Problem, the Sine of the Angle AEH will be almoft double the Sine of the Angle AHE, by reaion of the fmalnefs of thefe Angles : And forafmuch as in a rectilineal Triangle the Sides are proportional to the Sines of their oppofite Angles, the Side AH will be almof double the
 Side AE, and fince the Side AH is very near equal to the Side BH, it follows that the diftance BH of the Focus H from the convex Surface FBC is almoft double the Semidiameter AE or BE, and confequently the whole Diftance EH is abour the triple of this Semidiameter.

But if you turn the convex Part FBC rowards the Sun, the Ray DA and all the other Rays parallel to the Axis of Incidence EB, will refract twice before they unite in the Point K, which will be the Focurs when once they enter the Glafs in the Line AH; which approaches
approaches to the Perpendicular EAO, and a fecond time when they go out of the Glafs in the Line LK, which recedes from the Perpendicular LM.

From what bas been faid in the foregoing Problem, it appears, That in the firf Refraction the Angle of Inclination DAO or AEB is the triple of the Angle of Refraction GAH or AHE, and by confequence the Line AH is the triple of the Semidiameter EA: And forafmuch as the Line AH is almoft equal to BH , ' this Line BH will alfo be almoft the triple of the fame $\mathrm{Se}-$ midiameter AE or BE, as before ; which gives us to know, that the Focus would be in H if there were but one Refraction: But fince there are two,
'Tis evident from the Remark made in the foregoing Problem, that in the fecond Refraction HLM or KHL is double the Angle of Refraction KLH, and confequently the Line KL is double the Line KH; and fince the Line KL is almoot equal to KB , when the thicknefs BI of the Spark is but fmall, as we here fuppofe it to be, that Line KB is alfo almoft double the Line KH, and by confequence the whole Line BH is about the triple of the Line KH: And fince we have prov'd the Line BH to be likewife the triple of the Semidiamerer BE, it follows that this Semidiameter BE is equal to the Line KH, and confequently the Line KB is double the Semidiameter BE, or equal to the whole Diameter. If then you meafure the length of the Semidiameter EB from the Center E to K, this Point K will be the Focus you look for.
of tho Ienis of Glafis that ure Convex on boch siden.

Mathematical and Pbyfical Recreations:

We come next to the Glaffes that are convex on boch Sides. To find the Focus of the Lens of Glars $A B C D$, of which the Axis EI contains the Center E of the Covesity ADC, and the Center F of the Convexiry ABC ; draw any Ray of Incidence GH parallel to the Axis EI, and baving taken upon that Axis the Line BI triple to the Semidiameter BF, draw the ftraight Line HI , which will give the Point K of the fecond Refraction, thro which K draw from the Center E the ftrait Line EKM, which will be perpendicular to the refracting Surface ADC; and fo IK being confider'd as a
Ray of Incidence, the Angle IKM will be an Angle of Jnclination, and that being double the Angle of Refraction, as we remark'd in the foregoing Problem, if at K you make the Angle IKL equal to half the Angle IKM, you will have in L the Focus you Look for, with refpect to the Convexity ABC expos'd to the Sun.

When the Semidiameters ED, BF, are equal to one another, that is, when the Convexities ABC, ADC, are equal Portions of the Surface of the fame Sphere; the' Focus will be found about the Center F of the Converity AC pointing to the Sun. But let the Semidiameter ED, BF, be equal or unequal, the diftance of the Focus L will always be the fame, turn which Side you will to the Sun.
of the Glaffes that are Convex on one Síde and Concave on the 0 cher.

As for the Glaffes which are convex on one Side and concave on the other, the Focus of fuch a Glafs will be found after the fame manner with that of the laft fort, when the convex Side is turn'd to the Sun; but there's a more compendious way of finding it, when the Diameter of the Concavity is triple the Diameter of the Convexity, for then the Focus is a Diameter and 2 half or three Semidiameters diftant from the Convexity which we fuppofe turn'd to the Sun, i. e. 'tis at the Center of the Concavity, the thicknefs of the Lens being confider'd as very fmall

Let's.

Let'r fuppofe a Lent of Glafs ABCD, in which the Semidiameter EB of the Convexity $A \mathrm{BC}$, which faces the Sun, is the third part of the Semidiameter FD of the concave part ADC. Upon this Suppofition, I fay, all the Rays of Incidence parallel to the Axis BF , as GH , will unite by Refraction at the Center F of the Concavity, becaufe the Ray GH in paffing thro the Glafs will refract to the ftraight Line HI, which being continued will pals thro the Point F, at the diftance of three Semidiameters from the Convexity ABC , as above; now the Ray of Refraction HF
 being perpendicular to the concave Surface ADC, will not refract at I upon its egrefs from the Glars; but will continue in a direct Line to F, and confequently F is the Focus we feek.

But if you turn the concave Side to the Sun, the Focus will be found as above; and may likewife be found after a more compendious way, when the Semidiameter $A B$ of the Concavity is the third part of the Semidiameter CD of the Convexity ; for in that cale the Focus will be found at the Center \mathbf{C} of the Convexity, if the thicknefs of the Glafs BD be inconfiderable; which is always a neceffary Suppofition. But there's no ufe to be made of fuch a Glafs expos'd to the Sun, for its Rays of Refraction feparate inttead of uniting. So that the Point \mathbf{C} is but improperly term'd a Focus, for the Rays of Refraction can't affemble in that Point
 which looks to the Sun, but they feparate in Lines that tend only to that Roint:

Mathematical and Pbyfical Recreations.
This Focus \mathbf{C} which can'r produce Firc, is call'd the Wirtual Focus to diftinguifh it from the True Focus, in which the Rays of the Sun by Refraction are capable ro produce Fire. The true Focus mav be found by the following Analogy, which fuppotes the thicknefs of the Glafs, the Convexity of which points to the Sun, to be very fmall and as it were infenfible.

```
            -As the difference of the Semidiameters of the Concavity
and of the Convexity,
            To tbe Semidiameter of the Convexity;
So is the Diameter of the Concavity
            To the Diftance of the Focus.
```

In a Glafs that's convex on both Sides, the Focus is always true, and may be found by the following Analo$g y$, which fuppofes, as well as the former, the thick-- nefs of the Glals to be very fmall.

As the Sum of the Semidameters of the troo Convexities,

To the Semidiameter of the Convexity that faces the Sun;

So is the Diameter of the other Convexity, To the Diftance of the Focus.
of Geffes This Analogy will ferve likewife for finding the FoConcave on cus of a Lens that's concave on both Sides; but in rebooth Sides. gard fuch a Focus is only virtual, as well as in thofe which are flat on one Side and concave on the orher, we fhall now wave all further confideration of 'em.

Problems of the Opticks.

If you make a Lens of Glafs ABCG, concave on one Side and convex on the other, fo as that the Convexity ABC is the Surface of a part of a Spheroid produced

by the circumvolution of the the Ellypfis ABCD; round its great Axis BD, which is to the Diftance EF of the two Focus's E, F, of the Ellypfis, as 3 to 2 ; and the Center of the Concavity AGC is the Focus E . If you make fuch a Glafs, I fay, and expofe its Convexity directly to the Rays of the Sun, all the Rays of Incidence that are parallel to the grear Axis BD will unite by Refraction in the Focus E , which by confequence will be the true Focus of this Spherico-Ellyptick Lens. Its Convexity may likewife be made hyperbolick ; but that's too fpeculative for Mathematical Recreations. See Decbalee's Dioptricks.

This Facus \mathbf{C} which can't prodiace Firc, is call'd the Wirtual Focus to diftinguifh it from the True Fotus, in which the Rays of the Sun by Refraction ate capable to produce Fire. The true Focus mav be found by the following Analogy, which fuppors the thicknefs of the Glafs, the Convexity of which points to the Sun, to be very fmall and as it were infenfible.
> -As the difference of the Semidiameters of the Concavity and of the Convexity,

> To the Semidiameter of the Convexity ;
> So is the Diameter of the Concavity
> To the Diftance of the Focus.

In a Glafs that's convex on both Sides, the Focus is always triue, and may be found by the following Analogy, which fuppofes, as well as the former, the thicknefs of the Glafs to be very fmall.

As the Sum of the Semidameters of the two Convexities,

To the Semidiameter of the Convexity that faces the Sun;

So is the Diameter of the other Convexity, To the Diftance of the Focus.
of Glaftes This Analogy will ferve likewife for finding the FoConcave on cus of a Lens that's concave on both Sides; but in regard fuch a Focus is only virtual, as well as in thofe which are flat on one Side and concave on the orher, we fhall now wave all further confideration of 'em.

Problems of the Opticks.

If you make a Lens of Glars ABCG, concave on one Side and convex on the other, fo as that the Convexity ABC is the Surface of a part of a Spheroid produced

by the circumvolution of the the Ellypfis ABCD: round its great Axis BD, which is to the Diftance EF of the two Focus's E, F, of the Ellyp/is, as 3 to 2 ; and the Center of the Concavity AGC is the Focus E. If you make fuch a Glafs, I fay, and expofe its Convexity directly to the Rays of the Sun, all the Rays of Incidence that are parallel to the grear Axis BD will unite by Refraction in the Focus \mathbf{E}, which by confequence will be the true Focus of this Spherico-Ellyptick Lens. Its Convexity may likewife be made hyperbolick ; bue that's too fpeculative for Mathematical Recreations See Decbales's Dioptricks.

P.R O B L E M XVIII.

To reprefent in a dark Room the Objedts without, with their natural Colours, by the means of a Lens of Glafs that's convex on both Sides.

HAving fhut the Door and Windows of the Room, fo as to ftop all the Avenues of Light, except a fimall Hole made in one of the Windows that looks to fome frequented place or fome fine Garden; apply to that Hole a Lens of Glafs that's Convex on both fides, but not very thick, that its focus may be the more diftant, as in your old Men's Spectacles: And the Images of the Objects without that pars by the Glars, being receiv'd upon a piece of Linnen freech'd Perpendicular, or very white Paftboard placed about the focus of the Glafs, will appear thereon with their natural Colours, and thofe even more lively than the Natural, efpecially when the Sun thines upon 'em, but fo as not to thine upon the Glals; for if too much Light flafh'd againft the Glafs, 'twould hinder the pleafant diftinction of the Innages of the External Objects; which will otherwife appear to diftinctly with all their Motions, that not only Men may be diftinguilh'd from other Animals that pals, but even Men from Women, the Fowls flying in the Air will be obferv'd, and the leaft Air of Wind will difcover it felf by the trembling of the Plants or Leaves of Trees Pere ceptible upon the Linnen or Paftboard.

Even without a Glars one may diftinguifh upon the Wall or Cieling of a Room, the Images of external Objects, and efpecially thofe in Mocion; :but then thele Images do not appear near fo fine nor fo diftinct, becaufe their Colours are dull and dead. But fee them which way you will, they will ftill appear inverted; which may be help'd feveral ways, though that is to no purpofe; for it do's not inlarge the pleafure of feeing them with a Glafs in their natural Colours, nor impair the ufe to be made of it, namely the reprefencir g in Miniature upon Paftboard, Landskips, and every thing that has the opportunity of conveying its form to the Paftboard; viz. by running a Pencil over

Problems of the Opticks.

all the Traits of that Reprefentation, which will appear as in Perfpective, and of which the parts will be fo much the better proportion'd that the Lens is thin in the middle, and the Hole through which the Species pafs to enter the Glafs is fmall. That Hole ought not to be very thick, and therefore it ought to be made in a very thin round plate of Metal applyed to the hole of the Window, which ought to be fomewhat large, for giving the freeer paffage to the Species or Images of the External Objects, that lie fideways to ir.

If you fhut the Windows of a Room, and leave the Door open, you may there fee what paffes without by feveral plain Looking-glaffes which communicate the Species by Reflexion, one to another, \mathcal{J}^{c}.

I forgor to tell you, that by this way of reprefenting upon a Surface the Images of Objects with a Lens of Glafs, the Phyficians explain the fenfe of feeing ; they take the hollow of the Eye for the clofe Room, the bottom of the Eye or the Retina for the Surface that receives the Species, the Cryftalline humour for the Lens of Glafs, and the perforation of the Apple for the hole in the Window, through which the Species or Forms of the Objects pafs.

PROBLEM XIX.

To reprefent on a Plain a dijguifed or deform'd Figure, So as to appear in its natural Pofition, when view'd from a determin'd Point.

YOU may difguife or mif-flape a Figure, for example a Head, in fuch a manner, that upon the Plain where 'tis dgawn, there fhall be no proportion obferv'd in the Forehead, and yet when. feen from 2 certain Point, it fhall appear in its juft Proportions. The way of doing it is this.
Having made upor Paper a juft draught of the Figure you defign to difguife, defcribe a Square round ir, as ABCD, and reduce it to feveral litrle Squares by dividing the fides into fo many equal Parts, feven for Inftance, and drawing ftraighr Lines along and a-crofs to the oppofite Points of Divifion, as the Painters do
when they go to copy a Picture, and contract it or bring it into a fmaller Compars

This done, defcribe at pleafure upon the propos'd Plan the Oblong EBFG, and divide one of the two

leffer fides, EG, BF, into as many equal parts as there are already divided in the fides of the Square ABCD, viz. feven. EG being here thus divided, divide the orher fide FB into two equal parts at the Point H , from which draw to the Points of Divifion in the Oppofite, as many ftraighr Lines, the two laft of which will be EH, GH.
In the next place having taken at pleafure upon the fide $B F$, the Point I above the Point H, for the height of the Eye above the Plain of the Picture, draw from that Point I to the Point E the fraight Line EI, which here cuts thofe that go from H , at the Poins, $1,2,3,4,5,6$, 7 ; through which do you draw as many Atraight Lines parallel to one another, and to the bafe EG of the Triangle EGH, which by this contrivance is divided into as many Traperiums, as there are Squares in the Divifion of the Square ABCD. So if you transfer into the Triangle EGH, the Figure in the Square ABCD by bringing each Trait into the fame Relpective Trapeziumis or Perfpective Squares, which are reprefented by the natural Square of the grear Square ABCD, the deform'd Figure is defcrib'd; and you'll find it conform to its Prototype, i.e. to the appearance in the Square ABCD, when you look upon it
through

Problems of the Opticks.

through a hole that's narrow towards the Eye, but widens much on the fide towards the Picture, fuch as K, which I fuppofe to be raifed perpendicularly upon the Point H , fothat its height LK is equal to the height HI, which ought not to be yery great, that the Figure may appear fo much the more deform'd. See Prob. XXI.

PROBLEM XX.

To defcribe upon a Plain a deform'd Figure that appears in its natural Perfetion, when feen by Reflexion in a plain Looking-glafs.

HAving drawn, as above, your propos'd Figure in a Square, fuch as ABCD, divided into feveral other Squares, which in this example are fixteen in number; and fuppofing the Glafs to be an exact Square, naked and without a Frame, as EFGH, draw upon the plain of the Picture the Line IK equal to the fide EF of the Looking-glafs, to the end that

the Figure may entirely fill or take up the Glafs EFGH; and having divided this Line IK into two equal parts at the Point P , draw the indefinite LM Perpendicular to it, and paffing thro' its middle Point P , fo that the two parts PL and PM are equal and as long as you will.

Then raife from the Point L, the Line LQ Perpendicular to the Line LM, and equal to the double of the Line IK, or of the fide of the Glafs EF; and from the Point M, raife the Line NO Perpendicular to the fame Line LM, and likewife double the Line IK ; then joyn or draw the Right Lines LN, LO, which will pars thro' the Points, I, K, and make the Triangle LNO. Now, divide this Triangle LNO, as in the foregoing Problem, into as many Perfpective Squares as there are natural ones in the Square ABCD, and after the fame manner as above transfer into them the Figure in the Square ABCD, which will appear deform'd upon the plain of the Picture, but natural and like its Prorotype when feen from the Point \mathbf{Q}, rais'd Perpendicularly upon the Point L , as we Thew'd in the foregoing Problem. But if you will you may fee it with its natural features by Reflexion in the Gla/s 1RSK placed upon the Line IK, when you look to the Glaifs through a fmall Hole raifed Perpendicularly upon the Point M to the height of $M Q$, equal to $L Q$ in the preceding Cut.

PROBLEM XXI.

To defcribe upon a Horizontal Plain a deformed Figure which appears Natural upos a vertical TranSparent plain, placed between the Eye and the deformed Figure.

TIS evident, That if you pur in Perfpective any Figure whatfoever, upon Paper confidered as an Horizonsal Plain ; and raife ar Right Angles upon the Ground

Problems of the Opticks.

Ground Line a Tranfparent Plain, for example of Glafs; the Eye being placed oppofite to the Point of Gight, upon a beight equal to the diftance berween the Ground Line and the Horizontal Line, and diftant from the Tranfparent Plain reprefenting the Picture, by a diftance equal to that fuppos'd in the Peripective, will fee the difguifed Figure appear in the Glafs in its juft Proportions. Thofe who undertand Perfective will readily underftand what I fay; and thofe who are unacquainted with ir, may refolve the Problem Mechanically after the following manner.
Having drawn upon a piece of Paft-board your propos'd Figure in its juft Proportions, for Example the Eye EF, prick the Paftboard, and fer it up at Righr \Angles upgn the Plain MNOP, where you have a mind to draw the Figure difguifed : Pur behind the prick'd Paftboard a light, of what height and at what diftance you pleafe, as at \mathbf{G}; and then the Light palfing through the holes of the Paftboard ABCD will convey the Figure to the Plain MNOP, and there reprefent it all over disfigured, as HIKL, which you're to mark down with your Pencil or ocherwife. Now this disfiguring Reprefentation will appear in the natural proportions upon
 a Glafs fer up in the room of the Paftboard ABCD, and look'd into by the Eye placed at G. Nay 'twill appear conformi to its Protorype EF, to the naked Eye thro' a little hole at the Point \mathbf{G}.

स

P\& \mathbf{R}.

This done, defcribe at pleafure upon the propos'd Plan the Oblong EBFG, and divide one of the two

leffer fides, EG, BF, into as many equal parts as there are already divided in the fides of the Square ABCD, viz. feven. EG being here thus divided, divide the other fide FB into two equal parts at the Point H , from which draw to the Points of Divifion in the Oppofite, as many Atraight Lines, the two laft of which will be EH, GH.
In the next place having taken at pleafure upon the fide BF, the Point I above the Point H , for the height of the Eye above the Plain of the Picture, draw from that Point I to the Point E the ftraight Line EI, which bere cuts thofe that go from H , at the Points, $\mathrm{I}, 2,3,4,5,6$, 7 ; through which do you draw as many Atraight Lines parallel to one another, and to the bafe EG of the Triangle EGH, which by this contrivance is divided into as many Trapeziums, as there are Squares in the Divifion of the Square ABCD. So if you transfer into the Triangle EGH, the Figure in the Square ABCD by bringing each Trair into the fame Relpective Trapezium 's or Perfpective Squares, which are reprefented by the natural Square of the grear Square ABCD, the deform'd Figure is defcrib'd ; and you'll find ir conform to its Prototype, i.e. to the appearance in the Square $A B C D$, when you look upon it through

Problems of the Opticks.

through a hole that's narrow towards the Eye, but widens much on the fide towards the Picture, fuch as K, which I fuppofe to be raifed perpendicularly upon the Point H, fo that its height LK is equal to the height HI, which ought not to be very great, that the Figure may appear fo much she more deform'd. See Prob. XXI.

PROBLEM XX.

To defcribe upon a Plain a deform'd Figure that appears in its natural Perfection, when feen by Reflexion in a plain Looking-glafs.

HAving drawn, as above, your propos'd Figure in a Square, fuch as $A B C D$, divided into feveral other Squares, which in this example are fixteen in number; and fuppofing the Glals to be an exact Square, naked and without a Frame, as EFGH, draw upon the plain of the Picture the Line IK equal to the fide EF of the Looking-glats, to the end that

the Figure may entirely fill or take up the Glafs EFGH; and having divided this Line IK into two equal parts at the Point P, dràw the indefinite LM Perpendicular to it, and pafling thro' its middle' Point P, fo that the two parts PL and PM are equal and as long as. you will.

Then

Then raife from the Point L, the Line LQ Perpendicular to the Line LM, and equal to the doable of the Line IK, or of the fide of the Glafs EF; and from the Point M, raife the Line NO Perpendicular to the fame Line LM, and likewife double the Line IK ; then joyn or draw the Right Lines LN, LO, which will pals thro' the Points, I, K, and make the 'Triangle LNO. Now, divide this Triangle LNO, as in the foregoing Problem, into as many Perfpective Squares as there are natural ones in the Square ABCD, and after the fame manner as above transfer into them the Figure in the Square ABCD, which will appear deform'd upon the plain of the Picture, but natural and like its Prorotype when feen from the Point \mathbf{Q}, rais'd Perpendicularly upon the Point L , as we thew'd in the foregoing Problem. But if you will you may fee it with its natural features by Reflexion in the Glals 1RSK placed upon the Line IK, when you look to the Glafs through a fmall Hole raifed Perpendicularly upon the Point M to the height of MQ, equal to $L Q$ in the preceding Cut.

PROBLEM XXI.

To defcribe upon a Horizontal Plain a deformed Figure mbich appears Natural upon a vertical TranSparent Plain, placed between the Eye and the deformed Figure.

T^{1}F evident, That if you put in Perfpective any Figure whatfoever, upon Paper confidered as ant Horizontal Plain; and raife ar Right Angles upon the Ground

Digitized by Google

Problems of the Opticks.

Ground Line a Tranfparent Plain, for example of Glafs; the Eye being placed oppofite to the Point of fight, upon a beight equal to the diftance between the Ground Line and the Horizontal Line, and diftant from the Tranfparent Plain reprefenting the Picture, by a diftance equal to that fuppos'd in the Peripective, will fee the difguifed Figure appear in the Glafs in its juft Proportions. Thofe who underftand Perfpective will readily undertand what I fay; and thofe who are unacquainted with it, may refolve the Problem Mechanically after the following manner.

Having drawn upon a piece of Paft-board your propos'd Figure in its juft Proportions, for Example the Eye EF, prick the Paftboard, and fer ic up ax Right ¡Angles upgn the Plain MNOP, where you have a mind to draw the Figure difguifed : Pur behina the prick'd Paftboard a light, of what height and at what diftance you pleafe, as at G; and then the Light paffing through the holes of the Paftboard ABCD will convey the Figure to the Plain MNOP, and there reprefent it all over disfigured, as HIKL, which you're to mark down with your Pencil or otherwife. Now this disfguring Reprefentatioy will appear in the natural proportions upon
 a Glafs fet up in the room of the Paftboard ABCD, and look'd into by the Eye placed ar G. Nay 'cwill appear conformi to its Protorype EF, to the naked Rye thro' a little hole at the Poing G.

Mathematical and Pbyfical Recreations.

PROBLEM XXII.

To defcribe upon a Convex Surface of a Sphere a difguis'd Figure that foall appear natural when look'd upon from a determin'd Point.

HAving drawn upon Paper the juft Proportions of the Figure you have a mind to difguife, furround it with a Circle ABCD, the Diameter of which AC , or'BD is equal to the Diameter of the Sphere propos'd; and divide its Circumference into what number of equal parts you will, fixteen for inftance, and draw as many ftraight Lines from the Center of

the Circle to the Points of Divifion. Divide likewife the Diamerer AC or BD into a certain number of equal Parts, eight for Inftance, and defcribe from the fame Center through the points of Divifion the Circumferences of Circles, which with the Right Lines drawn from the Center, will divide the Circle ABDC into 6.4 little Spaces.

Defribe again another Circle EFGH, equal to the former ABCD, and draw from its Center I the Right Line IK equal to the diftance of the Eye from the Center of the Sphere propos'd, fo that the part GK may be equal to the height of the Eye above the furface of the fame Sphere; and having drawn through the fame Center I the Diameter FH Perpendicular to the Line IK, divide this Diameter FH into as many equal parcs as you did the Diameter of the firft Circle $A B C D$, viz. eight equal parts; then draw from the Point K through the Points of Divifion, as many ftraight Lines, which will give you upon the Semicircle FGH the Points, $1,2,3,4$, and upon the other Semicircle FEH, the Points, 5, 6, 7.

This Preparation being made; defcribe from the Point L as the Pole, upon the Convex Surface of the propos'd Globe, Parallel Circles, with the aperture or diftances $\mathrm{GI}_{\mathrm{I}}, \mathrm{G}_{2}, \mathrm{G}_{3}, \mathrm{G}_{4}$ and GF , the greateft of which will be MNO, of which the half is only vifible in the Scheme. Divide this half into as many equal Parts, as there are in the Divifion of the Semicircle of ABCD, viz. eight parts, in order to defcribe through the Points of Divifion and through the Pole L as many great Circles, which with the former will divide the Hemifphere LMNO in as many fmall fpaces as you did the Circle ABCD ; into which you are to tranffer the Reprefentation of the Circle $A B C D$, and there you will find its form disfigured, though 'twill reaffume its primitive Afpect when beheld from a Point raifed Perpendicularly upon the Point L , and remov'd from the Point L equally with the Line GK.

What we have done upon the Convex Surface of a Remarki Sphere, may be done after the fame manner upon the Concave Surface of the fame Sphere; with this only difference that the Parallel Circles defcrib'd above from the Pole L with the Apertures, $\mathbf{G}_{1} ; \mathbf{G}_{2}, \mathbf{G}_{3}, \Xi^{\circ} \mathrm{c}$. muft here be defcrib'd with the Intervals, E5, E6, E7, and EF. that is to Jay; inftead of making ufe of the Semicircle FGH, which the Eye placed at the Point K fees as Convex, you muft make ufe of the orber Semicircle FEH, which the Eye placed at the fame Point K fees as Concave.

$$
\mathbf{R}_{2} \quad \mathrm{PRO}
$$

PROBLEM XXIII.

To defcribe upon the Convex Surface of a Cylinder a deform'd Figure, that appears handJom and well proportion'd when feen from a determin'd Point.

HAving inclofed after the ufual manner, the Figure you have a mind to difguife, in a Square KLMN divided into feveral other little Squares; and having determin'd the Point of the Eye at O , at a reafonable diltance from the propos'd Cylinder ABCD, the Bafe of which is the Circle AFBG; draw from the Center E of that Bafe through the determin'd Point

O, the Right Line EO; then draw Perpendicular to it, and through the Center E the Diameter AB, which divide into as many equal parts as thofe of the fide KL in the Square KLMN ; then draw from the Point O through the Points of Divifion as many Atraight Lines, which will give upon the Circumference of the Semicircle feen by the Eye; AFB, the Points, $, 2,3,4$; and upon the Circumference-o the other Semitircle not feen by the Eye, viz. AGB, the Points, s, 6, 7.

Then

Problems of the Opticks.

Then draw upon the Surface of the Cylinder, thro the Points, $1,2,3,4$, Lines Parallel to one another, and to the Axis of the fame Cylinder, or to the fide AD or BC: And having divided one of thefe Parallels 'into as many equal parts as the Diameter $A B$, defcribe upon the Surface of the fame Cylinder thro the Points of Divifion, the Circumferences of Circles parallel to the Circumference AFBG; which with the foregoing parallel ftraight Lines will form little Squares; and into thefe do you tranfport the Figure of the Square KLMN, which will appear disfigured upon the Surface of the Cylinder ABCD, but conform to irs Prororype when viewed through a little hole at O, where the Eye was fuppofed to be in the Conftruction.

What we have now been doing upon the Convex Remark: Surface of the Cylinder ABCD, may be done after the fame manner in the Concave Surface; by making ufe of the Semicircle AGB, as we have done of the Semicircle AFB, i. e. by raifing Perpendiculars from the Points, $5,6,7$, into the Concave Surface, as we havedone from the Points, $1,2,3,4$, in to the Convex Surface, © \mathcal{F}.

PROBLEM XXIV.

To defcribe upon the Convax Surface of a Cone a difguis'd Figure, ubbich appears natural when look'd upon from a determin'd Point.

DDefcribe round the Figure you intend to difguire, a Circle at pleafure, as ABCD, and divide irs Circumference into as many equal parts as you pleafe; as into eight, in order to draw from thefe Points of Divifion, A, E, B, F, छc. to the Center O, as many Semidiameters ; one of which, as AO; being divided, for example, into tbree equal parrs, by the Points 7, 8, do you defcribe from the Center \mathbf{O}, through thefe Points of Divifion, 7, 8, as many Circumferences of Circles, which with the foregoing Semidiamiters will divide the Space terminated by the firft and the greateft Circumference ABCD , into 24 fmall $\mathrm{Spa-}$ ces, which will be of ufe in copying the Picture therein

therein contain'd, and disfiguring it upon the Convex Surface of a Cone, when that Surface is divided into as many little Spaces, and that after the following manner.

Having drawn by it felf the Iine IK equal to the Diameter of the Bafe of the Cone propos'd, and divided it into two equal parts at the Point L, draw perpendicular to-it, through the Point L, the Line LM equal to the height of the Cone, and joyn or draw the Right Lines, MI, MK, which will reprefene the Sides of the Cone, which I fuppofe to be a Right Cone, as if the Cone had been cut by a Plain drawn through its Axis, fo that the IJofceles Triangle IKM will reprefent the Triangle of the Axis.

This done, prolong the Perpendicular LM to N , (above the Point M, which reprefents the Point of the Cone,) as far as you would have the Eye to be rais'd above that Point, fo that the Line MN will be equal to the diftance of the Eye from the top of the Cone. Having divided the half IL of the Bafe IK into as many equal parts as the Semidiameter AO of the Prototype draw from the Point N through the Points of Divifion, 1, 2, the Right Lines NI, N2, which will give upon the fide IM the Points 4,3 . In fine defcribe from the tip of the Cone with the Apertures M_{3}, M_{4}, the Circumferences of Circles upon the Convexity of the Cone, which will reprefent the Circumferences of the Prototype ABCD ; and having divided the Circumference of the Bafe of
the
the Cone into as many equal parts as the Circumference $A B C D$, draw from the top of the Cone thro the Points of Divifion as many ftraight Lines which with the foregoing Circumferences will divide the convex Surface of the Cone into 24 fmall disfiguring Spaces reprefenting thofe of the Protorype ABCD, into which you're to transfer the Figure of the Prototype, which will appear disfigur'd upon the convex Surface of the Cone, but will appear natural to the Eye placed at the diffance MN directly above the Vertex of the Cone.

What we have now been doing upon the Con- Remark: vex Surface of a Cone, feated on its Bafe, may be practis'd after the fame manner on the concave Surface of a hollow Cone, ftanding on its Vertex; With this only difference, that you muft prolong the Perpendicular LM beyond the Point L to N , fo that the Line MN may be equal to the diffance of the Eye from the Point of the Cone, which in this Cafe mult crve for irs Bafe, that the Eye placed at \mathbf{N} may fee into ir, $\mathcal{E} c$.

PROBLEM XXV.

To defribe upon an Horizontal Plain a difuis'd Figure, which will appear in its natnral proportions upon the Convex Surface of a Right Cylindrick Locking-Glifs, the Eye Seeing it by Reflexion from a Point given.

FIrft of all inclofe the Figure yoù have a mind to, difguife, in a Square, fuch as ABCD; and divide the Stuare into fixteen other fmall Squares, in order. to transfer from them the Figure of the Protorype into fuch other disfiguring Squares to be defcrib'd upon: the Convex Surface of a Cylindrical Glafs, the Bafe. of which is the Circle FGHI, baving E for its Center

R 4
If.

If K is the Seat of the Eye, that is, the Point that anfwers upon the Horizontal Plain Perpendicularly to the Eye, which may be diftant from the Cylinder a Foot or two, and be placed a little higher than the Cylinder, in order to fee by Reflexion the more parts of the Horizontal Plain: Draw from the Point K to the Center E the Righr Line KE, and from its

'middle Point L defcribe through the fame Center E the Arch of a Circle FEH, which will mark upon the Circumference FGHI the two Points F, H ; and thro thefe you are to draw the Right Lines KFS, KHT, which will touch the Circumference at the fame Points F, H.

Then divide each of the two equal Arches EF, EH, into two equal parts, at the Points M, N, and draw
$\mathrm{d}_{\text {raw }}$ from the Yoint K through 'the Points M, N, the Right Lines KM, KN ; which will mark upon the Circumference FIH the two Points, O, P; and from thefe two you are next to draw the Right Lines OQ. PR, fo, that the Angle of Reflexion FOQ may be equal to the Angle of Incidence POK, the Line KO being taken for a Ray of Incidence, and in like manner the Angle of Reflexion HPR may be equal to the Angle of Incidence OPK, the Line KP being taken for 2 Ray of Incidence; and then the five Lines $\mathrm{IK}, \mathrm{OQ}, \mathrm{PR}, \mathrm{FS}, \mathrm{HT}$, will reprefent the Lines of the Protorype, which are Parallel to the two fides AD, BC, reprefented by the two Tangents FS, HT. It remains only to divide thefe Lines into four equal parts in Reprefentation, which I thall do the fhorteft *ay, without the poffibility of any confiderable Error.

Having drawn through the Point I, where the Line KE curs the Circumference FIH, the Line I, 2, Perpendicular to the fame Line KE, which will be terminated at the Points 1,2 , by the two Tangents KF, KH, draw from the Center E through the Point H the Right Line Ho, equal to the Line, 1,2 , and divide it into four equal parts ar the Points, $7,8,9$. Then draw through the Point K the Right Line KX equal to the height of the Eye and Parallel to the Line Ho, or Perpendicular to the Tangent KH; and having applied a ftraight Ruler to the Point X, and to the Points of Divifion, 7, 8, 9, 0, mark the Points upon the Line HT, where 'tis cut fucceffively by the Ruler ; and you'll find the Line HT divided into the Points, $7,8,9, T$, parts equal in appearance to thofe of the Line, 1,2 , which is divided by the Lines drawn from the Point K, into four parts almoft equal one to another. Ar laft, carry the divifions of the Tangent HT upon the other Tangent FS.

To divide the Line PR into four equal parts in Reprefentation of thofe of the Line, 1,2 , draw thro the Point P the Line $P 6$ perpendicular to the Line KP, and equal to the Line, 1,2 ; mand divide this Perpendicular P6 into four equal parts at the Points 3 , 4.5. In like manner draw from the Point K the Line KV equal to the height of the Eye, and Parallel to the Line F 6 , or Perpendicular to KP; and having applied,

Mathematical and Pbyfical Recreations.

 applied, as before, a Ruler to the Point V, and to the Points of Divifion, 3, 4, 5, 6, mark upon the Line KP prolong'd the Points, 3, 4, 5,6, where 'tis cut by the Ruler. In fine, transfer the Divifions of the Line PN, upon each of the two Lines, PR, OQ, and draw four Circumferences of Circles through the Points equidiftant from the Circumference FGHI, mark'd upon the four Lines FS, OQ, PR, HT. Thefe four Circumferences with the Right Lines FS, OQ IK, PR, HT, will form 16 Squares, into which if you transfer the Figure of the Prototype ABCD, 'rwill appear deform'd upon any Horizontal Plain, but in its juft proportions upon the Convex Surface of the Cylindrical Glats, placed Right upon its Bafe FGHI, when feen by Reflexion, by the Eye rais'd perpendicularly upon the Point K to a height equal to the Line KV or KX.
PROBLEM XXVI.

To defcribe upon an Horizontal Plain a difguis'd Figure that appears in its juft proportions upon the Convex Surface of a Conical Glafs, Set up at Right Angles upon that Plain, being feen by Reflexion from a Point given in the prolong'd Axis of this Specular Cone.

1N the firf place, deferibe round the Figure you mean to dirguife, the Circle ABCD, of what bignefs you will ; and divide its Circumference into what number of equal Parts you ${ }^{\circ}$ wilh; in order to draw from the Center E to the Points of the Divifion as many Semidiameters, one of which, as AE, or DE ought to be divided into a certain number of equal parts, in order to defcribe from the Center E, thro' the Points of Divifion, as many Circumferences of Circles, which with the foregoing Semidiameters will divide the Space terminated by the firft and greateft Circumference, ABCD, inw revernl little Spaces, which will ferve for copying the Picture therein contain'd, and for disfiguring it upon an Horizontal Plain round the Bare FGHI of a Conick Glars, and that after the following manner.

Taking

Taking the Circle FGHI whofe Center is O, for the Bare of the Cone; defcribe apart the Right Angled Triangle KLM, in which the Bare KL is equal ro the Semidiameter OG of the Bafe of the Cone, and the height KM is equal to the height of the Cone. Prolong the Altitude KM to N, fo, that the part MN may be equal to the diftance of the Eye from the top of the Cone. or the whole Line
 KN may be equal to the height of the Eye above the Bafe of the Cone: And having divided the Bafe KL into as many equal parts as the Semidiameter AE, or DE of the Prototype, draw from the Point N to the Points of Divifion P, Q, R, as many ftraight Lines, which will mark the Points S, T, V, upon the Hyporhenufe LM, which reprefents the fide of the Cone. At the Point V make the Angle LVI equal to the Angle LVR; at the Point T make the Angle LT 2 equal to the Angle LTQ; at the Point S make the Angle LS 3 equal to the Angle LSP; and at the Point M which reprefents the Vertex of the Cone, make the Angle LM 4 equal to the Angle LMK; and fo you have upon the prolong'd Bare KL the Points, Ia $2,3,4$.

In fine defcribe from the Cent O of the Bafe FGHI of the Conical Glafs, with the Diftances $\mathrm{Kr}_{1}, \mathrm{~K}_{2}, \mathrm{~K}_{3}$, K_{4}, Circumferences of Circles, which will reprefent thofe of the Prototype ABCD ; and of which the greateft ought to be divided after the fame manner into as many equal parts as the Circumference ABCD; Center O the length of the Line KN.

To avoid Miftakes in transferring what you have in the Prootype ABCD to the Horizontal Plain, obferve that what is remotef from the Center ought to be neareft the Bafe FGHI of the Conical Glars, as you fee by the fame Letters, a, b, c, d, e, f, g, b, of the Horizontal Plain and of the Prototype. The fame thing is to be oblerv'd with refpect to a Cylindrical Glafs, as you fee by the fame Letters a, b, c, d, of the Horizontal Plain and of the Prototype; in the Cutt annex'd to the foregoing Problem.

PROBLEMXXIII.

To defcribe an Artificial Lantern, by whicb one may read at Night at a great diftance.

M
Ake a Lantern in the Fomn of a Cylinder or of a fmall Cask laid on one fide; put in one of its two ends a Concave Parabolick Glafs, in order to apply to its Focus the flame of a Wax-Candle, the Light of which will reflect to a great diftance in pafing through the other End that ought to be open, and will appear with fuch a Splendour, that by it one may read ar Night very fmall Letters at a greardiftance, with Telefcqpes; and thofe who fee the light of the Candle at a areat diftance, will take it to be a great Fire, whict will be ftill the lighter if the Lancern is tinn'd within, and made in the form of an Ellypfis.
Remark.
We likewife make ufe of fuch a Glafs for a MagiThe Magial cal Lantern, fo call'd, becaufe by means of it we Lentern. can make any thing appear on the white Wall of a dart

Problems of the Opticks.

dark Room ; fuch as Monfters and fearful Apparitions, which the Ignorant impure to Magick. The Light reflected by vertue of this Glafs paffes through a Hole in the Lantern, in which there's a L.ens of Glafs; and berween them there's a thin piece of Wood containing feveral litrle Glaffes painted with monftrots and formidable Figures, which they move up and down through a fitit in the Body of the Lantern, and which caft their Reprefentation to any oppofite Wall with she fame Colours and Proportions, but mach inlarged.

PROBLEM XXVIII.

By the means of two plain Looking-Glaffes to make a Face appear under different Forms.

HAving placed one of the two Glaffes horizontally, raife the other to about Right Angles over the firft ; and while the two Glaffes continue in this Pofture, if you come up to the Perpendicular Glafs, you'll fee your Face quite deform'd and imperfect ; for 'twill appear withour Forehead, Eyes, Nofe or Ears, and nothing will be feen but a Mourh and a Chin rais'd bold. Do but incline the Glafs never fo little from the Perpendicular, and your Face will appear with all its parts excepting the Eyes and the Forehead. Stoop it a little more, and you'll fee two Nofes and four Eyes; and then a little. further, and you'll fee three Nofes and fix Eyes. Continue to incline it filla litrle more, and youll fee nothing but two Nofes, two Mouths and two Chins, and then a: litrle further again, and you'll fee one Nofe, and one Mouth. At laft incline a little further, that is, till the Angle of Inclination comes to be 44 Degrees, and your Face will quire difappear.
If you incline the two Glaffes the one towards the other, you'll fee your Face perfect and intire ; and by the different Inclinations, you'll fee the Reprefentation of your Face, uprighic and inverted alternate$\mathrm{ly}, \mathrm{O}_{\mathrm{c}}$.

PRO.

Google

PROBLEM XXIX.

By the means of Water to make a Counter appear, that while the Veffel was empty of Water was hid from the Eye.

TAke an empry Veffel and put a Counter in it at fuch a diltance from the Eye, that the height of the fides of the Veffel keeps it hid; you may make the Eye to \{ee this Counter without altering the place of either the Eye, the Veffel or the Counter,viz. by pouring Water into it; for as Sight which is perform'd in a ftraight Line, do's upon encountring a thicker Medium refract towards a Perpendicular, fo in this cale the Water pour'd into the Veffel being a thicker Medium than the Air, will make the Rays darted from the Eyes to refract towards the Line that's Perpendicular to its Surface; and fo the Eye will fee the Counter ar the bottom of the Veffel, which without that Refraction could not be feen.

PROB:LEXXX.

To give a perfect Reprefentation of an Iris or Rainbow upon the Cieling of a dark Room.

FO R folving this Problem, you muft take a Triangular Prifm, which the Artifts call barely a Triangle, and which, as all the World knows, gives the appearance of divers Colours when applied to the Nofe, and makes the Objects appear invefted with Colours like unto thofe of the Iris or Rainbow. Now, if you place fuch a Prifm in your Chamber Window, when the Sun fhines upon it, the Rays of the Sun paffing thro' the Triangular Glafs, will form upon the Cieling of the Rooma Rainbow; which will be a pretty Sight, efpecially if the Cieling of the Room is done Archwife; for that will make the Figure round, and like unto the natural Rainbow in the Clouds.

PROBLEMS
 . 0 F

 D I A L L I N G.

 D I A L L I N G.}

DIALLING is the pleafanteft Part of the Marhematicks, but is grounded upon a profound Theory, which is not fit for Mathematical Recreations; fo that our prefent Province calls only for the eafieft and moft diverting Problems.

PROBLEMI.

To defcribe an Horizontal Dial with Herbs upon a Parterre.

YOU may make an Horizontal Dial of Plants upon a Parterre", after the ufual manner, by marking the Hour-lines with Box or otherwife; and putting in the room of a Cock or Gnomon fome Tree planted ftraight upon the Meridian Line, which by its Shadow will point to the Hours as in the ordinary Sundials. But inftead of a Tree, one may take his own Heighth for the Style, planting himfelf upright at the Place mark'd upon the Meridian Line,
You may likewife lay down fuch a Dial by a Table of the Altitudes of the Sun, or a Table of the Verticals of the Sun, or elfe after the following manner.

Thro the Point A taken at difcretion upon the Hori- plate 2. Fig: zontal Plain, draw the Meridian Line BC; and from I . the fame Point A delcribe at pleafure the Circle 6B6C ; divide the Circumference of that Circle into 24 equal Parts, from is to is degrees, for the 24 Hours of the nátural
natural Day, beginning from the Meridian BC ; then joyn the two oppofite Points that are equally remote from the Meridian by ftraight Lines parallel to one another and to the Meridian BC, or perpendicular to the Diameter 6,6 , which determines upon the Circle the Points of 6 a-clock at Night and 6 in the Morning.

Upon each of thele parallel Lines mark the Points of the Hours which will fall upon the Circamference of an Ellypfis after the following manner. At the Center A with the Line A6 make the Angle 6AD of the Elevation of the Pole (here fuppofed to be49 degrees for Paris ;) and take the perpendicular Diftance between the Point 6 and the Line AD, upon the Meridian BC on each Gide the Center A to 12 and 12: Take likewife the perpendicular Diftance between the Point I and the fame Line AD, upon each of the two Parallels neareft to the Line BC , from E and K , on each fide, to 1 and 12 ; and in like manner the perpendicular Diftance between the Point H and the fame Line $A D$, upon each of the two Parallels next to the laft mention'd, from F and L on each Gide to the Points 2 and Io, and fo throughout the reff.
This done, mark the beginning ef each fign of the \mathbf{Z}_{0} diack whictr anfwers to about the 2oth Day (N. S.) of each Month ; mark ir, I ay, on each fide the Center A (which reprefents the beginning of Υ and \approx) upon the Meridian Line BC, after the following manner.
At the Center A make with the Meridian AB the Angle BAM of the Elevation of the Pole, the Line AM being perpendicular to the Line AD. Take the Arch DN equal to the Declination of the Sign you are about to mark, as 23 degrees and a half for σ_{0} and is ; 20 degrees and a quarter for $I I, \ell$, and for $\mu, 7$, and 1 i degrees and a balf for $\bar{\delta}$, mp, and for \mathcal{F}, m. Draw from the Point N the Line NP parallel to the Line AD, and the Line NQ parallel to the Line A6, and lay out the Part A_{12} from P to the Line NQ at R, fo that the Line PR may be equal to the Part A12, or to the perpendicular Diftance of the Point 6 from the Line AD , and the Part OP terminated by the two Lines A6, AM, will be the Diftance of the Sign propos'd from the Center A, which reprefents the two EquinoCtial Points.

Problems of Dialling.

The Dial being thus drawn with its Ornaments, you may know the Hours upon it by the Rays of the Sun, provided you place your felf abour the degree of the current Sign of the Sun ; with this difference, that, whereas in the Horizontal Dial the Cock is determin'd to a certain fize, here it may be of what fize you will; and indeed it ought to be a little long, becaufe if it be fhore the Shadow may in Summer prove fo fhort as not to reach to the Hour-Points mark'd upon the Parallels. If you defign to make ufe of your own Heighth for a Gnomon, you muft not defribe too large a Circle round the Center A, for fear the Hour-Points fhould be too remote.

PROBLEMII.

To defribe an Horizontal Dial, the Center of which and the Equinootial Line are given.

LET the given Center be A and the Equinoctial Line Plate . Fis BC. Draw thro the Center A the Line AD per- ${ }^{2}$ pendicular to BC, for the Meridian Line. Defcribs upon the Line AE the Semicircle AEF; upon which take the Arch EF equal to the double of the Elevation of the Pole (for example 98 degrees for Paris, where the Pole is elevated about 49 degrees.) From the Point E defcribe thro the Point F the Circumference of a Circle, which will give upon the Equincetial BC the Points G, H, of 3 and 9 Hours, and upon the Meridian AD the two Points $1, D$, each of which may be taken for the Center Divilor of the Equinoctial BC, upon which you are to mark' the Points of the other Hours after the following manner.
Set the Compaffes with the Aperture or Extent of EF, upon the Circumference of the Circle defcrib'd from the Center E; fer 'em, I fay, from the Points G and H to K and L , and from I on each fide to M ard N ; and draw from the Point D, thro the Poirits K, L, M, N, the ftraight Lines which upon the Equinoctial BC will mark the Poinss O, P, Q, R, for $1,11,2$ and 10 Hours. If you fet the Compaffes with the fame extent EF , from M and N, to the Points S and T upon the Equinoctial BC; you have in S the Point of 4 , and in T

Mathematical and Pbyfical Recreations.

 the Point of 8. At laft fet your Compaffes with the fame Aperture.EF from the Points S, T, twice to the Righ and Left upon the fame Equinoctial Line BC, and yo have the Points of 5 and 7 which are out of the Plair of the Dial, $\mathcal{E} c$.
PROBLEM III.

To defcribe an Horizontal Dial by the means of a Qua drant of a Circle. Suppofe the Quadrant of a Circle is divided inco 90 degrees as $A B C$, within which you muft draw the Line DE perpendicular to the Semidameter AB, or parallel to the orther Semidiameter AC ; which may be diftant from A the Center of the Quadrant, more or lefs, according as you wou'd have your Dial largen or fmaller. That Line DE will be unequally divided by the ftraight Lines drawn from the Center A to the Points at every is degrees which reprefent the Hourd Points of the Equinoctial Line of the Horizontal Sung dial to be drawn as followeth :

Draw upon the Horizontal Plain theMeridian Lise FG, and baving taken there at pleafure the Point F for the Center of the Dial, take from that Center upon the Meril dian FG, the Part FHequalto the Part AI terminated by the Line DE upon the Line of the Elevation of the Pole, which we here fuppofe to be 30 degrees, computing from C ; then draw thro the Point H the Line KL perpendicular to the Meridian FG, and that Line KL Thall be take for the Equinoctial Line; upon which you are to transfer or lay down from H on each Gide the divifions of the Line DE beginning from D, in

- order to have the Hour-Yoints. thro which you are to draw fron the Center F the Hour-Lines, छ'c.

It you defire to find the Roor and Length of the Gnomon, draw in the Quadrant from the Point D which reprefents the end of the Gnomon, the Line DO perpendicular to the Line AI of the Elevation of the Pole, which reprelenss the Meridian Line of the Horizonal Dial ; and make HM equal to AO, or FM equal to 10 ; and fo you have in M the Foor of the Gnomon, the Length of we wh equal ro the Perpendicular DO, for the Point I repiefents the Center of the Dial.

$$
\text { Pag. } 258 . \quad \text { Plate } 2 .
$$

Digtized by GOOgle

Plate.:

PROBLEMIV.

To defribe an Horizontal Dial, and a Vertical South Dial, by the means of a Polar Dial

I^{F}F the Polar Dial is fuppofed in a Plain parallel to a Plate as Bte: Circle of fix Hours, fo that the Equinoctial Line AB 4. is perpendicular to the Meridian Line CD, and to all the orher Hour-Lines which are parallel one to another and to the Meridan : At the Point E of 9 Hours upon the Equinoctial, make with the fame Equinoctial AE, the Angle AEF of the Complement of the Elevation of the Pole ; and thro the Point F where the Line EF cuts the Metidian CD, draw GH perpendicular to the fame Meridian CD, which Perpendicular will be cut by the Hour-Lines of the Polar Dial at certain Points, thro which you are to draw to the Center C the Hour-Lines of the Horizontal Dial ; and this Center \mathbf{C} is found upon the Meridian CD by taking the Line FC equal to the Line EF.

If from the fame Point \mathbf{E} you draw the Line EI perpendicular to the Line EF, or, which is the fame thing, if at the Point E you make the Angle AEI of the Elevation of the Pole upon the Horizon, and thro the Point I, where the Line EI cuts the Meridian CD, draw the Line KL perpendicular to the Meridian or parallel to the Equinoctial ; that Line KL which reprefents the firt Vertical, will be cut by the Hour-Lines of the Polar Dial at Points, thro which you are to draw to the Center D the Hour-Lines of the South Vertical Dial, that Center \mathbf{D} being found in like manner (as above) upon the Meridian CD, by making the Line ID equal to the Line IE.

Take notice that the Axis CM of the Horizontal Dial is parallel to the Line EF, and in like manner the Axis DN of the Vertical Dial is parallel to the Line EI

PROBLEMV.

To defribe an Horizontal Dial and a vertical South Dial, by the means of an Equinoctial Dial.

Thee 3. Fig. IF the Equinoctial Dial is fuppoled to be defcrib'd upS. of 6 Hours $A B$ is perpendicular to the Meridian Line $C D$; make at the Point Etaken at difcretion upon the Line of 6 Hours AB, the Angle AEF of the Elevation of the Pole; and thro the Point F where the Line EF cuts the Méridian CD, draw GH perpendicular to the Meridian CD; which Perpendicular will be cut by the Hour-Lines of the Equinoctial Dial in Points, thro which you're to draw the Hour-Lines of the Horizontal Dial from the Center C. This Center C is found by taking FC equal to the Line EF.

For the Vertical Dial, draw from the fame Point E, the Line EI; perpendicular to the Line EF; or, which is the fame thing, make at the: Point E the Angle AEI of the Complement of the elevation of the Pole ; and thro the Point I, where the Line EI cuts the Meridian $C D$, draw KL parallel to the Line of fix Hours $A B$; which Parallel will be cur by the Hour-lines of the Equinoctial Dial that come from the Center O, in Points thro which you are to draw the Hour-lines of the Vertical Dial, from its Center D; this Center being found by taking ID upon the Meridian CD, equal to EI.

You'll oblerve, that the Axis CM of the Horizontal Dial is parallel to the Line EI, and that the Axis DN of the Vertical Dial is parallel to the Line EF.

PROBLEMVI.

To defcribe a Vertical Dial upon a Pane of Glafs fo as to denote the Hours without a Gnomon.

IOnce made fuch a Dial for a Friend after the following manner.
I took off a Pane of Glafs that was foldered on the out-fide to the Frame of a Window, and calculating the Thicknels of the Frame for the Gnomon, had the

*Plete 4.. Pag.26.

Problems of Dialling.

Pane glew'd on again to the in-fide of the Frame, alloting to the Meridian Line a Situation perpendicular to the Horizon, as it Mould be in Vertical Dials, and on the out-fide I caus'd to be glew'd to the Frame oppofite to the Dial, a ftrong piece of Paper un-oil'd, that fo the Rays of the Sun might penetrate it the lefs, and keep the Surface of the Dial darker. Then to diftinguith the Hours withour a Style, I made a little Hole in the Paper with a Pin, over-againtt the Foot of the Style mark'd upon the Dial : And thus the Hole reprefenting the tip or end of the Style, and the Rays of the Sun paffing thro it, caft upon the Glafs a fmall Light that pointed out the Hours very prettily in the oblcurity of the Dial.

PROBLEMVII.

To defcribe three Dials upon three different Plains, denoting the Hours of the Sun, by only one Gnomon.

PRepare two Rectangular Plans ABCD, BEFC, of Plate 7 a. Fig: an equal breadrh BC ; join them by that Line BC 6. which fhall reprefent their common Section, fo that they make a right Angle; and for that reafon, the one ABCD being taken for an Horizontal Plain, the other BEFC may be taken for a Vertical Plain.

This done, or rather before you join the two Plans, divide their common breadth BC into two equal Parts at the Point I; and to that Point I draw in the Plain ABCD the Line GI perpendicular to the Line BC, and in the Plain BEFC draw the Line HI perpendicular to the fame Line BC: And then each of the two Lines HI, GI, @all be taken for the Meridian of its Plain.

Now, taking the Plain ABCD for an Horizontal Plain, defcribe an Horizontal Dial upon ir, the Center of which G may be taken at pleafure upon the Meridian GI ; and upon the other Plain BEFC deferibe a Vertical Sourb Dial, of which the Center H will be found upon the Meridian HI by means of a right-angled Triangle GIH, the Angle IGH being equal to the elevation of the Pole. This Triangle GHI the right Angle of which is in I, ought to be made of fome fo as ro keep them in the right Angle, as you fee in the Figure; and then the Hyporhenufe GH may ferve for an Axis to the Horizontal D al of the Plain'ABCD, and to the verrical Dial of the Plain BEFC.

Thefe two Plains ABCD, BEFC being thus join'd and detain'd in that poficion by the third Triangular Plain GIH; draw from I the right Angle of that third Plain, the Line 10 perpendicular to the Axis $\mathbf{G H}$; and with that IO as a Radius, make a round fourth Plain KLMN, with its Circumference divided into 24 equal parts, in order for an Equinoctial Dial, both fuperior and inferior, fo that the Hour lines of the one may anfwer to the Hour-lines of the other.

This Plain KL.MN ought to be cut on the infide as the Circle of a Sphere, and flit along the Meridian that by that Slit it may fir the Triangular Plain GIH upon the Line IO, the Sourh Point K touching the Point I; in which cafe the Axis GH will pals thro the Center P of the Equinoctial Dial, and be perpendicular to its Plain, and confequently will likewife be the Axis of that Dial; the Plain of which being turn'd direct South, So that the Center G points exactly South, which will be parallel to the Equator, and then the Shadow of the common Axis GH, will thew the Hours by the Rays of the Sun upon each of the three Dials, excepting the time of the Equinoxes, at which time 'twill only thew 'em in the Horizontal and Vertical Dals.'

To tuen the Center \mathbf{G} of the Horizontal Dial directly South, fo, that the Meridian Line of each of thefe Dials may be in the Plain of the Meridian, and that the Azis GH may anfwer to the Axis of the World; you may make ufe of a Compals with the declination of the Magnet mark'd in it. Or elfe, you may mark the Points of the beginning of each Sign of the Zodiack, on the Axis GH on each fide of O , which reprefents the Equinoctial Points, or the beginnings of \checkmark and \approx according to the declination of the Signs, making at the Point, with the Line 10, Angles equal to that Declination: For thus, by giving the Plain ABCD an Horizontal Situation, and rurning it till the Shadow of the Circumference KLMN falls upon the degree of the Sign current of the Sun, the Center G will point directly South, and each Meridian Line will
will lie in the Plain of the Meridian Circle. I do not fay, that the North Signs are to be mark'd from O to G; for thofe who underftand the Sphere, know that in our Zone the Point \mathbf{G} peprefents the North Pole.

P. R O BLEMVIII

To draw a Dial upon an Horizontal Plain, by means of two Points of a Sbadon mark'd upon that Plain at the times of the Equinoxes.

IF the two Points of the Shadow are B, C ; join Plate 4. Fig. them by the ftraight Line BC, which will reprefent ${ }^{7}$. the Equinoctial Line; and that the Error may be lefs fenfible, the two Shadow-points muft nor be far diftant one from another, becaufe the declination of the Sun changes fenfibly round the Equinoxes; and at the fame time they mult not be too near, neither, becaufe 'tis difficult to draw an exact ftraight Line between two Points that lie too clofe together.

Having thtts drawn the Equinoctial Line BC, draw by the foor of the Style A the Line GD perpendicular to it, and that will be the Meridian Line, upon which you mult mark the Center D of the IEquator, and the Center G of the Dial, after the following manner. Having drawn by the foor of the Gnomon A, the Line AF perpendicular to the Meridian Line or parallel to the Equinoctial Line, and equal to the Gnomon, joyn the Radius of the Æquator EF, and take upon the Meridian the Line ED equal to EF ; then D will be the Center of the . 巴quator; and if you draw from the Poine Fthe Line FG perpendicular to the fame Radius of the Equator EF, you have upon the Meridian Line the Center of the Dial at the Point G.

If remains only to mark the Hour-points upon the Equinoctial BC, which may be done by Probl. 2. or elle thus: Having defcrib'd from D the Center of the Equator, with what extent of the Comparfes you will, the Semicircle HEI, and divided its Circumference into 12 equal parts, from 15 to 15 degrees; draw from the fame Center D to the Points of Divifion as many Graight Lines, which being prolong'd' will give upon the Equinoctial Line BC the Points of the Hours.

Mathematical and Phyfical Recreations.

Or, an eafier way may be this; Take upon the Equinoctial Line from the Point E, on each fide of it, a Line equal to the Radius of the सquator $\cdot \mathrm{EF}$, extending from E to the Poinrs of 3 and 9 a Clock; then take the diftance of thefe two Points, and lay is from D on each fide, to the Points of 4 and 8 ; and again from thefe Points, on each fide, to the Points of $5,11,1$ and 7 : For thus you'll bave all the hour Points upon the Equinoctial, excepting thofe of 2 and ro, which you'll find by dividing the diftance of 4 and 8 into three equal parts, or thus.
You'll oblerve that the diftance berween the Snuth -Point E. and the Point of 4 or 8 hours upon the Equi-. noctial Line, is the half of the Diftance between the Points of 1 and 5 , or the Points of $11 a^{\text {nd }} 7$; and that the Diftance between the the Points of 2 and p_{2} or 10 and 3 , is the half of the D.ftance between the Points of 2 and 5 , or 10 and 7 ; and Confequently that the Diftance berween the Points of 2 and 9 , or 10 and 3 , is equal to the third part of the Diftance berween the Points of 5 and 9 , or 3 and 7 . Whence it follows that the Points of 2 and 10 may be tound, otherwife than as above, by dividing the Diftance of Points of 5 and 9 , or 3 and 7 , inso three equal Parts.

If befides the hour Points of the Equinoctial Line BC, you weuld have the half- bour Poims, divide the Semicircle HEI inro twice as many equal Parts, i. e. into 24 equal Parts, and for the quarier Points into 48, and to on or again; to find the half-hour Points, fet one Point of the Compaffes upon the hour Points of the Equinoctial Line BC that fall in odd Numbers, Namely, thofe of i, ir, 3, 9, 5, and 7, and extend the orher Points to the Center of the Equator D; and \{o you have the Intervals or Extents, being taken from the fame hour Points, on each gide, upon the Equinoutial Line, will give the half-hour Points; and thefe in like matner the guarters, and fo on.

Problems of Dtalling?

PROBLEM IX:

To drạw a Dial upon an Horizontal Plain, in whicb the Points of 5 and 7 a Clock are given upon the Equie. notial Line.

TT happens ofrentimes that by raking too long a Gnomon with refpect to the Breadth of the Plain, the Points of 5 and 7 upon the Equinoctial Line fall out of the Plain, and io the Dial can't be Complear. iTwill therefore be proper to determine thefe two

Points, as A, B, upon the Equinoctial, the middle Poin? of which O will be the South Point:

Having

Having drawn through the South Point $\mathrm{O}^{\text {the }} \mathrm{Me}^{-}$ ridian Line DE Perpendicular to the Equinoctial BC, you muft firt find the Center D of the Equator upon the Meridian DE; and by that the Center of the Dial I, in order to draw the Hour-lines through the Points that you're to mark upon the Equinoctial Line AB , as in the foregoing Problem, by means of the Center of the 灰quator D, which we fhall here fhew you how to find three different ways.
Thefirt me- Having defcrib'd from the South Point O, through thod for finding the Center of the sequator. the Points, A, B, of the hours 5 and 7, the Semicircle AFB, and having drawn from the Point A through the fame Point O, the Arch of a Circle OF; divide the Arch AF into two equal Parts at the Point G, and draw the Atraight Line BG, which will give you the Meridian Line DE, the Center of the Æquator D.

The fecond Method.

The third Mithod.

Having drawn as above, the Semicircle AFB, and the Arch of a Circle OF, defcribe from the Point B through the Point F the Arch of a Circle FH, and the Line OD equal to the patt AH, and fo you make have D for the Center of the Aquator.

Defcribe from the Points A and B, of the Hours of 5 and 7, with the Aperture of the Compaffes equal to the diftance AB, two Arches of Circles, which here cut one another upon the Meridian ar the Point E; and from that Point E defcribe, with the fame extent of the Compaffes, the Arch ADB, which gives upon the Meridian DE the Center of the Æquator D.

To find the Center of the Dial, make ar the Center of the Æquator, the Angle ODC of the Complement of the elevation of the Pole, and upor the Meridian $D E$ take OI equal to the Line $C D ;$ and that Point I will be the Center of the Dial, where a!l the Hour-lines are to meet.

If you want to find the foot and length of the Gnomon; having drawn upon the Line OI the Semicircle OKI, take the length of OD upon its Circumference, from O to K ; and draw from the Point K the Line KL perpendicular to the Diarneter OI, in order to have in L the foot or root of the Style, the length of which will hethe Perpendicular LK.
" Tis evident," that the Line OK is the Radius of the Æquator, and the Line IK reprefents the Axis of the Uial, fo that the Angle LIK is equal to the Elevati-on o? the Pole.

PROBLEM X.

A Dial being given, whetber Horizontal or Vertical, to find what Latitude'tis made for, after knowing the length.and root of the Gnomon.

I N the firft place, if the Dial is Horizontal, draw by plate $4:$ the root of the Gnomon A, the Line AF equal to Fig. 7. the Gnomon and Perpendicular to the Meridian; and from G the Center of the Dial to the Point F, the Line FG which will reprefent the Axis of the Dial, and make with the Meridian the Angle FGA equal to the Latitude fought for.

The fame is the method for finding the Latitude of a South or North Vertical Dial, that do's not decline, which is known when the Meridian Line paffes thro' the root of the Gnomon, and then the Angle made by the Axis of the 'Dial with the Meridian, will be the Complement of the elevation of the Pole, for which the Dial was made.

If the Vertical Dial looks directly Eaft or Weft, fo as to be Meridian, which is known when the hour Lines are Parallel one to another ; meafure the Angle made by one of thefe Hour-lines with the Horizontal Line or any other Line Parallel to the Horizontal, and that Angle will be the elevation of the Pole in queftion.

If the Vertical Dial declines, which is known plate s: when the Meridian Line do's nor pals by the root of Fig. 8. the Gnomon, as AH, which do's nor paifs by the Root of the Style C; draw through the Point \mathbf{C} the Horizontal Line FD Perpendicular to the Meridian AH, which runs ftraight down or Perpendicular in all Vertical Dials ; and the line CE Parallel to the Meridian AH or perpendicular to the Horizontal Line FD and equal to the Gnomon. Then take the length of the Hypothenufe EB, (which may be call'd the Line of Df^{-} clination, fince the Angle CEB is the declination of the Plain) upon the Horizontal Line from B to D, from which to the Center of the Dial A draw the Atraight Line DA, which with the Horizontal Line FD will make at the Point D; the Angle BDA, the quan- of the Pole for which the Dial was calculated.

If you would know the Elevation of the Pole upon the plain of the Dial, that is, how many degrees the Pole is elevated above the Horizon, to which the Plain of the Square is parallel ; draw the Subftylar Line AC, and defcribe from C the root of the Goomon, with the Aperture CE the Arch of a Circle; aud another Arch upon the Center of the Dial A with the Interval AD; and fo you have G the Point of the common Section of the two Arches; from which draw to the Center A the Axis of the Dial AG, which with the Subftylar AC will make the Angle CAG of the Elevation of the Pole.

If you would likewife know the difference of the Meridians of the Horizon of the Place, and the $\mathrm{Ho}-$ rizon of the Plain, that is, the difference of Longit rude between that of the Horizon for which the Dial was made, and that of the Horizon Parallel to the Plain of the Dial; having prolong'd the Subftylar AC to L, draw from the Point F the Section of the Line of fix hours and the Horizontal Line, the Line FK perpendicular to the Subßtylar, which Perpendicular FK will be the Equinoctial Line; then take the length of IG the Radius of the Equator, upon the Sublty: lar, from I to L , where the Center of the Equator will fall. From this Center L to the Point M the Section of the Meridian and Equinoctial Lines, draw the Right Line LM, which with the Subitylar AC, will make the Angle CLM, and that gives the diffrance of Longitudes.

The Center of the Dial A being here above the Equinoctial Line, we know that the Plain of the Dial declines from the South to the Eat, because the Root of the Gnomon C is between the Meridian Line and the Morning hours, or thole before Noon. We know likewife, that at the time of the Equinoxes, the Dial will be illuminated by the Sun at three in the Afternoon, because the Line of the hour of three being prolong'd, do's not cut the Equinoctial Line on the Afternoon fides. In fine, we know that at all times the Pain of the Dial is not hone upon by the Surat thole ho: rs, the Lines of which in the Dial do nor cur the Ho^{-} rizintal Line on the file of the fame hours.

Problems of Dialling:

PROBLEM XI.

To find the Root and length of a Gnomon in a Vertical declining Dial.

F a Vertical declining Dial is drawn upon a Wall withour a Gnomon, or any mark for its place or for the Point calculated for its Root, you may find the Root and length of the Gnomon, thus.

If you prolong the Meridian Line BH and any other hour Line, you have upon thar Meridian the Ceater of the Dial, as A, where you'll have the Angle BAD of the Complement of the Elevation of the Pole by vertue of the Horizontal Line FD, drawn through the Point B taken at difcretion upon the Meridian AH, and perpendicular to the fame Meridian; which Horizontal Line FD cuts the Line AD ar D.

This done, draw from the Point D the Line DM perpendicular to AD, which Perpendicular will give upon the Meridian AH the Point M; through which and the Point F of fix hours upon the Horizontal Line, you're to draw the Equinoctial Line FK, and from the Center A the Line AL Perpendicular to FK; and this AL will reprefent the Subftylar Line, and fo give upon the Horizontal FD the Root of the Gnomon at \mathbf{C}.

To find the length of the Gnomon, draw from its Roor found \mathbf{C}, the Indefinite Line CE Perpendicular to the Horizontal FD, and defcribe from the Point \mathbf{B} through the Point D, an'Arch of a Circle, which will derermine upon the Perpendicular CE the length of the Gnomon fought for; and by that you may know the declination of the Plain, reprefented by the Angle CEB, the Elevation of the Pole uponthe Plain reprefented by the Angle CAG, and the difference of Longitudes reprefented by the Angle ILM, as we Mew'd in the foregoing Problem.
Sometimes you have not the point F of fix hours upon Remincis the Horizontal Line, viz. when the Declination of the Plan is very fmall ; and fo you can't draw the Equinoctial Line FK. In this cale you may draw that Line by the Point M, by making with the Meridian

As the Sine Total,
To the Sine of the Declination of the Plain;
So \dot{s} the Tangent of the Complement of the Elevation of the Pole.

To the Tangent of the Complement of the Angle demanded.

Thole who underftand Trigonometry, knowing the Declination of the Plain and the Elevation of the Pole, will readily find by the three following Analogies, the Angle of the Line of fix Hours with the Meridian, the difference of Longitudes, and the Elevation of the Pole upon the Plain.

As the whole Sine,
To the Sine of the Declination of the Plain;
So is the Tangent of the Elevation of the Pole upon the Horizon.

To the Tangent of the Complement of the Angle of the Line of fix hours with the Meridian.

As the Sine Total
To the Sine of the Elevation of the Pole upon the Horizon;

So is the Tangent of the Complement of the Declination of the Plain

To the Tangent of the Complement of the difference of Longitudes.

As the whole Sine,
To the Sine of the Complement of the Declinesion of the Plain

So is the Sine of the Complentent of the Elevation of the Pole upon the Horizon,

To the Sine of the Elevation of the Pole upon the Plain.
If you cant have the Center of the Dial, which they happen when the Elevation of the Pole is very great, or when the Plain declines much, which will hinder you to know the Declination of the Plain, and
deter-
determine the Roor and Length of the Gnomon by the foregoing Merhod; in this cale meafure the Angte of the Line of fix Hours with the Horizontal Line ; and by means of that Angle, and the Elevation of the Pole, you may know the Declination of the Plain, by this Analogy,

As the mobole Sine,
To the Tangent of the Complement of the Elevation of the Pole;

So is the Tangent of the Angle of the Line of fix Hours with the Horizontal,

To the Sine of the Deolination of the Plain.
The Declination of the Plain being thus known; defcribe round the part FB terminated by the Line of fix Hours and the Meridian, the Semicircle FEB; then take from F the Arch EF equal to the double of the Complement of the Declination of the Plain; and draw from the Point \mathbf{E} the Line EC perpendicular to the Horizontal ${ }^{\text {FD, }}$, which Perpendicular EC gives the length of the Gnomon, and determines its Roor at C .
If you want to draw by the Roor of the Gnomon fouind C, the Subftylar Line, draw firft the Equinoctial Line EK from the Point of fix hours F , making with the Horizontal Line FD the Angle found by this Analogy,

As the whole Sine;
To the Sine of the Declination of the Plain;
So is the Tangent of the Complement of the Elevation of the Pole,

To the Tangent of the Angle demanded.
If from the Root of the Gnomon C, you draw the Line CL Perpendicular to the Equinoctial Line FK, the Perpendicalar CL will reprefent the Subfylar Line; which may likewife be drawn by making with the Horizontal FD, at the Point \mathbf{C}, the Angle found by; this Analogy,
'As the whole Sine,
To the Sine of the Dectination of the Plain;
Sof is the Tangent of the Complement of the Eleoation of the Pole;

To the Tangent ${ }^{\circ} f$ 'the Complement of the Angle propos'd.
or elfe take upon the Horizontal Line FD, BD equal to BE; and at the Point D make the Angle BDM of the Complement of the Elevation of the Pole upon the Horizon, in order to have upon the Meridian the Point M_{3} through which and the Point F of fix hours You're to draw the Eqtinoctial Line FM, and from the Point C the Line CL petpendicular to the Equinoctial ; and that Perpendicular is the Subtylar inquir'd for.

PROBLEM XII.

To defribe a Portable Dial in a Quadrant,
Yese s. TOO defcribe a Portable Dial in the Quadrant of 2 Eig. 9. Circle ABC, the Center of which is A_{2} and the Circumference BC is divided into 90 Degrees: Draw round the Diameter AC the Semicircumference of a Circle which Thall be taken for the Meridian Line; by the means of which and of this Table, (which thews the height of the Sun for every day of the Year, from 10 to 10 Degrees of the Signs of the Zodiack, in the Latitude of 49 Degrees being that of Paris) you may defcribe firft the Parallels of the Signs, and from thence the other hour-lines by Circles; and that, after the following manner.

To defcribe, for Example, the Tropick of $\boldsymbol{\sigma}_{2}$ knowing by this Table, that the Sun being in 90 is elevared upon the Horizon at Noon 64 Degrees, and a half, apply a Ruler from the Center A to the 64th Degree of the Quadrant BC, reckoring from B to C; and through that Point at which the Ruler cuts the Meridian Line, defcribe upon the Center A a Quadrant or Quarter of a Circle which will reprefent the Tropick of Cancer. And fo of the reft.

.

Hou. 1	XII	XI	X	IX	VIII	VII			Mo
Sign.	DM	DM	D:M	D.M D	D M	DM	D M	D.M	$\overline{\text { Stgn }}$
$\underline{0}$	64.32	61.56	55.19	46.353	37.1	27.12	17.32	8.22	$\underline{0}$
10	64.9	KI. 33	55.1	46.18	36.44	26.36	$7 \cdot$		20
20	63. ${ }^{2}$	60.3	54.4	45283	3 S .39	26. 8	16.2	7.12	10
	61.35	58.49	52.54	44.73	$3+40$	2451	15.	5.50	II
10	58485	56.30	50.29	+2.143	32.54	23. 7	13.21	3.57	20
$20 \cdot 5$	55525	53.42	47.57	39.5 5	30.42	20.59	17.12	1.40	12
现	$\underline{5}$	50.30	45.1	$37.14{ }^{1}$	28.10	18.29	8.40		O
10	48.51	46.58	4 I .44	34,13 ${ }^{2}$	25.19	15.43	5.54		20
30	4458	43.12	3815	31.0	22	12.48	2.59		\bigcirc
今	41.0	39.20	34.37	27.28	19.9	9.47			V
10	38.	35.26	30.58	24.121	15.58	6.42			20
20	33.	3 I .40	27.2	20.5	12.51	. 44			19
$\underline{1}$	29.29	28. 4	23.58	17.42	910	0.54			\%
$\begin{aligned} & 10 \\ & 20 \end{aligned}$	26. 8	24.46 215	$\begin{aligned} & 20.51 \\ & 18 \\ & \hline \end{aligned}$	$\begin{aligned} & 14.45 \\ & 12.12 \end{aligned}$	7. 5 4.42				20
- ${ }^{\text {x }}$	20.47	19.30	1548	10.	2.42				w
10 20	18.58	$\begin{aligned} & 17.42 \\ & 16.30 \end{aligned}$	2114.6	$\begin{array}{\|l\|} 827 \\ 7.27 \end{array}$	$\begin{aligned} & 1.12 \\ & 0.18 \end{aligned}$				20
vs	17.29	16.19	12.4		-0. 2				Vs
Hou.	XII	I		III	IV	V	VI	$\overline{\text { VII }}$	Evin

This Method of. reprefenting the hour Lines by the Remark: Circumferences of Circles, will not ftand a Geometri- Plate os cal Rigour; but fill may be very ufefully imployed, Fig. se in regard the Error is but fmall. But in ftead of Circles you may have ftraight Lines, in which the Error will not be fo confiderable; by defcribing firf from the Center A, with what extent of the Compafs you will, the two Quadrants σ vs, $\boldsymbol{r} \leadsto$, the firf of which thall be taken for one of the Tropicks, and the other for the Aquator; and then finding upon each of the two Quadrants one Point of each Hour, in order to joyn two Points of the fame. Hour by a ftraight Line, after this manner.

To find, for Inftance, the Noon-point upon the Aquator $\boldsymbol{r} \cong$, in which the Sun is elevated upon the Horizon 4J Degrees; apply to the Center A, and to the 41 Degree of the Quadrant BC, a ftraight Ruler,

Mathematical and Pbyfical Recreations.

which will mark the Noon-point 12 upon the Equator. In like manner, the Sun in σ being elevated upon the Horizon at Noon 64 Degrees and a half, apply to the Center A, and to the 64th Degree of the Quadrant BC, the fame Ruler, and 'rwill mark upon the Quadrant $\overline{5} \mathrm{VS}$, (which is confider'd as the Tropick of Cancer) a fecond South or Noon-point, which being joyn'd to the firft gives the Meridian Line, that will ferve for the fix North Signs, from the Vernal to the Aurumnal Equinox.

If the fame Quadrant $\overline{5}$ vs, be taken for the Tropick of Capricorn, you'll find the Noon-point after the fame manner; and by drawing a ftraight Line.tbro this Point and the Noon-poinr found above upop the Equator $r \mu \mu$, you have a fecond Meridian Line, which will ferve for the fix South Signs, from the Autumnal to the Vernal Equinox.

The fame is the method of marking the other bourlines, both for the fix North and fix South Signs; as you thay underfland by the bare fight of the Fi-. gune. The Parallels of the other Signs are defcrib'd by the Meridian Line, as above; and the hours are known upon the Dial, as upon that laft defcrib'd.

In fhort, the exacteft way of making this Dial, is as followeth. Defcribe at pleafure from the Center A feven Quadrants, equidiftant from one another if you will; and look upon thefe as the beginnings of the twelve Signs of the Zodiack, the firtt and the laft reprefenting the two Tropicks, and that in the middle the EXquator. Upon each of thefe Parallels of the Signs, mark the points of the hours, according to the due height of the Sun at fuch hours in the beginning of each Sign, taken from the Table inferted above : Then joyn with curve Lines all the Points of the fame hour, and fo your Dial is compleated, upon which you may diftinguif the hour of the Day as above; only, inftead of a little Stylus rais'd at right Angles upon the Center A, you may make ufe of two little Pins, the holes of which anfwer perpendicularly, and with an equal height upon the Line $A C$, upon another that is parallel to it; for by this means, inftead of having the Line AC cover'd by the Ghadow of the Stylur, you'll make the Rays of the

Sun pafs through the holes of each Pin; and for the readier perception of the hour, you may put to the Thread that hangs from the Center A, a fmall Bead, which you're to advance upon the Sign and Degrees of the Sun mark'd upon the Line AC, when you want to know what a Clock it is; for when the Rays pals through the holes, and the thread fwings ar libetty from the Center A, the Bead will hhew the hour, without the neceffity of obferving where the thread cuts the Degree of the Sign current of the Sun.
One may eafily perceive, that with fuch a Dial, To know the hour may be known without the Sun, provided the hours you know the place of the Sun in the Zodiack, and its height above the Horizo. For Evzole withott the its height above the Horizon. For Example ; in the Sun. beginning of γ or \approx the Sun being elevated upon the Horizon 27 Degrees and a half, a ftraight Ruler applyed to the Center A, and the $27 \frac{1}{2}$ Degree of the Quadrant B'C, will cut the Parallel of V and n at the Point of 9 in the Morning, or three in the Afternoon; which flews that 'tis 9 a Clock in the Morning if the Alritude of the Sun was taken before Noon, or 3 in the Afternoon if the Altitude was taken after Noon.
You may, know the bours of the Day mithout a Sundi- To knowt at, by means of the Altitude of the Sun and the Table, whara clocle inferted aboove, after this manner. Look in the Table ${ }_{a}$ Dis will. for the given Altirude of the Sun, or that which is next to it in the Column of the Sign current of the Sun, or that of the next tenth Degree; and then you will find oppofite to it, the hour at top if the Oblervation is made in the Morning, and at the bottom, if in the Afrernoon.

One may likewife know the hours without a Sundial, by Geomerry and Trigonomerry, as we are about to thew you ; after fexting forth that the Altitude of the Sun may be taken by a fingle Quadrant, as you have feen, or elfe by the fhadow of a Style or Gnomon elevated at right Angles upon an Horizontal or Verrical Plain, and that after this manner.

In the firft place, if the fiadow of the stylus $A B$ plate 7 : rais'd perpendicalar upon an Horizontal Plain, is AC; Fig. x ac draw from the roor of the Cock $A_{;}$the Line $A D$ equal to the Cock $A B$, and perpendicular to the thadow AC ; and from the Point D to the extremity C of the Madow AC draw the right Line CD; and the Angle ACD will be the Altitude of the Sun fought for.

In the next place, if the plain be Vertical, draw to the extremity C of the ihadow $A C$, the direct Line, CD; and from the root of the Cock A the Horizontal Line EF perpendicular to CD. Then draw from the root A the direct Line AG equal to the Cock. $A B$, and having taken upon the Horizontal Line, the part DF equal to $D G$, draw the Line CF; and the Angle DFC will give the Altitude of the Sun upon the Horizon.

The Alritude of the Sun being known by this, or by other means, the bour of the Day may be found by Geometry, thus. Defcribe at difcretion the Semicircle ABCD, the Center of which is E, and the Diameter AD. Then take on one fide of it the Arch DC of the Elevation of the Pole, and on the other fide the Arch $A B$ of the Complement of the Elevation of the Pole ; after which draw EB, EC, which will be perpendicular to one another, and of which the firf EB will reprefent the Æquator, and the fecond EC the Axis of the World, becaufe the Point E reprefents the Center of the World, the Point \mathbf{C} the Pole elevated upon the Horizon reprefented by $A D$, and the Circle ABCD the Meridian and the Colurus of the Solftices, the Colurus being fuppos'd to agree: with the Meridian.

In this Suppofition, we'll take the Arch BL of the greateft Declination of the Sun, or 23 degrees and a half, from B to C if the Sun is in the Northern Signs, and from B towards A if in the Southern; then we'll draw from the Center E to the Point L the Line EL, which will reprefent the Ecliptick according to the Rules of the Orthographical Projection of the Sphere. This done, make the Arch LM equal to the diftance between the Sun and the neareft Solftice ; and from the Point M draw MI perpendicua lar to the Ecliptick EL, which is here cut by it at I; and through this Point I yourre to draw FG parallel to the Aquator EB; this FG will reprefent the Parallel of the Sun, and cuts the Axis EC at the

Point

Point \mathbf{G}; from whence as a Center you're to draw thro' the Point F the Arch FOK.

In fine, having taken the Arch AH equal to the A1titude of the Sun; draw from the Point H the Line HN parallel to the Horizon AD; which HN will reprefent the Almacantarat of the Sun, and give upon the Parallel FG its place at N ; from whence you're to draw the Line NO perpendicular to the Line FG; and then the Arch FO being converted into Time, computing is Degrees to an hour, will give the hour in queftion before or after Noon.

The Arch BF fhews the Declination of the Sun; which may be taken yet more exactly by means of irs greateft Declination, viæ. 23 degrees and a half, and its diftance from the neareft Equinox; and that by the following Analogy;

As the Sine Total,
To the Sine of the greateft Declination of the Sun; So is the Sine of its diftance from the neareft Equinox' T_{p} the Declination fought for.
'Tis evident, that when the Sun bas no Declination, which happens at the time of the Equinozes, inftead of drawing the Perpendicular NO from the Point N, you muft draw ir from the Point P where the Aquator is cut by the Almacantarat HI_{3} in order to have the hours of that Day. But in this cafe the hour may be found more exactly by the following Analogy.

> As the Sine of the Complement of the Elevation of the Pole,
> To the Sine of the Altitude of the Sun;
> So is the whole Sine,
> To the Sine of the diftance of the Sun from Six bours.

When the Sun has a Declination, fubftract ir from To find the 90 degrees if 'ris Northern, or add it to 90 if 'ris haur of the tri Southern, and then you have the diftance of the Sun ganomemerry, from the Pole; by means of which and of the Elevation of the Pole, with the altitude of the Sun, you may find the hour of the day by Trigonometry, as followeth.

Mathematical and Phyfical Recreations.

Add thefe three, the Complement of the Alritude of the Sun, the Complement of the Elevation of the Pole, and the diftance of the Sun from the Pole; and fubftract fepararely from half their Sum, the Complement of the Elevation of the Pole, and the Diftance of the Sun from the Pole; in order to have two differences which with the Complement of the Elevation of the Pole, and the diftance of the Sun from the Pole, will ferve for making thefe two Analogies,

As the Sine of the diftance of the Sun from the Pole,
To the Sine of one of the two Differences; So is the Sine of the other Difference,

To a fourth Sine.
As the Sine of the Complement of the Elevation of the Pole,

To the fourth Sine found;
So is the whole Sine
To a Seventh Sine.
which being multiplied by the whole Sine, the fquare Roor of the Product will be the Sine of half the diftance berween the Sun and the Meridian.

PROBLEM XIII.

To defcribe a portable Dial upon a Card.

THE Dial we are about to defcribe is call'd the Capuchin, with allufion to the refemblance it bears to a Capuchin's Head with his cowl curn'd upfide down. We do it upon a piece of Paftboard or Card, after this manner.

Having drawnat pleafure the Circumference of a Circle, the Center of which is A, and the Diameter
Plate 7. Fig. Is. Bir2, divide the Circumference into 24 equal Farts, from 15 to 15 Degrees, beginning from the Diameter B12; and joyn the two Divifion Points equidiftant from the Diameter, by ftraight Lines parallel to one another, and perpendicular to the Diameter; which ftraight Lines will be the hour Lines, and of thefe that which paffes through the Center A will be the Line of fix hours.

This done, make, at the Point A with the Diamerer B_{12}, the Angle B12 r of the Elevation of the Pole; and having drawn through the Point r where the Line $12 r$ curs the Line of fix hours, the indefinite Line Φv verpendicular to the Line $12, r$, terminate that Line $\sigma 0$ vs by the Lines $129,12 \mathrm{vs}$, which ought to make with the Line $12 r$, each of 'em, an Angle of 23 degrees and a balf equal to the greateft Declination of the Sun.

You'll find upon this Perpendicular 5 Vs the Points of the other Signs, by defcribing from the Point $\boldsymbol{\gamma}$ as a Center through the Points 5 , vs, a Circumference of a Circle, and dividing it into 12 equal Parts, from 30 to 30 Degrees, for the beginnings of the twelve Signs of the Zodiack, in order to joyn the two Divifion Points, that are oppofite and equidiftant from the Points σ, vs, by ftraight Lines parallel to one another, and perpendicular to the Diameter T_{s} vs, which will make upon that Diameter the beginnings. of the Signs, from whence as Centers you're to draw through the Point 12 Arches of Circles that will reprefent the Parallels of the Signs, and by Confequence require the fame Characters, as you fee in the Figure.

Thefe Arches of the Signs, will ferve for diftinguifhing the hours by the Rays of the Sun, after the following manner. Having drawn at pleafure the Line Cvs, parallel to the Diameter B12, raife at its exrremity \mathbf{C} in a true perpendicular a fmall Cock, and turn the plain of the Dial in fuch a manner, that the Point \mathbf{C} pointing obliquely to the Sun, the fhadow of the Cock may cover the Line \mathbf{C} vs, and then the thread fwinging freely with its Plummet from the Point of the degree of the Sign current of the Sun mark'd upon the Line 5 vs, will thew the hour below upon the Arch of the fame Sign.

That the Thread may be eafily placed upon the de- Remark: gree of the Sign current of the Sun, the plain of the Dial muft be fit along the Line σv, for then you may eafily advance, the Thread to what Point you will of that Line and fix it there. And if you ftring a little Bead upon the Thread, you inay know the hour of the day without the Arches of the Signs, by advancing the Bead to the Point ${ }_{4}{ }_{4}$, when the Thread

Mathematical and Pbyfical Recreations．

is fix＇d at the degree of the Sign current of the Sun， for then the Bead will hew the hour，if the Point \mathbf{C} be turn＇d directly to the Sun，fo as to bave the Line Cus cover＇d with the fhadow of the Cock．

You might have mark＇d the Signs more exactly upon the Line oo vs，by making at the Point 12 on each fide the Line $12 r$ ，equal Angles to the Decli－ nation of thefe Signs ：Bur in regard the Error is in－ confiderable，when the Dial is fmall，as it commonly is，you had as good reft contented with the foregoing Method．

This Sundial derives its Origin from a certain Uni－ verfal Rectilineal Dial formerly communicated to the publick by Father Rigand the Jefuit，under the Ti－ rle of Analemma Novum；the Confruction and ufe of which are as followeth．

Father Ri－ gamd＇s Uni－ verfal Reati－ lineal Dial． Plate 8. Eig． 16.

Having defcrib＇d，as above，the hour－lines，by vertue of a Circle divided into 24 equal Parts，the Center of which is A ，and the Diameter $\gamma: \approx$ ，to which all the hour－lines are Perpendicular ；of which that paffing through the extremity γ reprefents the South or Noon－line，and that paffing through the ex－ tremity \approx reprefents the Midnight－line：This done， I fay，take the Diameter $\gamma \bumpeq$ for the 巴quator，and draw the Parallels of the other Signs in ftraight Lines， after the following manner．

The Diameter $v \bumpeq$ being the 不quator，make with that Line at the Center A ，an Angle equal to the grear－ eft Declination of the Sun，or of 23 Degrees and 2 half，by drawing σ VY，which thall be taken for the Ecliptick，and will be cut by the hour－lines，from 15 to 15 Degrees，in Points，through which you＇re to draw ftraight Lines parallel to one another，and to the 压quator $\gamma \bumpeq$ ，and thefe Right Lines will repre－ prefent the beginnings of the Signs and theirhalves．

In fine，draw from the Center A to the degrees of the lower Semicircle ftraight Lines，from fivero five， or from ten to ten Degrees；and prolong them：rill they meet，each of＇em，the two Meridian Lines $\sigma_{0} 70$ ， $\sigma_{0} 20$ ，to which you＇re to add Cyphers，fo，that the Cyphers of one Meridian Line thall make with the correfponding．Cyphers of the other， 90 Degrees，in order to have the Degrees of the Laritude mark＇dup－ on each Meridian Line，which Degrees will direct us to the hours，thus．

Plate 8 ,
Pag. 280

Draw from the Center A to the degree of the Latitude of the place where you are, which is mark'd upon the Midnight-line $\sigma_{0} 20$, for inftance the sth degree; draw, I fay, the Right Line Aso, which reprefenting that Horizon, will denote the hour of Sunrife and Sun'fer at the Point where it curs the Parallel of the degree of the Sign current of the Sun : And at that Point fix a Thread with its Plummet and 2 Bead upon it, that fothe Thread being extended from the fame Point to the degree of the fame Latitude mark'd upon the Noon-line $\sigma_{0} 70$, the Bead may advance upon that degree of Latitude; after which the Bead refting at that place of the Thread, let the Thread fwing with irs Plummer and irs fix'd Bead, and fo you'll know the hours, by the following means.

Raife a little Gnomon at Right Angles at the extremity \approx of the Line $\gamma \bumpeq$, or any other Line that's parallel to it ; and turn the Point \sim obliquely to the Sun, in fucha manner, that the Thread may hang at liberty with its Plummer, and that the fhadow of the Gnomon may cover the Line; for then the Bead will fhewk the hour.

This is what we are taught by Father Rigaud ; to which I hall only add that we may make ufe of the univerfal Horizontal Dial, by taking the Line of fix hours for the Meridian, and the Center A for the Center of the Dial, in which cafe the Line $\gamma \bumpeq$ will be the Line of the hour; and by taking upon the bour-lines (from the Line of fix hours $\gamma \approx$) the parts of the Horizon terminated by the hour-lines from the Center A. For shus you'll have Points upon the hour-lines, which being joyn'd' by curve-lines, will yield Elliples that will reprefent the Circles of Latitude; and upon thefe you'll diftinguifh the hours by the fhadow of the Axis, which with the Meridian ought to make at the Center A an Angle equal to the elevation of the Pole.

But there's another and an eafier way of drawing an Univerfal Elliptick Horizontal Dial, as we are about to fhew you; after laying down in the next Problem two different ways of drawing an Univerfal Rectilineal Horizontal Dial.

RRO-

PROBLEMXIV.

To defcribe an Univerfal Reftilineal Horizontal Dial.

Mate 9. Fig. 17.

HAving drawn thro' the Center of the Dial, A, taken at pleafure upon an Horizontal Plain, the two perpendicular Lines AB, CD; and having accounted the firf AB for the Meridian, and the fecond CD for the Line of fix hours; defcribe at difcretion upon the Center A the Quadrant EF; and after having drawn through the Point E the Line GH perpendicular to the Meridian, which fhall reprefent the goth degree of Latitude, and through the Point \mathbf{F} the Line FK parallel to the fame Meridian which thall reprefent the Line of 9 hours, and likewife the 33° Circle of Latitude with refpect to the hour-lines that are perpendicular to it ; divide the Quadrant EF into fix equal Parts of is degrees each, that fo by drawing Right Lines from the Center A through the Points of Divifion, you may bave upon the Line GH the Points of the other hours, through which you are to draw the other hoar-lines parallel to the Meridi2n, omitting on purpofe the Lines of 5 and 7 hours, to avoid the exceffive breadth of the Dial; nay to make it yer narrower, you may omit the Lines of 4 and 8, which reprefent the 6oth degree of Latitude, with refpect to the hour-lines that are perpendicular to them, and will fupply the defect of the omitted hour-lines, I mean thofe paraliel to the Meridian AB.

Thefe fame Lines that proceed from the Center A, being prolong'd, will mark upon the Line FK of 9 hours, Points through which you are to defcribe upon the Center A Arches of Circles, which will give upon the Meridian A'B the Points $15,30,45,60,75$; and through thefe you muft draw as many ftraighs Lines parallel to one another, and to the Line GH , or perpendicular to the Meridian AB, which ftraight Lines will reprefent the Circles of Latitude from is to 15 Degrees, with refpeat to the hour-lines paralicil to the Meridian AB.

Pag. 282. Plate 9.

To find the other Circles of Latitude, and the other hour-lines to fupply the defects of thofe that were omitted, defcribe from the Point E thro' the Center A the Semicircle AIB, and divide its Circumference into fix equal Parts, from 30 to 30 degrees, in order to defcribe from the Center A through the Divifion Points, Arches of a Circle that will mark Points upon the Line of fix hours, thro' which Points you muft drawx tines parallel to the Meridian AB, which will repreSent Circles of Latiiude of 15 degrees each.

To defcribe the hour-lines that correfpond to the Circles of Latitude, and ought to be parallel to the Line of fix hours, fuch as is the Line of 3 and 9 hours, which paffes thro the Point B, and reprefents the 30° Circle of Latitude with refpect to the firft hour-lines, draw from the Point B thro' the Peints of Divifion of the Semicircle AIB, fraight Lines which being prolong'd will give upon the Line of fix hours the Points, $\mathrm{L}, \mathrm{M}, \mathrm{C}$; the diffances of which AL, AM, AC, being taken upon the Meridian Line AB on each fide the Center A, you will then have the Points thro: which you're to draw Lines parallel to the Line of fix hours.
You may know the hours of the Day in this Univerfal Dial, after the fame manner as in that laft defcrib'd, viz. by turning the Center A directly. South, and putting at the fame Cencer A an Axis rais'd upon the Meridian to the extent of the Angle of the Latitude of the place; for then the fhadow of that Axis will point to the hour upon the Line of the fame Latirude.

There is yet another and an eafier way of defcri- Plate ro. bing an Univerfal Rectilineal Dial upon an Horizon- Fig. 18. tal Plain, viz. Having drawn, as above, through the Center of the Dial A, the two perpendicular Lines AB, GD; and having drawn thro the Point 90 taken at dilcretion upon the Meridian AB, the Line EF perpendicular to the fame Meridian; defcribe from the Center A thro the Point go the Semicircle C90 D, which here cuts the Line of fix hours CD at the two Points C, D; thro' which and thro the Point 90 you're to draw the ftraight Lines, $\mathrm{C}_{9} 0$, D_{9} o. Divide the Circumference of this Semicircle into twelve equal Parts, of 15 degrees each; and draw from the Cen- reprefent the Circles of Latitude from is to is Degrees. The Dial being thus finifh'd, you'll find the hour of the Day by it, as in the foregoing.

An Horizontal Dial calculated for any particular Latitude whatfoeser, may be rendred Univerfal, two ways, namely by means of the Hour-lines, and by means of the Equinoctial Line divided into hours.

The firft is perform'd by raifing the Plain of the Horizontal Dial above the Horizon of the place where 'tis, towards the North if the Latirude of the place is greater than that for which the Dial was made, or towards the South if 'tis lefs; by raifing ir, I fay, to the extent of the Degrees of the difference of the two Latitudes; and then the Axis of the fhadow. IK will hew the hours by the Rays of the Sun, when the Center I is turn'd due South.

Problems of Dialling.
In the fecond Method we place at the Point O, the Section of the Meridian DI, and the Equinoctial AB , we place there (1 fay) a fmall perpendicular Plain like the Rightangled Triangle OKL, which muft be movable round the Point \mathbf{O}, in fuch manner chat the fide OK may make with the Meridian OL

(which muft be fiit in that part) an Angle equal to the Complement of the Elevation of the Pole upon the Horizon of the place where it is; for then the fiadow of the Axis KI will fhew the hour upon the Equinoctial AB, the Center I being turn'd due South.

PRO.

PROBLEM XV.

To defcribe an Univerfal Elliptick Horizontal Dial.

Plate 8: Eig. 19.

H^{2}Aving drawn, as in the foregoing Problem, from the Center of the Dial A taken at difcretion upon the Horizontal Plain, the two perpendicular Lines, AB, CD; and having drawn upon the fame Center the Semicircle CBD of what fize you will; divide its Circumference into twelve equal Parts, of 15 degrees each, and joyn the two oppofite Points of Divifion that are equidiftant from the Line of fix hours CD, by Righr Lines perpendicular to the Meridian AB , or parallel to the Line of fix hours $C D$, which will reprefent the other hour-lines, and upon thefo hour-lines you're to mark the Points of Latitude, thus;

To mark upon each hour-line, the Point, for example, of the 60 degree of Latitude, make at the Center A with the Meridian AB and the Line AE, an Angle of 60 degrees; and take the length of the perpendicular diftances of the Points in which the Meridian is cut by the hour-lines from the Line AE ; take this length, I fay, upon the oppofite hour-lines, from the Meridian AB on each fide of it, in Points, which muft be joyn'd by a Curve-line which will be the Circumference of a Semi-Ellipfis, and will reprefent the 60 Circle of Latitude. Thus 'tis, that we have reprefented the other Circles of Latitude, from is to 15 degrees, by which with the Rays of the Sun the hour of the Day may be known as above.

PROBLEM XVI.

To defcribe an UniverSal:Hyperbolick Horizontal Dial.

Plate 10.
Fig. ${ }^{2} \mathbf{2 \%}$

HAving drawn, as abdve, from the Center of the Dial A, the two perpendicular Lines AB, CD, and having likewife drawn, as above, upon the fame Center A, the Semicircle EFG divided into twelve equal Parts, of is degrees each; draw from the Center A through the Points of Divifion indefinite Lines,
:

Problems of Dialling.

within which, as between Afymptores, you muft defrribe thro' the Point F taken at difcretion upon the Meridian AB , Hyperbola's which will reprefent the bour-lines.

This done, draw thro' the fame Point F, the Line HI perpendicular to the Meridian AB; which perpendicular will reprefent the 90 Circle of Latitude, and will be cur by the Afymprotes drawn from the Center A, in Points, thro' which you are to defcribe from the fame Center A, Arches of Circles, which will give upon the Meridian Line, the Points 75,60 , $45,30,15$; and thro' thefe Points you muft draw as many Lines perpendicular to the fame Meridian, which will reprefenr the Circles of Latitude from is to 15 degrees, by which the hour will be known as in the foregoing Dial.

Thofe who underftand the Conick Sections, know, Remark. that in order to defcribe an Hyperbola through the Point F between the Afymptotes, AK,AL, (for inftance) they need only to draw at Difcretion thro' the Point \mathbf{F} the Line MN , terminated in M and N by the two Afymptotes AK, AL ; and take MO equal to FN , and fo have O for the Point of the Hyberbola that is to be defcrib'd, छ̌c.

Thofe who are unacquainted with the Conical Sections, may mark the Points of the hour-lines upon each Circle of Latirude, (as we fhall thew in the infuing Problem) in order to joyn the Points belonging to the fame hour, by Curve-lines, which will neceffarily be Hyperbola's.

PROBLEM XVII.

To defribe an Univerfal Parabolick Horizontal Dial.

HAving drawn, as above, thro the Center of the plate ir: Dial A, the two perpendicnlar Lines AB, CD; Fig. 25, draw thro the Point B taken at Difcretion upon the Meridian AB , rhe Line EF perpendicular to the fame Meridian, which will reprefent the 90 degree of Latitude; and defrribe, as in the foregoing Problem, upon the Center A, thro' the Point B, the Semicircle CBD, which muft be divided into twelve Parts, in order 15 to 15 degrees.

Upon each of thele Circles of Latitude, for inftance, the Line GH, which reprefents the 60 degree of Laritude, we muft mark the hour-points, thus. From the Point 60 the Section of the Meridian AB and the Line GH, draw an Arch of a Circle that touches the Line AI, which with the Meridian AB makes at the Center A an Angle of 60 degrees; and with the fame extent of the Compaffes take upon the Meridian AB, the part AK, in order to draw thro' the Point K the Line KL perpendicular to the Meridian AB. This perpendicular KL will be cut by ftraight Lines drawn from the Center A thro' the twelve Divifions of the Semicircle CBD; 'twill be cut, I fay, in Points,' the diftances of which from K are to be taken upon the Line GH, on each fide the Point 60 ; and fo you have the hour-points upon the Line GH, which in this cafe is confider'd as an Equinoctial Line in refpect of the Axis AI.

The fame is the method of marking the hour-points upon the orher Lines of Latitude, confiderd as fo many Equinoctial Lines: And the hour-points belonging to the fame hour are to be joyn'd by Curve-lines, which will reprefent the hour-lines, and be Parabola's, having the Center A for the common Vertex, and the Line of fix hours CD for the common Axis. The hour is obferv'd upon this Dial, as upon the foregoing.

PROBLEM XVIII.

- To deforibe a Dial upan an Horitontal Plain, in mbich the bour of the Day may be known by the Sun witbout tbe Jbadow of any Gnomon.

THIS Dial is commonly made two ways, vit. by the Table of the Verticals of the Sun from the Meridian to every hour of the Day, in the beginning of each fign of the Zodiack, fuch as this here annex'd, which is calculared for the Latitude of 49

Plate 12.
Pag. 289.
 phical Projection of the Sphere.

A Table of the Verticals of the Sun from the Meridian to every Hour of the Day.

H.	XI	X	IX	VIII	VII	VI	V	IV
S.	D.M	D.M.	D M.	D.M.	D.M.	DM.	D.M.	DM.
5	3 3c. 17	53.40	70.30	83.9	95.20	105.56	116.28	26
¢ π	27.58	50.33	67.34	8 I .6	92.45	103.35	114.56	
$\underline{\chi}$	23.30	43.52	60.29	74.17	86.21	97.36		
r	19.33	37.25	52.58	66.57	78.34			
$\underline{\text { mit }}$	16.42	32.25	46.30	59.28	71.12			
人2	14.56	29.11	42.23	54.26				
vs	14.1	28. 2	40.48					
H.	1	II	III	IV		$\overline{\text { VI }}$	VII	

In the firtt place, to defcribe this Dial from the fore- Plate ${ }^{12 .}$ going Table, whence 'ris call'd the Arimuth Dial; draw upon the Horizontal Plain, which I fuppofe to be moveable, the rectangle Parallelogram $A B C D$, and divide each of the two oppofite fides, $A B, C D$, into two equal parts, at the Points E, F, which ought to be join'd by the right Line EF, that is to be taken for the Meridian; and upon that Meridian you are to take at difcterion the Point G for the Root of the Gnomon, and the Points F, H, for the Solftice-Points of σ and vs; thro which you mult defcribe upon the Point G as Center, two Circumferences of a Circle for reprefenting the Tropicks or the beginnings of σ_{0} and $v s$.

To reprefent the Parallels of the beginnings of the other Signs, divide the Space FH into fix equal parts; and from the famé Point G draw thro the Points of Divifion, other Arches of Circles to reprefent the beginbings of the Signs; and mark upon thefe Arches the Points of the Hours, by taking upon them the Degrees of the Vertical of the Sun (as they ftand in the foregoing Table) every Hour of the Day from the baginhing of the refpective Sign : Thefe degrees mult be taken upon the Arches on each fide the Meridian Line EF。

EF, and the Points belonging to one Hour muft be join'd by Curve-Lines, which will be the Hour-Lines. The Dial being thus finifh'd, you may know the Hour of the Day withour a Gnomon, after the following manner.

Apply to the Center G of the Arches of the Signs a magneted Needle rais'd upon a fmall Hinge, with freedom of Motion in turning tound, as in the common Sea-Compaffes; and turn the Point E directly to the Sun; fo that each of the two fides, AD, BC, which are parallel to the Meridian Line EF, ceafes to be fhone upon by the Sun without giving any Shadow ; for then the Needle will point to the Hour upon the degree of the Sign current of the Sun.

Dials made by the Stereographical Projection of the Sphere.

Plate 12. Fig. $\mathbf{2 3}$.

To defcribe this Dial by the Stercographical Projection of the Sphere, in which cale it affumes the Name of an Horizontal Aftrolabe; draw thro the Center I of the Square ABCD, the two perpendicular Lines EF, GH; one of which, as EF which is parallel to the fide AD, being taken for the Meridian, the other GH parallel to the fide AB will reprefent the firf Vertical, becaufe the Point I reprefents the Zenith ; from which as from a Center, you're to draw at difcretion the Circle E' F Fs, which will reprefent the Horizon.

Upon the Circumference of this Circle, rake on one fide the Arch EO of the Elevation of the Pole upon the Horizon, and on the other fide, the Arch FL of the complement of the fame Efevation of the Pole; and draw from the Point \approx to the Points, O,L, the ftraight Line $\approx O$, (which will give upon the Meridian the Pole in P; thro which and thro the two Points r, n, you muft run the Circumference of a Circle to reprefent the Circle of fix Hours;) and the Atraight Line $\approx L$, which will give upon the Meridian the Point M, thro which and thro the two Points r, \ldots, you mult defcribe another Circumference $\gamma M \Omega$, for the Equator.

This Circle or Equator $V M \bumpeq$ might be divided into Hours, from 15 to 15 degrees, by the Rules of the Stereographical Projection; by taking two Points diamerrically oppofite, and defcribing Circumferences through the Pole; but a florter way, is, to take upon the Horizon ErF Ω, on each fide, from the two Points, E, F, the Arches of the Horizon comprehended between the Meridian Circle, and the Hour-

Circles, which are equal to the Angles made by the Hour-lines with the Meridian at the Center of an Horizontal Dial, and which in the Latitude of 49 degrees ought to be, 1 I. 26^{\prime}. for 1 and in Hours ; 23, 33^{\prime}. for 2 and 10 ; 37. 3^{\prime}. for 3 and $9 ; 32,35^{\prime}$. for 4 and 8 ; 70. 27'. for 5 and 7. By this Direction we may defcribe Hour-lines or Circles, as above, which are only needful to be drawn between the two Tropicks; which together with the Parallels of the other Signs of the Zodiack, may be defcrib'd, thus :

To defcribe Parallels of the Signs, make ufe of their Declination, which is 23.30^{\prime}. for ϱ_{0}, x^{\prime}; 20. 12^{\prime}. for
 this their Declination you may find three Points of each Sign, one upon the Meridian EF, and two upon the Horiozn $E \sim F \approx$; and fo defcribe thro thele three Points a Circumference of a Circle for the Parallel of the refpective Sign.

Now to find thele three Points, for Example, for the Tropick of $v s$; take from L which anfwers to the Equinoctial M, towards F (the Sign being Southern, for if 'rwere Northern, you thould take from L to wards r) the Arch LQ of 23.30. fuch being the Declination of V, and draw from the P oint \bumpeq, to the Point Q, the ftraight Iine $\bumpeq Q$, which will give upon the Meridian EF, the Point 12 of $v s$. If from the Poine Q you draw the Line QN parallel to LF; and if thro the Point N where the Line QN cuts the Meridian, you draw the Line vsNvs perpendicular to the fame Meridian, you'll have upon the Horizon EVF \bumpeq, the two Points, vs, vs, thro which and thro the Point 12 you are to defcribe the Arch $\vee \$ 12$ V which will reprefens the Tropick of Capricorn.

The fame way do we reprefent the Parallels of the other Signs; and the Dial being thus finif'd we know the Hour of the Day as in the foregoing Dial, or elfe by raifing at the Point I a very ftraight Style of what length you will, and turning the Point E directly to the Sun; for then the Shadow of the Gnomon points to the Hour upon the Sign current of the Sun. Of elfe thus:

Defcribe upon the fame Meridian EF a common Horizontal Dial, the Center of which may be R, for example; and chere put' an Axis that refts upon the Gnomon rais'd perpendicular at I; and turn the Plain
of the Dial, fo, that the Shadow of the Axis may fhow
in its Dial the fame Hour, that the Shadow of the Gnomon rais'd perpendicular at I; and turn the Plain
of the Dial, fo, that the Shadow of the Axis may fhow
in its Dial the fame Hour, that the Shadow of the Gnomon rais'd perpendicular at II and turn the Plain
of the Dial, fo, that the Shadow of the Axis may fhow
in its Dial the fame Hour, that the Shadow of the Gnomon does in irs own.

PROBLEM XIX.

To defcribe a Moon-Dial.

Plate 13. Fig. 24.

Matbematical and Pbyfcal Recreations.

TO deferibe a Moon-Dial upon any Plain whatfoever, for example an Horizontal Plain ; draw upon that Plain an Horizontal Sun-Dial for the Latitude of the Place, according to Probl. 2. then draw at pleafure the two Lines 57,39 , parallel to one another and perpendicular to the Meridian A12; the firft of which 57 being taken for the Day of full Moon, the fecond 39 will reprefent the Day of new Moon, when the Lunar Lines agree with the Solar ; from whence it comes that the Hour-points mark'd upon thefe two Parallels by the Hour-lines, which go from the Center A, are common to the Sun and Moon.

This dnne, divide the Space terminated by the two parallel Lines 39, 57, into twelve equal parts, and draw thro the Divifion-Puints as many Lines parallel to thefe two L.ines, which Parallel Lines will reprefent the Days when the Sun by irs proper Motion towards the Eaft,removes fucceffively by an Hour a Day,and on which by confequence it rifes an Hour later every Day; fo, that the firt Parallel, 4, 10, will be the Day in which the Moon riles an Hour later than the Sun, and then the Poinr B, for example, of in Hours to the Moon, is the Point of Noon to the Sun : The next Parallel 5, 1:, will reprefent the Day on which the Moon rites two Hours later than the Sun, and then the Point C. for example, of 10 Hours to the Moon will be the Point of Noon to the Sun.
'Tis evident, that if you join by a Curve-line the Points 12, B, C, and all the eithers reaining to Noon, which may be found by a Ratiocination like the laft, thar Curve will be the Lunar Meridian Line. The fame Nicthed is to be obferved in drawing the other Hour-lines for the Moon, as the bare fight of the Figure will inform you.

Plate 13.
Pag. 292.

i

Digitized by GOOgle

In regard the Moon [pends about is Days between its Conjunction with the Sun and its Oppofition, that is, berween new Moon and full Moon when 'tis diamerrically oppofite to the Sun, fo that it rifes when the Sun fets ; you muft deface all the fore-going Parallels, excepting the two firft, 57, 39, and inftead of dividing their Interval into twelve parts, you muft divide it into fifteen, and draw thro the Divifion-Points, other Parallels reprefenting the Days of the Moon, to which by confequence you muft add fuitable Figures, as we have done here along the Meridian ; for by thefe Fiv gures you may know the Hour of the Sun at night by the Rays of the Moon after the following manner:

Place at the Center of the Dial A, an Axis, that is, a Rod that at the Center A makes with the Subfylar A 12 an Angle equal to the Elevation of the Pole upon the Plain of the Dial, which is the fame, with the elevation of the Pole upon the Horizon in an Horizontal Dial; and then the Hour will be pointed to by the Shadow of the Axis upon the current Day of the Moon.
Since the Moon by its proper motion removes from Remark; the Sun three quarters of an Hour towards the Eaft, fo that it rifes every day three quarters of an hour later than the foregoing day ; 'tis evident that knowing the Age of the Moon, you may with a common Sundial know the Hour of the Night by the Rays of the Moon, viz. by adding to the Hour mark'd upon the Dial by the Moon, as many times three quarters of an hour, as the Moon is days old. Now the Age of the Moon is found by the Rules laid down in our Problems of Cofmography.

PROBLEM XX.

To defribe a Dial by Reffection.

TO defribe a Dial upon a dark Wall or arch'd Roof that will thew the Hours by Reflection, draw a Dial upon an Horizontal Plain expos'd to the Rays of the Sun, in a Window, for inftance, in fuch manner that the center of the Dial looks directlyNorth, and the Hour-lines have a concrary Siruation to that of Thread upon any point of each Hour-line, and extend it tight till it paffes the end of the Gnomon and meets the Wall or Vault in a Point which will belong to the Hour that the Thread was apply'd to. Find by the fame means as many other Points of each Hour-line, and join them by a right or curve Line, and the Dial is finifh'd ; upon which you'll know the Hours by Reflection, by placing at the end of the Gnomon of the .Horizontal Dial, a fmall flat piece of Looking-Glafs, laid exactly horizontally ; or, which is the eafier way, by purting inftead of the Glals, Water, which naturally affects an Horizontal Situation, befides that when the Rays of the Sun are weak, 'twill by its motion give a more diftinct Reflection upon the Wall or Plank where the Dial is.

PROBLEM XXI.

To defcribe a Dial by Refraction.

ONE may eafily delcribe an Horizontal Dial by Refraction in the bottom of a Veffel full of Warer, by the Table of the Verticals of the Sun inferted above, page 289, together with the Table of the Altitudes of the Sun given likewife above and the following Table, the firt Column of which to the left contains the Angles of Inclination of the Rays of the Sun, that is, the degrees of the Complement of the Sun's height upon the Horizon, or of the diftance of the Sun from the Zenith, to which there correlpond in the fecond Column, the degrees and minutes of the Angles refracted in Water, that is, the diminution of the Angles of Inclination made in Water, when the Sun is remov'd fo many degrees from the Zenith, which thortens the Shadow of the Gnomon that is to be cover'd with Water in order to know the Hours by the Rays of the Sun.

Table of the Angles refracted in Water for all the Degrees of the Angles of Inclination.

Now the Dial to be thus ufed, is made after the plite ng: following manner. Having drawn from the Root of Fig. 25_{0} the Gnomon A the Meridian Line AB, mark upon that Meridian the Points of the Signs; for example, the Point

Mathematical and Phyfical Recreations.
Point of the beginning of v°, from the foregoing $\mathrm{Ta}_{\text {: }}$ ble of the refracted Angles, and the Table of the Altitudes of the Sun upon the Horizon, by drawing from the Root of the Gnomon A the Line AD perpendicular to the Meridian AB, and equal to the Gromon AC; and by making at the Point D the Angle ADB of the refracted Diftance from the Zenith, which in the beginning of $w o$ is at Noon about 48 degrees; making this Angle, I fay, with the Line DB, which will mark upon the Meridian the Point B of Vs. And fo of the reft.

To find the refracted diftance of the Sun from the Zenith, look firlt upon the Table of the Altitudes of the Sun, where you find that in the beginning of wo the Sun at Noun is rais'd upon the Horizon 17. 29 ' and confequently is diftant from the Zenith 72. 31^{\prime}. and taking this diftance for an Angle of Inclination, you'll find by the Table of refracted Angles, That this Angle of Inclination is changed into an Angle of 48 degrees for the refracted Diftance of the Sun from the Zenith.

The fame is the method of finding by thefe two Tables, the refracted diftance of the Sun from the Zenith in the beginning of any other Sign, and that not only at Noon, but at the other Hours of the Day; which will direct you to find the Points, and at the fame time, the Points of the Signs from the Table of the Sun's Verticals, after the following manner.

To find, for example, the Point of the beginning of v_{0} and of 1 a-clock, at which time the Sun is on a Vertical diftant from the Meridian 14. 19'. make with the Meridian AB ar the Koot of the Gnomon A the Angle BAF of 14,19 '. by the Line AF which repres fents the Sun's Vertical. And having drawn from the fame Root A, the Line AE perpendicular to AF and equal to the Gnomon AC, make at the Point E the Angle AEF equal to the refracted diftance of the Sun from the Zenith, which will be found 48, 18'. And fo you have in \bar{F} upon the Vertical AF, the Point of 1 aclock and of v°.

By the fame procedure you'll find the other Points of the Signs and other Hours; and if you joyn with a Curve Line thofe which retain to the fame Hour, and in like manner thole retaining to the fame Sign,

Problems of Dialling:

the Dial is finih'd; upon which you'll know the Hours by Refraction, when the whole Gnomon AC is cover'd with Water, and the Roor of the Gnomon is turn'd directly South, fo that the Point B fets North ; and at the fame time the end of the Shadow of the Gnomon denotes the Sign in which the Sun is.

PRO-

PROBLEMS 0 F COSMOGRAPHY.

COSMOGRAPHY, according to its Etymology, is the Defcription of the World, that $\dot{\boldsymbol{x}}$, of Heaven and of Earth. 'Tis divided into the General, which confiders the whole Univerie in general, and advances the feveral Ways of defcribing and reprefenting it, according to the divers Sentiments of Philofophers and Mathematicians : And the Particular, which is properly call'd Geography, becaufe it reprefents in particular every part of the World, and efpecially the Earth, borb in Globes and Planifpheres and Maps of the World. I do not pretend upon this Occafion to write a particular Treatife of thefe two Parts; but only to lay before you fome ufeful and agreeable Problems that depend upon 'em.

PROBLEMI.

To find in all parts and at all times, the four Cardinal Points of the World, without feeing the Sun, or the Stars, or making ufe of a Compafs.

$-T$HE Four Cardinal Parts of the World, viz. the Eaft, the Weft, the South and the North, are ea-) fily found by a Compafs, the Needle of which being rouch'd with a Loadftone, turns always one of is Points towards the South and the other towards the North,"which is enough to direct us to Eaft and Wett,
for when one fers his Face to the North, the Ealt is on his Right and the Welt on his Left hand.

The North is eafily diftinguifh'd in the Night by the Stars, particularly by minding the Polar Star which is but two degrees diftant from the Arctick Pole : And. fin the Day-time Aftronomers mark the Meridian Line upon an Horizontal Plain, by means of the two Points of a Shadow mark'd before and after Noon upon the Circumference of a Circle defcrib'd from the Point of the Stylus, the Shadow of which is made ufe of to Hew by its extremiry upon that Circumference two Points equally remote from the Meridian.

But without all thefe Helps you may at all times and in all parts find out the Meridian Line, after the following manner.

Take a Plater or Bafin full of Water, and when the Water is fettled and ftill, put foftly into it an Iron or Sreel Needle, fuch as a common fewing Needle; and if the Needle is dry, and be laid all along upon the Surface of the Water, 'twill not fink ; but after feveral turns will ftop in the Plan of the Meridian Circle, fo that it reprefents the Meridian Line; and by confequence one end of it will point to the South and the other to the North : But without feeing the Sun or the Stars, 'tis not ealy to know which of the two ends points to the South, and which to the North.

Father Kircher lays down an ealy way of knowing South and Norch. He orders you to cut horizontally a very ftraight Tree growing in the middle of a Plain at a diftance from any Eminence or Wall that may fhelter it from the Wind or the Rays of the Sun: In the fection of that Trunk you'll find feveral curve Lines round the Sap which lie clofer on one fide than t'other:

And, as he fays, the North lies on that fide where the Lines are moft contracted, perhaps becaufe the Cold arifing from the North binds up, and the Heat from the South fpreads and rarifies the Humours and Matter, of Whhich thefe crooked Lines are form'd. Thefe Lines, fays that Author, are as the Circumferences of concentrical Circles in Ebony or Brafil Wood.

PROBLEM II.

To find the Longitude of a propos'd Part of the Earth.

BY the Longitude of a place we underfand the diftance of its Meridian from the firft Meridian, which paffes thro the Inand de Fer, the moft Weftern of the Canary Illands. This diftance is computed from Weft to Eaft upon the Equator, in imitation of the motion in Longitude of the Planets, which is likewife from Weft to Eaft, ánd is computed upon the Dea ferens of each Planer, which is call'd Excentrick, becaufe they fuppofe it to be excentrical to the Earth, for the explicarion of the Apogaum or the remoreft ftation of the Planet from the Earth, and the Perigaum or its neareft place of approach to the Earth. ,

In the Maps of the World or the general Maps, we have the degrees of Longitude mark'd upon the Жquaror from 10 to 10 degrees, reckoning from the firt Meridian Eaftward to 360 degrees; fo that the firft Meridian is the 360th Meridian, the Geographers baying thought it fit fo to compute their terreftrial Longitude, as the Aftronomers did their Celeftial upon the Ecliptick, from the Vernal Section, i. e. from the beginning of the Conittellation of Aries, where the Equator and the Ecliptick cut one another, with reifect to the fix'd Stars.
'Tis evident that thofe who are under the fame Meridian, have the fame Longitude ; and that thofe that are under the firt Meridian, have no Longitude at all; and in fine, that'thofe who live more to the Eaftward are under different Meridians, and then the diftance of one Meridian from another is call'd Difference of Longitude; which gives us to know how much fooner 'ris Noon at one place than at another that lies more Weft ; it being a ftanding Rule, that when the difference of Longitude comes to be 15 degrees, 'twill be Noos an Hour fooner in the Place that lies fofar mor Eaft than the other, becaufe 15 degrees upon the r. - for make an Hour, the whole 360 making 24 i : is or a diurnal Circumvolution.

Thus we fee that in order to know the Longitude of

Problems of Cofmography.

any part of the Earth, we need only to know what Hour of their Computation correfponds to the Hour compured ar the fame time under the firft Meridian ; for if you convert that difference of Hours into Degrees, taking 15 Degrees for an Hour, i Degree for 4 Minutes of Time, and I Minute of Degrees for 4 Se conds of Time, you have the Longitude of the Place propos'd. To know this difference of Hours, you may make ufe of fome vifible Sign in the Heavens, obferv'd at the fame time by two Mathematicians, one under the firft Meridian, the other under the Meridian of the Place propos'd. The Ancients for this end made ufe of the Eclipes of the Moon, and at prefent regard is had to the Eclipfes of the firft of the Satellices of $\mathfrak{F} u$ piter, which happen ofner, and whofe Immerfions or Emerfions are with more facility obferv'd with a Telefcope.

When once you have difcover'd the Longitude of a Place, you have no further Occafion to have recourfe to the firf Meridian for the Longitude of any orther place, it being fufficient to know how far that Place is more to the Eaft or Weft than the Place you know already. Neither is there any occafion for two Mathematicians, for making the Obfervation laft mention'd, fince one Man can obferve in the place where he is, the Hour of the Emerfion or Immerfion of the Satellites, and compare that with the Hour of the Place whofe Longitude he knows, fet down in Monf. Cafini's Tables ; for thefe Tables fhew the Hour at Paris of the Immerfion or Emerfion.

From what has been faid, we may learn the truth of Remark: that Paradox, Qualibet Hora eft omnis Hora, which thou'd be underftood of Places under different Meridians; for 'tis certain that when 'tis Noon at Paris, 'tis' an hour after Noon at Vienna in Auftria, and in all the other places that lie is degrees more Eaft than Paris ; at Conftantinople 'tis two a-clock in the Afternoon, and fo on.

Hence it follows that of two Travellers, one going Weft oblerving the Courfe of the Sun, and the other Eaft contrary to the Courfe of the Sun, the firft muft have longer Days than the fecond, infomuch that after a certain time the fecond that goes Eaftward will have reckon'd more Days than he that goes Weetward. And

This gave rife to the fory of two Perfons that were Twins, one of whom travelld to the Eaft and the other to the Weft, and tho they both died at one time the one had liv'd more Days than the other.
As the Latitude is divided into Septentrional and Meridional, extending to 90 degrees towards the two Poles, on one fide and tother of the Equator ; fo Longitude might have been divided into Oriental and Occidental, extending 180 degrees on one fide and t'orher the firf Meridian: Which wou'd be very convenient to let us know, for example, that when 'tis Noon under the firft Meridian, 'ris bur 8 a-clock in the Morning in the Inand of Cuba, the Weftern Longitude of which, is 60 degrees.

PROBLEM III.

To find the Latitude of any Part of the Earth.

BY Latitude, with refpect to the parts of the Earth, we mean the diftance of the Place propos'd from the Æquator, which is meafured by an Arch of the Meridian of that Place between its Zenith and the Æquator. This Arch is always equal to the Elevation of the Pole, which is an Arch of the fame Meridian bezween the Pole and the Horizon ; and hence ic comes that commonly Latitude is confounded with the Elevation of the Pole ; fo that thofe who have no Latitude, i. e. who live under the Æquator, have no Elevation of the Pole, the two Poles of the World being at their Horizon.

The Latititude of any Place of the Earth may be known at Noon time of Day by the Meridian Altitude of the Sun and its Declenfion ; and in the Night time by the Meridian Altitude of fome fix'd Star and its Declenfion, and even withour irs Declenfion, when the Star do's not fet, and the Night is longer than 12 Hours, as I am about to fhew you.

To find the Latitude of any Place by the Meridian Altitude of the Sun, add to that Meridian Alticude, the Declenfion of the Sun, if the Declenfion is meridional, which it is from the Autumnal to the Vernal Equinoz $;$ or if the Declengion is Northern, which it is
from

Problems of Copmography:

from the Vernal to the Autumnal Æquinox, fubftraCA ir from the Meridian Altitude : And thus you have the Height of the Æquator, which fubftracted from 90 degrees, leaves remaining the Latitude foughr for.
The fame is the Operation in the Night time with refpect to the Stars that are Southern or Northern without fetting, as in the cafe of the Stars near the Pole that's elevated above the Horizon. As foon as Night is come take the Meridian Alritude of fuch 2 Star, and 12 Hours after in the Morning take the Meridian Altirude of the fame Star; then add thefe two Altitudes together, and half the fum gives the Elevation of the Pole upon the Horizon.
PROBLEM IV.

To knoty the Length of the longef Summer Day at a certain Place of the Earth, the Latityde of which is - known.

TO know, for example, at Paris, where the Elevation of the Pole is about 49 degrees, the longeft Summer Day, which is of equal extent to the longeft Win-

ter Night. Defcribe at pleafure from the Center D the Semicircle ABC, and upon one fide of it take the Arch CE of the Elevation of the Pole upon the Horizon, which fide the Arch AF of the Complement of the Elevation of the Pole, which in this fuppofition is 41 degrees ; then draw from the Center \mathbf{D} to the Points \mathbf{E}, F, the Lines DE, DF, the firft of which DE will reprefent the Circle of Gix Hours, and the fecond DF the Æquator, taking the Circle ABC for the Meridian of the Place propos'd, and the Diameter AC for the Horizon, according to the Rules of the Orthographick Projection of the Sphere.

This done take the Arch FB of the greateft Declination of the Sun, which is about 23 degrees and a balf; and baving drawn from the Point B parallel to the Line DF, the Line BH, which here curs the Circle of fix Hours at the Point G, and the Horizon at the Point H ; defcribe from the Point G as a Center thro the Point B, the circular Arch BI, which is terminated in I by the Line HI parallel to the Line DE, or perpendicular to the Line BH. This Arch BI is here 120 degrees, or an Arch of 8 Hours, reckoning i Hour for 15 degrees, the double of which gives us to know that at Paris and at all other places where the Pole is elevated upon the Horizon 49 degrees, the longeft Summer Day, or the longeft Winter Night, is 16 Hours.

The Arch BI being 120 degrees or 8 Hours, thews that the Sun fers on the longeft Summer Day, or rifes on the fhorreft Winter Day, at 8 a-clock; and confequently that it rifes on the longeft Summer Day, and fers on the fhorteft Winter Day, at 4 a-clock; which happens when the Sun is in the Summer or Winter Tropick. And by the fame method may we find the Hour of the rifing and fetting of the Sun, when 'tis in any other Sign of the Zodiack, for example, in the beginning of γ and of ${ }^{\text {re }}$, provided we know how to defcribe the Parallel of that Sign, which is done after the following manner.
Having drawn from the Center D which reprefents the Point of the Eaftern and Weftern Equinoctial, to the Point B, which reprefents the Solftice Point of $\bar{\Phi}$ or of VS, the Line DB, which by confequence reprefents a Quadrant of the Eclyptick, and having taken upon the Meridian or the Colurus of the Solftices ABC, the Arch BK of 60 degrees, which is the diftance of the propos'd Sign, from the beginning of $\bar{\sigma}$ reprefenred

Problems of Cofmography.

by the Point B, becaufe we fuppofe the Colurus of the Solftices agrees with the Meridian; draw from the Point K the Line KL perpendicular to the Line DB, and thro the PointL the Line MN, which repefents the Parallel of \bar{O}, and cuts the Horizon $A C$ at N, and the Axis of the World DE ac O ; from which Point, as a Center, defcribe thro the Point M the Arch MS, which will be terminated in \mathbf{P} by the Line NP parallel to the Line DE, or perpendicular to the Line MN ; and this Arch NP being reduced to Hours, after knowing is degrees and minuteš, will give the Hour inquir'd atter.

The Arch FM is the Declination of the propos'd Remark. Sign, the diftance of which to the neareft Equinox is fuppos'd to be 30 degrees; the Arch DN is the orienral or occidental Amplitude of the fame Sign, with refpect to the Horizon AC, which we fuppofed to be 49 degrees oblique; and the Arch ON is the afcenfional difference, which fhews what fpace of Time, the Sun (being in the propos'd Sign) rifes or fers before or after fix a-clock upon the fame Horizor Thefe Arches are Geometrically calculated in this Figure; but a more exact computation may be had by Trigonometry, after the following manner.

To know firft of all the Arch FM, fuppofing the Arch FB or the Angle FDB, that is, the Obliquity of the Eclyprick, to be 23. 30^{\prime} : Obferve the following Analogy, in which we ufe Logarithms, thefe being very convenient in Spherical Trigonometry.

As the whole Sine

To the Sine of the diftance between

 the Sign propos'd, and the neareft Equinox ge999700 So is the Sine of the Obliguity of :be EcliptickTo the Sine of the Declenfion 'ought for

100000000 96006997

92996697

Which will be found in degrees 30 minutes.
For the Amplitude DN, oblerve the Dectention ound but now, and make the following Analogy:
As the Sine of the Complement to the Height of the Pole
98169429
To the Sine of the Declenfion found
$92996 \sigma 97$
So is the whole Sine
100000000
To the Sine of the Amplitude Sougbt for
94827268 Which will come to 17 degrees and about 41 minutes.
To find the Afcenfional Difference NO, take in again the Declenfion found, and make the following Analogy :
As the whole Sine 100090000
To the Tangent of the Declenfion found
93084626
So is the Tangent of the Elevation of the Pole
100608369
To the Sine of the Afcenfional
Difference
93692995
Which comes to 13 degrees and 32 minutes; and thefe being reduced to time (by faying, if is degrees give I hour, or 60 minutes, how much will be given by 13. 32^{\prime}. or 812^{\prime}.) thew that the Sun, when in the beginning of δ or of m^{2} fets at 6 a-clock and 54 minutes, and by confequence rifes at 5 and 6 minates.

PROBLEMV.

To find the Climate of a propos'd Part of the Earth, the Latitude of wobich is known.

B
Y 2 Climate we mean a fpace of the Earth, in the form of a Zone or Girdle,terminated by two Circles parallel to one another and to the Æquator ; in which Space, from the Parallel neareft the Equator to that towards the Pole, the longeft Summer's Day varies, that is, increafes or decreafes, half an Hour.

In regard the Climates are reckon'd from the Æquator, under which 'tis always twelve Hours Dày and 12 Hours Night, towards one of the Poles; and thofe who are remote from the 压quator have above 12 Hours in their longeft Day, and ftill the more the remoter they

Problems of Cofmography:

are; it follows that the firft Climate terminates, where the longeft Day is i2 Hours and a half; the fecond where the longeft Day is 13 Hours, and fo on, to the termination of the 24th Climate, where the longeft Day is 24 Hours which happens under the Polar Arctick or Antarctick Circle,the Elevation of the Pole being there 66. 30°. Beyond that we reckon no Climates, becaufe in advancing never fo little further towards the Pole, the longeft Day increafes more than half an Hour ; and upon that Confideration the Moderns have added to the 24 Climates above-mention'd, fix of another Na ture, from the Polar Circle to the Pole, in each of which the longeft Day-increafes a whole Month.
Thus, to know in what Climate is any propos'd Place of the Eatth, the Latitude of which is known; we need only to find by the fore-going Problem the longeft Summer's Day, and from that fubftract twelve Hours; for the Remainder doubled gives the Climate. For exampie, at Paris, where the Elevation of the Pole is 49 degrees, the longeft Summer's Day is 16 Hours, from which if you take 12, the Remainder is 4, the double of which' 8 fhews that Paris lies in the eighth Climate.
As the Longitudes diftinguifh the moft Oriental or Occidental Countries, and Latitudes the bearings to Sourh or North; fo the Climates diftinguifh Countries by the length or fhortnefs of their Days. For by the knowledge of the Climate, we may eafily find the longeft Summer's Day by an Operation contrary to the preceding, viz. by adding 12 to half the number of the Climate, the fum of which Addition is the quantity of the longeft Day. Thus knowing that Paris is in the 8th Climate, I add 4 the half of 8, to 12 , and fo learn that 16 Hours is the meafure of the longeft Sump mer Day at Paris.

PROBLEMVI.

To find the Extent of a Degree of a great Circle of the. Earth.

SUppofing the Earth to be round and its Center the fame with that of the World, a degree of one of its Circles will aniwer to a degree of the like correfponding Circle in the Heavens; and fo when a Perfon goes a degree of the Earth upon the fame Meridian, directly South or North, his Zenith alters likewile to the excent of a degree in the Heavens under the correfponding Celeftial Meridian ; and by confequence the Elevation of the Pole is a degree alcer'd. In like manner, if one travels a degree of the Earth on the 巴quator directly Eaft or Weft, his Zenith is a degree different from what it was under the Celeftial 出quator, and confequently the Longitude is changed tothe extent of a degree.

This Alteration being obierv'd by the repeated Experience of feveral Aftronomers in different parts of the Earth, we may from thence conclude that the Earth is round from Sourh to North, and likewife from Faft to Weft'; and that 'tis feated in the Center of the World, or at lealt in the middle of the Celeftial circumvolutions. From the fame Obfervation we learn the manner of finding in Leagues or any other Meafure the quantity of a Degree of one of its great Citcles, which are all equal, viz. by pitching upon two Places of the Earth fruate under the fame grear Circle, for example under the fame Meridian, the mutual diftance of which and their refpective La:itudes are exactly known; for if we fubtract the leaft of the two Latitudes from the greateft, we have the Arch of their common Meridian intercepted berween the propos'd Places. By this meaps we learn that a certain number of Degrees and Minutes of a g, reat Circle of the Earth, anfwers to a certain number of Leagues, which is fufficient to thew us the extent of a Degree of the fame great Circle, and even the whole Circumference of the Earth; fince we may argue by the Rule of tinee direct, If fo many Degrees and Minutes antwer to fo many Leagues,

Problems of Cofmography.

how many Leagues will one Degree anfwer ; or 360 Degrees, if you want to know the whole Circuit of the Earth ?

Let's fuppofe that two Places pitch'd i:pon, are Paris and Dunkirk, fituate under the fame Meridian, and diftant from one another about 62 Parifian Leagues, of 2000 Toifes each; The Latitude of Paris is 48.51^{\prime}. which fubftracted from that of Dunkirk, viz. 51. 1'. leaves remaining 2. 10^{\prime}. or 130 Minutes for the Arch of the Meridian comprehended between Paris and Durkirk. Now I know that an Arch of a great Circle of the Earth of 130 Minutes is 62 Leagues; and in order to know from thence how many Leagues go to a De gree or 60 Minutes of the fame Circle, I multiply thefe 60 Minutes by 62 the diftance between Paris and Dunkirk, and divide the Product 3720 by 130 (the number of Minutes of the Arch of the Meridian common to both Places) and the Quotient gives about 28 Paris Leagues for the extent of a Degree of a great Circle of tise Earth.

I faid, about 28 Leagues; upon the confideration that the Gentlemen of the Royal Academy of Sciences have fcund by Experiments that a Degree of the Earth is 57060 Toifes of the Cbatelet ineafure at Paris ; which 57060 Toifes, amount to a little more than 28 Parifian Leagues of 2000 Toifes each, as appears by dividing 57060 by 2000 , for the Quotient is 28 , with a Remainder of 1060 to be divided by 2000 , which makes about half a League.

A Toife of the Chatelet of Paris is divided into 6 Foor, and if you divide that Foot into 1440 parts, the Rheinland or Leyden Foot will contain 1390 of 'em, the London Foot 1350, the Boulogne Foor 1686; and the Florence Fathom 258.

PROBLEM VII.

To know the Circumference, the Diameter, the Surface, and the Soldity of the Earth.

THO' we can'r actually meafure the Circumference of the Earth, by reafon of the high Mountains and vaft Seas, which can't be brought into a ftraigbt Line ;

Firft of all, to know the Circumference of the Earth; having found by the foregoing Problem that a Degree of this Circumference is 28 Parifian Leagues, we multiply thefe 28 Leagues by 360 , that is, the number of Degrees of the Circumference of the Earth, and the Product gives 10080 Parifian Leagues for the Circuit of the Earth.

In the fecond Place; To find the Diameter of the Earth, or the diffance from us to our Antipodes : Confidering that the Diameter of a Circle is to its Circumference, as rop to 3 14, or as 50 to 157 , and that the Circumference of the Earth is already found to be 10080 Paris Leagues, I multiply thefe 10080 Leagues by 50 , and divide the Product 504000 by 157, and the Quotient gives 3210 Leagues for the Diameter of the Earth.
In the third place ; To find in fquare Leagues the Surface of the Earth, we need only to multiply its Circamference, 10080 Leagues, by its Diameter, 3210 Leagues, and the Product gives 32356800 fquare Leagues upon the Surface of the Earth.

In the laft place; To find in Cubical Leagues the Solidity of the Earth; we multiply its Surface, viz. 32356800 \{quare Leagues, by 535 the fixth part of its diameter (3210) and the Product bringsus 17310888000 cubical Leagues for the Solidity of the Earth.

In the foregoing Operations, we over-look'd the Fractions of the Diameter of the Earth, which gave us the Surface fomewhat imperfect, and the Solidity yer more imperfect. But if you want to have the Surface and the Solidity more exactly, without having recourfe to the Diameter of the Earth, mind only the Circumference of the Earth, which came precifely to 10.080 Parifian Leagues, and proceed as follows,

Firft, to find the Surface of the Earth, the Circumference of which is 10080 Leagues, multiply 10080 into it felf, and thus you have its Square 101606400 , and that multiplied by 50 gives the Product 5080320000 , which Product divided by 157 yields in the Quorient ${ }^{3} 2356814$ fquare Leagues for the Surface of the Earth.

Again, for the Solidity of the Earth, multiply its Circamference 10080 inro ir felf, and fo you have its Square 101606400, which multiplied by the Circumference again gives its Cube 1024192512000, and this multiplied once more by 1250 yields the Product 1280240640000000 ; and this Product divided by 73947 gives in the Quotient 17312949004 Cubical Leagues for the Solidity of the Earth.

COROLIARYI.

Since the Circumference of the Earth is 10080 Leagues, we may readily infer from thence, that if the Earth moves round its Axis from Weft to Eaft, fo as to finih irs Circumvolution in the fpace of 24 hours, a place upon the Earth fituate under the Equator which is a great Circle, muft run by vertue of the Motion of the Earth 420 Leagues in an Hour ; for 10080 divided Gy 24, yields 420 in the Quotient : And 420 divided by 60 yields in the Quotient 7, which Thews that the place propoled muft run 7 Leagues in a Minute of Time.

COROLLARYII.

Since the Diameter of the Earth is 3210 Leagues, we conclude that its Semidiameter or the diftance of its Center from its Surface is $\cdot 1605$ Leagues. i. e. the half of 3210 . From whence this Confequence do's naturally arife, That, If 'twere poffible to dig a deep Well to the Center of the Earth, the depth of that Well wou'd be 1605 Leagues or 3210000 Toifes, as appears by multiplying 1605 by 2000 , the number of Toifes in a Parifian League.

COROLLARYIII.

Since a Well as deep as the Center of the Earth wou'd be 3210000 Toifes, in depth, we may from thence calculate the time that a Stone or any other Body thrown from the furface of the Earch down this Well, which is fuppofed to be empry, we may calculate, I fay, the time that a Stone thus thrown wou'd fpend in reaching to the bottom, provided we do but

Suppofe we that in a Minute of Time a heavy Body is found to defcend 100 Toifes; now to find the time requifite for defcending 3210000 Toifes in the fame Medium, we multiply 3210000 by the fquare of the Time known, that is, I the fquare of I Minute; and divide the Product 3210000 by 100 the fpace run thro in a Minute; and the Quotient is 32100 , the fquare Root of which is 179 Minutes, wbich make almolt 3 Hours, for the Time that the fame heavy Body will imploy in defcending to the Center of the Earth.

Here we thall oblerve by the bye, that if this Welk wcre continued to the Antipodes, fo as to make a thorough Perforation in the Earth, the Body thrown down the Well from the furface of the Earth, wou'd not ftop on a fudden at the Center of the Earth, tho indeed that be the loweft place; for the great velocity of the Motion with which 'tis carried to the Center, wou'd throw it beyond the Center, and make it reafcend towards the Antipodes with a Motion that wou'd gradually flacken, and near the Surface of the Antipodes part of the Earth won'd entirely ceale, upon which the Body wou'd fall back again and over-reach the Center of the Earth advancing rowards us; infomuch that for fome time abftracting from the refiftance of the Air, this heavy Body wou'd continue to move to and fro, by feveral Vibrations, almolt of equal duration, tho fill leffer and leffer, till at laft the Mobile finds a Reftingplace in the Center of the Earth.

All we have faid of the menfuration of the Earth, goes upon the fuppofition of its being perfectly round; tho' indeed frictly fpeaking 'tis not fo, by reafon of the beight of the Mountains, which is only confiderable with refpect to us, for with refpect to the Earth it felf 'ris very inconfiderable; as appears from the following Table taken by Father Kircber, which lays down in Geometrical Paces the heighth of the moft confiderable Mountains in the World, as far as we are able to judge of it by the length of their Shadows.

Problems of Cofmography.

Mount Pelion in Theffaly 1250
Mount Olympus in Tbefaly 1269
Catalyrium 1680
Cyllenon 1875
Mount Atna, or Mount Gibel in Sicily 4000
The Mountains of Norway 6000
The Peek of the Canaries 10000
Mount Hemus in Thrace 10000
Mount Atlas in Mauritania 15000
Mount Caucafus in the Indies 15000
The Mountains of the Moon 15000
Mount Atbos between Macedonia and
Thrace 20000Stolp, the higheft of the Ryphean Moun-tains in Scytbia.25000
CaStius 28000
PROBLEM VIII.

To knows the extent of a Degree of a propos'd Small Circle of the Earth.

A Frer finding by the 6th Problem the extent of a
Degree of a grear Circle of the Earth, you may eafily take the meafure of a Degree of a fmall Circle, for example of a Circle parallel to the Aquaror, which we commonly call barely a Parallel; this, I fay, you may eafily meafure, provided the diftance of the Parallel from the 巴quaror is known. This is of ufe to Geographers imployed in drawing Chorographical Maps and laying down the diftances of two Places of the Earth fituate under the fame Parallel, that is, equidiflant from the \#quator.

Suppofe

Suppofe one wants to know the meafure of a Degree of the Parallel of Paris, which is abour 49 Degrees diftant from the Equator, and the quantity of a degree of the Æquator to be 28 Leagues, we draw the Line AB of what Length we pleafe, for one Degree of the $E q u a t o r$, and divide it into 28 equal parts, each of which reprefents a League; then we delcribe from the Exiremity A, diftance B, an frch of a Circle 49 Degrees ; and draw from the Point C the Line CD perpendicular to the Line AB; and in regard this Line CD cuts off from the Line AB, the Part AD containing abour 18 Leagues, we conclude, that one Degree of a Paratlel diftant from the Æquaror 49 Degrees is 18 Parifian Leagues. This Meafure may be taken with greater facility and exactnefs, by Trigonometry, after the following manner.

Let $A B$ be the Axis of the World, of which A and B are the two Poles, and ACBD one of the two Colnmus's : Let CFD be the स्सquator, and GHI the Pa rallel, of which the Diameter GI is perpendicular to
to the Axis AB, and DI or CG its diftance from the Aquator is fuppos'd to be 49 Degrees, in which cafe the Complement AG or AI will be 4r Degrees.
'Tis evident that with refpect to the whole Sine CE the Semidiameter GK is the Sine of the Arch AG the Complement of the diftance of the Parallel. 'Tis equally evident, that, CE the Semidiameter of the 厌quator, or the whole Sine, is to its Circumference, as GK the Semidiameter of the Parallel or the Sine of the Complement of the diftance of that Parallel is to its Circumference; and confequently that the whole Sine is to a Degree of the Æquator, as the Sine of the Complement of the diftance of the Parallel is to a Degree of that Parallel; and forafmuch as a Degree of the 巴quator is known to be 23 Parifian Leagues, the following Analogy will fhew how many fuch Leagues are in a Degree of the Parallel.
As the whole Sine 100000
To a Degree of the Aquator 28
So is the Sine of the Complement of thediffance of the Parallel from the Aqquator65606
To a Degree of that Parallel 18

Having thus difcover'd the quantity of a Degree of the Parallel of Paris, you may eafily know, if you will, the whole Circumference of that Parallel, by multiplying the found quantity 18 by 360 , or, which is more exact, by the following Analogy:

As the whole Sine	100000
So the Circumference of tbe Earth	10080
So is the Sine of the Complement of the	
diftance of the Parallel from the Equator	65606
\because. To the Circumference of the Parallel	6613

Here, you fee the Circumference of the Parallel of Paris, is about 6613 Parifian Leagues; from whence ir follows, that if the Earth moves, the City of Paris or any other Poist under the fame Parallel travels from Weft to Eaft 6613 Leagues in 24 Hours, and confequently 275 Leagues in one Hour, and abour 4Leagues and a half in a Minute of Time.

PRO-

PROBLEM IX.

To find the diftance of two propos'd places of the Earth, the Longitudes and Latitudes of which are known.

TH I S Problem may fall under three different Cales; for the two propos'd places may be under one Parallel, having the fame Latitude, and different Longitudes: Or under one Meridian, having the fame Longitude, bat different Latitudes: Or elfe under different Parallels and different Meridians, having both Latitudes and Longitudes different. Of each of thefe Cales apart.

For the firf Cale ; if the two propos'd places are under the fame Parallel, as Cologn and Maftricht, the Parallel of which is diftant from the Aquator North 50. 50^{r} : Cologn lies more to the Eaft than Maftricht by 6 Minutes of time, which are equivalent to 1.30° of the 压quarer, or of the Parallel, under which thefe two Cities are fituate; as appears by the Operation upon this Queftion; if I Hour or 60 Minutes are equivalent to 15 Degrees, what Degrees do 6 Minutes anfwer to? Now the Arch of the Parallel intercepted between Cologn and Miftricht being 1. 3 ${ }^{\circ}$, which upon the Æquator is 42 Parifian Leagues (a Degree there being 28 Leagues as above) it remains to fee by the following Analogy, how many fuch Leagues are in this Arch of the Parallel that is 50.50^{\prime} diftant from the Rquaror, i.e. what is the diftance of the two propos'd places.

> As the whole Sine, To the Equivalent of 1. 30^{\prime} upon the 100000 Aquator, 42 So is the Sine of the Complement of diftance of the Parallel from the Æquator, 63158
To the diftance in queftion.

Tha: you fee the diftance between Cologn and Mafricht is 26 Parifian Leagues and a half.

As to the fecond Cale ; if the rwo propos'd places, are under the fame Meridian, as Paris, the Laticude
of which is 48. 51^{\prime}. and Amiens, the Latitude of which is 49.54^{\prime}. The Latitude of Paris being the leaft, fubftract it (viz. 48. 51^{\prime}.) from 49. 54^{\prime}. the Latitude of Amiens; and the Remainder 1. 3^{\prime}. is the Arch of the Meridian taken in between Paris and Amiens; which convert into Leagues, by working this Queftion, by the Rule of Three. If one Degree or 60 Minutes of a great Circle of the Earth is equivalent to 28 Parijan Leagues, what is $\mathrm{I} \cdot 3^{\prime}$. or 63 Minutes; the anfwer of which is 29 Leagues.

In the laft Cafe; if the two propos'd places differ borh in Longitude and Latitude, as Paris and Conftantinople, which laft lies 29. 3°. more Eaft, and 7. 45^{\prime}. more South than Paris ; imagine a great Circle to pals thro' thefe two Cities, and the Arch of the Circle comprehended between 'em will be found after the following manner.

Let ABCD be the firt Meridian, and BD the Equator equally diftamt from the two Poles A and \mathbf{C}. Let AEC be the Meridian of Paris, and GHI irs Parallel, the Point H reprefenting Paris. Let AFC be the Meridian of Conftantinople, and KLM its. Parallel, the Point L reprefenting Confantinople. Let HL be the Arch of the great Circle NHLO, that paffes thro' the two propofed places. H and L .

This

Mathematical and Phyfical Recreations.

This Arch HL may be known by Trigonometry; in the oblique angled fpherical Triangle HCL, of which we know the fide HC (the Complement of EH the Latitude of Paris, or of $48.5 \mathrm{I}^{\prime}$.) to be 41. 9^{\prime} : and the fide CL. (the Complement of FL, the Latitude of Conifantinople, i.e. of 4 I: 6^{\prime}.) to be 48. 54.' And the Angle comprehended HCL (or the difference of the Longitudes BCE, BCF, of the two propos'd places H , and L) to be 29. 3°.

Now to find the fide or diftance HL firt in Degrees and Minutes, draw from the Angle H the Arch of a great Circle HP perpendicular to the oppofite fide CL, and make thefe two Analogies:

As the whole Sine
To the Sine of the Complement of 100000000 the Angle HCL 99396968

So is the Tangent of the fide HC 99414585 To the Tangent of the Segment CP. 99811553
which you will find to be 37.25°. and that being fubftracted from the Bafe CL or from 48. 54^{\prime}. leaves a Remainder of 11. 29'. for the other Segment LP;

As the Sine of the Complement of the Segment CP

To the Sine of the Complement of the Segment LP

99912184
So is the Sine of the Complement of the fide HC

9876789
To the Sine of the Complement of the fide HL.
which you will find to be 21.42^{\prime}. and thefe you're to reduce to Parifian Leagues by the Rule of Three, faying, If one Degree or 60 Minures of a grear Circle of the Earth is equivalent to 28 Parifian Leagues; what is the equivalent of 21.42^{\prime}. or 1302 Minutes? So you learn that Paris is diftant from Conftantinople 607 Leagues.

When the two places propos'd lie at a confiderable diftance one from another, as in this Example, we may without any Calculation find that diftance with almoft equal exactnefs, in Degrees and Minutes of a

Problems of Co/mograpby.

great Circle of the Earth, by the Orthographical Pro' jection of the Sphere, as I am now abour to thew. you.

Defcribe from the Center A, with what extent of the Compaffes you pleafe, the Semicircle BCDE, which thall ftand for the Meridian of Paris. Take upon that Semicircle the Arch BF of 48 . 51°. Such being the Latitude of Paris, So that F will reprefent the place where Paris flands, to which you draw from the Center A the Radius AF.

Take upon the fame Semicircle the Arches BC, ED, each of 'em 4r. 6'. fuch being the Latitude of Conftantinople, and drawythe Line CD which will reprefent the Parallel of Conftantinople, and upon that Parallel you may determine the place where Conftantinople lies, after the following manner.

Having defrrib'd round CD as Diameter, the Semicircle CGD, take upon its Circumference the Ar CG of 29.30°. fuch being the difference of the Longitudes of Paris and Confantinople, and draw from the Point G the Line GH Perpendicular to the Diameter CD, and fo you have H for the place where Confantinople ftands. From this Point H draw the Line HI perpendicular to the Line AF, and by meafuring the Arch FI, you'll find the diftance foughr for to be about 22 Degrees.

Here we took BC the Latitude of Conftantinople in the fame Hemifphere with BF the Latitude of Paris, with relpect to the Line BE, which reprefents the Gquator; becaufe chefe two Cities are in North Latitude. nambouc in Brafil, the South Latitude of which 7.40.. it behoved us to have taken the Arch BC of 7.4°. on the other fide of BE the Equator, and then go on as before, making the Arch CG 44. 15'. that being the difference of the Latitudes of Paris and Pernambouc; and fince the Arch FI is abour 70 Degrees, if we reduce thefe 70 Degrees into Leagues, by multiplying 70 by 28 , we have 1960 Parifian Leagues for the diftance between Paris and Pernambouc.

When the diftance of the two propos'd places is not very confiderable, fuch as that of Lions from Geneva, letarter of which is 36 Minntes North of the firft, the Latitude of Lions being 45.46^{\prime}. and that of Ge neva 46. 22'. and likewife 6 Minutes of time Baft of Lions, which is equivalent to i. 30^{\prime}. upon the Rquator: In this Cafe, I fay, the foregoing Method, tho good in it felf, will not fucceed; and therefore the following will do better, which, tho' not Geometrical, will be liable to no fenfible failure in a fmatl diItance.

Having drawn the Line AB divided into what equal Parts, and of what Magnitude you pleafe, reprefenting I eagues, draw perpendicular to it the Line AC of 17 Leagues taken upon the Scale $A B$, fuch being the difference

Problems of Cofmography.

ference of the Latitudes, which we found to be 36 Minutes, and'thefe reduced to Leagues, making about 17 Leagues.

This done, add together the Latitudes of the two propos'd places, namely, $45 \cdot 46^{\prime}$. and 46. 22'. and take half their Sum 92. $\mathbf{8}^{\prime}$. in order to have the mean Latitude 46. 4'. with refpect to which you'll find by Problem 8. the quantity of an Arch of. I. 30^{\prime}. that being the difference of the Longitudes of the two places propoled. Now this extent of the Arch comes to about 29 Parifian Leagues, and therefore you're to draw from the Poinc C, parallel to the Line $A B$, the Right Line CD containing 29 of the parts of the Scale AB; and then to take upon the fame Scale AB the length of the Line $A D$; which proving to be 34 Parts, thews that Lions is, in a ftraight Line from Gened $v a_{n}$ abour 34 Parifian Leagues.

Fora\{much as the Triangle ACD is Right Angled at C, and the fide $A C$ is 17 Parts, and the other fide CD 29, we compure the Hypathenufe AD or the diftance inquir'd for, by adding 289 the Square of the fide AC to 841 the Square of the fide CD, and extracting the fquare Roor of the Sum 1130, which brings us almoft 34 Parifian. Leagues for the length of the Line $A D$, or the diftance of the two places, A being taken for Lions, D for Geneva, and the Line AD for the Arch of a grear Circle that runs through Y

Mathematical and Pbyfical Recreations. both the Places; for the Line AC reprefents the difference of their Laritudes, or the diftance of their Parallels, and the Line CD the mean difference of their Longitudes or Meridians.

PROBLEMX.

To defcribe the Curve-Line, that a Sbip in the Sea mould defcribe in fteering its, courfe upon the Same Rumb of the Compafs.

LEt's fuppofe the Arch AB, the Center of which is C, to be the Quadrant of the Circumference of the Terreftrial 巴qquator, fo that \mathbf{C} will reprefent one of the two Poles of the World, and all the ftraight

Lines drawn from the Center C to the Divifions the Arch $A B$, as $C D, C E, C F, E \mathcal{G}$ will saprefent many Meridians.

Problems of Cofmography.

Let's fuppofe at the fame time, that a Ship fets out from the Point A of the Equator, the Meridian of which is AC, with intent to go to G by the Rumb AH, which makes with the Meridian AC an Angle CAH, fuppofed here to be 60 Degrees, which is call'd the Inclination of the Loxodramy. Now, 'tis evident that if the Veffel fers its Head always to the fame Point, that is, if, when 'tis at H under the Meridian $A D$, it continue the fame courfe by the Rumb or Vertical Point HI inclind to the Meridian AD to the extent of the fame Angle of 60 Degrees, fo that the Angle CHI will likewife be 60 Degrees; the three Points $\mathrm{A}, \mathrm{H}, \mathrm{I}$, are not in a ftraight Line: In like manner if the fame Ship continues its courfe from \mathbf{I}, under the Meridian CE to K, which makes with the Meridian CE, the Angle CIK alfo of 60 Degrees; the three Points, $\mathrm{H}, \mathrm{I}, \mathrm{K}$, are not in a ftraight Line, and fo on till you come to L upon the latt Meridian CB.

From hence we readily conclude, that the Line AHIKL, defcrib'd by the Ship in fteering ftill to the fame Point, which is call'd the Loxodromick Line, or barely the Loxodromy, is a Curve-line that always falls off from the Point \mathbf{G} the intended Port, and imitates the figure of a Spiral Line, which, as you fee approaches ftill nearer and nearer to the Pole C.

If you divide the Loxodromick Line AKL into feve- Remarlif tal Parts, fo fmall that they may pals for ftraight Lines, as AH, HI, IK, E\}c. and if you run through the points of Divifion as many Parallels or Circles of Latitude, all thefe Circles will be equidiftant from one another, fo that the Arches of the Meridians, DH, MI, NK, Eic. will be mutually equal, as well as the Correfponding Arches AD, HM, IN, E'c. not in Degrees, but in Leagues, by reafon of the equality of the Rectilineal Right-angled Triangles, ADH, HMI, INK, Ėc.
When you know the time fent in running upon the fame Rumb with a favourable Wind, a very fmall Loxodromy; and confequently know the Arch AD which is eafily reduced to Leagues, allowing 28 to a Degree; and, if at H you take the Elevation of the Pole or the Latitude DH, which is alfo eafily redued to Leagues : You may eafily compute how far ou have run between A and H, by adding toge-
'Tis vifible that the Loxodromy is a ftraight Line whep there's no Angle of Inclination, that is, when the Ship fails North and South, or keeps to the Northt and South Rumb mark'd upon the Compals, when: the Needle do's not decline; for in that cafe the Veffel advancing upon the Meridian Line, must needs defcribe a ftraight Line, it being the common Section of the Meridian and the Horizon.

The fame will happen, when a Ship under the Celeftial Aquator, or one of its Parallels, fers iss Head and Sails due Eaft or Weft, fo that the Inclination of the Loxodromy will be 90 Degrees; for in that cafe the Veffel defcribes either a Terreftrial Alquatory or one of its Parallels which make with the Meridians right Angles.

In fine, 'tis vifible, That, as we faid before, ${ }_{2}$ Veffel failing upon the fame oblique Rumb, fo that the Inclination of the Loxodromy makes an oblique, (i. e. an acute or oblufe) Angle; it defcribes upon the furface of the Sea, a Curve-line, fuch as AKI, in fteering from A to G, in the oblique Courfe $A H$; for the terreftrial Meridians CA, CD, CE, CF, EJc. are not parallel one to another ; and certain it is, that if they were parallel, inftead of defcribing the Curve-line AKL, which with thefe Meridians makes equal Angles, 'twould defcribe the Atraight Line AG and that would make with the fame Meridians equal Angles.

This Curve-line AKL refembles that which would be defcrib'd 'by a heavy Body; as a Srone, falling from the furface of the Earth to its Center, if it be true that the Earth moves round its Axis from Weft to Eaft as I 2 m now about to hew you.

PROBLEM XI.

Co reprefent the Curve-line, that by vertue of the Motion of the Earth, a beavy Body would defcribe in faling freely from the upper furface to the Center of the Eartb.
[E T A be the Center of the Earth, and the Arch BC, part of its Circumference, which the Point B runs over by vertue of the Motion of the Earth in certain (pace of Time, as going in equal portions of ime thro the equal Arches BD, DF, FG, HK, ©.
Upon, this Suppofition, the Semidiameter of the Earth will in the firft portion of time take the Situaion $A D$, and the Stone which was in B, will be de-

ended to E, when B arrives at D; in the fecond $\dot{d i}$ iGon of Time, \mathbf{B} will arrive at F, and the Semidiareter AB taking its Situation AF , the Stone will be

Mathematical and Pbyfical Recreations.

got to \mathbf{G}; and that in fuch a manner, that the part FG will be 4 when the part $D E$ is 1 , by the nature of heavy Bodies, which in falling freely from aloft downwards, acquire in equal portions of time equal degrees of Velocity, in running thro' the Spaces that increate as the Squares, $1,4,9,16,25$, छ'c. of the natural Numbers, $1,2,3,4,5$, $\Xi^{c} c$. thefe Spaces rifing gradually according to the odd Numbers, 1,3 , $5,7,9, छ^{3}$. and therefore at the third Divifion of Time, when the Point B will be got to H, the Diameter AB will ftand as AH, and the Stone will be gor down to I, and the part HI will be 9; and at the fourth Divifion when the Point B is arriv'd at K, the Semidiameter AB will ftand as AK, and the Stone will be got to L , the part KL being 16; as at the other Subfequent Divifion, the whole $A C$ will be 25 . Thus the Stone continuing its Defcenr, will make the Curve-line, BEGILA, which by confequence may be reprefented after the following manner.

Since the Sum of the firft five odd Numbers, $\mathbf{I}, \mathbf{3}$, 5, 7,9 , is the \{quare Number 25 , the Roor of which is 5, divide the Right Line AB into ${ }^{25}$ equal parts of what Magnirude you will, from B to A. From A as a Center, diftance B, defrribe the Arch of a Circle BC of what extent you will. Divide this Arch $B C$ into five equal Parts at the Points D, F, H, K, and from thefe draw to the Center A the Radins's or Semidiameters, $\mathrm{AD}, \mathrm{AF}, \mathrm{AH}$. AK ; upon which you'll find the Points, E, G, I, L., of the Curve-line you want to defcribe, by taking the part DE equal to one of the parts of the Line AB, the Line FG equal to four: of its Parts, HI to nine of its Parts, KL to fixteen, ઉ̋c.

PROBLEMXII.

To know when a propos'd Year is Bifextile or Leapyear.

TH O' the Solar Year, or the time that the Sun takes in going by its proper motion over the whole Zodiack; is about 365 Days, 5 Hours and 49 Minutes ; yet we reckon only $36 ;$ Days (excepring the Leap-year) omitting the 5 Hours and 49 Minutes, which

Problems of Cosmography.

which are but ir Minutes for of 6 Hours Thus it comes, that every common Year is about 6 Hours too short, which in four Years make almoft a Day; and that Day we ald or put in between the 23d and $24^{t h}$ of February in every fourth Year, which is siled the Biffextile Year, by reafon that it confifting of 366 Days, we are obliged to date Seato Kittendis Marci for two fucceffive Days, otherwife the Nones and the Ides would be put out of their ufual places.

Now 'to know if the Year proposed is Biffextile, divide the number of the Year by 4, and if there remains nought, :xis a Leap-year, or a Year of 366 Days; if any thing remains after the Divifion, this no Leap-year, and confifts only of 365 Days. Thus we know that the Year 1693 is not Biffextile, for when we divide it by 4 , there remains 3 , which Shews that the third Year after, viz. 1696. will be a Leap-year.

But after all, 'xis to be obferv'd, that tho' the Di- The Grigri: vifion of the Years, 1700,1800 and 1900 by 4 , leaves an Calendar, no Remainder, yet we mut not take them to be Riffextile Years. Now, this is occafion'd by the alteraton of the Kalendar made by Pope Gregory XIII. in 1582, upon the Confederation that the fix Hours adled to every fourth Year, are eleven Minutes more than the due Addition, which in the face of font Centuries amount to three Days more than enough; and fo the Compenfation allowed for this Excels, is, to leave out the Leap-day in each of the three Years. 1700,1800 and $1900 ;$ the year 1600 being reckon'd as Biffextile.

This Reformation of the Calendar made in the Remark lat Century but one by Pope Gregory XIII, who in the year 1582 threw out ten Days, there being fo many grown to a Surplusage from the time of Julius $\mathrm{C}_{a}-$ far, who intituted the Leap-year: This Reformation, I fay, gave rife to the Gregorian Calendar, or the New Calendar, which the Church of Rome makes use of at present.

In the Sixteenth Century, it being found that tho' the growing Surplufage above-menrion'd, the Vernal Equinox anticipated the $2,1 / t$ of March 10 Days; and that Equinox being the Period upon which depends Y_{4} the Regulation of Eafter; thefe ten Days were not counted, but the inth of March was calld the $21 / f$, this being the Day of the Vernal Equinox in the timeof the Council of Nice: So by this Reformation the Equinoxes and Solttices are fix'd to the fame Days and fame Months. And 'tis objected againt the old Style or $\mathcal{F} u l i a n$ Calendar, that if it be continued for a tong procefs of time, Cbriftmas will fall to be celebrated at Midfummer, and the Feftival of Sc. Fobs the Baptift at the Winfer Solltice.

PROBLEMXII.

To find the Golden Number in any Year propos'd.

WE acquainted you in the foregoing. Problem, that the Solar Year confifts of 365 Days, 5 Hours, and 49 Minutes; and now we come to tell you, that the Lunar Year or the Sum of twelve Revolutions of the Moon by its own proper Motion in the Zodiack, is 354 Days, 8 Hours, and 49 Minutes; which you fee is about II Days morrer than the Solar Year, and confequently the New Moons come if Days fooner in one thap in the preceding Year.

Thus you fee the Sun and the Moon do not always finith their Periods at the fame time; nor do they always meet in the fame Difpofition, that is, the New Moons do not return in the fame Months, and on the fame Days as in another Year, unlefs it be in the fpace of about is Years; I fay, about 19 Years; becaule there wants of that number 1 Hour, 27 Minutes, and 32 Seconds; which is but inconfiderable, for the New Moons anticipated but one Day in 312 Years, which was one of the caufes of the Reformation of the Calendar, and of the fubftitution of the Epacts in the room of the Golden Number, which is a. petiod of 19 Years.

This number of 19 Years, at the end of which the

What we mean by Golden Number:
$5:$: Sun and Moon return to the fame Points they were joyntly in before, is what we call the Golden Number, fo calld by the Athenians, who received it with fo puch Applaufe, that they order'd it to be put in large

Characters of Gold in the middle of the publick place. It has likewife been call'd the Lunar Cycle, as being a Period or Revolution of 19 Solar Years, equal to 19 Lunar Years; twelve of which are Common, as having twelve Synodical Months a piece, and Seven are Embolifmal, i.e. confift of thirteen Moons each; which make in all 235 Moons, at the end of which the New Moons return on the fame days of the fame Months as before.

To find the Golden Number for the year 1693. (for inftance;) add I to the number of the year 1693, and divide the Sum 1694 by 19, and neglecting the Quotient mind only the Remainder, viz. 3, which is the Golden Number for that year. The Reafon of that addition of 1 to the number of years, is, that in the firt year of Chrift, 2 was the Golden Number.
'Tis evident that when the Golden Number for a Remarke: year is once found, the addition of 1 will give the Golden Number of the year next infuing, as the Subftraction of I will that of the immediately preceding year:
'Tis equally evident, that all the years which have the fame Golden Number, have the New Moons on the fame days of the fame Months. Thus it being New Moon Aug. 1. 1693, of which year 3 is the Golden Number, the New-Moon will happen on the fame day of the fame Month, in the years 1712, 1731, 1750 , $犬$. which have alfo 3 for their Golden Number.

PROBLEM XIV.

To find the Epact for a propos'd year.

W^{E}E fhew'd you in the foregoing Problem, that the Solar Year exceeds the Lunar by about II Days; which is the exact cafe, if you compare the common Solar Year, or what they call the Egyptian Year, viz. 365 Days, with the common Lunar or 354 Days; for here the exact difference is juft II Days; and this difference of II Days is call'd the whe an Epact $_{\text {ant }}$, which being added to the common Lunar Year, whatif in
(i. e. the time of twelve Moons or Synodical Months; each of which is 29 days and a half) makes a common Solar Year.

By a Synodical Month, we underftand the proces of nodial Month.

What we mean by a Periodical Month. time from one New-Moon to another, which, as we intimated above, is, 29 days and a half; or more precifely, 29 Days, 12 Hours, and 44 Minutes, and which by confequence is 2 days and feven hours longer than the Periodical Month, i. e. the Revolution or Period of the Moon by its proper Motion from a Point of the Zodiack to the fame Point again ; which Period exrends to 27 Days, 5 Hours, and $44 \mathrm{Mi}-$ nures, and indeed muft unavoidably be lefs than the Synodical Month, by reafon of the proper Motion of the Sun, by verue of which it runs in a Periodical Month about 27 Degrees, which the Moon has ftill to go before it can reach the Sun, after its return to the fame Point where it was in conjunction wirh the Sunbefore. Now to travel thele 27 Degrees, the Moon requires 2 Day, and 7 Hours, after finiihing iss Period or Revolution in the Zodiack.

The Synodical Months being each of 'em 29 days and a half, are found in the Calendar to be alternately 29 and 30 Days. Some beginthe firt Month from the New-Moon in fanuary, as the fews of old did from that in September; and the Church of Rome begins it with the Eafter New-Moon, i. e. the next full Moon after the Vernal Equinox, or upon the day of that Equinox, which among them is fix'd to the $2!/ f$ of March, becaufe the Vernal Equinox (as we intimated above) happened on that day wheh the Council of Nice fat.

If the Moon is full before the $2 \mathrm{I} f t$ of March, that do's not begin the new year, but concludes the former year; for the firft full-Moon or the fourteenth day of the Moon, muft happen eirher upon or after the firf of March, in order to adjuft the feaft of Eafter, which the Roman Catholicks celebrate the next Sunday afrer the New-Moon: From whence it follows, that all the Moons beginning from the 8 th of March, to the 5 th of April inclutive, may be Pafchal Moons; and confequently the Pafcha or Eafter can't be celebrated before the 22d of March, nor after the 25 th of April;
and fo it may happen 35 days later in one year than in another.

To find the Epact of any year (which begins only in the Month of March) find by the foregoing Problem, the Golden Number of the year, and affier multiplying that number by in, (the difference of the Solar and Lunar year) divide the Product by 30 , the number of days in a Synodical Month, and neglecting the Quotient, mind the Remainder for the Epact fought for, if the year in queftion was before the Reformation of the Calendar, or if you reckon by the old ftile; but if you reckon by the new, and if the year propos'd came fince the Reformation of the Ca lendar, you mult fubtract from it the 10 days that Pope Gregory threw our; nay, if it comes after the year 1700, you mult fubftract in days, becaufe the Leap-day in the year 1700 is fupprefs'd for reafons abovementioned. If the number is fo fmall as not to admit of thar Subftraction, add 30 to it, and then Subftract.
Thus to find the Epact of the year 1693, (according to the Gregorian Calendar) I mulciply its Golden Number, viz. 3 by 11 , and divide the Product 33 by 30 ; the Remainder being 3, from which I can't yet fubftract 10,1 add 30 to the 3, and from the Sum 33 fubftract 10 , which leaves 20 for the Epact of the year.

The old Epact withour regard to the Gregorian Emendation, may be found thus without the trouble of Divifion. Oblerve the top or end, the middle Joynt and the Root of the Thumb of your left Hand ; and fix upon'em there different Values, viz. Let the top of your Thumb be a place of 10 , the middle Joynt of 20 and the Root of o. Now reckon the Golden Number of the propos'd year upon your Thumb, beginning with the end or top, reckoning the end 1, the middle Joynt 2, the Roor 3, and to go over again, the End 4 , the middle Joynr 5, the Root 6, the End 7, Ecc. till you come to the Golden Number ; and if it happens upon the Roor, add nothing to it, the place of that being adjufted 0 , if upon the middle Joynt add to it 20 , or if upon the End add 10: The Sum is the Epact if under 30 ; if above 30 throw 30 out of it, and the remainder is the Epact.
'Tis evident that when the Epact of a Year is once found, the addition of 11 will give that of the next, and it more the next after that, and fo on; only you muft take care fill, to throw out 30 when the Sum is above 30 , and to add 12 inftead of 11 when you have 19 or rather of for the Golden Number.

PROBLEM XV.

To find the Age of the Moon on a given Day of a Vear propos'd.

TO fird the Age of the Moon, add to the Epact of the Year the number of the Months from March to the Month propos'd inclufive, and fubetract the Sum from 30 or from 60 if it furpaffes 30 ; and the Remainder gives you the Day of the Month, on which itwas New Moon; fo having that, you may eafily compute the Age of the Moon on the Day propos'd.

Or, withour knowing the Day of the New Moon, you may find it thus : Add together thefe three, The Epact of the Year Current, the number of the Months from March inclufive, and the Day of the Month propos'd ; the Sum is the Age of the Moon if not above 30 ; if it is, take 30 from it, and the Remainder is the Age. Thus if the Epact of the Year is 23, and the 18th of April is the Day propos'd, add 23 and 2 (for the Months of March and April) and 18; and from the Sum 43 fubftract 30 ; the Remainder 13 is she Age of the Moon.
Since the Epact of a Year does not begin but in March, the way of finding the Age on a certain Day of a Month of that Year preceding March, is this: Inftead of the Epact of that Year, take the Epact of the preceding Year, and fo proceed as above, reckoning the number of the Months from March inclufive, Fanuary, for example, II, \&c.

PROBLEM XVL.

To find the Dominical Letter and the Salar Cycle of a
propos'd Year.

SInce the common Year confifts of 365 Days, which amount to 52 Weeks and a Day, and the BifSextile Year confifts of 366 Days or 52 Weeks and 2 Days ; fince the feven Days of the Month, catl'd Ferie, are reprefented in the new Calendar, by the feven firt Letters of the Alphabet, A, B, C, D, E, F, G, which are call'd Dominical Letters, becaufe each of 'em is employed in their turn to reprefent the Lord's Day: 'Tis evident, that thefe Letters wou'd return in the fame order every feventh Year, if the order were not interrupted every fourth Year by the additional Leap Day; from whence it comes that they do not return into the fame order, till after four times Seven Years, i.e. 28 Years; and that Period is what we call the Solar Cycle and the Cycle of the Dominical Letter. What the This Cycle was invented for the ready knewing of the Solar Cyde Sundays any time of the Year by the Dominical Letter.

To find the Dominical Letter of a Year propos'd, and withal the Lerter for every Day of that Year: Divide the number of the Days elapled from the firt of Fanuary to the Day propos'd inclufive, by 7; and if nothing remains the Letter fought for is G; if any number remains, the Letter that correfponds to that number, beginning from A as 1 , is the Letter fought for. Thus. if 4 remains, D is the Letter for the Day propos'd. And if the Day propos'd be a Sunday, the Letter thus found is likewife the Dominical Letter of the Year.

To find the Dominical Letter for a propos'd. Year fince Chrift, according to the new Calendar; add to the number of the Year its fourth part; or the next part lefs, if 'tis not exactly divifible by 4 ; and having fubitracted 5 from rhe Sum (the Year being within the 17 th Century) divide the Remainder by 7 and neglecting the Quotient, mind the Remainder, which Thews you the dominical Letrer, reckoning from G the laft Letter towards A; fo that if nothing remains the if 2 F , and fo on. Thus for the Year 1693 we add to it its fourth part 423, and after fubftracting 5 from the Sum 2116 we divide the Remainder 2111 by 7 . and without regarding the Quotient, are directed by the Remainder 4 to the fourth Dominical Letter in the retrograde Order, viz. D.
I faid above that s is to be fubftracted when the Year is within the 17 th Century, i.e. between 1600 and 1700 ; for in the Century of 1700 wetmuft fubftract 6 , in that of 18007 , in that of 1900 8, thefe Years being not reckon'd Biffextile by the new Calculation, as we intimated heretofore. Indeed the Year 2000 is reckon'd Biffextile, and fo for that Century we continue to fubftraft but 8 ; but for $2100,2200,2300$ we mult fubftract 9, 10, 11, the Biffextile Days being thrown our in thefe, and fo on.

To find the Solar Cycle of a propos'd Year, add 9 to the number of the Year, divide the Sum by 28, and the Remainder is the Solar Cycle. Thus for the Year 1693, 9 added make 1702, and that divided by 28 leaves 22 remaining for the folar Cycle. The number 9 is here added, becaufe the Solar Cycle immediately before the firt Year of Chrift was 9 , and confequently the Cycle began io Years before Chrift.
'Tis evident that after finding the Solar Cycle of one Year fince Cbrift, the addition or fubftraction of I gives the Cycle of the next enfuing or preceding Year.
'Tis equally evident, that after finding the Dominical Letrer for a Year, the Letter for the next enfuing or next preceding Year is eafily found by taking the next following Letter for the Dominical of the preces ing Year.and reciprocally the next preceding Letter in the order of the Alphaber for the Dominical of the following Year ; which will ferve for the whole Year if'tis not Biffextile: Indeed if it is, the Dominical thus found will ferve no longer than the 24th of February, at which timie the other Letter next preceding in the order of the Alphabet is taken in for the reft of the Year : For a Biffextile Year having an additional Day, has two Dominical Letters.

Problems of Cofmography.

PROBLEM XVII.

To find on mobat Day of the Weck a given Day of a given Year will fall.

IF the Year be fince Chrift, add to the number of the Year given, its fourth part, or the next leffer, if 'tis not exactly divifible by 4 ; to this Sum add the number of Days comprehended between the firt of February and the propos'd Day, inclufive; then fabftract 2 for the Fulian Calendar, or 12 for the Gregorian (if it be before 1700 , otherwife it muft be 13) and di-vide-the Remainder by 7. The number remaining after this Divifion, is the number of the Feria in queftion; reckoning Sunday 1, Munday 2, Tuesday 3, and fo on; and if norhing remains, Saturday is the Day.

PROBLEM XVIII.

To find the number of the Roman Indition for a Year. propor'd.

IN ancient Times the Greeks computed their Years by olympiads, which is a Revolution of four Years, at the end of which they celebrated the Olympick Games, fo call'd becaufe they had been inftituted by Hercules near Olympus in Arcadia; but after Rome brought Greece in fubjection to them, they wou'd not reckon their Time by Olympiads, four Years being too fhort a term for them, but lettled the Period of Computation to three Luffrums or fifteen Years, which they calld an Indition.

So that the Roman Indiction is a term of fifteen whit in In? Years, at the end of which they begin their Compura- dition it. tion with a continual Circulation : This Period of fifreen Years, was calld Indiation, as fome will have ir, becaufe it ferv'd to point out (indicare) the Year of payment of the Tax or Tribute to the Republick, whence 'twas call'd the Roman Indition, and fince the Pontifical Indittion beginning the firft of Fanuary, becaufe the Court of Rome ufe it in their Bulls and Difparches Provinces every fifteenth Year, to diftribute Ammunition to the Soldiers ; at which Period thofe who had ferv'd folong in the Army were free to draw their Pafports, and entitled to Immunities and Privileges.
-However that be, the way of finding the number of the Roman Indiction for any Year fince Chrift is this; Add 3 to the number of the Year, and divide the Sum by 15 , and the Remainder is the Year of Indiction. Here we add 3 becaufe the Cycle of Indiction recommenced 3 Years before the Nativity of our Saviour. Thus for the Year 1700 , add 3, and divide the Sum 1703 by 15 , and the Remainder of the divifion is 8 for the number of the Indiction.

PROBLEM XIX.

To find the Number of the Julian Period for a propos'd rear.

The ConAtruction of the Fulian Period.

THE Roman Indiction has no connexion with the Celeftial Motions, yet that Revolution of is Years is compar'd with the Period of the Solar Cycle of 28 Years, and the Period of the Golden Number of 19 Years; viz. by multiplying together thefe three $\mathbf{C y}-$ cles, 15, 28, 19, the folid product of which gives that famous Period of 7980 call'd the fulian Period, from Fulius Scaliger, who firft invented it., and introduced by the modern Chronologers, as a Standard for adjufting all the difference of Times mentioned by Hiftorians; it being certain, that this number of 7980 Years contains all the different Combinations of the three abovementioned Cycles, which in all that fpace of rime can meet but once in the tame difpofition.

The number of this Period is eafily'found for any Year fince Chrift, if once we khow its beginning, that is,the rume when it would have begun befor? Chrift,and even before the Creation of the World ; for as this Period is grear. So the time of its beginning when all the Cycles of which 'tus co npoled wou d bave been Number 1, furpafies by many Years wot only the Chrittian Epocha, but even the ume atrributed in Scripture to the

Crea-

Creation of the World. Now the way of finding irs commencement is this.

Since the firft Yeat of Jefus Cbrift correlponded to the 4th of the Indiction, the 1 oth of the Solar Cycle, and the 2d of, the Lunar Cycle or the Golden Number; multiply 4 the number of the Indiction by 6916, 10 the number of the Solar Cycle by 4845, and 2 the number of theLunar Cycle by 4200 ; then add together the three Products, 27664, 48450, 8400, in order to divide their Sum 84514 by the Julian Period 7980: The Remainder of this Divifion thews that the beginning of the Julian Period is 4714 Years before the Nativity of Chrift.

This done, if we want to know the number of this Period for any Year fince Cbrift, as for 1693 , we add 4714 to 1692 and the Sum 6406 is the Julian Year fought for. Or elfe you may follow the method a-bove-mention'd iu multiplying I the number of Indiction tor the Year 1693, by $6916 ; 22$ the number of the Solar Cycle for the Year, by 4845 ; and 3 the number of the Lunar Cycle by 42 ro , and add together all the Products, viz. 6916, 106590, 12600, in order to divide their Sum 126106 by 7980; upon which the Remainder of the Divifion 6406 anfwers the Queftion: The Reafon for chufing thefe Multipliers is contained in the Remark upon the next Problem, which fee.

PROBLEM XX.

To find the number of the Dionyfian Period for a Year propos'd.

THE Multiplication of 28 the Period of the Solar Cycle by 19 the Period of the Lunar, forms a Period of 532 called the Dionyfian Period, from its Inventer. This Period ferves to difcover all the Differences and Changes, that can happen berween the new Moons and the Dominical Letters in the courfe of 532 Yeers; after which the Combinations of one and torher return in the fame order, and repear the former Series.

To find the number of this Period, for any Year fince Chrift, multiply the number of the Solar Cycle for the Year propos'd by 37 , and the number of the their two Products, divide the Sum by 532 the Dionyfian Period; the Remainder of this Divifion folves the Queftion.

The number 57 which here multiplies the number of the Solar Cycle, is fuch that being divided by 28 the Period of the Solar Cycle, it leaves i Remaining ; and if it be divided by 19 , the Period of the Lunar Cycle, there remains nought : And Reciprocally the number 476 (which here multiplies the number of the Lunar Cycle) divided by 19 the Period of the Lunar Cycle, leaves I remaining, and divided by 28 the Period of the Solar Cycle, nothing remains. Thus the firft number 57 fhews the Dionyfian year, which has oor 19 for the Golden Number, and i for the Solar Cycle; and the fecond number 476 gives us to know the Dionyfian Year, in which we have o or 28 for the Solar Cycle, and 1 for the Golden Number.

Now, to find this firt number 57, which ought to be multiple of 19, that its Divifion by 19 may leave no Remainder; if we pur, for Example, 38 the double of 19 , for the number demanded; this 38 divided by 28 leaves 10 remaining, inftead of 1 ; to help which, fince 10 is lefs than the Divifor 28 by 18 , if you add that 18 to 38 you have 56 , which divided by 28 leaves nothing remaining; and therefore if you add to 38, 19, inftead of 18, you have 57 the true number demanded, as being the exact multiple of 19, and but 1 above the multiple of 28.
If you fubtract this firft number 57 from 532 the Dionyfian Period, and add 1 to the Remainder 475 , you have the fecond number 476 ; which may likewife be found directly and immediately by a Ratiocination not unlike the former; only you have more effays to make, as I am about to fhew you.

To find this fecond number 478 , which muft be multiple of 28 , that norbing may remain upon its Divition by 28 ; put for the number propos'd 56 (for Example) the double of 28 ; this 56 divided by 19 , leaves 18 remaining inftead of 1 , which the queftion requires; now, this Remainder 18 being lets than the divifor 19 by 1 , if you add that I to 56 you bave 57, which divided by 19 leaves no Remainder;
and therefore if inftead of 1 you add 2 to 56 yoủ have 58, which leaves I Remainder upon its Divifion by 19. But tho' 58 has one of the qualifications requifite, 'tis deftiture of the other, viz. that of being the multiple of 28 ; and fo can't be the number inquir'd for. This Tryal proving fruitiefs, we muft e'en try again after the fame manner, in raking the Triple, Quadruple or Quintuple of 28, and fo on, till we find fuch a multiple of it, as leaves i temaining upon its Divifion by 19 ; and fuch a multiple we'll find to be the $17 t h$, or the Product of 28 multiplied by 17, vizu. 476 the number fought for. If you Sub ftract this 476 from 532 the Dionyfian Period, the Remainder is 56 which augmented by unity makes 57 for the firft number.

In like manner, the number 6916 by which you multiplied the number of Indiction in the foregoing Problem, is fuch, that being divided by 15 the Period of Indiction, it leaves I remaining; and when'tis divided by 28 the Period of the Solar and 19 the $\mathrm{Pe}-$ riod of the Lunar Cycle, or, which is the fame thing, by 532 the Product of thefe two Periods, there remains nothing. Again, the number 4845 by which we multiplied the number of the Solar Cycle in the foregoing Problem, is fuch, that being divided by 28 the Period of the Solar Cycle it leaves i remaining $;$ and divided by 19 the Period of the Lanar Cycle, and by 15 the Period of Indiction, or, which is the fame thing, by 285 the Product of thefe two Periods, it leaves no Remainder. And in fine, the number 4200 by which we multiplied the number of the Lunar Cycle in the foregoing Problem, is fuch, that being divided by 19 the Period of the Lunar Cycle, it leaves 1 remaining, and divided by is the Period of Indiction and by 28 the Period of the Solar Cycle, or, which is the fame thing, by 420 the Product of thefe two Periods, it leaves no Remainder.

The firt number 6916 gives us to know the fulian Year, in which we have 1 for the Indıction, and a forshe Golden Number, and Solar Cycle, or oforthe Dionyfian Period; the fecond number 4845 价ews the fulian Year, in which we have a for the 'oiar Cycle, and o for the Golden Number and luciction; and the third number 4200 difcovers the fuizan Year,

Matbematical and Phyfical Recreations.

 in which we have if for the Golden Number, and 0 for the Solar Cycle and Indiction. Thefe three numbers were found after the fame mannes with the two numbers mention'd above.
PROBLEM XXI.

To know what Montbs of the year have 3I days, and wobat bave 30.

H
Old up your Thumb A, your Middle-finger \mathbf{C}, and your Little-finger E; and lower or bend downwards your other two Fingers, viz. the Forefinger B, and the
 Ring -finger or fourth Finger D. Then count the Months of the year upon your Fingers thus placed, beginning with Mar. upon your Thumb, then April tupon the Fore-finger, May upon the Middle, Fune upon the Ring, and Fuly upon the Litclefinger; then count on, returning to your Thumb, and fo round till you have reckon'd all the Monchs. When you have done, remember that all the Months that fell upon the Fingers held up A, C, E, have 31 days; and thofe upon the bended Fingers have but 30, excepting February upon the Fore-finger, which has 28 in a Common, and 29 in a Biffextile Year.

PROBLEM XXII.

To find what day of each Month, the Sun enters a Sign of the Zodiack.

THE Sun enters the Signs of the Zodiack, about the 20th day of each Month of the Year ; that is, the beginning of v about the 20th of March, the beginning of δ about the 20th of April, and to pn. But to know the time more precifely, you may make ufe of thefe two Artificial Verfes;

Inclyta Laus Juftis Impenditur, Harefis Horret, Grandia Gefta Gerens Felici Gaudet Honore.

Diftribute the twelve words of thefe two Verles among the twelve Months of the Year, beginning with March, and ending with February, attributing to the firft Inclyta, and to the laft Honore. Then confider what r ber the firft Letter of each word obtains in the ordur the Alphaber, for that number fubftracted from 30, leaves remaining she day of the Month in queftion.

For Example; Inclyta anfwers to March, and to the Sign of Aries; and I its firft Letter is the 9 th of the Alphaber, which fubftracted from 30 , gives us to know that the Sun enters Aries on the $21 / \mathfrak{t}$ of March. And fo of the reft.

PROBLEM XXIII.

To find what degree of the Sign the Sun is in on a given day of the Year.

THE place of the Sun in the Zodiack, i.e. the degree of the Sign it is in, any day of any Month, is thus known. Suppofe the day propos'd is May 18, fuftis in the two Verfes mention'd but now anfwers to that Month, and the Letter I being the 9th Letter of the Alphabet, we add 9 to 18 the num23 ber

Mathematical and Phyfical Recreations.

 ber of the day propos'd; and by the Sum 27 we are taught, that on the $18: b$ day of May the Sun is in the 2 gth degree' of Taurus, to which anfwers the word Laus.This is the Method, when the Sum is under 30 ; for if it be above 30, we take the Sign that anfwers to the Latin word of the propos'd Month, and fubfract 30 from that Sum, the Remainder being the degree of the Sign. Thus, if Aug. 25. be the day propos'd, the word Horret anfwering to that Month, and the Sigo being Virgo, we add 8 (the numeral valut of the firt Letrer H) to 25 , and fubßtracting 30 from 33 the Sum, learn that on the 25 th day of Auguft the Sun enters the 3d degree of Virgo.

In this and the preceding Problem, we have taken it for granted, that the Reader is acquainted with the Drder of the rwelve Signs of the Zodiack, and their correfponding Months. The two following Verfes: thew the order of the twelve Signs.

> Sunt Aries, Taurus, Gemini, Cancer, Leo, Virgo, Libraque, Scorpius, Arcitenens, Caper, Amplorn, Pifceṣ.

> In which we muft oblerve, that the firft Sign Aries correfponds to the Month of March; the fecond Taurus to April; and fo on to the laft Pifces-which anfwers to February. .,

PROBLEM XXIV.

To find the place of the Moon in the Zodiack, on a given day of a given year.

FInd firf the place of the Sun in the Zodiack by the foregoing Problem; and then the diftance of the Moon from the Sun, or the Arch of the Ecliptick comprehended between the Sun and the Moon, by the following Merhod.

Having found by Problem 15 the Age of the Moon, and multiplied that by 12, divide the Product by 30, and the Quotient is the number of the Signs; as the remainder of the Divifion is the pumber of the De,

[^0]
Problems of Cofmography.

grees of the diftance of the Moon from the Sun. So if you count this diftance upon the Zodiack, according to the order of the Signs, beginning from the place of the Sun, you'll end in the place of the Moon fought for.

For Example; I find the Sun on the propos'd'day to be in the inth degree of Taurus, and the Age of the Moon to be 14. Afrer multiplying 14 by 12 I divide the Product 168 by 30 ; and the Quotient s with the remainder of the Divifion 18 , give me to know that the Moon is diftant from the Sun 5 Signs and 18 Degrees. So if I reckon 5 Signs and 18 Degrees upon the Zodiack, beginning from the place of the Sun, the 27th Degree of Taurus, I find the place of the Moon to be the 15 th Degree of Scorpits.

PROBLEM XXV.

To find to what Montb of the Year a Lunation belongs.

IN the ule of the Roman Calendar every Lunation is compured to belong to that Month in which it terminates, according to the ancient Maxim ;

In quo completur Menfi Lunatio detur.

And therefore to folye the Problem, find by Problem XV. the Age of the Moon on the laft day of the Month propos'd, and that will direct you whether the Moon terminates in that or in the fucceeding Month, (the which laft if it do's it belorgs to that fucceeding Month:) Or whether a prior Lunation did sot terminate in the Month propos'd, and confequently belong to it.

PROBLEM XXVI.

To know which Lunar Years are Common, and which Embolifmal.

THI S Problem is eafily folv'd by the foregoing Problem, which gave us to know that one Solar Month may have two Lunations, or that two Moons may finifh their Periods in the fame Month, when 'tis a Month that has 30 or 31 Days; as November, on the firft day of which one Lunation may terminate, and another on the $30 t b$. . In fhort, when we find any one Month of the year to have the termination of two Moons, we may conclude that that year has 13 Moons, and confequently is Embolifmal.

PROBLEM XXVII.

To find the time of a given Night when the Moon gives Light.

HAving found by Problem XV. the Age of the Moon, and added I to it, multiply the Sum by 4 if it do's not exceed 15 ; bur, if it exceeds 15 , fubtract ir from 30, and multiply the Remainder by 4; then divide the Product by 5, and the Quotient will give you fo many twelfth parts of the Night, during which the Moon hines. Thefe twelfth parts are call'd unequal hours, and muft be counted after Sunfet when the Moon Waxes, and before Sunrifing when it Wanes.
For Example ; 'tis demanded to know what time of the Night of May 21.N. S. the Moon will fhine, its Age being then 17 ; we add I to 17 , and after fubftracting the Sum 18 from 30 , we multiply the Remainder 12 by 4 , and divide the Product 48 by 5 ; the Quotient gives us 9 unequal hours and ${ }^{3}$ for the time of Moonthine before Sun-rife.

Remark:

'Tis an eary matter to reduce the unequal hours to equal or Aftronomical hours, each of which is the $24^{\text {th }}$ part of a natural day comprehending Day and

Problems of Cofmograpby.

Night; This Reduction I fay, is eafy, when once youi know the length of the Night or Day propos'd. Thus in the foregoing Example, knowing that at Paris the Night of May 21 is 8 Hours 34 Minutes, I divide thefe 8 Hours 34 Minutes by 12 , and To have 42 Minutes and 50 Seconds for the extent of an unequal Hour, which being multiplied by $9 \frac{3}{5}$ (the number of unequal Hours from the rifing of the Moon to Sunrife) gives in the Product 6 equal Hours and about 51 Minutes for the value of the faid number of unequal Hours.

COROLLARY.

Here we fee that if we know the time of the Rifing of the Sun, we may from this Problem compute the time of the Moon's Rifing; for, if to the hour of the Sun's Rife, viz. 4 Hours and 17 Minutes, we add 12 Hours, and from the Sum 16 Hours and 17 Minutes fubftract 6 Hours and 51 Minutes (the time between Moon's-rife and Sun's-rife) we have 9 Hours and 26 Minutes for the time of the rifing of the Moon.

PROBLEM XXVIII.

To find the beight of the Sun and the Meridian Line:

WHEN we fhew'd in Problem III. the way of taking the Latitude of a Place, we then fuppored the Altitude of the Sun and the Meridian Line to be known. So, we come now before we conclude to thew you how to find thefe.

Firft for the Altitude of the Sun any hour of the Day, Raife at Right Angles upon an Horizontal Plain the Stylus or Pin AB of what length you will, and mark a Point fuch as.C at the extremity of the thadow of the Style $A B$, at the very time that you would know the Elevation of the Sun upon the Horizon. Then draw from the foot of the Style A to the Point

of the thadow C , the Line $A C$ reprefenting the Verrical of the Sun; and the Line AD equal to the Style AB, and perpendicular to the Point A. At laft draw. from the Point of the fhadow \mathbf{C} to the Point \mathbf{D} the Line CD, reprefenting the Radius of the Sun drawn from its Center to the Extremity B of the Style AB; which at the Point \mathbf{C}, will make with the vertical of she Sun AC, the Angle ACD, and that Angle meafured gives the degrees of the height of the Sun.

In the fecond place, to find the Meridian Line; mark upon any Horizontal Plain about two, or three hours before Noon, the Point of the thadow C; and from the Roor of the Sryle A, which reprefents the Zenith, draw thro the Point \mathbf{C} the Circumference of a Circle CFE, which thall reprefent the Almicantarat of the Sun; then mark after Nopn, a fecond Point of the thadow, fuch as E, when the Extremity of the hadow of the Style AB is return'd to the Circumference CFE; and having divided the Arch CE into two equal parts at the Point F, draw from that

Point

Problems of Cofmography.

Point F to the Roor of the Style A the Right Line FA, which is the Meridian Line demanded.

PROBLEM XXIX.

To know the Calends, . Nones, and Ides of every Month of the Pear.

TH E Calends, Nones, and Ides, formerly in ufe among the Romans, are eafily known by thefe three Latin Verfes;
Principium Menfis cujufque vocato Kalendas,
Sex Majus Nonas, October, Fulius ©̌ Mars,
Quatuor at Reliqui; dabit Idus quilibet OEto.

Thie firft of thefe Verfes thews that the Kalends are the firt day of each Month, the firf day of the Month among the Romans, being the firft day of the Apparition of the Moon at Night, on which they had a cuftom of calling in to the City the Country People to tell them what they were to do the reft of that Month.

The fecond Verfe gives us to know that the Nones are the 7 th day of the four Months, March, May, FFuly, and OZZober ; and the fifth day of the other Months : And from the third Verfe we learn, that the Ides come eighr days after the Nones, that is, on the fifteenth day of Mareb, May, Fuly and OZober, and the thirteenth of the other Months.

The Romans counted the other days backwards, ftill diminiihing the Number; for the days between the Calends and the Nones of any Month, were denominated from the Nones; as in the Month of Mareb the fecond day was Sexto Nonas, the third Quinto Nonas; the fourth Ruarto Nonass ; the fifth Tertio Nonas; and the fixth not Secundo but Pridie Nonas; the meaning of all which was, fix, five, four, छुr. days before the Nones, the Prapofition ante being underfoood. In like manner the days between the Nones and the Ides, were denominated, Septimo, Sexto, Quinto, \&cc. Idus, the Prepofition ante being ftill underftood. The days between the Ides of a Month, and the Calends of the next, took their Denomination after the fame manner from the fucceeding Calends.

PROBLEMS
 OF THE
 MECHANICKS.

MOST, if not all, the Problems of the Mechanicks are more ufeful than curious, in regard they commonly relate to the execution of the moft neceffary things in the way of Life, fo that one might be very large upon that Subject : But. that this Volum may nor exceed the due bounds, we thall here confine our felves to fuch Problems as feem to be the moft ufeful, the moft agreeable, and the eafieft to be underftood and practis'd.
PROBLEMI.

To keep a beavy Body from ${ }^{\circ}$ falling, by adding another beavyer Body to that fide on which it inclines to fall.

ATable AB being fet Horizontally, lay upon it a Key, (for inftance) CD, which is like to fall becaufe the part ED is fuppos'd heavier than EC ; add to its extremity D a crooked Stick DFG with a weeight H made faft to the end of it G, and fo pofited as to anfwer perpendicularly to the Point E . In this cafe 'ris evident that the Key CD will nor fall, upon the account, that in order to its fall EC which lies Horizontally muft incline, and its Extremi-

Problems of the Mechanicks:-

ty \mathbf{C} make the Arch of a Circle, with its Center at the Point of reft \mathbf{E}; but this can'r be unlefs the weight H afcends inftead of defcending. And therefore the Point H and the Key CD will continue in repofe.
PROBLEMII.

By means of a fmall treigbt and a Small pair of Scales, to move another Weight as great as you will.

I
Suppofe the Ballance $A B$ is made faft at F above its Center of Motion E, by an unmoveable Hook EF, and that near its Extremity B there's a fmall weight C made faft at H ; by vertue of which we

want to raife a huge weight D, which might reprefent the Earth if we knew irs weight; and had a firm place to fix the Scales at.

To find the diftance EH of the Weight C from the Center of Motion E, at which the Weight D is to be mov'd by the fmaller Weight C; fee for a fourth proportional EH to the Weight I leffer than the Weight

C, to the great Weight D, and to the Line AE which ougbt to be very fmall. By this means you have the Point H, from which the Weight I being furpended will hold the Point D in Aqquilibrio, as appears from that general Principle of the Mechanicks, that two Weights continue in Aqquilibric abont a fix'd Point, when their diftances from that Point are in a reciprocal proportion to their Gravity. And therefore if inftead of the Weight 1 , you put the greater Weight \mathbf{C} at H , this greater Weight \mathbf{C} will be able to move and caft the Weight D.

PROBLEM III.

To empty all the Water contain'd in a Veffel mith a spphon or Crane.

LET the Veffel AB, be propos'd to be empryed withour ftooping the Veffel or piercing the Bottom. Take a crooked Syphon fuchas CDE full of Water, one of whofe Extremities touches the bottom of the Veffel AB, and the end E ftop'd clofe with your Finger is lower than the bottom of the Veffel AB. Then take away your Finger,and the Water of the Crane CDE running out at the extremity E, the

Water in the Veffel will enter at the other end, and fupplying the place of that which is gone will continue to follow it, and run out till none, or very little is left in the botrom of the Veffel. This Experiment will fucceed the eafier, if the Syphon CDE be bigger

Problems of the Mechanicks.

bigger in the middle than at the $t w o$ ends, becaufe then the Water in the middle will weigh more, and have more force in fucking or drawing the Water from the Veffel. See Probl. XIV.

Thus 'tis that we eafily empty a Cask of Wine by the Bung, without opening the Head; which may likewife be done by an empty ftràight Pipe fmaller at the two ends than in the middle, plunged in at the Bung, for then the Wine will enter it; and if with your Finger you fop the upper end of it, and fo take the Pipe out, you'll find it full of Wine, which you may pour into a Glafs, by taking off your Finger, which will make the Wine defcend at the other end, becaufe the Air is free to fupply its room.

By the fame means we can make Water rife from a low place in order to defcend to a lower, provided the eminence over which 'tis to pafs is not higher than 32 Foot: For we know by many Experiments that the gravity of the Air, to which the Modern Phil phers attribute what others call'd fuga vacui, can't make Water rife higher than abour 32 Foot.
'Tis likewife by means of a crooked Pipe, that, without an Aqueduct and with very little Charge, we can carry Spring-Water from the top of one Mountain to another of equal or little lefs height. For this end, we take a long Leaden Pipe which' defeends from the Spring to the Valley, and with a bend rifes again to the top of the adjacent Mountain; for the Water entring the Pipe afcends about as far as it defcends; I faid about as far, upon the confideration that the Refiftance of the Air keeps the Water from rifing to the exact height.

PROBLEMIV.

To make a deceitful Ballance, that Soall appear juft and
even both when empty, and when loaded with unequal
Weights.

MAke a Ballance the Scales of which A,B, are of plate iti. unequal Weight, and of which the two Arms Fig. 26. $C D, C E$ are of unequal length, and in reciprocal preportion to thefe unequal Weights; that is, the feale continue in Aguilibrio round the fix'd Point \mathbf{C}; and the fame will be the Cafe, if the two Arms CD, CE are of equal length and of unequal thicknefs, fo that the thicknefs of CD is to that of CE, as the weight of the fcale B is to that of A. This fuppos'd, if you put into the two fcales, A, B, unequal weights which have the fame Ratio with the Gravities of the two fcales, the heavier weight being in the heavier fcale, and the lighter in the lighter fcale, thefe two Weights and Scales will reft in Aqquilibrio.

We'll fuppofe that the Arm CD is three Ounces, and the Arm CE two Ounces, and reciprocally the fcale B weighs three Ounces, and the Arm A two; in which cafe the ballance will be even when they are empty. Then we put a weight of two pound into the fcale A, and one of three into B, or elfe one of four into A, and one of fix into $B, \mathcal{E}^{3} c$. and the ballance continues ftill even, becaufe the weigh with the gravity of the Scales are reciprocally proportional to the length of the Arms of the Beam. Such a pair of Scales is difcover'd by fhifting the weights from one fide to another, for then the Ballance will caft to one fide.

PROBLEMV.

To make a new Steel-yard for carrying in one's Pocket,

Plate. 14. Fig. 27.
T Here has lately been invenred in Germany, a new Steel-yard fit to be carried in one's Pocket, which is very convenient for weighing off-hand any indifferent big Weighr, fuch as Hay or Merchants Goods, from one to fifty pound weight and upwards.

This Machine is made of a Copper Pipe or Gutter $A B$, about fix Inches long, and almoft eight Lines broad, and within it is a Spring of Steel in the form of a Screw. At the upper end rowards A there's a fquare Hole, thro' which thère paffes a fquare Rod of Copper CAD that runs thro' the Screw, and upon this Rod are the divifions of Pounds mark'd, by hanging fucceflively to the Hook E a weignt of one, of two,
of three Pound, EGc. and running a Score upon the Rod where 'tis cut by the Square Hole 'A; which will fall upon different Parts or Points according to the different weight faften'd to the Hook E, for thefe different weights extend the Spring, and fo puth out a greater or leffer part of the Rod, according as they are more or lefs heavy. Here the Steel-yard is fuppoled to be fufpended by the Ring F, and the Rod is fecured at the lower end by a Copper Ferrel.

The Sieur Cbapotot, Ingeneer and Inftrument-ma- Remiff: ker to the King of France, has invented another fort Plate 14. of Pefon or Sreel-yard in the form of a Watch, by Fig. 28. which the gravity of any weight may be taken with great facility.

This new Machine is compos'd fire of two Pullies AB, CD, made faft upon their Axletrees, and kepr together by a String or Cord. The upper of thefe two, $A B$, is hollow like a barrel of a Watch, and conrains within a Spring like that of a Watch, which being ftop'd by the Axletree of the Pully, will have the fame effect with that of a Watch.

The fame Pulley AB contains the divifion of Pounds, mark'd Mechanically as in the Steel-yard defcrib'd but now, namely, by clapping fucceffively upon the Hook Ea weight of one, of two, of three Pound, EGc. the Machine being fufpended by the Ring F: For thus the gravity of the weight will tarn the Pully $A B$, and fo by vertue of the different gravities, the Point I will anfwer to different Points of the Pully AB , upon which thefe different Points are mark'd with the number of the refpective Pounds hanging at E. Such is the new Machine with which any thing may be weigh'd, after the fame manner, as with that laft defcrib'd.

One may eafily perceive by the Figure, that the Scring or Cord BDCA keeps up and rans under the lower Pully CD, and is made very faft at one end ar the Point G, and at the other end at fome Point of the other Pully, fuch as H: Which contributes very much to turn the Pully AB round its Axletree when 'ris drawn or pull'd by the part AC of the Rope, by reafon of the weight at the Hook E; which weight will then be mark'd upon the Pully AB by the Point I, the Machine being fufpended upon one's Thumb,

Matbematical and Pbyfical Recreations.
or, which is better, upon a Stick run through the Ring F.

PROBLEMVI.

To obferve the various Alterations of the Weight of abe Air.

THE Air being a Body mult needs have Gravity ; a proof of which we have in a Football or Bladder, which weighs more when blown than when 'tis nor, and in an infinite number of other Experiments. Torricelli was the firft that affign'd the gravity of the Air for the caufe of all the effects that the Philofophers had till then impured to a fuga vacui. As this Gravity is not infinite, the Sphtre of the Air being limited, fo its effect is limited, as we fee in a Pump. where Water will not rife higher upon drawing up the Sucker, than 32 Foor, becaufe the gravity of the Air can't force it beyond that height. In like manner in drawing up Quickfilver wirh a Syringe, 'rwill rife no higher than two Foor and about three Inches, (at which height it weighs equally with a Column of Water of 32 Foor high) more or lefs according as the Air is fraighted with Vapours, or condenfated with Cold.

Thus you fee the gravity of the Air is not always equal at the fame place; but varies, as 'ris more or leils Atuff'd with Vapours. Now, this difference of gravity is known by an Inftrument call'd a Barometer, which is contriv'd after the following manner.

Of Barome-

ters.

Plote- 14. Eig. 29.

Take a crooked or bended Tube of Glafs, fuch as ABC, upon which are two Cylindrical Boxes E, D, murually diftant in height 27 Inches, that being much about the height to which the gravity of the Air can saife Quickfilver; that is to fay, a Prifm of Air from the Earth to the uppermoft Surface of the Air is in Equiiibrio with abour 27 Inches of Quickfilver in a Tube or Gutrer perpendicular to the Horzon.

The Bnx D muft be mach bigger than the reft of the Tube CD, for a reafon that you'll meet with in the Sequel : and the extsemity A ought to be hermerically fop'd, that is, flop'd with its own properSubftance:

Problems of the Mechanicks.

ftance; but the other extremity \mathbf{C} muft be open; and there we muft pour in as much Quickfilver as fills the Tube ABC, from the middle of the Box D to the middle of the other Box E , the capacity of which fhould be almoft equal to that of the firft D.

At laft you muft fill the remainder of the Tube CD with fome other Liquor that do's not freeze in Winter, nor yer diffolve Quickfilver. Such is common Water mix'd with a fixth part of Aquafortis.

If you place the Tube ABC thus fill'd with Air, and Water, and Mercury in the middle, perpendicularly againf a Wall in a Room, where it may be conveniently, feen and not hurt, you'll fee the Quickfilver afcend or defcend in the two Bozes D, E, upon the leaft alctration of the gravity of the Air. When the Air is heavier it prefles the Water of the Tube CD, and makes it defcend in the Box D, as well as the Quickfilver, which rifes as much in the Box E. If the Mercury defcends thro' the gravity of the Air, for Example, a Line in the Box D, 'twill rife a Line in the Box E, and the Water in the reft of the Tube CD will defcend inte the Box D, to that if the Box D is ten times more capacious than the reft of the Tube CD, 'twill' require ten Lines of the Water of the Tube CD to fill one Line of the Box D; and thus the leaft alteration of the gravity of the Air is very fenfibly perceiv'd, efpecially if the Boxes E, D, are made large. For the diftincter perception of this Alteration, there is ufually a lip of Paper divided into Inches and Lines, pafted on along the Tube ABC; in order to obferve the Divifion at which the Mercury hangs; as we do in the Thermometers, which what i ferve to diftinguifh the Degrees of Heat and Cold, Thermommar as the Barometer do's the greater or leffer gravity of ${ }^{\text {in }}$ the Air; which may likewife be done by a fingle Tube of Glafs three or four Foot long, thut at one end and filld with Quickfilver, afer this manner.

Having ftop'd with your Finger the open end of the Tube, to keep the Quick6ilver from dropping out when the Tube is inverted, dip the open end into other Quickfilver in a Veffel, then take off your Finger, and the Tube will not be quite empry, but the Quickfilver will hang in it to the height of 27 Inches and a half, more or lefs, according to the diffe-

PROBLEM VIİ.

To know by the Weight of the Air, which is the bigheft of two places upon the Earth.

TH E gravity of the Air is not every where equal, for it gravitates lefs upon eminences and tops of Mountains, than in fuch places as lie lower, as Valleys; by reafon that there's more Air over Valleys than over Mountains; juft as the botrom of a Pit is more prefs'd by the gravity of Water when 'tis full, than when 'tis half full; for Liquid Bodies gravitate according to their height.

Thus we know by experience, that in all level places, or fuch as being equally high are equidiftant from the Center of the Earth, Quickfilver rifes in a Barometer to an equal height; and to a leffer heighe in places that lie lower. From hence we may conclude, that two Mountains, for example, are of equal height, if the Quickfilver rifes equally upon both; and that one is higher than t'ọther, if the afcent of the Mercury is unegual.
Ré zark.
To determine, as near as may be, the height of any place above the Plain of the Horizon, we muf mind the following Experiments made by Mr. Pafcal of the gravity of the Air upon the level of the Sea, and in places lying $10,20,100,200$ and 500 Toifes higher, when the Air was indifferently charged with Vapours.

Upon the level of the Sea, the attracting Pumpraifes Water 31 Foot and about 2 Inches; and in places that are 10 Toifes higher, it raifes it 31 Foot and 1 ? 1nch. Here you fee 10 Toifes Elevation caules 1 Inch Diminution. (A Toife is 6 Foot.)

Problems of the Mechanicks.

By other Experiments we learn that in places that are 20 Toifes higher than the Sea, the Water rifes only 31 Foor ; and in thofe of 100 Toifes higher only 30 Foot 4 Inches; in the height of 200 Toifes, only 29 Foot 6 Inches; and at 500 Toifes about 27 Foot.

PROBLEMVIII.

To find the gravity of the whole Mafs of Air.

WE found in Problem VII. Cofm, that the Surface of the whole Earth is 32356800 fquare $\mathrm{Pa}-$ rifian Leagues, which amounts to 4659379200000000 \{quare Feet. We muft know likewife that a Cube foot of Water weighs about 72 Pound; and confequently that a Prifm of Water having a fquare foot for its Ba_{2}, and 32 foot for its heighr, weighs 2304 Pound, as appears by multiplying 72 by 32.

In fine, we muft know, that confidering that the gravity of the Air can't raife Water above 31 or 32 Foot, if we fuppofe all the places of the Earth to be equally loaded with Air, tho' indeed that is not abfolutely true, fince all places are not equally remote from the Center of the Earth, and the Air is not every where nor at all times equally pure; upon this Confideration, I fay, we may fuppofe all the parts of the Earth to bear as great a preffure from the Air, as if they were cover'd with Water to the depth of 31 or 32 Foot.

Upon this Suppofition, which may readily be receiv'd in Mathematical Recreations, 'tis manifeft that if the whole Earth were cover'd with Water 32 Foos high, there would be as many Prifms of Water 3^{2} Foor high, as there are fquare feet upon the Surface of the Earth, viz. 4659379200000000 Prifms of Water; which Number multiplied by 2304. (the weight of one of theie Prifms in Pounds) yields 10735209676800000000 pounds for the weight of the whole mals of Air.

PROBLEM IX.

To find by the Gravity of the Air the Thickness of its Orb, and the Diameter of its Spluere.

B
Y the thicknels of the Orb of the Air we underftand the diftance from its upper Surface where its gravitation ceales, to the Surface of the Earth, which we fuppofe to be in the Center of the Sphere of the Air, withour farther enquiry into the precife truth of that Suppofition, the difcuftion of which would be of little confequence in Mathematical Recrearions.

To find in the firf place this thicknefs, let's confider that if 10 Toifes (or 60 Foor) of height, caule an Inch diminution of the effect of the gravity of the Air, as we oblerv'd Probl. VII. and if the whole weight amounts only to 31 Foot 2 Inches, that is, 374 Inches, after a diminution of which the Air will ceafe to gravitate: We may find the thicknels of the mals of Air, or the diftance of its upper Surface from the Earth, by the Rule of Three Direct: If the diminution of one Inch arifes from to Toifes of height, what height mult the diminution of 374 Inches proceed from ? Here multiplying 374 by 10 , you have 374° Toifes for the thicknefs in queftion, which doubtlefs is much greater.

In a fecond place, to find the Diameter of the Sphere of the Air, we take the Diameter of the Earth, which in Probl. VII. Cofm. we found to be 3210 Parifian Leagues, or 6420000 Toifes; and add to it 7480 the double of 3740 the thicknefs of the Air, and the Sum gives $64: 7480$ for the Diameter of the Sphere of the Air.

1.1.7.359.

Plate. 15.

PROBLEMX.

> To.fift a Cask with Wine or any otber Liquor by a Tap in the lower part.

WE've intimated already that Liquid Bodies gravi- Plate , s: tate only according to their height, and io to fill Fig. 30. the Cask A not by the Bung E, but by a lower Tap B in the lower part of it; we need only to put into that apetrure a crooked Pipe, fuch as BCD, with a fort of Funnel in its upper end D, which ought to be as high as the Cask; and pour the Wine in at the Funnel D, which falling down the branch DC that oughe to be. very near Perpendicular, and entring the Cask by the other branch CB, which ought to be level, will affume an Horizontal Situation, and keep an equal height in the Cask with that in the Crane; and 'tis for that reafon that we know the Cask to be full when the branch CD is full.

PROBLEMXI.

To break with a Stick another Stick refting upon troo Glaffes, without breaking the Glaffes.

T
HE Stick AB that is to be broken muft not be very thick, nor yet lean much upon the Glaffes; Figice 13: it ought as near as poffible to be equally thick all over, for the eafier finding of irs Center of gravity \mathbf{C}, which will then be in the middle.
The flick $A B$ being thus qualified, we lay its $t w a$ ends, A, B, which ought to terminate in a Point, upon the brim or edge of two Glaffes of equal height, fo that the flick AB do's nor lean to one fide or end more than t'other, and the two pointed ends reft but lightHy upon the edge of each Gliafs, to the end that when it bends a little thro' the violence of the froak, it may eafily nip off, and break at the fame time. This done, we take another ftick, and with that give a finart blow upon the middling Point C, which being the Center of gravity will receive all the force of the A24 blow;
blow; thus, will tne ftick $A B$ break, and that the more eafily that the blow is violenr, and fall clear of the two Glaffes which remain unbroken, becaufe the ftick lay but very gently and equally upon the brim of each; for if it refts more upon one Glafs than r'other, 'rwill prefs that one moft, and fo may break it.

PROBLEM XII.

To find a Weight of a given number of Pounds, by the mians of Some other different Weights.

TH I S Problem may eafily be refolv'd by the double or triple Geomerrical Progreffion, efpecially the Triple, $1,3,9,27,81,243, \mathcal{O}^{\circ} c$. the property of which is fuch, that the laft number contains twice all the reft and one more, when the Progreffion commences from Unity, as here. So that if the given number of Pounds is, for example, from I to 40, which is the Sum of the four firft Terms, 1, 3, 9, 27; you may make ufe of four different Weights, one of which weighs i Pound, another 3, a third 9, and the fourth 27 ; and by them find the weight of any other number of pounds, for example it pounds.

For, fince the given number it is lefs than 12 by 1 ,

Plate 14. Fig. 26. and fince 12 is the fum of the Weights 3 and 9 which you have; if you put into the Scale A the one pound weight, and into the other Scale the 3 and 9 pound weights, thefe two weights will then weigh only in pound, by reafon of the one pound weight in the other Scale; and conféquently if you pur any fubftance into the Scale A along with the I pound weight, which ftands in 压quilibrio with the 3 and 9 in the other Scale, you may conclude that Subftance weighs 1 I pound.

In like manner to find a 14 pound weighr, put into the Scale A, the 1, 3, and 9 pound weights, and into the Scale B that of 27 pound, becaufe this 27 咕. weight outweighs the other three by 14. To find 2 weight of 15 tb. put in one Scale 3 and 9, and in the other 27, which exceeds the other two by 15.

PROBLEM XIII.

> A Pipe full of Water being perpendicular to the Horizon, to find to what diftance the Water will flow thro' a bole made in a given Point of the Pipe.

DEfcribe round the Pipe $A B$ which is fuppos'd to be plate is: full of Water and perpendicular to the Horizon, Fig. 32. the Semicircle ABC, and bore the Pipe in feveral places, as at the Points D.E.F, for the Water to flow out at ; In this cafe, the Water in flowing out will make the Semi. Parabola's DG, EH, FG; of which the Amplitudes BG, BH are double the correfponding Sines, i. e. the Lines DI, EC, FK, perpendicular to the Diameter AB; the Amplitude BG being the double of DI and of FK, and BH the double of EC : So that if the Point E is the middle of the Pipe $A B_{r}$ or the Center of the Semicircle ABC, EC being the greateft Sinus, the amplirude EH will likewife be the greateft ; and lince the Sines equally remote from the Center E, as DI, FK, are equal, fo the two Semi-Parabola's DG, FG, found by the fall of the Water thro' the holes D and F equidiftant from the Center E, have the fame Amplitude BG. 'Tis evident that the greateft Amplitude BH is equal to AB the hefight of the Pipe, and that its extremity B is the focus of the Semi-Parabola EH, and by confequence if you broach the Pipe AB at its middle-point E, the Water will fpout out to a diftance equal to the length of the Pipe AB.

But if you make a hole in the Pipe above or below the middle E as at F , you'll find the diftance BG , to which the Water will then flow, by defcribing round the Pipe $A B$ or round a Line equal to it, the Semicircle $A B C$, and drawing from the Point F to the Diameter $A B$ the perpendicular FK, which will be half the diftance fought for.

Or if the Pipe is fo large, that you can'r draw a Circle round ir, do ir by Arithmetick, multiplying the two parts AF, BF, into one another, the fquare Root of which Product gives the quantity of the Perpendicular FK, or half the diftance BG. Thus, if AF is

2 Inches, and BF 32 Inches, the length of the Pipe being 34. multiply 32 by 2 , and from the Product 64 extract the fquare Root 8 , the double of which is 16 Inches for the diftance BG.

PROBLEM XIV.

To contrive a Veffel, which keeps its Liquor when fill'd to a certain beight, but lofes or Spills it all mben fill'd a little fuller with the fame Liquor.

Plate 150 Fig. 33.

Plate 15.
Eig. 34

TA K E a Glafs, for example ABCD, and run thra the middle of it a fmall bended Pipe or Crane EFG open at the end E next the bottom of the Glafs, and likewife at the other end G which muft be lower than the bottom of the Glafs; for then the Water or Wine pour'd into the Glafs continues in it while the branch EF is filling, and till it comes to the bend \mathbf{F} or the uppermoft part of the Crane, which withal thould be 2 little lower than the upper edge of the Glafs: But after that if you continue to pour more in, 'twill rife higher in the Concavity of the Glars, and not finding placefor a farther afcent into the Crane by reaton of its bending downwards at F , 'twill change its Afcent into a Defcent thro' the branch FG, and continue to defcend and run out by the end G, as long as you continue to pour in ; nay, when you have done pouring, you'll fee that all that was in the Glals before is gone.

You may make the Water run out at the lowar end G, tho the Glafs is not fill'd up to the top of the Crane, namely, by fucking at the lower Aperture G the Air contain'd in the Ciane, for then the Water will neceffarily fucceed in the room of the Air, and continue to defcend thro' the branch FG till the Glais is empry, efpecially if the Qrifice touches the bottom of the Glais, as you faw in Prob. III.

Or elfe; run the fmall Pipe EF perpendicular down thrn' the Glafs ABCD; let the Pipe be open at both ends, E and F, the uppermoft of which, viz. E ought to be a little lower than the brim of the Glafs, and the orther end F a little lower than the bottom of the Glafs. Put this fmall Pipe EF in another larger Pipe

Problems of the Mechanicks.

GI ftop'd at the upper end G, which muft be a little higher than the end \mathbf{E} of the firft and fmaller Pipe EF, and open at the lower end I, which muft touch the bottom of the Glafs if you would have all the Water to run out, which 'twill do when it rifes to \mathbf{G}, for then paffing thro' the Orifice I of the Pipe GI, 'twill enter the Pipe EF by the end E, and run out at the other end F .

PROBLEM XV.

To make a Lamp fit to carry in one's Pocket, that fall not go out tho you roll it upon the Ground.

TO make a Lamp that never fills irs Oil, and never goes our in any pofition whatfoever, make faft the Veffel that contains the Oil and the Match to 2n Iron or Brafs Ring, with two fmall Pivors or Hinges diametrically oppofite, that fo the Veffel may by irs weight continue in $\mathcal{E q u i l i b r i o}$ round the two Hinges, and turn with freedom within the Circle, fo as to keep always to an Horizontal Pofition, as in your Sea-Compaffes, which have two fuch Circles to keep them Horizontally : And in like manner this firt Circle ought to have two other Pivors diametrically oppo-. fite, which enter into another Circle of the lame Subitance; and that fecond Circle has two other little Hinges inferted in another Concave Body that furrounds the whole Lamp. Thus the Lamp with its two Circles may turn freely upon its fix Hinges, which give to the Lamp when 'tis turn'd, fix different Pofirions, viz. upand down, forwards and backwards, to the rigbt and left, and which ferve to keep the Lamp in an Horizontal Pofition, which being in the middle do's always reft upon its Center of gravity, that is, irs Center of gravity is always in the Line of Direction, which hinders the Oil to fpill, turn it which way you will.

PROBLEM XVI.

To place tbree ficks upon an Horizontal Plain, in fuch a manner, that each of 'em refts with onee end upon the Plain, and the other ftands upright.

Plate is: Eig. 35.

TO the end of the Haft of one Knife, as AB, faften the point of another Knife AC, 'fo as to make BAC a right Angle or thereabouts; then faften to the end of the haft of the Knife AC the point of a third Knife CD, fo as that the Angle ACD comes near to a right Argle ; for thus the three Knives, $\mathrm{AB}, \mathrm{AC}, \mathrm{CD}$, will be difpos'd in the form of a Ballance; the two Scales of which are reprefented by the two Knives that hang, $A B, C D$, and the Beamby the Knife AC, upon which by confequence you will find after feveral effays the Center of Motion, or the fix'd Point, from which the
: Ballance being fufpended, will reft in Efubrio with

Problems of the Mechanicks.

its two Scales AB, CD. To this Point, fuch as E, put a Needle EF at Right Angles, fo that the Knife $A C$, with the two other Knives, AB, CD, may remain in Aquilibrio round this the Center of their compounded Gravity. The Needle muft be held very tighe upon the Perpendicular, and then the leaft force, fuch as that of the blowing of one's Mouth, will make them turn and dance, as it were, round the point of the Needle withour falling.

PROBLEXXIII.

To take up a Boat that's funk with a Cargo of Goods.
IF a Boat finks in a deep River, you may bring her up again, by getting two other Boats, one empty, and the orher deep loaded with fome heavy Subftance, as Stones, © ${ }^{\text {c. You muft tie thefe two Boats to the }}$ Boat that's funk with two Ropes, and extending the Rope of the deep loaded Boat, unload her into the other that's empry; which will raife the firft Boat a little, and make it draw along with it the Boat that's under Water, and at the fame time make the fecond Boat fwim fo much deeper in the Water. The fecond Boat being thus loaded, you muft bend her Rope and unload her again into the empry Boat, and thereupon the becoming lighter, will rife and draw the Boat under Water fo far further up. Thus you continue to load and unload till you bring the Boat even with the Water, and then tow her to the fide.

PROBLEM XIX.

To make a Boat go it felf up a rapid Current:

T
HE more rapid a River is, the eafier 'tis to make a Boat go of it felf up againft the Current, by 2 Rope and a Wheel with its Axlecree that has Wings like the Wings or Sweeps of a Mill-wheel.
Fix the Wheel with its Axletree at the place to which you would have the Boat conducted, and let its Sweeps be as deep in the Water, as there is occafion for
for turning it round; tie a Rope to the Boat and to the Axletree of the Wheel, which turning with its Axlerree by vertue of the rapidity of the Water, will wind up the Rope on its Axletree, and fo by the fucceffive abbreviation of the Rope, drag, it againft the Current to the place propos'd ; which 'twill reach fo much the fooner that the Current is rapid, the rapidity quickening the motion of the Wheel.

PROBLEM XX.

To find the weight of a Cubical foot of Water.

WE intimated above Prob. VIII. that a Cubical foot of Water weighs about 72 Pounds; which is eafily tried by filling a Veffel, the Concavity of which is juft a Cubcical foor, and meafuring the Water. But an eafier way is this.

Plate is. Fig. 37.

Get a Rectangle Parallelepipedon, as ABCD, of fome homogeneous Matter, the fpecifick Gravity of which is lefs than that of Water, fuch as Firwood, fo that, when putinto Water'twill nor fink quire: Take an exact account of the weight of this folid Body, which we thall fuppofe to be 4 pound.
Put it into Water, and make a mark where it ceafes to fink, as EFG ; for then the face taken up by it in the Water being ABGE, the Water that would fill that fpace, would weigh exactly 4 pound, that is, as much as the Body ABCD weighs in the Air, by this General Principle of the Hydroftaticks, that the weight of a Body is cqual to that of a Column of Warer equal to that the room of which is taken up in the Water.

This Column of Water, which is here reprefented by ABGE, may be meafurd Geomerrically, by multiplying the breadth EF , which we fhall fuppore to be 4 Inches, by the height AF, which we fuppore to be 3 Inches; and the product 12 oby the length $A B$, or FG, which we fhall call 8 Inches: For thus you have 96 Cabical Inches for the folidity of the Prifm ABGE.

Thus we know that 96 Inches of Water weigh 4 pound; and to know the weight of a Cubical-foor of

Problems of the Mechanicks.

the fame Water which is 1728 Cubical Inches (as appears by multiplying 12 by 12 , and the Product by I2 again) we mult fay by the Rule of Three direct; If 96 Inches weigh 4 Pound, how much will 1728 Inches weigh ; that is to fay, we muft multiply 1728 by 4, and divide the Product 6912 by 96 , and fo we'll find that a Cubical foot of Water weighs 72 Pound.

PROBLEM XXI.

To make a Coach that a Man may travel in mitbout Horfes.

TH E two fore-wheels muft be little, and movea- Pare ra ble round their common Axletree, as in the or- $\mathrm{Fig} \cdot{ }^{3}{ }^{3}$. dinary Coaches ; and the hinder Wheels muft be large, as AB, CD, and firmly fix'd to their common Axletree EF, infomuch that the Axletree can'r-move, without the Wheels move along with it.
Round the middle of the Axlerree EF put a Trundlehead, with ftrong and clofe Spindles, and near to that fix upon the Beam a notctrd Wheel IK, the norches of which may catch the Spindles of the Trundlehead, and fo in turning with the handle NOL, that Wheel round its Axlerree LM, which ought to ibe perpendicular to the Horizon, it will turn the Trundle GH, and with that the Axletree EF, and the Wheels AB, CD, which will thereupon fet forward the Coach, withour Horfes or any other Animal. I need not tell you that the Axlecree muft enter into the Beam, in order to turn within it.

There was invented at Paris, fome years ago, a Coach or Chaife like that in Fig. 42. which a Footman plate ry: behind the Coach makes to go with his two Feer al- Eig. 420 ternately, by vertue of two little Wheels hid in a Box between the two Hind-wheels, as A, B, and made faft to the Axletree of the Coach.

In flort, the contrivance of the Machine is this. Plate 17. AA in Fig. 43. is a Roller, the two ends of which are Fig.43. made faft to the Box behind the Chaife, B is a Pully upon which runs the Rope that faftens the end of the Planks CD, upon which the Foorman puts his Feet.
\mathbf{E} is a piece of Wood that keeps faft the two Planks at the other end, allowing them to move up and down by the two Ropes AC, AD, tied to their two ends. \mathbf{F}, \mathbf{F}, are iwo litcle plates of Iron which ferve to turn the Wheels, H, H, that are fix'd to their Axletrse, which is likewife fix'd to the two grear Wheels, I, I.

Thus, you will readily apprehend that the Foorman putting his Feet alternatly upon \mathbf{C} and D , one of the Plates will turn one of the norch'd Wheels ; for Ex^{-} ample, if he leans with his Foor upon the Plank C, it defcends and raifss the Plank D, which can't rife but at the fame time the plate of Iron that enters the notehes of the Wheel, muft needs make it turn with its Axlerree, and confequently the two great Wheels. Then the Foorman leaning upon the Plank D, the weight of his Body will make it defcend and raife the orher Plank C, which turns the Wheel again ; and fo the Motion will be continued.
'Tis ealy to imagine that while the two Hindwheels advance, the two Fore-wheels muft likewife advance ; and that thefe will always advance ftraight, if the Perfon that fits in the Chaife manages them with Reins made faft to the Forebeam.

PROBLEM XXII.

To know wolsich of two different Waters is the lighteff, witbout any Scales.

TAke a folid Body the fpecifick gravity of which is lets than thar of Water, Dale or Firwood, for inttance ; and put it into each of the two Waters; and reft affured that 'twill fink deeper in the lighter than in the heavier Water ; and to by obferving the difference of the finking you'll know which is the lighteft Water, and confequently the wholfomeft for Drinking.

PROBLEM XXIII.

To contrive a Cask to bold three different Liquors, that may be drawn unmix'd at one and tlee fame Tap.

THE Cask mult be divided into three Parts or plate $\mathbf{1 6}_{6}$ Cells, A, B, C, for containing the three different Fig 39. Liquors, as Red-Wine, White-Wine, and Water ; which you mày put into their refpective Cells ar one and the fame Bung, thus;

Put into the Bung a Funnel D with three Pipes, $\mathbf{E}, \mathbf{F}, \mathbf{G}^{-}$, each of which terminates in its refpective Cell. Upon this Funnel clap another Funnel H with three Holes, that may anfwer when you will the Or:fices of each Pipe; for thus, if you turn the Funnel H fo as to make each Hole anfwer fucceffively to it; correfponding Pipe, the Liquor you pour into the Funnel \mathbf{H} will enter that Pipe, it being ftill fuppos'd that when one Pipe is open, the other two are fhur.

Now to draw thefe Liquors without mixing, you muft have three Pipes K, L, M, each of whisch anfwers to a Cell, and a fort of Cock or Spigot IN with three Holes anfwering the three Pipes, and fo turning it till one of the Holes firs its refpective Pipe, you draw the refpective Liquor by it felf.

PROBLEM XXIV.

JTo find the refpective parts of a Weight that trio Perfons. bear upon a Leaver or Barropp.

TO find the part of the Weight C, fuppos'd to be Plate 16: 150 Pounds, which two Perfons bear upon the Fig. $40{ }^{\circ}$ Barrow AB, fuppos'd to be 6 Foot long; we'll fuppofe that D is the Center of gravity of the Body C, and its line of Direction is DE, in which cale we muft confider the Poinr E, as if the Body C were hung; and then 'tis evident, that if the Point E be in the middle of $A B$, each Perfon will bear 75 pounds or half the weight C ; but if 'tis not in the middle, bur bears nearer to B for inftance than to A, fo that Bb
a heas
a heavier part of it falls upon B than upon A, that part may be determin'd, thus;

If you fuppofe the part AE of the Leaver or Barrow AB , to be 4 Foor, and confequently the other part to be 2 Foor (the whole length being fuppos'd to be 6 Foot) multiply the given weight 150 by 4 the meafure of the part AE, and divide the Product 600 by the length $A B, v i z .6$, and the quorient gives 100 pounds for the part of the weight born by.a Power applied at B; fo that confequently the Power at A mult bear only 50 .

PROBLEM XXV.

To find the Force neceffary for raifing a weight with a Leaver, the length and fix'd point of which are given.

Plate 16. Eig. 4 r.

1 la 2 e 18.
Fig. 4 .

W
E'll fuppofe the weight C to weigh upon the Leaver AB i 50 pounds; and the Power applied at its extremity B to be diftant 4 Foor from the fix'd Point. D , fo that the remaining part $A D$ of the Leaver is 2 Foor, the whole Leaver AB being fuppos'd 6 Foot long. Multiply the weight C, 150 , by 2 the part AD, and divide the Product 300 by 4 the other part BD; and the Quotient 75 will be the Force requifite for fuftaining the weight \mathbf{C} by a Power at \mathbf{B}; from whence you will readily conclude, that the Power applied at B mult bave a force fomewhat greater than that of 75 pounds, for moving and raifing the weight \mathbf{C}.

PROBLEM XXVI.

To contrive a Veffel that boldsits Liquor when it ftands upright, and Spills it all if it be inclin'd or ftoop'd but a little.

YOU may eafily refolve this Problem by obferving problem 3. and ${ }^{4} 4$. for if you pur within the Veffel AB, a Syphon or bended Tube CDEF, the Orifice of which C touches the bortom of the Veffel, the o:her Mouth F being lower than the botrom of the

Veflel

$$
\text { Pagi. } 370
$$

.
\qquad
x

Veffel, fo that the Leg or Branch CD is fhorter than the other DEF : And then, if you fill the Veffel with Water to about the upper part D, the Water will nor run out ; but if you incline the Veffel AB never fo litule towards A, as if you were going to drink, the Water will go from the Branch CD into the Branch DEF, and run all out at the Mouth F, even tho the Veffel be fer upright again, upon the account that the Air can fucceed into the room of the Water when it defcends thro' the Branch DEF.

PROBLEM XXVII:

to find the meight of a piece of Metal or Stone mithout a pair of Scales.

IN the firft place get a Concave Veffel in the figure plate 18. of a Prifm, of what Bafe you will, tho' a fquare Fig. 4s. or oblong Bare is moft convenient, as ABC, the length of which AB is fuppofed to be 6 Inches, the breadth BC 4 Inches, to that the Bafe ABC is 24, as appears by multiplying 6 by 4 .

This Veffel muft be fill'd with Water to a certain part, for example to DEF ; in which you're to pur the piece of Metal taking care that it be all cover'd, for if 'tis not quite cover'd, you muft pour more Warer in : When the Meral is in, the Water will rife to the part GHI, for example, fo that the Prifm of Water GEI will be equal to the folidity of the piece propos'd.

Now, the folidity of the Prifm of Water GEI is found by multiplying the Bafe DEF, which is equal to the Bale ABC, i. e. 24 fquare Inches, by its height $\mathbf{E H}$ or $\mathbf{F I}$, which we fuppos'd to be 2 Inches; for the Product gives 48 Cubical Inches for the folidity of the Prifm of Water GEI; by which you may find, irs weight, fuppofing a Cubical Foor of the fame. Water to weigh 72 Pounds, and faying by the Rule of Three Direct; If a Cubical Foot or 1728 Ounces weigh 72 Pounds, whiat will 48 Inches weigh ? Thus multiplying 72 by 48, and dividing the Product 3456 by, 1728, you find the weight of the Prifing GEI to be \approx Pounds.

Mathematical and Phyfical Recreations.

The weight of the Water being thus found, you will eafily find the weight of the piece of Metal a Stone, by multiplying the weight found 2, by 3 if the piece is Flint or Rock-Stone, by 4 if 'ris Marble, by 8 if Iron or Brals, by 10 if Silver, by II if Lead and by 18 if Gold. Thus you'll find the propos't Piece, to weigh 6 pgunds if it be hard Stone, 8 pound if Marble, 16 if Iron, 20 if Silver, 22 if Lead, an 36 if Gold.
Remark:
'Tis true the weight thus found is not very exad An eafie way of finding the Solidity of Irregular Bodies.
but ir may ferve for Mathematical Recreations. 'T to be obferved that by this Problem you may in with grear facility the folidity of a Body, that can be taken exactly by common Geometry without dil ficulty, that is, when a Body is very irregular, as rough Stone, or any other unpolifh'd Body. Fc hereby you may find the folidity of a Prifm of Watc to which the rough Body muft needs be equal.

PROBLEM XXVIII.

To find the folidity of a Body, the weight of wbich known.

THIS Problem may eafily be refolved by t following Table, which fhews in Pounds a Ounces the weight of a Cubical foot of feveral dif rent Bodies; and in Ounces, Drams, and Grains, weight of a Cubical Inch of the fame Bodies, Pound containing 16 Ounces, the Ounce 8 Dras and the Dram 7_{2} Grains.

A Table of the weigbt of a Cubical Foat, andof a Cubical Inch of Several different Bodies.

	A Cubical Foot	A Cubical Inch.			
	Of				
O Counds.	Ounces.	Oun.	Drams.	Grains.	
Gold	1326	4	12	2	52
Mercury	946	10	8	6	8
Lead	802	2	7	3	30
Silver	720	12	6	5	28
Copper	627	12	5	6	36
Iron	558	0	5	1	24
Pewoter	516	2	4	6	17
WhiteMarble	138	12	1	6	0
Free-Stone	139	8	1	2	24
Water	69	12	0	5	12
Wine	68	6	0	5	5
Wax	66	4	0	4	65
Oil	64	0	0	4	43

You learn by this Table, that a Cubical foot of Iron, for inftance, weighs 558 Pounds, and fo if a piece of that Meral weighs, for example, 279 Pound, you find its Solidity by the Rule of Three Direct, viz. If a weight of 558 Pounds gives a Cubical foor, or 1728 Inches of Solidity, what will a weight of 279 Pounds. yield? Thus multiplying 279 by 1728, and dividing the Product 482112 by 558 ,you have in the Quotient 864 Cubical Inches for the folidity of the piece. propos'd.

If on the other hand you have a piece of Silver, Remark. for example, and want ta know the weight of it, find firt its Solidity with Water as in the foregaing Proublem; and if that Solidity, is, for example, 43 Cubical Inches, mulriply the number 48 by 6 Ounces, 5 Drams, and 28 Grains, which is the weight of a Cubical Inch of Silver, as you fee in the foregoing Table, and you have in the Product 20 Pounds, 2 Drams, and 48 Grains for the weight of the Piece of Silver propos'd. And fo in other cafes.

Bb 3
PRO-

PROBLEM XXIX.

A Body being given that's heavier than Water, to find what beight the Water will rife to, in a Veffel filld to a certain part with Water, when the Body is thrown into it.

Plate 18. Hig. 45.

WEll fuppofe a Veffel in the form of a Rectangle Parallelepipedon, as ABCL, in which there is Water to the heighr AD: We throw into it a Ball of Iron, the Specifick Gravity of which is greater than of Water; and want to know what height the Water will then rife to. We meafure the Area of the Rectangular Bafe ABC or DEF, in multiplying the length ED by the breadth EF; and the folidity of the Ball by multiplying the Cube of its Diameter by 157, and dividing the Product by 300 : And if the Solidity, is, for example, 96 Cubical Inches, and the Area DEF 48 fquare Inches, in dividing the folidity 96 by the Area 48 , you have in the Quotient two Inches for the heighr EH or DG, to which the Ball makes the Water rife, as taking up a Place or Room equal to that of the Prifm GEI, the folidity of which is confequently 96 Inches, as well as that of the Ball.

Another way is as followeth. Take with an exact pair of Scales the weight of the propos'd Body, which we fhall Yuppofe to be 3i Pounds; and from thence find the folidity of the fame Body by Problem 28, where you will find it to be 96 Cubical Inches if it be Iron. For this reaion, the folidity of the Prifm GEI will likewife be 96 Cubical Inches, and confequently that Prifm being divided by the Bafe DEF which we fuppofed to be 48 fquare Inches, the height EH will be found 2 Inches.

PROBLEM XXX.

A Body being given of lefs Specifick Gravity than water, to find bow far '七will fink in a Veffel full of Water.

TAke a piece of Deal, for example, the Specifick Gravity of which is lefs than Water, and you'll find 'twill not fink quite in the Water, but only to fuch a depth, till it takes up in the Water a certain extent of fpace aniwerable to a Bulk of Water of equal weight with the piece. Now to find exactly what part of it will be under Water, you muft find the weight of it, and the meafure of a quantity of Water of the fame weight, by the foregoing Problems; and then you'll fee the Body fink until it hath taken up the fpace of that quantity of Water.

Suppofing the piece of Deal ABCD to weigh 360 Plise r8. Pounds, and a Cubical foor of the Water contain'd in ${ }^{\text {Fig. }} 46$. the Veffel EFGH to weigh 72 Pounds; divide 360 by 72, and you have in the Quotient 5 for the Cubical foot of Water that weighs likewife 360 Pounds; fo that the Prifm ABCD will fink in the Water till it fills the fpace of 5 Cubical feet; and to know how far that will be upon the Prifm, take upon it at its lower end a Prifm of 5 Cubical feet of the fame Bafe with the Bale ABCD, which we here fuppofe to be 4 \{quare Foor, and divide the 5 Cubical feet by the Bafe 4, for foyou have it Foor 3 Inches for the height or depth AI, to which the Prifm ABCD will fink in the Water.

PROBLEM XXXI.

To knowo if a \int ufpicious piece of Money is good or bad.

I
F it be a piece of Silver that's not very thick,' as a Crown or half a Crown, the goodnefs of which you want to try: Take another piece of good Silver of equal ballance with it, and tie both pieces with Bb 4

Thread

Thread or Horfe-hair to the Scales of an exact Ballance (to avoid the wetting of the Scales themfelves) and dip the rwo pieces thus tied in Water; for then if they are of equal goodnels. that is, of equal purity, they will hang in Equilibrio in the Water as well as in the Air: but if the piece in queftion is lighter in the Water than the other, 'tis certainly falle, that is, there's fome other Meral mix'd with ir that has lefs Specifick Gravity than Silver, fuch as Copper; If 'tis heavier than the other, 'ris likewife bad, as being' mix'd with a Meral of greater Specifick Gravity than Silver, fuch as Lead.

If the piece propos'd is very thick, fuch as that Crown of Gold that Hiero King of Syracufa fent to Jrchimedes to know if the Goldfmith had put into it all the 18 pounds of Gold that he had given him for that end; rake a piece of pure Gold of equal weight with the Crown propos'd, viz. 18 pounds; and without taking the trouble of weighing them in Water, put them into a Veffel full of Water, one after another, and that which drives out moft Water, muft neceffarily be mix'd with another Metal of lefs Spe. cifick Gravity than Gold, as taking up more Space tho of equal weight.

PROBLEM XXXII.

To find the Rurden of a Ship at Sea, gren a River.

FRom what has been faid in Problem 30. one may eafily tind the burden of a Ship, i: e. what weight 'twill carry without finking. For 'tis a certain truth, that a S'ip will carcy a weight equal to that of a Quantity of Water of the fame Bignefs with it felf; fubftracting from it the weight of the Iron about the Ship, for the Wood is of much the fame weight with Water ; and fo if 'twere not for the Iron a Ship might fail full of Water.

The Confequence of this is, that, however a Ship be loaded, 'iwill not fink quite, as long as the weight of its Cargo is le's than that of an equal bulk of Water. Now to know this Bulk or Extent, you'muft meafure the Capacity or Solidity of the Ship, which we here fuppofe to be 1000 Cubical feet, and multiply thaṭ
that by 73 pounds the weight of a Cubical foot of Sea Water; for then you have in the Preduct 73000 pounds for the weight of a bulk of Water equal to that of the Ship.

So that in this example we may call the burder of the Ship, 73000 Pounds, or 36 Tun and a half, reckoning a Tun 2000 Pounds, that being the weight of a Tun of Sea-water. If the Cargo of this Ship exceeds 36 Tun and a half fhe will fink; and if her Loading is juft 73000 tb . The ll fwim very deep in the Water upon the very point of finking; fo that the can't fail fafe and eafie, unlefs her Loading be confiderably thort of 73000 pounds weight. If the Loading comes near to 73000 pounds, as being, for example, juft 36 Tun, he will fwim at Sea, but will fink when he comes into the Mouth of a freth Water River; for this Water being lighter than Sea-water will be furmounted by the weight of the Veffel, efpecially if that weight is greater than the weight of an equal Bulk of the fame Water.

PROBLEM XXXIII.

To make a pound of Water weigh beavier, or as mucb more as jou will.

WE know by Experience, that if you hang a great Stone by a Cord, the Stone hanging within a Veffel fo as not to touch it, leaving room for a pound of Water round it; and if you fill that void fpace with VVater, the Veffel that with the VVater alone weighs but about a pound, as containing but a pound of VVater, will weigh above an hundred pounds if the Stone in the Veffel fills the fpace of an hundred pounds of Water. Thus, you fee a pound of Water in this Cafe weighs above an hundred pounds; and if the Stone takes up the fpace of a thoufand pounds, the one pound of Water will weigh above a thoufand; and fo on.

For the fame end you may make ufe of a Ballance, plate 18: the two Scales of which $A B, C D$, gravitate equally Fig. 48. round the Center of Motion E, which fhall be, if you will, at the middle of the Beam E, as in the common Ballances; for having fix'd with an Iron Hook HIK, at the point H of a Nail or any orher firm thing, the

Mathematical and Pbyfical Recreations.

Body LM, equal for example, to 99 pounds of VVater, you need only to put the Scale AB round the Body LM, fo as to leave fpace for a pound of VVater; for then 100 pounds of VVater pour'd into the Scale $C D_{\text {? }}$ will be in Aguilibrio with one pound of VVater in the orher Scale AB.

PROBLEM XXXIV.

To know bow the Wind fands, without Jtirring out of one's Chamber.

FI X to the Cieling of your Room a Circle divided into 32 equal parts, with the Names of the 32 Rumbs or Wind-points, the points of North and South being upon the Meridian Line. The Circle or Dial thus divided, muft have a Needle or Hand moveable round its Center, like the hand of a VVarch or Clock ; and that Hand mult be fix'd to an Axletree that's perpendicular to the Horizon, and may move eafily upon the leaft VVind, by vertue of a Fane on its upper end above the roof of the Houfe; and then the VVind turning the Fane, will at the fame time turn its Axletree, and the Hand that's fix'd to it, which will accordingly point to the Rumb from whence the VVind blows.

Place. 19. Tig. so.

Upon the Pont Neuf at Paris, and likewife in the French King's Library, there's fuch a Dial, not upon a Cieling, but againit a VVall; which fhews the VVind-point by the Motion of a Fane, AB, the Axletree of which CD, which is likewile perpendicular to the Horizon, is fuftain'd above by an Horizontal Plain EF, thro' which it runs at Right Angles, and below by the Plain GH, upon which it refts with its extremity D, which ought to be flarp pointed, for the refting a'moft upon a Point contribures to facilitate its Motion upon the leaft air of VVind; and at the fame rime that of the Cop IK, which has eight equal VVings or Gutters that the notches of the VVheel LM catch upon; whence it comes, that the Morion of the Fane turning the VVheel LM, turns likewife the Axletree $P Q$, which being parallel to the Horizon, 'paffes thro' the YVall at Right Angles, and like-

$$
\text { Pay. } 37.9 \text {. Flate. } 19 .
$$

Mathematical and Pbyfical Recreations.

Body LM, equal for example, to 99 pounds of VVater, you need only to put the Scale AB round the Body LM, fo as to leave fpace for a pound of VVater; for then 100 pounds of VVater pour'd into the Scale CD, will be in Equilibrio with one pound of VVater in the other Scale AB.

PROBLEM XXXIV.

To know bow the Wind fands, without firring out of one's Chamber.

FI X to the Cieling of your Room a Circle divided into 32 equal parts, with the Names of the 32 Rumbs or Wind-points, the points of North and South being upon the Meridian Line. The Circle or Dial thus divided, muft have a Needle or Hand moveable round its Center, like the hand of a VVatch or Clock ; and that Hand muft be fix'd to an Axletree that's perpendicular to the Horizon, and may move eafily upon the leaft VVind, by vertue of a Fane on its upper end above the roof of the Houfe; and then the VVind turning the Fane, will at the fame time turn its Axletree, and the Hand that's fix'd to it, which will accordingly point to the Rumb from whence the VVind blows.

Upon the Pont Neuf at Paris, and likewife in the French King's Library, there's fuch a Dial, not upon a Cieling, but againtt a VVall; which thews the VVind-point by the Motion of a Fane, AB, the Axletree of which $C D$, which is likewile perpendicular to the Horizon, is fuftain'd above by an Horizontal Plain EF, thro' which it runs at Right Angles, and below by the Plain GH, upon which it refts with its extremity D, which ought to be fharp pointed, for the refting a'moft upon a Point contributes to facilitate its Motion upon the leaft air of VVind ; and at the fame rime that of the Cop IK, which has eight equal VVings or Gutters that the notches of the VVheel LM catch upon; whence it comes, that the Morion of the Fane turning the VVheel LM, turns likewife the Axlerree PQ , which being parallel to the Horizon, 'paffes thro' the VVall at Right Angles, and like-

$$
\text { Fag. } 37.9 \text { Plate. } 19 .
$$

Dagtred by Google
wife the Hand NR, fix'd to its extremity P, which paffes thro' the Dial on which the Rumbs are mark'd.

PROBLEM XXXV.

To contrive a Fountain, the Water of wbich flows and fops alternately.

PRovide two unequal Veffels, AB, CD, of white Plate 1t $^{\text {t }}$: Iron or fome fuch Matier, the greateft being the ${ }^{\text {Fig. 47. }}$ appermoft AB , which communicates with the leffer CD by the Orifice E; that fo the VVater pour'd into the greater $A B$ may run from it into the leffer $C D$, and from thence out at the Extremity H of the Crane GH, the other Extremity of which, \mathbf{F}, is open, and placed not far from the botrom of the Veffel.
VVhen the VVater of the ${ }^{-}$Veffel CD rifes thro' the open end \mathbf{F} of the Crane to the upper part \mathbf{G}, 'twill defcend thro' the other Orifice H , if it be lower than the apercure \mathbf{F}, and if the Crane FGH is fo large or thick that it difcharges more VVater at H than there enters into the Veffel $C D$ ar E, the Veffel $C D$ will foon be empty, and the \ddagger Fountain give over running: But the VVater will recommence its flux thro' H , when it reafcends thro' the Branch $F G$ to G; and fo on alternately.

You may contrive this Fountain of what figure you will, as well as the following which runs likewife alternatly by Intervals; and is madethus;

Take a Veffel AB which has two Bottoms, that is, phate rg: is clofe on all fides like a Drum ; thro the middle of Fig. $5^{\text {², }}$ it run a long Pipe CD foldered to the lower bottom at F, with its two ends open, C, D; the firft of which C muft not quite touch the upper Botrom, but leave paffage for the VVater, when one has a mind to fill the Veffel $A B$; which is done by turning up the Veffel AB with its Pipe CD, fo that the Hole D will then be uppermoft, and pouring in the VVarer at D. This done fop up the Pipe CD with another and a very little fmaller Pipe ED, that can juft enter ir, and is fix'd in the bottom of a Cafe or Ciftern that's a litrle longer than ope of the two botroms of the Veffel AB.

The

The two Pipes CD, DE, ought to have at an equal height two Apertures or Holes I, I, and the fmalleft DE ought to be moveable within the greater CD, that fo you may turn the fmaller with its Cafe GH when you will, till the two Holes I, I, meet. Farther, the Veffel AB ought to bave feveral little Holes in its lower Botom, as KL, for giving egrefs to the VVater ; and the Cafe or Recepracle GH ought likewife to have two fmaller. Vents, M, N, for the VVater to run out.
Now, the Veffel AB being filld with VVater, as we directed but now ; and the Pipe CD being ftop'd by the Pipe DE, which we fuppos'd fo thin that it could juft fill it, without any receifity of the Extremity E irs reaching to "the end C , provided the two other ends, D, D, do bur fir : This done, I fay, rurn the Veffel again to its firf Pofition, in which 'twill ftand as in the Figure, the Cafe GH being irs Bafe, and being turn'd tagether with its Pipe E till the two Vents I, I, meet and make but.one Orifice ; forthen the Y Vater contain'd in the Veffel $A B$ will run out at ipe Vents KL, as long as the Air can pafs thro' the aperture I to fupply the room of the VVater that runs from $A B$ into the Cafe $G H$; but when the VVater in the Recspracle GH riles above the Vent I (which will infall:bly happen, fince more VVater runs at the Vents K, L, than at M, N, the former being fuppos'd larger than the latter) the Air not finding access at I_{2} the V Vater in the Veffel $A B$, will give over running thro the Vents K, L, but the VVmier in the Receptacle GH will continue to run at the Vents M, N, fo that this VVarer will grow lower by degrees, till the Vent I is uncover'd again, and then the Air having acceis at I will renew the fux of the VVater thro K, L; which in a fmall time will raife the VVater in the Cafe GH, fo as to cover the Vent Jagain, upon which the Stream from A, B, will ftop, and fo on alternately till there's no VVater lefy in the Veffel AB,
Remark.
This is calld the Fountain of Command, becaufe it funs at a word given, when the VVater is near the rencual of irs flux thro' the Vents KL, which is eafily known; for when the Vent I begins to get clear of VVate: in G, H, the Air Aruggling for accefs at that

igitized by CoOgle

> Problems of the Mechanicks.

Vent makes a little noife, and fo gives notice that the Fountain is about to run.

PROBLEM XXXVI.

To make a Fountain by Attraction.

TO the Mouth B of the Phiol or Glafs Matrafs AB, Plate 20, adjuft two Pipes, CD, CE, inclining the one to Fig. s3. the other in the form of a Syphon or Crane; and foldering them together at the Extremities \mathbf{C}, which ought to be open as well as the other Extremities, D, E; and then ftopping the remaining part of the Mouth B fo as to keep the Air quite out.

Turn this Machine upfide down, and fill it either quite, or to a certain part by one of the two Pipes CD, CE, the firit of which CD ought to be fmaller and Morter than the fecond CE, for a Reafon to be given in the Sequel.

This done, pat the Phiol AB in its firt Situation, as you fee it in the Figure, placing it perpendicular upon a Table with a hole in it, thro which the big Pipe CE muft pafs; then place under the other leffer Pipe CD a Veffel full of VVater, as DF, fo that the Pipe CD may touch the bortom of the Veffel; and you'll fee the Water of the Phiol AB run out at the greateft Pipe CE; but when it has run out to C , the weight of the Water that flows out at the Mouth E of the greater Pipe CE will draw or fuck the Air of the Matras $A B$, and that fo much the more forcibly, as it is bigger and longer than the Pipe CD; upon which the Water of the Veffel DF will mount up thro' the Pipe CD, and Ipout out at the Mouth \mathbf{C} with an impetuous force into the Pliol ; and continue the fpout fo much the longer the more Water there is in the Veffel DF, for the Water caft up into the Phiol will contunually fall down and find an egrefs in the greateft Pipe CE.

PRO.

> Problems of the Mechanicks.

Vent makes a little noife, and fo gives notice that the Fountain is about to run.

PROBLEM XXXVI.

To make a Fountain by Attraftion.

'TO the Mouth B of the Phiol or Glafs Matrafs AB, Plate za. adjuft two Pipes, CD, CE, inclining the one to Fig. s. the other in the form of a Syphon or Crane; and foldering them together at the Extremities C, which ought to be open as well as the other Extremities, D, E; and then ftopping the remaining part of the Mouth B fo as to keep the Air quite out.

Turn this Machine upfide down, and fill it either quite, or to a certain part by one of the two Pipes CD, CE, the firt of which CD ought to be fmaller and Morter than the fecond CE, for a Reafon to be given in the Sequel.

This done, par the Phiol AB in its firt Situation, as you fee it in the Figure, placing it perpendicular upon a Table with a hole in ir, thro which the big Pipe CE muft pafs; then place under the other leffer Pipe CD a Veffel full of VVater, as DF, fo that the Pipe CD may touch the bottom of the Veffel ; and you'll fee the Water of the Phiol AB run out at the greateft Pipe CE; but when it has run our so C, the weight of the Water that flows out at the Mouth E of the greater Pipe CE will draw or fuck the Air of the Matras AB, and that fo much the more forcibly, as it is bigger and longer than the Pipe CD; upon which the Water of the Veffel DF will mount up thro' the Pipe CD, and ipout out at the Mouth \mathbf{C} with an imperuous force into the Phiol ; and continue the fpout fo much the longer the more Water there is in the Veffel DF, for the Water caft up into the Phiol will contunually fall down and find an egrefs in the greateft Pipe CE.

> PRO.

PROBLEM XXXVII.

To make a Fountain by Compreffion.

Plate 18. Fig. 49.

TH I S Fountain is compos'd of two equal Veffels or Bafins, AB, CD, joyn'd together; the bottom of the lowermoft being flat to ferve for a bafe to the Machine, and that of the upper being fomewhat Concave to receive the Water that's pour'd into it, when we mean to fill the Veffel $C D$ with Water, and make the Fountain run. The Veffll AB ought to have in the middle of its Concavity an Orifice with a fmall Pipe EF, the Extremity of which \mathbf{O} muft be near the bottom of the Veffel, the orher end being rais'd a lirtle above the fide of the Veffel AB, that fo the Water contain'd in the Veffel may run out with facility.

Befides this, there are in the Machine two hidden Pipes, GH, IK ; the firtt of which GH is folder'd to the bottom of the Veffel AB abour H , where the Orifice or Hole is, thro which the Water pour'd into the Concavity of AB paffes into the lower Veffel CD, making its egrefs from the Pipe GH at the lower extremity G, which for that reafon ought nor to touch the bottom of the Veffel. The fecond hidden Pipe IK is folder'd to the upper part of the Bafin CD, where there is likewife a Vent or Mouth as well as at the other extremity K, which muift not touch the botrom of the Veffel AB, to the end that when the Machine is inverted, the Water of the Bafin CD may enter the Pipe IK, and fill the Bafin AB, the Capacity of which is fuppos'd equal to that of the Bafin CD.

This done, fet the Machine in its firt Situation, as you fee it in the Figure, and pour Water a fecond time inte the Concavity of AB ; upon which the Water will enter the Pipe GH at H , and fo repair to the Bafin CD, where 'twill make a Atrong preffure upon the Air, as well as upon that in the Pipe IK; and the Air thus comprefs'd will prefs the Water in the Bafin AB , and fo force it to fpout out impetuoully at the Mouth F. This agreeable Waterwork will continue to play a long time; becaufe the Water ftill falling bact
back into the Bafin AB, 'twill re-enter the Bafin CD by the Pipe GH, and fo'continue the preffure of the Air, till all the Water of the Bafin $A B$ is gone, and the Air can have free accefs at the Mouth F of the fmall Pipe EF.

One may readily apprehend, that the two Veffels AB, CD, oughr to have no other mutual Communication, but what they bave by the two Pipes GH, IK. as you fee in the Figure; and that the two Pipes GH, IK, oughr to be fo foldered at H and I, that no Air can either enter or get out.

In Figure 55 . you have another Model of a Foun- Phare 20: tain, by the Cock L of the Pipe EF, and the Cock $M^{\text {Fig. ss: }}$ of the Pipe GH, the Mouth of which H enters the lower bottom of the upper Veffel AB, giving vent to the Cock L, and turning or ftopping the Cock M, you fill the Veffel $A B$ with Water, pouring it in at the Mouth F; and then by opening the Cock M, the Water of AB will pals thro the Pipe GH and fill the Veffel CD. Again, ftopping the Cock M and opening L, you fill $A B$, as before; and then if you give vent to the Cock M, the Water of the Bafin $A B$ will make a preffure upon that of $C D$, and the Water of CD thus comprefs'd will pufh out with Violence the Water of $A B$ at the Mouth F, and I_{0} will make a Water fpout like that laft defcrib'd.

To make this $\mathfrak{F e t}$ or Water foour twice as higb, Plare 20. divide the Bafin AB into three Cells, and the Bafin CD into two, and double the Pipes GH, IK, as you fee in Fig. 57. for then the preffure of the Air being double, will have a double effect, that is, the Water will rife twice as high as before.

Another Fountain by Compreffion may be made plate ss: with only one Veffel AB, and one Pipe in the middle Fig. spe $C D$, open at its two ends C, D; the lowermoft of which D ought not to come clofe to the bottom of the Veffel. At the Mouth A the Pipe ought to be fo folder'd that no Air can pafs ; and above the Mouth A the Pipe CD ought to have a Spigot or Cock, E, for ftopping or giving vent to the Pipe $\mathbf{C D}$ as there is occafion ; and that after this manner.
Put into the Veffel AB as much Air and Water as is poffible, with a Syringe, at the Mouth C, fopping the Cock E as you Syringe to prevent the exit of the

Air that's extreamly comprefs'd in the Veffel AB; in this cafe, the Water being heavier than the Air will remain at the bottom of the Veffel, and bear a ftrong preffure from the Air, which is likewife mightily comprefs'd it felf; and for that reafon, if you open the Pipe CD by opening the Cock E, the Air will make the Water fpout out with Violence at the Mouth C, and that pretty high. This agreeable Water-Spout will continue fo much the longer, that the Mouth \mathbf{C} is fmall, and the Air in the Veffel AB much comprefs'd; and that Compreffion of the Air will be confiderably greater if you hear the Veffel but a little.

Plate 20.
Fig. 54 .

We thall mention yet another Method of contriving a Fountain by Compreffion, with only one Veffel or Bafin; viz. Take the Veffel ABCD clofe ftop'd on all fides, with two Pipes EF, GH, communicating mutually at H where they are foldered, and open at the ends, E, F, G. The end F muft nor touch the bortom of the Veffel ABCD; and each of the two Pipes muft have a Cock out of the Veffel, as L, M, and withal muit be fo foldered at I, K, as to deny all paffage to the Air.

Now, to fet this Fountain in going, turn or ftop the Cock L, and open the Cock M, in order to force with a Syringe as much Water as you can into the Veffel ABCD; then ftop the Cock M to prevent the egrefs of the Air that's extremely comprefs'd in the Veffel ABCD: But open the Cock L, and the Water will fpout imperuoully out'at E, which ought to be but a fmall vent that the Water-Spout may continue the longer.

PROBLEM XXXVIII.

To contrive a Fountain by Rarefaction.

Plate 21. Fig 58.

HAving joyn'd two unequal Veffels $A B, C D$, clofe on all fides, by two equal Pipes, EF, GH, folder'd to the lower botrom of the upper Veffel AB, at F and H , and to the upper botrom of the lower Veffel CD at E and G ; fo that the Air can have no paffage but by the Mourh of thefe two Pipes, which are luppos'd to be open at the ends $\mathrm{E}, \mathrm{F}, \mathrm{G}, \mathrm{H}$; put

:
-

Digitized by Google
in the middle of the upper Veffel AB a third fraller Pipe IK, the lower end of which I, muft not come clofe to the bottom of the Veffel AB, and the upper end K muft be fomewhat higher than the upper End of the Veffel AB. This aperture at K ought to be fmall, and each of the three Pipes, $\mathrm{EF}, \mathrm{GH}, \mathrm{IK}$, ought to bave a Cock, as L, M, N.

Having thut the two Cocks L, M, open the Cock N, and at the Mouth K fill the Veffel AB with Water: Then open the two Cocks L, M, that the Water of the Veffel AB may defcend thro' F and H into the Veffel CD, and fill it but part full, the capacity of CD being fuppos'd greater than that of AB. Then ftop the rwo Cocks L and M, and fill the Veffel $A B$ with frefh Warer. This done, ftop the Cock N, and pur hot burning Coals under the Veffel CD, which will rarifie the Air and the Water in the Veffel CD ; and fo if you open the Cock \mathbf{N}, the Water in the Veffel AB will fly out at K, and make a pleafant Water-Spour.

Another way is as followeth. Get a Veffel of Copper or any other Metal, as AB divided into two parts, the uppermoft of which CDE is open, and the other GH fhut clofe on all fides, but at I, where it has a little Pipe in the form of a Funnel IL with a Cock M, in order to pour in ar that Funnel, the Cock being open, as much Water as will fill part of the parc GH.

In the middle of the Veffel AB place a Pipe HO, with its lowermoft end H not quite touching the bottom of the Veffel, and the upper end O a little fmaller, and rais'd above the Veffel to receive a Sphere of Glafs KN, thro' which and thro' the upper fide of the Veffel AB you're to run another Pipe PC, open at its two ends, that the Water that rifes from AB into the Sphere KN thro the Pipe HO, may return by the Pipe PQ into the Veffel AB , and fo make a continual Warer-Spout.

But to make the Water in the Veffel AB rife of it felf into the Sphere KN, by the Pipe HO, you muft fop the Cock M, and heat the Air and Water in the Velfel AB, by putring under the Plain RS a Grate cover'd with red hot Coals, the hear of which will tan sifie the Air and make the Water afcend, छुc.

C c There's

Matbematical and Pbyfical Recreations:

There's no queftion, but thele two forts of Fonntains will fucceed, when the Machine is duly made; bur I can's promife fo much of a third fort of Fountains, which you fee reprefented in Fig. 60. and which is prefently apprehended by only looking upon the Figure; for perhaps the Candle O may go out, when 'tis put into the Concave Sphere AB, at the aperture C, which is defign'd for rarifying by its hear the Air in the Sphere, that the Air thus rarified paffing from the Sphere thro the Pipe DE, may prefs the Water contain'd in the Veffel DF, and fo force it to fpour ourt at the upper end of the Pipe GH.

PROBLEM XXXIX.

To make a Clock with Water.

A^{s}3 heary Bodies in defcending freely thro the Air continually increare their Celerities, and in equal times pals thro' unequal Spaces, which rife or increale in the proportion of the Squares, $1,4,9,16, \mathcal{E}^{6}$. of the natural Numbers, $1,2,3,4$, Ec. beginning from the point of Reft: So, on the Contrary, liquid Bodies running into any Veffel thro the fame Orifice, continually leffen their Celerities, and the upper furface of the Liquor, as Water contain'd in the Glafs Cylinder $A B$, falls lower, in running continually ar the Orifice B, in the proportion of the fame fquare Numbers, $1,4,9,16, \mathcal{E}^{3}$. in equal times.

For this Reafon; if the Tube of Glafs AB full of Water empties it felf in 12 Hours, the way to know how much the Water finks every Hour, and to mark the Hours upon the Tube AB, is this. The Square of 12 being 144, we divide the length AB into 144 equal Parts, and then take 121 the Square of 11 for the firft Hour from B to C; 100 the Square of 10 from B to D for the Point of 2 a Clock, fuppofing A_{-}to be the Noon-Point ; 8I the Square of 9 from B to E for the Point of 3; 64 the Square of 8 from B to F for the Point of 4; and fo on.
Remark.
If the Tube AB do's not empty it felf exactly in 12 Hours thro' the Orifice B, you muft make it fo to do by leffening or increafing the Orifice B, as you fee occafion.

Problems of the Mechanicks.

Now, to find this Diminution or Augmentation; that is, to find the meafure of \mathbf{B} or the Diameter of a Hole thro' which all the Water in the Cylinder AB will pafs in jaft 12 Hours: We'll fuppofe the Diameter of the Orifice B to be two Lines, and all the Water of the Cylinder AB to run our thereby in 9 Hours; in this cafe we multiply 9 by 2 the number of the $D_{i d}-$ meter, and divide the Product 18 by 12 , the time allotted for the due flux of the Water ; and thns you'll find that the Diameter of the Hole B ought to be a Line and a half, to give paffage to all the Water in the Prifm AB juft int 12 Hours.

If you would know the quantity of Water that runs plate 20? each Hour shro the vent B, meafure the height AB, Fig. 56_{6} fuppos'd to be 6 Foot, and the Area of the Bafe of the Cylinder by multiplying 144 the Square of 12 its Dinmeter (fappos'd to be an Inch or 12 Lines) by 785 , and dividing the Product 113040 by 1000°; the Quo tient will give about 113 fquare Inches for the Area of the-Bafe of the Cylinder AB.

This Area being common to all the Cylinders of Water, the heights of which are AC, CD, DE, ECc. will lead us to the knowledge of their Solidities, viz. by maltiplying the Area's by the heights when known; and thele Solidities are the quantity of Water that iffues each Hour thro' the Orifice B. Now, the Method of finding the heighrs, $\mathrm{AC}, \mathrm{CD}, \mathrm{DE}, \mathrm{E}^{\circ} \mathrm{c}$. is this :

The height AB being fuppos'd 6 Foor which is equivalent to 864 Lines, and which we have divided into 144 equal Parts, each of thefe Parts will be 6 Lines; as appears by dividing 864 by 144 ; and the height BC which is 121 of thefe Parts will by confequence be 726 Lines, as appears by multiplying 121 by 6 ; fo that the part AC will be 138 Lines, as appears by Subtracting 726 from 864 . Thetefore, if you multiply 113 the Bafe of the Cylinder by 138 of the height AC, you have 15994 Lines for the Solidity of the $\mathrm{Cy}-$ linder AC; or the quantity of Water that will run thro' the Orifice B in the firft Hour, that is, from Noon to one a Clock.

In like manner, the lieíghie BD being 100 Parts, Subtract it from the height BC, which was 121, and the Reviainder is 11 fot the leighe $C D$ of the fecend $(y=$ CGz
lindet:

Plate 22. Fig. 6!.
linder ; and each part being 6 Lines, the part $C D$ will be 126 Lines, as appears by multiplying 121 by 6. So if you multiply 126 by the common Bafe 113 , you have in the Product 14238 Cubical Lines for the folidity of the fecond Cylinder CD, or the quantity of Water that will iffue thro' the Aperture B from i to 2 a Clock. And fo of the reft.

COROLLARY.

This directs us to the way of adding to this Wa-ter-Clock another that fhews the Hours by its afcent in the Prifm GHI, the Bafe of which is known, for example 226 Square Lines; in making the Water of the Cylinder AB fall into this Prifm, which for that end hould be placed lower than the Orifice B, and be ar leaft as wide or large as the Cylinder $A B$; and in marking the Hours upon the Prifm, thus.

The quantity of Water that anfwers to the firt Hour, being 15594 Cubical Lines, we divide that Solidiry 15594 by 226 the Area of the Bale of the Prifm GHI, and find in the Quotient 69 Lines for the Height GK of the firft Hour in the Prifm GHI.

In like manner, the quantity of Water correfponding to the fecond Hour, or to the Cylinder CD, being 14238 Cubical Lines, we divide that Solidity 14238 by the fame Bafe 226, and find in the Quocient 63 Lines for the beight KL of the fecond Hour in the Prifm GHI. And fo of the reft.
'Tis evident, that, if the Bare of the Prifm GHI were equal to that of the Cylinder AB, the divifions of the Hours in the Prifm GHI, would be equal to thofe of the Cylinder AB; only the Order would be inverted, the beight GK being equal to the height AC, the height KL to the height $C D$, and fo on.

PROBLEMXL.

To contrive a Water Pendulum.

Plate 22. Fig. 62.

BY a Water Pendulum, we mean a Water-watch or Clock in the figure of a Drum or round Box of Metal well fotder'd, as ABCD, in which there's ${ }^{2}$ certain

Pag. 3^{88}.

> ,
\therefore Cells communicating one with anothet near the Cener, which gives paffage to no more Water than juft what is neceffary for caufing the gradual and gentle defcent of the Watch by its own weight, which is uppos'd to hang by two fine and equal Threads or Cords, EF, GH, winded round an Iron Axletree IK that is equally thick, which paffes thro the middle of the Box at Right Angles, and defcending along with t fhews without any poife, by one or both its Extrenities, I, K, the Hours mark'd upon an adjacent Verical Plain, with the Divifions taken from a good Wheel-Clock.
Who was the firft Inventer of thefe, I do not know, but I have feen one of 'em, made of Pewter, the Meafures and Proportions of which I hall here lay down as a Rule for making of orhers, whether larger or fmaller.
The Diameter AB or CD of the two Heads of the plate 22: Drum or Barrel $A B C D$ was about five Inches; and kig. 62. the breadth AD or BC, or the diftance between the two Heads, which were equal and mutually parallel, was two Inches. The infide of the Barrel was divided into feven Cafes or Cells by as many fmall plains inclin'd, or Tongues of Pewter folder'd to each Head, and to the Circumference or Concave Surface, Thefe Tongues were each of 'em two Inches long, as A, B, C, D, E, F, G, and, as you fee in Figure 63. did plate 22: fo llope that they graz'd upon and touch'd the Cir- -ig. 63. cumference of a Circle delcrib'd round the Center H at an Inch and a half Interval. Thefe fhelving Tongues ferve to make the Water pais from one Cell to another as the Machine turns and defcends, and points to the Hours with the extremity of the Axlerree, which was run at Right Angles thro' the middle of the Drum, or the Hole \mathbf{H}, that Hole being fquare that the Clock might reft the firmer upon the Axlerree.
In fine, there were in this little Machine feven Ounces of purified, that is, diftill'd and prepar'd Water, put in thro' two Holes in the fame Head at an equal diftance from the Center H , which were afterwards ftop'd up to hinder the egrels of the Water, when the Clock turns with irs Axlerree, continually changing irs fituation, in deicending infenfibly by the unwindC c 3

Mathematical and Phyfical Recreations. ing of the two Coru's that hold it always perpendicular and are wirded round the Axletree, which by, that meäns is a!ways parallel to the Horizon.
'Tis evident that if this Clock had been fufpended by its Center of Gravity, as 'twould be if the lowes. furface of the Axletree pals'd exactly thro' the middle of each Head, it would not move at all; and the caule of its Motion is irs being hung off of the Centes of Gravity by the two Cords winded round its Axle tree; the thicknefs of which ought not to be vers confiderable with refpect to the bulk of the Clock and the quantity of Water therein contain'd, that fod the Clock may roll moderately by vertue of the paf fage of the Water from one Cell to another. 'Tis equally evident that the Machine muft not defcend all on \% fudden, becaufe the force of its Motion is counterballanced and leffen'd by the weight of the Water it contains.

To wind up this Clock, when it has run down to the end of the two Cords, you need only to raife it with your Hand, and make ir-turn the contrary way, on the fame two Cords, which may be as long as you will, provided they are equal, and fix'd at equal heights above the Horizon, that to the Axletree may be always Horizontal.

The Pendulum's of this kind, that are now made at Paris, are of Copper, and commonly go 24 Hours from the top to about two Foor-below. The Divifon of the Hours is regulated, as we faid before, by a Clock that goes true.

This Clock is liable to the change of Air, i.e. its Drinefs or Humidity, as well as other Clocks; but it has this conveniency that it makes no noife, and fo do's not difturb one in the Nighr, and when one wakes the Hours may be diftinguiih'd by little Buttons or Pugstix'd upon 'em.

Befides, this fort of Clocks do's not often want mending; you need only to change the Water once in two or three Years; becaufe it foils and grows thick in time, and fo for want of due Fluidity makes the Clock go Dower. This freth Water, which oughs to be diftill'd Spring Water, is put in at a Hole made in one of the two Heads, and afterwards ftop'd up with Wax, the Barrel being firf clear'd of its foul Wa-

\therefore.

Pag. 391.

ter, and wafh'd five or fix times with warm fair Water.

Father Timothy the Barnabite has made one of thefe Clocks 5 Foot high, that wants winding but once 2 Month; and fhews not only the hours of the Day upon a Dial-Plare, but the day of the Month, the Feafts of the Year, the Sun's place in the Zodiack, its time of Rifing and Setting, the length of Day and Night, by means of a fmall Sun that moves and defcends imperceptibly, and at the end of every Month is rais'd up to the Head of the Barrel, after finifhing its Monthly Courfe.

PROBLEM XLI.

To make a Liquor afcend by vertue of another Liquor that's benvier.

WE'll fuppofe there's Wine in the Veffel AB, Plate 23: which we want to raife to the part DG of the Fig. 64.
Concave Sphere CD, fuppos'd to be feparated into two parts, C, D, which have no other Communication one with another, but what they have by the Orifice O. At this Orifice \mathbf{O} we fuppofe a Funnel fo contriv'd that the Water pourd into it may enter (when we will) the part CE, and fill it quite full. This Funnel muft have a Cock for opening and ftopping upon occafion.

The Concave Sphere CD is fupported by two Pipes EF, GH, open at both ends, the greateft of which $\mathbf{E F}$ is foldered at \mathbf{E} and I , and has its lower end \mathbf{F}, near the bottom of the Veffel AB, which is fhut clofe on all fides, and the other Mouth E near the lower bottom of the Sphere CD. The fmalleft Pipe GH, is foldered at \mathbf{G} and K, and its lower Mouth H terminates near the upper fide or Head of the Veffel $A B$, and its upper end G at the inferior fide of the Sphere CD. Each of thefe two Pipes, EF, GH, has a Cock, as L, M; and the part DG, has a Cock below at N .
Open the Cock \mathbf{O}, and ftay the other three, L , \mathbf{M}, N; and pour Water in at O till the part $\mathbf{C E}$ is fyll; then open the two Cocks, L, M, and the WaCc 4
ter Pipe EF, and prefs the Wine contain'd in AB , fo as to make it rife thro' the Pipe GH into the pait DG, by reafon that the Pipe CF being larger than the GH, has more weight. So if you ftop the Cock M and open N , you may draw the Wipe at N and drink if.

PROBLEM XLII.

When two Veffels or Chefts are like one another, and of equal weight, being fill'd with different Metals, to diftinguiß the one from the other:

THIS Problem is eafily refolv'd, if we confider that two pieces of different Metals of equal weight in Air, do not weigh equally in Water ; becaufe that of the greareft Specifick Gravity takes up a leffer fpace in Water, it being a certain Truth, that, any Metal weighs lefs in Water than in Air, by reafon of the Water the room of which it fills. For example, if the Water weighs a Pound, the Metal will weigh in that Water a pound lefs than in the Air. This Gravitation diminithes more or lefs according as the Specifick Gravity of the Metal is greater than that of the Warer,
We'll fuppofe then two Chefts perfectly like one another, of equal weight in the Air, one of which is full of Gold, and the other of Silver; we weigh 'em in Water, and that which then weighs down the other muft needs be the Gold Cbeft, the Specifick Gravity of Gold being greater than that of Silver, which makes the Gold lofe lefs of its Gravitation in Water than the Silver. We know by experience, that Gold lofes in Water abour an eighteenth parth only, whereas Silver lofes near a tenth part: So that if each of the two Chefts, weighs in the Air, for Example 180 Pounds, the Cheft that's full of Gold will lore in the Water ten pounds of its weight; and the Cheft that's full of Silver will lofe eighteen; that is, the Cheft full of Gold will weigh $\$ 70$ Pounds, and that of Sit ver only 16 2.

Problems of the Mechanicks.

Or, if you will, confidering that Gold is of a greater Specifick Gravity than Silver, the Cheft full of Gold tho' fimilar and of equal weight with the other, muft needs have a leffer bulk than the other. And therefore, if you dip feparately each of 'em into 2 Veffel full of Water, you may cooclude that the Cheft which expells lefs Water, has the leffer Bulk, and confequently contains the Gold.

PROBLEM XLIII.

To meafire the depth of the Sea.

TIE a great Weight to a very long Cord, or Rope; and ler ir fall into the Sea till you find it can defeend no farther, which will happen when the Weight touches the bottom of the Sea, if the Quantity or Bulk of Water the room of which is taken up by the Weight and the Rope weighs lefs than the Weight and Rope themfelves; for if they weigh'd more, the weight would ceafe to defcend, tho' it did not touch the bottom of the Sea.

Thus one may be deceiv'd in meafuring the length of a Rope let down into the Water, in order to determine the depth of the Sea; and therefore to preyent miftakes, you had beft tie to the end of the fame Rope another Weight heavier than the former, and if this Weight do's not fink the Rope deeper than the other did, you may reft affured that the length of the Rope is the true depth of the Sea : If it do's fink the Rope deeper, you muft tiea third Weight yet heavier, and fo on, till you find two Weights of unequal Gravitation that run juft the fame length of the Rope, upon which you may conclude that the length of the wet Rope is certainly the fame with the depth of the Sea.

PROBLEM XLIV.

Two Bodies being given of a greater Specifick Gravity than that of Water, to difinguifb which bas the greateft Solidity.

IF the two Bodies propos'd were of the fame Homogeneal Matter, 'rwere eafie to diftinguifh that of the greateft Solidity, by weighing them in a pair of Scales, and adjudging the greater Bulk, i. e. in this cafe Solidity, to the heavier.

But if they confift of different Homogeneal Matters, of different Specifick Gravity, but greáter than that of Water; put them feparately into a Veffel full of Water, and reft affured, that that which ex-. pells moft Water, is molt bulky, as taking up moft Room.

Or elfe weigh them both in Air and Water, and oblerve how much the weight found in the Air decreales in the Water; for queftionlels that of the greatelt Bulk or Extent, will lofe moft of its Weight, as filling the room of a greater Bulk of Water.
'Tis by this Problem that we know whether a fulpicious piece of Gold or Siliver is good or bad, by comparing it with a piece of pure Gold or Silvet, as we hew'd Prob. 3r.

PROBLEM XLV.

To find the Center of Gravity cominon to feveral Weights fufpended from different points of a Ballance.

Plate 23°. Fig. 65 .
$T O$ find the Center of Gravity, of three Weights, for example, A, B, C, fulpended from three Points, D, E, F, of the Ballance DF, to which we Chall attribure no Weight, nor to the Strings, DA, EB, FC, which hold up the Weights: We'll fuppofe the Weight A to be 108 Pounds, the Weight B 144 Pounds, and the Weight C i80 Pounds ; the diftance DE ir Inches, and the diftance EF 9 Inches, fo that the whole length of the Beam DF is 20 Inches.

Upon

Upon this Suppofition, we find firt of all the Center of Gravity G common to the two Weights; B, C, by finding a fourth proportional to their Sum, to the-Weight C , and to the Diftance'EF, that is, to the three Numbers 324, 180, and 9 ; for in this fourth Proportional we have 5 Inches for the Diftance EG, and confequently 16 for the Diftance DG, and fo .find the Point \mathbf{G} about which the two Weights, B, C, continue in Equilibrio.

In the next place we look for a fourth Proportional, to the Sum of the three Weights, A, B, C, to the Sum of the two former Weights, B, C, and to the Diftance DG, i. e. to the three Numbers 432, 324, 16; for this fourth Proportional gives 12 Inches for the Diftance DH , and confequently one Inch for the Diftance EH; and fo the Point \mathbf{H} is the Center of Gravity fought for, about which the three weights given $A, ' B, C$, will remain equally poifed.

PROBLEMS 0 F P H Y S I C K S.

PROBLEMI.

To reprefent Lightsing in a Room.
THE Room in which you're to reprefent Lightning mult not be large, bur quite dark, and fo very clofe, that the Air can't readily enter it. The Room being thus in order, take a Bafin into it with Spirit of Wine and Camphyr, which muft boil there till 'tis all confum'd and nothing left in the Bafin. This will rarifie the Camphyr, and turn it into a very fubtile Vapour, which witl difperfe it felf all over the Room; infomuch that if any one enters the Room with a lighred Flambeau, all the imprifon'd Vapour will in a Moment take fire, and appear as Lightning, but without hurting either the Room or the Spectators.

Camphyr is of a nature fo proper to retain and keep an unextinguifhable Fire, that 'twill burn entirely, and that very eafily upon Ice or among Snow, which it melts notwithftanding their coldnefs; and if it be reduced to Powder and thrown upon the Surface of any ftill Water, and then lighted, 'twill produce a very pleafant fort of Fire, for the Water will appear all Fire and Flame ; the Reafon of which I take to be, becaufe the Camplyyr is of a fat Nature which refifts Water, and of a light and fiery Substance, which the fire

> Problems of Phyficks.
fire grafps fo keenly, that 'tis impoffible for this Subftance to difengage it felf when once 'tis intangled.

PROBLEM II.

To melt at the flame of a Lamp a ball of Lead in Paper,
without burning the Paper.

TAKE a very round and fmooth leaden Ball, wrap it up in white Paper, that is not rumpled, but clings equally about the Ball without Wrinkles, at leaft as far as is poffible; hold the Ball thus wrapt up over the flame of a Lamp or a Flambeau, and 'twill grow hot by Degrees, and in a little time melt, and fall down in drops through a hole in the Paper, without burning it.

PROBLEM III.

To reprefent an Iris or Rainbow in a Room.

EVery one knows that the Rainbow is a great Arch of a Circle, that appears all on a fudden in the Clouds before or after the Rain, towards that part of the Air that's oppofite to the Sun, by vertue of the refolution of the Cloud into Rain; This Arch is adorn'd with reveral different Colours, of which the Principal are five in Number, namely, Red which is outtermoft, Yellow, Green, Blue, and Violet and Purple which is interiour.

This Irs feldom appears alone, and is call'd the Firft and the Principal Rainbow, to diftinguifh it from another that commonly appears along with it, and for that Reafon is call'd the Second Rainbow, the Colours of which are not fo lively as thole of the Firft, tho they're difpofed after the fame manner, but in a contrary order, upon which account a great many take it for a Reflection of the Firff.

If you want to reprefent at one time, two fuch'Iris's in your Room, put Water into your Mouth ard ftep to the Window (upon which the Sun is fuppos'd to thine) then surn your Back to the Sun, and your Face two Rainbows refembling the two that appear in the Heavens in Rainy Weather.

Oftentimes we fee Rainbows in Water-works or Spouts, when we ftand berween the Sun and the Fountain, efpecially when the Wind blows hard, for then it difperfes and divides the Water into little drops. Which is full evidence, that the Rainbow, which the Philofophers admire as much as the ignorant People do Thunder, is form'd by the Reflexion and Refraction of the Rays of the Sun, darted againft feveral little drops of Water, that fall from the Clouds in time of Rain.
A Rainbow may likewife be very eafly Reprefented, in a Room with a Window that the Sun flines upon, by a Triangular Prifm expos'd to the Rays of the Sun, which in paffing thro the Glafs, will by their different Reflexions and Refractions produce upon the Wall or Cieling of the Room, 2 very agreeable Iris, or at leaft a texture of feveral different Colohrs relembling thofe of the Rainbow ; and the further the Cieling or Wall is diftant, and the more 'tis dark, the Colours will appear the more Charming and Lively. You may likewife imitare the Colours of the Rainbow by expofing to the Sun a Sphere of Cryftal or Glafs, or 2 Glats full of clean Water.

PROBLEM IV.

Of Profpective Glaffes or Telefcopes.

TElefcopes are long and light Pipes or Tubes, whiclit contain in their Concavities two or more Spherical pieces of polifh'd Glafs Perpendicular to the Axis of the Pipe, and placed ac fuch a diftance one from another, that when one or two Eyes look thro' thefe Glaffes they fee remote Objects, as if they were near at hand. They are likewife call'd Profpetive Glafoss, and Dioptrical Ocular Glafes, When they are made

Problems of Pbyfcks.

only for one Eye, as they are moft commonly, they are call'd Single Ocular Glaffes; and on the other hand they are call'd Double Ocular Glaffes, or Bixccles, when they're compos'd of two fingle Ocular Glaffes, fo adjufted in one Pipe, that both Eyes may fee through 'em at once. Father Cberubin, the Capuchine, has writ a particular Treatife of them,' and pretends that remore Objects are better difcern'd by them, than by the fingle Profpective Glaffes.

The fmall Profpective Glaffes that People carry in their Pockets, and thofe which are larger and are made ufe of for difcovering remote Terreftrial Objects, and even the greateft of all which are ufed for Celeftial Obfervation, have commonly only two Glaffes at the extremities of the Profpective which are call'd Lems's \mathbf{N}_{2} and of which that neareft the Eye, call'd the Ocular Glafs, is Concave, and that at the other end neareft the Object, call'd the Objective Glafs, is Convex.

In a Profpective that's a Foor long, the Diameter of the Lens, that's Convex on both fides, may be four Inches, and that of the Concave as much; and in a Pro(pective that's five Foot long thefe Diameters may, each of 'em, be twelve Inches. The Telefcopes for the Stars, which are Aftrocopes, are made with two Convex Glaffes, and the larger they are they are the better; thofe made for oblerving the fpors of the Sun call'd Heliofcopes, are made like the ordinary Telefcopes, only the Glaffes are colour'd to prevent the Rays of the Sun from annoying the Eyes.

Thefe Profpective Glaffes, are faid to have been The ufe of firft invented in Holland, and firft made ufe of for Ce - Telefopes. leftial Oblervations by Galileus. They are of great ufe, for reading a piece of Writing at a Diftance, for defcrying at Sea, Ships, Capes, and Coafts, and in an Army by Land for taking a view of the Officers, Cannon, March, Ec. of the Enemy.

By the ufe of them leveral remarkable things in the Heavens, unknown to the Ancients, have been difcover'd. In ancient times they reckon'd only feven Planets in the Heavens, namely, the Moon, Mcrcury, Venus, the Sun, Mars, Jupiter and Saturn ; bur the Moderns have found many more. By Telefcopes they've difcover'd four round Jupiter, which Galilcus who fint defcry'd 'em call'd Stells de Medicis, and which ftances, without ever quirting it, and for that Reaton they're call'd the Satellites of Jupiter. The firt of thefe Satellites or that next to Jupiter, compleats its Period in I Day, 18 Hours, and 29 Minutes, and the laft or that which is remoteft from Jupirer, finifines its Circumvolution in 16 Days, 18 Hours, and 5 Mi nutes.

By the fame means they've difcovered five Planers round Saturn, which are likewife calld the Satellites of Saturn ; and of which the firt or that nearelt to Saturn finifhes its courfe in I Day, 21 Hours, and 19 Minutes; and the laft or that remoteft from Saturn in 79 Days, and 21 Hours.

They've likewife obferved round the fame Saiúrn a Ring of Light, that's flat and thin, which declines from the Ecliprick about 31 Degrees, and turns continually round Saturn, as is gather'd from its appearing fometimes in a Atraight Line, viz. when 'tis feen Profil-ways which bappens every fifteenth Year, and at other times in an Oval form when 'tis turn'd Obliquely, and again quite round when 'tis feer. in the Fronr.

Ariftotle took the Galaxic or Milky way for a Meteor, but our Telefcopes give us to know that 'tis a Collection of feveral little Stars which form a broad Circle like the Zodiack, that paffing from North to South thro the Conftellation of Orion towards the居quator, curs the Zodiack at almoft Right Angles. ${ }^{\prime}$ Tis true indeed that according to the teftimony of Plutarch, Democritus did utter fome fuch thing, but then 'rwas only by Conjecture.

Several Difcoveries made by Te lefcopes.

Befides thefe, there's an infinite number of orher Stars hid to the natural infirmity of the Eyes, which are eafily brought to light by Telefcopes. Monfieur Cafini informs us, that fome Stars appear to the naked fight like the reft, but when view'd by a Telefcope appear double, triple and quadruple. The firt of Aries appears to be compos'd of two equal Stars, diftant from one another the length of one of their Diamerers. The fame thing is obferv'd of that at the head of Gemini ; and in the Pleiades there are fome which appear to a Telefcope Triple and Quadruple.

In fine, by the means of Telefcopes, we have obferv'd confiderable inequalities in the Moon, parricularly, Mountains cafting their Shadow to the fide oppofite to the Sun, Concavities, Plains and Valleys. Likewife Macule or Spors, i.e. dark Bodies turning round the Sun, which in appearance blacken and darken it. Monfieur Tarde took thefe for Stars, and call'd them the Stars of Bourbon, which have regulawed Periods round the dif cus of the Sun, from Eaft to Wett, with refpect to the Inferior Hemifphere of the Sun, and finin thefe their Periods in 26 or 27 Days.

We have likewife remark'd upon the furface of Jupiter, not only feveral dark Girdles, like unto the ipots obferv'd in the Moon, which move in Parallel Lines round that Planet from Eaft to Weft, almoft according to the Ecliptick; but likewife Spors of different fizes among thefe Girdles, which have their Regulated Periods. The fame thing is oblerv'd in Ve_{e} ${ }_{n u s}$, which gives us reafon to prefume that thefe Planets turn round their $A x i{ }^{\prime}$'s varioully inclin'd, excepting the Moon which do's not feem to turn, in regard its Spors appear always turn'd to the Earth after the fame manner.

Ptolemy believ'd, as appears by his Syttem, that Venus and Mercury were always under the Sun, upon the account that he had fomerimes feen 'em eclipfe that glorious Star; but Gince the ufe of Telefcopes we've difcover'd that thefe two Planets have, like the Moon, two different Phafes; which gives us to know, that Venus and Mercury not only borrow their Light from the Sun, as the Moon do's, bur likewife turn round it like Satellites; and fo we difcover that Ptolemy's Syftem is abfolurely falfe with refpect to thefe two Planets,
Since we have not found different Pbafes in the three orher Planets, Mars, $\mathcal{F} u$ piter and Saturn, which are call'd the Superior Planers, we readily infer from thence, that, they are higher than the Sun, for they borrow their Light from it, as well as the Satellites of fupiter and Saturn: For with refpect to the Satellites, for inftance, of fupiter, we obferve by a Telefcope, that they caft their Shadows againft its Difcus, when they are between the Sun and Jupiter, and in like manner Jupiter darkens them, when'ris between them

Matbematical and Pbyfical Recreations.

and the Sun: And with refpect to Mars we find by a Telefccpe, that 'tis always of a round Figure in its Oppofition, and crocked between irs Conjunction and Oppofition, as it happens to the Moon a little before and a little after irs Oppafirion.

If inftead of applying the Eye to the Ocular Glafs of a Telefcope, we apply it to the Objective Glafs, 'twill produce a quire contrary effect, that is, in ftead of augmenting the Object or bringing it nearer, 'twill make it a ppear lefs and more remote by an agreeable fort of Perfpective. This we offer upon the Suppofition that the two 'Glaffes are well placed, for otherwife the Object will appear confufed, and without any diftinction of Parts. Thefe Glaffes are put into Tubes for the better gathering of the Species, and keeping off the dazzle of too much furrounding Light; for to lee an Object well, the Object ought to be furrounded with Light, and the Eye with Darknefs. And for this reafon, the Eye placed at the bottom of a very decp Well, may fee the Stars at Noon time of Day; and 'tis by this Contrivance that in the Royal Obfervatory at Paris one may fee in the Day time the Stars that are near the Zenith.

Of Multiplying Glaffes. point of a Diamond to feveral Angles, which ferve to multiply the appearances of Objects to the Eye looking thro' the Cryftal ; the occafion of which is the various Refraction, which fends to the Eyeas many diffeous Refraction, which fends to the Eyeas many diffe-
rent Images of the Object, as there are different rent Images of the Object, as there are different
Plains in the Cryftal; and thefe are call'd Multiplying Glaffes, and Polyedron Glaffes. Thro' this fort of ProGlaffes, and Polyedron Glaffes. Thro this fort of Pro-
fpectives, a Tree appears as a Foreft, a Houfe as a Ciy, and a Company of Soldiers like a numerous Army.
Of Microf. We have likewife Ocular Microfcopes, which are copes.

Some Profpectives are made of Cryftal cut with the call'd barely Microfcopes, and are compos'd of one or more lenticular Glaffes, that are parts of a very fmall Sphere, and magnifie the Objects prodigiounly, fo that by their means one may eafily and diftinctly fee the fmalleit and otherwife Invifible Objects, when they are near at hand.

Thefe Microfcopes, which are likewife call'd Engyfcopes, are made after feveral different ways, which 'cis needlefs here to repeat. I' lhall only take notice,
that fome ate made only of one lenticular Glafs convex on both fides, and done up in a little Box, in which is a fmall Hole for one's Eye to fee thro' the Glafs a Flea, or any other Infect placed on the other fide of the Bottle or Box, upon which occafion all its otherwife invifible Parts are diftinctly and wonderfully magnifyed.

If you pur into fuch a Microfcope a Flea or a of feveral Loufe, you'll fee a fort of a Fight between thefe two Infeets. monftreus Animals. The Flea will refemble a GrafsHopper, of rather a Lobfter, by reaion of the Scales obferved upon ifs Body, and irs pointed Tail, with which thefe Animals prick Men. The Loufe will refemble a hideous Monfter with a tranfparent Body, which gives the opportunity of feeing the Circulation of the Blood in its Heart, which renfibly beats and boils, thro' the paffion excited in it by irs Enemy.

In thefe and feveral other Infects, we obferve commonly two Eyes; among which thofe of Flies and of feveral other Infects that creep upon the Earth, appear interfected with feveral little Squares, like Fifhers Nets. I faid, we obferve commonly two Eyes; becaufe in a Spider we find fix and fometimes eight Eyes, fix of which are placed in an Arch of a Circle, and the other two in the middle.

An Ant has likewife Eyes, tho' feveral are of ano- Several Difther Opinion who have not oblerv'd chem, by reafon coverie of their black Colour like that of their Eyes. Thefe crode my m Eyes are eafly perceiv'd in the fmall Ants that we find in the largeft Eggs, for thefe little Ants are white, which contributes much to the difcovering of their black Eyes.

- To a Mierofcope the fmootheft Skin of Mankind appears frightful, and full of Wrinkles; and the fmootheft beft polifit Glars appears rough, full of chinks, and as compos'd of reveral uneven irregular Pieces. In like manner the fineft Paper appears rough and uneven, and full of Cavities and Eminences. The fame thing is oblerv'd in the hardeft and beft polift'd Bodies, fuch as a Diamond; and therefore when we would choofe a good Diamond, we ought to lonk upon it with a Microfcope, and take that which is leaft ragged.

By a Microfcope we difcover in the powder or duft of Cheefe, and even in the Cheefe it felf, an infinite number of Animals colour'd very agreeably, with very large clear black Eyes, Claws on their Feet, Horns on their Head, and three remarkable Points in their Tail. In Milk, Vinegar, and Fruir ready to fpoil thro' long keeping, we find Animals in the form of Worms and Serpents. In the Nofes of feveral Men we find Worms with a black Head, refembling Lizards and Spiders; as well as in the Scab, the Imall Pox, Ulcers, and generally in all Corrupt Bodies.

In fine by the means of a Microfcope, we find that 2 Mite has its Back cover'd with Scales, that it has three Feet on each fide, and two black Spots on the Head. We likewife find that the leatt fpot of Mouldinefs upon the cover of a Book is a little Parterre cover'd with Plants, which have their Stems, their Leaves, their Buds and their Flowers. We dilcover in Common Salt the figure of a Cube, in. Salt of Nitre the figure of Pillars with fix Faces, in Sal Armoniack an Hexagon, in Salt of Urine a Pentagon, in Allum an Octagon, and in Snow a Sexangular Form.

PROBLEMV.

To make an Infrument by which one may be beard at a great dijfance.

A^{s}S Profpective Glafles ferve the Eyes, fo an Inftrument may be made to ferve the Ear: For certain it is, that the long Tubes call'd Sarbacanes will make -one to hear very diftinctly at a good diftance: For Pipes ferve generally to inforce the activity of Na tural Caufes. Of this Experience is fuffic ent Evidence; for by it we find that with a Sarbacane we can fhoor to a great diftance, and with a great force a little Ball placed in the Pipe, only by blowing upon it ; and that the longer the Pipe is, the greater is the force: Tho after all, as I take it, it ought not to be extravagantly long, but proportion'd to the force of the blowing. .Thus, we fee Cannons of the fame bore, and different lengrh, increafe their force from eight to twelve Foor long; but beyond that length their force diminifhes; which proceeds un-
doubredly from this, that the length of the Cannon is no longer proportion'd to the force of the Powder, which pufthes out the Ball.
. Since every thing that's mov'd thro' the Cavity of a Pipe, has fo mach the more Violence, the longer the Pipe is, provided the length of the Pipe is proportional to the moving Force; we may eafily gather from thence the Reafon, why a Voice thro a long Pipe is feard at a great diftance, the Air being pun'd with Violence thro' the Pipe ; and 'ris for much the fame Reafon, that Fire confin'd within a Tube burns very fiercely, what it would fcarce heat in the Air; and Water runs impertuoully when confin'd to a long Canal, as wet fee in Waterworks and Spouts of Fountains.

Some Sarbacanes are made of fine Metal, as Silver, Copper, or any other Sonorous Matter, in the form of Funnels, or at leaft wider at one end than at the orther ; and thefe are made ufe of for hearing at a Diftance a Preacher or any other Perfon that feeaks publickly, by clapping the narroweft end to the Ear; and turning the wide end to the Speaker, in order to collect the found of his Voice.

Experience fhews that Horns and Trumpers, which are almoft of the fame form, connribute very much to fortifie the Sound, and make it to be heard at a Di-

fance ; efpecially thofe Trumpers which are bended to an Arch of a Circle, as AB ; for the Air makes a ftronger Reflexion in a crooked than in a ftraight Pipe,

Mathematical and Pbyfical Recreations. as is evident from the Figure, in which the Lines AC, $\mathrm{CD}, \mathrm{DE}, छ \mathcal{G}$. seprefent the different Reflexions of the Air puft'd out by him who blows at B.

Father Kircher the Jefuir, in his Treatife De arte magna lucis © umbra, l. 2. Part. 1. cap: 7. Prop. 3. Speaks of a certain Horn with which Alexander the Great fpoke to his whole Army though numerous and widely difpers'd, and by which his Orders were heard by all his Soldiers, as well as if he had been juft by every one of 'em. He adds, that according to what he had read of it in the Vatican at Rome, 'twas feven foot and a half in Diameter, and might be heard at the diftance of/an hundred Stadia, the extent of which makes about five Leagues.

Thus you fee that the Invention of the Speaking Trumper is very Ancient; and of this iss Antiquity you will be more fully perfwaded if you believe Theodorus, who \{peaking of the Oracle of Delpbos, fays, they fometimes made ufe of the Speaking Trumper, for the more dexterous gulling of thofe wha came to confult the Oracle, for this Inftrument made them hear a more than human Voice. This Inftrument has been reviv'd in our days by Sir Samuel Morland, who call'd it Tuba Stewsereophonica ; and tho' that Tuba do's not carry fo far as Alexander's, yet it railes a Man's Voice with a greater diftinction of the Syllables and Words.

This Author made feveral of different Sizes, the Reach of which was likewife diferent- One of 'em which was four Foot and a half long, wass heard at the diftance of 500 Geometrical Paces: Another that was fixteen Foor and eight Inches long, was heard at the diftance of 1800 Geometrical Paces; and a third of four and twenty Foot above 2y00. He tells us, that if thefe Trumpers be good, they muft widen gradually by little and little, and as it were infenfibly like $A B$, and not all on a fudden. See the following Figure.

Problems of Pbyficks.

That Author has not given us a very exact Figure of the Trumper, he only tells us that the Aperrure A of the narrow end, ought to be equal to the Aperture of the Mourh of the Speaker; otherwife the Voice dwindles confiderably, there being a grear deal

of Air lof. So that the fmall end ought to be fo adjufted to the Mouth as to lofe no Air; and at the fame time the Mouth mult have liberty to open and hur, that the Articulation may be form'd and preferv'd entire.

We have here reprefented the Trumpet Atraight, like the ordinary Trumpets; but you may give 'em any other Figure, for example, a Circular or Ellyprical Figure, like that of Alexander's. For the winding, inftead of doing any harm, ferves rather to fortifie than to weaken the Voice, as we have faid already. A Piftol fhot off in ene of thefe Trumpets makes a noife like a Cannon. 'Tis' now high time to come to the Ufes, and the advantage of this Speaking Trumpet.

In the firft place, the Speaking Trumper is of good ufe at Sea, in a Storm or a dark Night, when one the Speaking Ship dare not come within reach of \{peaking nakedly to the other. For by this Trumpet they may fpeak to another at the diftance of a Mile or more, efpecially if they take the advantage of the Wind, which forwards the Voice very much.

An Admiral may, in imitation of Alexander the Great, make ufe of it in a Calm, to convey his Orders to his whole Fleet, tho' difpers'd to the extent of two or three Miles round him.

In fine, if a Ship is all alone in a great Storm, he who commands the Ship, may by a Speaking Trumpet, make his Voice to be diftinctly heard lay all the Seamen. And in cafe of a great Expedition, it may be ufed on Shoar, to give fpeedy Orders to all the Ships in a Road; and if Secrecy be requir'd, the OrD d 4 ders

Mathematical. and Pbyfical Recreations. ders may be conveyed in obfcure Terms previoully concerted.

In the fecond place; The Speaking Trumpet may be of great ufe at Land; for by it a General may, like Alexander, fpeak to his whole Army at once, tho'. forty or fifty thoufand ftrong; both for giving the neceffary Orders, for rallying difpers'd Troops, and for raifing the Courage of the Soldiers; and by the fame Inftrument, a Herald at Arms may be diftinctly heard by feveral Millions of Souls, whereas without it his Voice could not be heard by above thirty or forty Perfons.

Tis likewife very convenient for an Intendant or Overfeer of Works, in giving Orders to all his Workmen at once, withour fhifting his place; as alfo for giving the Alarm to the adjacent Country, when 2 Houfe is rob'd.

In fine, 'tis of great ufe, when a Town is Befieged, for acquainting the Befieged when they may expect Succour, for keeping the Officers to their Duty, and fearing the Inhabitants from Mutinies.

The Speaking Trumpet ought to be made of fome refounding Subftance, fuch as white Iron, for that contributes much to the fortifying of the Voice. 'Tis faid that a Monk happening one day to fing thro' a fingle Cornet of Paftboard, oblerved his Voice to be very much heighten'd by that Inftrument, and to took up the fancy of filling a Chorus of Mufick with is, a moderate Voice fo imployed furpafing the force of the Bafe Hoboys and Violins generally made ufe of in Mufick.

As this Trumpet inlarges the Sound, and fortifies the Voice; fo 'tis very ufeful for a help to the Ear; for if you fix to its Mouth or fmall end a little Cornet of Paftboard, and put that to, the Ear, it fortifies the Senfe of Hearing, and will make one bear the leaft noife made at a great diftance; for the width of the other end of the Trumpet ferves to gather and ferch in the Sound, and the Cornet to convey it to the Ear. 'Tis upon this Principle that Vitruvius mentions certain Veffels or Pipes, that were ufed in Plays for inforceing the Voice of the Actors; and 'twas by the frime Veffels and Pipes that an Italian Prince heard from his Parlour, the Voice of thole that were walking in an adjoining Flower-Garden.

Problemis of Pbyficks.

The Hearing may likewife be affifted, and the Sound augmented, by a long Beam of fome light refounding Wood, -fuch as Fir, as AB; for we know by Experience, that if a Man lays his Ear to one Extremity A , he will hear the leaft noife at the other Ex-

B1

tremity B, tho' the Beam were 200 Foor long; for by reafon of the quantity of the Pores of which the Wood is compos'd, it may be confider'd as a Canal or hollow Pipe, the property of which is to convey the Sound as far as 'tis long.
Experience teaches, and Geomerry demonftrates that one laying his Ear to one of the two Focus's of an Elliptick or Oval Vault, will readily hear anorher Perfon fpeaking very low at the orher Focus; and ac the fame time People Alanding in the middle berween 'em fhall hear nothing. Lee the Elliptick Arch-roof be ABC, the two Focus's of which are E and F; he $\dot{\text { who }}$ fpeaks very low at E ; will be readily heard by another at F ; tho' thofe who are in the middle be-

tween E and F, thall hear nothing. Now, the caufe of this, is the Air, which being pulh'd on all hands from E towards D againft the Arch-roof, by the Vaice at E, reflects in an infinite number of ftraight Lines which terminate at the other Focus F, with Angles of Reflexion equal to thofe of Incidence; for the property of thefe two Focus's EF is fuch, that if from the fame Point of the Eilipfis ABC, fuch as D, you draw the two ftraight Lines DE, DF, thefe two.ftraight Lines will make with the fame Ellipfis, on one fide and t'orher, equal Angles.

The

4ig

 Mathematical and Pbyfical:Recreations:The cafe is almof the fame in a Parabolick Arch: Roof or Dome, ABC, the Focus of which is E, where a Perfon ftanding mas eafily hear another Speaking very low at D, for the Air which the Voice

pufies from D againft the Roof at B, by the Line DB parallel to the Axis of the Parabola,' reflects in the Line BE, which by the property of a Parabola repairs to the Focus E.

PROB'LEMV.

To make a Confort of Mufick of feveral parts, with only one Voice.

THE Sound conveyed diftinctly to the Ear, by remore Bodies, againft which the Air is driven by the Voice of an Animal or otherwife, and then reflected, is what we call an Eccho; which is fometimes double, triple, $E^{3} c$. when the Voice is ftrong enough to make feveral Bodies, at different Diftances, beat back at feveral times the parts of the Air to our Ears, fo that one Eccho is no fooner ended than another begins.

Tho' moft Eccho's make us hearonly the laft words of the Voice, becaufe the Air, tho' ftrongly imprefs'd, has not the fame force at the end that it had ar the beginning; yet it may be focontrived as to make- a Confort of Mufick of Ceveral Parts, that is, a Confort

Problems of Pbyfcks.

- of feveral Songs tun'd together, by only one Voice or one Inftrument, to the found of which the Eccho Anfwers.

For if the Eccho anfwers only once to the Voice or the Sound of the Inftrument, he who Sings or Plays may make a Duo, that is, a Mufck of two Parts; and again a Trio or. Mufick of three Parts, if the Eccho anfwers twice. But indeed he muft be an expert Mufician, and one that's well vers'd in varying the Tune and the Nare.

Thus commencing, for example at $V t$, he may begin Sol a little bafore the Eccho anfwers, fo as to finifh the Pronunciation of Sol by that time that the Eccho has compleated its Anfwer, and then he will have a Fifth, which is a perfect Confonance in Mufick; and in like manner, if at the fame time with the Eccho's aniwering to the fecond Note Sol, or a little before, he répeats it upon a higher or lower Note, he will make a Diapafon or Eighth, which is perfect Harnony in Mufick. And fo on, if he has a mind to continue the chace with the Eccho, and fing alone the two Parts.

Ta this purpofe we fee by Experience in feveral Churches, when they'se finging, that there feems to be many more parts in the Chorus than there really are, the quantity of Eccho's -making the Air to refound on all fides, and fo mulciplying the Voice and redoubling the Chorus.

PROBLEMVII.

To make the String of a Viol Sake withous conching
it.

CHoofe ar pleafure three Strings in a Viol, or any other Inttrument of that fort, without any Intermediating String, and tune the Firft and the Third to the fame Nore, without touching that in the Middle; then frrike one of the two Strings thus tun'd pretry hard with a Bow, and you'll find that when it thakes the ather will tremble fenfibly and vifibly, and the middle String tho' nearer, fhall not ftir no manner of way. Stringed Inftruments of the fame fort, as two Viols, two Lutes, two Harps, two Spinettes, © ${ }^{\circ}$. by putting the two in the fame Tune, and then placing thoen at a convenient Diftance, and in a proper Pofition ; for one of the two Inftruments being toach'd with a midling force, will move the other, tbat.is, the Strings of the ocher, which are fuppos'd to be in Unifon, will produce fuch another Harmony, efpecially if the Strings in ohe and t'other Inftrument are equally long and equally thick. For this I can aflign ne orher Reafon but Experience.

PROBLEMVIII.

To make a Deaf Man bear the Sound of a Mufical Ini frument.

IT muft be a String'd Inftrument, with a Neck of fome Length, as a Lute, a Guitarre, or the like; and before you begin to play, you muft by Signs direct the Deaf Man to take hold with his Teeth of the end of the Neck of the Inftrument; for then if one Atrikes the Strings with the Bow one after another, the Sound will enter the Deaf Man's Mouth, and be conveyed to the Organ of hearing thro' the Hole in the Palate: And thus the Deaf Man will hear with 2 grear deal of Pleafure the found of the Inftrument, as has been feveral times Experienced. Nay, thofe who are not Deaf, may make the Experiment upon themfelyes, by ftopping their Ears fo as not to hear the InArument, and then holding the end of the Inffrument in their Teeth while another rouche's the Strings.

PROBLEM IX.

To make an Egg enter a Vial without breaking.
LET the Neck of the Vial be never fo ftrair. an Egg. will go into it without breaking, if it be firt teep'd in very Arong vinegar, for in procefs of time the Vinegar do's fo foften it, that the Shell will bend

Problems of Phyfcks:

bend and extend lengthways without breaking. And when 'tis in, cold Water thrown upon it will recover its primitive hardnefs, and, as Cardan fays, irs primitive Figure.

PROBLEMX.

To make an Egg mount up of it Self.

MAke a litde Hole in the fhell of the Egg, and fotake out the Yelk and the White, and fill the Egg-fhell with Dew ; then ftop up the Hole and expofe it to the Rays of the Sun at Noon-day; for then the Dew not being able to bear the Light, nor too great Heat, 'will rife up with the Egg-fhell, efpecially if it leans againft a little Stick or piece of Wood, that flopes never fo little, and if the Hole is well ftop'd. May Dew is faid to be beft; and 'tis obferv'd by the Farmers, that the more May abounds in Dew, the more plentifully do's the Earth bring forth; for Dew being a fubtile Vapour, produced in the Morning by a weak Heat, and preferv'd by a moderate Cold, 'tis very well difpofed for the Reception of Celeftial Vertues; and when it infinuates it felf into Vegetables, it communicates to them the Vertues it retains; and bence it comes that Plants moiften'd with it thrive better, than when they are nourifh'd with Spring, Well, or River Water.

PROBLEMEXI.

To make Water freeze at any time in a bot Room.
FIIl a Vial with warm Water, the Neck of which is fomewhat narrow, and having ftop'd it clofe, pus it in a Veffel full of Snow mix'd with common Salt and Saltperre, fo as to leave the Vial cover'd all over with Snow; and in a little time the Warer will be quite frozen, tho' in the Summer time, and in a very hot Room,
If you throw cold Water with Snow upjn a Table, and upon the Snow fet a Piatter full of Snow with a fuf-
a fufficient quantity of Salt and Saltpetre pounded; the Salt and the Saltperre will make the Snow fo cold, that in a little time the Water under the Platter will be turn'd to Ice, and make the Platter ftick fo faft to the Table, that you can't move it without fome difficulty.

The Saltpetre and Sal-Armoniack are likewfe poffets'd of the vertue of making Warer fo extremely cold, that if you put a fufficient quantity of 'em in Common Water, 'twill become fo cold that your Teeth can fcarce bear it. They might thereíore be very ufefully imployed in Summer for cooling Wine or any other Liquor, by fetting the Wine Bottles in Water thus refrigerared.

If you diffolve a pound of Nitre in a pail of Water, the Water will be excellive cold, 'and fo very proper for the ufes above-mention'd. 'Tis well known that Wine is likewife cool'd with Ice; and in regard Ice can't always be had in Summer, I hall preferibe 2 way of making it.
To make Ice in Summer, put two Ounces of remake Ice in fin'd Saltpetre, and half an Ounce of Florentine OrSummer. ris, into an Earthen Bottle filld with boiling Water ; ftop the Bottle clofe, and convey it forthwith into a very deep well, and there let it fteep in the Well-Warer for two or three Hours, at the end of which you'll find the Water in the Bortle all Ice ; fo you have nothing to do but to break your Bottle and take out yous. Ice.

PROBLEM'XII.

To kindle a Fire by the Sun-beams.

TH I S Problem may be refolv'd either by Refration in ufing lenticular Glaffes thicker in the middle than in the fides, call'd Burning-Glaffes, thro' which when the Rays pals they refract and unite in one Point call'd the focus, at which you may light a Match or any other combuftible Matter: Or elfe by Reflexion, in ufing a concave Looking-Glafs of Metal well polih'd in irs Concavity, which may be either Spherical or Parabolick, and is likewife calld a

Burn:

Problems of Pbyficks.

Burning-Glafs, but much better than the former fort ; for by it you may in a Momeni fet fire to a piece of Wood, and in a hort time melt Lead, and even Iron, and vitrify Stone, as we intimated above at large in Probl. 16: Of the Opzicks, which fee.

PROBLEM XIII.

To make a Fowl roafting at the Fire, turn rownd of is felf with the Spit.

TAke a Wren and Spit it on a Hazel Stick, and lay it down before the Fire, the two ends of che Hed zel Spit being fupported by fomething that's firm; and you'll fee with Admiracion the Spit and the Bird turn by little and little without difcontinaing, rill 'tis quife roafted. This Experiment was firft found out by Cardinal Palotti at Rame, who flew'd it Father Kircber, in order to know the Phyfical Caufe of it; which to my Mind is eafily difcover'd, for the Hazel Wood is compos'd of feveral tong and porous Fibres, into which the hear infinuates it felf, and fo makes it turn round when the Wood is hung right.

PROBLEM.XIV.

To make an Egg fatud on its fmalloft end, without ful:ling, upon a smootb Plain fuctb as Glafs.

P
PLace a Looking-Glars quite Level, or Horizontally, withour incliniag to either fide ; tofs the Egg with your Hand till the Yelk bufts, and the matrer of it is equally difpers'd thro' all the parts of the White, fo that the Whise and the Yelk make but one Body. Then fer the end of the Egg upon the Horizontal Plain, holding it till 'tis uprighr, and then 'twill continue in that fituation withour falling, by reafon of the 巴quilibrium made on all fides by the parts of the Yelk equally mix'd with the Whire, fo that the Center of graviry in the Egg continues in the Line of Direction.

PROBLEM XV.

To make a piece of Gold or Silver difappear, witbout altering the pofition of the Eve or the Piece, or the intervention of any thing.

PU T the piece of Gold in a Porringer full of Water, or a Veffel that's broader than 'tis deep, and let the Eye be in fuch a Pofition, as juft barely ro fee the piece at the botrom over the Brim of the Veffel; then take out the Water, and tho' the Porringer continues in the fame Pofition as well as the Eye, the Piece which appear'd before by verrue of the Refraction made in the Water, will then be cover'd from the Gight by the fides of the Porrenger.

PROBLEMXVI.

To make a Loaf dance mbile 'tis baking in the Oven.
PUT into the Dough a Nuthell fill'd with Live Sulphur, Salrperre and Quickfilver, and ftop'd clofe; as foon as the Heat comes to it, the Bread will dance in the Oven ; which is occafion'd by the nature of Quickfilver, for it can bear no Heat withour being in a continual Motion. Thus, by the means of Quickfilver put into a Poi where Peafe are to be boilld, all the Peafe will leap out of the Pot as foon as the Water begins to heat. In like manner Quick filver put into hot Bread, will make it dance up and down the Table.

PROBLEM XVII.

To fee in a dark Room what paffes abroad.

MAke your Room fo clofe and dark, that the Light can come in no where but through a little Hole left in a Window upon which the Sun thines; over againft this Hole, at a rea!onable diftance fion ir, place
place fome white Paper, or a piece of Linnen; and you'll fee every thing that paffes by the outfide of the Window appear on the Paper or Linnen, only their Figures are inverted.

For your further Satisfaction in the Refolution of this Problem, look back to Problem 18 of the Opticks,

PROBLEM XVIII.

To hold a Glafs full of Water with the Mouth down, so as that the Water אall not run out.

TAKE a Glafs full of Water, cover it with a Cup that's a little hollow, inverting the Cup upon the Glafs; hold the Cup firm in this Pofition with one Hand, and the Glafs with the orher, then with a Jerk turn the Glafs and the Cup upfide down, and fo the Cup will ftand upright, and the Glafs will be inverted, refting irs Mourh upon the interior bottom of the Cup. This done, you'll find that part of the Water contain'd in the Glafs will run out by the void fpace between the bottom of the Cup and the brim of the Glafs; and when that fpace is filld, fo that the Water in it reaches the brim of the Glafs, all paffage being then denied to the Air, fo that it can't enter the Glafs, nor fucceed in the room of the Water, the Water remaining in the Glars will not fall lower, but continue furpended in the Glafs.

If you would have a little more Water defcend inro, the Cap, you muft with a Pipe or orherwife draw the Water out of the Cup, to give paffage to the Air in the Glafs; upon which part of the Water will fall into the Glats till it has ftopt up the paffage of the Air afrefh, in which cafe no more will come down; or, without fucking out the Water in the Cup, you may incline the Cup and Glafs fo that the Water in the Cup fhall quit one fide of the brim of the Glafs, and fo give paffage to the Air, which will then fuffer rhe Water in the Glafs to defcend till the paffage is ftopr again.

This Problem may likewife be refolved by covering the brim of the Glafs that's full of Werer, with a leaf of atrong Paper, and then turn the Glafs, as E e upon the Paper, you'll find it as it were glewed fort fome time to the brim of the Glafs, and during chat! time the Water will be kept in the Glars.

PROBLEM XIX.

To make a Veffel or Cup that Jall thraw Water in tbe face of the Perfon that drinks out of it.

Plate. 24: Fig. 72.

GE T a Cylindrical Veffel of Metal or of what other Subftance you will, fuch as ABCD ; and another Conical Veffel EFG, the Mouth or Aperture of which EF, is larger than the Mouth AB; and fo the Conical Veffel being put with its Vertex down into the Cylinder it exactly fills the Aperture AB, but its Point G ar a which there's another Aperture do's not touch the bottom $C D$, and that for a reafon to be given in the Sequel. Tho' this Conical Veffel do's by its roundnefs exactly ftop the Mouth or Aperture AB, yet 'ris difficult to hinder the Air to enter in between 'em, and therefore to cut off all manner of paffage for the Air, the Conical Veffel fhould be neatly glewed to the brim AB.

This done pour Water or Wine into the Conical Veffel, at its Mouth or Aperture EF, and the Liquor will de'cend thro' the Aperrure G, into the Cylindrical Veffel, and will there rife to about the height of the Aperture G; for 'twill fcarce be able to fife higher by reafon of the Air inclofed in the Veffel, which will be there vety much comprefs'd. Now, the Liquor not being able to rife higher in the Cylindrical Veffel $A B C D$, will rife in the Conical Veffel EFG, and fill it if you continue to pour Liquor ipto the Veffel EFG.

After this Preparation, if you prefent the Veffel to any one, to drink out of it when the whole Conical Veffel EFG is empty, the Water remaining in the Cylindrical Veffel ABCD being prefs'd by the Air, which is likewife comprefs'd it felf, will impetuoulf fly out thro' the Aperture G, and wet all the face of the Perfon that's a Drinking.

Pag. 418,
Plate 24.

PROBLEM XX.

To make a Veffel that will produce Wind:

TH E Veffels that produce Wind are call'd Aolipila, plate 24: being compos'd of Metal, fuch as Brafs, in the ${ }^{\text {Fig. } 73 .}$ form of a hollow Ball, as ABCDE, which at firft is filld only with Air; and then being brought to the Fire, the Air is rarified, fo that a confiderable part of it gets out at the Aperture A which ought to be very fmall. This Aperture is fo made, that, Water may by it enter the सolypile, when the neck A is dip'd into cold Water, which will condenfate the Air and give paffage to the Water, and force it to enter to fill the Vacuum,

Having thus filld part of the Eolipile with Water,' as far, for example, as $\mathrm{CE}_{\text {, fer }}$ it upon hor burning Coals in a fituation like that reprefented in the Fio gure; and the Water in the lower part CDE upon the approach of the Hear, will gradually sarefy, and by little and litule rife up in Vapours, which fly into the fpace CBE, where there's nothing but Air ; and then the Vapours and the Air purfuing one another, ftrive to get out in a Croud at the Aperture A; upon which occafion, thofe which are next the Aperture fly out with great Velociry, and produce fuch an Impetuous Wind and Whizzing, that 'twill caufe a wind Inftrument, fuch as a Flagelet, to found if applied to the Aperture.

To render this Machine more agreeable, they com- Remark: monly make it in the form of a Head, with the hole at the Mouth, which will continue to blow till all the Water is evaporated, which may hold long enough, for, as we intimated above, it evaporates bur by little and little. If in ftead of Common Water, you putinto the सolypile.Spirit of Wine, and Yet fire to the Vapour that comes out, you'll fee with Pleafure a continual Fire, which will laft as long as the Vapour continues its violent egrefs.

This Wind having all the properties of the Winds of the caus that blow on the furface of the Earth, fome Philofo- of Wind. phers pretend to demonftrate mon thence origin

Matbematical and Pbyfical Recreations.

of Winds, by comparing the Cavities of Mountains to the Cavity of an Exolypile ; the Water convey'd from the Sea to thefe Cavities by feveral Subterraneous Paffages, to the Water contain'd in the Æolypile; the Heat in the Bowels of the Earth which reduces that Water into Vapor, to the heat that rarifies and dilates the Water in the Æolypile ; and in fine the various chinks of the Earth, thro which the Vapours rife, to the hole of the Æolypile.

PROBLEM XXI.

To make Glafs-Drops.

Plate 24: Fig. 75.

GLafs-Drops are thick little pieces of Glafs, made almoft like a Drop, which have a long flewder end, as $A B C D$, which being broken at its Extremity A, the Drop CD breaks prefently with a Crack, and flies into white Powder and little Fragments to two or three foot round.

Thefe Drops, which have excited the Curiofity, and perplex'd the Reafon of moft Philofophers, are made by letting a little of the melred Matter of which the ordinary Glaffes are made, fall into a Veffel full of cold Water; for then this melted Matter which is very glutinous while 'tis red, makes a long String, by which they hold the Drop in the middle of the VVater, where it cools and hardens in a little time; after which they feparate the String which is out of the Water, fo that the remaining part in the VVater do's not break, commonly call'd a Glafs Drop. To this Drop there fticks a fmall end, part of which may be feparated, by making it red at the flame of a Candle, without breaking the Drop; nor will this Drop break if you lay it upon VVood, and with a Hammer ftrike upon its thickett part D, for its External Parts are very hard, and fupport one another like a Vault. And they only break, upon bending the flender end A till it breaks, by vertue of the Spring rais'd by that effort in all its parts, which thake and tremble like an extended String, putinto Motion by forcing it to bend; whence it comes thefe parts do in a little time return with very great velocity to their firf Difpoftion;

Problems of Pbyficks.

and that the parts which are lefs united, and only contiguous, as it were, difunite and feparate, and that occafions the Difunion and Separation of all the relt, and their flying all about with a Noife. See upon this Head Mr. Mariotte's Difcourfe of the Nature of the Air publifh'd in 1679, in which he has in my Opinion wrote more pertinently of this Subject, than any. one befides.

PROBLEM XXII.

To make new Wine keep its Sweetnefs for Several rears.

MR. Lentin informs us, that if you let New Wine heat by it felf, it lofes in a little time all its Sweetnefs, efpecially if the Casks are left open; but if you boil it upon a Fire immediately after the Grapes are preffed, molt of the Volatile Principles of the Sweetnêf concentrate, and link themfelves with the more fix'd paris of the VVine, which preferves its Sweernefs for feveral Years.

A fweet and new VVine may preferve irs Sweetnefs Remark: at leaft a whole Year, if you pitch the Cask well both within and on the outfide, to hinder the Water to penetrate into it, and to fpoil the VVine, which ought to be put into it before it boils; and keep the Cask well ftop'd in a Ciftern of VVater, fo as to be cover'd all over for a Month or thirty Days; and then take ouc the Cask and place it in a Cellar.

In the year 1692, I had a Cask full of Burgundy VVine brought me in the Summer to Paris by VVater, which immediately upon its Arrival was clap'd into my Cellar ; and after a few days ftanding, I' found it boiling as if it had been quite New, and that it had reafumed its former Sweernefs, which continued about a Morth; and after that it prov'd extraordinary good VVine. Some tell you thar a piece of Cheefe or Pumice-ftone thrown into the Cask, will break the violence of fermenting VVinc.

VVhen the New VVine has loft its Sweernefs, it To Recover may be recover'd by Casking it up immediately, and the S weet. putting in the bottom of the Cask half a pound of nefs of New Ee 3 Muftard-

PROBLEM XXIII.

To know when there is Water in Wine, and to Separate it from the Wine.

TF the VVine is neither fweet nor new, but fine and clear of its Lee, you may know (according to Porta and Father Scbott) whether 'tis mix'd with VVarer or nor, by throwing into it Apples or Pears, for if the VVine is unmix'd they'll fink to the bottom, if 'tis mix'd they'll fwim above, becaufe the Specifick Gravity of VVater is greater than that of VVine.

Some order wild Apples or Pears, and if thefe can't be had, ripe Apples or Pears. Others make ufe of an Egg, and alledge, that when the VVine is pure the Egg falls fwiftly to the bottom, but if 'tis mix'd with VVater, the Egg defcends more llowly, the 'VVater having by vertue of its Gravity more force to bear up the Egg than the VVine has.

Now the contrary will happen, if the VVine be Sweet and New ; that is, when fuch VVine is unmix'd, the Egg will defcend flower than when 'tis mix'd; by reafon that New VVine unmix'd is by verrue of its Lee heavier than VVarer, and confeguently becomes lighter by the addition of Water.

VVhen you have difcovered that the VVine is mix'd you may feparate the VVarer by a dry Bulrufh, accor ding to Mizauld; for the Rufh being a Plant tha grows and thrives in watry marlhy Places, if it dryed, and one end of it put into mix'd VVine, VVater will infinuate it felf into the Rufh, and fo the VVine will be left alone. By the fame Reafon, th Rufh may ferve to difcover whether the Wine is mix' with VVater or not.

On the other hand, fome pretend you may feparat: the VVine from the VVater, by putting in a long nas row piece of Linnen, VVoollen, or Corton Cloth, on end of which hangs out of the Veffel, as if the Win being lighter would rife and flow out upon the Clor while the VVater ftays behind; but this and fever othe

Problems of Phyfacks.

other ways for the fame purpofe, are difproved by other Aurhors.

You may pour Wine upon Water without mixing, To pour Waif you put a toft of Bread upon the Water in a Glafs, ter intowine and while this toft fwims above the VVarer, pour in without the Wine very foftly; for then you'll fee the VVater remain unmix'd at the bottom of the Glafs withour any alteration in its Colour.

Here by the bye I fhall thew you a way of know- To know if ing when VVater is mix'd with Milk; put a little Milik k mix'd Stick into the Milk, then pull it our, and let a drop with Water. of the Milk fall from it upon the Nail of your Thumb; and if the Milk is pure, the drop being thick will ftand for fome time upon your Nail; but if 'ris diluted with VVater 'twill rup off immediately.
You may turn VVater into Wine in appearance, by To urn waferting a Vial full of Water in a Cask full of Wine, ter feeming- intowine, turning the Mouth of the Vial downwards; for then the Water will run out, and the Vial will be fill'd with Wine; which the Ignorant will take to be a wurning of VVater into VVine.

PROBLEM XXIV.

Having two equal Bottles full of different Liquors, to make a mutual exchange of Liquor, mithout making ufe of any other Veffel.

I Suppofe the two Botles to be of equal Magnitude of VVine, and the other of Water. Clap the one that's full of VVater nimbly upon the other that's full of VVine, fo that the two Necks fhall fit one another exactly, as in the Figure, where the Bottle AB plate 24. reprefents that which contal the VVater, and BC ${ }^{\text {Fig } 74 .}$ that which consains the Wine. In this cafe, the Water being heavier than the VVine will defcend into the place of the VVine, and make the VVine afcend into its place; bur in this cafe the Wine will be confiderably alter'd, far'twill have loft its Vapours and Fumes, and be uncapable to Intoxicate.

As the Wine can't Intoxicate, fo ir do's not drink Remark. Palatably, as having loft all its Şrength. Bur if you

$$
\mathrm{Ee}_{4} \quad \text { want }
$$

How to a: void being drunk with Wine.
want to prevent the intoxication of good Wine, Wecker, and Alexis advife you, for this purpofe, to take, before you begin to drink, an Ounce of the Syrup prepar'd of two Ounces of the Juice of Coleworts, two Ounces of the Juice of four Pomgranates, and an Ounce of Vinegar, all boild together for fome time.

VVe are inform'd by the fame Alexis, that, to pre-vent Drunkennefs, you thould break your faft with fix or feven bitrer Almonds, or with the Juice of Peach Leaves, or elfe with four or five Sprouts of the Leaves of raw Ccleworts. We are told that when the Egyptians prepar'd for a Drinking Match, they eat Coleworts boil'd in VVater, before any thing elfe.

PROBLEM XXV.

To make a Metallick Body fwim above Water.

TH O' the Specifick Gravity of VVater is inferior to that of Metals, and confequently V VVater is uncapable, abfolutely fpeaking, to bear up a Metallick Body, fuch as a Ball of Lead; yet this Ball may be flatted and beat out to a very thin Plate, which when very dry and pur foftly upon fill Water, will fwim upon it without finking, by vertue of its drynels. Thus we fee a Steel Needle will fwim upon VVater, when 'tis dry and laid foffly lengthways upon the furface of ftill VVater.

But if you would have a Metallick Body to (wim neceffarily upon VVater, you muft reduce it to a very thin Plate, and that Concave like a Kettle, in which cafe the Air it contains weighs lefs than the VVater whofe room it poffeffes. 'Tis by this Contrivance that Copper Boats or Pontons are made tor paffing whole Armies over Rivers wi ut any Danger.
Nemark:
If you put this Concave Metallick Veffel upon the VVater with its Mouth perpendicularly down, 'rwill ftill fwim, by reafon that the Air contain'd in its Caviry finds no exit ; infomuch that if you pulh it under VVater and hold it there by force, the detain'd Air will keep the bottom from being wet on the infide. And by the fame Reafon, you may have a burning Coal in the botrom, and find it not extinguifh'd when

-you take ir our of the VVater, provided you do not hold it long under Water, for Fire ftands in need of Air to keep it in.

PROBLEM XXVI.

To make Aquafortis put up clofe in a Bottle boil without Fire.

P
U T a fmall quantity of Aquafortis, and of the Filings of Brals in a Bottle, and you'll fee fo great an Ebullition, that the Bottle will appear quite full, and be fo hot that you cannot touch it without burning your felf.

In like manner if you mix Oil of Tartar and Oil Remark. of Vitriol together, you'll prefently fee a very great Ebullition with a fenfible Heat, tho neither of thefe Liquors is compos'd of any Combuttible Matter.

Aquafortu is fo call'd with refpect to its Strength in of Aquafor: diffolving almoft all Metals and Minerals. ' 'Tis com-tis and Aque monly a Diftillation from Saltpetre and Vitriol or ${ }^{\text {Regin }}$ Green Copperas ; and 'tis yet better, if it be a Diftil-' lation from Saltpetre and Roach Allum. It diffolves all Metals, but Gold ; but is render'd capable of the diffolution of Gold by diffolving Sal Armoniack or Sea-Salt in it, after which it affumes the name of Aqua Regia.

To avoid all obfcurity of Terms ; I fhall here acquaint you by the bye, that Sal Armoniack is a Com- of Sal Arpofition of Bay-Salt, Chimney-Soot, and the Urine moniackof Animals : That Roch Allum is a mineral earthy Roch Allum. fharp Salt fill'd with an acid Spirit, which is oftentimes found condenfated in the Veins of the Earth, or is raken from Aluminous Springs by Evaportion; or is found among Mineral Srones, and difengaged from them by diffolution in Water and Evaporation: And in fine, That Salrperre is a Salr that's pardy Sulphureous Saltpetre. and Volatil, and partly Terreftrial ; it is found in the dark Cavernous places of the Earth, and likewife in Stables, by reafon of the grear quantity of Volatil Salt in the Urine and Excrements of Animals, which joyns in with the Salt of the Earth by the continual action of the Air.

The Oil of Vitriol (mention'd above) is a Cauftick Oil diftill'd by a trong Reverberating Fire from Vitriol. Now, Vitriol is a Mineral Salt, approaching to the narure of Roch-Allum, which is found cryftallis'd in the Earth of fuch Mines as abound in Metals, which gives us to know that it contains in it fome Metallick Subftance, and particularly Iron or Copper. When "tis loaded with Copper, if you rub it againft Iron, 'rwill ftain it with a Copper colour. But'tis beft for all manner of Preparations when it partakes moft of Iron.
The Oil of Tartar (mention'd above) is ditill'd from Tartar along with the Spirit, from which "ris feparated by a Funnel lin'd with brown Paper. Tartar it Elf is an Earthy incorruptible Subftance, form'd like a reddifh Cruft round the infide of Wine-Casks, which thickens and congeals to the bardnefs of a Stone, and is feparated from the pure parrs of the Wine, by the action of the Fermentative Spitit.

PROBLEM XXVII.

To make the Fulminating or Tbundring Powder.

TAke three parts of Saltpetre, two parts of Salt of Tartar, and one part of Sulphur, pounded and mix'd together; hear in 2 Spoon 60 Grains of this Compofition, and 'twill fly away with a fearful noife like Thunder, and as loud as a Cannon, breaking thro' the Spoon and every thing underneath it, for it exerts it felf downwards, contrary to the nature of Gunpowder which exerts it felf upwards.
Salt of Tre:- The Salt of Tartar here ufed, is only a Solution in an. Warer of the black Subftance that remains after the Diftillation of the Oil of Tartar, and an Evaporation of that Solution to a dry Salt, which muft be kept very clofe, leaft the moifture of the Air thould melt it.

PROBLEM XXVIII.

To make the Aurum Fulminans or Tbundering Gold.

PUT into a Matrafs upon hot Sand the fitings of fine Gold, with a triple quantity of Aqua Regia, which will diffolve the Gold: Mix this Solution with a fextuple quantity of Spring Water, and then pour upon it drop by drop the Oil of Tartar or Volatil Spirit of Sal Armoniack, till the Ebullition ceades, and the Corrofion of the Aqua Regia is over; for then the Powder will percipitate to the bottom, which may be dulciied with watm Water, and dried with 2 very now Fire.

This Powder is much ftronger than that laft defcribed; for'if you fet fire to 20 Grains of is, 'twill act with more Violence and have a louder Crack, than half a pound of Gunpowder, and ewo Grains of it kindled at a Candle bave a ftronger report than a Musket Shot.

PROBLEM XXIX.

To make the Sympathetick Powder.

TH E Sympatherick Powder is nothing elfe but the Roman Vitriol calcin'd and reduced to a white light Powder, which is faid to cure Wounds at a Diftance, by being put upon a Limnen Cloth dip'd in the wounded Perfon's Blood, or upon a Sword, whereon is the Blood or Pas that comes out of the Wound. This Cloth or Sword is wrap'd up in a white Linnen Cloth, which is open'd every Day, in order to ftrew fome frefh Powder upon the Blood or Pus of the Wound. This courfe they continue sill the Wound is, perfectly Cured, which happens the fooner, if the Cloth upon which is the Blood and the Powder, is kept in 2 place that's neither too hor, nor too cold, nor too moift. Nay, 'tis neceffary fometimes to hift the Cloth from place to place, according to the different difpofitions of the Wound, by putting it for example, ceffive hear in the Wound.
To calcine the Vitriol for the Sympathetick Powder, take fome Roman Vitriol, when the Sun is in the Sigh of Leo, or in the Month of $\mathcal{F u l y}$, diffolve it in Rain-Water, and filtrate the Water thro' finking Paper. Then let the Water evaporate upon a gentle Fire, and you'll find ac the bottom the Vitriol in little hard Stones of a fire green Colour: Spread thefe Stones carefully, and expofe 'em to the Rays of the Sun, ftirring them often (with a Wooden Sparula; not an Iron Spatula, becaufe the Spirits of the Vitriol are ready to joyn in with Iron, which would rob the Sympathetick Powder of its Volatil Spirits, in which all its Vertue confifts) that the Stones may be the better penetrated by the Sun, and calcined and reduc'd to a Powder, which will be as white as Snow. And to render the Subftance of the Virriol more pure and homogeneous, the Diffolution, Filtration, Coagulation and Calcination ought to be repeated three times.
This wonderful Powder muft be carefully kept in 2 Vial clofe ftopt, and in a dry place, for the leaft moilture of the Air may turn it to Virriol again, and fo make it lofe its Sympatherick Vertue.
We are told thar this Powder ftops all Bleedings, and mitigates very much all forts of Pains in any part of the Body, particularly the Toothach; and that, by Application, not to the part affected, but to the Blood taken from it, and cover'd up in a Linen Cloch, as above.
Remark. The Chymifts have another Calcination of Virriol Colcothar of call'd Colcothar, which being pur into the Nofe ftops vitriol. a Bleeding at Nofe, and provokes to Sneeze; being of foveraign ufe for rouzing the Senfes, wherefore' tis given in Lethargies. 'Tis alfo fuccefsfully us'd for drying up Wounds and Ulcers. This Colcothar is only the Vitriol kept melted upon a Fire till all its Humidity is evaporated, and 'tis reduc'd to a hard reddifh brown Mals, whereby 'tis render'd fit'for the cure of the forefaid Maladies, and many others nor here to be mention'd:

PROBLEM XXX.

Of the Magnetical Cure of Difeafes by Tranfplantation.

T^{H}H E Magnetick Cure by Tranfplantation, is, that which is performed by communicating the Difeale to fome Beaft, Tree, or Herb ; and, as fome will have it, is founded upon the efflux of the Morbifick Particles, which pafs by infenfible Tranfpiration out of the Body of the Patient into another Animal or Plant.

Froman informs us, that a young Student got rid of a Malignant Fever by giving it to a Dog that lay in the Bed with him, and died of it; which if true, muft needs proceed from the infenfible Tranfpiration of the fubtile Matter, that thereupon entred the pores of the Dog.

Thomas Bartholin fays, his Uncle was cur'd of a vio-lent Cholick by applying a Dog to his Belly, which was thereupon feiz'd with it ; and that his Maid-Servant was cur'd of the Toothach by clapping the fame Dog to her Cheek, and when the Dog was gone from her, he howl'd and made fuch Motions, as gave 'em to know he had got the Maid's Toothach.

Hoffman fpeaks of a Man cur'd of the Gout by a Dog lying in the Bed with him, who thereupon was feiz'd with it. And frequently afrer the Dog had firs of the Gour, as his Mafter had ufed to have before. However this be, certain 'ris, that Dogs are often fubject to the Gout, without any infection from Men; and this and the other Stories of Tranfplantation are not here offer'd for Conclufive Proofs, but by way of Recreation.

Moufieur de Vallemont, who feems inclinable to believe Tranfplantation of Difeafes, fays,' 'tis done not only by infenfible Tranfpiration, but likewife by Sweat, by Urine, by the Blood, by the Hair, or by taking up what falls from the Skin, upon a ftrong Friction. For this he brings feveral Inftances, and particularly that which follows.

A Perfon of Quality in England ufed to cure the Jaundice at a grear diftance from the Patiens, by mixing the Athes of Aft-w'ood with the Patient's Urine; and making of that Compofition three, or feven, or nine little Balls, with a hole in each of 'em, in which he put a Leaf of Saffron, and then fill'd it up with the fame Urine. This done he hanged thefe Balls in a private place where no Body could touch them; and from that time the Difeafe began to abate.

The Ah, which is a common Tree all over Europe; has merited the Appellation of the Vulnerary WFod, by reafon of its peculiar Property in curing feveral Difeafes, and above all Wounds and Ulcers. Nor to mention the almoft incredible Vertues afcrib'd to it, 'tis faid to ftop Bleeding at Nofe, if the Face be bur rubb'd with the Wood, and then walh'd with fair VVater, and if the Patient holds in the hand of that fide where the Bleeding is, a piece of the Wood till it heats his Hand.

PROBLEM XXXI.

To fiop a Bleeding at Nofe, or at any other part of the
Body.

FAther Schott the Jefuit 反ays, that to fop a Bleeding at the Nofe, you need only to hold to the Nole the Dang of an Ais very hor, wrap'd up in an Handkerchief, upon the plea that the Smell will prefently ftop it. -Wecher did the fame with Hogs Dung very hot done up. in fine Taffeta, and put into the Nofe.

I have feveral times experienced, that a piece of red Coral held in the Mouth, will ftop a Bleeding at the Nofe. Some tell you that the Conftriction of the Thumb of the fide of the Noftril that bleeds, will do the bufinefs.

To ftop the bleeding of a Wound, take a Linnen Cloch in the Spring when the Frogs lay their Eggs in the Water, and wafh it in that Water till it is well impregnated with the Frogs Eggs; then dry it at the Sun; and after sepeating this Impregnation and Deficcation three or four times, keep the Cloth. to be applied to the Wound twice in the form of a Catar plafm.
plafm. We are told the fecond Application will

PROBLEM XXXII.

To prepare an Ointment that will cure a Wound at a Diftance.

THE Ointment mention'd by Paracelfis is prepar'd thus, according to Goclenius. Take of the Ufrea or Mofs of the Scull of a Man that was hang'd, two Ounces; Mummy, Human Blood, of each half an Ounce'; Earth-worms wafh'd in Water or Wine, and dried, two Ounces and a half; Human Fat, two. Ounces; the fat of a wild Boar, and the fat of a Bear, of each half an Ounce; Oil of Linfeed and Oil of Turpentine, of each two Drams.

Fobn Baptift Porta prefcribes it a little orherwife by throwing in fome Bole Armeniack, and leaving out the Earthworms, and the Bears and Boars fat. But let the Compofition be which it will, it mult be well mix'd and bear in a Mortar, and kept in a long narrow Vial. Some fay, it thould be made when the Sun is in Libra. The way of ufing it is this.

Pur into the Ointment the Weapon or Infrument that gave the Wound, and leave it there; then let the Patient wafh his Wound every Morning with his own Urine, and apply rothing elfe to it; after 'tis well wafh'd and cleanfed, let him tie is up tight with a clean whire Linen Cloth, and he'll find 'twill heal without any Pain.

Monfieur Vallemont fays, if you can'r get the Infrument with which the Wound was given, you may take another, which if gently convey'd into the Wound, and impregnated with the Blood and Animal Spirits refiding there, will have the fame effect. He adds, that if you want a fpeedy Cure, you muft anoint the Inftrument ofren, otherwife you may ler it lie a day or two without touching it.

The effect of this Unguent he imputes to the fubtle Particles, which are theef little Agents that direngage themfelves from the moft firituous and tranfpirable Ingredients of which this Unguent is compos'd.

To add to the Credibility of its Operation, he quores Father Lana, who obferv'd that when tbe Vines in France were in Flower, the Wines in Germany, tho' ac a grear Diftance, fuffer an Effervefcence; which he explain'd by the eflluvium's of the Subtile Matter, making thefe to reach as far as the Stars, and alledging that if the Atoms, which tranipire from the Terreftrial Globe, were not carried to the Stars, and fent back from the Srars to the Earth by a. perpetual Flux and Reflux, there would be no Phy fical Commerce between the Heavens and the Earth.

PROBLEM XXXIII.

When an Object appears confufedly by being too near the Eye, togain a diftinct view of it, without changing the place eitber of the Eye or the Object.

TAke a Leaf of Paper, or a very thin Card, make a hole in it with a Pin, as we ufe to do in viewing an Eclipfe of the Sun to hinder the too great numeroufnefs of the Rays from offending the Eyes; and the Object tho' fo near your Eye will appear very diftinctly; for then the Eye receives a leffer quantity of Rays from each Point of the Object, and fo each point of the Object depicts its Reprefentation in the bottom of the Eye only in a narrow Compals, and thus it is that two Images coming from two adjacent Points are not confufed.

PROBLEM XXXIV.
 Of the Origin of Springs and Rivers.

'TII S a hard matter to do Juftice to this Subject, in the way of Demonitration; however I hall give you the divers Sentiments of Authors abour it.

Arifotle attributes the Origin of Springs to the Vapours of the Earth, which mounting upwards, are Itop'd in the Caverns of Rocks and Mountains form'd as it were intoa Vaulr, where fticking to the Top, as in the Head of an Alembick, they are increas'd by the

Problems of Pbyficks.

accef's of others till they're reduc'd to little drops of Water, as upon the lid of a Por in which Water is boiling, and falling thence run down forcing their Paffage.

Thofe who reject this Opinion, fay, 'tis not probable that the Earth could contain fo many Vapours, as to furniff Water for fo great a number of Springs and vaft Rivers. But to this, one may reply, that the Springs and Rivers are kept up and increafed by the Rain and melted Snow, which penetrating into the Pores of the Earth, and Clefts of Rocks, gather into a fort of Cifterns or Heads, from whence they afrerwards repair by Subterraneous Paffages to the furface of the Earth, and there (pread themielves.

Some may object with Father Kircher, that fome Mountains bave Springs and yet no Rain ; as Mount Gilboa according to the facred Text, and others both in and withour the Torrid Zone. Bur I anfyer, that when the Ground hath not Vapours enough toproduce Springs, they may come from afar by Subterraneous Paffages to the higheft Places, fuch being the nature of Water, that 'twill rife a'moft as high as it defcends.
I can't joyn with thofe who afcribe the Origin of Springs to the Waters of the Sea; conveyed by hidden Veins to the bofom of the Mountains, and to all the parts where we find Sources : For as 'tis the nature of Water, and of all liquid Bodies to defcend and repair to the loweft Stations, fo the Sea in which moft Rivers difembogue muft be the lower Station, and confequently the reafcenfion of Water apon the Earch and the Mountains, would be contrary to the nature of heavy Bodies.
I believe indeed, there sre feveral accidental Caues, -that may make it rife, fuch as the Flux and Relux of the Sea; but I do not think that can do much, or force it to the top of the highef Mountains. Faher Cafati imagines a Central fire in the Earth, which ooils the Sea-water in its Abyffes, and fo forms it into Va pours; bur that I think is utelefs, ir being high-
probable, that the Sun has force enough without it - arrract Vapours.
'Tis offer'd by fome Philofophers in Vindication of he Opinion alcribing the Origin of Springs to the Springs, the greateft part of which are never dry, the Rivers which are a Collection of the Waters d Springs, would fwell the Sea beyond its limits, whics is conrrary to Experience. But to this I anfwer, tha: the Water of all the Rivers is inconfiderable in refpeà of the wide Sea, that covers more than half the Sur face of the Earth: Befides that the Water which run upon the Earth, is in part imbib'd by the Earth, and continually reduced to Vapours; fo that the Remain der of Water that flows into the Sea, fupplies in a manner the place of the Vapours that afcend from it.

Thus you fee that feveral Caufes contribute to the Origin of Springs and Rivers; the Principal of whict feems to be the quantity of Vapours fo powerfully attracted by the Sun, not only from the Waters that run in open Channels upon the Surface of the Earth, burdikewile from thofe that lie conceal'd in the Bofom of the Mountains, and the Bowels of the Earth.

Thofe who attribute the Origin of Springs on the tops of Mountains to Subterranean Fires, may alledge in Vindication of their Opinion, the following Experiment ; by which we fee, thar, the Dilatation caus'd by the heat, makes a Liquor fpout out of a Tube of Glafs in fuch a manner, that it will produce an agreeable and curious Fountain.

Problems of Pbyficks.

Take a Tube of Glafs that's fomewhat fender, and urn'd with windings as this in the Cut; at the lower nd of which there's a Glafs Bottle A, into which you nay convey. Water or any other Liquor by the other ixtremity B, by, heating the Air contain'd in the rube, fo as to make as much go out as is poffible,

id dipping the other Extremity B in the Liquor, which ill effectually enter the Tube as the Air wishin conenfates and takes up leffer room. Then heat the ottle A, fo that the Rarefaction may be greater than was before, and you'll fee the Water afcend and rout like a Fountain out at the upper end B.

Ffir PRO.

PROBLEM XXXV.

To know in what parts of the Earth, Sources of Watr lie.

TIS neceffary for the conveniency of Life to bave good. Water, and confequencly we can't be too diligent in learning to find out the places where the Sources of Waters are, in order to dig Wells or Pits for the Accommodation of Mankind, I fhall therefore imploy this Chapter in laying before you the befl Methods ufed by the Ancients and the Moderns, for difcovering the Veins of Water that lie hidden in the Earth.

Pliny fays, that to know if there be a Vein of ter under the Ground, you mult have a particular Eye upon the places where you find moift Vapours and Exhalations; and in making this Obfervation, fays Palladius, you muft take care that the place where the Vapours rife be not moilt in the Surface; for if 'ris nor, you fafely attribure the humid Vapours to Subterranean Sources of Water. This Experiment you had beft make in Auguff, when the Pores of the Earth are open, and give a freer paffage to the Vapours.

But to make this Obfervation with all the certainty and facility that's poffible, Father Kircher (in imitation of Vitruvius) advifes to lie down with your Belly to the Ground, a little before Sunrife, and to bear upon your Chin with your Hand refting upon the Ground, that fo your Sighr may extend to the level of the Country, and the Eye being rais'd only to a juft Heighr, may view the furface of the Ground by Vifual Rays that graze upon the Horizon, and eafily difcern the places from whence moift, waving and trembling Vapours do arife; for in thefe places you'll infallibly find Veins of Water, there being no fuch Vapours oblerv'd upon the Grounds that are deftitute of Water.

Vitruvius, and after him Dechales, acquaints us, tha: places which bave Veins of Water conceal'd in the Bowels of the Earth, are diftinguifh'd by the fponta-
ous growth of Rufhes, Willows, Alder-trees, Rofeithes, Ivy, and fuch other Aquatick Plants, that are it planted there by Art, but come naturally. Anoer fign, is the Frogs when ${ }^{\text {they }}$ begin to brood, bich prefs down the Earth fo much as to draw up the umidity ; which doubtless proceeds from the Vapours at continually arife from the Veins of Water hid unr thofe parts, and which reveals as it were what $\mathrm{Na}-$ re affected to keep fecret.
Another Contrivance for the difcovery of Water, commended by Vitruvius, and ufed by the Ancients, this. Dig a Ditch three Foor broad, and five Foor ep, where you furpect there may be Water; at Sunplace in the botrom of the Ditch a Brals or Lead ffel or Bafin, inverted or turn'd with its Cavity wnwards, and rub'd with Oil on the infide; cover is Veffel and the whole Ditch with Reeds and Leaves, d afterwards with Earth : And the next day if you ddrops of Water hanging upon the infide of the Iffel, 'ris a fign of Water.
Inftead of a Veffel or Bain of Metal, you may put the Ditch an Earthen Veffel not bak'd, without bbing it with Oil, or covering it with Reeds, Leaves Earth; and next Morning if you find it foft with oifture, you may conclude there's Water underneath: id if inftead of this Earthen Veffel, you pur in ool, and next Morning you can exprefs Water from Wool, you may conclude there's a great deal of ater underneath.
Father Kircher thews us an admirable way of findout Water, having by his own Experience found happy faccefs of it. He orders it to be tried in Morning when the Vapours are plentiful, and not wafted by the hear of the Sun. He takes a fmall ck of two piects of Wood joyn'd together, on the rremities being Alder or fome fuch Wood that reay imbibes the Moifture ; and having hung this Rod Needle (not unlike the Needle of a Compars) by Center of Gravity upon a Pivor, fo as to make hang in Equilibrio, he carries it thus hung, or elfe pended with a Thread, to the place where he fufas Water ; , and if there be any there, the Rod will put from its \not Iquilibrium by the Vapours penerrag the Alder extremity, and making it incline to the Divining Rod.
Of the Divi- But now adays, we underftand by a Baguette Divising or con- natoire, a fmall forked Branch of light Wood, comjuring Rod, monly of Hazelwood, which feveral have made ufe

Plate 24:
Fig. 77.

Plate 24:
Fig. 79. of to very good purpofe in difcovering not only the Sources of Water, but likewife the moft noble Metals, which are now the bond of Society; and, as 'ris faid, even Robbers and Murderers, of which we had a notable Inftance in 1693, in one fames Aymar of Dauphiny, who purfued a Murderer 45 Leagues, and found him out by this Rod; and when he came to Paris, he gave feveral Proofs of his Dexterity in making ufe of the Rod, by the difcovery of Water, Merals, and hidden Treafures.

- Hę rakes a forked Branch of any fort of Wood, fuch as ABCD, and holds the two Prongs with his two Hands, but do's not grafp 'em hard. He holds them fo, that the back of his Hands are turn'd to the Ground, the Point CD goes foremoft, and the Rod or Stick is a'moft parallel to the Horizon. In this fafrion he walks foftly along, and when he paffes any place where there's Water, or Mines, or Silver hid, the Rod turns in his Hands and bends downwards; and the fame thing happens in holding it over ftolen Goods, and following the track of Robbers and Criminals, whom he cafily diftinguifhes from the Innocent, for when he puts his foor upon one of theirs, the Rod turns towards the Criminal. Sometimes be makes ufe of a ftraight Stick, and holds it upon his fingers with his two Hands at fome diftance, as you fee in Plate 24. Fig. 79.

As all Perfons are not of the fame Temperament, fo this Divining Rod do's not fucceed equally withalli, for a great many have ufed it without Succefs, as being deftitute of that gift of Nature. Kircher, and Scibott apd Dechales, do all Speak of it as a thing frey quently experienced; tho' every one is not capable of making the Experiment; and the laft of the three fath tis abfolutely the eafieft and moft certain means yo tried for the difcovery of Water.

Flate 24.

Some take a long ftraight and fmooth thoot of H_{2} Fig. 80. zel, or any other Wood, fuch as AB , and hold it b, To the two ends bending a little Arehwife, and keep parall

Problems of Pbyficks.

parallel to the Horizon that it may turn more readily to the Ground, when it paffes over a Source of Water.

Father Kircher has feen the Germans practife this plate 24. piece of Divination another way. He fays, they cut Fig. 81. a fmall Hazel Stick, fuch as AC, CB, into two almoft equal Parts; making the end of the one hollow, and cutting the other to a Point, and fo inchafing the one in the other. The Stick or Shoot thus ufed muft be very ftraight, and without Knots. They carry it before them between the tops of the fore-fingers of each Hand, as you fee in the Figure; and when they pafs over Veins of Water or of Metal, the Shoot moves and bends.

Some make ufe (as we are told) of a forked Rod a Foot long, holding it upon the extended palm of

their Hand, as AB. Others lay it in Aquilibrio upon the back of their Hand, as $C D$, that it may

move with more facility when they pals over a Spring of Water.

Tho' the Modern Authors abovemention'd take this Remark.) Divining Rod to be a new thing, yet 'ris certain the Ancients fpoke of it, and gave it different Names. Neubufius call'd it Virga Divina, and Varro feems to have meant fome fuch thing, by entituling one of his Satyrs Virguls Divina. Peter Belon call'd it Caduceus; Willenus, Virga Mercurii, and Agricola the inchanted Ff 4 Rod;

Matbematical and Pbyfical Recreations: Rod; fome bave calld it Aaron's Rod, orthers 7 acob's Stick, others Mofes's Rod, with which he brought Water our of the Rock; and Cicero in his Offices fpeaks to his Son of a Divine Rod.

Some fay this Divining Rod rurnslikewife to a Loadftone ; others that it turns to the Bones of dead Corps, and has been ufed with Succefs, in diftinguilhing the Bones of Canoniz'd Saints from thofe of others.

Several other things are faid of it, which I thall no: here mention, becaufe they feem incredible. I leave every one to their own Experience; for my own part I ne'er try'd it, and fo can neither refure, nor vouch for the truth of what is faid of it.

PROBLEM XXXVI.

To difinguifh thofe parts of the Eartb, in whicb are Mines or hidden Treafures.

Fumes and Exhalations one Sign.

WIthout infifting further upon the Vertues of the Divining Rodin turning upon Metals and Treafures; we hall obferve in the firf place, that the Mountains which contain Mines, do generally fill the Air with Fumes and Exhalations, fuch as the Workmen meet with in Mines, who find 'em a'moft always very Malignant. Piiny fays, there rifes a Vapour from the Silver Mines, that's unfufferable to all Animals; and efpecially to Dogs.

Thefe Vapours and Exhalations, which contribute to the Generation of Metals and Minerals, are caus'd, without doubr;nu: by the heat of the Sun, which, in my Opinion, can't penetrate fo far (there being fome found 500 Cubits deep) but by the heat of the Subterranean Fires, of the exittence of which we have no room to doubr, fince we fee Mountains and other places of the Earch vomit up Flames and Afhes. To convince us that thefe Vapours proceed from Subterranean Fires, rather than from the heat of the Sun, we need only to confult thole who work in the Mines, who affure us, that the deeper they penerrate into the Earth, the more fenfibly they feel the hear that iffues from its Bowels, and to all appearance is the effect of Subterranean Fires; infomuch that they can't work
but fark naked at the bottom of the Mine-Pirs. They tell you, that fometimes there rife fuch Mineral Vapours as pur out their Lamps, and would Aiffe themfelves if they did not (peedily retire. To remedy this Inconveniency, they have long Pipes which fuck the Malignant Air from the bottom of the Mines, and fo give place for that which is purer and wholfomer. Agricola, in hris, Book de re Metallica, defcribes feveral other Contrivances for the fame purpofe, which we leave the Curious to Confulr.

Befides this Heat that's oblerv'd at all times in the Abyffes of the Earth, we have intimation of the Subrerranean Fires from the hor Springs, and the boiling Springs, fuch as that at Grenoble, which from time to time throws out Flames, efpecially when it Rains, or is about to Rain; as well as from the burning Mountains, fuch as Mount Etna in Sicily, Mount Vefuvius in Campania, Mount Hecla in Phandia, that in Guatimala in America, and others in Perou, in the Molluca Inands, and in the Pbilippine Inands. And thefe Subterranean Fires I take to be the caufe of the thick Vapours or Smoak that I have oftentimes feen rife in the Winter time from the Caverns of the Alps ; and which are fometimes feen by Mariners, as rifing from the bottom of the Sea, and prefaging the fpeedy rife of Winds and Storms.

As Fumes and Exhalations are one fign by which Barrennefs the Mineral Philofophers diftinguith the places that of the Earth are ftored with Mines; fo anorher diftinguifhing fign ${ }^{\text {another. }}$ is the Barrennefs Some Places, which produce neither Trees nor Prints; for doubtlefs that proceeds from the dry and hot Vapours or Fumes, which fcorch and dry up the Roors of the Plants and Trees, and fo sill 'em. For the fame end, we take notice of the alronosnow places upon which Snow do's not lie long, or where nor Hoirn we oblerve no Hoar-froft, for the heat of the Subterfrot. ranean Vapours arifing from the Mines melts the Snow in a little time, and keeps off the Froft.
'Tis well known that Hungary abounds with Gold Severalocher and Silver Mines, as well as thofe of Iron and Sreel ; Marks. and that the Gold Mines throw out very thick or grofs Vapours, which are fometimes fo Malignant, that in a little time they fuffocate the Workmen. Now, thofe who have irayel'd into Hungary on purpole Leaves of the Trees in thofe parts are oftentimes cover'd with a Gold colour, owing to the Exhalations. Alexander ab Alexandro fays, that in Germany they have found over the Gold Mines the Vine-leaves all over gilded, and fome even pure Gold, which may arife from the infinuation of the Metallick humour into the Roor of the Vine, which being very Porous, may have drawn up in the Intervals of its Fibres fuitable Nourifhment. Thus we've known by Experience, that Metals Vegetate, and fometimes have rifen up in Trees, with Trunks, Roots, and Branches.
'Tis faid, that if you carry a lighted Candle of Hu man Greale to a place where Treafure is hid, twill difcover the Treafure by its continual noife, and by going out when it comes very nẹar it: And Father Tylknoski a Polifh Jefuit, affures us, that, when Vapours are feen to rife upon a Mountain at Sun-rife, when the Air is clear and ferene in April or M.ry, "tis a fign that the Mountain contains a Quick-Gilver Mine.
With Reference to what I mention'd but now, the fpeedy melting of the Snow, and there being no Hoarfroft upon the places that cover Mines; 1 call to mind, what Vallemont fays in his Occult Philofophy, that the Soldiers when they go into Winter Quarters, are not ignorant of that Sign; for they obferve narrowly in the Garden or Orchard, fuch places as bear no Snow nor Hoar-froft, in order to fee if the Landlord has not hid fome Treafure re; for they conclude that the Earth of fuch parts bas been lavely ftir'd or dig'd 4 , and fo being more Porous, gives a freer paffage to the Exhalations, which crouding thither melt the Snow and the Hoar-froft.
Asp pes of
The faid Author Monficur Vallemont has Several Cur fou:d. other marks of Mines in the Bowels of the Earth. One is the finding of pieces of O_{3} or Metal upon the Ground ; by which means the rich Mine of Kuttemberg in Bo!jemia was difcover'd by a Monk, wha obferving by chance, as he walk'd in a Wood, a fmall Salk (as 'rwere) of Silver fhooting our of the Earth, very gravely left his Habit upon the Spot, that he might know it again, and fo sun back to acquaint the Convent.

Another Gign of Mines, which is reckon'd pretty Plant fpeckfure, is, if towards the end of the Spring the Plants led, and not and Trees round a place have bur little Vigour, and vigoroun. their Leaves are fpeckled with different S pots, their Green being not very bright.

Again, When the Foor of a Fountain points to the North, and its Head to the South, it oftentimes has Silver Mines. which ufualy run from Eaft to Weft.

A foarth fign given in by Mr. de Vallemont, is taken ${ }_{\text {The }}$ Colourt from the Colour of the Earth, and the Stones. If the of the Earch. Earth be Green, 'ris the fign of a Copper Mine'; if Black, it promifes Gold and Silver; if Gray, we expect from it Iron and Lead.

His fifth fign is the Barrennefs of the Earth mention'd above; upon which Head he adds, that perhaps $\mathcal{F} o b$ alluded to it, when he faid, that no Fowl knowerh the Ground where Precious Stones are, and the Vultur's Eye hath not feen ir, Fob 28.

Again, if the Stones or Earth of any Place are hea- $\mathrm{w}_{\text {tight }}$ of vier than ufually, it gives us ground to fufpect that the Earth. Metals are there.

In a feventh Place, we muft mind the Springs that flow by the foot of Mountains; for not only their Colour and Smell ferve to inform us, but even the Channel of fuch Water do's always bear fome Grains, and orher Veftiges of Metals. Agricola fays, the Inhabitants of Navarre took our of the bottom of their Wells a fort of Earch loaded with Gold, which gave 'em to think, that there were Rich Gold Mines in that part of France. Agricola de re Metallica, lib. 2.

Mr. De Vallemont, informs us further, that fome few S_{s} mpathy Plants which bear a Sympathy and Analogy to Metals, between grow commonly over Mines, and fuch are Juniper, planeal and Tree-Ivy, the Fig-tree, Wild Pine-trees, and moft of the Plants that are pointed and prickly.

The laft fign he mentions, is, the Exhalations of Vapours round the top of a Mountain.
'Tis a certain Truth that we do not always light on Remark. the fecrets of Narure, when we hunt for 'em; Chance has the greateft hand in moft Difcoveries, particularly thofe of Mines ; thus, Mines have been difcovered by the Wind blowing up Trees by the Roots, by a Horre's foor Atriking againft the Ground, by Hogs. grubbing up the Earth; and Diodorus Sicalus fays, is not now much minded, by reation of its being blended with other Metals, that are hard to be feparated and refined.

PROBLEM XXXVII.

To meafure at all times the drynefs and bumidity of the Air.

AS the Thermometer. Spoken of in Probl. 6. of the Mechanicks, mealures the Degrees of Cold and Heat, and the Barometer thofe of the weight of the Air ; fo we make ufe of a Machine calld an Hygrometer or Hygrofcope to meafure the drynefs or humidity of the Air; for certain it is, that the Air is more or lefs moif, as 'tis more or lefs flock'd with Vapours. Now, fince Fir-wood is extreamly fufceptible of drynefs or moifture, it feems to be the moft proper for a Hygrameter, or for difcovering the leaft change in the Air', as to drynefs and moifture.

The firf Hygromater

The firft Hygrometer we thall here mention, was invented in England, and is compos'd of two very thin boards of Fir, in the middle of one of which is 2 Needle like theHand of a Warch,made faft to the Cerrtre of a Circle divided into feveral equal Parts, which reprefents the Degrees of the Moifture or Drynefs of the Air, pointed to by the Needle as it moves round its Center by vertue of the two Fir-Planks, which
move in two Grooves, according as they fwell or Darink thro' the moifture or drynefs of the Air.
Another Hygrometer made in England, and more The feond efteem'd than the former, is this. They take the Hygromeces. Beard of a green Ear of Barley, and twift it round ${ }_{2}$ Pin fuch as $A B$, rais'd perpendicularly upon the bottom of a round Box, like that of a Compars, as CD, the upper Circumference of which is divided into equal Parts, commonly 60. This Pivot or Pin AB is as high as the Box CD, to the end that the ligbt Needle EF which they clap upon the Point B, where the Beard terminates in a Hole made in the middle of the Needle, may appear above upon the lid of the Box, and mark upon its fide how many Degrees the Air is dryer or moifter than 'twas the day before, in moving round the Point B, as the Beard twitts or untwifts, in proportion to the greater or leffer drynefs of the Air : Mr. de Vallemont fays, the moifture curns the Beard from Eaft to Weft by the way of the South, and the drynefs from Eaft to Weft by the North.

At the Emperor's Court, we meet with another Hy- athind fy: grometer made thus. Choofe a Room that's not very gromexery large, to avoid the too great agitation of the Air, Filate 7^{24} and with a String or Rope AB, hang up in it a round Fig. 78. flat piece of Wood, CD, by its Center of Gravity B, fo that it may hang Horizontally, and always in Equilibrio round the Point B. This piece of Wood or Cylinder CD, muft be about half a Foor broad, and almoft as thick as one's Finger, and iss Circumference mult be divided into 60 equal Parts, mark'd all round upon the thicknefs, to denote the Degrees of the drynefs and moifture of the Air, eafily diftinguifh'd by the Finger of a Hand, as EF fix'd near to it, for then the Cylinder CD will turn round the Point B to the Right or to the Left, according as the Air is moifter or dryet.

To avoid the inconveniency of the continual agitation of the Air in a large Room, the leaft Motion being capable to turn the Cylinder CD, while 'tis fufpended by irs Center of Gravity B; you may cover the Cylinder with a Glars Bell perforated above, io as to give paflage to the String AB , and to fuffer it to move withour any hindrance; for then you may fee rhe Alterations of the Air thro' the Glafs.

Mathematical and Pbyfical Recreations.

The Ingenious Mr. Richard informs me, he hasufed this Hygrometer with great Satisfaction; only inftead of a common String, he takes a String of Catgut, as $A B$, and hangs it in a hollow Glass Cylinder with a Foor to it, and a little perforated Cupola; to the lower end of the String B, he ties an Artificial Bird

which by turning to the Right or Left, as the String untwifts by the moifture, or retwifts by the drynets of the Air, fhews the Degrees of that moifture or drynefs, upon equal divifions made upon the Circumference of the Cylinder.

Another Hygrometer as eafie as the former is made Hygrom:ter
n Germany, of a String of a Catgur ABC, made faa

at its two Extremities A and C, and loaded in the the middle with a fmall Weight F, ried with a Thread to B, which lowers the String $A B C$ more or lefs according,

Problems of Phyfcks.

according to the degrees of the drynefs or moifture of the Air, reckon'd upon the perpendicular Plain DE divided into equal Parts, which Divifions the Point B touches in rifing or falling according to the moifture or drynefs of the Air ; for we know by daily Experience, that when the Air is moift, the watry Vapours infinuate themfelves eafily into a String, and iwell and fhorten it, which makes the String ABC draw in and raife the weight F , as the Air grows moifter.
Inftead of a Gutftring you may take a piece of Packthread, which indeed feems to be more fufceptible of Moitture; for Moifture eafily infinuates into all Porous Bodies, and above all, into the Strings that Thorten fenfibly upon the acceffion of the leaft Moifture. Thus, we find, that when Sixtus V. fer up the great Obelisk of the Vatican, the Cables being made longer by that huge Weight, which weigh'd one Million fix Thoufand forty eighr Pound, he order'd the Cables to be foak'd, upon which they fhrunk fo, that they fet that huge Mafs upon its Bafe, as it now flands.

Thefe moift Vapours do likewife infinuate readily into Wood, efpecially that which is light and dry, as being extream porous; infomuch that they are fometimes made ufe of for dilating and breaking the hardeft Bodies, particularly, Mill-ttones ; for when 2 Rock is cut into a Cylinder, they divide that into feveral leffer Cylinders, by making feveral Holes round the great Cylinder at diftances proportional to the defign'd thicknefs of the Millitones; and filling them with as many pieces of Sallow Wood dried in an Oven; for when wet weather comes, thefe Wedges or pieces of Wood are fo impregnated with the moift Corpulculums in the Air, that they fwell and break, or feparate the Cylindrical Rock into feveral Millfones.

The Hutistity of the Air infinuates it felf not only fift Bygro: into Wood, but likewife into the bardeft Bodies merer. which are not deftitute of Pores, and efpecially into the light Bodies, which take up a grear Space ; and hence 'tis, that Mr. Pafcal in his Treatife of the \neq quilibrium of Liguors fays, that, if a pair of Scales consinues in Equilibrio, when loaded with two equal Weights,

Weights, one of which is of a more voluminous Subftance than the other, as Cotton or any Body of a leffer Specifick Graviry, the Ballance will depart from its Aquilibrium, and incline to that more voluminous Weight, when the Air is ftuff'd with Vapours; for the watry Particles, with which the Air is loaded, will infinuate themfelves more readily into this, than into the other Weighr, which being lefs Voluminous, muft needs have leffer Pores.

But of all the Bodies that are apt to imbibe the moifture of the Air, I know none more fuch, than the Salt af any bot Plant, or Saltpetre well calcin'd, which upon the leaft moifture of the Air, melts readily into Water, fo as to weigh three or four times as much as before. For this is the common quality of a'moft all Salts, that they are eafily impregnated with the Bodies contain'd in the Air; and accordingly. when the Salr at a Table is moifter than ordinary, we take it for a certain Sign of approaching Rain, as denoting that the Air is loaded with moift Vapours, which will quickly diffolve into Rain.

So, if you want a good Hygrofcope, put a certain quantity of Saltpetre well calcin'd into one Scale of a juft Ballance, and an equal weight of Lead drops into the other, fo as to make the Scales hang perfectly in Aqquilibrio; then add to the Center of the Motion of the Ballance, a fmall Circle divided into equal Parts, reprefenting the Degrees of the drynefs or moifture of the Air, which the rongue of the Ballance will point to as the Air grows moifter or dryer, for the moifter the Air grows, the more will the Lead rife.

Sixth $\mathrm{Hy}-$ grometer.

Another way of ufing Gurftring for Hygrometers, is this ; 'Tune a Lute or any other String-Inftrument, to the tune of a Flure or a Flageolet, which are lefs liable to the alterations of Weather; and while the Air continues in the fame Temperature, you'l find the Inftruments keep in Tune; but en the Air grows drier, the Scring founds fharper, and more upon the Bafs when the Air is moifter.

The variety of Hygrometers is infinite; you may invent as many as you will; for the very hardeft and folident Wood will 'well by the moitture of ine Air, as appears by the dfficulty of fhutting our Doors and Windows in wer Wearher.

Nay; the very Body of all Animals and Vegetables, is, as 'twere, a Co'ntexture of Hygrometers, Barometers, and Thermometers; for the Humours with which the Organiz'd Bodies are replenifh'd, increafe or decreafe according to the different Difpofitions of the Air ; and Plants are compos'd of an infinite number of Fibres, which are like fo many Carials or Pipes, thro' which the moifture of the Air, as well as the Juice of the Earth, is conveyed into all their Parts.

Mr. Foucher fays, he has experienced by the means of an Hygrometer, that in Summer the Weather is moifteft between feven and eight at Night, and in Winter between eight and nine in the Morning; and that the Air is moifter at Fall-Moon, than when the Moon is near the Change.

PROBLEM XXXVIIf.

of Pbofphorun's:

Whe give the name of Pbofphorius to a Body that's fraughted with fuch a quantity of the Corpufculum's of Light, that by its means one may eafily fee in the darkeft Nighit the next adjacent Objects, and even read a Manufcript withour much difficulty.

Some Phofphorus's are Natural, and fome Artificial. or 'Glo The Natural are a fort of Wormis with Wings, which wormib. Thine at a diftance in the Hedges in the Summer Nights, anid are commonly calld Glow-Worms, by the Latins Cicindele, Nitedule, Nitele, Lucule; and Luciole, and by the Greeks Lamprrides; which give your Husbandmen to know the feafon for cutting down their Corn, and bringing in their laft Harveft, as the Mantuan Poet has elegantly exprefs'd it in the following Lines.

Hì tandem fudiis hyemem tranfegimius illam. Ver rediit, jam Sllva viret, jam vinea frondet:
\mathcal{F} am Spicatz Ceres, jam cogitat borrea meffor.
Splendidulis jami no太te volant Lamprrides Alis!'
Befides thefe Glow"-worms, which ceafe to mine when biey are deadd; there's likewife aì Indian Sodil which

Matkematical and Pbyfcal Recreations.

mines while alive, and ceafes fo to do when dead, as indeed all Animals do. But there's a fort of Sbell-Oy. fters that preferve fome fiery Spirits, and give fome light after their Death. Rotten Herrings give fome light in the Night; and rotten Wood a great deal. Some Diamonds when rubb'd have the fame effect; and Gonzalo Dovicdo, fays, there is a Fowl in the Indier call'd Coèrno, which has fuch fparkling Eyes, that it ferves for a Candle at Table.

The Artificial Phofphorus's are made of a fort of Stone like unto Plaifter, heavy, clear and Tranfparent, found in Mount Paterna near Bologna, and from thence call'd the Bolonian Srone. This Stone being calcin'd and expos'd to the light of the Day, imbibes that light withour burning, and keeps it for as long a time as it has been fer to receive it, as we obferve by conveying it into a dark place where it fhines like a burning Coal.

Some Artificial Phofphorus's are made of Chalk Urine, Blood, and other Sulphureous Subftances; and thefe burn with a Flame that's quite different frorh that of other burning Bodies; for ir fpares fome Subftances that orher Fires confume, and confumes thofo that another Fire fpares; what extinguifhes other Fires kindles it, and what kindles other Fires extinguifhes it.

There are fome things that this Phofphorus do's not inflame when it toiches 'em, and yet purs thern in a flame when it do's not touch them. Irs flame is more hot than that of Wood, more fubtil than that of Spirit of Wine, and more penerrating than that of the Sun, the Rays of which collected by a Glafs burn black Subftances fooner than white, whereas the Phofphorus attacks them equally.

The flame of fuch a Phofphorus is faid to pafs thro' Paper or Linnen without burning 'em, unlefs it be old Linnen, or old Paper withour Gum. 'Tis alfo faid, that if this flame runs upon a little ball of Sulphur, 'twill not fet it on fire, nor yet Gunpowder; but if you bruite 'em together 'twill pur them into a flame, Camphyr always rakes fire prefently.

The Phofphorus has always been reckon'd one of the moft curious and furprifing prodactions of Chy. miftry, by reafon of its uncommon and peculiar Prod perties: fefs'd of many more, fome of which we fhall briefly hint ar.
If you write in the dark with a Phofphorus, the Letters will appear light like a Flame; and if you rub your Face with it, which you may do wirhour any danger, your Face will be luminous in the dark; and in fine, if you beat it up with fome Pomarum, 'twill make it thine in the dark.
If you dip one end of a piece of Paper or Linen in Spirit of Wine, or good Brandy, and rub fome Phofphorus upon the other end, the Spirit of Wine or the Brandy, will be put in a flame by the Phofphorus, tho' it do's not touch 'em immediately, and will fer fire to the Paper or Cloth; which would nor happen, if the end of the Paper or Cloth had been dip'd in Oil of Spike or of Turpentine: And if you rub the Pholphorus upon the end that's dip'd in the Spirit of Wine, the Phofphorus will nor take fire; but if the Cloth be dip'd in common Warer, 'rwill then take' Gire notwithtanding that 'tis preferv'd by being kept in Water ; and this Water ftir'd about will give Light, bo' Spirit of Wine with Pholphorus dip'd into it will not ; but if you pour fome drops of this Spirit of Wine into the Common Water, each drop will proluce a light that prefently difappears like Lightning, گc.
T've already intimared ${ }^{-}$that to preferve the Artifici- The Cömpo ${ }^{2}$ Pholphorus, we mult keep it in Water; and now firion of the come to thew you the way of preparing it with Arrificial Jrine.
Evaporate upon a gentle fire what quantity you will f frefh Urine, till there remains a black Subftance moft dry ; let this Subftance rot for three or four Tonths in a Cellar; then mix it with double the aanrity of Sand or Bole-Armeniack ; and clap the ixxture upon a gentle Fire, in a ftone Retort with a ecipient well luted and half full of Water. Raife e Fire by degrees for three Hours; and there will (s invo the Recipient firft a little Phlegm, then a tle Volatil Salr, then a great deal of black 今tinkg Oil, and at laft the Subftance of the Phofphorus ill remain fticking to the Veffel, in a white Mass? bich you aruft melt in Water to reduce it to a Rol-

G82 leris

The Phofphorus being the fat and volatil part of the Urine, it thay likewife be drawn from otber Excrements; alfo from Flefh, Bones, Hair, Feathers, Nails, Horns, Tartar, Manna, and any thing that yields by Diftillation a ferid Oil.

Another fort of Artificial Phofphorus is made of the Bolonian Stone, calcin'd after the following manner. Take five or Gix great Stones, pound two of them in a Mortar to a very fine Powder, and with that make a Cruft round the other four. Then put all in a little Furnace upon a Grate, cover them with Coal, and continue the Fire for three or four Hours, or till the Coal is confum'd to Athes. This done take out the Stones, and clear'em, and fo your Work's done.

Remark. - I intimated above, that with the Artificial PhofphoWriting that rus one may Write, fo as that the Letters thall flaine mincsi in the as a flame in the Dark; and Wecker fays, after Porta, dark.

How to make good ted Lak. that this may be done by the Natural Phofphorus, that is, by Writing with the Liquor of GlowWorms. But this wants to be confirm'd by Experience; for, as I faid before, Glow-Worms give no light after Death.

Wecker, in imitation of the fame Author, makes an Artificial Phofphorus of Glow-Worms, after the following manner. Beat feveral Glow-worms together, put them in a Matrals. well ftop'd for fifteen Days in Horfe-dung, then draw off with an Alembick a Water, which put into a Vial, will caft fuch a light ia the Dark, that you may read and write by it.

But now that we are got upon the Subject of Writing, I thall here thew by the bye, the way of making good red Ink. Soak the White of an Egg thirty Hours in a Spoonful of good Rofe Vinegar; thenthrow away the White, which you'll find half boil'd, and Atrain what remains thro a clean Cloth, and fo you have a Gummed Water, which you're carefully to: keep in a little Vial, to be made ufe of on occafion in the following manner.

Put a little of your Gummed Water into a Gally Por, fuch as your Apothecaries ufe for their Oint-- ments, and mix it with a litrle Powder of Vermillion or Cinnabar, till 'tis red enough to Write without
being too thick; and fo you will have a very. good Sort of Ink that will ftick clofe to the Paper, and not fet off to the oppofite fide, when the Paper is beat by the Book-binders or others, as ir do's when made of bare Warer or Common Gum. This red Ink muft be ftir'd with a Pencil from time to time, when you go to Write, becaufe the Vermillion or Cinnabar finks by its weight to the bottom of the Pot.

Another fort of red Ink which do's not wannto be So often ftird, and may be ufed as Common Ink, is. this. Take four Ounces of Brafil Wood cut fmall, one Ounce of Cerufs, one Ounce of Roch-Allam; pound all in a Mortar, and pour on Wine till all's cover'd. After three days ftanding, Atrain the Liquor three or four times thro' a very clean Cloth. then purt it in a white earthen Mortar, and ler it dry in a dark place, where Sun nor Day-light can't reach its, As laft fcrape off the Flower of this dry Subitance, and keep it to be dilured in Gummed Water for ufe upon occafion,
1 Thall here fubjoyn Alexis's Directions for Writing Writing if: upon Paper, fo as that the Writing fhall be invifible till on Paper the Paper is dipt in Water, Put the Powder of Roch- that will oot Allum into a little Water, and with that write upon we feen the Paper when you pleafe. When the Letters are it be wet. dry they will difappear ; but clap the Paper in fair Water, and the Letters will look white and fhining, the Paper being a little black'd with the Allum.

The fame Author directs to Write fo as that the wring that Writing fhall not be read but before the Fire, by carit be read Writing with the Water in which Sal Armoniack well wibhout fre, pulveris'd is diffolv'd. For when the Letrers thus Written are dry, they will difappear, but hold whem near the Fire, and then they become vifible again. The fame is the cafe if you Write with the juice of a t.emon, or of an Onion.

PROBLEM XXXIX.

To make the Sympathetick Ink.

THE Sympathetick Ink is made of two different Waters, the firft of which difcovers the Letters written with the fecond, which do not appear of themfelves when they are dry ; but when a Spunge moiAten'd never fo little with the firft is drawn over them or near them, they appear of a red colour inclining to the Black. When thefe two Waters are filtrated, they are very clear and Tranfparent, but when mix'd together they become Opaque, and affume a very brown Colour. Their Compofition is as follows.

The Water which difcovers the Letters, and which we call the Firft, is thus made. Pur into a new and very clean earthen Por fome fair Water, in which infufe a little Orpiment, with a piece of quick Lime for 24 Hours, and fo you have your firf Water. As for the Second Warer with which you write the invifible Letters, 'tis a Gallon of diftill'd Vinegar boil'd for half a quarter of an Hour with an Ounce of Litharge of Silver.

When thefe two Waters are freth made, and care is taken to ftop the Pot well which contains the Firft, the firft Water bas fuch a Vertue by the force of the Lime infufed in it, that if you cover a Letter writtes with the fecond Water with a Quire of Paper, 'twill. blacken the Letters and make 'em appear, tho' it be only pour'd upon the upper theet of the Paper that covers the Letter. Take notice that thefe two Waters niuft be ftrain'd apart, for 'tis that which renders them clear and tran(parent.

A Sympetherick Ink that penetrates aẈall.

But there's another Cort of Sympathetick Ink, that penetrates not only thro' a quire of Paper, but thro a thick Book, and even thro' a Wall, provided there be Planks on the two fides to hinder the Evaporarion of the Spirits. In this cafe the firt Water is the fame as above; but the fecond is an Impregnation of Saturn or Lead, as clear as Rock-Water, made thus. Take an unglazed earthen Pan, melt Lead in it, and ftir it continually upon the Fire with a Spatula, till 'ris all redụ-
reduced to Powder ; diffolve this Powder in diftill'd Vinegar, and fo you have a clear tran!parent Liquor, with which you may write what you will upon a piece of Paper, and then put the Paper between the Leaves of a very thick Book; which being rurn'd, oblerve as near as you can the part of the laft Leaf that correfponds to that in which your Paper lies, and rub thar laft Leaf with Cotton impregnated with the firt Water (made, with quick Lime and Orpiment;) then leave the Cotton upon the place, with a double piece of Paper over it, and quickly thut the Book, giving it four or five knocks with your Hand. This done turn the Book, and put it in a Prefs falf a quarter of an Hour, after which you'll have attiftinct appearance of the Letters that were formerly Invifible.

PROBLEM XL.

Of the Sympathy and Antipathy obferv'd between Animate and Inànimate Bodies.

BY Sympathy we underftand a Conformity of the natural qualities of Humours or Temperament, or a fuitableneis of occult Vertues, fo diftributed to two things, that they eafily agree and bear with one another, nay love, to to lpeak, and court one anosher.

We find in our felves the effects of Sympathy, when We have a particular Affection or Efteem for an unknown Perfon, as foon as we fee him ; and of Antipathy when we avoid a Perfon that has never difobliged us, and in whom we have. difcovered no confiderable Fault. A'moft all of us hate to hear the grating of a Knife againft any.other thing. I know fome would die rather than tarry for any time in a clofe Room with a Cat; fome can't fee Cheefe without fainting; and it mult be by the like Antipathy, if it be true, what is faid, that the Blood of a Murdered Perfon will flow from the Wound in the prefence of the Murderer; fome have an Antipathy againft the agreeable fmell of Rofes; Women in Childbed bate Perfumes, particularly Musk; fome will Swoon away af the fmell of an Apple. The Cock feems to

We are told there's fuch a Sympathy between Elephants and Shêp, that the Romans by that means defeated King Pyrrbus with his Elephants. Ireland pror duces no venomous thing, nor indeed any thing that do's Harm, except Wolves and Foxes; and near Grenoble in France, there's an old Town ftanding on a Mountain, where neither Serpents nor Spiders, nor any other poifonous Animal will live.

Mr. Boyle fpeaks of a venomous Tree in America, calld Manchinelle, which the Fowls will nor fo much as pearch upon. The Agnus Caftus is faid to banifh all venomous Plants; and every one knows that the Senfitive Plant Prinks up it felf if it be but touch'd.

An Arrificial Srone is faid to be imported from Goa, which the Portuguefe call Capellos de Colubras, the Snake-Stone, as being made of the bones of certain Snakes, which being made up with another Drug that few People know, compoles that marvellous Stone that draws all poylon out of Wounds made by the biting of Venomious Creatures. But Mr. Cbarras tried this upon Pigeone bit with Vipers, to no effect.

Quickfilver which penerfates the Pores of all other Metals, and reduces 'èm to a Paft, has fuch a'Sympathy with Gold, that if you put one end of a Rod of Maffy Gold into it, 'twill infinuate it felf alh/ er the Rod to the other end, both on the outide and infide. This dry Liquid is fuch, that if you ftir it with your Hand, a Gold Ring upon the other Hand will be whire and cover'd with Quickfilver ; and in like manner a piece of Gold beld in the Month attracts the Spirits of Mercury: 'Tis needlefs to mention the forcẹ

Problems of Pbyficks.

force of Quickfilver in paffing thro' Leather when 'tis heated but never fo little; and the re-union of its Particles in the primitive form, after being difpers'd into Vapours by Diftillation.

Few People are ignorant of the force of EleEtrical Bodies, which are fo call'd, becaufe, like Amber, they attract Straw, Ejc. without toụching them. Every one knows the Power of the Loaditone, of which more at large in the next Problem.

PROBLEM XLI.

Of the Loadfopre.

THE Loadftone is a very hard and very heavy Stone, the colour of which approaches commonIy to that of Iron, which it attracts by a peculiar yertue at a reafonable Diftance, and that with a force that makes a fenfible Refiftance when you go to part em. This admirable Srone has many fine Properties, which I am now briefly to hint at.

The Loadftone has not only the vertue of attrad-The ronding Iron eyen by penerrating the intervening Bodies; fly not not on but likewife that of communicating to the Iron that but commutit rouches, the vertue of attracting other Iron, which nicates iss atin like manner acquires the power of attracting ano- tradive ver: ther : For we fee with our Eyes, that an Iron Ring touch'd by a good Loadftone lifts another Ring, and that lecond Ring lifts a third, and fo on. We fee likewife, that a blade of a Knife touch'd by a Loadftone, raifes Needles and Iron or Steel Nails.

If you lay leveral fewing Needles clofe to one another upan a Table, and bring a Loadftone near the firft, 'twill attract the firt, which acquiring a Magnetick Vertue, will draw the Second, and that the next, and fo on, till all the Needles hang to one another, as if they were link'd rogether, unlefs you part 'em by Violence.

Iron reciprocally attracts the Loadftone at a reafomable Diftance, when that Stone can move freely, as when 'tis bung up; or floats in Warer; notwithftanding the interventicn of another Body. For example, put a piece of Loadftope in a light Boat made like a Gopp

Gondola, fo as to make the Loadftone float upon the Water, and prefent to it a piece of Iron at a reafonable Diftance, you'll fee the Gondola cut the Water to go and joyn the Iron.

This puts me in mind of a Clock I once faw at $L y$ ons in Mr. Servieres's Clofer, which thew'd the Hours by throwing an Arcificial Frog into a Bafin of Water, round which the Hours were mark'd, as upon a Di al; for the Frog fwimming upon the Water, ftop'd and pointed to the refpective Hour, and infenfibly follow'd the Hour of the Day, like the Hand of a Clock. I judge this was done by a Loadftone hid under the Bafin, which followed the hour of the Day by the vertue of Clock Wheels, and drew to the fame Hour the Frog, in which no queftion was hid a piece of Iron.

When 2 Loadftone floats upon the Water, without

It affects the fam: alpuct in che Univerue. any thing about it to cramp its free Motion, or hinder it to take what Situation it finds moft convenient, it turns always the fame way with refpect to South and North ; Co that one particular part of the Stone always looks to the North, and its oppofite to the South; whence thefe two places pointing to the two Poles of the World, are calld the Poles of the Loadftone; and the Atraight Line paifing from one Pole to the other, is call'd the Axis of the Loadftone. Now, all the force and efficacy of the Loadftone is in this Axis, for the other parts off of the Axis have very little Vertue; and 'tis chiefly from the two Extremities or Poles, as from two Centers, that the Vertue is dis Atributed.

Thar part which is equally remote from its two Poles," we call the Afquator of the Loaditone; and this has fuch a quality, that if you lay a fewing Needle upon ir, 'rwill lie all along is parallel to its Axis; bur if you take it off of that line, it rifes more and more as it approaches to one of the two Poles, where it ftands upright. This is diftinctly obferv'd in the Spherical Loaditones, which I here fuppofe Homogeneal, as they commonly are, for otherwife they may have more than two Poles. I know a Gentleman at Lions who has a Loadtone that has four Poles, two on the South fide lying oppofite one to another, and two afree fhe fame manner pointing to the North.

Problems of Pbyficks.

The Loadfone communicates its Vertue not only to the Iron that ir touches, but even to that which paffes near it; it attracts likewife another Loadftone, and fometimes repulfes it, according to the different Afpects of their Poles, which are calld Friendly Poles when they're of a different Denomination, that is, the one Meridional, the other Septentrional ; and Hoffile Poles, when they're of the fame Denomination, that is, both Meridional or both Septentrional: For the North Pole of one Loadftone attracts the South, and repells the North Pole of another, and è contra; proyided the other can move freely, as when is floats in Water, Mr. Puget has a Loaditone, that in ftead of attracting another that floats upon Water, when the Poles are friendly, draws it indeed to a certain diftance, but repells in if it comes nearer.

We obferve in all Loadftones, that when the North Pole of one has attracted the Sourh Pole of another, the Afpect of the North Pole' of a third parts 'em. Here I purpofely wave the Reafons of thefe Phonomena, becaufe they are Abtrufe, and improper for Recreation.

When we fay, a Loadftone in attracting Iron pene-Several xx : trates all forts of intervening Bodies, as freely as if perimente of there were none between ; we muft except the inter- ${ }^{\text {Loddtone. }}$ vention of Iron ic felf; tor we find by Experience, that the intervention of a plate of Iron impairs the activity of the Magnerick force; doubtlefs, becaufe the Vertue taking bold of the Plate; is partly fpent upon ir.

- When we fay, that the Loadfone draws Iron to it, we muft fuppofe that it can draw it ; for if it can'r, and if 'tis at liberty to move, the Iron reciprocally. attracts it, and when joyn'd together they fenfibly refift the efforts of Separation.

Tho' the Magnetick Vertue penetrates all intervening Bodies. Iron excepted, with as much Facility, as if nothing interven'd, yet 'tis obfervable that this Verrue is communicated with more difficulty thro' Flefh, than thro' any Metal wharfoever.

When we fay, that the blade of a Knife acquires the Magnetick Vertue by being touch'd with a Loadftone, we muft add, that this Vertue is communicated to the part of the Kaife that's laft touch'ds fo that if you along a Load\&one, all the Magnetick Vertue will remain in the Point, and the other end towards the Haft will have no attractive Force ; and if you rub it the contrary way, the Virtue will be tranfplanted to the other end. Farther, the Vertue thus imparted will be greater or leffer, according to the place of the Loadfone that the Blade is rubb'd upon; fo that, if you rub it upon one of the Poles where the Vertue is moft Efficacious, 'twill receive the greareft attractive force that "tis capable of.
This Rubbing is done by drawing the Blade AB of the Knife $A B C$, lengthwife, from the Hafe $B C$ to the Point A, or from the Point to the Haft, along the Pole \mathbf{D} of the Loadftone DE, the other Pole of which is E ; and then the Blade AB acquires the Vertue of raiing as much Iron as is poditible; and if the Blade is drawn over the Pole from B to A , fo that

B touches the Pole firt, and A laft, all the Magnetick Vertue lies in the Point A. But if afrer thus touching, you rub it again the contrary way, drawing it over the Pole D from A to B, in that very inftant it lofes that attractive Vertue it had acquir'd.

All Loadftones are nor equally good; and we mult n t always judge of the goodnels of 'em by their Weight; for fometimes an. Ounce of Loadfone is al le to lift a pound of Iron; tho nudeed of two Load ftones
ftones of equal Vigour, the greater, has always more force than the leffer. The more folid and lefs porous that the Stone is, the greater is the force ; and it has more vigour when polifh'd than when rough, and more fill when arm'd with a plate of Sreel or polifh'd Iron. But here you muft oblerve, that if 2 Loadftone thus arm'd holds Iron by one of its Poles, and the friendly Pole of another naked or unarm'd Loadftone is prefented to it, it holds it the more forcibly; bur upon the prefenting of the Hoftile. Pole it lofes the force and lets it drop. In breaking a Loadfone, you may find one part of it to have more force than the whole Stone.

The Loadftone attraets twice as much Steel as Iron, and at a greater Diftance ; for the former being folider and lefs porous than the latter, it joyns more intimately with the former; and when thus joyn'd with fine well polifh't Steel, it attracts a greater Weight, than when faften'd to grofs unpolin'd Iron. A fronger Leaditone draws a great weight with more Expedition, and at a greater Diftance, than a weaker Stone. We feldom fee a large Loadftone raife more than its own Weight, unlefs it be arm'd ; but oftentimes we meet with little ones, that raife ren, twelve, and fometimes eighteen times their own Weight; thus an Ounce Stone will raife a pound of Iron, as above.

We fometimes oblerve with Aftonifhment, that 2 large fine Loadfone Atrips a little one that comes too near it of its Vertue; but the little one recovers it again in two or three Days, We obferve likewife in breaking off a part of a Stone, the Axis and the two Poles hift their places. Father Schott the Jefuir, tells you, that if you cut a Loadftone by its Kquator into two parts, each part will have two Poles, a new Pole ar the Section, and the old one at the old place bearing the fame Name; and if you cut it in two by ins Axis, each part acquires new Poles, of a fimilar Siwuation to that of the Poles of the firf Stone, and likewife with the fame Properties.

This Stone is fo, hard, that fcarce any Iron Inftrument will touch it, and it can't be cur but with a brals Saw withour Teeth, made as Marp as a Knife, and with the Powder of Emmery dilured in Water ;

Mathematical and Phyfical Recreations.

it being impofible to cut it with any other Saw tho of the finet Steel.

I forgot to acquaint you, that by the North Pole of a Loadttone, we underftand that Pole which turns or points to the North, when the Stone hangs free by its Equator; and by the South Pole, the oppofite Pole that points to the South. I faid, when it bangs free by its Fequator, for if 'twere fufpended by one of its two Poles, 'twould continue unmovable, becaufe the North Pole could not then turn to the North, nor the South Pole to the South.
Remark. Some will have the Loadftone to be call'd in Latin Whence we Magnes, from Magnefia, a Connty in Macedonia, where have the Loadftones. 'tis frequently found. Now, the Magnefia Loadftone is fometimes black, fometimes red; the Natolia Loadftone is white; bur, as Hiftorians tell us, neither of thefe has much Vertue. The Ethiopian Loadfone, which is very heavy and very vigorous, is fometimes yellow. The beft Loadftones we have in Europe, are for the moft part found in Normay. There is a fort of red and of blew Loadttone, which Diofcorides prefers to that of the rufty Colour. In Italy they have a fort of Loadftone, that's red on the out-fide, and blew within, which when beaten gives a fort of Flower that Iron attracts at a certain Diftance.

If the name of Loadftone he allowed to the Stones thar attracts other Metals, we may reckon in this Lift a Stone call'd Pantarbe, which attracts Gold, and another call'd Andromantie, which attracts Silver. Cardan fays, there's a Stone call'd Calamites that attracts Flefh. In Atthiopia there's a Stone call'd Theamedes, that inftead of loving Iron can't indure it, and repells it ; which bas given fome occafion to fay, that as thofe who carry Iron about 'em to the Loadittone Mountains can't ftir, fo on the other hand if thefe Mountains produced the Theamedes they could not keep to a fixed Station.
The bert Loadtiones.

To conclude this Problem, the beft Loadftones are commonly thofe of a watry or of a mining black $\mathbf{C o}$ lour, and very litcle Red; and of a folid Homogeneous Subitance, that is, they have but few Pores; and are free from the mixture of a foreign Matter. The figure of a Loadftone contributes very much to its Force, for 'tis a ftanding Truth, that of all LoadAones
ftones of equal Goodners, that which is the longeft, the beft polifhed, and fo cut that its two Poles are at the two Extremities, is the moft vigorous. A Spherical Figure is likewile very advantageousto a Loadftone.

The Loadṭone preferves its Vertue in Filings of. Steel, tho' the filings may ruft with it, and likewife impair its Vertue ; but the violence of Fire impairs it more in one Hour, than the Ruft does in Ceveral Days. Father Desbales fays, the Loadftone do's not attract red hot Iron, the occafion of which is undoubredly this, that the Heat diffipates the Magnerick Spirits by putting them in Motion.

In fine; a Loadtone alfo lofes irs Vertue of attracting Iron, when'ris beat too violently upon the Anvil; for that changes the Difpofition of its Parts, and the Figure of its Pores. This Reafon is confirm'd by the Experience of Mr. Puget, who having pur filings of Steel thto a Glafs Tube, and placed a good Loadfone near the filings in order to communicate irs Vertue, obferv'd that thefe filiugs loft their Magnetick Vertue by being ftir'd and mov'd, fo that they could not attract Needles as they had done before. To this parpofe, 'tis faid that if a Magnered Steel Needle changes its Figure, i.e. is turn'd from a ftraight to a bended, or from a bended to a ftraight Figure, it lofes its Verṭue quice.

PROBLEM.XLII.

Of the Declination and the Inclination of the Loadfone.

TH E foregoing Problem difcover'd three confiderable Vercues in the Loadftone, viz. its affecting a certain Afpect in the World, irs drawing Iron, and its communicating the fame attractive Verue to Iron. And in the Problem we are now upon, we are about to thew that nothing in the World is more variable than the direction of the Loadftone, and hence arifes what we call the Declination of the Loadftone: For under the fame Meridian the Loadftone declines fometimes to the Eaft, fomerimes to the Weft, as appears by the Angle which the Compaifs Needle makes with the Meridian Line, which is call'd the variation
of the Needle, reckon'd fromi North to Eaft, in which cafe 'tis an Origntal Variation, or from North to Weft, in which cale 'tis call'd Dccidental.

The Irreguberity of the Declination of the Needik.

This Variation or Declination is very irregular, for under the fame Parallel it Cometimes vary's very much in a little fpace, and oftentimes but little in 2 great many Leagues. Neither is it always the fame at all times, for we find a Declination now where there was none before. In former times, the Declination at Paris was very fmall, and now' 'tis almoft fix' Degrees from North to Weft; which evidently thews, that Mr. Ricciolis large Table of Variations of the Needle, inferted in. his Geography, is allogether ufelefs.

All Loadftones and all Magnered Needles, of what length foever, decline after the fame manner in the fame place at one and the fame time; which ohews that the different forts of Loaditones, or the different length of Needles, have no hand in the Declination. Since the Eruption of Mount Vefuvius, we find a conGiderable change in the Declination ar Naples; and in' feveral other places, we find no fuch Declination as our Anceftors oblerv'd.
Whatwecall As the Philofophers are puzzled in accoumting for int Foclina- the variable Declination of the Loadftone, fo they are
tion. equally gravell'd upon the fcore:of its Inclination, by which we fee a rod of Iron or Steel, fufpended by its Center of Gravity in AEquilibrio, before 'ris touch'd by the Magnet ; we fee it, I fay, lofe its Aquilibrium after, 'tis touch'd; for that End which points to the Pole that's elevated in the Horizon, where 'tis fufpended, becomes heavier, and confequently inclines towards the neareft Pole of the Earth, when the Rod is in the Plan of the Meridian. And this is evidence, that the Magnetick Matter comes from North and South, and that the Earth may be confidered as a great Loadftone, and a Loadftone as a little Earth, as you thall fee in the Sequel.
'Tis for this Reafon, that the Workmen, who make Needles for the Portable Dials, make the Sourh Point of the Needle a little heavier than the North Point ; that fo when 'tis touch'd with the Magnet in the North Point, the Needle may rett in Equilibrio ingon its Pavis, that is, be parallel te the Eiorizon:

To make the end of a Needle point to the North, you mult make it to touch the South Pole of the Loadftone, gliding it along from the middle to the end; and if after that you touch it again, gliding it contrariwife from the fame end to the middle, the touch'd Point that formerly turn'd to the North, will then point to the South, and inftead of inclining to the North Horizon, will rife towards the South.
As an Iron Needle applied to a Loadftone do's not incline equally upon every part of the Stone, infomuch that upon its 灰quator ir do's not incline at all, and the further 'tis from the 不quator, if ftill inclines the more, till it arrives at the Pole of the Loadftone where it rifes pirpendicularly, as if it fprung out of its Pole, and meant to conrinue the $A x i s$, as we fhew'd in the foregoing Problem; So the Inclination of the Loadfone is nor the fame in all Climates: for under the Equinoctial Line the Needle is certainly in a perfect Equilibrium, and the nearer it approaches to a Pole it inclines the more, but not in the fame Proportion; for if ir did, we might thereby find out the Latitude of a place, as fome have thought without ground.
'Twas likewife a groundlefs thought of fome, that the end of a Magneted Needle that turns to the Norch; rifes towards the Pole or the Polar Star, for on the contrary, it inclinesto the Earth, and at Paris where the Elevation of the Pole is about 49 Degrees, the Needle inclines to the Horizon, almoft 70 Degrees according to Mr. Robault's Obfervations. In England in the Latitude of 50 , it inclin'd 71 Degrees and 40 Minutes ; and in Italy in the Laticude of 42 , which is near to that of Rome, it inclines to the Horizon about 62 Degrees.

When a Magnered Needle fers one of irs Points to the North, and the other to the Soath, we conclude ic has been touch'd by one of the Poles of the Loadftone; for if you rub it againft the \#quator of the Loadftone, or only ctors its middle, 'twill have no Direction. When your Compals-makers magnet their Needles, they touch 'em only ar one end, (namely, that which is commonly mark'd with the Flower de Lyce) drawing theNeedle over che meridional Pole from
the middle to the end, that fo it may turn to the North.

You may likewife touch the Needle if you will, beginning to glide it from the Flower de Luce end to the middle; and then the touch'd part of the Needle will turn to the fame part of the World with that part of the Loadftone that touch'd it. And therefore if you would have the Flower de Luce turn to the North, as it commonly do's, run the Needle Coftly over the North Pole from the Flower de Luce to the middle; añd if you want to change the touch of your Magneted Needle, rub the oppofite end againft the fame Pole of the Loadfone, after the fame manner as you did before, or elle touch with the oppofite Pole the fame part that was touch'd before.

A generous Loadftone communicates its Verrue, to an Iron Needle, at a reafonable diftance without touching it; and nothing can rob the Needle of this its derived Vertue, uniefs you bend it when 'cis ftraight, or turn it from a bent to a ftraight form : For if you heat it in a fire red hot without melting, if you rub it, if you file it, it Atill retains the Direction. Ir always follows the Pole of the Loadfone that has touch'd it, tho' when 'tis at liberty it points to the Pole of the World that's oppofite to that of the Loadftone.

Of all the forms that can be given to Iron, a long ftraight Figure is the moft proper for receiving the Direction, which is always according to the greateft length of the Iron. In an Iron Ring, the Direction lies in the touch'd part and its oppofite Point. Hold a Knife over a Compafs, and the Needle will turn the South end to it; hold it under, and the Needle will prefent that of the North to it.

In the Needie of a Compafs, we call that Point which turns to the South, the Meridional Pole, and that which turns to the North, the North Pole; and the Sourh Pole of the L.oadftone attracts the North Pole of the Needle, and i' contra, when it can move freely, and is in the fphere of the activity of the Loadfrone: The fame is the cafe with two Loadftones placed by one anorher.

In two Magneted Needles, we callthofe the Friendly. Poles, which have different Denominations, as the North

Problems of Pbyficks.

North and the South; for the one attracts the other, when the two Needles can move freely upon their Centers : And thofe are the Hoftile Poles, which are of the fame Denomination, viz, the two Meridional or two Septentrional Poles; for when two Compaffes are put directly one upon another at a reafonable diftance, the Similar Poles avoid one another, in the Plain of the Meridian, and fo the two Needles take a contrary Situation, one to another, the fronger forcing the weaker to change.

But if two touch'd Needles fufpended freely upon plate 25: their Centers or Pavets, be placed upon the fame Ho - Fig. 83. rizontal Plain, at a reafonable diftance, as AB, CD, fo as to be parallel one to another, and to the true Meridian Line, and to have each Pole of the fame Denomination turn'd to the fame fide: In this cafe, the Poles will continue in the fame Situation; for in order to turn to the contrary Directions (as they would do were there no Impediment, and were one hung over the other, as CD is over AB, Fig. 82.) Place 25 , the two Hoftile Poles which we have fuppofed to be on the fame fide, muft of neceflity approach one to another, which is contrary to their Nature, And therefore they are kept by force near one another, as if they were Friends.

If berween two fuch. Needles, as $A B, C D$, fuf- Plate 19 : pended in their Compaffes AEBF, CGDH, ycu puta Spherical Loadftone ar a reafonable diftance; upon the

fame Horizontal Plain, as IKLM, the North Pole of which is I, and the South Pole L, fo that the Axis IL is parallel to the Horizon, and in the Plain of the Meridian : In this cafe, each of the two Needles, Hh_{2}
$A B_{j}$

Mathematical and Phyģcal Recreations.

 $A B, C D$, will place ir felf in the Plain of the fame Meridian ; that is to fay, they'll put themfelves in a Right Line with the Axis IL, the South Pole B of the Needle AB pointing to the North Pole I of the Loadftone, and the North Pole \mathbf{C} of the Needle CD pointing to the South Pole L of the L.oadftone.But if you turn the Loadfone IKLM round its Center O, fo as to keep the Axis IL always parallel to the Horizon, and to make the North Pole 1 move to the right to K , and the South Pole L to the left to M, each Pole moving tiro a Quadrant of a Circle : In this care, the South Pole B of the Needle AB, atrracted by the North Pole I of the Loadftone, will likewife run a quarter of a Circle from the righit

to the left to E, and in like manner the North Pole C of the Needle CD, artracted by the South Pole L of the Loadftone will move a quarter of a Circle, from the left to the right towards H ; that is to fay, the Poles, I, L, of the Loadfone having acquir'd their Siuation as in the annex'd Cur, the Needles, AB, $C D$, will rurn themlelves Parallel to the Axis IL, and take the Situation here reprefented.

But if inftead of making the Poles, I, L, of the Loadftone'turn a Quadrant of a Circle, they be made to move a Semicircle, fo as to affume the Situation reprefented in this Cut. The Needles, AB, CD, will

likewife move to the extent of a Semicircle, and turn as you fee in the fame Cur. Again if you make the Poles I, L, turn to the extent of three quarters of a Circle, fo as to affume this Situation, the Poles of the

Needles, $A B, C D$, will move to the fame extent, and ange themelves as 'tis here reprefented.
The Needles commonly made ufe of in the Boxes Remark: r Compaffes for Dials, have one end pointed like an ${ }_{\text {a New edede }}^{\text {to }}$, rrow, and the other Plain; or elfe that end whicb touch'd, arns to the North is cut like a Crofs or a Flower de uce, being touch'd with the Sduth Pole of a good oadftone as above.
Such a Needle ought to be ftraight, and made of fine alith'd Sreel, with a little ftud of Copper or Silver the middle, perforated in the form of a Cone, its Pin, which is rais'd at Right Angles from the Center of the Box. Father Kircher fays, that if you would have a Needle well impregnated with the Magnetick Vertue, it ought not to be too fmall; becaufe then it do's not fo readily thew the Declination of the Loadfone; nor yet too big, by reafon that if its length lurpaffes the Semidiamerer of the Sphere of the activity of the Loadftone, 'twill receive a'moft nothing of the Direction, and fo be of no ufe. URon this Confideration, when you are about to touch a Needle, you ought to examine before hand, the Sphere of the activity of the Loadftone; and that Pole of the Loadftone which touches the Needle ought to be polifh'd (if 'cis not arm'd) and that ought to be done not by beating it with an Iron Hammer, for that impairs its force, but rather with a gentle foff File.

PROBLEM XLIII.

To find the two Poles of. a Spherical Loadfone, with its Declination and Inclination

To find the two Poles.

TO find the two Poles of a Spherical Loadfone; raife at Right Angles upon any Point of its Surface a fmall Pivor or Pin, upon which place a Com-pals-Needle, fomewhat hhorter than the Diameter of the Loadfone. This Magneted Needle will turn one of its Points to the North, and the other to the South, but 'rwill not keep an Horizontal Pofition, unlefs it anfwer to the Axis of the Loadftone. If it don't, you muft turn the Loaditone to the Pivor of the Needle, till the Needle is exactly parallel to the Horizon, and then the Pin which I fuppofe placed on the higheft part of the Magnet, will be upon its Equator, and the two Points of the Loadtone cor refponding to the two Extremities of the Needle, will be the two Poles you look for:

Or elfe hold the Loadftone near to the Needle pla ced in the Compafs, and turn it from one fide to the other, till the Needle is perpendicular to the furfa of the Loadfone, and then the Point of the Load

Problems of Phyfrcks.

tione that anfwers perpendicularly to the Point of the Needle, will be one of the two Poles of the Loadftone. Bur in ftead of a Compars- Needle, you may make ufe of a good Steel Sewing Needle, fufpended by one end with a Thread, and turn the Needle thus fulpended round the Loadftone, till it touches it at Right Angles, for then the point of Contact is one of the Poles fought for.

Or again, clap the end of a fine Sreel Needle upon the furface of the Loadftgne, and the Needle will incline to the Loadfone divers ways, according as tis more or lefs remote from one of the two Poles, but when it comes to one of the Poles 'twill ftand perpendicular, as intimated above. So that, to find the Pole, you need only to place the Needle in different parts of the Surface, and mark the Point where it comes perpendicular.

We rarely meet with a Loadftone, the two Poles of One Pole of which are equal, that is, of equal force, for one is a fluaditone a'moft always ftronger than t'other. Moft frequently torhs. they are Diamerrically oppofite, that is, they lie in the Line call'd the Axis, which paffes thro' the middle of the Hoadftone; but fometimes they are not directly oppofite; and fome Loadfones are fo vigorous and lively, that they have equal vigour every where, being, as 'twhere, all Poles, for every Poins unites to Iron.

In the next place, to find at all times and in all To find thi places the Declination of the Loadftone, mark exact ${ }^{\text {Didination. }}$ ly upon an Horizontal Plain the true Meridian Line, by the means of two Points of a hadow mark'd upon the Plain before and after Noon, as we fhew'd you Probl. 31. Cofm. and after applying to that Meridian Line the fide of a Square Compais, which bas a Circle within nicely divided into 360. Degrees, and a Needle well magneted, the end of the Needle will thew upon the divided Circle the Degrees of Declination fought for, counting them from the fraight Line that paffes thro' the middle of the Compats, which is the tide of the fame Compaifs that was applied to the Me: ridian Line.

After this manner, we find, that, at Paris, the Magnet declines at prefent, from Norṭh to Weft almoft倶 Degrees; and by the fame way we knowithe De- a fide as is perpendicular to the Meridian Line; drawn in the botrom of the Compals; and here you mult take care that there be no Iron hid in the Wall, to hinder the Direction of the Magneted Needle, one of whofe Extremities will thew upon the divided Circle the Declination fought for, reckoning from the Meridian Line of the Compafs, where the Declination of the Loadftone ought to be mark'd, in order to take the Declination of the Vertical Plain more ex: actly.

Monfieur Robault fays in his Phyficks, that the Compars Needles are fcarce proper for thewing, in this and the other Northern Climates, how much the end of a Needle pointing to the North inclines towards the Earth, becaule their Center of Gravity is a great deal under the fix'd Point round which they move. For this reaton we fhall now propofe a way of finding (as near as may be) the Inclination of a Magneted Needle.

To find the frclina:ion. whith v rys as well as the the DeclinaHon.

Täke a very Araight piece of Steel Wire, equally thick all over, and of a proper length as four or five Inches. Run a piece of Brafs Wire crofs its Center of Gravity or middle at Right Angles, and that will hold it in Equalibrio, juft as a Beam of a pair of Scales is held by the Hook. Now, as foon as this Steel Wire or Needle is touch'd with a good Magner, and placed in the Plain of the Meridian, 'twill lofe its Ejuilibrium, and the end that points to the North will incline to the Ground ; and fo the Needle will Thew the Inclination of the Loadfone, which Robault found to be at Paris in his time 70 Degrees, and others fince only 65 Degrees; and from thence I conje Oure, that the Inclination changes as the Declinatica; but a great many Experiments are wanting to forifie the Conjecture.

But however that be, the Inclination do's not vary under the 不quator, for there there's none at all, and as it do's not begin till the Needle is moved to fome Diftance from the Æquator towards one of the Pules, fo it At il incriafes as it approaches to a Pole ; and hence 'tis that the Navigators Gailing Northwards, have been obliged in Sailing North, to clapa
litule Wax upon the South end of the Needle, becaufe the other end bended down to the North Pole of the Earth ; and to take it off under the Equator ; and in Sailing on the other fide of the Equator to put the Wax upon the North end of the Needle, the South end of which inclin'd there to the South Pole of the Earth:

Monfieur Vallemont very ingenioufly explains the Remark: Inclination of the Divining Rod by that of the Magneted Needle, in the following Words. 'As the Ma-- gnetick Particles that circulate round the Earth;meer-- ing with a Rod of Magneted Iron, range it in the - direction of their Courfe, and render it parallel to - the Lines that they defcribe round the Terreftrial - Globe : So the Corpufculum's flowing from Veins - of Water, from Mines, from hidden Treafures, and - from the tract of fugitive Criminals, rifing vertical-- ly in the Air, and impregnating the Hazel Rod, ? make it turn or bend downwards in order to be pa-- rallel to the Vertical Lines that they defcribe as they - rife. The fame thing happens in this cafe, that. ${ }^{6}$ would happen to a^{*} Rod of Magneted Iron at the - Pole of the Earth, where 'twould incline perpendi-- cularly, by reafon of the Magnetical Parricles their - rifing Vertically. Juft as when you make faft - the branch of a Tree to the ftern of a Boar, you fee c it quickly difpofes it felf lengthways according to the - Atream of the River, to which the branch always af! fects to be Parallel.

PROBLEM XLIV.

To reprefent the four Elements in a Vial.

THE four Elements of which the Author of Nature has. compofed the Elementary World, are the Earth, Water, Air, and Fire; of which, the Earth being the heavieft, is faid to have the lowermoft Station in the Center of the World; Water being lighter covers the Earth; Air being lighter than Water covers it ; and at latt Fire the lightelt of all furrounds the Air. So that in this Cenfe thefe four make four Concentrical Orbs, the common Center of which is the Center of the World.

Mathematical and Pbyyical Recreations.

We may reprefert the four Elemepts in this Order; in a long Vial of Glats or Cryftal,' as AB, by the help of four Heterogeneous Liquors, that is, Liquors of 2 different Specifick Gravity, which are of fuch Qualities, that, tho thak'd together by a violent Agitation, they foon after return to cheir natural Stations, and all the Parricles of one and the fame Liquor unite in à

eparate Body from the reft, the lighter giving way to the heavier:

To reprefent the Earth, make ufe of Crude Antimony, of blue Smalt well refin'd, or black Smalt coarfly pounded, which by its Weight will fink to the bottom of the Vial AB.

To reprefent Water, pour upon the laft the Terreftrious Subftance of the Spirit of Tartar, ar Calcin'd Tartar, or the clear Solution of Por-Athes with a little Roch-Azur, which will give a Sea Colour.

To reprefent the Air, pour upon this Compofition Spirit of Wine rectified three times, till it has a colour of Air, or elfe the moft Spirituous Brandy with a little Turnfol, which will give if a Celeftial Blew of Air Colour:

To reprefent Fire, pour upon all three the Oil of Behn, which by its Colour, Lightnefs and Subrilry, will make a pretty near Refemblance.

PROBLEM XLV.

Several ways of Prognofficating the changes of Wea: iber.

THE Winds are the caufe of the moft fudden and extraordinary alterations of the Gravity of the Air; and the nature of the Winds is fuch, that by the Experience we have of them, we may from thence predict (very near) the Weather that will infue for two or three days after ; for the Wind that blows is readily known by the Anemofcope, of which Probl. 34. of Mechanicks. We know, for example, in this Climate, that a South Wind generally brings Rain, and a Weft Wind yet more (which is the Predominant Wind here, doubtlefs, becaufe the Ocean lies on that fide;) that the North Wind brings fair Weather, as well as the Eaft Wind, which do's not laft fo long as the former.

The Inhabitants of the Antilla Iflands have an admirable faculty of Prognofticating by Experience the Hurricanes that ufually happen in thofe Inands, and are fometimes fo Violent as to tols Men in the Air, raife up big Trees, ECc.

We may foretel the alteration of Weather by 2 Barometer (of which Probl. 6. Mechan.) for when 'tiṣ calm Weather, and about to Rain in a little time, the Quickfilver ufually defcends.

Mr. Guerick Bourgomafter of Magdebourg invented a Barometer, which he call'd an Anemofcope, becaule by it he pretended he could not only tell how the Wind ftood in the Air, but likewife predict Rain. Drought, Storms, and Tempelts two hundred Leagues off; and even the formation of Comets in the Heayens.

This Barometer is made like a Glars Tube, in which is a little Artificial Man of Wood, that af cends or defcends according to the weighte of the Aira

We are told, that in the year 1680 this little Man mounted fo very high at Magdebourg, that all on a fudden he funk quire down in the Tube for two or three Hours ; upon which Mr. Guerick Prognofticared a great Storm, which accordingly happen'd foon atter, and did great Mifchief all over the Sea-Coalt of Europe.

This Gentleman's Secret is faid to be known to none but the Elector of Brandenbourg, who has one of his Barometers in his Library. But what he knew by his Barometer, the Savages know by a long habitual Confideration of the Temperament of the Air, when Hurricanes happen, or of the courfe of the Clouds, or of the Winds that oftentimes are the forerunners of Hurricanes; fometimes they predict Hurricanes from the flight of certain Fowls.

The Labouring Men and Ancient Inhabitants of Rural Places, are not lefs expert in foretelling the alterations of the Weather; above all, the experienc'd Pilors never fail almolt in predicting Storms from the precedent Signs formerly obferv'd.

Some tell you, there's a hole in a Mountain in the Alps, the ftopping of which brings a Storm in that part an hour atter. We are likewife told that there are fome natural Tubs or Caverns in the Rocks near Grenoble, which, when full of Water in the Spring, prefage a good and fertile Year, and when dry a barren Year.

Thofe who apply themfelves to the obfervation of the fore-running Signs of good or bad Weather, lay down the following Rules. When a thick white Dew lies upon the ground in a Winter Morning, you'll have Rain the fecond or third day after. When the Sun rifes red or pale, it generally rains that day: When the Sun fets under a thick Cloud, you'll have Rain next Day; or, if it rains immediately, you'll have a great deal of Wind next day; which is almoft always the Confequence of a pale ferting Sun. A red Sky at Sun-rife is a fign.of Rain; but a red Sky where the Sun fers, is a fign of fair Weather ; indeed if the Sky be red at a great dittance from the part where the Sun fers, as in the Eaft, you'll have either Rain or Wind the next day. If juft after Sun-fet, or before Sun-rife, you obfewe a white Va-

Problems of Phyficks.

pour rifing upon Waters, or Marfhes, or Meads, you'll have fair warm Weather nexí day.

If a full Moon tifes fair and clear, it portends a fet of good Weather; a pale Moon is the fore-runner of Rain, a red Moon of Wind, a clear Silver-colour'd Moon of fine Weather; according to the Latin Verfe.

Pallida Luna pluit, rubicanda flat, alba Serenat.

When the Fowls pick their Feathers with their Bill, "tis a fign of Rain. Other figns of Rain, are; When the Birds that ufually pearch upon Trees fly to their Nefts; When Coots and other Water-Fowls, efpecially Gcefe, keckle and cry more than ufually; When the LandFowls repair to Water, and the Water-Fowlsto Land; When the Bees do not fir (or at leaft not far) from theip Hives; When the Sheep leap mightily, and pufh at one another with their Heads; When Affes hake their Ears, or are much annoyed with Flies; When Flies are very troublefom, dahing often againft a Man's Face ; When Flies and Fleas bite wickedly ; When many Worms come out of the Ground; Whet Frogs croak more thau ufually; Wheno Cars rub their Head with their Fore-paws, and lick the reft of their Body with their Tongue; When Foxes and Wolves howl mightily; When Ants quit their Labour and hide themelves in the Ground; When Ox^{2} en tied together raife their Heads, and lick their Snouts; When Hogs at Play break and featter their bortles of Hay; When Pigeons return totheir PigeonHouie; When the Cock crows before his ufual Hour ; When Hens creep in Clufters into the Duft; When Toads are beard to croak upon Eminences; When Dolphins are often feen at Sea; When Deers fight; $E^{\circ} \mathrm{c}$.

A Rainbow in the Eaft is a fign of great Rain, efpecially if it be of a bright lively Colour; A Rainbow in the Weft prefages an indifferent quantity of Rain, and Thunder; but a Rainbow in the Eaft in an Evening, predicts fair Wearher, and if its colour is lively and red, ic foretells Wind.

An Iris round the Moon, is a fign of Rain with a South-Wind ; an Iris round the Sun with a fair clear

We apprehend changes of VVeather, when the leaves of Trees move without VVind; when the Water dries more than uftally, or where it did not ufe to dry; VVhen Spring or River VVater increafes without Rain; VVhen we fee an Iris round a Torch, a Candle or a Lamp; VVhen Fire kindles with Difficulty ; VVhen the Flame inftead of mounting upwards bends fideways, and the Rays reflect; VVhen falt Meat or Salt becomes moift, and when Stones fwear, that Humidity being a fign that the Air is overloaded with moilt Vapours.

In Summer we apprehend a fiture Storm, when we fee little black loofe Clouds lower than the reft, wandring to and fro ; VVhen at Sun-rife we fee feveral Clouds gather in the VVeft; and on the other hand, if thefe Clouds difperfe, it fpeaks fair VVeather. VVhen the Sun looks double or triple through the Clouds, it Prognofticates a Storm of long Duration. Two or three difcontinued and rpeckled Circles or Rings round the Moon, prefage a great Storm.

PROBLEM XLVI.

Of the Magical Lantern.

THO' I took notice already Probl. 27. Opt. of the Magical Lantern, the Invention of which is attributed to Frier Bacon of England, yet having there spoke but tranfiently of it, I think my felf obliged to defcribe it a little more particularly in this place, fince it has made fo much noife in the VVorld of late, infomuch that fome think 'twas known to So- , lomon.

This Lantern is call'd Magical, with refpect to the formidable Apparitions that by vertue of Light it Shews upon the white VVall of a dark Room. The Body of it is generally of white Iron, and of the Figure of a fquare Tower, within which towards the back part is a Concave Looking-Glafs of Metal A, which

The Magical Lantern Prob. 46

\because

Problems of Pbyficks.

which may either be Spherical or Parabolical, and which by a Groove made in the bottom of the Lanthern, may be either advanced nearer, or put further back from the Lamp B, in which is Oil of Olives or Spirit of VVine, and of which the Match ought to be a little thick, that when 'ris lighted it may caft a good Light, that may eafily reflect from the Glaifs A to the forepart of the Lanthern, where there's an Aperture C, wish a Profpective CD in it compos'd of two Glaffes that make the Rays converge and magnifie the Objects.

VVhen you mean to make ufe of this Machine, light the Lamp B, the light of which will be much augmented by the Looking-Glafs A at a reafonable Diftance; berween the forepart of the Lanthern and the Profpective-Glafs CD, you have a Trough made on purpofe, in which you're to run a long flat thin frame EF, with feveral lirtle different Figures, painted with tranfparent Colours upon Glafs or Talk: Then, all thefe little Figures paffing fucceffively before the Profpective CD, thro' which pafles the Light of the Lamp B, will be painted and reprefented with the fame Colours upon the white VVall of a dark Room, in a Gigantick monftrous Figure, which the fearful ignorant People take to be the effect of Magick.

PROBLEM XLVII.

Te piercç the Head of a Puilet with a N̦eedle withbuus killing it.

THIS is a very eafie Problem, for there's a place in the middle of a Pullet's Head, shar may be pierced withour hurring the Cerebellum. But the Needle muft not be kepr in above q quarter of 39 Hour.

Mathematical and Pbyfical Recreations.

PROBL'EM XLVIII.

Ta make bandfom Faces appear pale and bideous in a dark Room.

BUR N fome Brandy and common Salt in a Glafs, then put out the fire and all the Lights in the Room; and the Particles of the Salt and Brandy evaporating into the Air thut up in the Room, will make the F2ces of the People in the Room appear thro' that Air hideous and frightful.

I intimated above, That, if inftead of Brandy, you take good Spirit of Wine mix'd with Camphyr in a glaz'd earthen Pan put upon hot burning Coals; he that enters the Room with a lighted Candle will be agreeably furpris'd; for the Candle fetting fire to the Particles of the Spirit and the Camphyr, with which the Air is replenifh'd, that Air will feem to be all in a fire, and the Perfon will fee himfelf in the midt of Flames without being burnt.

PROBLEMS
 OF PYROTECHNY.

PTrotechny is an Art that teaches to make Fireworks of all forts, whether for War or for Diverfion. Of the firth. kind, are Grenades, Bombs, Carcaffes, Petards, Mines, and fuch other Machines of War fitted for the Terror and DeItruction of an Enemy : Of the Latter, are Rockets, FireLances, Serpents, and other artificial Reprefentations of various things in Fire, which are fit for Diverfion, and for Entertainment upon folemn Occasions of Joy; fuch-as of Suns, Stars, Rain of Gold, flying Dragons, Rocks, Towers, Pyramids, Arches, Coaches, Triumphal Chariots., Coloffes or Gigantick Statues, Swords, Scymitars, Cudgels, Bayonets, Shields, Scutcheens, \&c. as will appear in the following Problems.

PROBLEM I.

To make Gun-Rowder.

Gun-Powder, which is fid to have been invented about three hundred years ago by a German Monk, being required to the making up of all Fireworks, 'ti neceffary we thould begin by hewing the Manner of its Compofition, the Effects of which, when in whole Grains or Corns, are fo fudden and violent, tho when beaten fall, it lopes molt of its Force, as Experience teaches; of which we hall not here trouble our delves to find our the Reason.

The principal Things of which Gun-Powder is made are three, viz. Nire or Saltpeter which gives it the Force, Sulphur or Brimfone which makes it quickly to take fire, and Wood-coal Duft wbich unites the Compofition, and qualifies the force of the Powder.

The Saltepter muft be very white, being well skimn'd and clarified, which is done in this Manner ; firft it muft be boiled, with a quantity of Water fufficient to diffolve it, in a Kettle, or in a glaz'd Earthen Pot, on a Fire, llow at firt, and increas'd by degrees till the Nitre is all diffolv'd, and the Liquor begins to thicken: After which fome yellow Sulphur well pouder'd mult be chrown in, which will immediately take Fire; this Injection being many times repeated, will confume the grofs and vifcous Humour of the Saltpetre, which bereby will be purified.

The Salt-Peter thus diffolv'd and purify'd, muft be pour'd out upon a well-polilld Marble, or upon glazed Tiles, or upon Plates of Iron or Copper, where, when cald, it becomes hard, and white as Marble : After which it muft be reduc'd to a Flower or Powder, by drying it on a Coal-fire, and ftirring it continually with a large Stick, till all the $\mathrm{Hu}-$ midity is exhal'd, and its become perfectly white; then more clear Water, or rather White-wine, muft be pour'd upon it, fufficient to cover the Salt-Peter, which will diffolve it; and when it has acquir'd a fomewhat thick Confiftence, it muft be perpetually ftirr'd, and as quick as poffible, with the lame Stick, till this Moifture is alfo evaporated, and all is reduc'd into a very dry and white Powder, which muft be afterwards pafs'd thro' a very fine Silk Searce.

The Sulphur muft alfo be well clarified and skimmed with a Spoon, being diffolv'd by little and liave on a Coal-fire withour Smoke, in an Earthen or Cofper Por: Then being taken from the Fire, it mutt be ftrain'd thro a Linnen Cloth, into another Veffel, where it remains pure and clean, feparated by the Cloth from all the grofs and oyly Humour, of which ir, no lefs then the Salt-Peter, did partake.
Some there are, who to make the Sulpbur more active and violent, add to it, when diffolv'd as is
before

Problems of Pyrotechny.

before order'd, a fourth part of its Weight of Quickfilver, firring and mixing it inceffantly, and as faft as poffible with a Stick, till it be cold, and the Mercury is well united and incorporated with the Sulphur, infomuch that all is reduced into one folid Body.

Others, to render the Sulphur more forcible, pure, and clean, inftead of Mercury mix is with Glafs finely powder'd, and pour upon it Brandy with fome. Powder of Allum. This is a good way to make fine Gun Powder for Piftols, Carbines, and other fuch Fire-Arms; but for ordinary Gun-Powder the common yellow Brimftone is fufficient, which makes a Noife when 'ris held to the Ear.

The Coal required in making of Gun- Powder mult be light; for the lighter 'tis, the more thereof gocs to make up the Weight, and when redac'd to Powder it takes up moft room, and goes the further. The lighteft of all others is that made of pilled H tmpftalks; but in my Opinion the Coal of the Willow-: tree is better; or if this can't be had, we may ufe the Wood of the. Hazel-tree, or that of the Lime-tree, or even that of Juniper for the fame End. And 'tis done thus.

The Branches of the Wood you defign to ufe, muft be cut in May or in Fune, when fulleft of Sap, of rwo or three Foot in length, and balf an Inch thick ; then with a Knife you mult clear them of the Bark and Twigs, and tie 'em up into little Faggors, and dry them in a hor Oven; you muft burn them afterwards in a large Por, till they are reduc'd into live Coals, which muft then be extinguifh'd by covering the Pot clofe with Earth fomewhat moift, which atter 24 hours may be uncover'd, and the Coal taken thence to be us'd upon occafion when ever you have mind to make up your Gun- Powder, which you huft do in this manner.
Having thowed already that thefe-three things, preparation Salt-peter, Sulphar and Wood-Coal, which we have of Gur-powalready taught how to prepare, are required in the der.
Compofition of Gun-powder, what remains is only to determine the Proportion and Quantity of each, together with the Order and Method to be oblerv'd in mixing 'em. Wherefore,

Mathematical and Phyfical Recreations.

To make fine Powder fir for Rockets, you muft add, to eighr Pounds of good Salt-petre well refined, one Pound of Flower of Sulphur, and two Pounds of the Coal of Willow-tree.
Or, to fourteen Pounds of Salt-petre, add two Pounds of Sulpbur prepar'd with Mercury, or in Flowers, and one Pound of Coal made of Hemp-ftalks.
Or again, add to fix Pounds of Salt-petre, one Pound of Brimfone, and one Pound of Coal.

Or, finally, so four Pounds of Salt-petre, add one Pound of Sulphur, that has been made to paafs thro' a very fine Searce, and two Pounds of Coal taken from a Baker's Oven ; and this to me feems the beft of all.

If 'tis requir'd that this Porvder fhould burn in Witer, you muft add, to one of thefe four Compofitions, a quantity of 2 uick-lime equal to that of the Sulpbur.
To make Powder fit to Be us'd in Fire-Arms, and in the firft place for Cannons, add to four Pounds of Salt-petre. one Pound of Sulphur, and one Poand of Coal; or elfe to twenty five Pounds of Silt-petre, add five Pounds of Sulphar, and fix Pounds of Coal.

For Mufquets, to fifty Pounds of Salt-petre add nine Pounds of Sulphur, and ten of Coal: Or elle, to an hundred Pounds of Salt-petre, add fifteen Pounds of Sulphur, and eighteen of Coal.
In fine, for Piftols, add to an hundred Pounds of Salt-petre, twelve Pounds of Sulphur, and fifteen of Coal: Or to fifty Pounds of Salt-petre, five of Sulphur, and four of Coal.

The Proportions of the Ingredients being thus adjufted, all together mult be thrown into a brazen Mortar, and with a Peftle of the fame Metal well beaten, for feven or eight Hours and more, withont ceafing, gently fprinkling the Mixture with Wate from time to time, or rather with. Urine, or witr. Itrong Vinegar, or, which is yet betror, with Brandy ; and if you defire a fine light Powder, ufe, inftead of thefe abovefaid Liquors, the diftill'd Warer of Orange or Citron-peel, taking care that you moiften it not too much ; and to hinder the Coal from flying away, you may diffolve a little ling-glafs in the Liquor : If "cis required that the Grains of the Powder

Problems of Pyrotecbuy.

Powder be very hard after they are dryed, the Compofition, towards the End, muft be fprinkled with Water wherein Quick-lime has been quench'd.

The Mixture being thus fufficiently beaten and fprinkled, muft be pals'd thro a Sieve with round Holes, more or lefs wide, according as the Size of the Grains is defir'd ; after this it muft be putinto a hair Searce, and fhaken till all pafs through but the Grains, which muft be kept for ufe. But that which is not reduc'd into Grains, that is the Duft which paffes thro' the Searce, muft not be loft ; for it may be dry'd in the Sun, or fome hot Place, as in a Stove, and then put into the Mortar, pounded, fprinkled, pafs'd thro the Sieve, and fearced, as hath juft now been faid, and the fame Operations may be reiterated till all the Mixture is brought into Corns or Grains.

Some there are that don't beftow fo much Pains in making this Powder, efpecially upon that for Cannons: For they judge it fufficient to pur into ant Earthen Pan fome Salt-petre, Sulphur, and Wood-coal, in a Proportion approaching fome of thofe formerly fet down, or fuch an one as Experience has taught 'em to be the beft, which they boil in Water over a gentle fire two or three Hours, till, the Water being confumed, the Mixture acquires fome Confiftence; after which they dry it, as formerly, in the Sun, or in fome warm Place, and then make it to pafs through a Searce of Hair, thereby to reduce it into fmall Grains.

PROBLEM II.

To make Gun-Powder of any required Colour

THE Powder, of which we have given the Compofition in the preceding Problem, muft of necefty be of a black Colour, by reafon of the Coal mixed therewith; which yet is not abfolutely neceffary to it: For we are at libery inftead of it to ufe any other Matter that is eafily inflammable, which will communicate its Colour to the Powder, to be made as has been taught above: But the following Proportions muft be oblerv'd.

Mathematical and Pbyfical Recreations.

Thnite Gunt. Powder.
telloin Guni Poider.

If. 'tis requir'd to make White Powder, to fix Pounds of Salt-petre, muft be added one Pound of sulpbur and one Pound of the Pith or Heart of Elder well dry'd: Or elfe to ten Pounds of Salt-petre, add one Pound of Siulphir, with one Pound of pilled Hempfalks.

If Yellow Powder is defired, add, to eight Pounds of Salt-petre, one Pound of Sulpbur, with one Pound of wild Saffron boild in Brandy, and afterwards dry'd and pulveriz'd.
Biwe Bowder. To make Blue Powder, take, to eight Pounds of Salt-petre, one Pound of Sulphur, with one Pound of the Saw-dult of the Lime-tree, boil'd in Brandy with fome blew Indigo, and after dry'd, and Powder'd.
GriethPotsder. If you would have Green Porider; with ren Pounds of Salt-petre, you mult mix one Pound of Sulphur, and two Pounds of rotten Wood, boild in Brandy with fome Verdigreafe, and then dry'd and teduc'd to Powder.

Finally, Red Powder may be made, by adding to twelve Pounds of salt-petre, two Pounds of Sulphur, one Pound of Amber, and two Pounds of Red Sanders : Or, to eight Pounds of salt-petre, and one Pound of Sulphur, you may take one Pound of Paper dry'd and pulveriz'd, and afterwards boil'd in Water of Cinnabar, or of Vermilion, or of Brafil-wood, and then 'dry'd.

PROBLEMIİI.

To make Silent Powder, forb as may be difcharged without a Noife.
H I S anfounding Powder, if any fuch there is, goes commonly under the Name of White Pobe
der, becaule, poffibly, the firtt made was of that Colour. 'Tis not probable it canabe of any great Force, for as much as the Noife of Gun-powder, proceeds from the violent Percuffion of the Air, occation'd by the ftrength of it. I have not indeed reen this Pow: der, my felf, yet I have read in Authors feveral Ways of naking the latrie, of whith the following two onay eccisr to my Metiory.
the

The firt is thus: To one Pound of Common Gun- The frit Pomder, take half as much Venetian Borax, which ha-- Way. ving pulveris'd, mix'd, and well incorporated together, reduce the Mixture into Grains, as above directed, and you have the Powder required.

The other Way is: To four Pounds of Common The fecond Gun-Powder, add rwo Pounds of Venetian Borax, one Wáy. Pound of Lapis Calaminaris, and one Pound of SalArmoniack; pulverize 'em all together, to make of 'em a Powder in Grains, as before.

PROBLEM IV.

To know the Defects of Gun-Powder.

TH E Defects of Gun-Powder may be known feveral Ways : as firft, by the Sight, when 'tis too black; for then it has too much of the Wood-coal, as you may perceive if you put fome of it upon white Paper, which it will blacken : Now too much of the Coal renders it moift, and the Moifture diffolves the Salt-petre, Ceparates it from the other two Parts of the Mixture, and fo leffens its Force. The Powider that is good, thou'd be of a dark Afh-colour, inclining fomewhat towards a Red.

Secondly, by the Touch; if you rub fome Grains of it with the end of your Finger upon a well-polih'd Table, and they are eafily reduc'd inro Duft, 'tis a fign that the Proportion of the Coal therein is more than enough : And if the Grains don't crumble with equal Facility, fome of them being fo hard that they prick the Finger, 'tis an evidence that the Sulphur is not well imbodied with the Salt-perre, and the Powder therefore not duly prepared.

Thirdly', the Faults of Gun-Powder may be perceived by means of the Fire: For if when 'ris fired upon a fmooth Board, it blackens it much, 'tis a token there is too much Coal in it; and if upon that Board or Table there remains only fome black Mark, it appears thereby that much of the Coal has fot been well burnt: And, in fine, if the Board remains as it were greafy; this difcovers that the Sulphut and the Salt-ferre have nor been fuficiently purified; Humour, which is ever hurtful and fuperfluous.
'Tis likewife a fign that the Salt-perre has not been fufficiently refined, that is, feparated from that grofs terreftrial Matter which is prejudicial in the Compofition, and that the Sulphur has not been beaten enough, nor well incorperated with the other Parts, when there appear in the Powder fmall Grains, white, or of a Citron-colour.
The good or bad Qualtity of Gun-powder may alfo be thus difcerned by means of Fire, if you lay feveral little Heaps thereof upon a clean and well-polifh'd Board, at the diftance of four or five Inches from one another: For when 'tis well prepar'd, if you put fire to one of thefe Parcels, the Powder will take fire of a Sudden, and it will burn by it felf with a little Crack, the clear white Smoak arifing all ac once like a Circle in form of a Crown.

PROBLEM V.

To amend the Defects of Gun-Powder, and to reftore it
when decay'd.
IF Gun-powder has not been well prepared, or, if, being kepr in a moift Place, or being too old, 'tis altered, weaken'd, or fpoiled, degenerating thus from its firf Vigour, it may be recovered in the following Mannet

Take a quantity of good Gun-poroder equal in bulk to that which you would amend or reftore; that will be much heavier than this: To this laft therefore a quancity of well clarified Salt-petre muft be added, fufficient to make it of the fame Weight with the former, which being beaten rogether in the ufual Manner, muft be reduc'd into Grains, as was elfewhere taughr, which will be a very good Powder, that muft be kept in fome Wooden Box or Veffel, untill there's occafion to ufe it.

When the Powder is but a little altered, it will be fufficient to mix fome of it with an equal quantity of good Powder newly prepar'd, upon a Table or a Cloth,

[^1]> Problems of Pyrotechny.

Cloth, with the Hand or a Wooden Shovel, and then to dry it in the Sun.

PROBLEMVI.

To prepare an Oyl of Sulphur, required in Firemork\}.

HAving melted what quantity of sulphur you think fir, upon a moderate Fire, in an Earthen, or Copper Veffel, throw into it fome old, or in defect of this fome new Brick, that is well burnt, and was never wetted, broken into many fmall pieces about the bignefs of a Bean; ftir them continually with 2 Atick, till they have drunk up and confum'd all the Sulphur ; this done fer them upon a Furnace to diftil in an Alembick; fo you thall have a very inflammable Oyl, fit for your purpofe.

You may make it otherways thus: Fill one third or fourth part of a Glafs-botrle with a long Neck with Sulphur pulvetis'd ; then pouring upon ir Spirit of Turpentine, or Oyl of Walnuts, or of Juniper, till the Bortle is half full, fet it upon hot Cinders, leaving it there eight or nine Hours; and you fhall find an Oyl therein of the above-faid Qualtity.

PROBLEMVII.

To prepare the Oyl of Salt-petre ufeful in Firemorks.
PU T, upon a Fir-board well plain'd, and dry, what quantity of purify'd salt-petre you pleare, and caufe it to melt by putting thereupon burning Coals; and you thall fee the Liquor to pals thro'the Board, and to fall down Drop by Drop, which muft be received in an Earthen or Copper Por, where you have an Oyl of Salt-petre, fit to be ufed in Fire-works, as we fhall declare is its proper Place.

PROBLEMVIII.

To prepare the Oyl of Sulphur and Salr-petre mix'd tosether.

HAving mix'd and well incorporated equal Portions of Sulphur and Salt-petre, reduce all into 2 fine Powder, which muft be pafs'd thro' a fine Searce: Pur this Powder thus fearced into a new Earthen Por, or one that hath not been ufed, and pour upon it good White-wine Venegar, or elfe Brandy, till "tis covered. Then cover your Pot fo that no Air may get into it, and fet it to ftand in fome hot Place, till all the Vinegar is confumed or difappears. Laft of all, draw from the remaining Matter the Oyl by means of an Alembick, which will ferve to feveral Purpofes of Py torechny.

PROBLEM IX.

To make Moulds, Rowlers, and Rammers for Rockers of all forts.

ARocket, which the French call Fufee; the Latins Rocheta; and the Greeks; Pyrobolos, confifts of a Cartouch or Paper-tube call'd the Coffin, and a combuftible Compofition, with which 'ris loaded; which being fired, mounts into the Air, in a manner mott agreeable to behold. .

There are three forts of 'em ; the small, the Middling, and the Great. All fuch are reckon'd fmall, whereof the Diameters don't exceed that of a Leadbullet of one Pound, or whofe Moulds admit not a Bullet above that Weight. The Middling, are thole the Moulds of which will admit Bullets from one to three Pound-weight. The Great will carry from 2 three Pound to an hundred pound Ball.

To derermine the Bignels of thele Coffins to a required Meafure, that is Length and Thicknefs, and to make any demanded Number of 'em, of the fame Reach, and of equal Force, they muft be fitted to 2 concave Cylinder, made of fome hard Matter, and tarn'd
rurn'd exactly in a Lath: This is called the Mould or Form, which is fometimes made of Metal, but mont commonly of hard Wood, fuch as Box, Juniper, Afh, Cyprefs, wild Plum-tree, Italian Walnut-tree, and fuch like.

Befides this, there is another, but a convex and fo- Plaze 23. lid Cylinder of Wood required, call'da Roopler, upon which the thick Paper, whereof the Coffin is made, muft be rowled, till 'tis of a bignefs exactly to fill the Concavity of the Mould. This Rowler is here reprefented by the Letter B, and its Diameter muft contain five eight Parts of that of the Mould A, the Length of which mult be fix times the Diamerer of irs Bore, in fmall Rockets; but in the Middling and the large ones, it muft be only five, or four times the length of the Diameter of their Bore.

Another Cylinder of Wood muft allo be bad, which is to be little fmaller than the former, that it may go into the Coffin with the greater eafe. And this is to ferve for a Rammer, as \mathbf{C}, to drive down the CompoSition into the Coffin when you charge it. But firft your Coffin muft be ftraitned or choaked; which is done by winding a Cord about the end of it, after you have a little withdrawn the Roonler, turning in the mean time the Coffin, and drawing the Cord, till there remains only a little Hole, which then muft be ty'd with ftrong Pack-thread. This done you muft draw out the Kowler, and introducing the Rammer into the Coffin, put all into the Mould ; and when you have ftruck five or fix blows with a Mallet upon the Rainmer, to give a good form to the Neck of the Rocket, the Cofin is finithed, and ready to be filled upon Occafion.

This Rammer C, muft be bored lengthwife to fome depth, that it may receive into its Concavity the Needle DE, which muft be in the Mould A, together with the Coffin and Rammer. The ufe of this Needle, which muft be one third Yart of the length of the Coffin or Mould is to make a vent for the Priming in the bottom of the Compofition, of which we fpeak in the en-- fuing Problem.

PROBLEM X.

To prepare a Compofition for Rockets of any fize.

T
H E Compofition wherewith the Coffins are to be fill'd is different, according to the different bignels of ' em ; for 'tis found by Experience, that what is fit for fmall Rockets, burns too violently, and too quickly in thofe that are large, becaufe the Fire is bigger, and the Matter alfo driven clofer together : Hence it is that no Gun-powder is us'd in the larger fort. In making up this Compofition, according to the differing fizes of Rockets, the following Proportions maft be obferved.

For Rockets from 60 to 100 Pounds, you muft to three Poumds of Salt-petre, add one Pound of sulphur, and two Pounds of good Wood-coal.

If they are from 30 to 50 Pounds, to thirty Pounds of Salt-petre, put feven Pounds of Sulphur, and fixteen Pounds of Coal.

Rockets from 18 to 20 Pounds, to twenty one Pounds of salt-Petre, require fix of Sulphur, and thirteen of Coal.
From 12 to 15 Pounds, require to four Pounds of Salt-petre one Pound of sulphur, and two Pounds of Coal.

If they be from 9 to 12 Pounds; to fixty two Pounds of Salt-petre, add nine Pounds of Sulphur, and twenty of.Coal.

From 6 to 9 Pounds; add to feven Pounds fof Saltperre, one of Sulphur, and two of Coal.

From 4 to 5 Pounds; to eight Pounds of Salt-petre, add one Pound of Sulphur, and two of Coal.

From 2 to 3 Pounds; to fixty Pounds of Salt-petre, add two of Sulphur, and fifteen of Coal.

For, one Pound; to fixteen Pounds of Gun-powder, add one Pound of Sulphur, and three of Coal: Orto nine Pounds of Powder, four of Salt-petre, one of Sulphur, and two of Coa!.
For twelve Ounces; put to nine Pounds of Powder, four of Salt-petre, one of Sulphur, and two of Coal.

Problems of Pyrotechny.

For 8 Ounces ; add to thirty Pounds of Powder, twenty four of Salt-petre, three of Sulphur, and eight of Coal;

For 5 and 6 Ounces; to thirty Pounds of Powder, add wenty four Pounds of Salt-petre, three Pounds of Sulphur, and eight Pounds of Coal.

For 4 Ounces; add to twenty four Pounds of Powder, four Pounds of Salt-petre, two Pounds of Sulphur, and three Pounds of Coal.

- For ${ }^{\circ}$ and 3 Ounces; to twenty four Pounds of Powder, put four Pounds of Salt-petre, one Pound of Sulphur, and three Pounds of Coal.

For an half Ounce, and an Ounce; take fifteen pounds of Powder, and two pounds of Coal.

For the fmaller Rockets; to nine or ten pounds of Powder, add one pound, or one and a half of Coal.

Here follow alfo other Proportions,which Experience hath taught to fucceed exuremely well.

For Rockets that contain one or two Ounces of Matter. Add to one pound of Gun-powder, two Ounces of good Coal: Or, to one pound of Muf-quet-Powder, take one pound of courfe Cannonpowder: Or, to nine Ounces of Mufquet-powder, put two Ounces of Coal : Or to one Ounce of Powder, an Ounce and a half of Salt-petre, with as much Coal.

For Rockets of two or three Ounces; add to four Ounces of Powder, one Ounce of Coal : Or to nine Ounces of Powder, two Ounces of Salt-perre.

For a Rocket of four Ounces; add to four pounds of Powder, one pound of Salt-petre, and four Ounces of Coal, and if you pleafe half an Ounce of Sulphar: Or to one pound two Ounces and an half of Powder, four Ounces of Sulphur, and two Ounces of Coal : Or to one pound of Powder, four Ounces of Salt-petre, and one Ounce of Coal; or to feven Ounces of Powder, four Ounces of Salt-perre, and as much Coal : Or, add to three Ounces and an half of Powder, ten Ounces of Salt-perre, and three Ounces and an half of Coal. The Compofition will be yet more ftrong, if it be made upo of ten Ounces of Powder, three Ounces and an half of Salt-petre, and three Ounces of Coal.

For Rockets of five or fix Ounces; take twa pounds five Ounces of Powder, to half a pound of Salt-perre, two Ounces of Sulphur, fix Ounces of Coal, and two Ounces of Filings of Iron.
For Rockets of feven or eight Ounces; add to feventeen Ounces of Powder, four Ounces of Salt-petre, and three Ounces of Sulphur.

For Rockets from eight to ten Ounces; to two pounds five Ounces of Powder, puc half a pound of Salt-petre, two Ounces of Sulphur, feven Qunces of Coal, and three Ounces of Filings.
For Rockers from ten, to twelve Ounces; take to feventeen Ounces of Powder, four Ounces of Saltperre, three Ounces and an half of Sulphur, and one Ounce of Coal.
For Rockers from fourteen to fifteen Ounces, to two pounds four Ounces of Powder muft be added, nine Ounces © Salt-perre, three Ounces of Sulphur, five Ounces of Coaly and three Ounces of Fileduft.
For Rockets of one Pound, to one pound of Powder, take one Ounce of Sulphur, and three Ounces of Coal.
For a Rocket of two Pounds, add to one pound four Ounces of Powder, twelve Ounces of Salt-petre, one Ounce of Sulphur, three Ounces of Coal, and two Ounces of File-duft of Iron.
For a Rocket of three Pounds, to thirty Ounces of Salt-petre, put feven Ounces and an half of Sulphur, and eleven Ounces of Coal.

For Rockers of four, five, fix, or feven Pounds, add to thirty one pounds of Salt-petre, four pounds 'and an half of Sulphur, and ten pounds of Coal.

For Rockets of eighr, nine, or ten Pounds, také to eight pounds of Salt-perre, one pound four Ounces of Sulphur, and two pounds twelve Qunces of Coal.

The Proportion of the different Materials being thus determined, each of 'em mult be well beaten, and fearc'd apart, and afterward weigh'd and mix'd. Thus is your Compofition ready wherewithal to charge your Coffins, which mult be made of ftrong Paper well pafted.

PROBLEM XI.

To make a Rocket.

Y0 UR Coffins and different Compofitions being in readinefs, You muft chufe a Compofition fuitable to the largenels of your defign'd Rocket, which muft neither be too wet nor too dry, but a little moiftened with Come oyly Liquor, or with Brandy; then take your Coffin, the length of which muft be proportion'd to the bignefs of its Concavity ; put it, with Platé 330 the Rammer C, into the Mould A; then put into Fig. 66. it fome of your Compofitior, taking good care not to put in too much at a time, but only one Spoonful or two ; then pur in your Rammer, and with a Mallet fuited to the bignefs of the Coffin, Atrike three or four fmart Blows directly upon ir; then withdraw the Rammer again, and pour in an equal quantiry of your Compofition, and drive it down in like manner with your Rammer and Mallet, giving the fame number of Blows; continue thus doing till the Coffin is fill'd to the beight of the Mould, or rather a little below it, that five or fix Folds of the Paper may be doubled down upon the Compofition thus driven into the Coffin, which fometimes inftead of Paper is made of Wood,

The Coffin being filled with the Mixture, and the Paper doubled down upon it, you mult beat it hard with the Rammer and Mallet to prefs down the Folds of the Paper, upon which you may put fome Cornpowder, that it may give a Report. In this Paper folded down, you mult make three or four Holes as you fee in A, with a Bodkin FG, which muft pene- Fig. 66 ? trate to the Compofition, to fet fire to the Stars, Serpents, and Ground Rockets, when fuch there are ; otherwife it will fuffice to make one Hole only, with a Broach or Bodkin, which muft be neither too fmall nor too great, but about one fourth of the Diameter of the Bore, as ftraight as poffible, and in the very. middle, in order to fire the Corn-powder.

$$
\mathrm{K}_{\mathrm{k}} \quad \mathrm{PRO} \text { : }
$$

PROBLEM XII.

To make Sky-Rockets, that mount into the Air with Sticks. .

Plate 23. Fig. 67.

'TIS to be noced, that the Head of a Rocket, is the higheft end A, by which 'ris loaded, and which rifes firft when 'ris fired: The Neck of the Rocket, or its Tail, is the lower end B, where it was choak'd or ftraitned, and the Priming is put, which muft be of good Corn-powder.
Your Rocket being charg'd, as was taught in the preceding Problem, yo muft have a long Rod or Suick; as AB, of fome light Wood, fuch as Ofier or Fir, which muft be bigger and flat ar one end growing flenderer towards the otber. This Stick muft be ftraighr and fmoorh, without Knots, and plained if need be. Irs Length and Weight muft be proportioned to the Size of the Rocket, being fix, feven, or eight times the Length of if; to the larger End of this where 'ris flatted. you muft tie your Rocker, irs Head reaching a litrle beyond the end of the Stick, as you fee in Fig. 68. and being thus fix'd, lay it upon your Finger two or three Inches from the Neck of the Rocker, which flould then be exactly ballanced by the Stick, if 'tis rightly fitted; after which you have nothing to do, but to hang it looly, upon two Nails, perpendicular to the Horizon, with its. Head up, and then 'tis ready for Firing. Bur if you would have it to rife very bigh, and in a ftraight Line, you muft put a pointed Paper Cap, fuch as \mathbf{C}, upon its Head, and it will pierce the Air with greater Facility.

To thefe Rockers, for the greater Diveriion of the Spectators, feveral other things may be added: as Petards or Crackers, thus; get a Box of Iron folder'd, of a convenient bignefs, fill it with fine Grain-powder ; put it into the Coffin upon the Compofition, with the Touch-hole down, double the reft of the Paper upon it to hold it faft till the Mixture is confum'd, and then firing it will giye a Report in the Air.

You may add to them likewife, Stars, Golden-rain, Serpents, Fire-links, and orher fuch agreeable Works, Ihe making of which mall be taught afterwards. In order to this, you mutt have in readinefs an empty Coffin, of a larger Diameter than your Rocket. This muft be choaked at one end, fo as only to admit the Head of the Rocker, to which ir muft be faftned. Into this large Coffin, having firt Itrewed the bottom of it with Meal-powder, you muft puc your Serpents', or Golden-rain, or Fire-links, with the prim'd end downwards ; and amongft, and over your Siars you mult throw a little Powder. Then you may cover this additional Coffin with a piece of Paper, and fit to it a pointed Cap as before, to facilitate its Afcenfion.

PROBLEM XIII.

To make Sky-Rockets which rife into the Air without a
Stick.

SKy-Rockets without Sticks muft be fmall, becaufe plate 23. they are held in the Hand, from whence they rife, Fig. 69. after you have put fire to the Priming. They are made as the foregoing; but that they may the better fly into the Air, you mult fir to 'em four Wings difpored Crols-wife, like the Feathers of Darts or Arrows, as A, A; their Length muft be one third part of that of the Rocket, their Breadth at the lower part half their Length, and their Thicknefs about a fixth or eighth part of the Diameter of the Orifice of the Rocket.

Inftead of four of thefe Wings, you may ufe three of the fame Dimenfions with equal Succefs; but with this Caution, that in placing them upon your Rocket, the lower ends of "em muft be let down below the Tail of it the length of one Diameter of its Orifice. There are many other ways of making thefe Rockets, according to the various Fancies of Artifts, which would be too redious for this Work.

If the Compofition for your Rockets is defcctive, as Remark. is known when they rife, either not at all, or with difficulty, or fall down again before confumprion of

Mathematical and PbyficarRecreations.

the Mixture ; or when they mount not with an equal and upright Motion, but turning and winding, or whirling in the Air ; to amend your Compofition, you muft diminih the Quantity of Coal when 'tis too weak, and add to it if too ftrong, as it is when it burfts the Rocket, the Coal ferving to abate the force of the Powder, and to give a fine Train to your Rocker. Wherefore it wou'd be convenient, before you make up a Quantity of Rockets, to try your Mixture and correct irs Faults.

To preferve your Rockets in good Condition, they muft be kept in a Place, neither too dry, nor too moift, but temperate ; and the Compofition fhould not be made up, bur upon'occafion to ufe it. Your Rocket muft not be pierc'd, till you defign to play it ; which muft not be in a Seafon of Wind or Rain, or when the Nights are moift with Fogs and Mifts, all which are prejudicial to the agreeable Effects of a Rocket.
If you would have your Rocket to burn with a pale white Flame, mix fome Camphire with your Compofition; inftead of which if you take Ralpings of Ivory, the Flame will be of a clear Silver-colour, but fomewhat inclining to that of Lead; if Colophony or Grecian-picch, 'twill be of a reddinh Copper-colour; if black or common Pitch, the Flame will be dark and gloomy ; if sulpbur, it will be blue; if sal-armoniack, it will appear greenifh; if crude Antimony, or the Rafpings of yellow Amber, it will emit Flames of a like Colour.

PROBLEM XIV.

To make Ground-rockets, which run upon the Earth.

ROckets that run along the Ground, call'd therefore Ground-rockets, ${ }^{\text {'require not fo ftrong a Com- }}$ pofition, as thofe that mount into the Air ; and therefore continue longer, burning as well as moving more fowly: Wherefore they vary from the others, as well in the Demenfions of their Coffins, as in the Compofition wherewith thefe are charg'd. The length of the Bore or Concavity, may be eleven times that of its

Diameter ;

Diameter; the Rowler on which the Coffin is made, may be five Lines in Diameter, and the Rammer a little lefs, that it may go eafily into the Coffin without fpoiling it.

The Compofition may be of Cannon-Powder only, Plate 23. well beaten and fearc'd till 'tis as fine as Flower, Fig. 70 . wherewith you muft till the Coffin, by little and little, as before, within a Finger's breadth of the Brim of the Mould ; then doubling down one third part of the Paper, knock it down with the Rammer and Mallet, and after, with a Bodkin, make a fmall Hole which may penerrate to the Compoficion; then put in a Piftol-charge of fine Powder, doubling down fome more of the Paper upon it, the reft of which muft be choak'd tying it hard with Pack-thread, as you fee in A.

Thefe Rockets being fmall are charg'd only with Remark. Powder finely pulveriz'd, without any Coal, herein differing from the large ones, that have no Powder at all, except in their Priming, which in both forts muft be of well grained Powder: The Reafon of which is, becaufe in a greater Concavity there is a greater Fire acting upon a greater Quantity of Matter, and confequently with more Violence ; there being alfo a greater Quantity of Air to be rarified in a grear than in a fmall Rocker.

When you choak or fraiten the End of your Rocker, whether fmall or great, you muft have a Hook or Staple driven into a Poft or into a Wall, to this tie one end of your Cord, which muft be of a fize proportionable to your Rocker, or to the Bar of a Window, and the other to a ftrong Stick, which you muft put between your Legs: Thus the Cord being winded about your Rocket in the defign'd place, you may draw, turning, and ftrainning it by Degrees as you defire.

PROBLEMXV.

To make Rockers that fly on a Line, calld AirRockets.

THIS is done with ordinary Rockets, that muft not be too big, by faftning to 'em two Iron Rings, or, which in my Opinion is better, a wooden Pipe or Cane, thro' which muft pals a well-Atreched Line: Thus if you fer Fire to your Rocker, 'twill run along the Line without ceafing till all the Matter is spent.

If you would have your Rocker to run back, as well as forward, after you have fill'd one half of the Coffin with the Compofition, feparate this from the empty halt by a Whecl of Wood fitted exactly to the Cavity; in the middle of this Wheel muft be a Hole, from which a fmall Pipe, fill'd with Meal-Powder, mult pals along the middle of the empry balf, which then mult be fill'd with the Compofition; and fo after the firft half of the Rocket is confum'd, the Fire being communicated by the little Pipe, will light it at the other Extremity, and fo drive it back to the Place from whence it came.

The fame thing may be effected by means of two Rockets ty'd together, the Tail of the one to the Head of the other, one of which being burne to the End fires the other, making it to run back: Bur leaft the fecond thould catch fire at the Head, it muft be defended with a Cover of Paper or wax'd Cloth.

This fort of Rockets is commonly us'd to fer fire to other Machines in Fire-works for Diverfion, to which, for the greater Plealure, they give the Figures of feveral Animals, fuch as Serpents or Dragons, which then are call'd Flying Dragons; and are extremely agreeable, chiefly when fill'd with feveral other Works, as Golden Rain, Hairs dipt in Wildfire, Small-nut Shells fill'd with the Rocket Compofition, and many ocher diverting things, of which afterwards.

PROBLEMXI.

To make Rockets that burn in the Water, calld WaterRockets.

'THO' the Fire and Water are oppofite Elements, mutually deftroying one another; yet the Rockers we have bitherto defcrib'd, being once lighted will continue to burn even in the Water, and will have their full Effect; but for as much as 'tis done under Water, we are depriv'd of the Pleafure of beholding ir. In order, therefore, to make them to fwim upon the Water, we muft alter fomewhat the Roportions of their Mould, as well as the Materiak of their Compofition.

The Monld, then, requir'd to fuch Rockers, may be eighr Inches in Length, and its Bore an Inch over. The Romper muft be of nine Lines Diameter, and the Rammer nor quire fo thick : No Needle is required to this Mould.

The Compofition, if you would have your Rocker burn on the Water with a clear Flame like a Candle, muft be made of three Ounces of Powder beaten and fearc'd, one Pound of Salt-perre, and eight Ounces of Sulphur mix'd together: When you defire your Rocket to appear on the Water with a fine Tail, you muft, to eight Ounces of ccmmon Powder, add one Pound of Salt-perre, eighr Ounces of Sulphur, and two Ounces of Coal.

The Compofition being prepar'd, and the Coffin charg'd with ir, as is taught above, put a Fire-Link at the end of it; and covering your Rocket with Wax, Pitch, or Rofin, to preferve the Paper from the Water, faften to ir a ftick of white Willow about two Foot long, which will caufe it to fwim upon the Water.

Many other different ways may fuch Rockers be made withour altering either the Mould or Compofition, for which the curious may confult the Authors that have writ particular Treatifes of Pyrotecchny.

$$
K_{4} \quad \text { A Rock- }
$$

A Rocket alfo may be made, which, after burning fome time in the Water, will throw up into the Air Sparkles and Stars; which is done by dividing the Rocket into two parts with a wooden Wheel having a Hole in the Middle, one Partition being fill'd with the common Compofition, the other with Stars, having fome Powder ftrew'd amongft 'em.

Moreover you may contrive a Rocker, which, having burnt one half of its time in the Water, will mount upinto the Air with grear Swifnels; thus: Having fill'd two equal Coffins with good Compofition, pafte 'em together llightly only at the Middle A, the Head of the one anfwering the-Tail of the orher ; betwixt them muft pals a little Pipe at the ExtremityB, to light the orber when one is confum'd. Then faten the Rocket D, to which the other is joyn'd, to a ftick of fuch Length and Bignefs as is requir'd for ballancing it, and to the lower .end of the Rocket C, tie a Pack-thread at F, to which you muft faften a large Mufquet-Ball that muft hang upon the ftick at E by means of a bent Wire. This done fet fire to C, your Rocket being in the Water ; and its Compofition being' confum'd to B, will light, by means of the little Pipe, the other Rocket, which will mount into the Air, through the frength of the Fire, the firt being kept down by the Weight is fuftains.

PROBLEM XVII.

To make Fire-Links.

AFire-Link,fo call'd from its refemblance to the Links of a Saucidge, is a kind of Rocket, that is ufually tied to the end of 2 bigger one, to render the Effect more agreeable. I faid ufually, becaufe there are fome of 'em made that fly into the Air as Sky-rockets, and are call'd Flying Fire-Links, to diftinguifh 'em from the others which are nam'd fixed Fire-Links. We fhall here briefly teach the Making of both Sorts.

And firtt the fixed kind to be faftned to a Rocket is made thus: Take a Coffin of what Bignefs you think fit, and having choak'd it at the End, fill it
GE NH YORK
MGLICLIBRARY
ASTOA, LENOX ANO
TILDDN FOUNDATIONS

with fine Powder, and choak it at the other End: Then roll ir ftrongly with fmall Cord from one End Plate 24. to the other, as you fee in A, gluing the Cord with Fig. 72. good Glue, to keep it faft, and to ftrengthen the Coffin, that it may give the greater Noife when it breaks: Thus is your Fire-Link ready to be faften'd to the end of a Rocket either with Paper, Parchment, or Cord, or otherwife; bur note, that you muft pierce the End of your Fire-Link, which joyns to the Rocker, and prime it with Corn-powder.

To make flying Fire-Links, you muft have fuch Coffins as for the former, only they muft be a little longer, and having choak'd'em at one End, charge them with Corn-powder, adding at laft Meal-powder to the thickneís of one Inch, driving all down, as in Sky-rockers, with a Mallet. Then frengthen the Coffin with Line, as in the former, after you have choak'd the other End, leaving a Hele about the bignefs of a Goofe-quill, to which you muft put a little moiftned Powder for Priming.

Or, having choak'd at lode End, and charg'd your Coffin within one Inch of the other End, choak it there, leaving orily a fmall Hole, which if quite fhut up, or too fmall, muft be open'd with a Bodkin ; then fill up your empty fpace with Powder finely flowered, or with the Compofition for Sky-rockers, which muft be driven cloie with a Rammer and Mallet, doubling down the remaining Paper, if any, upon your Compofition, which will give a fine Tail to your Link; and when you have made a Hole in the Middle of this laft Paper, and prim'd it, your flying Link is ready to be thrown into the Air, which is done thus.

You muft provide Guns or Cannons with a Vent at ${ }^{\text {Fide }}$ isis Botrom, where there muft be a Tail fomewhat long, which mult pafs through a Piece of Wood, fuch as A, that it may reach to a Fire-conveyance running along underneath, to fer Fire to the Cannons one after another, which will alfo throw up into the Air the Links with a Noife in the fame Order.

PROBLEM XVIII.

To make Serpents for artificial Fire-worłs.
SErpents are fmall Sky-rockets, which inftead of Mounting ftraight upwards, rife obliquely, and defcend with Several Turnings and Windings. The Compofition for them may be much the fame with that for Sky-rockets; or that for Ground-rockets, if you defire their Motions to be more brisk. The Conftruction and Proportions of their Coffin are as follows.

Plate 24. E:g. 74.

The Length AC of the Coffin may be about four Inches, and it muft be rowled on a Rowler fomewhat bigger than a Goofe-quill: This done you muft choak it at one End, as at A, and filling it with Compofition a little beyond the Middle, as to B, choak it there alfo, leaving a litule Hole; the reft you muft fill with Corn-powder, to make a Report when it breaks, choaking it quite at the other Extremity C: The Exrremity A muft be prim'd with fome moiftned Powder, by which when you have fired the Compofition in the Part AB, the Serpent will rife inro the Air, and afterwards coming down, will make feveral Turnings and Windings, 'till the Grain-Powder being fired, it breaks in the Air with a Bounce before it fall.

If it be made up without choaking it towards the Middle, mftead of Turnings and Windings, it will have a waving Motion rifing and falling, till it breaks as above.

PROBLEM XIX.

To make Fire-Lances.

LAnces of Fire, are long and thick Pipes Cannons of Wood, with Handles at the End, whereby they are made faft to Stakes or Pofts, well fixed that may fuftain the force of the Fire, having feveral Holes to contain Rockets or. Petards. They are us'd in fettival
feftival Fire-works that reprefent ndeturnal Fights, as well for throwing Rockets, as making Vollies of Reports.

You muft ufe 'em thus: Put a Rocket into every Hole, and fill the Bore of the Cannon with Compoficion, which fired will, as it confumes, fire the Rockets one after another, and throw them up into the Air. But if you would have many thrown up at once, cover the Bottom of the Lance with Compofition, and thereupon place a long fmall Pipe fill'd with the rame Compofition, about which put your Rockers, 'rill you have fill'd your Cannon, the prim'd End being downwards; that fo firing the Compofition in the Pipe, this may light that at the Botrom of the Lance, which firing the Rockets, they will mount all at once into the Air.

There may be many other ways of contriving FireLances in imitation of this, of which I hall not fpeak: I thall only mention one other fort of thefe Lances. This confilts of a Coffin made of ftrong Paper well glued, which may be of what Dimenfions you think fir, according as 'ris defign'd to give more or lefs L.ight ; this mutt be filld with the Star Compofition, (of which in Prob. 22.) pulveriz'd, and prim'd with Meal-powder moiftned: The lower End muft be ftopped with a round piece of Wood, which muft appear two Inches without the Coffin, that thereby it may be faftned ar Pleafure.

The Name of ficry or burning Lances, and Pikes, Remark: is alfo given to a kind of Pikes, like a Javelin or Dart, with a ftrong Iron pointed Head, as AB, call'd Parere 24: by the Latins, Pbalarica, and Dardi di Fuoco by the Italians, which were formerly thrown, being firft fired, againft the Enemies, either by the Hand, or from Engines, being cover'd between the Iron and Wood with Tow dipt in Sulphur, Rofin, Fews Pitch; and boiling Oyl ; where they lighted they fluck, ferting on fire whatever was inflammable.

This fort of Lances is not now in ufe, but inftead of them we have Burning Arrows, that are ro lefs terrible, tho' not much now in Efteem: However we will here gratify the Curious with a brief Defcription of them. Flaming Arrows, are artificial Firebrands thrown amongf the Enemies Works, to reduce them

Plave 24. Fig. 76.
to Athes; they are made thus: Prepare a little Bag of Atrong courfe Cloth, about the bignefs of a Goofe's or a Swan's Egg, fuch as C, of a globular or fphex-

- roidal Figure, which muft be filled with a Compofition made of four Pounds of beaten Powder, as much refin'd Salt-perre, two Pounds of Sulphur, and one Pound of Gracian Pitch: Or you may make it of two pounds of Meal-powder, eight pounds of Salr-petre refined, two pounds of Sulphur, one pound of Camphire, and one pound of Colophony: Or yet more limply thus; of three pounds of Powder, four pounds of Salr-petre, and two pounds of Sulphur. With one of thefe Mixtures fill the Bag, preffing it hard, and make an Hole through the Middle of it lengthwife, to receive an Arrow, like thofe of the ordinary. Bows or Crols-bows, fuch as AB , the Head of it remaining without the Bag, which muft be faftned fo as it may not move, or lide towards the Fearhers. This done, roll your Bag with ftrong Pack-thread as thick as poffible from one End to another, and then cover it all over with Meal-powder mix'd with melred Pirch. Thus it is ready to be thot out of a Bow or Crols-bow, after it is fir'd by two little Holes made for that purpofe near the Head of your Arrow.

PROBLEM XX.

To make Fire-Poles or Percljes.
FIery Poles or Perches properly fpeaking are what We have call'd Fiery Lances, of which We have fpoken in the preceding Problem; which might fuperfede any furcher Labour about'em, but that We defign here to thew another way of making 'em.

You mult have a Pole of fome light and dry Wood ten or twelve Foot in Length, and two Inches in Thicknels, in one of the Ends whereof you mult make three or four Grooves or Gutters oppofite to one another, two or three Foor long; In fome of thefe put Rockets, fill'd with a Compofition made of tive Ounces of Powder, three Ounces of Saltpetre, one Ounce of Sulphur, and two Ounces of

Coal; in others put Petards or Crackers of Paper; which muft communicate with the Rockers by Holes paffing between: And laft of all cover your Artifice over neatly with Paper, the better to deceive the Eyes of Spectators.

PROBLEM XXI.

To make Petards for Fire-works of Diverfion.

PEtards or Crackers, for Fire-works of Pleafure, are made of Paper, or thin Pieces of Metal, as Copper, Iron, or Lead. Thofe of Paper have their particular Moulds, and are made as is directed in Probl. 11. Their Coffins are charged towards the Head, i. e. the upper Part, with grained Powder, which will caufe the Petard to give a Report, when the Priming which is put towards the Tail is burnt: This Priming muft be of a llow pmpofition made of Powder mix'd with one thit part of Coal, each fabrilly pulveriz'd a part, that they may the more intimately incorporate. It will be convenient to keep this Compofition in a moift Place, that thereby becoming wettifh, it may be the more clofely driven into the Coffin; and therefore if 'ris too dry, it is ufual to fprinkle it a little with Oyl of Petre, or of Linfeed.

When the Petard is of Iron, it is divided into two Partitions, by a Wheel or round Plate of Iron, fitted to its Cavity, pierc'd with a little Hole in the Middle; the Partitions are call'd Chambers, whereof the apper one contains the Corn-powder, and the lower, the Compofition or Priming, which being fired by a fmall Hole at Bottom, carries the Fire to the Powder in Grains thro' the Hole in the Wheel.

A Petard may be charg'd with Grain-powder only; and ftrongly wadded with Paper or Tow: Or each End may be fhut up with an Iron Wheel folder'd, making one Hole only in the fide, by which it muft be loaded and fired.

Befides thefe for Pleafure, there are alfo Petards Remark; made for Service in War, which are likewife of Iron or Copper, without Botroms; they are parted into three
three equal Divifions or Chambers, the Middle of which is fill'd with Corn-powder, and the two extream ones with Lead-bullets, which are parted from the Powder with Paper, the two Ends being alfo ftopid by two little Paper Wheels, with a Hole in the Middle for the Priming.

PROBLEM XXII.

To make Stars for Sky-Rockets.

STars are little Balls, about the bignefs of a Muf-quet-Bullet, or an Hazle-nur, made of an inflammable Compofirion, which gives a fplendid Lighr, refembling that of Stars, from whence is the Name. When they are put into the Rocket, they muft be cover'd with prepar'd Tow, the Manner of making which fhall be taughr, after that of Stars.

They are made thus: To $-{ }^{-1}$ finely flowered, add four P is of Salt-petre, and two pounds of Sulphur ; andwaving mix'd all very well, roll up about the bignefs of a Nutmeg of this Mixture in a piece of old Linnen or in Paper ; then tie it well with Pack-thread, and make a Hole through the Middle, with a pretty big Bodkin, to receive fome prepared Tow, which will ferve for Priming: This being lighted, fires the Compofition, which emitting a Flame through both Holes, gives the Refemblance of a pretty large Star.

If inftead of a dry Compofition, you ufe a moift one in form of Pafte, you need only roll it into a little Ball, without wrapping it up in any thing, fave, if you will, in prepared Tow, becaufe of it felf it will preferve its lpherical Figure; nor needs there any Priming, becaufe while moift you may rowl it in Meal-powder, which will ftick to it, and when fired will lighe the Compofition, and this at falling forms it felf into Drops.
Remark.
There are many other Ways of making Stars, too long now to be mention'd; I fhall only here thew how to make Stars of Report, that is, Stars that give a Crack like that of a Pittol or Mufquet, as follows.

Problems of Pyrotechny.

Take fmall Links, made as is taught in Probl. 17. which you may choofe either to roll with Line or not ; tie to one End of 'em, which muft be pierc'd, your Stars if made after the firft manner, that is, of the dry Compofition: Otherwife you need only leave a little piece of the Coffin empry beyond the Choak of the pierced End, to be fill'd with moift Compofitien, having firft prim'd your Vent with Grain-Powder.

You may alfo contrive Stars, which, upon Confumption of the Compofition, may appear to be turn'd into Serpents, a thing eafy to be perform'd by fuch as underftand what precedes; upon which accounr, and becaufe they are but litule in ufe, I fhall fay no more of 'em.

PROBLEM XXIII.

To make prepared Tow for Priming to Fire-works.

PRepared Tow, called allo Pyrotecbnical Match, and Quick-match, to diftinguilh it from Common Match, is ufed for priming all forts of Machins for Fireworks of Diverfion, fuch as Rockets, Fire-Lances, Stars, and the like; and 'tis made as follows.

Take Thread of Flax, Hemp, or Cotton, and double it eight or nine. times, if it is for priming your large Rockers, or Fiery Lances; but four or five Times only, if 'tis to be put through your Stars. Having made it of a Bignefs proportion'd to your defigned Ufe, and twifted it, but not too hard, wet it in clean Water, which mult be after fqueezed our with your Handm Then put fome Gun-powder in a little Water, fo as to thicken it a litcle ; in this foak your March well, turning and ftirring it till 'sis throughly impregnated with the Powder; and then taking it out, rowl it in fome good Powder-duft, and hang it uponLines to dry either in the Sun or Shade: Thus you have a Pyrotecbnical Match ready for Ufe on all Occafions.

Common Match, call'd alfo Fire-cord, is thus made : Take an unglaz'd Earthen Pot ; cover its Botrom wirh red Sand well wafh'd and dry'd ; upon this lay fpiralwife between each Revolution, and then cover it with Sand ; upon which again place a Lay of Match as before, and upon this another of Sand, and fo interchangeably till the Pot is full, but finithing always with a Lay of Sand: Then cover it with an earthen Cover, and lute with Clay the Joining, fo as no Air may get Entrance. This done pur burning Coals round the Pot, and after it has been kept hot for fome Hours, let it cool of ir felf; fo your Match is prepar'd, which will burn without Smoke or offenfive Smell.

PROBLEM XXIV.

To make Fire-Sparkles for Sky-Rockets.
S Parkles differ only from Stars in their Smallnefs and fhort Continuance, thefe being larger and not fo foon confumed as thofe; which, when you have occafion to ufe them in Rockets, may thus be made.

Take one Ounce of beaten Powder, two Ounces of pulveris'd Salt-perre, one Ounce of liquid Saltpetre, and four Ounces of Camphire in Powder ; upon thefe, being put into a white earthen Veffel, pour Water wherein Gum-Dragant is diffolv'd, or a Diffolution either of the laft nam'd Gum, or Gumarabick in Brandy, till you have reduc'd the Mixture unto the Confiftence of a thin Pap; into which put as much Lint, made of Rags, boild in Brandy, Vinegar, or Salt-perre, and after dry'd, as will drink up all your Mixture; and thus have you a Matter prepar'd, which you may form into little Pills of the bignefs of a Pea, to be dry'd either in the Sun or Shade, after they have been dip'd in Meal-powder, that they may eafily take Fire.

PROBLEM XXV.

To make Golden Rain for Sky-Rockets.

THere are fome Sky-rockets, which in falling make little Waves in the Air, like unto Hair half curled, and are therefore call'd Hairy Rockets; they end in a fort of Rain of Fire, call'd Golden Rain. 'Tis thus made.

Fill with the Compofition for Sky-rockets Goofequills, the Feathers being cut off; putting fome wet Powder in the deen End of each, both to keep in the Compofition, and to ferve for Priming: With thefe fill the Head of your Sky-rocket, and it will end in a Golden Rain very agreeable to behold.

This Golden Rain calls to my Mind a Pyrotecbnical Remark: Hail, fo call'd from its Refemblance to the Natural, which is a Quantity of fmall hard Bodies, being either pieces of Flint, round Stones, leaden Bullets, or Square pieces of Iron, inclos'd in a Carrridge of Wood, Iron, or Copper, and is therefore called Cartridge or Cafe-ßbot; they are us'd in War, either in open Field to diforder an Enemy's Army, or in a Siege to drive them away from a Breach or Gate to be feiz'd, being fhot either out of a Mortar, or 2 Great-gun of a large Bore.

PROBLEM XXVI.

To, reprefent, with Rockets, Several Figures in the Air.

IF you take a Rocket of the larger Sort, and place round the Head of it many fmall ones, fixing their Sticks all round the large Coffin upon the Head of your big Rocket, which ufes to contain the Headworks, ordering it fo, that your fmall Rockets take Fire whilft the Great one is Mounting up, you will have the Refemblance of a Tree, very delightful to the Sight; whereof the big one will reprefent the Trunk, and the little ones the Branches.

Mathematical and Pbyfical Recreations.

But if the fmall Rockets take Fire when the great

- one is half rurned in the Air, they will have the Appearance of a Comet: And when the large one is altogether turn'd, fo that its Head points downwards to the Earth, they. will exhibit the Similitude of a Fountain of Fire.

If you pur on the Head of a large Rocker many Goole-quills, the Feathers being cut off, fill'd with Sky-rocker Compofition, as in the preceding Problem; when fired, they will appear to thofe under them as a fine. Ahower of Fire ; but to thofe who view them on one fide, like hall curl'd Hair very delightful to the View.

Finally, with Serpents ty'd to a Rocket with Packthread, by the Ends which are not fixitd, leaving two or three Inches of the Thread between Each, you may reprefent at pleafure feveral forts of Figures moft entertaining and agreeable to the Sight.

PROBLEM XXVII.

To make Fire-Pors for Fire-works of Diverfion.

APot of Fire, is a large Coffin filld, with Rockets, that take fire all together, and"are difcharg'd from the Por without hurting it. The Bottom of the Por muft be cover'd with Powder-duft, which being fired by a Match that mult pals through a Hole in the Middle of the Pot, will fet fire to all the Rockets at once.

When there are many Fire-Pots, they muft be covered with fingle Paper, that they may nor play all at once; otherways one when fired might fet fire. to another : and you muft ufe only a fingle Leaf of Paper, that it may not hinder the Rockets to fly out. Pots of Fire are alfo made for War-fervice, of which in Probl. 35.

PROBLEM XXVIII.

To make Fire-Balls for Diverfion, that burn fwimming in the Water..

THefe Globes, or Balls of Fire, are made commonly of three feveral Figures, viz. either Spherical, Spheroidal, or Cylindrical. They muft be made of a light Wood, that they may fwim on the Water, and hollow to receive a fir Compofition, which is prepared as that for Rockets; but oblerving the following Proportions.

To one pound of Grain-powder, put thirty two pounds of Salt-petre finely pulveris'd, eight pounds of Sulphur, one ounce of ralped Ivory, and eight pounds of Saw-duft of Wood, that hath been firft boil'd in Water ot Salt-perre, and after dried in the Shade, or in the Sun.

Or; to eight pounds of beaten Powder, add forty eight pounds of Salt-perre, rwe'nty four pounds of Sulphur, one pound of Camphise, fixteen pounds of Saw-dult, one pound of ycllow Amber rafped, and one pound of beaten Glafs.

Or; to two pounds of beaten Powder, take twelve pounds of Salt-perre, fix pounds of Sulphur, fout pounds of Filings of Iron, and one pound of GreekPitch or Colophony.

There is no neceffity your Compofition fhould be fo finely beaten as that for Rockers, 'tis fufficient if ir be well mix'd and incorporated, tho neither powder'd nor fearc'd : and left it become too dry, it will be proper to forinkle it a little with common Oyl, or Oyl of Wall-nuts, Lin-feed, or Hemp-feed, or with Stone-oyl; or fome other far and inflammable Liquor.

In the firt place to make a Spiserical Ball of Fire, flite 2, you mult get as Globe or Bowl of Wood of what fig 77. bignefs you pleafe, which muft be hollow, and very round, as well withinfide as without, fo that its Thicknels AC, or BD, be about one ninth part of
the Diameter AB : Add to the upper part of it a ftraight concave Cylinder, as EFGH, of which the Thicknefs EF, mult be about one fifth part of the fame Diameter AB, and the Widenefs of its Cavity LM, or NO, mult equalize the Thicknefs AC, or $B D$, that is one ninth part of the Diameter $A B$. 'Tis by this Cavity you muft prime your Fire-Ball, after you have fill'd in with Compofition by the lower Orifice IK, by which you thall convey into it the Petard of Metal P, which mult be charg'd with good Corn-powder, and laid athwart the Orifice, as you fee in the, Figure.

This done, the Orifice $I K$, which is almoft equal to the Thicknefs EF, or GH, of the Cylinder EFGH, muft be thut up with a Bung or Stopple dip'd in melted Pitch; this Bung mult be covered on the upper fide with fuch a Weight of Lead, as may fink the Globe into the Water ; fo that nothing but the Part GH may appear above it, which will fall out, if the Weight of the Lead, with the Ball and Compofition, be equal to that of a like Bulk of Water. If therefore thus ballanc'd it be thrown into the Water, the Weight of the Lead will keep the Orifice IK, directly down, and the Cylinder EFGH perpendicularly upright, which mould be fired before the Globe is thrown in.

In the next place, to make a Fire-Ball of a spheroidal Figure, the Thicknefs AC, or BD, muft be one ninth part of the fhorteft Diameter $A B$, and to the upper End of the largeft Diameter, a Cylinder EFGH, muft be fitted, like that of the preceding, making an Orifice, as IK, at the lower End of the fame largeft Diameter, and its Stopple alfo as before, with this Difference, that inftead of covering it with Lead, and purting a Perard within, a Grenade of Lead, charg'd with good Corn-powder muitt be annex'd to it without, the Neck of it entring into the Bottom of the Ball, that it may take fire when the Compofition is fpent.

Laftly, a Cylindrical Fire-ball, fuch as ABCD, may be made of what Bignels you pleafe, provided its Heighr AD, or BC, be the Triple of its Breadih AB, or $C D$, its Thicknefs being, as in the preceding, one
.ninth

1 late 254 Fig. ;9.

ninth part of the fame Height AD, as well as the Widenefs EF of the Orifice EFGH, which mutt be narrower by one half above than below. By this Orifice the Cylinder is to be charg'd; after which it muift be fitted with a Stopple, wrapp'd round with a Cloth dip'd in melted Pitch, or Pitch and Tar, and bored Lengthwife, for holding the Priming.

This done, make faft to ir, near the Priming, a little concave Globe of Metal, as I, which muft firft be fill'd with Water, as is done in the Eolipyles, by putiting it in cold Water after it is heated pretty hor. To the fides of the Cylinder alfo you mult faften two fimall leaden Pipes, as K, L, the upper Orifice of which muft be joined to the Globe I, by the two Hornis M, N, made of fame bending Material bor'd fromone End to the other with a very fmall Hole, but frialleft at the lower End.

Now when you havea Mind to fer this Aquarick Machine: a playing ; firf fire the Priming with a Match or orderwife, and when 'tis well lighted, throw it into the:Water, fo that the Bottom AB thay be down; and xou thall behold with Pieafure, fo foon as the Fite 6 f she Priming has heared the Globe, that the Water contain'd therein being rarefy'd, thall come outemp: firm of Vapour impetuouly by the fmall Holes of the: Horns M, N, making a very agreeable Noife in the Orifices of the two Pipes K, L.

There are many other ways of making thefe fiery Remar Globes, for which I hall remit my Readers to Pyrotechinical Authors. I hall only add, that a Ball of Fire, like thofe of the firft fort, may be conrriv'd, which when fired in a fmall clofe Room, will emit a mof acceprable Smell, the Compofition of which make up as follows.
Take to eight Ounces of Salt petre, two Ounces of Storax Calamita, two Ounces of Frankincenle, two Ounces of Maftick, one Ounce of Amber, one Ounce - Civer, Ifour Oances of the Saw-duft of Juniperwood fouir Ounces of the Saw-dult of Cyprefswood. and two Ounces of Oil of Spicknard. Mix and incorporate all thefe things together, as is faid in the Compofition for Rockess. ' Or ; to four Ounces of Salt-perre, jedd swo Ounces of Flowers of Sulphur,

Mat bematical and Phyfical Recreations: one Ounce of Camphire, one Ounce of yellow. Amber rafp'd and well pulveris'd, two Ounces of Coal of the Lime-tree, and one Ounce of Flowers of Benjamin. All thefe fhould be pulveriz'd each apart, then mix'd and imbodied together, as in the Compofition of common Rockets.

PROBLEM XXIX.

To make Fire-Balls for Diverfion, that will dance upon an Horizontal plain.

Plate 25. Eig. 80.

- Figer

Fig. 82.

MAKE a Ball of Woot, with a Cylinder A, like the firtt of the three defcrib'd in the preceding Problem, and charging it with a like Compofition, put into it four, or more Peards or Crackers, if you pleafe, filld with good Grain-poeder to the Top, as $A B$, which mulf be ftop'd frongly with Paper, or Tow rowl'd hard: Thus you have a Ball, which being fired by the Priming at C , will leap upon a finoorh Horizontal Plain according as the Fire-lays hold on the Petards.
But ingead of putting the Petards within, you may faften them without to the Surface of the Globe, and they will make it to foll and dance as the Fire reaches the Petards, which, as you fee in the Figure, are plac'd carelelly upon the Surface of the Ball.
You may alfo thus contrive a like Ball, which thall roll to and fro upon an Horizontal Plain with a very fwift Morion. Make two equal Hemifpheres of Paft board, and fit to one of 'em, as AB, three common Rockers charged and prim'd as your ordinary Sky-rockets, without Petards, fo that the Rockets, C, D, E, don't exceed in Length the Diameter of the Concavity of the Hemilphere, with the Tail of one anfwering the Head of the other, as in the F_{F} gure, that the Fire pafing from one to another, they may burn fuaceffively: To this join the other Hemifphere, gluing them neatly together with good Paper, that they may not be feparated by the Motion, ; there muft only be made one Hole oppofie to the 'Tail of
the firt Rocker for Priming, which being fired thereby, when fpent, will fire the Second, and this in like manner the Third, which will give a continual Motion to the Ball when plac'd on an Horizontal and fmooth Plain, making it to go and come with an extraordinary Swiftnefs.

The two Hemifpheres of Paper or Paft-board may be thus made: Take a large Wooden Globe, coat it all over with melted Wax, entirely covering its Surface, that you may glue to it many Fillets of ftrong Paper, about two or three Fingers wide, one above another to the Thicknefs of about two Lines. Or you may do it thus, which is in my Opinion che better and more eafy Way ; Diffolve in Glue-water that Mafs or Paft which jis us'd in Paper-mills to make Paper withal, and lay it over the whole Surface of the Globe, which, when dryed by degrees at a fmall Fire, muft be cut afunder in the Middle; fo you fhall have two folid Hemifpheres, to be rendered concave, if you feparate the Wood from the Paftboard, by melting the Wax at a good Fire.

PROBLEM XXX.

To make Sky Fire-balls for Fire-works of Diverfions

THefe Balls are call'd Sky or Air-Balls, becaufe they are thrown up into the Air froma Mortar, which is a well known Piece of Artillery, fhort, well-fortified, and of a large Bore, us'd in War to throw Fireworks of Service againf the Enemy, and in Fireworks of Pleafure to raife into the Air Balls of Fire, and other fuch things, for Diverfion.

Tho' thefe Balls are of Wood, and of a convenient Thicknefs, viz. the twelfth part of their Diamerer ; yet if you put too much Powder into the Mortar, they will be unable to refift its Force. Therefore it is, that you muft proportion the Quantity of Yowder to the Weight of the Ball to be thrown ; which if is weigh four Pounds, one Ounce of Powder will ferve; but if your Fire-ball weigh eight Pounds, L1 4

Plate 25.
Fig. 83.

Plate 26. Fig. 84 , the fame Proportion.

It may fall our, that the Chamber of a Mortar may prove too big to contain exaitly the Quantity of Powder requird to the Fire-ball, which fhould be put immediately above the Powder, that it may be thrown up and lighted at the fame time; In this Cafe; you may make another Mortar of Wood, or of Paft-board, with a Bottom of Wood, as $A B$, containing a Quantity of Powder proportionable to the Weight of your Ball, which may be put into the large Mortar of Brafs or Iron.

This fmall Mortar muft be made of light Wood, or of Paper pafted, and rowl'd in form of a Cylinder, or of an inverted Cone without a Point, fave that its lower Botrom muft beoof Wood. The Chamber AB, where the Powder lies, muft be bor'd obliquely with a fmall Wimble, as at BC , fo as the Vent B may anfwer to that of the metallick Mortar, to which if you put Fire, it will light the Powder at the Bottom of the Chamber AC, immediately under the Fire-ball, which will alfo take Fire, and rifing into the Air, will make an agreeable Noife; which otherwife would not fucceed, if an empry Space were left betwixt the Fire-ball and Powder.

The Profil or perpendicular Section of fuch a Ball is reprefented by the Rectangle ABCD, the Breadth of which $A B$ is. almoft equal to irs Height AD The Thicknels of the Wood at the two Sides LM, is equal, as we have already faid, to a twelfth part of the Diamerer of the Ball, and the Thicknels E F , of the Cover, is double that of the Sides, or equal to a. fixth part of the fame Diameter. The Height GK, or HI, of the Chamber GHIK, where the Priming is pur, and which is bounded by the Semicircle L\& $H M$, is one fourth part of the Breadth $A B$, and its Breadth GH is one fixth part of the fame Breadth AB.

This Ball muft be fill'd with Canes or common Reeds, of a Length fitred to the inward Height of the Ball, and charged with a llow Compofition made of three Ounces of Meal-powder, one Ounce of Sulphitr moilned a little with Oyl of Perre, and twa Ounces.

Problems of Pyrotechny.

Ounces of Coal: And that thefe Reeds or Canes may the more eafily take Fire, their lower End, which refts upon the Bottom of the Ball, hould be charg'd with Powder beaten and moiftned in like manner with Oyl of Petre, or Iprinkled with Brandy, and after dried.

This Botrom of the Ball muft be covered with fome plate 26: Powder, half of it in Flower, and half of it in Grain, Fig. 84. which will fer fire to the lower End of the Reeds, being it felf fired by the Priming put to the End of the Cnamber GH, which muft be fill'd with a Compofition like that of the Reeds, or another low one made of eight Ounces of Powder, four Ounces of Salt-perre, two Ounces of Sulphur, and one Ounce of Coal : Orelle of four Ounces of Salt-petre, and two Ounces of Coal; all being beaten, put together, and well mixed.

Inftead of Reeds, you may charge your. Ball with Remark. Ground-rockers, or with Petards of Paper, rogether with Stars, or Sparkles mix'd with beaten Powder and laid confufedly upon the Peeards, which muft be choak'd at unequal Heights, that they may not produce their Effects all at once.

There are many other ways of making thefe Balls, too long to be here infifted on. Buc you muft remember to take care when they are charg'd, before they are put into the Mortar, to cover them above and all round with a Cloth dipt in Glue, and to makp faft a Piece of Cloth, or Wool prefs'd hard into a round Form, underneath, exactly upon the Hole of the Priming, छ${ }^{3}$.

PROBLEM XXXI.

To make Shining-Balls, for Diverfion, and for Servics in War.

FTIrft, to make Shining;b alls for Recreation ; to four Pounds of Salt-petre, put fix Pounds of Sulphur, two pounds of crude Antimony; four Pounds of Colophony, and four Pounds of Coal: Or, to two Pounds of Salt-petre, take one Pound of Sulphar, as much Antimony, two Pounds of Colophony, as much Coal, and one Pound of black Pitch; melt thefe, being well beaten, in a Kettle, or in a glaz'd earthen Por, and thereinto throw fuch a Quantity of Hards of Flax, or of Hemp, as will juft fuffice to imbibe all the Liquor, of which as it cools make little Pellets or round Balls, to be covered over with prepared Tow, which I taught to make in Probl. 23. and after put into Sky-rockets, or Balls for Diverfion, as is ufual to be done with fiery Stars.

Next, to make Shining or Flaming-balls for Service in War, to be thrown from a Mortar againtt the Enemy, you muft melr, in a Kettle, or glaz'd earthep Por, as above, eqqual Parts of Sulphur, black Pitch, Rofil, and Turpentine, into which dip an Iron, or Stone, buller, fomewhat lower than the Bore of the Mortar, and when its Surface is cover'd with this Matter, rowl it in Corn-powder: Which done co-ver it over with Callico, and dip it again into the fame Liquor; rolling it after in Grain-powder ; this mult be reiterated feveral times, covering, dipping, and rowling it, till it fills exactly the Bore of the Mortar or Cannon, into which you defign to put ir, remembring ftill to end your Operations with rolling it in Grain powder, that being pur into your Piece, immediately above the Charge of Powder, it may take fire as it is thrown into the Air againft the Enemy, either to annoy them, or to difcover their Defigns, which is ufually done in Sieges.

Problems of Pyrotechny.

Inttead of thefe Shining-Balls, Red-bot-balls are Remark. more frequently ufed for offending the Enemy, by burning them, their Houfes, or Works. Thefe Bullets are of Iron, and being heated red-hor in a Furnace are this ufed. Your Cannon being Charg'd with Powder, freed from Corns, and pointed fomething upwards, you muft have in readinefs a Cylinder of Wood firted exactly to its Bore, which you muft put into your Gan next the Powder, and upon it you muft ram down a Wad of wei Straw, Hay, or Tow of Hemp, or fome fuch moift Materials; then puttipg in your Red-hot-Ball with a Ladle, immediately put Fire to your Gun.

PROBLEMXXII.

To make a Wheel of Fire-works.

AWheel of Fire, or Fire-works, is a Wheel of plate 26. light Wood, fer round with Rockers of a middle Fig \&s. Size, the Head of one regarding the Tail of another, thai when the firft is fpent, it may fet fire to the next, which makes the Wheel turn round irś fix'd Axle-tree without Intermifion, till all the Rockets are confum'd. See the Figure.

- Upon this account 'tis call'd a Fire-Ubeel, and 'ris' allo call'd a Fiery Sun, becaufe plac'd borizontally upon a Stake fomewhat large and perpendicular to the Horizon, it turns round, and reprefents a Sun in Night Combats, which is very diverting.
- You may alfo make Fire-wheels which have a Situation perpendicular to the Horizon, and turn upon an Axis parallel to it, very agreeable to behold. Firewheels are likewife ufed to light other Works at a Diftance, in afcending or delcending upon a ftretch'd Rope, like Flying-Dragons; and on many orher Occafions, to the great Pleafure of the Spectators.

PROBLEM XXXXIII.

To make a Balloon, or fiery Foot-ball.

BAlloons are Coffins of a large Diameter, Thot out of a Morrar whither one pleafes, fill'd commonly with Serpents about the Thicknefs of a Ground-rocket, but not fo long, with two fpall Fire-links of the fame Lengrh and Breadth, which being fir'd by their Priming, burft the Coffin, this having below a Fire-conveyance, at the Mouth of which there is a Priming of Cotton dipt in Powder.

The Coffin is made with a thick Wooden Rowler, about which is rowled Atrong Card-paper, glued to keep'it from undoing, which being choak'd below, a Hole is made there for a Fire-conveyance, fill'd with 2 Compofition more flow than that of Groundrockers, being like to that of Sky-rockers : After this it may be filled with Serpents, and fometimes with Scars, and then choaked above.•

PROBLEM XXXIV.

To make Pyrotechnical Maces or Clubs, and other FiraMichins, for Nocturnal Combats:

NOcturnal Combars may be very agreeably reprefented in artificial Fire-works with Maces of Fire, Hangers, Scimetąrs, Faulchions, Swords, Cudgels, Shields, Targets, and other fuch Pyrotechnical Weapons; all which, befides in the Form they reprefent, differing bur little, as to their Conftruction, we fhall herc only defcribe one or two for Examples, leaving the reft to the Contrivance of an ingenious Operator.

Maces or Clubs of Fire, being a Species of thefe diverting Fire balls that burn upon the Water, which we have taught to make in Probl. 28. it will not be needful here much to infift upon 'em. Let it fuffice then
then to fay, that Handles well turn'd and polifh'd muft be added to 'em, after you have made feveral Holes in them to receive your Rockets, which will be fired by the Compofition at diverfe times; which Compofition, as is faid, is the fame with that of the Water-balls, or with this which follows: Take four Drahms of Sulphur, one Pound of Pitch, and two Drahms of Coal; let all be well beaten and mixed, and afterwards moiftned with Brandy, or fome other inflammable Liquor.
A Fire-Hanger is a Hanger of Wood, refembling a Turki/b Scimetar. It is made of two Boards of dry Wood, joyning together at the Edge, and parting afunder at the Back, along which there runs as it were a triangular Groove, that muft be divided 'into feveral litrle Partitions or Chambers by fmall triangular Boards; into thefe Partitions you may put Groundrockets, or you may fill them with Petards, Stars, Sparkles, Shining-Balls, and other fuch things, which you muft cover with Paper well pafted, as you muft all your-Hanger with Linnen Clorh. The Touch-hole muft be towards the Point, by which you muft fet fire to irs Compofition contain'd in a litcle Canal running along the Edge, and this as it confumes will communicare the Fire to the little Chambers fucceffively : The Compofition muft be of the flow Kind, made up of five Ounces of Powder, three of Salt-petre, one of Sulphur, and two of Coal.
Cimetars are crooked Hangers made of dry and. light Wood, hollow allo, and open in the Back, into which you muft pur feveral Rockets well glu'd and faften'd, and fo difpos'd that the Head of one may be near the Neck or Tail of another, which muft be fir'd by it after its Compofition is fpent, as may be feen in Fire-wheels.

Targets are made of thin Boards, with a Channel running in a fpiral Line, from their Circumference to the Center, for containing the Priming, which muft be all covered over with a thin Covering of Wood or Palt-board, bored with Holés fpiral alfo, exactly over the Priming to receive the Ends of Rockets, which muft be made faft therein.

Amongft other Pyrotechnical Machins, we mult not here forget to mention the Fire-pipe, which is not the leaft confiderable among them. This may be made feveral Ways, of which I thall here make choice of the moft fimple, and moft ealy to be underftood and performed.

Get a wooden Pipe, as AB , of what Length and

Plate 26. Fig. 86. ing, in Screw-fathion, from one End to the other, upon which make Holes, bored obliquely downwards in re. Spect to the ixis of the Cylinder, as C, D, E, into which you muft put Coffins or Pipes of Paper with wooden Bottoms, as F, G, to receive, the Ends of as many Ground or Sky-rockets, as you fee in H, under which mult be put fome Powder, that mult be lighted by fmall Pipes paffing between each Hole and the Cavicy of the great Pipe AB, which muft be fill'd with a Compofition like that of the Fire-balls that burn on the Water, the little Pipes themfelves being fill'd with Powder finely pulveriz'd.
Inttead of Rockers firted in Coffins obliquely afcending, you may fer round the large Pipe as many Boxes of Paper, difpofed fcrew-wife as the Coffins, fitted with wooden Bottoms, and ftanding upright, that is, parallel to the Axis of the Pipe, as C, D, E, which muft be glued, and well faften'd to the Surface of the Pipe, and filld with a fufficient number of Ground-rockers, ©゙c.
For the greater Ornament, the Pipe AB, may be cut withoutfide into a Prifm of many Sides, and on each oppofite Plain many Holes made, equidiftant from one another, and bored obliqquely, ta receive Petards, or Rockets as before. All this will be eafily apprehended by looking on the Figure.

Befides the Compofition for the Aquatick Balls, you may ufe the following, made of fix Pounds of Powder, four of Salt-perre, and one of Filings of Iron : Or this, of cwelve Pounds of Powder, five of Saltpetre, three of Sulphur, two of Coal, one of Colaphony, and four Pounds of Saw-duft.

PROBLEM XXXV.

- To make Fire-Pors for Service in War.*

WE have taught, in Probl. 27. the Way of, making Pors of Fire for diverting Fire-works, and here we are to thew how to make Fire-pots for War, which have diverfe Names according to the different Figure may be giv'n to 'em; when they are made like earthen Pots with an Handle on each Side, they are call'd Fire-pots or Fire-pitcbers; when they refemble a Bottle or a Vial, they are call'd Fire-bottles or Vials; when like a Box, Fire-boxes. But whatever Figure they have, they are ordinarily made in the follwing Manner.

Put into a Veffel of Metal or Earth Quick-lime finely pulveris'd, or, if you can'r have this, Allies of Oak or Ahh-wood well fearced, till the Veffel is fill'd to a third Part, and then fill it the Brims with good Corn-powder : This done cover it exactly above with ftrong Paper, or rather with a Wheel of Wood, and wrapping it round with a Linnen Cloth pitched, rie to the Neck or Handle Ends of March, which being lighted, and the Pot thrown amongtt the Enemies, will fire the Powder, and make a prodigious Havock among the Soldiers, the Veffel breaking into a thoufand Pieces, which will kill all they hit: Befides that the Quick-lime rifing up into the Air, will make a thick Duft refembling that of a Whirlwind, which will extremely incommode all within its Reach.

Or you may take an earthen or glafs Veffel with a long Neck, like a Matras or Body of an Alembick, and fill its Belly with Grain-powder, with a little Sublimate and fome Bole-Armoniack, mixing with all thefe,' if you pleafe, fmall Pieces of Iron, to produce as it were a Hail. Laftly, fill the Neck of your Veffel with a low Compofition, that after 'tis fired there may be fufficient time to throw it where one would have it to do Execution,

Thefe Fire-pors are of good Ule in War: They may be thrown by the Befieged in an Attack, from the top of the Rampart, into the Moat, if the Enemy is eome fo far, or upon the Counterfcarp, with the Hand; and out of proper Engins, they may be thrown into the Trenches and other Works of the Enemies. They may be ufed alfo againf the Befieged, being thrown, out of fuch Machins, into a Place by the Be-fiegers. They are alfo of great ufe in Naval Fights, when Veffels come to be grappled or boarded; for by throwing thefe Pots into the Enemy's Ship, you may either blow it up by firing their Powder, or fet it on Fire, and put the Soldiers and Sailors into great Confufion.

Bur when you have a Mind to ufe 'em for ferting Ships on Fire, they muft be- k 'd with a Compofition, that can't be extinguifh'd by Water, or otherways, fuch as the following, which Water is fo far from quenching, when once fired, that it rather encreafes its Force: So that if it fall upon, the Deck of any Veffel, it will burn rough it in a little time, and fticking to whatevet is in iss Way, fet all in a Flame.

Take, two Pounds of rpowder, two Pounds of Salt-petre, 'eight Ounces of Sulphur, two Drams of Camphire, four Drams of Colophony, and one Dram of Sal-Armoniack. All thefe put together and well mix'd, muft be made into Dough or Pafte with Linfeed or Common Oil, which muft be formed into Balls about the Bignels of a large Wall-nut, and fo put into the Fire-por, the empty Spaces being filled up with Corn and Meal-powder mixed.

- PROBLEM XXXVI.

To make Fire-Crowns for Service in War.
Flery Crowns, or Fire-garlands are little Sacks or of a Circle, being full of a Compofition like that of the Fire-pots in the preceding Problem, or that which

Problems of Pyrotecbnv.

follows in this: They are ufed, as Fire-pots, to throw among the Enemies for burning of Ships, and Houles. Thefe Bags are four, five, or fix Inches Uvide, and from three to four Foot long: And ta hinder them from becoming ftraight when their Compofition is a burning, their Ends muft be well fowed together, befides you muft have an Iron Circle to ftrengthen them, to which they are made faft by the fmall Cords that are to be twifted round 'em from one End to another.

Into thefe Bags you may put Petards of Iron loar ded with good Powder and Lead-bullets, one End. of 'em entring into the Bags, and their Mouth ftanding out, that they mar ;o off, when fired by their Touch-holes that are 1 urrounded by the Compofition, which mult be fet on fire by two or three Holes mades in this circular Bag.

Inftead of Petards, you may fet round the Crown Hand Grenades, about the Bignefs of an Iron-buller of one or two Pound-weighr, having little Pipesthree or four ' Inches long fcr , into their Mouth, tio hol: them fal, and to fet ... on Fire, after they have been fired by the Compofition of the Fire-Garland, which mult be made as follows.

To four Pounds of Powder, add fix Pounds of Salt-perre, two Pounds of Sulphur, and one Pound of beaten Glafs: Or, put four Pounds of Powder, to fix Pounds of Salt-petre, and one Pound of Colophony; all being well beaten, fearced, and mixed together.

Two of thefe Crowns may be joyn'd together Remark, crofs-wife, as the Circles of an artificial Sphere of the World : and therefore fuch a Machin is calld a Fire-Splere or Circle. It mult be dipt in Pitch and Tar, and have Holes made in feveral Places, that it may be fired on all Sides, that none may lay hands on it, nor extinguifh it, when it is thrown among the Enemies, whom it will put into great Diforder, killing all in irs Way,

When thele Bags are not bent inro a round F.jrm, they are call'd Pire-Sacks, as allo Fire cylinaers, from their Figure : but there is fome imall Difference besween thefe two Machins, which are chiefly ufed in M
$1 \mathrm{l} / 3$ ling of the Walls, to kill and deftroy in the Breaches, of in the Moats all they come near, and with their Weight to crufl whatever they fall up on.

Inftead of the two Crowns join'd crofs-wife ohe within another, three or four, or more may be put rogether, to make up an artificial Spbere, the two outward and greater crofling at Right Angles, to teprefent the two Colures, to which others may be allo added to exhibir the other Circles of the Sphere; and all of em well taftned together with Iron or Brafs-wiet.

Cylindirs of Fire are Pipes of Wood, fortified at each End, and in the Middle upon the Powder-place with good Iron Hoops, and flopp'd with a Wheel or Sropple of Wood, after they have been loaded with Stones, fquare P.eces of Iron, and fuch like. which by the Violence of the Powdir are ctiven and fcattered hither and thither, to the Right and Leff, and kill, break, and deftroy whatever withftands.

PROBLEM XXXVII.

To make Fire-Barrels for Defending a Breacb, and Rut ining the Enemies Works.

I
N the Defending of a Breach there are allo ufed Artificial Barrels, call'd Flaming or Fire-Barrels, as alfo Thunding-Barrels, becaufe they are employed to overwhelm and thunderfrike the Enemy, and to ruin their Works, by rolling them down from 2 Breach or other Eminence upon them, being boand with Iron Hoops, and containing within em another lictle Cask full of Powder, and fix'd upon an Axletree, in the Middie of the large one : Or Fire-pors, Perards, and Granado's wrapt up in Tow frrinkled with Oyl of Perre, and dipt in liguid Picch, Turpentine and Colophony.
But it will be fufficient to put thereinto one large Grenade, which may be encompaffed with Pieces of Siones, Flints, and fquare Iron or Dice-hot, and
fuch like things, which being difpers'd by the Yiolence of the Powder, may kill, and bruile the Enemy, and deftroy their Works; but you fhould fill up the vacuities with Quick-lime. To thefe Casks or Bartels, Pipes muft be fitted and well faftned, for carrying Fire to the Powder, by means of a Priming to be put therein.

We forbear here to give a particular Defription Remplty of fome other Pyrotechnical Machins for War, which are too too common, as of Grenades, that are fmall hollow Balls or Shells, commonly of Iron, fill'd with fine Corn-Powder, which are fired by a Fufe of a flow Mixrure made of equal Parts of Powder, Salt-petre, and Brimftone: Ot Bombs, which are large hollow Balls or Shells of Iron, fill'd with Nails, Powder, and other offenfive Fire-works, that are thrown into Places befieg'd, to deftroy the Houfes : And of Carcaffes, which are large oval Cafes made of Ribs of Iron, and fill'd with Grenades and Ends of Piftol: Barrels charg'd with Powder, and wrap'd up together with the Grenades in Tow dipt in Oyl , and other Combuftible Matters. They are covered over with a Courfe pitch'd Cloth before they are thrown from the Mortar into the Place defigned, where they make a moft dreadful Havock.

PROBLEM XXXVIII.

To make an Ointment excellent for Curing all forts of Burning.

BQil, over a gente Fire, in common Water, Hogs petually, till no further Scum arifes; then expole it thus melted to cool in the clear open Air three or four Nighss. Afrer this melt the lame Lard or Greafe in an earthen Veffel over a llow Fire, and ftrain it fhrough a Linnen Cloth into cold Water, and after swalh it well in fair River or Fountain Water, to rake away its Salt, which will make it become white as Snow, Finally, being thus purify'd, put it up in a glaz'd earthen Veffel, to be kept for Ole upon Occasion.
If it falls out, as commonly it happens, that by a Burning Blisters arife upon the Skin, they mut not be cut or broken, till the Oyntment has been us'd to it for three or four Days. You may alfo ute the following, which you will find to be of great Efficacy, and is made of Hogs Lard melted and mix'd with two Drams of the Water of Night-fhade, and one Dram of Cyl of Saturn: Or with two Ounces of Juice of Onyons, and one Ounce of Cyl of Wall-nars.

FINIS.

$\%$

[^0]: gref

[^1]: .

