ON THE

FRONTISPIECE and BOOK.

ALL Recreations do deligbt tbe Mind; But thefe are beft, being of a learned kind: Here Art and Nature frive to give content, In fhewing many a yare Experiment; Whick you may read, and on tbeir Scbemes bere look, Both in tbe Frontifpiece, and in the Book. Upon robofe Table newo Conceits are fet, Like dainty Difhes, thereby for to wobet. And roin your Fudgment witb your Appetite To taffe them, and tberein to take deligbt. The Senfes Objects are but dullat beft, But Art dotbgive the Intellecil a Feaft. Come bitber then; and bere I will deferibe What this Same Table dotb for you provide. Here Quefions of Arithmetick are worougbt, And bidden Secrets unto ligbt are brought. The like it in Geometry dotb unfold, And fome too in Cofmography are told: I_{t} divers pretty Dyals dotb defcry, Witbftrange Experiments in Aftronomy, And Navigation, woith each feveral Picture, In Mufick, Opticks, and in ArchiteCture: In Statick, Machanicks, and Chymiftry; In Water-Works, and, to afcend more bigh, In Fire-Works, like to Jove's Artillery. Alltbis I knoon tbou in tbis Book Jaalt find, And bere's enough for to content thy Mind. For from good Autbors, this our AUTHOR dreno Thefe Recreations, wobich are Strange and True: So tbat this BOOK's a Centre, and 'tis fit That in tbis Centre, Lines of Praife hould meet. w. S.

Mathematical Recreations: OR,
 A Collection of many
 PROBLEMS
 Extracted out of the Ancient and Modern Philofophers:
 SECRETS and EXPERIMENTS IN
 Arithmetick, Geometry, Cofmography, Horologiography, Aftronomy, Navigation, Mufick,Opticks, Architecture, Statick, Mechanicks, Chymiftry, Water-Works, Fire-Works, © ©c.
 mot bulgacly manifeft till now,
 Written firft in Greek and Latin, lately compil'd in Frencb by HENRXVANETTE N, and now

 in Englifh, with the Examinations and Augmentations of divers Modern MATHEMATICIANS.Whereunto is added,

The Description and Use 0 F

The Double* HORIZ ONTAL DYAL, AND The General HOROLOGICALRING: Invented and Written by William Ougbtred.

> LONDON:

Printed for William Leake, and Foln Leake, at the Crown in Fletffreet, between the Two Temple-Gates. 1674.

To the Thrice Noble, and mon Generous Lord,

The Lord Lambert Verreyken : Lord of Hinden, Wolverthem, \&c.

My Honourable Lord,

Mongit the Rare and Curious Propofitions which I have learned out of the Studies of the Matbematicks in the famous Univerfity of Pont a Mouffon, I have taken fingular pleafure in certain Problems, no lefs Ingenious than Recreative, which drew me unto the fearch of Demonftrations more difficult and ferious, fome of which I have amaffed, and cauled to pals the Prefs, and here dedi-

The Epifle Dedicatory.

dedicate them now unto Your Ho^{-} nour : Not that laccount them worthy of Your View, but in part to teftifie my affectionate defires to ferve You, and to fatisfie the $\mathrm{Cu}-$ rious, who delight themfelves in thefe Pleafant Studies; knowing well that the Nobility and Gentry rather ftudy the Matbematical Arts to content and fatisfie their Aftections in the fpeculation of fuch admirable Experiments as are extracted from them, than in hope of gain to fill their Purfes. All which Studiec, and others, with my whole Endeavours, I hall always dedicate unto Your Honour, with an ardent defire to be accounted ever,

Your moft bumble and obedient
Nepbew and Servant,
H. Van Etten.

To the READER.

 many, that fundry fine Wits, as well aniongft the Ancient as Modern, bave fported and delighted themfelves upon feveral things of fmall confequence, as uponthe Foot of a Fly, upon a Straw, upon a Point; nay upon notbing: Striving as it were to Jhew the Greatne/s of their Glory, in the Smallnefs of the Subject: And bave amongft mof Jolid and artifcial Conclufions, compofed and produced fundry Inventions both Philofophical and Mathematical, to folace the Mind, and recreate the Spi-
The Epiftle to the Reader.

rits, whicb the fucceeding Ages bave imbraced, and from them gleaned and extracted many admirable and rare Conclufions; judging that borrowed matter often-times yields praife to the induftry of its Autbor.

Hence for thy ufe (Courteous Reader) I bave with great fearch and labour collected aljo and beaped up togetber in a body, of thefe pleafant and fine Experiments to fir up and delight the Affectionate, (out of the Writings of Socrates, Plato, Ariftotle, Demofthenes, Pythagoras, Democrates, Pliny, Hyparchus, Euclides, Vitruvius, Diaphantus, Pergxus, Archimedes, Papus Alexandrinus, Vitellius, Ptolomxus, Copernicus, Proclus, Mauralicus, Cardanus, Va-lalpandus,Kepleirus,Gilbertus,Tychonius, Dureirus, Jofephus, Clavius, Gallileus Maginus, Euphanus Ty-

The E़piftle to the Reader.

Tyberil, and others) knowing Art imitates Nature; that glories always in the variety of things which foe produceth ta fatisfie the Minds of Curious Inquifitors. And though perhaps these Labours to forme bumerous Perfons may Sem vain and ridiculous, for fuck it was not undertaken: But for thole mich intentively have defired and fought after the knowledge of thole things, it being an Invitation and Mo- $^{-}$ live to the Search of greater matters, and to imply the Mind in U/effol Knowledge, rather than to be buffed in vain Pamphlets, Play-books, fruitless Legends, and prodigious Hi Stories, that are invented out of F ans Gie, mpaicb abuse many Noble Spirits, dull their Wits, and alienate their thoughts from laudable and honourable Studies. In this Tractate thou maift therefore make choice of fuck $\Delta 2$ Ma-

The Epifle to the Reader.

Mathematical Problems and Conclufions as may delight thee, which kind of Learning dotbexcellently adorn a man; feeing the Vfefulnefs thereof, and the Manly Accomplijhments it doth produce, is profitable and delightful for all forts of People, who may furnib and adorn themfelves with abundance of matter in that kind, to belp tbem by may of ufe and difcourfe. And to this we bave alfo added our Pyrotechny, knowing that Beafts bave for their Object onely the furface of the Earth, but boping that thy Spirit, which followeth the motion of Fire, will abandon the lower Elements, and caufe thee to lift up tbine Eyes to foar in an bigher Contemplation, baving fo glittering a Canopy to bebold, and tbefepleafant and recreative Fires afcending may caufe thy affections alfo to afcend. The Whole whereof

The Epiftle to the Reader.

whereof we fend forth to thee, that defireft the Scrutability of tbings ; Nature baving furnihbed us with matter, thy Spirit may eafly digeft them, and put them finely in order, though now in diforder.

> a 3
> Ad

AD AUTHOREM
D. D. Henricum Van Etenium,

Alumnum Academix PONTA MOUSSON.

A Rdua walkeri fileant fecreta profundi, Definat occultam carpere Porta Viam. Itala Cardani mesirata ift Lampada docti Terra, Syracufium Gracia tota fenem: Orbi terrarmon, Toloma, Clep (ydra toti, Rara dioptra Procli, mira fuêre duso. Anylia te foveat doct usPont Mous \int on alumnum;

Qutid'quid natur a, qui legis, bortus habet.

- Dovia, curonet opuis doctum, te fit tua docto

Digna, Syracufii, arca, corona, viri.
Arca syracufiis utinam fit plumbea fervis;' Ausea fed Dominis, aurea tota fuis.

By way of
 ADVERTISEMENT.

Five or fix things I bque thougbt

 wortby to declare, before I pass further.

Iff, That I Place not the Speculative Demonftrations withall thefe Pro blems, buá content my felf to thew them as at the Fingers end: Which was my Plot and Intention, becaufe thofe which underftand the Mathematicks can conceive them eafity's others for the mof part will content thema 4 felves

By way of Advertifement.

felves onely with the Knowledge of them, without feeking the Reafon.

Secondly, To give a greater grace to the practice of thele Things, they ought to be concealed as much as they may, in the fubtilty of the way; for that which doth ravilh the Spirits is, An Admirable Effect, whofe Caufe is $V_{n k n o w n ;}$ which if it were difcovered, half the pleafure is loft :' therefore all the finenefs confifts in the dexterity of the AA, concealing the means, and changing often the Stream.

Thirdly, Great care ought to be had that one deceive not himfelf, that would declare by way of Art to deceive another : This will make

By to ay of Advertifement.

make the matter contemptible to ignorant Perfons, which will rather caft the Fault upon the Science, than upon him that fhews it: When the Caufe is not in the Mathematical Principles, but in him that failsin the deting of it.

Fourthly, In certain Arithmetical Propofitions they have onely their Anfwers, as I found them in fundry Authors, which any one, being ftudious of Mathematical Learning, may find their Original, and allo the way of their Operation.

Fifthly, Becaufe the Number of thefe $P R O B L E M S$, and their Dependances, are many and intermixed, I thought it convenient to gather them into a Table : that

By way of Advertifement.

that fo each one according to his Fancy might make beft choice of that which might beft pleafe his Palate, the matter being not of one Nature, nor of like Subtilty : But whofoever will have patience to read on, fhall find the End better than the Beginning.

A
 T
 A
 BL E

 OFTHE
Particular Heads of this Book,

Contrated according to the SEVERAL ARTS Specified in the Title-Page.

Experiments in Aritbmetick

PAge 1,2,3,16, 19,22,28,33,39,40,44,45, 51, 52,53,59,60,69, $71,78,83,85,86,89$, $90,91,124,134,135,136,137,138,139,140$, 177,178,179,181,182,183,184,185,188, 208, 210,213.

Experiments in Geomatry.
Pag.12,15,24,26,27,30,35,37,41,42,47 48, 49,62,65,72,79,82,113,117, [18, 119,214,215, $217,2,18,23,4,2350238,839,240$.

Experimouts in Cofmograpby.
Pag. 14, 43, 75, 106,107,219,220,225,227, 228,229,230,232.

Experiments in Horologiograpby. Pag. 136, $166,167,168,169,171,245 \cdot$ Experiments

A TABLE of the SEVERAL ARTS, dr.
Experiments in Aftronomy. Pàg. 220. to 224.

Experiments in Navigation.
Pag. 105, 232, 233, 236, 237.
Experiments in Mufick. Pag. 78, 87, 126.

Experiments in Opticks.
Pag. 6,66,98,99,100,102,129,131,141,142, $143,144,146,149,151,152,153,155$, to 165.

Experiments in Arctitecture.
Pag. 16, 242, $243 \cdot$
.Experiments in Statick.
Pag.27,30,32,71,199,200,201,203,204,205, 207.

Experiments in Mechanicks.
Pag. 56,58,68,88,95,108,110,128,172,173, 174,176,246,248,255,256.

Experiments in Cbyimiftry. Pag. $198,253,254,255,259,260$.

Experiments in Water-works. Pag.I89to 196. 245, to 252.

Experiments in Fire-poorks.
From page 26 I, to the end.

A TABLE

OFTHE
CONTENTS
And Chief Points
Contained in this BOOK.

PROBLEM I.F finding of Numbers conceived in the Minds 1,2,3-
PROB. II.
Howo vifible Objects that are meithout, and things . that pafs by, are majt lively reprefented to thofe that are poithin.

PROB. III.
How to woeigh the blows of ones Fift, of a Mallet, a Hatchet, or fucb-like. 9 PKOB. IV.
Tbat a Staff may be broken, placed upon troo Glafes, woithout burting of the Glaffes. 12 PROB. V.
Of a Geograpbical Garden-plot fit for a Prince, or fome great Perfonage. PRO3.

The CONTENTS. PROB. VI.

Hors todifpofe tbree Staves, wobicbmay fupport each otber in tbe Air.

PROB. VII.

Hoov to dijpofe Lots, So that tbe fiftb, fixtb, ninth, \&c. of any number of Perfons may efcape. 16 PROB. VIII.
Three perfons baving taken each of tbem feveral tbings, to find wobich eacb of them bath taken. 19 PROB. IX.
How tbe balf of a Veffel pobich contains 8 meafures may be taker, tbere being but onely two otber meafures,the one being 3,and the otbèr 8 meafures, 22 PROB. x .
Hoow a Stick may ftand upon ones finger, or a Pike in the middle of a Court, nitbout falling. 24 PROB. XI.
How a Milfone or other Ponderofity may bang upons the point of a Needle woitbout bowing, or any woife breaking of $i t$.

PROB. XII.

Of tbree Knives, wobich may be fo dippofed as to bang in tbe air, and move upon the point of \& Needle. 27 PROB. XIII.
Hosp tbe weight of Smoak, of any combuftible body, wobich is exbaled, may be found. PROB. XIV.
Many tbings being difpofed circular, or otber-mife, to find wobich of tbem any one tbinks upon. 28 PROB. XV.
Hows to make a Door wbich opens and Jhuts on botb fides.

The CONTENTS:

Land, dotb brag that be may in a rigbt Line pafs from place to ptace 3000 miles.

PROB. XXVII.

How is it that a man.ftanding uprigbt, and looking which way be waill, be looketb true nooth or Joutb. 43 PROB. XXVIII.
To tell any one what number remains, after certain operations being ended, witbout asking any queftion.

PROB. XXIX.

Of the play with two Several things.
 4) PROB. XXX.

Trpa feveral numbers being taken by twò fundry perSons, bow fubtilly to difcover nobich of thofe num $\boldsymbol{T}_{\boldsymbol{T}}$ bers each of them took.

PROB. XXXI.
How to dofcribe a Gircle tbat Jhall touch tbree points placed boxfoever upon a plain, if they be not in a: right Line.

PROB. XXXII.

Hhow to change a Circle inta a Square forms 48 PROB. XXXIII.
With one and the fame Compafes, and at one and the Same extent or opening, boow to deferibe many Gircles concentrical, tbat is, greater or leffer one than another.

PROB. XXXIV.
Any numbers under 10 being tbougbt upon, to find wobat numbers they weere.

PROB. XXXV.
Of the play with the Ring.
52
PROB. XXXVI
The play of tbree, four, or more Dice.

The CONTENTS.

 PROB. XXXVII.How to make Water in a Glafs feem to boyl and Jparkle.

PROB. XxxviII.
Of a fine Veffel mbich bolds Wine or Water, being caff into it at a certain beigbt, but being filled bigber, it woill run all out of its oxin accord.

PROB. XXXIX.
Of a Glafs very pleafant.
PROB. XL.
If any one תbould bold in each band as many pieces of mosey as in the otber, bons to find hoor much there is.

PROB. XLI.

Many Dice being caff, bow artificially to dificover the number of the points that may arife.

PROB. XLII.
Troo Metals, as Goldand Silver, or of otber kind, rovighing alike, being privately placed in twoo like Boxes, to find in wobiob of them the Gold or Silver \%.

PROB. XLIII.

Towo Globes of divers Metals (as one Gold, the other Copper) yet of equal woight, being put in a Box, as BG, to find in wobich end tbe Gold or Copper is. 65 PROB. XLIV.
To reprefent divers forts of Rainbows bere belons. 66 PROB. XLV.
How tbat if all the Poxder in the World weere inclofed in a Boovl of Paper or Glafs, and being fired on all parts, it could not break tbat Boovl. 68 PROB. XLVI.
To find a number which being divided by $2,3,4,5$,

The CONTENTS.

or 6 , there will fill remain I; but being divided by 7 , there will remain notbing.

One bad a certain number of Crownns, and counting them by 2 and 2 , there refted $1 ;$ counting them by 3 and 3 , there refted 2 ; counting them by 4 and 4 , there refted 3 ; counting them by 5 and 5 , there refted 4 ; counting them by 6 and 6, there refted 5; but cosnting them by 7 and 7, there reftednathing: How many Growns might be have? 71 PROB. XLVIII.
How many forts of weigbts in the leaft manner muft there be, to weeigh all forts of tbings betroeen 1 poxsed and 121 pound, and fo wuto 364 pound? 72 PROB, XLIX.
Of a deceitful Ballance, which being empty feems to be juft, becaufe it bangs in IEquilibrio, notwithftanding putting 12 pound in one Ballance, and II in the otber, it woill remain in Fquilibrio. 73 PROB. L,
Tobeave or lift up a Bottle woith a Straws. 74 PROB. LI.
How in the middle of a Wood or Defart, zoitbout tbe fight of the Sun, Stars, Shadow, or CompaßS, to find out the North op South, or the four Cardinal Paints of the World, Eaft, Weft, \&c.

Tlbree perfons baving taken Cousters, Cards, or otber tbings, to find bows much each one bath takes. 78 PROB. LIII.
How to rake a confort of Mufick of many parts with one Voice, or one iuffrument onely.

The CONTENTS.

PROB. LFV.

To make or defcribe an Oval form, or that wobich is near refembled unto it, at one turning, witb a apaz of common Compaffes.

PROB. LV.
Of a Purfe difficult to be opened. $8 \mathbf{I}$ PROB. LVI.
Wbetber is it more bard and admirable mpitbout Coms paffes to make a perfect circle, or being made to find out the Centre of it ?

PROB. LVK.
Xery one baving taken tbree Cards, to find bowo many points they contain.

PROB. LVII.

- ManyCards placed in divers ranks, to find wobich af thofe Cards any one bath thouglat.

Many Cards being offerced to fundry perfons, to find zobich of thefe Cards any one thinketh upon. 86 PROB. LIX.
Howo to make an Inftrumsent that belds to beast, as Gallileus made to belp to fee.

PROB. LX.

Of a fine Lamp wollich goeth not out, though one earry it in ones pocket, or being rolled on the ground noill juill burn.

PROB. LXI.

Any one harivig thought a Card amongft many Cards, bow artificiatly to difcover it out.

Tbree Women, $\mathrm{A}, \mathrm{B}, \mathrm{C}$, carried Apples to a Manket to Sell: A bad 20, B 30, C 40 ; they Jold as many for a penny one as the otber, and brought howe ove $b 2$

The CONTENTS：

as mucb money as another：bow could tbis be？ 90 PROB．EXIII．
Of the properties of fome Numbers． PROB．LXIV．
Of an excellent Lamp，wobicb ferves or furnifheth it Self roith＠il，and burns a long time：

Of the Play at Koyls or Nine－pins．
97 PROB．LXVI．
Of Spectacles of Pleafure．
Of Spectacles giving Several colours to the vifage． 98 Of Spectacles which make a Town feem to be a City， one armsed man as a Company，and apiece of Gold as many pieces．
How out of a Clamber to See the objects which pafs by，according to the lively．Perfpective．

100 Of Gallileus bis admirable Optick Glafs，wobich belps one to See the beginning and ending of Eclipfes，tbe乃ots in the Sun，the Stars which move about the －Planets，and perfpicuoufly tbings far remote． Of the parts of Gallieus his Glaß． 102 PROB LXVII． Of the Magnes，and Needles toucbed tberexoitb． How Rings of Iron may bang one by anotber in the air． 103
Of Mahomets Tomb，wobich bangs in the air by the touch of the Magnes．

104 How by the Magnes only to find out nortb ఠr foutb． 105 Of a fecrecy in the Magnes for difcovering tbings far remote．

$$
106
$$

107
Of finding the Poles by the Magnes． PROB．LXVIII．
Of the properties of 代位iles，or Bowles to blows the fire．

The CONTENTS.

fire.
108

PROB. LXIX.

Of the Thermometer, or that which meafures the degrees of beat and cold by the air. 110 PROB. LXX.
Of the proportion of bumane Bodies, of Statues, of Coloflus or huge:Images, and monftraus Giants. 113
Of the commenfuration of the parts of the Body the one to tbe otber in particular, by wobich the Lion zpas meafured by bis Cland, the Giant by bis Ibumb, and Hercules by bis Foot. 115,116
Of Statues, of Coloffur, or buge Images. 117
Of Mount Athos metamorpbofed by Dynocrates into a Statue in rubofe band woas a Town able to receive 10000 men. ibid
Of the famous Coloffus at Rhodes, zobich bad 70 cubits in beight, and loaded 900 Camels, wobich. woighed 1080000 poannd. 118

Of Nero his great Coloffus which bad a large face of
12 foot.

119 Of monjfrous Giants.
Of the Giants Og and Goliah.
119,120
Of the Carcals of a man found wobich poas in length 49 foot, and of that monfter found in Creet_{2} wobich bad 46 cubits of beigbt.
Of Campefius lais relation of a Monfer of 300 foots found in Sicily, robofe face, according to the form mer proportion 'houild be 30 foot in length. 121 PROB. LXXI.

> Of the Game at the Palm, at Irap, at Bowles, Pailmail, and otbers. 122 PROB. LXXII.
Of the Game of Square Forms. b 3

The CONTENTS. PROB. LXXIII.

How to madke the Swing of a Viol Senfibly to Shake, woitbout any:one toucbing it 126 PROB. LXXIV.
Of a Veffel which contains three feveral kinds of Liquer, all put in at one Bung-bole, and drama out at one Tap, feverally poitbout mixture

PROB: LXXV.
Of Burning-Glaffes.
Archimedes bir roay of burwing the Sbips of Syracufe

129
of Proclus wis zray, and of concavs and fiberical Glaffes mbichb burn, the caufe and demonfration of buerning roith Glaffes
(1) Maginus bis woay of fetting fire to Paroder in a Mixe by Glaffes.
Of tle Exawrination of burning by Glaffes 133 PROB. LXXVI.
Of pleafant Queftions by way of Aritbmetick:
Of the Afs and Mule 134
Of the number of Souldiers that fougbt before old Troy $r 35$
Qf the number of Crovens that treo mers bad ibid. iAbout the bour of the day 136
Of Pythagoras Schollars 137
Of the number of Apples given amouggt the Graces and the Muses
ibid.
Of the Teftament or laft Will of a dying Fatber 138 Of the Cups of Croefus: 138
Of Cupids Apples $\quad \therefore \quad 139$
Of a mans Age $\quad \because \quad$ I39
Of the Lion of Bronz, placed upon a Fountain soitb bis Epigram.

The CONTENTS.

PROB. LXXVII.

Excellent Experiments in Opticks.
Principles toucbing Reffections
I4 1
Experiments upon flat ard plain Glaffes . 142
Hono tbe Images feem to finik into a plain Glafs, and alwoys are feen perpendicular to the Glafs, and aljo inverfed.

143
The tbings wabict pafs by in aftreet may by belpof a plain Glafs be feen in a Cbamber, and tbe beight of a Towser or Tree obferved.

143
Hoss feveral Candles from one Candle are reprefented in a plain Glaff, and Glaffes alternately mady be Seen one witbin anotber, as alfo the back parts of the body as zvell as the fore parts, ars evidently reprefented.

144
How an Image may be feen to bang in the air by belp of a Glafs, and Writing read or maderftood. 146 Experiments upon gibbous or convex fpberical Glaffes. Hows Lively to reprefent a whole City, Fortification, or Army by a Gibbous Glafs. 147
Howo the Images are feen in Concave Glaffes, 149
How the Images are transformed by approaching to the centre of the Glafs, or point of concourres and of an exceeding ligbt tbat a concave Glafs gives by belp of aCandle.
Howo the Images, as a Maxa, a Smoord or Hand, doth comeforth out of the Glafs. 152 Offtrange Apparitions of Images in the Air, by belp of fisudry Glaffes.

153
Of the roonderful augmentation of tbe parts of mans body, coming mear the point of Inflammation, or cenere of the Glafs.

154
Whow $\begin{aligned} \text { riting may be reverberated from a Glass npon }\end{aligned}$ b 4

The CONTENTS.

a Wall, and read.
How by belp of a Concave Glaß to caff ligbt into a Camp, or to give a perfjective ligbt to Pyonneris in a Mine by one Candle onely.

Of other Glafes of Pleafure. is7 Of ftrange deformed Reprefertations by Glafes ; caufing a man to bave four Eyes, two Moutbs, two Nofes, troo Heads.

159
Of Glafes wobich give a colour to tbe Vifage, and make the Face feem fair and foul.

PROB. LXXVIII.

How to flewo one that is fufficious wobat is in anotber Cbamber or Room, notwithfanding the interpof 1 tion of that Wrall. ibid.
Corol. 1. To fee the Befiegers of a place upon tbe Rampart of a Fortification. 161
Corol. 2 and 3. Notwitbffanding tbe interpofition of Walls and Cbambers, by belp of a Glafs things may be feen wbich pafs by.

161 PROB. LXXIX.
Hoow with a Musket to Strike a mark not looking towards $i t$, as exacily as one aimed at $i t . \quad 162$
How exacily to fooot out of a Musket to aplace wobich is not feen, bring bindered by Jome obfacle, or otber interpoftion.

PROB. LXXX.

Hopo to make an Image to be feen banging in tbe air, baving kis bead doronrpard. ibid.

PROB. LXXXI.

How to make a company of reprefentative Souldiers Seem to be as a Regiment, or bore fexp in wumber

The CONTENTS.

maybe multiplied to feem many in number. 164 Corol. Of a curious Cabinet made of plain Glaffes 165 PROB. LXXXII.
Of fine and pleasant Dyals in Horologiography. Of a Dyal of Herbs for a Garden. 166 Of the Dyal upon the finger and the band. ibid. Of a Dyal wobich roas ubout an Obelisk at Rome 167 Of Dyals roith Glafees.

168 Of a Dyal robich bath a Glafs in tbe place of the Style. ibid. Of Dyals roitb Water, robich tbe Ancients ufed. 170 PROB. LXXXIII.
Of Shooting out of Eannons or great Artillery. How to charge a Cannon woitbout Porvder 172 To find boves much time the Bullet of a Cannon Spends in the Air, before it falls to the ground. 173 How it is tbat a Cannon Jhooting uppoard, the Bullet fies writh more violence, than being Soot point blank or fbooting dorvnroard. ibid. Whetber is the difcbarge of a Cannon fo much the more violent, by hove mucb it batb the more length? 175 PROB. LXXXIV.
Of prodigious Progreffions © Muliiplications of Creatures, Plants, Fruits, Numbers,Gold, Silver,\&c.
Of grains of Muftard-Seed, and their increajc. 177 Of Pigs, and their increafe. 178 Of the mighty increafe of grains of Corn. $\quad 179$ Of tbe monderful increafe of Sheep. $\quad 1$ ro Of tbe increafe of Codffth, Carps, \&c. 181 Of the increafe and multiplication of Men. ibid.
Of the increase of Numbers. 183
Of a man that gathered Apples, Stones, or fuch-like upon a Conditions.

The CONTENTS.

Of the Cbanges in Bells, ine Mufical Inftruments, Tranfmustation of places, in Numbers, Letters, Men, and jucb-like.
abid.
Of the roonderful intercbange of the Letters is the Alpbabet.

187
Of a Servant bired upon certain Conditions. 188 PROB. LXXXV.
Of Fountains, Hydriatiques, Stepticks,Macbinecks, and otber Experiments upon water, or otber liquor.
3. Howo Water at the foot of a Mountais may be made to afcend to the top of it, and fo to defcend on the otber fide of it.

189
2. To find boes mucb Liquor is in a Veffel, owely by ufing the Tap-bole. 190
3. How it is that a Veffel is faid to bold more Water at the foot of a Mountain, than at the top "f it. ib.
4. How to conduct Water from the top of one Mounttain to the top of anotber.

192
5. Of a fine Fourtain robicb fpouts Water very bigh, and noith great violence, by turning of a Cocke ib.
6. Of Archimedes's Screm, wobich makes Water afcend by defcending. 193
7. Of a fine Fountain of Pleafure. 195

9 How eafily to take Wine out of a Veffel at the Bungbole, poithout piercing of a bole in the Veffel. 197
1o How to meafure irregular Bodies by belp of Water.
It To find the woeight of Water.
198
12 To find tbe Cbarge that a Veffel may carry, as Sbips, Boats, or fucb-like. 199
13 How comes it that a Sbip baving fafely Sailed ino the vaft Ocean, and being came into the Port or Harbour

The CONTENTS.

Harbour, zoill fink dowut right ?
 200

14. How a groß Body of Metal may fooim apon the Water.

201
15 How to meigh the lightnefs of the Air. 202
16 A Body being given, to mark, it abont, and Jhers boos much of it woill fink in the Water, or fnoim aboue tbe Wrater.
$2 \mathrm{O}_{3}$
17 To find bow nuanb Several Motals or other Bodies do meigh Lefs in the Water thun in the Air. 204
18 Horv it is that a Ballance baving like rweight in sach Scale, and bamquag in æquilibrio in the Air, being placed in another place, (witbout remeoving any weight it palliceaferto bayg in xquilibrio fenfibly. yea by a great differeuce of roeigbt. 205
19 To fheru sobat WFaters are beavier one than anotber; and bora much.

206
20 Hawn to make sonnd of Water weigh as much as $10,20,30$, or ioo pound of Lead, nay as much as 1000 or 10000 pound neight

207

PROB. LXXXVF.

Of fundry Quegtions of Aritbmetictys and firfo af the number of Sands calculated hy Axchimedes and Clavius.

208
2 Dizens Mktals being melted tagetber in one bady, to find the mixture of thern.

210
3 A fubtile Queftion of three Partmers about equalit ty of Wine and Vefels.

213
4 Of a Ladder whicb jtanding upright againglt a Wall of 10 foot bigh, the foot of it is pulled out 6 foot from the Wall upon the Pavement, honamuch batb the topop of the Ladder defecended
PROB. EXXXVII.
Writay Suits or Debates betrosers Caius of Sempronius,

The CONTENTS:

nius, upon the form of figures robich Geometricians call Ifoperimeter, or equal in circuit or compa \int. ib. I Incident: Of changing a field of 6 meafures Square for a long rectangled field of 9 meafures in length, and 3 in breadib, both equal in circuit, but not in quantity.

215
2 Incident: About troo Sacks, each of them bolding but a bufbel, and yet veere to bold 4 bufbels. 217
3 Incident: Of the deceit of Pipes robich convey Wa ter, that a Pipe of two inches diameter doth caft out 4 times as much Water as a Pipe of one inch diameter.

217
Sevon beaps of Corn of rofoot èvery way, is not as much as one beap of Corn of 20 foot every way. 218

PROB. LXXXVIII.

Of fundry Quetions in matter of Cofmography and Aftronomy; and firft; In robat place the middle of the Earth is fuppofed to be.

219
Of the depth of the Eartb, and beight of the Heavens, and tbe compafs of the World, bows much. ibid. Hows much the Starry Firmament, the Sun and the Moon, are diftant from the centre of the Eartb. 220 Howo long a Mill.ftone woould be in falling to the centre of the Earth from the Juperficies, if it might bave paffage tbither.
Howo long time a Man or a Bird may be in compaffing the robole Earth. . ibid.
Suppofing a man fhould afcend 20 miles every day, bows long it would be before be could reaeb to the Moon.

22 I
The Suns motion 20 times froifter than the Moons. ib. If a Milltone from the Orb of the Sun gould defcend 1000 miles in an bour, bowo long it would be be-
fore

The CONTENTS.

fore it would came to the Eartb. , 221
Of tbe Suns quick motion.
ibid.
Of the rapt and vislent motion of the Starry Firmament.
ibid.
PROB. XCII.
To find the Bifextile Year, the Dominical Letter, and the Letters of the month.

$$
222
$$

To find the Circle of the Sun by the fingers.
223 PROB. XCIII.
To find the Nerb and Full Moon in each montb. 224 PROB. XCIV.
To find the Latitude of Countreys. 225 PROB. XCV.
Of the Climates of Cosutreys, and borp to find tbem.ib. -PROB. XCVI.
Of Longitude and Latitude of the places of the Eartb and of the Stars of the Heavens. 227
To find the Longitude of a Countrey. 228
Of the Latitude of a Countrey. ibid.
To find tbe Latitude of a Countrey. 229
To find the diftance of places. 230
Of the Longitude, Latitude, Declination, and Diftance of the Stars. 23 I
Hows is it tbat twoo Horfes or otber Creatures coming - inte tbe World at one time, and dying at one and tbe Same inftant, yet tbe one of them to be a day older. than the other?
Certain fine Obfervations. 232 PROB. XCVII.
To make a Triangle tbat fall bave 3 right angles. 234 PROB. XCVIII.
To divide a Line in as many parts as one woill, woitbout conspafles, or without Jeeing of it.

The CONTENTS.
PROB. XCIX.
To dicaro a Line wobich fhall inctine to unotber Line, yet never macet, againgt the stoxiom of Purallels. 235

PROB. C.
To find the variation of tbe Compaß by the Sun Bining.

PROB. CI.
To know which way tbe wind is in ones Chamber, roitbout going abrnad.

PROB. CIF.
How to draws a Parallel Splgerical Line woith great eaje.

PROB. CIII.
Ho tenf ane an beight onely by belp of ones H at, ib.
PROB. CIV.
To tuke an beight oithe two Strazes.
PROB. CN.
Wi ArchiteCture bowo Statmes or other things in bigk Brildings,3ball bear a proportion to the Eye below, eitber equal, double, \&c.

PROB. CVI.
Of defornced Figures which thave no exath proportian oobere to place tbe Eye to fee them direct. 242

PROB. CVII.
How Cannon that bath foot may be covered frow the lattery of the Euemy.

PROB. CVIII.
Heso to make a Lever, by wbich one man may alone
place a Cannon mpon bis Carriage,
PROB. CIX.
How to make a Clock woith one Wheel.

$$
245
$$

PROB. CX.
LSow by belp of two Wheels to make a Child to draw $u p$

The CONTENTS.

up alone a Hogheadof Water at a time; and being drason up, Jall caft out it felf into another Teffel, as one would bave it. PROB. CXI.
Of a Ladder of Cords to carry in ones pocket, by wabich one may mount a WFall or Tovoer alone. PROB. CXII.
How to make a Pump wobofe fivengtb is maryellous by reafon of the great poeight of Water that it is able to bring up at once, and fo by continurance: 248 PROB. CXIII.
How by means of a Ciftern to make Water of a Pit continually to afcend woithout ftrength; or the afffrance of any otber Pump.

249
PROB. CXIV.

Hose to caft Water out of a Fonntain very bigh. 250 PROB. CXV.
How to empty the WFater of a Pit by the belp of a Ciftern.

PROB. CXVI.

How to @out Water very high.
ibid

PROB. CXVII.

Hosp to practifeexcellently the re-animation of Simoples, in cafe the Plants may mot be tranforted to be re-planted by reafon of diftance of places. 253 PROB. CXVIII.
Hons to make an infallible perpetual motion. ibid PROB. CXIX.
Of the admirable Invention of making the Pbilofophers Tree, mobich one may fee wiib bis Eye *o grow by little and little. 254 PROB. CXX.
Lowo to make the reprefentation of the great poorld.ib.

The CONTENTS:

 PROB. CXXI.Of a Cone or Pyramidal Figure tbat moves upon a Table.

> PROB. CXXII.

255
To cleave an Anvil woith the blowo of a Piftol: 256 PROB. CXXIII.
How to roft a Capon carried in a Budget at a SaddleBors, in the.ß.pace of riding 5 or 6 miles. ibid. PROB. CXXIV.
How to make a Candle burn and continue tbree times. as long as otberwife it moould. PROB. CXXV.
How out of a quantity of Wine to extract tbat which is moft woindy and evil.

How to maks two Marmouzets, one of wobich fall light a Candle, and the otber put it out.
PROB., CXXVII.

How to keep Wine frefh as if it poere in a Cellar, in the beat of Summer, and woitbout Ice or Snow. 259 PROB. CXXVIII.
To make a Cement wobich lafteth as Marble, eo reffeteth air $\underbrace{2}$ water, woithout dif-joyning. ibid PROB. CXXIX.
How to melt Metal very quickly, yea in a Sbell upon a little Fire.

PROB. CXXX.

How to make Iron or Steel exceeding bard. 260 PROB. CXXXI•
T'opreferve Fire as long as you woill, imitating the inextinguifhable Fire of Vefals, ibid.

888885\$8888858: 88818818898

Mathematical

RECREATION

PROBLEM
To find a Number thougbt upond

dim that he Quadruple the Number thought upon, that is, multiply it by 4 , and, anto it bid him to add 6, 8,10 , or any Number at pleafure:- and let him take the half of the fam, then ask how much it comes to for then if you takeawiay half the number from if' which you willed him at firft to add to it, there fhall remain the double of the number thought upon.

2 @athematical kecteation.

Example.
The Number thought upon
The Quadruple ot it 20
Sat 8 unto it, makes. 28
The half of it is. 14
Take away half the number added, from $\}$ it, viz. 4 , the reft is
The double of the number thought upon,viz. 10
Anotber wode qo find sobat number was thought upon.

BId him which thinketh double his Number, and unto that double add 4 , and bid him multiply that fame product by 5 , and unto that product bid him add 12 , and multiply that lait number by 10 (which is done eafily by fetting a Cypher at the end of the number) then ask him the latt number or product, and from it fecretly Subtract 320; the remainder in the hundreth place is the number thought upon.

Example.

The number thought upon . 77	
His double --	
Toitadd 4, thakes 18	For which
Which multiplied by 5 makes 90	700 account
To which add 12, makes, 102	
This multiplied by to which is onely by ad-	number of the hundreds,viz.
ding a Cypher to it,	7. Io have you the Number
From t	oughtupon
Reft	

99*turnatirat tecreatof:

To fivd Numbers conceived upon, otbervife tban the former.

BId the party which thinks the number, that he tripple his thought, and caufe him to take the half of it: (if it be odd, take the leaft half, and put one untoit) then willhim to tripple the half, and take half of it, as before: Laftly, ask him how many Nines there is in the' laft half, and for every Nine, account four in your methory, for that thall thew the number thought upon, if both the tripples were even: but if it be odd at the firft ripple, and evenat the fecond, for the one added unto the leaft balf keep one in memoxy : if the firftripple be even, and the fecond odd, for the one added unto the lealt half keep two in memory: laftly, if at both times intripling, the numbers be cdd, for the two added unto the leaft halfs, keep three in memory: Thefe cautions obferved, and added unto as many fours as the party fays there is Nines contained in the laft half, (hall never fail you to declare or difcern tunly what number was thought upon.

Example:

The number thought upont
The tripple
The half thereof 6 or 10 , one put to it makes 11
The tripple of the half
The half 9 or 16 , one put to it makes 18 or 33
The number of Nines in the laf half 1 or

The firft I reprefenteth 4 ，the number thoughe upon，and the laft I with the caution makes 7，the other number thought upon．

Note．

Order your Method fo that you be not difea \rightarrow vered，which to help，you may with dexterity and induftry make Additions，Subferactions，Mul－ tiplications，Divifons， $\mathscr{O}^{c} c$ ．and inftead of asking how many Nines there is，you may ask how ma－ ny Eights，Tens，efc．there is，or fubtract Eight， Ten，dxp．from the Number which remains，for to find out the Number thought upon．

Now touching the Demonffrations of the for－ mer Directions，and others which follow，they depend upon the $2,7,8$ ，and 9 Books of the Ele－ ments of Euclide ：Upon which fecond Book and fourth Propofition，this may be extracted，for thofe which are more learned，for the finding of any Number that any one thinketh on．

Bid the party that thinks，that he break the Number thought uponinto any two parts，and unto the Squares of the parts let him add the double Product of the parts；then ask what it amounteth unto？So the Root Quadrat thall be the Number thought upon．

soathematical Becteation."

Example.
The Number thought upon
The parts fuppofe
The Square of 3 makes 9)
The Square of 2 makes 4
The product of the parts, viz. 3 by 2 makes 6 , which 6 doubled makes
the fum of thefe three numbers 25 , the fquare Root of which is 5 , the number thought upon

Or more compendioully it may be delivered thus:

Break the Number into two parts, and to the Product of the parts add the Square of half the difference of the parts, then the Root Quadrat of the Aggregate is half the Number conceived.

Examination:

THe Problems wobich coucern Arithmetick, woe examine nos: for thefe are eafie to any one wobich bath read the Grounds and Principles of Arithmetick; but wop efpecially touch upon that robich tends to the Speculations of Phyfick, Geometry, and Opticks, and fucb otbers robich ate of siopie didfficulty, and more principally to be examined and confidereds"

6. Thathematimat Rerationt

PROBLEM II.

How to reprefent to thofe which are in a Cbamber, -that robich is moitbout, or all that which pafatb by.
T His is one:of the fineft Experiments in the Optigues, and it is done thus: Chufe a Chamber or Place which is towards the Street, frequented with People; or which: is againf fome fair flourihing Objed, that fo it may be more delightful and pleaant to the Beholders, then make.the Room dank by fhutting out the light, except a fmall hole of fixpence brodd ; this done; all the Images and Speqies of the Objects which are without, will be feen within, and you fall have pleafure to fee it, not only upon the Wall, but efpecially upon a theet of white Paper, or fome 'White Cloth
 hurginear the hole; ana if unto the hole you place a round Glas! that is, a Glafs which is thicker in the middle than at the edge: fuch as js the comman: Burning Glaffes; or fuch whichoold People ure: for then the: manges which beforet did feem dead, and of a daskijh colour; will'appear and bẹ

soatcinatital metteation:

be feen upon the Paper, or white Cloth, according to their natnral colours, ya mpre lively than their natural, and the apearances will be fo much the more beautiful and perfect, by how much the hole is leffer, the day clear, and the Sun Chiniing.
It is plealant to fee the beautiful and goody Keprefentation of the Heavens, intermixed with Clouds in the Horizon, upon a Woody Situation. the motion of Birds in the Air, of Men and other Creatures upon the Ground, with the trembling of Plants, Tops of Trees, and fuch like : For every thing will be feen within, even to the life, but inverfed: Notwithftanding, this beautifül Paint will fo naturally reprefent it felf-in fuch a lively Perfpective, that hardy the mof acurate Painter can reprefent the like.

Now the reafon why the Images and Objects without are inverfed ; is becaufe the Species do interfect one another in the hole, fo that the fpecies of the feet al-
 cend; and thofe of the head dercend.

But here note, that they may be reprefented right twomanner of ways: Firf, with a Concave Glafs': fecondly, By help of another Convex Glafs, difpoled or placed between the Paper and' the other Clafs, as may be feen here by the figure.

8 spatbentitical Rectration.

Now I will add here only by paffing by for fuch which affect Paintingand Portraitures that this Experiment may excellently help them in the lively painting of things perfpective-wife, as Topograpbical Cards, \&x. and for Philofophers, it is a fine Secret to explain the Organ of the fight, for the hollow of the Eye is taken as the ser Chamber, the Ball of the Apple of the Eye, for the hole of the Chamber, the Cryftaline humour at the fmall of the Glals, and the bottom of the Eye, for the Wall or Leaf of Paper.

Exantination:

THe Species being preffed togetber, or contracled, dotb not perform it upon a Wall, for tbe β ecies of any tbing doth reprefent it felf not onely in one bole of a Windoro, but in infinite boles, even zuto tbe robole Sphere, or at leaft unto a Hemi(phere (intelleciual in a freeMedium) if the Beams or Reflections be not interpofed, and by bonp much the hole is made lefs, to give paflage to tbe Species, by fo mucb the more lively are the Imagesformed. .

In Convex or Concave Glaffes, the Images noill be diproportionable to the Eye, by bon much they are more Concave, or Convex, and by bow much tbe parts of the Image comes near to the Axis, for thofe that are near, are better proportioned tban tbofe sobich are fartber off.

But to bave tbem more lively and true, according to the Imaginary Conical Section, let the bale be no greater than apins bead made upon a piece of thin Brafs, or fuch like, wobick bole reprefents the top of the Cone, and the Bafe tbereof the Term of the Species: Tbis practice is beft moben tbe Sun Jbines upon the bule, for then the Objects wobich are oppofite to that. plain woill make two like Cones, and woill lively reprefent the things mithout in a perfect inverfed Perßpective, robich drawon by the Pencil of Some Artificial Painter, turn the Paper upfide-down, and it will be direit, and to the life.

But the apparances may be direct, if you place anotber hole oppofite wnto the former, fo that tbe Spectator be under it; ar let the Sjecies refleciz upon a Concave Glafs, and let that Glafs reflect upon a Paper, or fome wobite tbing.

PROBLEMIII.

Fo tell bows much weighs the blow of ones fift, of a Mallet, Hatchet, or fuch like; or refting witbout giving the blow.

C Caliger in his 331 exercife againft Cardan, relates that the Mathematicians of Maximilian the Emperour, did propofe upon a day this Queftion, and promifed to give the refolution; notwithftanding Scaliger delivered it not, and conceive it to be thus: Take a Balance, and let the Fif,

@athematical Mecteation:

Fift, the Mallet, or Hatchet reft upon the Scale, or upon the Beam of the Ballance, and put into the other Scale as much weight as may counterpoife it, then charging or laying more weight into the Scale, and ftriking upon the other end, you may. fee how much one blow is heavier than another, and fo confequently how much it may weigh : for as Ariftetle faith, The motion that is . made in ftriking adds great woight unto it, and so much the more, by bow mucb it is quicker: therefore in effect, if there were placed a thoufand Mallets, or a Thoufand Pound weight upon a fone;: nay, though it were exceedingly preffed down by way of a Vice, by-Levers, or other Mechanick Engine, it would be nothing to the rigor and violence of a blow.

Is it not evident that the edge of a Knife laid upon' Butter, and a Hatchet upon a Leaf of $\mathbf{P a}$ per, without ftriking makes no imprellion, or at leaft enters not? But friking upon the Wood a little, you may prefently fee what effect it hath; which is from the Quicknefs of the Motion, which breaks and enters without refiftance, if it be extream quick; as experience fhews us in the blows of Arrows, of Cannons, Thunder-bolts, and fuch-like.

geathenatical Recteationt.

Examination.

THis Problem zas extracted from Scaliger, ophobed it from Ariftotle, but fomewobat re: fractory compiled, and the ftrength of the Effect be fays depends onely in the violence of the Motion; then would it folloro that a littie ligbt Hammer upon a piece of Wood being quickly caused to fmite, mould give a greater blow, axd do mure burt than a great Sledge ftriking Soft; thin is abfserd, and contrary to Experience. Therefore it confifts not totally in the Motion : for if twoo Several Hammers, the one being twoenty times beavier than tbe atber, fiouild move nitt like Q uickuefs, the Effect would be much different : there is then Jometbing elfe to be confidered befides the Motion, wobich Scaliger underftood not: for if one foould bave asked bim wobat is the reaf an that a Stone falling from a Windows to a place near at band, is not fo forceable as if it fell farther doron; and roben a Bullet flying out of a Piece, and ftriking the Mark'near at hand, will not make Juch an Effect as friking the Mark further off. But woe fuppofe that Scaliger and Cardanus robo bandles this $\int u b j e c t$, roould not be lefs troubled to refolve this, than they bave been in that.

s@athentatical Recteation.

PROBLEMIV.

How to break a Staff nobicb is laid upon troo Glaffes full of Water, woithout breaking the Glaffes, or今pilling the Water; or upon two Reeds or Stranis, spitbout breaking of tbem.

T^{1}Irft, place the Glaffes which are full of Water upon two Joynt Stools, or fuch like, the one as high as the other from the ground, and diftant one from another by two or three foot, then place the ends of the Staff upon the edges of the two Glaffes, fo that they be fharp : this done, with all the force you can, with another Staff ftrike the Staff which is upon the two Glaffes in
 the middle, and it will break without breaking the Glaffes, or fpilling the Water.
In like manner may you do upon two Reeds, held with your hands in the Air without breaking them: Thence KitchinBoys often break Bones of Mutton upon their hand, or with a Napkin, without any hurt, in onely ftriking upon the middle of the Bone with a Knife.

Now in this AC, the two ends of the Staff in breaking nides away from the Glaffes, upon which they were placed; hence it cometh that the Glaffes are no wife endangered, no more than the Knee upon which a Staff is broken, forafmuch as in breaking it preffeth not: as Arifotle in his Mechanick Quefions obferveth.

Eramination:

I^{T}T weere neceffary bere to note, that this thing ray. be experimented, firft, voitbout Glaffes, in iplacing a fmall flender Staff upon twooprops, and then making trial upon it; by robick you may fee bows the Staff woill eitber break, bows, pr depart from its props, and that eitber direcity, or obliquely: But woby by this violence, tbat one Staff ftriking anotber, (robicb. is fupported by troo Glaffes) will be broken woithout offending the Glaffes, is as great a difficulty to be refolved as the former.

PRO-

14 Mathenatical 天eccration

PROBEEM V.

Hows to make a fair Geograpbical Card in a Garden* Plot, fit for a Prince, or Great Perfonage.

IT is ufual amongit Great Men to have fair Geo* grapbical Maps, large Cards, and great Globes, that by them they may as at once have a view of any place of the World, and fo furnith themfelves with a general knowledge not onely of their own Kingdoms Form, Situation, Longitude, Latitude, \&rc. but of all other places in the whole Univerfe, with their Magnitudes, Pofitions, Climates and Diftances.

Now I efteem that it is not unworthy for the Meditations of a Prince, \{eeing it carries with it many Profitable and Pleafant Contentments : if fuch 2 Card or Map by the Advice and DireCtion of an able Mathematician were Geographically defcribed in a Garden-plot form, or in fome other convenient place, and inftead of which general defcription might particularly and artificially be prefigured his whole Kingdoms and Dominions; the Mountains and Hills being raifed like fmall Hillocks with Turfs of Earth, the Valleys fomewhat concave, which will be more agreeable and pleafing to the Eye, than the Defcription in plain Maps and Cards, within which may be prefented the Towns, Villages, Caftles, or' other
other remarkable Edifices，in fmall green Moffie Banks，or Spring－work proportional to the Plat－ form，the Forrefts and Woods reprefented accor－ ding to their form and capacity，with Herbs and Stoubs，the great Rivers，Lakes，and Ponds，to dilate themfelves according to their courfe from fome artificial Fountain made in the Garden to pals through Channels；then may there be com－ pofed Walks of Pleafure，Afcents，Places of Re－ pofe，adorned with all variety of delighfful Herbs and Flowers，both to pleafe the Eye and other Senfes．A Garden thus accommodated，hhall far exceed that of my Lord of Verulams， ，pecified in his Effays；that being only for delight and plea－ fure，this may have all the properties of chat，and be allo of fingular ufe ；by which a Prince may in little time perfonally vifit his whole Kingdom， and in thort time know it diftinctly ：and fo in like manner may any particular man Geographi－ cally prefigure his own Poffeffion or Heritage．

PROBLEM VI．

How abree Staves，Knives，or like Bodies，may be conceived to hang in the Air，woitbout being fup－ ported by any thing but by tbemfelves．

TAke the firft Staff A B，raife up in the Air the end B ，and upon him crofs－wife place the Staff C B，then lanly in Triangle wife place the third Staff $E F$ ，in fuch manner that it may

16 פ⿴囗十力tymatical Recteation．

be under AB，and yet upon CD．I fay that thefe Staves fo difpofed cannot fall，and the fpace $C B E$ is made the ttronger，by how much the more it is preffed down，if the Staves break not， or fever themfelves from the triangular form ：fo that al－ ways the Center of gravity be in the Center of the Tri－ angle：for $A \cdot B$ is fupported by EE， and EF is held up by $C D$ ，and $C D$ iskept up from falling by $A B$ ， therefore one of thefe Staves cannot fall，and fo by confequence none．

PROBLEM VII．

How to difpofe as many men，or other things，in＇Jucb Sort，that rejelting or，cafting awoay tbe $6,9,10$ part，unte a certain number＇，there fball remain thofe wobich．you would bave．

ORdinarily the propofition is delivered in this wife ： 15 Cbriftians and 15 Turks being at Sea in one Ship，an extream tempeft being ri－ fen，the Pilot of the Ship faith，it is neceffary to caft over－board half of the number of Perfons to disburthen the Ship，and to fave the reft ：now． it was agreed to be done by lot，and therefore théy
confent to put themfelves in rank, counting by nine and nine, the ninth Perfon thould always be caft into the Sea, until there were half thrown over-board: Now the Pilot being a Chriftian endeavoured to fave the Chriftians; how ought he therefore to difpofe the Chriftians, that the Lot might fall always upon the Turks, aud that none of the Chrittians be in the ninth place?

The refolution is ordinarily comprehended in this Verfe:

Populeam virgam mater regina ferebat.

For having refpect unto the Vowels, making' a one, e two, i three, o four, and u five: o the firft Vowel in the firft Word fheweth that there muft be placed four Chriftians; the next Vowel u, fignifieth that next unto the four Chriftians muft be placed five Turks; and to to place both Chriftians and Turks according to the quantity and value of the Vowels in the Words. of the Verfe, until they be all placed: for then counting from the firft Chriftian that was, placed, unto the ninth, the lot will fall upon a Turk, and fo proceed. And here may be further noted, That this Problem is not to be limited, feeing it extends to any number and order whatfoever, and may many ways be ufeful for Captains, Magiftrates, or orhers, which have divers perfons to punifh, and would chaftife chiefly the unrulieft of them, in taking the 10, to, or 100 perfon, foc as we read was

18 mathentatical Mecteation:

commonly practifed amongt the ancient Ro^{-} mans: therefore to apply a general Rule in counting the third, $4,9,10,6_{c}$ a amongf $30,40,50$ perfons, and more or lefs; this is to be obferved, take as many unites as there are Perfons, and difpofe them in order privately : As for example, Let 24 men be propofed to have committed fome outrage, 6 of them efpecially are found acceffary; and let it be agreed that counting by 8 and 8, the eighth man fhould be always punifhed. Take therefore firf 24 units, or upon a piece of Paper write down 24 cyphers, and account from the beginning to the eighth, which eighth mark, and fo continue counting, always marking the eighth, until you have markt 6, by which you may eafily perceive how to place thofe fix men that are to be punifhed, and foof others.

It is fuppofed that $\mathcal{F o}_{0}$ Sephus the Author of the fervifb Hiffory efcaped the danger of death by help of this Problem: For a worthy Author of belief reports in his eighth Chapter of the third Book of the deftruction of ferufalem, that the Town of Fotapata being taken by main force by Vefpatian, Fofepbus being Governour of that Town, accompanied with a Troop of fourty Souldiers, hid themfelves in a Cave, in which they refolved rather to famifh, than to fall into the hands of V efpatian : and with a bloudy refolution in thatgreat diftrefs would have butchered one another for fuftenance, had not 70 §ephus perfwaded them to die by lot and order, upon which it fhould fall: Now feeing that fofepbus did fave himfelf by this Art, it is thought that
his Induftry was exercifed by the help of this Problem, fo that of the 40 perfons which he had, the third was always killed. Now by putting himfelf in the 16 or 31 place, he was faved, and one with him, which he might kill, or eafily perfwade to yield unto the Romans:

PROBLEM VIII:

Tbree Things and tbree Perfons propofed, to find wobich of thent batb eitber of theje tbree Ibings.

1Et the three things be a Ring, a piece of Gold, and a piece of Silver, or any other fuch like, and let them be known privately to your felf by thefe three Vowels, a, e, i, or let theere be three perfons that have different names, as $A m b r o f e$, Edmond, and \mathcal{F} obn, which privately you may note or account to your felf once known by the afbrefaid Vowels, which fignifie for the firft Vowel 1 , for the fecond Vowel 2 , for the third Vow: el 3.

Now if the faid three perfons thould by the mutual confent of each other privately change their names, it is moft facil by the courfe and excellency of Numbers, diftinatly to declare each ones name $f 0$ interchanged: Or if three perfons in pritate, the one fhould take a Risg, the other a piece of Gold, and the third fhould take a piece of Silver; it is eafie to find which hath the Gold, the Silver, or the Ring, and it is thus done.

20 פathrnaticat kercaation.

Take 30 or 40 Counters (of which there is but 24 neceffary; that fo you may conceal the way the better, and lay them down before the parties, and as they fit or ftand give to the firft I Counter, which fignifieth a_{5} the firt Vowel; to the fecond 2 Counters, which reprefents e, the fecond Vowel ; and to the third 3 Counters, which ftand for i the third Vowel : then leaving the other Counters upon the Table, retire apart, and bid him which hath the Ring take as many Counters as you gavehim, and he that hath the Gold, for every one that you gave him, let him take 2, and he that hath the Silver for every one that yougave him, let him take 4 : This being done, confider to whom you gave one Counter, to whom two, and to whom three; and mark what number of Counters you had at the firft; for there are neceffarily but 24, as was faid before, the furplufs you may privately reject. And then there will be left either $1,2,3,5,6$, or 7 , and no other number can remain; w.hich if there be, then they have failed in taking according to the directions delivered: but if either of thefe numbers do remain, the refolution will be difcovered by one of thefe fix words following, which ought to be had in memory, viz.

Salve, certa, anima, fernita, vita, quies.
I. 20 3. $3 . \quad 6 . \quad 7$.

As fuppofe 5 did remain, the word belonging unto it is \int emita, the Vowels in the firft two Syl-
lables
lables are e and i, which theweth according to the former Directions, that to whom you gave 2 Counters, he hath the Ring, (feeing it is the fecond Vowel reprefented by two, as, before) and to whom you gave the 3 Counters, he hath the Gold: for that i reprefents the third Vowel, or 3 in the former Direction, and to whom you gave one Counter, he hath the Silver; and fo of the reff. The variety of changes in which exercife, is laid open in the Table following.

This feat may be alfo done without the former words, by help of the Circle A. for having divided the Circle into fix parts, write I within and one without, two within and five swithnut, oc. the firft $1,2,3$, whichare within with the Numbers over them, belonigs to the upper Cemicircle; : the other Nunsers both within and without, to the under femicircle;

$$
\mathrm{C}_{3}
$$

now

22 O9athematical Recteation.

now if in the action there remaineth fuch a number which may be found in the upper femicircle without, then that which is oppofite within fhews the firf, the next is the fecond, orc. as if 5 remain, it Thews to whom he gave 2 , he hath the Ring; to whom you gave 3, he hath the Gold, erc. But if the remainder be in the under femicircle, that which is oppofite to it is the firft, the next backwards towards the right hand is the fecond; as if 3 remains, to whom you gave 1 he hath the Ring, he that had 3 he had the Gold,

PROBLEM IX.

How topart a Vefjel wobich is full of Wine, containing eight Pints, into truo equal parts, by two otber Veffels wobich contain as much as the greater V edel; as tbe one being 5 Pints, and the other 3 Pints.

TEt the three Veffels be reprefented by A B C, A being full, the other two being empty; fraft, pour out A into B until it be full, fo there will bein B 5 pints, and in A but 3 pints: then pour out of B into C until it be fall : fo in C Thall be 3 pints, in B_{2} pints, and in A_{3} pints, then pour the Wine which is in C into A, fo in A will be 6 pints, in B_{2} pints, and in C nothing: then pour out the Wine which is in B into the pot C, fo in C there is now 2 pints, in B nothing, and in $A 6$ pints. Laftly, pour out of A into B untillit be full, fothere will be now in A onls I
pint, in ${ }_{5}$ pints, and in C 2 pints. But it is now evident, that iffrom B you pour in unto the pot C until it be full, there will remain in B_{4} pints, and if that which is in C, viz. 3 pints be poured into the veffel A, which before had I pint, there fhall be in the veffel A but half of its liquor that was in it at the firft, viz. 4 pints, as was required. Otherwile pour out of A into C until it be full, which pour into B, then pour out of A into Cagain untilit be full, fothere is now in A only 2 pints, in B 3 , and in C_{3}, then pour from C into B until it beftrl, fo in C there is now but I pints, 5 in B, and' 2 in A : pour all that is in B into A , then pour the Wine which is in C into B, fo there is in C nothing, in B onely 1 pint, and in $\mathbf{7} 7$ pints: Laftly, out of A fill the pot C, fothere will remain in A pints, or be but half full: then if the liguor in C be poured into B , it will be the other half. In like manner might be taken the half of a Veffel which contains 12 pints, by having but the meafures 5 and 7 , or 5 and 8. Now fuch others might be propofed, but weomit many, in one and the fame nature.

2. 9 Mattematical Recteation:

PROBLEM X.

To make Stickiftand upon the tip of ones Finger, without falling.

FAften the edges of two Knives, or fuch like, of equal poife, at the end of the Stick, leaning out fomewhat from the Stick, fo that they may counterpoife one another; the Stick being tharp at the end, and held upon the top of the Finger, will there reft without fupporting: if it fall;, it muft fall together, and that perpen-
 dicular, or plumbwife, or it muft fall Ifide-wife, or before one another; in the firft manner it cannot,for the Centre of Gravity is fupported by the top of the Finger: and feeing that each part by the Knives is counterpoifed, it cannot fallfide-wife, therefore it can fall no wife.
In like manner may great Pieces of Timber, as Joifts, tr. be fupported, if unto one of the Ends be applied convenient proportional Counterpoifes ; yea a Lance or Pike may fand perpendicílar in the Air, upon the top of ones Finger : or placed in the midff of a Coprt, by help of his Cen. fre of Gravity.

Examination.

THis Propofition Seems doubtful; for to imagine abfolutely, that a Pike, ur fucb-like, armed woith troo Knives, or otber things, Shallftand uprigbt in the aik, and So remain, moithout auy otber fupport, feeing that all the parts bave an infinite difference of propenfity to fall; and it is mithout queftion that a Staff cannot be fo accommodated upon bis. Centre of Gravity, but that it may incline to fome one part, without fome remedy to be applied, and fuch a's is bere Specified in the Problem woill not warrant the thing, nor keep it froma falling; and if more Knives Should be placed about it, it fiould caure it to fall more fwiftly, forafmuch as the fuperiour part (by reafon of the Centrical Motion) is made more ponderous, and therefore lefs in reft.

To place therefore this Prop really, let tbe troso Knives, or that pobich is for counterpoife, be longer almoays than the Staff, and fo it will bang togetber as one body: and it weill appear admirable if youplace the Centre of Gravity near the fide of the top of the finger or point; for it woill then bang Horiznotal, and feem to baug onely by a touch; yet more ftrange, if you turn the point or top of the finger upfide-dovess

26 g9athematical Recteationt.

PROBLEM XI.

How a Milfone or otber Ponderofity may be fupported by a fmall Needle, witbout breaking or any woife bowing the Same.

LEt a Needle be fet perpendicular to the H_{u} rizor, and the Centre of Gravity of the Stone be placed on the top of the Needle : -it is evident that the Stone cannot fall, forafmuch as it hangs in equilibra, or is counterpoyfed in all parts alike; and moreover it cannot bow the Needle more on the one fide, then on the other; the Needle will not therefore be either broken or bowed; if otherwife, then the parts of the Needle muft penetrate and fink one with another; the which is abfurd and impoffible to Nature: therefore it thall be fupported. The Experi-
 ments which are Imade upon Trench-er-Plates, or fuchlikeleffer thing, doth make it moft credible ingreater Bodies. But here efpecially is to be noted, that the Needle ought to be uniform in matter and figure, and that it be erected perpendicular to the Horizon; and laftly, that the Centre of Gravity be exactly found.

PROBLEM XII.

To make tbree Knives bang and move upon the point. of a Needle.

TIt the three Knives in form of a Balance; and holding a Needle in your hand, place the back of that Knife which lies crols-wifef to the other two, up on the point of the Needle, as the figure here theweth youl? for then in blowing foftly upon thems
 they will eafily turn and move upon the point of the Needle without falling.

PROBLEM XIII.

To find the roeigbt of Smoak, zobich is exbaled of axy combuftible Body wohat Joever.

LEt it be fuppofed that a great heap of Fagots, or a load of Straw weighing 500 pound fhould be fired, it is evident that this grofs fubftance will be all inverted into fmoak and afhes:

28 Mgatbematical Rectration:

athes : now it feems that the fmoak weighs nothing, feeing it is of a thin fubftance now dilated in the Air, notwithflanding if it were gathered and reduced into the thickeff that it was at firf, it would be fenfibly weighty : weigh therefore the athes which admit 50 pound: Now feeing that the reft of the matter is not loft, but is exhaled into \int moak, it muft neceffarily be, that the reft of the weight (to wit, 450 pound) muft be the weight of the Smoak required.

Examination:

NOw althougb it be tbus delivered, yet bere may be noted, that a Ponderofity in bis own Medivem is not woeighty : for things are faid to be weeighty, roben they are out of their place or medium, and the difference of fuch Gravity, is according to the Motion : the fmoak therefore certainly is ligbt, being in its true medium (the Air) if it Jbould chang: bis Medium, then woould woe cbange our difcourre.

PROBLEM XIV.

Many tbings being difpofed circular, (or otbervife) to find robicb of them any one thinks upon.

Cllppofe that having ranked ro things, as A B S CDEFGHIE, Circular, as (the Figure theweth) and that one had touched or thought
upon G, which is the 7: ask the party at what letter he would begin to account (for account he muft, otherwife it cannot be done) which fuppofe at E , which is the 5 place, then add fecretly to this 5,10 , (which is the number of the Circle) and it makes 15 , bid him account 15 backward from E, beginning his account with that number he thought upon, fo at E he fhallaccount to himfelf 7 , at $\mathrm{Dac}_{\text {- - }}$: count 8, at C account 9, \&rc. So the account of 15 will exaCtly fall upon G^{\prime} the thing or number thoughtupon : and

fo of others : but to conceal it the more, you may will the party from E to account $25,35,8 \%$. and it will be the fame.

There are fome that ufe this play at Cards, turned upfide-down, as the ten fimple Cards, with the King and Quren, the King flanding for 12, and the Queen for 11 : and fo knowing the fituation of the Cards, and thinking a certain hour of the day, caufe the party to account from what Card he pleafeth; with this Provifo, that when you fee where he intends to account, fet 12 to that number, fo in counting as before, the end of the account fhall fall upon the Card which thall denote or thew the hour thought upon, which be-: ing turned up, will give grace to the action, and wonder to thofe that are ignorant in the caufe.

30 spatbenatical 2Recteation.

PROBLEM XV.

How to make a Door or Gate, robich fball open ons. both fides.

ALl the skill and fubtilty of this; refts in the artificial difpofure of four Plates of Iron, two at the higher end, and two at the lower end of the Gate: Co that one fide may move upon the Hooks or Hinges of the Ports, and by the. other end may be made falt to the Gate; and fo moving upon thefe Hinges, the Gate will open upon one fide with the aforefaid Plates or Hooks of Iron : and by help of the other two Plates will open upon the other fide.

PROBLEM XVI.

To Jhero bow a Pouderofity, or beavy thing, may be. Supported upon the end of a Staff (or Suich-like) upon a Table, and notbing bolding or toucbing it:

TAke a Pail which hath a handle, and fill it full of Water, (or at pleafure) then take a Staff or Stick which may not rowl upon the Table, as EC, and place the handle of the Pail upon the Staff; then place another Staff or Stick under the Staff CE, which may reach from the bottom

פatbernatital ketteation:

bettom of the Pail unto the former Staff C E, perpendicular wife, which fuppofe F G: then thall the Pail of Water hang without falling; for if it fall, it mulf fall perpendicularly, or plumb-wife; and that cannot be,feeing the Staff CE fupports it, it being p rallel to the Horizon, and fuftained by the Table : and it is
 a thing admirable, that if the Staff CE were alone from the Table, and that end of the Staff which is uporithe Table were greater and heavier than the other, it would be conftrained to hang in that nature.

Cuamination.

NOw woitbout Some Experience of this Problem; a man woould acknowoledge cither, a poffbility or impogibility; therefore it is that very Touchfone of Knoooledge in any tbing, to dijcourfe firft if a tbing be pofible in Nature, and then if it can be brougbt to Experience, and under Sence, poithout. Seeing it done. At the firf, tbis Propofition feems to be abfurd, and impofible. Notwitbflanding; being fupported with tioo Sticks, as the figure declareth, it is madefacile: for the Herizontal Line to the edge of

32 geatbenatical jercteation:

the Table, is the Centre of Motion; and paffeth by the Centre of Gravity, wibicb neceflarily fupportetbit.

PROBLEM XVII.

Of a deceitful Booole to play woitbal.

MAkea hole in one fide of the Bowl, and caft molten Lead therein, and then make up the hole clofe, that the knavery or deceit be not perceived : you will have pleafure to. .ee that notwithftanding the Bowl is caft directly to the play, how it will turn away fide-wife: for that on that part of the Bowl which is heavier upon the one fide than the other, it never will go truly right, if artificially it be not corrected; which will hazard the Game to thofe which know it not : but if it be known that the leady fide in rolling be always under or above, it may go indifferently right; if otherwife, the weight will carry it always fide-wife.

PROBLEM XVIII.

Topart ant Apple into 2, 4, 8, or like parts, roithout breaking the Rind.

PAifs a Needle and Thread under the Rind of the Apple, and then round it with divers turnings; until you come to the place where you began:

matbenatical Recreation?

began ; then draw out the Thread gently, and part the Apple into as many parts as you think cokvenient : and fo the parts may be taken out between the parting of the Rind, and the Rind remaining always whole.

PROBLEM XIX.

To find a uumber tbougbt upon, poithout asking of any quefion, certain operations being done.

BId him add to the number thought (as admit 15) half of it, if it may be, if not, the greateft half, that exceeds the other but by an unite, which is 8 ; and it makes 23 . Secondly, unto this 23 add the half of it, if it may be, if not, the greateft half, viz. 12, makes 35 ; in the mean time, note that if the number thoaght upon cannot be halfed at the firft time, as here it cannot, then for it keep three inthe memory; if at the fecond time it will not be equally halved, referve two in memory, but if at both times it could not be equally halved, then may you together referve five in memory: this done, caufe him from the laft fum; viz. 35 , to fubtract the double of the number thought, $v i z .30$, reff five, will him to take the half of that, if He can, if not, rejeC I, and then take the half of the reft, which keep in your memory : then will him to take the half again, if he can, if not, take one from it, which referve in your me-

D
mory,

 mory, and fo perpetally halving untity remain : for then mark how many haffs there were raken, for the firft half acco nt 2 , for the fecond 4 , for the third 8, 6 r. and add unto thofe nutabers the ones which you referved in memory : So there being 5 remaining in this Propofition, there were 2 halvings: for which laft I account 4 , batt becaufe it could not exaclly be halved without rejeCting of I, I add the I therefore to this 4 , makes 5 , which half or fum always multiplied by 4 , makes 20 . from which fubtratt the firlt 3 and 2, becaule the half could not be formerly added, leaves 15 , the number thought upon.
Another Example.

The number thought 1.2
The half of it 6
 18
The half of it 9
The fum of it 27
The double of the number- 24
which taken away, refts 3
The half of it I
For which account- 2
And 1 put to it becaufe the 3 could not be? halved, makes 3
This multiplied by .4 , makeswhich was the number thought upon.

Another Example:

The number thought-_ 79
The greateit half - 403
The fum-_- 119
The greateft half of which is-m- 602
The fum of it is
The double of 79 is_—_ 158
Which taken from it refts..._2in.
The leffer half 10 , which halve :--
The half of this is 5 , which makes
The half of this is 2 , which is_10 10
The half of this is 1 , with 10 and 11 is - 21
This 21 which is the double of the laft half, 2
with the remainder, being multiplied by
4, makes 84, from which take the afore- 7 ? faid 3 and 2 , refts--

Which was the number thought upon.

PROBLEM XX.

Hoso to make an uniform and inflexible Body to pafs tbrough turo fmall boles of divers forms, os one being circular and the other Square, 2 uadrangutar, and Triangular-nife, yet fo that the boles fall be exactiy filled:

THis Problem is extracted from Geometrical Obfervations, and feems at the firft fomewhat obfcure ; yet that which may be exD 2 tracted

36 gmatbematital Rectceation:

tracted in this nature,' will appear more difficult and admirable. Now in all Geometrical Practices, the leffer or eafier Problems do always make way to facilitate the greater: and the aforefaid Problem is thus refolved. Take a Cone or round Pyramide, and make a Circular hole in fome board, or other hard material, which may be equal to the Bafes of the Cone, and alfo a Triangular hole, one of whofe fides may be equal to the Diameter of the Circle, and the other two fides equal to the length of the Cone: Now it is mon evident, that this Conical or Pyramida! Body, will fill up the Circular hole, and being placed fide-wife, will fill up the Triangular hole. Mortover if you caufe a body to be turned, which may be like to two Pyramides conjoyned, then if a Circular hole be
 made, whofe Diameter is equall to the Diameter of the Coues conjoyned, and a Quadrangular hole, whofe floping fides be equal to the length of each fide of the Pyramide, and the breadth of the hole equal to the Diameter of the Circle, this conjoyned Pyramide fhall exactly fill both the Circular hole, and alfo the Qaadrangular hole.

matbematical Recteation.

PROBLEM XXI.

How woith one uniform Body, or fuch-like, to fill tbree, Several boles: of sobich the one is round, the otber a juft Square, and the third an oval form.

THis Propofition feems more fubtil than the former, yet it may be practifed two ways: For the firt, take a Cylindrical Body, as great or little as you pleafe : Now it is evident that it will fill a Circularhole, which is made equal to the Bafis of it, if it be placed down right, and will alfo fill a longSquare, whofe fides are equal unto the Diameter and length of the Cylinder and laccording to Pergeus, Arcbimedes, orc in their Cylindrical Demonftrations, a true Oval is made when a Cylinder is cut llope-wife, therefore if the Oval have breadth equal unto the Diameter of the Bafis of the Cy linder, and any
 length whatfoever : the Cylinder being put into his own Oval hole, Thall allo exacty fill it.

D 3 . The

38 פathematical Rescreation.

The fecond way is thus: Make a circular hole in fome board, and alfo a quare hole, the fide of which fquare may be equal to the Diameter of the Circle : and lafty, make a hole Oval-wife, whofe breadth may be equal unto the Diagonal of the Square; then let a Cylindrical Body be made, whofe Bafis may be equal unto the Circle, and the length equal allo to the fame: Now being placed down-right, Thall fall in the Circle, and flat-wife will fit the Square hole, and being placed Iloping-wife will fill the Oval.

Mexaminatton.

YOu may note upon the laft two Problems fartber, that if a Cone be cut Ecliptick-wife, it may pafs tbrough an Ifocele I'riangle, tbrough many Scalen Triangles, and tbrough an Ellipfis; and if there be a Cone cut fcalen-wife, it woill pafs through all the former, only for the Ellipfis place a Circle : and furtber, if a Solid Colume be cut Ecliptick-roife, it may fill a Circle, a Square, divers Parallelograms, and divers Ellipfes, wobich bave different Diameters.

PRO.

PROBLEM XXII.

To find a mumber thought upon, after anotber manner than wohat is fopmerity delivered.

BId him that he multiply the number thought upon, by what number he pleafech, then bid him divide that product by any other number, and then multiply that Quotient by fome other number; and that product again divide by fome other, and fo as often as he will: and here note, that he declare or tell you by what number he did multiply and divide. Now in the fame time take a number at pleafure, and fecretly multiply and divide as often as he did : then bid him divide the laft number by that which he thought upon. In like manuer do yours privately, then will the Quotient of your Divifor be the fame with his, a thing which feems admirable to thofe which are ignorant of the caule. Now to have the number thought upon without feeming to know the laft Quotient, bid him add the number thought upon to it, and ask him how much it makes: then fubtract your Quotient from it_{2} there will remain the number thought upon. For Example : Suppofe that the number thought upon were 5 , multiply it by 4, makes 20 ; this divided by 2 , the Quotient makes 10 , whichmultiplied by 6 , makes 60 , and divided : : : D 4

40 Sbathenatical mecteation:

by 4 , makes 15 , in the fame time admit you think upon 4, which multiplied by 4 , makes 16 , this divided by 2 , makes 8 , which multiplied by 6 makes 4^{8}, and divided by 4 makes 12 ; then divide 15 by the number thought, which was 5 , the Quotient is 3 ; diwide alfo 12 by the number you took, viz. 4 , the Quotient is alfo 3, as was declared; therefore if the Quotient 3 be added unto the number thought, viz. 5 , it makes 8; which being known, the number thought upon is alfo known.

PROBLEM XXIII.

To find out many numbers that fundry perfons, or one man, bath thougbt upon.

IF the multitude of numbers thought upon be odd, as three numbers, five numbers, feven, occ. As for example: Let 5 numbers thought upon be thefe, $2,3,4,5,6$, bid him declare the fum of the firft and fecond, which will be 5 , the fecond and third, which makes 7 , the third and fourth, which makes 9 , the fourth and fifth, which makes I I, and fo always adding the two rext together, ask him how much the firft and laft makes together, which is 8 , then take there fums and place them in order, and add all thele together which were in the odd places: that is, the firlt, third and fifth, viz. $5,9,8$, makes 22 . In like manner add all the fe numbers together,
which are in the even places, that is in the fecond and fourth places, viz. 7 and 11 makes 18 , fubtract this from the former 22, then there will remain the double of the firf number thought upon, viz. 4, which known, the reft is eafily known: feeing you know the fum of the firft and fecond; but if the multitude of numbers be even as thefe fix numbers, viz. $2,3,4,56,7$. caufe the party to declare the fum of each two, by antecedent and confequent, and alfo the fum of the fecond and laft, which will be $5,7,9,11,13,10$, then add the odd places together, except the firf, that is, 9 and 13 makes 22 ; add alfo the even places together, that is $7,11,10$, which makes 28; fubtract the one from the other, there thall remain the double of the fecond number thought upon, which known, all the reft are known.

PROBLEM XXIV.

How is it that a man in one and the fame time, may bave bis Head uppoard and bis Feet upporard, being in one and the fanse place?

THe Anfwer is very facil, for to be fo, he muft be fuppofed to be in the Centre of the Earth: for as the Heaven is above on every fide, Calum undique fur $^{\prime}$ um; all that which looks to the Heavens, being diftant from the Centre, is upward; and it is in this fenfe that Maurolyeus

42 githernatical Rectreation:

in his Cofmography, and firf Dialogue, reported of one that thought he was led by one of the Mufes to Hell, where he Gaw Lucifer fitting in the middle of the World, and in the Centre of the Earth; as in a Throne, having his Head and Feet upward.

PROBLEM XXV.

Of a Ladder by wobich twoo men afcending at one tîme, the more tbey afcend the more they fhall be afunder, notwitbfianding one being as bigh as anotber.

T- His is moft evident, that if there were a Ladder half on this fide of the Centre of the earth, and the other half on the other fide : and that two at the Centre of the World at one inftant being to afcend, the one towards us, and the other towards our Antipodes, they fhould in afcending go farther \& farther, onefrom another; notwithftanding both of them are of like height,

ggatbematical ßercreation. 43

PROBLEM XXVI.

How it is that a man baving but a Rod or Pole of Land, doth brag that be may in a rigbt line pafs from place to place above 3000 miles.

THe opening of this is eafie, forafinuch as he that poffeffeth a Rod of Ground, poffeffeth not only the exterior furface of the earth, but is Mafter alfo of that which extends even to the Centre of the Earth, and in this wife all Heritages and Poffetions are as fo many Pyramides, whofe fummets or points meet in the Centre of the Earth, and the Bafis of them are nothing elfe but each mans poffeffion, field, or vifiblequantity, and therefore if there were made or imagined to to be made a defcent to go to the bottom of the Heritage, which would reach to the Centre of the Earth, it would be above 3 coo miles in a right line, as before.

PROBLEM XXVII

How it is tbst a man ftanding upright, and looking: nobich poay be will, be lookethe sither true Nortb ow true Soutb.

THis happeneth if the party be under either of the Poles; for if he be under the Northw pole, then looking any way he looketh Suuth, becaule

44 פ9athenatical kectration.

caufe all the Meridians concur in the Poles of the World; and if he be under the South-Pole, he looks directly North by the fame reafon.

PROBLEM XXVIII.

To tell any one wbat number remains after certain operations being ended, woithout asking any queftion.

BId him to think upon a number, and will him to multiply it by what number you think convenient : and to the product bid him add what number you pleafe, provided that fecretly you confider, that it may be divided by that which multiplied, and then let him divide the fum by the number which he firft multiplied by, and fubtract from this Quotient the number thought upon: In the fame time divide apart the number which was added by that which multiplied, fo then your Quotient fhall be equal to his Remainder; wherefore without asking him any thing, you fhall tell him what did remain, which will feem ftrange to him that knoweth not the caufe. For Example : Suppofe he thought 7, which multiplied by 5 makes 35 , to which add 10 , makes 45, which divided by 5, yields 9 , from which if you take away I , the number thought, (becaufe the Multiplier divided by the Divifor gives the Quotient I) the reft will be 2 ; which will be alfo proved, if 10 , the number which was added, were divided by 5, viz. ?.

PROBLEM XXIX.

Of the Play with troo feveral things.

ITis a pleafure to fee and confider how the Science of Numbers doth furnifh us not onely with fports to recreate the Spirits, but allo brings ut to the knowledge of admirable things, as fhall in fome meafure be fhewn in this enfuing Progreffion. In the mean time, to produce always fome of them : Suppofe that a man hold divers things in his hand, as Gold and Silver, and in one hand he held the Gold, and in the other hand he held the Silver: to know fubtilly, and by way of divination, or artificially, in which hand the Gold or Silver is; attribute to the Gold, or fuppofe it to have a certain price, and fo likewife attribute to the Silver another price, conditionally that the one be odd, and the other even. As for example : Bid him that the Gold be valued at 4 Crowns, or Shillings, and the Silver at 3 Crowns or Shillings, or any other number, fo that one be odd, and the other even, as before; then bid him tripple that which is in the right hand, and double that which is in the left hand, and bid him add thefe two products together, and ask him if it be even or odd; if it beeven, then the Gold is in the right hand; if odd, the Gold is in the left hand.

46 geathematical Rectrationt.

PROBLEM XXX.

Trpo numbers being propofed unto two feveral parties, to tell robich of these numbers is taken by sach of them.

A
S for Example: Admit you had propofed anto two men, whofe names were Peterand Fobin, two numbers or pieces of money, the one even, and the other odd, as 10 and 9 , and let the one of them take onc of the numbers, and the other party take the other mumber, which they place privately to themfelves: how artificially, according to the congruity and excellency of numbers, to find which of them did take 10, and which 9, without asking any queltion: and this feems molt fubtil, yet delivered howfoever differing little from the former, and is thus performed: Take privately to your lelf allo two numbers, the one even and the other odd, as 4 and 3 ; then bid Petcr that he double the number which he took, and do you privately doable alfo your greateft number; then bid folsn to tripple the number which he hath, and do you the like upon your laft number: add your two Pro-d ducts together, and mark if it be even or odd; then bid the two parties put their numbers together, and bid them take the half of it, which if they cannot do, then immediately tell Poter he took 10 , and Fobn 9 , becaufe the aggregate of the double
double of 4 , and the tripple of 3 , makes odd and fuch would be the aggregate or fum of the doable of Peters mumber and Jobsis number, if Peter had taken 10; if otherwife, then they tnight have taken half, and fo fobn thould have taken io, and Peter 9 : As fuppofe Peter had taken 10, the double is 20 , and the tripple of 9 , the other number, is 27, which put together makes 47, odd: in like manner the double of your number conceived in mind, viz. 4 makes 8, and the tripple of she 3 , the othei number makes9, which fet together makes 17 , odd. Now you camot talke the half of as nor 47 , which anguethithat Peter had the greater number, for otherwife the doublte of 9 is 18 . and the tripple of 10 is 30 , which fet together makes 48 , the half of it may be taken; therefore in fuch cafe Peter took the lefs number, and 70 on thegreater : And this being done cleanly, carries much grace with it.

PROBLEM XXXI.

How to defcribe a Circle that Sball touch 3 Points, placed boxofoever upon a plain, if they be not in a rigbt line.

LEt therthace points be $A B I C$, put one foot of the Cornpafs: upon A, and defcribe an axch ofa Circle at pleafure; and placed at B crob that Arch in thetwo poitts EandF, and placed in C arols the Arich in G andil, then lay a.Rno

48 geathematical Recteationt.

ler upon $G H$, and draw a Line, and place a Ruler upon E and F, cut the other Line in K, fo K is the Centre of the Circumference of a Circle, which will pals by the faid three points A BC, or it may be inverted, having a Circle drawn ; to find the Centre of that Circle, make three points in the
 Circumference, and then ufe the fame way; fo fhall you have the Centre: a thing moff facil to every Practitioner in the Principles of Geometry.

PROBLEM XXXII.

Hows to change a Circle into a Square Form.

MAke a Circle upon Paft-board, or other material, as the Circle ABCDE, of which \mathbf{A} is the Centre; then cut it into four quarters, and difpofe them fo, that A, at the Centre of the Circle, may always be at the Angle of the Square; and fo the four quarters of the Circle being placed fo, it will make

satbentatical \&ecteation.

make a perfect Square, whofe fide A A is equal to the Diameter B D. Now here is to be noted that the Square is greater than the Circle by the vacuity in the middle, viz. M_{a}

PROBLEM XXXIII.

With one and the Same. Compaffes, and at one and the fame extent or opening, boso to defcribe many Circles Concentrical, that is, greater. or leffer one than aniotber.

I^{T}T is not without caufe that many admire how this Propofition is to be refolved; yea, in the Judgment of fome it is thought impoffible, who confider not the Induftry of an Ingenious Geometrician, who makes it poffible, and that moff facil, fundry ways: for in the firft place, if you make a Circle upon a fine Plain, and upon the Centre of that Circle a fmall peg of wood be placed, to be raifed up and put down at pleafure, by help of a fmall hole made in the Centre, then with the fame opening of the Compaffes you tray deferibe Circles ConE sentricaly

 centrical, that is, one greater or leffer than griother ; for the higher the Centre is lifted u p p theleffer the Circle will be. Seçondly, the Compafs being at that extent upon a Gibbous body, a Circle may be defcribed, which will be lefs than the former, upon a Plain, and more artificially upon a Globe, or reund Bowle : and this again is moft obvious upon a Round Pyramide, placing the Com. paffes upon the top of it, which will be far lefs than any of the former; and this is demonftrated by the Twentieth Propofition of the firt of Euclids, for the Diameter ED is lefs than the Lines A D, A E, taken together, and the Lines $A D, A E$, being equal to the Diameter BC, becaufe of the fame diftance or extent of opening the Compaffes, it follows that the Diameter E D, and all his Circles together, is much lefs than the Diameter and the Cirele BC, which was to be performed.

PROBLEM XXXIV.

Any numbers under 10, being thought upon, to find robat numbers they were.

LEt the firft number be dqubled, and unto it add 5 , and multiply that fum by 5 , and unto it add 10 , and unto this product add thenext number thought upon; multiply this fame again by 10 , and add unto it the next number, and fo proceed: Now if he declare the laft fum, mark if he thought but upon one figure, for then fubract onely 35 from it, and the firft figure in the place of tens is the number thought upon: if he thought upon two figures, then fubtract alfo. the faid 35 from his laft fum, and the two figures which remain are the number thought upon: if he thought upon three figures, then fubtraet 350, and then the firt three figures are the numbers thought upon, evic. fo if one thought, upon the fe numbers, $5,7,9,6$, double the firft makes 10 , to which add 5 , makes 15 , this multiplied by 5 makes 75 , to which add 10 , makes 85, to this add the next number, viz. 7 , makes 92, this multiplied by 10 , makes 920 , to which add the next number, viz. 9 , makes 929, which multiplied by 10 , makes $9: 90$, to which add σ_{7} makes 9296 , from which fubtract 3 jơo, refteth 5796_{2} the four numbers thought upon. Now becaule the two laft figures are like the two num-

52 swatbematical Recteation.

bers thought upon : to conceal this, bid him take the half of it, or put firf 12 , or any other numbber to it, and then it will not be fo open.

PROBLEM XXXV.

Of the Play rith tbe Ring.

AMongfta company of nine or ten perfons, one of them having a Ring, or fuch-like, to find out in which Hand, upon which Finger and Joynt it is ; this will caufe great aftonihment to igrorant Spirits, which will make them believe that he that doth it works by Magick, or Witchcraft: But in effect it is nothing elfe but a nimble ACt of Arithmetick founded upon the precedent Problem: for firft, it is fuppofed that the perfons fland or fit in order, that one is firft, the next fecond, brc. likewife there muft be imagined, that of thefe two hands the one is firft, and the other fecond; and alfo of the five fingers, the one is firt, the next is fecond; and laftly, of the joynts, the one is as I, the other is as 2 , the other as 3 , obc. from whence it appears that in performing this Play there is nothing elfe to be done than to think four numbers. For example : if the fourth perfon had the Ring in his left hand, and upon the fifth finger and third joynt, and I would divine and find it out, thus I would proceed, as in the XXXIV Problem, in caufing him to double the firft number, that is, the number of perfons
which

99athematical 2ecreation:

which was 4 , and it makes 8 , to which adde 5 makes 13, this multiplied by 5 makes 65 , put Io to it makes 75 , unto this put 2 for the number belonging to the left hand, and fo it makes 77, which multiplied by 10 makes 770 , to this add the number of the fingers upon which the Ring is, viz. 5 , makes 775 , this multiplied by 10 makes 775°, to which add thenumber for the joynt upon which the Ring/iss, viz. the third joyot, makes 7753 ; to which caufe him to add 14, or fome other bumber, to conceal it the beitter, and it makes 7767 : which being declared unte you,fubtract 3514 , and there will remain $4,2,5,3$, which figures in orderdeclares the whole mytery of that which is to be known : 4 fignifieth the fourth perfon, 2 , the left hand, 5 the fifth finger, and 3 the third joynt of that finger.

RROBLE M XXXVI.

The Play of 34 , or mose Dice.

THat which is faid of the two precedent Problens, may be applied to this of.Dice, (and many other particular things) to find what number appeareth upon each Dice, being caft by forme one: for the points that are upon any fide of a Dice are always lefs than 10 , and the Roints of each fide of a Dice may be walen for a numbenthought upon; therefore the Rule E 3

84 maxtyentitical mecteation.

will be as the former : As for example, one haying thsown three Dice, and you would declare the numbers of each one, or how much they make sogether, bid him double the points of one of the Dice, to which bid him add 5 , then multiply that by 5 , and to it add 10 , and to the fum bid him add the number of the fecond Dice, and multiply that by $10 \cdot \mathrm{laftly}$, to this bid him add the number of the laft Dice, and then let him de ${ }_{5}$ clare the whole number : then iffromit you fubtrate 350 , there will xemain the number of the three Dice throwns.

PRQBEEM XXXVIF.

How to make Water in a Glafs feem to boyl and provkle.

T
Ake a Glats mear full of Wate or other liquor, and fetting one hand upon the foot of it, to hold it faft: turn flightly one of the fingers of your other hand upon the brim or edge of the Glafs ; having before privately wet your finger, and fo pafing foftly on with your tinger in prefing a little : for then firft the Glads will begin to make a noife'; fecondly, the parts pf the Glafs will fenfibly appear to tremble, werthonotable rartforction and conderifation: thirdly, the sthater will Chake, feem to boyla fourthly, firwillicafi it felf ant of the Glais, and leap aud by Eanadid drops; with great aftomilnment to the rfanedersby's if "n
they

they be igrorant of the caufe of it, which is only in the Rarefaetion of the:partsiof the Glafs, occafioned by the neotion and preffure of the Finger.

Examination.

THe caufe of this is not in the Rarefaction of the parts of the Glafs, bat it is ratber in the quick local Motion of the Finger, for reafon sheroeth us that by bow muicts a Body draweth nearer to a quality, the lefs it is Jubjeet or capable of anotber ribich is conitrary unto it: Now Condenfation and Rarefacion are contrary Qualities, and in this Problent tbere are three Bodies confidered, the Glafs, the water, anid the Air, now it is civident that the Glafs being the molt folid and impenitrable Body is lefs fabjectiand capable of Rarefacizon tban the Water, the Water is lefs fubject tban the Air, and if there be any Rarefaciion, it is ratber confiderable in the Air than in the Water, nobich is inf cribed by the Glafs, and above tbe Water, and ratber in the Water than in the Gtaf's: The agitation, or the trembting of the part's of the Glafs to the fenfe appears not: for it is a continued Body; if in part, woby then not In the whole? and that the ater turins in tbe Glafs, this appedrs not ; but onely tbe upper contīguours parts of the Warer; that at the bottöm being lefs subjed to tbit agitationt and it is moft certaint tbat by bons Huchquicker the Ciscuilar Motion of the Finger upone E 4

56 mathematical arcueation.
the edge of the Glafs is, by fo much the more Joall the Air be agitated, and fo the Water Sball receive Some apparent Affection more or lefs from it, according to that motion: as wee fee from the quicknefs of soind upou the Sea, or calm thereof, that there is a greater or leffer agitation in the Water; and for further Examination, we leave $\mathfrak{i} t$ to the Search of thofe rohich are Curious.

PROBLEM XXXVIII.

Of a fiue Veffel robich bolds Wine or Water, being caft into 就 at a certain beight, but being filled bigber, it mpill run out of its oven accord

LEt there be a Veffel A B C D, in the middle of which place a Pipe, whofe ends both above at E, and below at the bottom of the Veffel, as at F, are open; let the end E be Comewhat lower than the brim of the Glafs; about this Pipe place another Pipe, as HL, which mounts a little above E, and let it moft diligently be clofed at H, that no Air enter in thereby, and this Pipe at the bottom may have a fmall hole to give paffage unto the Water; then pour in Water or Wine, and as long as it mounts not above E, it is fafe; but if you pour in the Water fo that it mount above it, farewel all, for it will not ceafe until if be all gone out; the fame may be done in difpofing any crooked Pipe in a Veffel in the. Manner of a Faucet or Funnel, as in the Figure H;

geathematical Recteation.

H ; for fill it under H at pleafure, and all will go well; but if you fill it unto H you will feo tine Iport, for then all the Veffel will be empty incontinent, and the fubtilty of this will feem more admirable, if
 you conceal the Pipe by a Bird, Serpent, or fuch-like, in the middle of the Glass. Now the reafon of this is not difficult. to thofe which know the nature of a Cock or Fancet: for it is a bowed Pipe, one end of which is put into the 'water.or liquor, and fucking at the other end until the Pipe be fall, then willit ruir of it felf, and it is a fine Secret in Nature to fee, that if the end of the Pipe which is out of the water, be lower than the water, it will run ouit without ceafing; but if the Mouth of the Pipe be higher than the water, or level with it, it will not run, although the Pipe which is without be many times bigger than that which is within the water : for it is the property of Water to \&eep always exactly level.

Crami-

58 29athermaticat Rerteationt.

Examination.

HEre is to be noted, that if the face of the Water woitbout be in one and the Same Plain with that robich is woitbin, though the outermoft Pipe be ten times greater than that wobich is roithin, the Water naturally will not run; but if the Plain of the Water without, be any part losper thantbat tobich is woitbiu, it woill freely run. And bere may be noted furtber, that if the Moutc of the Pipe wobich is full of Water dotb but analy touch the Superficies of the Water poitbin, although the otber end of the Pipe noitbout be much lowern than that within the Water, it will ugt rus at all; wobich contradicts the firfo ground: Hence weve gather that the preffure or ponderofity of the Water mithin, is the oaufe of retroning in fome repect.

PROBLEM XXXIX.

Of a Glafs very pledfant

Ometimes there are Glaffes which are made within another, fo that they feem but one, but thereis a little fpace between them. Now pour Wine or other Liquor between the two edges by help
help of a Tunnel, into a little hole left to this end, To will thete appear two fine delufions or fallacies; for though there be nota drop of Wine within the hollow of the Glafs, it will feem to thofe which behold it that it is an ordinary Glafs full of Wine, and that efpecially to thofe which are fidewife of it s and if any one move it, it will much confirmit; becaufe of the motion of the Wine ; but that which will give moft delight? is, that if any ohe thall take the Glais, and putting it to his mouttichall think to drink the wine, initead of which he fhall fup the Ait, and fo will caufe laughterto thofe that flathd by, who being deceived, will hold the Glafs to the light, and thereby confidering that the Rayes or Beams of the Light are not reflected to the Eye, as they would be, if there were aliquid fubftance in the Glafs, hence they have an affured proof to conclude that the biolbow of the Oliafs is totaly empty.

PROBLEM XL:

If any one fonlald bold in actb handas many pieces of nortey as in the ot orer, boop to find bosa much there is.

BId him that holds the money that he put out of one fand into the other what numBer you thimk convenient, (provided that it may be done) this dóne, bid kim that out of the hand that he put the other number into, that he take out

60 99athematital kecteation.

of it as many as remain in the other hand and put it into that hand: for then be affured that in the band which was put the firft taking qway, there will be found juft the double of the Number taken away at the firft. Example: Admit there were in each hand 12 Shillings or Counters, and that out of the right hand youbid him take 7 , and put it into the left : and then put into the right hand from the left as many as doth remain in the right, which is 5 , fo there will be in the left hand I4, which is the double of the number taken out of the right hand, to wit 7 , then by fome of the Rules before-delivered, it is eafie to find how much is in the right hand, viz. 10 .

PROBLEM XLD.

> Many Dice being caft, bowo artijicially to difcorer the number of the points that may arife.

SUppofe any one had caft three Dice fecretly, bid him that he add the points that were upmon together : then putting one of the Dice apart unto the former fum add the points which are under the other two, then bid him throw thefe two Bice,and mark how many points a pair are upwards, which add unto the former fum: then pur one of thefe Dice away, not changing the fide, mark the points which are under the other Dice, and add it to the former fum: laftly, throw that one Dice,and whatfoever appears upward add it unto the formér fum, and let the Dice remain
thus:

soathenatical ketteationt $6 \mathbf{i}$

thus: this done, coming to the Table, note what points do appear upward upon the 3 Dice, which add privately together, and unto it add 21 , or 3 times 7 : fo this Addition or fum thall be equal to the fum which the party privately made of all the operations which he formerly made. As if he Chould throw 3 Dice, and there fhould appear upward $5,3,2$, the fum of them is 10 , and fetting one of them apart, (as 5) unto ro add the points which are under 3 and 2 , which is 4 and 5 , and it makes 19 ; then cafting thefe 2 Dice, fuppofe there fhould appear 4 and 1 , this added unto 19 makes 24 , and fetting 1 of thefe 2 Dice apart, as the 4 unto the former 24, I add the number of points which is under the other Dice, viz. under I, that is 6, which makes 30 . Lalt of all, I throw that 1 Dice, and fuppofe there did appear 2, which 1 add to the former 30 , and it makes 32 , then leaving the 3 Dice thus, the points which are upward will be thefe, $5,4,2$, unto which add fecretly 21, (as before was faid) fo have you '32, the fame number which he had; and in the fame manner you may practice with $4,5,6$, or many Dice or other Bodies, obferving onely that you mult add the points oppofite of the Dice, for upon this depends the whole demonftration or fecret of the play; for alway that which is above and underneath makes 7 : but if it make another number, then muft you add as often that number.

62

PROBLEM XLII.

Two Metals, as Gold and Silver, or of otber kind, speigbing alike, being privately placed into twoo like Boxes, to find wobich of them the Gold or Silver is in.

IT is faid that an Emperour was requefted by one of his Servants, after he had long time remained with him, to affign him Come Reward: to which after a few days the Emperour condefcended, and cauled him to come into his Treafury, where hehad prepared two Boxes, one full of Gold, and the other full of Lead, both weighing, and of form and magnitude alike: and bid him chufe which he would have. Now many think that in this Problem one mult be guided only by Fortupe in this Choice, and it is that which moft makes a man happy infucha Choice: but the want of knowledge caufeth them fo to judge which know not otherwife. A Mathematician accounts it an eafie Propofition, and will infallibly chufe the Cheft of Gold, and leave the Cheft of Lead, without either breaking or opening any of the Chefts, and not go by chance and fortune : for if he may be permitted to weigh thofe Chefts firft in the Air, then in the Water, it is a thing clear by the proportion of Metals, and aecording to the Principles of Arcbimedes that the Gold thall be lefs weighty by his eighteenth

99atitmatifal necteationt 63

part, and the Lead by his eleventh part, wherefore there may be gathered in which is the Gold, and in which is the Lead.
But becaufe that this experiment in Water hath divers Accidents, and therefore fubject to 3 caution; and namely becaufe the matter of the Cheff, metal, or other things, may hinder.

Behold here a more fubtil and certain inven-. tion to find and difover it out, without weighing it in the Water: Now Experience and Reafon fheweth us, that two like Bodies or Maggi-n tudes of equal weight, and of divers Metals s_{7} are not of equal quantity! and feeing that Gold is the heavieft of all Metall, it will occupy lefs room or places from which
 will follow that the like weight of Lead in the fame form, will occupy or take up more room or place. Now let there be therefore prefented two Globes or - Chefts of Wood, or other matter alike, and equal one to the other, in one of which in the middle there is another Globe or body of Lead weighing 12 pound, (as C) and in the other a Globe or like body of Gold weighing 12 pound (as B.) Now it is fuppofed that the Wooden Globes or Chefts axe of equal weight, form, and Magnitude: and to difcover which the Gold or Lead is in, take a broad

64 geathematical Recteation:

broad pair of Compaffes, and clip one of the Coffers or Globes fomewhat from the middle, as at D; then fix in the Cheft or Globe a fmall piece of Iron between the feet of the Compaffes, as EK, at the end of which hang a weight G, fo that the other end may be counterpoyled, and hang in aquilibrio: and do the like to the other Cheft or Globe. Now if that the other Cheft or Globe being clipped in like diftance from the end, and hanging at the other end the fame weight G; there be found no difference, then clip them nearer towards the middle, that fo the points of the Compafs may be againft fome of the Metal which is inclofed ; or juft againft the extremity of the Gold as in D, and fuppofe it hang thus in aguilibrio, it is certain that in the other Coffer is the Lead; for the points of the Compaffes being advanced as much as before, as at F, which takes up a part of the Lead (becaufe it occupies a greas ter place than the Gold) therefore that fhall help the Weight G to weigh, and fo will not hang in aquilibrio, except G be placed near to F. Hence we may conclude that there is the Lead; and is the other Cheit or Globe there is the Gold.

s9atbematical Becreationt.

Examination:

IF the troo Boxes being of equal magnitude weigbed. in the Air be found io be of equal woeight, they Jball neceflarily take up like place in the Water, and tberefore rveigh alfo one as much as anotber: Hence there is no poffibility to find the Inequality of the Metals robich are inclofed in thefe Boxes in the Water: tbeintention of Archimedes woas not upont contrary Metals inclofed in equal Boxes; butit confifed of comparing Metals, fimple in the Water one maith anotber. Therefore the Inference is falfe and abfurd.

PROBLEM XLIII.

Troo Globes of diverfe Metals, (as one Gold, and the otber Copper) yet of equal roeight, being put ineto a Box, as $B G$, to find in wobich end the Gold or Copper is.

THis is difcovered by the changing of the places of the two Bowles or dlebes, having the fame Counterpoife H to be fung at the other fide, as in \mathbf{N}; and if the Gold which is the leffer Globe, were before the neareft to the handle DE, having now changed his place, will be fartheft from the handle $D E$, as in K; F there-

therefore the Centre of Gravity of the two Globes taken together, fhall be farther feparate from the

middle of the handle (ynder which is the Centre of Gravity of the Box) than it was before, and feeing that the handle is always in the middle of the Box, the wpeight N muft be augmented, to keep it in aquilibrio: and by this way one may know, that if at the fecond time, the coupterpoife be too light, it issa fign that the Gold is farthet of the handle, as at the firft trial it was nearef.

PROBLEM XLIV.

Hope ta reprefent divers forts of Rainkoxs bere per lopp.

THe Rainbow is a thing admirable in the World, which raviheth often the Eyes and Spinits of men in confideration of its. rich intermingled colours which are feen under the Clouds, feeming as the gliftering of the Stars, precious Stones, and Ornaments of the moft beautequs Flowers: Come part of it as the ref pilendent Stars, or as a Rofe, or burning Cole of fire, in it one may fee Dyes of fundry forts, the Viclet, the

Blew,

Blew, the Orange, the Saphir, the Jacinct, and the Emerald colours, as a lively plant placed in agreen Qoil : and as a moft rich Treafure of Nature, it is a high work of the Sun who cafteth his Rays of Beams as a curious Painter draws ftrokes with his Pencil, and placeth his Colours in an exquifite fituation; and Solomon faith, Ecclef.4.3. It is a chief and principal Work of God. Notwithftanding there is left to induftry how to reprefent it from above here below, though not in perfer. Ction, yet in part, with the fame intermixture of colours that is above.

Have you not feen how by Oars of a Boat it doth exceeding quickly glide upon the Watet with a pleafant grace ? Ariftotle fays, that it coloureth the Water, and makes a thoufand atoms, upon which the Beams of the Sun refiecting make a kind of coloured Rainbiow : Or may we not fee in Houfes or Gardens of pleafure Artificial Fountains, which pour forth their droppy 8 streams of Water, that being between the Sun and the Fountain, there will be prefented as a continual Rainbow? But not to go farther, I will hew yau how you may do it at your Door, by a fine and facil Experiment,

Take Water in your Mouth, and turn your Back to the Sun, and your Face againft fome obi fcure place, then blow out the Water which is in your Mouth, that it may be fprinkled in finall Drops and Vapours: Yotifhall fee thafe Atomes Vapours in che Beams of the Sun to turn into a Gair Rainbow, but all the grief is, that it lalteth not, but foon is vanifhed.

68 @gatbematical Rectration.

But to have one more ftable and permanent in his colours: Take a Glafs full of Water, and expofe it to the Sun, fo that the Rays that pafs through ftrike upon a thadowed place, you will have pleafure to fee the fine form of a Rainbow by this reflection. Or take a Trigonal Glafs or Cryftal Glafs of divers Angles, and look through it, or let the Beams of the Sun pafs through it ; or with a Candle let the Appearances be received upon a hadowed place: you will have the fame contentment.

PROBLEM XLV.

How that if all the Powder in the rourld were incloSed moithin a Boobl of Paper or Glafs, and being fired on all parts, it could not break tbat Bowl.

IF the Bowl and the Powder be uniform in all his parts; then by that means the Powder would prefs and move equally on each fide, in which there is no poffibility whereby it ought to begin by one fide more than another. Now it is impoffible that she Bowl thould be broken in all its parts, for they are infinite.

Of like finenefs or fubtilty may it be that a Bowl of Iron falling from a high place upon a plain pavement of thin Glafs, it were impoffible any wife to break it ; if the Bowl were perfectly round, and the Glafs flat and uniform in all his parts: for the Bowl would touch the Glais
but in one point, which is in the middle of infinite parts which are about it : neither is there any caule why it ought more on one fide than on another, feeing that it may not be done with all his fides together; it may be concluded as fpeaking naturally, that fuch a Bowl falling upon fuch ${ }_{2} \mathrm{Gl}$ lafs will not break it. But this matter is meer Metaphylical; and all the Workmen in the world cannot ever with all their Induftry makea Bowl perfectly round, or a Glafs unitform,

PROBLEM XLVI.

Ta find a number mobish being divided by 2 ; there will remain 1 ; being dividedbly 3 , tbere will remain 1 ; and $f 0$ likenoife being divided by 4 , 5, on 6, there nould fill remain I; but being divided by 7 , there will remain notbing..

I\mathbf{N} many Authors of Arithmetick this Problem is thus propofed: A woman carrying Egges to market in a Basket, met an unruly fellow who broke them, who was by order made to pay for them: and the being demanded what number the had, the could not tell : but the remembred that counting them by 2 and 2 , there remained 1 ; likewife by 3 and 3 , by 4 and 4 , by 5 and 5 , by 6 and 6 ; there ftill remained 1 , F 3
but

70 giathentratcal watration.

but when fhe counted them by 7 and 7 , thete reremained nothing: Now how may the number of Eggs be difcovered?
Find a Number which may exactly be meafuxed by 7 , and being meafured by $2,3,4,5$, and 6, there will fill remain a unite ; multiply thefe numbers together, makes 720 , to which add t , fo have you the number, viz. 721. In like manter 301 will be meafured by $2,3,4,5,6$; fo that 1 remains: but being meafured by 7 , nothing will remain; to which continually add 220 , and you have other numbers which will do the fame: Hence it is doubtful what number the had, Therefore not to fail, it muft be known whether they did exceed 400,800, , $6 c$. in which it may be conjectured that it could not exceed 4 or 5 hundred, feeing a Man or Woman could not carry 7 or 8 hundred Eggs, therefore the number was the former 301, which the had in her Basket : which being counted by 2 and 2 , there will remain 1 , by 3 and 3 , oco but counted by 7 and 7 , theye will remain nothing.

PROBLEM XLVII.

One bad a certain number of Crovonts, and counting them by 2 and 2 , there reffed 1 ; counting them by 3 and 3 , there refted 2 ; counting them by 4 and 4 , tbere refted 3 ; counting them by 5 and 5 , there refted $4 ; c$ cunting them by 6 and 6 , tbere refted 5; but counting them by 7 datd 7 , tbere remained notbing: How many Oroverns might be bave?

THis Queftion hath fome affinity to the precedent, and the Refolution is almoft in the fame manner: for here there muft be found a number, which multiplied by 7, and then divided by $2,3,4,5,6$, there may aloway remain a number lei's by 1 than the Divifor: Now the firft number whicharrives in this nature is 119 , unto which if 420 be added, makes 539, which allb will do the fame: and fo by adding 420 , you míy have other numbers to refolve this propofition.

PROBLEM XLVIII.

How many forts of Weizgbs in the leaft manner muft there be to woeigh all ferts of things betwocen 1 pound and 40 pound, and fo unto 121 , or 364 pound.

TO weigh things between i \& 40, take numbers in tripple proportion, fo that their fum be equal, or fomewhat greater than 40 , as are the numbers $1,3,9,27$, I fay that with 4 fuch Weights, the firft being of 1 pound, the fecond being 3 pound, the third being 9 pound, and the fourth being 27: any weight between $1 \& 40$ pound may be weighed. As admit to weigh 21 pound, put unto the thing that is to be weighed the o pound weight, then in the other Ballance put 27 pound and 3 pound, which doth counterpoife 21 pound and 9 pound, and if 20 pound were to be weighed, put to it in the Ballance 9 and I, and in the other Ballance put 27 and 3, and fo of others.

In the fame manner take thofe 5 Weights, 1 , 3, $9,27,81$, you may weigh with them between 3 pound, and 121 pound: and taking thofe 6 Weights, as $1,3,9,27,81,243$, you may weigh even from 1 pound unto 364 pound. This depends upon the property of continued Proportionals, the latter of which containing twice all the former.

PRO-

PROBLEM XLIX.

Of a deceitful Ballance, wobich being empty feems to be juff, becaufe it bangs in aquilibrio: notroitbftandiag putting 12 pound in one Ballasce, and II in the other, it woill remain in aquilibrio.

ARifotle m keth mention of this Ballance in his Mechanick Queftions, and faith, That the the Merchants of purpofe in his time ufed them to deceive the World: the fubtilty or craft of which is thus, that one arm of the Ballance is longer than another, by the fame proportion that one weight is heavier than another: As if the Beam were 23 inches long, and the handle placed fo that 12 inches fhould be on one fide of it, and II inches on the other fide : Conditionally that the thortor end thouild be as heavy as the longer, a thing eafie to be done : then afterwards put into the ballance two unequal weights in fuch proportion as the parts
 of the beam have one unto another, which is 12 ton, but fo that the greater be placed in the ballance which hangs upon the thorter part of the Beam, and the leffer weight

79. watbtrutitical leftreation.

weight in the other ballance : it is mof certain that the ballances will hang in aquilibrio, which will feem moft fincere and juft ; though it be moft deceitful, abominable, and falfe.

The reafon of this is drawn from the Experi-ments of Archimedes, who thews that two unequal weights will cqunterpoife one another, when there is like proportion between the parts of the Beam (that the handle feparates) and the Weights themfelves: for in one and the fame counterpoife, by how much it is farther from the Centre of the Handle, by fo much it feems heavier; therefore if there be a diverfity of diftance that the Ballances hang from the handle, there munt neceffarily be an inequality of weight in thefe Ballances to make them hang in equilibrio; and to difcover if there be deceit, change the Weight into the other Ballance : for as foon as the greater Weight is placed in the Ballance that hangs on the longer parts of the Beam, it will weigh down the other inftantly.

PROBLEM

To beave or lift up a Bottle witb a Stratt.

TAke a Straw that is not bruifed, bow it that it make an Angle, and put it into the Bottlo fo that the greateft end be in the Neck, then the Reed being put in the bowed part will cait fidewife, and make an Angle, as in the figure
may be feer : then may you take the end which is out of the Bottle in your hand, and heave up the Bottle, and it is f_{0} much furer, by how much the Angle is acuter or Marper; and the end which is bowed approadheth to the other perpendicular parts which
 come out of the Bottle.

PROBLEM LI

How in the middle of a Wood or Deferis, withbout the figbt of the Sun, Starc, Sbadow, or Compafy, to find out tbe Nortb or 8 tutb, ior the foar Cardinat Pointr of the World, Exft, Weft, \&cc.

T is the Opinion of fome, that the Winds are
to be obferved in this : of it be hot, the South is foond by the winds that blow that way, but this Obfervation is uncertain, and fubject to much Ertor: Nature will help you in fome meas Gure to make it more manifent that any of the fort mer, from a Tree, thus: Cut a fmall Tree off, even to the ground, and mapks the many Circles that are about the fap or pith of the Tree, which feem. neaier together in fome part than in other, whith is by reafon of the Suns motion about the, Tree: for that the humidity of the parts of the Tree

76 ssathematical 2 Recteation.

Tree towards the South by the heat of the Sun is rarified, and caufed to extend : and the Sun not giving fuch heat towards the North part of the Tree, the Sap is leffer rarified, but condenfed; by which the Circles are nearer together on the North part than on the South part : therefore if

- a Line be drawn from the widef to the narrowefti part of the Circles, it fhall fhew the North and South of the World. Another Experiment may be thus: Take a fmall Needle, fuch as Women work with :l-
 place it gently down flat-wife upon ftill Water, and it will not fink, (which is againf the general Tenet that Iron gill not (fwim) which Needle will by little and little turn to the North and South points. But if the Needle be great, and will not fwim, thruft it through a fmall plece of Cork, or fome fuch-like thing, and then it will do the fame : for fuch is the property of Iron when it is placed in equilibrio, it frives to find out the Poles of the World, or Points of North and South in a manner as the Magnes doth.

© $\mathfrak{x a m i}=$

Examintation.

HEre is obfervable, that the moifure robich addeth to tbe gronth of the Tree, is dilated and rarified by the Meridional beat, and contracied by the Septentrional cold: tbis Rarefaction woorks upos the part of the bumoser or moifture that is more tbin, wobicb doth eafily diffpate and evaporate: Which cevaporation carries a part of the Salt woith it; and becaufe tbat Solidation or Condenfation, fo that tbere is left but a part of the Nourijbment robich the beat bakes up and confumes: So contrarily on the other fide the Condenfation and Reftrictive Quality of the Moifturecaufetb le β Evaporation and Perdition : and So confequently there remains more Nourrifloment, which makes a greater increase on that fide than on the otber fide : for as Trees bave tbeir growth in Winter, becaufe of tbeir Peres, and thefe of the Eartb are Shut up: So in tbe Spring, woben their Pores are open, and roben the Sap and Moijture is dramon by it, there is not fuch Cold on the North fide tbat it may be condenfed at once: But contrarily to the fide robich is South, the beat maybe fuch, that in little time by continuance, tbis moifture is difipated greatly: And Cold is notbing but that n-bich bardeneth and contraCletb tbe moifture of the Tree, and So convertetb it into Wood.

PRO-

78 geativematical Mervution.

PROBLEM LII.

Tbree Perfons baving taken Counters, Cards, or otber things, to find bous mucb each one batb taken.

cAule the third party to take a number which may be divided by 4, and as often as he takes four, let the fecond party take 7 , and the firf take 13, thon caule them to put them all together, and declare the fum of it; which fecretly divide by 3, and the Quptient is the double of the number which the third perfon did take. Or caufe the chird to give unto the fecond and firft, as many as each of them hath; then let the fecond give unto the firft and third, as many as each of them hath; laftly, let the third give unto the fecond and firf, as many as each of them hath; and then ask how much one of them hath : (for they will have then all alike) fo half of that number is the number that the thisd parfon had at the irft ; which known, all is known.

PROBLEM LIIL.

How to make a Consort of Mufick of many parts, with one Voice, or one Inftrument ouely.

THis Problem is refolved, fo that a Singer ov
Player upon an Inftrument, be near an Echo which anfwereth his Voice or Inftrument; and if the
the Echo anfwereth but once at a time, he may make a double; if twice, then a tripple; if three times, then an harmony of four parts : for it muf be fuch a ope that is able to exercife both tune and note, as occafion requires. As when hebegins $u t$, before the Echo anfwer, he may begin fol, and pronounce it in the fame tune that the Eche anfwereth, by which means you have a fifth agreeable Confort of Mufick: then in the fame time that the Echo followeth, to found the fecond note fol, be may found forth another fol higher or lower, to make an eight, the moft per, fed Confort of Mufick, and fa of others, if be will continue his Voice with the Echo, and fing alone with two parts. Now Experience howeth this to be true, which often comes to pads in many Churches, making one to believe that there are many mare parts in the Mulick of a Quire, than in effect truly there are; becaufe of the reCounding and multiplying of the Voice, and redoubling of the Quire.

PROBLEMLIV.

To make ar defcribe an Oval forop or that wobish sear refembles untp it, at one turning pith a pair af common Conapafges.

THere are many fine ways in Geometrical praCtices, to make an Oval Figure, or one near unto it, by feveral Centres: any of which I will not touch upon, but hew how it may be done promptly

8o matbematical Recteation:

promptly upon one Centre onely. In which I will fay nothing of the Oval form, which appears, when one defcribeth Circles with the points of a common Compafs, fomewhat deep upon a Skin fretched forth hard : which contracting it felf in fome parts of the Skin maketh an Oval form. But it will more evidently appear upon a Column or Cylinder: if Paper be placed upon it, then with a pair of Compaffes defcribe as it were a Circle upon it, which Paper afterwards being extended, will not be circular, but oval-wife: and a pair of Compaffes may be fo accommodated, that it may be done alfo upon a Plain thus: As let the length of the Oval be HK,faften 2 Pins or Nails near the end of that Line, as F G, and take a thread which is double to the length of GH , or FK , then if
 you take a Compals which may have one foot lower than another, with a Spring between hislegs, and placing one foot of this Compals in the Centre of the Oval, and guiding the thred by the other foot of the Compaffes, and fo: carrying it about : the-Spring will help to deferibe and draw the Oval form. But inttead of the Compaffes it may be done with ones hand only, as in the Figure may appear.

פattiematical keccration. \quad Ir

PROBLEM LV.

Of a morfe difficult to be opened.

IT is made to thut and open with Rings: firft at each fide there is a ftrap or ftring, as A B and C,D, at the end of whichare i Rings, B and D, and the ftring C D paffeth through the Ring B,fo that it may not come out again, or be parted one from another: and fo that the Ring B may flide upand down upon the ftring $C D$, then over the purfe there is a piece of Leather E F G H3, which covers the opening of the parfe, and there is ano: ther piece of Leather. $A E$, which pafferh thos row many. Rings, which hath a flit to wards the end I, fo great that the flring BC may flide into it: Now all the cunning or craft is how to make faft or to 0 -
 pen the purfe, which confifts in making thefining $B C$ flide through the fide at I, therefore bring down B to I, then make the end I pafs thorow the ring B_{2}, and alfo D with his ftring to pals through the flit I, fo fhall the Purfe be faft, and then may the ftrings be put as before, and it will feem difficult to difcover how it was done. Now to open the Purfe, put through the end Ithrough the Ring B, and then through the flit I, by which you putthrough the String $D C_{3}$ by this way the Purfe will be opened.

82 Satbematical Recreation.

PROBLEMLVI.

> Whether it is more bard and admir able, mitbout Compaffes to make a perfect Circle, or being made, to find out tbe Centre of it.

1T is faid that upon a time paft, two Mathematicians met,' and they would make trial of their Induftry: The one madc inftantly a Perfect Circle without Compaffes, and the otherimmediately pointed out the Centre thereof with the point of a Needle : Now which is the chiefeft Action? It feems the firft, for to draw the moft nobleft Figure upon a Plain Table without other help than the Hand and the Mind, is full of admiration; to find the Centre is but to find out onely one point, but to draw a Round, thete mutt. be almoft infinite points, equidifiant from the Centre or middle; that in Conclufion it is both the Circle and the Centre together. But contrarily it may fecth that to find the Centre is more difficult: for what attention, vivacity, and fubtilty muft there be in the Spirit, in the Eye, in the Hand, which will chufe the true point amongft a thoufand bther points? He that makes a Circle keeps always the fame diftance, and is guided by a half diftance to finils the reft; but he that muft find the Centre, mult in the fame time take heed to the parts about it, and choole onqonly point which is equally diftant from an infinite of other

9atbentatical kecteation.

other points which are in the Circumference; which is very difficult. Ariftotle confirms this as mongft his Morals, and feems to explain the difficulty which is to be found in the middle of Vertue ; for it may want a thoufand ways, and be far reparated from the true Centre of the end of a right Mediocrity of a vertuous Action: for to do well; it mult touch the middle point, which is but one, and there muft be a true point which refpects the end, and that's but one onely: Now to judge which is the moft difficult, as before is faid, either to draw the Round, or to find the Centre, the Round feems to be harder than to find the Centre, becaule that in finding of it is done at once, and hath an equal diftance from the whole; But, as before, to draw a Round, there is a vifible point imagined, aboue which the Circle is to be drawn. I efteem that it is as difficult therefore, if not more, to make the Circle without a Centre, as to find the middle or Centre of that Circle.

PROBLEM LVI.

Any one baving tatken 3 Cards, to find how many points they contain.

THis is to be exercifed upon a full Pack of Cards of 52 , then let one choofe any three at pleafure fecretly from your fight, and bid him fecretly account the points in each Card, and will him to take as many Cards as will make up 15 to G 2 each

smatbematital karcteation.

each of the points of his Cards, then will him to give you the reft of the Cards, for 4 of them being rejected, the reft thew the number of points that his three Cards which he took at the firf did contain. As if the 3 Cards were 7,10 , and 4 ; now 7 wants of 15,$8 ;$ take 8 Cards therefore for your tirft Card: the 10 wants of 15,5 ; take 5 Cards for your fecond Card: lattly, 4 wants of 15,11 ; take 1 I Cards for your third Card, and giving him the reft of the Cards there will be 25 ; from which take 4 , there remains 21 , the number of the three Cards taken, viz. 7, 10, and 4.

Whofoever would practife this play with 4, 5,6 , or more cards, and that the whole number of cards be more or lefs than 52 ; and that the term be $15,14,12$, ©rc. this general Rule enfuing may ferve: multiply the term by the number of cards taken at firft; to the product add the number of cards taken, then fubtract this fum from the whole number of cards 5 the remaindes is the number which muft be fubtracted from the cards, which remains to make up the Game: if there remain nothing after the fubtraction, then the number of cards remaining doth juftly thew the number of points which were in the cards chofen. If the fubtraction capnot be made, then fubtract the number of cards from that number; and the remainder added unto the cards that did remain, the fum will be the number of points in the cards taken, as if the cards were $7,10,5,8$, and the term given were 12 ; fo the firft wants 5 , the fecond wants 2 , the third wants 7 , and the fourth wants 4 cards, which taken, the party gives you

matbematical Rectration. 85

the reft of the cards: then fecretly multiply 12 by 4 , makes 48 ; to which add 4 , the number of cards taken makes 52 , from which 52 thould be taken, relt nothing: therefore according to the direction of the remainder of the cards, which are 30 , is equal to the points of the four cards taken, viz. $7,10,5,8$. Again, let thefe 5 cards be fuppored to be taken, $8,6,10,3,7$; their differences to 15 , the terms are $7,9,5,12,8$, which number of cards taken, there will remain but 6 cards: then privately multiply 15 by 5 , makes 75 , to which add 5 makes 80 , from this take 52 , the number of cards, refts 28, to which add the remainder of cards, makes 34 , the fum with 8,6,10,3,7.

PROBLEMLVII.

Many Cards placed in divers ranks, to find wobich of thefe Cards any one bath thougbt.

TAke 15 Cards, and place them in 3 heaps in rank-wife, 5 in a heap: now fuppofe any one had thought one of thefe Cards in any one of the heaps, it is eafie to find which of the Cards it is, and it is done thus: ask him in which of the heaps it is, which place in the middle of the other two; then throw down the Cards by 1 and 1 into three feveral heaps in rankwife, until all be calt down, then ask him

G 3

86 spatbentatital kettsation,

in which of the ranks his Card is, which heap place in the middle of the other two heaps always, and this do four times at leaft, fo in putting the Cards altogether, look upon the Cards, or let their back be towards you, and throw out the eight Card, for that was the Card thought up: on without fail.

PROBLEM LVIII.

Many Cards being offered to Sundry Perfons, to find wobich of thefe Cards any one thinketb upon.

ADmit there were 4 perfons, then take 4 Cards and thew them to the firlt, bid him think one of them, and put thefe 4 away; then take 4 other Cards, and fhew them in like manner to the fecond perfon, and bid him think any one of thefe Cards, and fo do to the third perfon, and fo the fourth, erc. Then take the 4 Cards of the firft perfon, and difpofe them in 4 ranks, and upon them the 4 Cards of the fecond perfon, upon them alfo thefe of the third perfon, and laftly, upon them thefe of the fourth perfon; then Rhew unto each of thefe parties each of thefe rauks, and ask him if his Card be in it which he thought, for infallibly that which the firf party thought upon will be in the firt rank, and at the bottom the Card of the lecond perfon will be in the fecond rank, the Card of the third thought upon will be in the third rank, and the fourth

够atyenatical

mans Card will be in the fourth rank, and fo of others; if there be more perfons; ufe the fame method. This may be practifed by other things, ranking them by certain numbers allotted to pieces of money, or fuch-like things.

PROBLEMLIX.

Hows to make an Inftrament to belp Hearing, as Galileus made to belp the Sight.

THink not that the Mathematicks (which hath furnifhed us with fuch admirable helps for Seeing) is wanting for that of Hearing; it's well known that long Trunks or Pipes make one hear well far off, and Experience hews-us that in certain places of the Orcades in a hollow vault, that a man feeaking but foftly at one corner thereof, may be audibly underftood at the other end : notwithftanding thofe which arebetween che parties cannot hearfim fpeak at all:and it is a general Principle, that Pipes do greatly help to ftrengthen the Activity of Natural Caules: We fee that fire contracted in a Pipe, barns 4 or 5 foot high, which would fcarce heat, being in the open air: the rupture or violence of water iffarig out of a Fountain, Thews us that water being contracted into a P ipe caufeth a violenceirits paffage. The Glaffes of Godily makes us fee how afefal Phoes

88 פatbenatical Recteation:

nr Trunks are to make the Light and Species more vifible and proportionable to our Eye. It is faid that a Prince of Italy hath a fair Hall, in which he can with facility hear diftinetly the Difcourfes of thofe which walk in the adjacent Gardens, which is by certain Veffels and Pipes that anfwer from the Garden to the Hall. Vitruvius makes mention alfo of fuch Veffels and Pipes to ftrengthen the Voice and Action of Comedians: and in thefe times amonght many Noble Perfonages, the new kind of Trunks are ufed to help the hearing。 being made of Silver, Copper, or other refounding material ; in funnel-wife putting the wideft end to him which (peaketh, to the end to con. tract the Voice, that fo by the Pipe applied to the Ear it may be more uniform, and lefs in danger to diffipate the Voice, and fo confequently more fortitied.

PROBLEM LX.

Of a fine Lamp wobich goes net out, thougb one carry it in ones pocket : or being rolled upon the ground mill ftill buru.
$1 T$ muft be obferved that the veffel in which the Oil is put into, have two pins on the fides pf it, one againit another, being included within a circle : this circle ought to have two other pins, to enter into another circle of brafs, or other folid matter : lafty, this fecond circle hath two pins

gepathematital Recreation. 89

pins, which may hang within fome Box to contain the whole Lamp, in fuch manner, that there be fix pins in different pofition: Now by the aid of thefe pegs or pins, the Lamp that is in the middle will be always well fituated according to his Centre of Gravity, though it be turned any way: though if you endeavour to turn it upfide-down, ak will lie level : which is pleafant and admirable to behold to thofe which
 know not the caule. And it is facil from this to make a place to reft quiet in, though there be great agitation in the outward parts.

PROBLEM LXI.

Any one baviug tbougbt a Card amongft many Cards, bors artificially to dijcaver it out.

TAke any number of cards, as 10,12 , bcc. and open fome four or five to the parties fight, and bid him think one of them, but let him note whether it be the firft, fecond, third, orc. therr with promptnefs learn what number of Cards you had in your hands, and take the other part of the Cards, and place them on the top of there you hold in your hand ; and having done fo,

90 mpatbematical Recteation.

Co, ask him whether his Card were the firf, fecond, \&c. then before knowing the number ofCards that were at the bottom, account backwards until you come to it : fo thall you eafily take out the Card that he thought upon.

PROBLEM LXII.

Tbree Women, A, B, C, carried Apples to a Market to fill, A bad 20, B 30 , and C 40 ; they fott as manyfor a penny the one as the otber, and brought bome one as much money as anotber: How could this be?

IHe Anfwer to the Problem is eafie: As fuppofe at the beginning of the Market, A fold her Aples at a penny an Apple, and fold but two, which was two pence, and fo the had 18 left:
 but B fold 17 , which was 17 pence, and So had 13 left: C fold 32 , which was 3 sepence, and fo had 8 Apples left. Then A faid the would not Cell her Apples 50 cheap, but would fell them for 3 pence a piece, which the did, and fo her Apples came to 54 pence: And B having left but 13 Apples, fold them at the fame rate, whigh came to 39 pence:

Matbematical ketration, gx

pence: And laftly, C had but 8 Apples, which at the fame rate came to 24 pence : Thefe fums of money which each others before received come to 56 pence, and fo much each one received; and fo comfequently brought home one as much as another.

PROBLEMLXIII.

Of the Properties of Some Numbers.

FIrft, any two numbers is juft the fum of a number, that have equal diffance from the half of that number: the one augmenting, and the other diminifhing: as 7 and 7 , of 8 and 6 , of 9 and 5 , of 10 and 0 et 11 and 3 , of 12 and 2 , of 13 and 1 , as tue pe is more than the half, the other is lefs.

Secondly; It is difficult to find two numbers whofe fum and product is alike, (that is) if the numbers be multiplied one by another, and added together, will be equal, which two numbers are 2 and 2 , for to multiply 2 by 2 makes 4 , and adding 2 unto 2 makes the fame : this property is in no other two whole numbers, but in broken numbers thereare infinite, whofe fum and product will be equal one to another. As Clavius Shews upon the 36 Prob. of the 9 th Book of Euclide.

Thirdly, The numbers 5 and 6 are called circular numbers, becaule the circle turns to the point from whence it begins: fo thefe numbers multiplied by themfelves, do end always in 5 and 6, as 5 times 5 makes 25 , that again by 5 makes 125, fo 6 times 6 makes 36 , and that by 6 makes 216; ట゙c.
Fourthly, The number f, is the firf which Arithmeticians call a perfect number, that is, whofe. parts are equal unto it, fo the fixth part of it is 1 , the third part is 2 , the half is 3 , which are all his parts: now 1,2 , and 3 , is equal to 6 . It is wonderful to conceive that there is fo few of them, and how rare thefe numbers are, fo of perfect men : for betwixt I and 1000000000000 numbers there is but ten, that is, $6,28,486,8128,120816$, 2096128,3355c336,536854528,8589869056, and 137438691328 , wish this admirable property, that alternately ity end all in fix and eight, and the Twent, 4 Perfeet Number is 151115727451553768931328.

Fifthly, The number 9 amongft other priviledges carries with it an excellent property; for take what number you will, either in grofs or in part, the nines of the whole or in its parts rejected, and taken fimply will be the fame, as 27 it makes 3 times 9 , fo whether the nines be rejected of 27 or of the fum of 2 and 7 , it is all one; foif the nines were taken away of 240 , it is all one if the nines were taken away of 2,4 , and 0 ; for there would remain 6 in either ; and fo of others.

Sixthly,

Sixthly, 11 being multiplied by $2,4,5,6,7,8$, or 9 , will end and begin with like numbers; fo 11 multiplied by 5 makes 55 , if multiplied by 8 , it makes 88 , ©c.c.
Seventhly, the numbers 220 and 284 being unequal, notwichftanding the parts of the one number do always equalize the other number: fo the aliquot parts of 220 are 110, 54 , $44,22,20,11.10,5,4,2,1$, which together makes 284 , the aliquot parts of 284 , are 142,71 , $4,2,1$, which together makes 220 , a thing rare and admirable, and difficult to find in other nur.bers.

Eightly, The numbers 3, 4 5, (found out by Pytbagoras) have an excellent property in making of Rectangle Triangles : upon which the 47 Pro. of the firft Book of Enclide was grounded, that the fquare of the Hypotbenufal in any fuch Triangle, is equal to the fquare of the other two fides: that is 5 , the Hypotbenufal multiplied in 5 makes 25 , and 4 multipled in 4 makes 16 , and 3 multipli'd in 3 makes 9 , but 9 and 16 is equal to 25 , or if thefe numbers $3,4,5$, be
 doubled, viz. 6, 8, 10: the fquare of 10 is equal to the fquare of 8 and 6 , viz. 10 times 10 makes 100 , and 8 times 8 makes 64 , and 6 times 6 is 36 ; which

94 2月athentatical 渒ectration.

36 and 64, put together makes 100, as before: and fo may they be Tripled, Quadrupled, αc.

The ufe of thefe numbers $3,4,5$, are manifold, but it may be applied thus, for the help of fuck which plot out Gardens,Houfes, encamp Horfe or Foot, © 6 . Example, take 3 Cords, one of 5 yards, another of 4 yards, and another of 3 yards, or the double, tripple, decuple, orc. or all in one line, and make knots at
 the aterms of thefe meafures, fo thefe three parts will make a right angled Triangle, as A, B, C; and it is eafie with this Triangular Cord to plot out a Gardenplat, a fquare build. ing plat, or other long fquare. As fuppofe there is a figure, E DF G to be plotted, ED of 60 yards broad, and F G 100 yards long. Firt meafure out E D 60 yards, and at E and D place two pins or pegs; then at E place the Angle of your Triangular Cord B, and let the line of the Triangle A B be in the line ED, which fuppofe at A; make the Cord $A B$ faft in E and A, then put the other two Cords of the Triangle until: they meet, which will be in C, and place a peg at C; take afterwards a long Cord, and by the points E and C augment it unto $F 100$ yards from E, and at F place a peg; then at F apply your Triangular Cord as you did at E, and fo may you draw the line \mathbf{F} G as long as ED, viz. 60

gotbematical Recteation.

Fards. Laftly, it is eafie to draw the Line G D, and fo the Rectangaled Figure or Long Square Challbe plotted, whofe breadth is 60 yards, and lengeth 100 yards', as was required: and to examine this, meafure $E G$, then if $F D$ be as long, the figure is true : otherwife it is defective, and may eafily be amended.

If one be taken from any fquare nnmber which. is odd, the fquare of half of it being added to the firft fquare, will make a fquare number.

The fquare of half any even number + . 1 being added to that even number makes a fquare number, and the even number taken from it leaves a fquare number.

If odd numbers be continually added from the unity fucceffively, there will be made all quare numbers, and if cubick numbers be added fucceffredy from the unity, there will be likewife made Gquare numbers.

PRIOBLEM LXIV.

Of an Excellent Lamp, wobich ferves or furnifheth it SAf moith ©it, and burns a long time.

ISpeak not here of a common Lamp which Cardanus writes upon in his Book de fubtilitate, for that's a little Veffel in Columne-wife, which

96 פpatbenatical Recteation

which is full of Oyl , and becaufe there is but one little hole at the bottom near the Week or Match, the Oil runs not, for fear that there be emptinefs above: When the Match is kindled it begins to heat the Lamp, and rarifying the Oil it iffueth by this occafion: and fo fends his more airy parts above, to avoid vacuity.

But that which I here deliver is more ingenious, the principal piece of which is a veffel, as $C D_{\text {, }}$ which hath near the bottom a hole, and a funnel or pipe C,and then a bigger funnel, which paffeth thorow the middle of the Veffel, having an opening at D near the E top, and another at the bottom, as at E, near the Veffel under it, fo that the Pipe touch it' not : the Veffel being thus made, fill it with Oyl , and opening the hole C , the Oil running out will fop the hole at E; or throwing in Oil into the Veffelunderneath, until E be ftopped; then the Oil at C will not run: becaufe no air can come into the Pipe DE. Now as the Oil burneth and confumeth in the Veffel $A B_{\text {, the }}$ the hole at E will begin to open, then immediately will C begin to run to fill up $A B$, and E being flopped with the Oil, the Oilat C ceafeth to run.

sadthematical a ectreation:

It is certain that fuch a Lamp the Atbenians ufed, which lafted a whole year without being. touched : which was placed before the Statue of Minerva, for they might put a certain quantity of Oyl in the LampCD, and a match to burn without being confumed : fuch as the Naturalifts write of, by which the Lamp will furnifh it felf, and fo continue in burning: and here may be noted that the Oyl may be poured in at the top of the Veffel at a little hole, and then made faft againt that the Air get not in.

PROBLEM LXV.

Of the play at Keyles or Nine-Pins:

- Ou will fcarce believe that with one Bowl, and at one blow playing freely, one may frike down all the Keyles at once : yet from Mathematical Pxinciples it is eafie to be demonftrated, that if the hand of him that plays were fo well affured by Experience as Reafon induceth one thereto, one might at one blow ftrike down all the Keyls, orat leaft 7 or 8, or fuch a namber as one pleafeth.

For they are but Nine in all, difpofed or placed in a perfect Square, having Three every way. Let us fuppofe then that a good Player beginning to play at I fomewhat low, fhould fo Itrike it, that it thould frike down the Keyles 2 and 5, and thefe might in their violence ftrike H
p8 gqatbematical Recteatjon. down the Keyles 3, 6 , and 9 , and the Bowl being in motion may ftrike down the Keyle 4, and 7; which 4 Keyle may ftrike the Keyl 8, and fo all the 9 Keyles may be ftriken down at once.

PROBLEM LXIV.

Of Spectacles of pleafure.

CImple Spectacles of blew, yellow, red or green D celour, are proper to recreate the fight, and will prefent the Objects died in like colour that the Glaffes are, only thofe of the Green do fomewhat degenerate; inftead of fhewing a lively celour, it will reprefent a pale dead colour, and it is becaufe they are not died green enough, or receive not light enough for green: and colour there Images that pals through thefe Glaffes unto the bottom of the Eye.

Examina=

(Examination

IT is certain, that not onely Glaffes dyed green, buit all otber Glaffes coloured, yield the appearances of Objects ftrong or woeak in colour according to the guantity of the dye, more or le ρ, as one being very yelloon, another a pale yellows; nows all colours are not proper to Glaffes to give colour, bence the defect is not that they want faculty to receive light, or reffet the penetration of the beams; for in the fame Glaffes tbofe wobich are moft dyed, give always the Objects more bigb-coloured and obfcure, and tbofe robicb are lep dyed, give them more pale and clear: and tbis is daily made manifeft by the painting of Glaß, wobich binders suore the pesetration of the light than dying doth, where all the matter by fire is forced into the Glafs, leaving it in all parts tranfparent.

Spectacles of Cryftal cut witb divers Angles Dia-moud-woife, do make a marvellous multiplication of tbe appearances, for looking towards a Home it becomes as a Toron, a Toxon becomes like a City, an armed man feem's as a wobole Company, caufed folely by the diverfity of Refractions, for as many plains as there are on the dat fide of the Speitacle, fo many times woill the Object be muitiplied in the appearance, bccaufe of divers Images caft into the Eye. Tbefe are pledfurrable Spectacles for avaritious perys that love Gold and Silver, for one Piece will feem many, or one

$$
H 2
$$

100°
 99athematical Recteation:

beap of Money roill Seem as a Treafury: but all the miifcbief is, be nill not bave bis end in the enjoying of it, for endeavouring to take it, it rill appear but a deceitful Image, or delufion of nothing. Here may you note, that if the finger be directed by one and the fame ray or beam, which pointetb to one and tbe Same object, then at the firft you may toucb that vifible 0 bject woitbout being deceived: otberwoife you may fail often in toucbing that wobich you fee. Again, there are Spectacles made robich do diminifh the tbing feen very much, and bring it to a fair perpective form; efpecially if one look upon a fair Garden-plat, a greater Walk, a ftately Building, or great Court; tbe indufiry of an exquifite Painter cannot come near to expreß the lively form of it as this Glaß will repreSent it; you will-bave pleafure to fee it really experimented; and the caufe of this is, that the Glajles of thefe Spectacles are bollons and thinner in the middle, tban at tbe edges, by mobich the vifual Angle is made leffer: You may obferve a furtber fecret in thefe Spectacles, for in placing them upon a Windons one may fee tbofe that pafs to and fro in tbe Streets, withbout being feen of any; for their property is to raife up tbe Objects that it looksupon.

Now I moould not pafs this Problem woithout Saying Sometbing of Galileus admirable Glafs : for the common fimple perfpective Glaffes, give to Aged Men but the Eyes or fight of Young Men, but this of Galileus gives a Man an Edalo Eye, or an Eye that piercetb the Heavens: Firy it difcuvereth the fotty and Sadowed opacous Bodies that are found about the Sun, wobich darkeneth and diminibeth the Blendor of that beautiful and Jining Luminary:

29atientatical Recteation. \quad no

Secondly, It flews the Ners Planets that accompany Saturn and Jupiter : Thirdly, in Venus is feen the New, Full, and Quartile Increafe; as in the Moon by ber Separation from the Sun: Fourtbly, the artificial ftruciure of this Inftrument belpeth us to See an innumerable number of Stars, wobich othervoife are obfcured, by reafon of the natural moeakne $\int s$ of our fight; yea the Stars in Via Lactea are feen moft apparently; wobere tbere Seem no Stars to be, this Infitumsent makes apparently to be Seen, and furtber delivers them to the Eye in tbeir true and lively colour, as they are in the Heavens, in wobich the 乃plendor of fome is as the Sun in bis smof glorious Beauty.

Tbis Glafs batb alfo a moft excellent ufe in obfirving the Body of the Moon in time of Eclipfes, for it augments it manifold, and moft manifeftly flexss the true form of the cloudy fubftance in the Sun; and by it is Seen roben the Shadow of the Eartb begins to eclipfe the Moon, and noben totally foe is overbadooved. Befides "tbe Coleftial USes wobich are made of this Glafs, it batb anotber Noble Property, it far exceedeth the ordinary Perßective Glaffes, wobich are ujed to See things remote upon the Earth: For as this Glafs reachetb up to the Heavens, and excelletb them there in bis performance, fo on the Earth it claimeth prebeminency, for the Objects wobich are fartbeft remiote, and mof obfcure, are feen plainer than thofe robich are near at band, fcorning as it were all fmall and trivial fervices, as leaving themito an inferiour belp: great ufe may be made of this Glafs in difcovering Ships,Armies, © c. Now the apparel or parts of this Inftrument or Glafs is mean

102 getbematical IRemation,

 or fimple, robich makes it the mare admirable (Seeing it performs fucb great Servicp) having but a. Couvex Glafs, tbickeft in the middle, to unite and amafs the Rays, and make the Object the greater: to the augmenting the vifual Angle, as alfo a Pipeon Trunk to amafs tbe Species, aud binder the greatuefs. of the light uchich is about it: (to fee well, the Object muft be well inlightened, and the Eye in oblcurity then there is adjoyned unto it a Glaß of a floort figbt to diftinguiff the Rays, wateich the othen roould make mare confufed if alone. As far the prom partion of tbafe Glafles to the Trunk, thaugbe there bo certain Rules to make them, yet it is oftem by bazard that there is made an excellent one, there being fo many difficulties in the action; tberefore many onght to be tried, feeing that exact proportion is Geometrical Calculation carmot ferve for diverfity of frgbto in the Obfervation.
PROBLEM LXVII.

Of tbe Adamant or Magnes, and the Needles touched therevoitb.

WHo would believe, if he faw not with his Eyes, that a Needle of Steel being once touched with the Magnes, turns not once, not a year, but as long as the World lafteth, his end towards the North and South; yea though one remove it, and turn it from its pofition, it will come again to his points of North and South? Who would have ever thought that a brute Stone, black and ill formed, touofing a Ring of Iron, thould hang it in the Air, and that Ring fupport a fecond, that to fupport a third, and fo unto 10, 12, or more, according to the ftrength of the Magnes; making as it were aChiain without a Line, without fouldering together, or without any 0^{-} ther thing to fupport them onely; but a moft occult and hidden vertue, yet moft evident in this effect, which penetrateth inferifibly from the firf to the fecond, from the fecond to the third, era.

Is it not a wonder to fee that a Needle touched once will draw other Needles; and fo a Nail, the point of a Knife, or other pieces of Iron? Is it not a pleafure to fee how the Magnes will turn File-duft, or move Needles, or Nails being upon a Table, or upon a piece of paper ? For as Loon as the Magmes xurns or moves over, it moves H_{4} alfo:

alfo: who is it that would not be ravifhed as it were to fee a hand of Iron write upon a Plank, without feeing the Magnes which caufeth that motion behind the Plank, or to make an Image of Iron to run up and down a Turret : now infinite of fuch inventions is proper to be extras Cted from the properties of the Mag. nes.

- What is there in the world that is more capable to caft a deeper aftonifhment in our minds than a great maflie fubftance of Iron to hang in the Air in the midft of a Ruilding without any thing in the World touching it, but only the Air? As fome Hiftories affure us that by the aid of a Magnes or Adamant, placed at the Roof of one of the Turkih Synagogues in Meca, the Sepulchre of that infamous Mabomet refs fufpended in the Air; and Pliny in his Natural Hiftory writes that the Architector Democrates did begin to wault the Temple of Arfinoe in Alexandria, with ffore of Magues to produce the like deceit, to hang the Sepulchrep of that Goddefs likewife in the air.

1 hhould pafs the hounds of my counterpoife, if I hould dirulge all the fecrets of this Stone, and

פathematical Recteation.

and hould expofe my felf to the laughter of the World, if I hould brag to Chew others the caufe how thís appeareth, than in its own natural fympathy; for why is it that a Magnes with one end will caft the Iron away, and attract it with the other? From whence cometh it that all the Magnes is not proper to give a true touch to the Needle, but onely in the two Poles of the Stone: which is known by hanging the Stone by a thread in the air until it be quiet, or placed upon a piece of Cork in a Difh of Water, or upon fome thin Board, for the Pole of the Stone will then turn towards the Poles of the World, and point out th North and South, and Ko hew by which of thefe ends the Needle is to be touched?

From whence comes it that there is a variation in the Needle, and pointeth not out truly the North and South of the World, but only in fome place of the Earth?

How is it that the Needle made with pegs and inclofed within two Glaffes, theweth the height of the Pole, being elevated as many degrees as the Pole is above the Horizon?

What's the caufe that Fire and Garlick takes a way the Property of the Magnes? There are many great hidden Myfteries in this Stone, which have troubled the Heads of the mott Learned in all Ages, and to this time the World remains ig. norant of declaring the true caufe thereof.

Some fay, that by help-of the Magues perfons which are abfent may know each others mind,

ro6. 99atimmeatital 2 derteation.

mind, as if one being here at London, and another at Prague in Germany, if each of them had a-Needle touched with one Magnes, then the virtue is fuch that in the fame time that the Needle which is at Prague fhall move, this that is at Lowdon fhall alfo; provided that the parties have like fecret Notes or Alphabets, and the obfervation be at a fet hour of the day or night; and when the one party will declare unto the other, then let that party move the Needle to thefe Letters which will dedare the matter to the other, and the moving of the other parties Needle fhall open his intention.

The invention is fule, but I doubt whether in the World there can be found fogreat a Stone, or fuch a Magnes which carries with it fuch virtue : neither is it expedient, for Treafons would be then too frequent and open.

examination.

THe Experimental Differience of Rejection and Attraction proceeds not from the different Nature of Stones, but from thè Qualzty of the Irou; and the virtue of the Stone confitieth onely and efpeci-- Why in bis Poles, mobich being banged in the Air turns one of bis ends alroays naturally toxourds the South, and the otber towards the Nortb: but if a Rod of Tron be toucbed woith one of the eddisthereof, it bath the Like property in turning Nortll and South, as the

Magnes

geatbematical kectraftant 'iog

Magnes batb: Notwithftanding the end of the Iron Rod touched, bath a contrary pofition, to that end of tbe Stone that toucbed it; yet the fame end will attract it, and the otber endreject it, and \int_{0} contrarily. This may eafily be experimented upon two Needles toucbed woith one or differ ent Stones, thougb they bave one and the Same pofition; for as you come unto them apply one end of the Magnes near unto them, the North of the one roill abbor the North of the other, but the North of the one woill alwoys approach to the South of the otber: and the Same affection is in the Stones themfelves. Far the finding of the Poles of the Magnes, it may be done by bolding a fmall Needle between your fingers Softly, and fo moving it from partio part over the Stone, until it be beld perpendicular, fon tbat Ball be one of the Poles of the Stone wobich you may mark out; in like manner find out the otber Pole. Now to find out wobich of tho Se Poles is North or South,place a Needle being touched woith one of the Poles upon a fmooth Convex Body, (as the Nail of ones Finger, or fuch-like) and mark which way the end of the Needle that woas touched turnetb: if to tbe Soutb, then the point that touched it was the Soutb-Pole, \&c. and it is moff certain, and according to Reafon and Experience, that if it be fufpended in rquilibrio in the Air, or supported upon the Water, it reill turn contrary to the Needie that toucbeth it : for then ibe Pole that zoas marked for the Soutb JBall turn to tbe Noortb; \&

so8 פathematical Recteation?

PROBLEM LXVIHI.

Of the Properties of 不olipiles 'or Bowvels to blons ${ }^{3}$ be Fire.

IHefe are concave Veffels of Brafs or Copper or other material, which may indure the Fire; having a friall hole very narrow, by which it is filled with Water: then placing it to the fire, before it be hot there is no effect feen; but as foon as the heat doth penetrate it, the Water beginsto rarifie, and iffueth forth with a hideous and marvelous force; it is pleafure to fee how it blows the fire with great noife.

Vitruvius in his-firf Book of Arcbiteciure, Cap. 8. approves from thefe Engines, that Wind is no other thing than a quantity of vapours and exhalations agitated with the air by rarifaction and condenfation, and we may draw a comfequence from it, to thew thata little Water may ingender a very great quantity of Vapours and Air: for a Glafs of Water thrown into an H. Tolipile will keep blowing near a whole hour, fending forth his vapours a thoufand times greater than it is extended.

Now touching the form of thefe Veffels, they are not made of one like fathion: fome make them like a Bowl, fome like a head painted, reprefenting the Wind, fome make them like a Pear : as though one would putit to roft at the fire, when one would have it to blow, for the Tail of it is hollow, in form of a funnel; having at the top a wery little hole no greater than the head of a Pin.

Some do accuftom to put within the Aolipile a crooked Funnel of many foldings, to the end that the Wind that impetuoully rolls to and fro within, may imitate the Noife of Thunder. Others content themfelves with a fimple Funnel placed right upward, fomewhat wider at the top than elfewhere, like a Cone, whofe Bafis is the mouth of the Funnel: and there may be placed a Bowl of Iron or Brafs, which by the vapours that are caft out will caufe it to leap up, and dance over the Mouth of the 灰olipile.

Laftly, Some apply near to the hole fmall Wind-mills, or fuch-like, which eafily turn by reafon of the Vapours ; or by help of two or more bowed Funnels, a Bowl may be made to turn : thefe 'TEolipiles are of excellent ufe for the meleing of Metals, and fuch-like.

Now it is cunning and fubtilty to fill one of thefe 压olipiles with Water at fo little a hole, and therefore requires the knowledge of a Philofopher to find it out : and the way is thus:

Heat

Heat the Atolitiles being empty, and the Air which is within is will become extreamly rarifieds then being thus hot, throw it into Water, and the Air will begin to be condenfed : by which means it will occupy lefs room : therefore the W tar will immediately enter in at the hole to avoid vacuity. Thus you have fome Practical Speeculation upon the Eolipile.:

FROBLEM LXIX.

Of the Thermometer; or an Infirument ta mea. ure the degrees of Heat and cold in the Air.

THis Inftrument is like a Cylindrical Pipe of Glafs, which hath a little Ball or Bowl at the toptorthe fmall end of which is placed into a Veffel of Water below, as by the Figure may be féen.

Then put Come coloured Liquor into the Cy lindrical Glafs, as blew, red; yeHow, green, or fuch-like: fuch as is not thick. This being done, the ufe may be thus.

Firft, I fay, that as the Air inclofed in the Thermometer is rarified or condenfed, the water will evidently afcend or defcend in the Cylinder: which you may try eafily by carrying the Thermometer from a place that is hot unto a place that is cold, or without removing of it; if you foftly apply the Palm of the Hand upon the Ball of the

Thermoneter: the Glats being fo thin, and the Air fo capable of Rarifaction, that the veryinflart you may fee the Water defcend; and your hand being takeqa way; it will foftly affend to his former place again. This is yet more fenfoble when one heats the Ball at the top with his.breath, as ifone would fay a wotd in his ear, to make the Water to defcend by Command, and the reafon of this motion is, that the Air heated in the Thermometern doth rarifie and
 dilate, requiring a greater place; hence preffeth the Water, and caufeth it to defcend: concrariwife when the Air cooleth and condenferh, it occupieth lefs room; now Natureabhorring vacuity, the Water natarally afcendeth.

In the fecond place, I fay, that by this means one may know the degrees of Heat and Cold which are in the Air each hour of the day; forafmuch as the exterior Air is cither hot or cold, the Air which is inclofed in the Ibermometer doth likewife either rarifie or condenfe, and therefore the Water afcends or defcends; fQ you fhall fee that the Water in the morning is mounted high, afterward by little and little it will defcend towards noon or mid-day; and towards evening it will again afcend : fo in Winter it will mount fo high, that all the Cylinder of the Thermometer will be full,

is , deathentitcal Rectratioti:

full, but in Summer it will defcend fo low that fcarce there wrill be perceived in it any water at all:

Thofe that will determine this change by numbers and degrees, may draw a Line upon the Cylinder of the Tbermometer; and divide it into 4 degrees, according to the ancient Pbilefophers,or into 4 degrees, according to the Phyficians, dividing each of thefe 8 into 8 others, to have in all 64 divifions; and by this way they may not onely dittinguith upon what degree the Water afcendeth in the morning, at mid-day, and at any other hour: butalfo one may know how much one day is hptter or colder than another, by marking how many degrees the Water afcendeth or defcendeth, one may compare the hotteft and coldeft days in a whole year together, with thole of another year : Again one may know how much hotter one room is than another, by which alfó one might keep a Chamber, a Furnace, a Stove, ofc. always in an equality of heat, by making the water of he Thermometer rettalways up on one and the fame degree. In brief, one may judge in fome meafure the burning of Fevers, and near unto what extenfien the air can be rarified by the greateft heat.

Many make ufe of thefe Glaffes to judge of the Weather: for it is obferved that if the Water fall in 3 or 4 , hours a degree, or thereabout, that rain infueth, and the Water will ftand at that ftay until the Weather change: Mark the Water at your going to bed, for if in the rorning it hath defcended, rain followeth; but if it be
mpunted higher, it argueth fair weather : ©o in very cold weather, if it fallfaddenly, it is fnow; orfome feekey weather that will infue.

PROBLEM LXX.

Of the Proportion of Humane Bodies, of Statues; - of Coloßus, or buge Imagesl, and of monjtrous Giants.

Prtbagoras had reafon to fay, That Man is the meafure of all things :
Firf, Becaufe he is the moft perfect amongtt all bodily Creatures; and according to the Maxime of Philofophers, That which is moft perfect, and the firt in Rauk, meafureth all the reft.

Secondly, Becaufe in effect the ordinary meat fure of a foot, the inch, the cubit, the pace, have taken their names and greatnefs from Humane Bodies.

Thirdly, Becaufe the fymmetry and concordancy of the parts is fo admirable, that all Works which are well proportionable, as namely the building of Temples, of Ships, of Pillars, and fuch-like pieces of A rchitecture, are in fome meafure falhioned and compofed after his Proportion. And we know that the Ark of Noab, built by the Commandment of God, was in length 300 Cubits, in breadth 50 Cubits, in height or depth 30 Cubits, fo that the length contains the breadth fix times, and ten times the depth: Now a Man being meafured,

you will find him to have the tame pzopertion ins length, breadth; and depth-

Vilalpandus treating of the Tetnple of $\overline{5}$ old mon (that Chieftain of Works) was modulated all of good Arcbitecture, and curioully to be obferved in many pioces to kdep the fame proportion as the Body to his parts: fo that by the graatnefs of the Work, and propontionable fynhmetry, fome dare affure thernfalvesithat by knowledge of one onely part of that building, one might know all the meafures of that goodly Structura.

Some Architects lay that the Foundation of Houses, and Bafis of Columns, are as the Foot; the Top and Roof as she Heach, the refl ast the Body. Thofe whicti have breat (fometehat more curious, have moted that as in humane Bodies the pates axe uniforns, as the Nofe, the Mouth, Gvo. thefe which are double are put on one fide or other, with a perfect equality in the fame A_{7} chiteciure.

In like mannen fome have beent yet far more curious than folid o comparing all the: Ornamemts of a Corinth to the parts of the Face, as the Brow, the Eyes, the Nofe, the Mouth; the rounding of Pillars to the writhingiof Hair, the Channels of Columas to the Foldings of Wo mens Robes, bcc.

Now building being a Wotk of the beft Arifft, there is much reafon why manought to make his' imitation from the chief Work of Nature, which. is man.

Hence it is; that Vitravizu in his Third Book,

wathentuttral wetmitton:

and all the beft Arcbitectes treat of the proportion of man ; amongit others, Albert Dureus hath made a whole Book of the meafures of Mans Body, from the Foot to the 'Head; let fhem read it who whil, they may have a perfect knowledge theteof. © But I will content my felf, and it may fatisfie forme, with that which fol: loweth.

Firft, the length of a man well made, which commonly is called height, is "equal to the difance from one end of his finger to the other when the Arris are exfended as wide as they may be.

Secondly, if a man have his Feet and Hands extended or fiftetched in form of S. Andrews Crofs, placing one foot of a parr of Compaffes upon his Navil, one may defcribe a Circle which will pals by the ends of his Hands and Feet, and drawing Linesty the terms of the Hands and Feet, you have a Square withira Circle.

Thirdly, the breadth of Man, or the pace which is from one fide to another ; the Breaft, the Head, and the Neck, make the rixth part of all the Body takenift length or height.

Fourthly, the length of the Face is equal to the length of the Hand, taken fiom the fmall of the Arm unto the extremity of the longeft Finger.

Fifthly the thicknefs of the Body taken from the Belly to the Back' 3 the one or the other is the tenth part of the whole Body, or as fome will have it, the ninth part, litcle lefs.

Sixthly, the height of the brow, the length of

116 mathenatical 2recteation.

the Nofe, the face between the Nofe and the Chill, the length of the Ears, the greatnels of the Thumb, are perfectly equal one to the other-

What would you fay to make an admirable report of the other parts, if I hould reckon them in their leaft? But in that I defire to be excufed, and will rather extract fome conclufion upon that which is delivered.

In the firft place, knowing the proportion of a Man, it is eafie to Painters, Image-makers, orc perfectly to proportionate their work; and by the fame is made moft evident, that which is related of the Images and Statues of Greece, that upon a day diperfe Workmen having enterprifed to make the Face of a man, being fevered one from another in fundry, places, all the parts being made and put together, the Face was found in a mof lively and true proporti申a,
Secondly, It is a thing moft clear, that by the help of proportion, the Body of Hercules was meafured by the knowledge of his Foot onely, ${ }^{2}$ Lion by his Claw, the Giant by his Thumb, and a Man by any part of his Body. For fo it was, that Pytbagoras having mearured the lerig th of Hercules foot, by the fleps which were left upon.the ground, found out all his height: and fo it was that Pbidias having onely the Claw of a Lion, did figure and draw out all the Bealt according to his true type or form, fo the exquifite Painter Timantes, having painted a Pygmey or Dwarf, which he meafured with a fadome made with the inch of a Giant, it was fufficient to know the greatnefs of that Giant.

sgathematical kectration.

Tobe hort, we may by like method come eafily to the knowledge of many fine Antiquities touching Statues, Coloffus, and monftrous Gi ants, onely fuppofing one had found but one only part of them, as the Head, the Hand, the Foot, or fome Bone mentioned in ancient Hiftories.

Of Statues, of Colofis, or buge Images.

VItruvius relates in his fecond Book, that the Archite C Dinocrates being defirous to put out to the World fome notable thing, went to Alexander the Great, and propofed unto him a high and (pecial' piece of work which he had projected : As to figure out the Mount Atbos in form of a great Statue, which Thould hold in his right hand a Town capable to receive ten thoufand men; and in his left hand a Veffel to receivo all the Water that floweth from the Mountath, which with an Engine Chould be caft into, the Sea. This is a pretty project faid Alexander: but becaufe there was not field-room thereabout to nourih and retain the Citizens, of that place, Alexander was wife not to entertain the Defign.
Now let it be required of whas greatnefs this Stattue might have been, the Town in his right hand, and the Receiver of Water in his left hand, if it had been made.

For the Statue, it could not be higher than the Mountain it Self, and the Mountain was about a mile in height plumb or parpendicular ;

13
therefore

 therefore the Flatrd of this Statue ought to be the roth part of his height, which would be 500 foot, and fo the breadth of his hand would be 250 foot, the length now multiplied by the breadth, makes an hundred twenty five thoufand fquare feet, for the quantity of his hand to make the Town in, to lodge the faid 10000 men, allowing to each man near about 12 foot of fquare ground: Now fadge the capacity of the other parts of this Coloffirs by that which is already delibered.Secondy, Plini nh his 34 Book of his Natural Hiffory, fpeaks of the famoas Colofius that was at Rhbodés, between whofe legs a ship might pals: with his Sails open or difplayed, the Statue being of go cubits high : and other Hiftories report that the Sarafens having broken it, did load goo Carnels with the Metal of it. Now what might be the greatnefs and weight of this Statue ?

For anfwer, It is ufually allowed for a Camels burthen 1200 pound weight; therefore' all, the Coloftus did weigh 1080000 pound weight, which is ten hundred and fourcore thoufing pound weight:

Now according to the former Rules, the Head Being the tentif part of the Body', this Statues Head thould be of 3 cubits, that isto fay, so foot and a half, and feeing that the Nofe, the Brow and the Thumb, are the third part of the Face, his Nofe was three foot and a katf long, and fo much allo was his Thumb in length : now the thicknefs being atways the third part of the lepgth,

99athematifulatantifit:

length, if thould feem that his Thurrob was a foot thick at thereafa:

Thirdth, The fald Pliny in the fame place reports that Wewaidid caufe to tome out of France inito Italy, a brave and bold Statue-maker called Zonodocins, tobreothin a Coloffus of Brafs, which -was maderof wo orfoat in heights, which Nere caufed toberpiated in the fame height. Now would you know the greatnels of the Members of this Coloffrow ? The breadth would be go foot, his Hace 12 foots this Thumb and his Nole 4 foot, according to the proportion befote delivered.

Thus I have a falr field or fubject to extend my felf npon, but it is upon another oceafion that it twas undertaken. Let us piealk therefore a word touchinge the Giants, and thent pais away to the matter.

Of: Monftrose GDANTS.

YOn swill haiddy believe all that which II fay tauching this, neithes will I believe all that which Authore ldy upon this Subject : notwiehftanding your noril dannot deny but that long age there havebeen Men of a moft prodigious gneatnefs.: for the Holy Writurgstwitnefs this ahedifalves, in Diouts jhi. that there was a certdin Qiant called Og_{3} wif the Town of rabath, who had a Bed of Iron, the length thereof was 9 cubits, and im haseadth 4 cubits.

So in the flirft of 否ings, Chuapo 1% ehere is mention made df Goliab, whiofe lieight was à I 4 palm

120. Watbrmatical Rectration:-

palm, and 6 cubits, that is more then 9 foot, his was armed from the Head to the Foot, and his Curiafs onely, with the Iron of his Lance, weighed five thouland and fix hundred Shekels, which in our common Weight is more than 233 pound, of 12 ounces to the pound. Now it is certain, that the reft of his Arms, taking his Taxget, Helmet, Bracelets, and other Aimpour together, did weigh at the leaff five hund red pound, a thing prodigious; fecing that the frongeft man that now is, can hardly bear:200 pound; yet this Giant carties this as a Vefure withour pain.

Solinus reporteth in his 5 Chapter of his Hifory, that during the Grecians War after a great overflowing of the Rivers, there was found upon the Sands the Carcafe of a man, whofe length was 33 Cubits, (that is 49 foot and a half) therefore according to the proportion delivered, his Face fhould be five feot indength, a thing prodigious and monftrous.

Pliny in his 7 Book and. 16 Chap. faith, that in the inle of Crete, or Candy, a Mountain being claven by an Earth-quake, there was a Body ttanding upright, which had 46 cubiss of theight. Some believe that it was the body of Orion or Othors (hut I think rather it was Come Ghoft, or fome Delufion) whofe Hand fhould have been 7 foot, and his Nofe two foot and a half longe

But that which Plutarch in the Life of Sertorizus xeports of, is moire ftranige, who faith, That in Iİmgy, a Moridive Town, where it is thonght

gsathematital Recteation:

that the Giant Antbeus was buried : Sertarius not believing that which was reported of his prodigious greatnefs, caufed his Sepulchre to be opened, and found that his Body did contain fixty Cubits in length ${ }_{3}$ then by proportion he thould be ten Cubits, or fifteen foot in breadth; nine foot for the length of his Face, three foot for his Thumb, which is near the capacity of the Coloffic at Rbodes.

But behold here a fine Fable of Symphorin Campefius, in his Book intituled Hartus, Gallicus, who fays that in the Kingdom of Sicily, at the foot of a Mountain near Trepane, in opening the foundation of a Houfe, they found:a Cave in which was laid a Giant, which held inttead of a Staff a great Poft like the Maft of a Ship; and going to handle it, it moulder'd all into Athes except the Bones which remained of an exceeding great meafure, that in his Head there might be eafily placed 5 Quarters of Corn, and by proportion it thould feem that his length was 200 cubits, or 300 foot; if he had faid that he had been 300 cubits in length, then he might have made us believe that Noabs Ark was'but great enough for his Sepulchre.

Who can believe that any man ever had. 20 cubits, or 30 foot in length for his Face, and a Nofe of ten foot long? But it is very certain that there have been men of very great ftature, as the holy Scriptures before witnefs, and many Authors worthy of belief relate.

Fofepbus Acofta in his firft Book of the Indian dittory,Cbap.19. a late Writer, reporteth, that

122
 وomblburatical Mectrationt.

at Pert was found the Bones of a Giant which was 3 times greater than thefe of ours are, that is 18 foot; for there is ufually attribnted to the ralleft ordinary man in thefe our times buat fix foot of length; and Hifories are full of the defcription of other Giants of 9,10 , and 12 foot of height, and there hath bin feen in our times fome which have had fuch heights as thefe.

PROBLEM EXXI.

Of the Game at tbe Palm; at Irap, at Bowles, Paik mail, and others.

THe Mathematicks often findeth place in fundry Games to aid and afla the Gamefters, thoughnot unknown unto them; hence by Mathematical Principles, the Games at Tennis may be affited, for all the moving in it is by right Lines and Reflections. Prom whence comes it, that from the appearances of flat or convex Glaffes; the prodaction and reflection of the Species are explained? Is it not by Right Lines? In the fame propottion one might fufficiently deliver the motion of a Ball or Bowl by Geomotrioal Lines and Angles.

But the exercife, experience, and dexterity of the Player feems more in this action thari any or ther Precepts: Notwithftanding I will deliver here fome Maximes, which being veduced to Praetice, and joyned to Experience; will give agroale advan-

Watbematital 2eetration:

advantage to thofe which would make ure of them in ftach gamings, And the firt Maxime is thas :When a Bowl toucheth another Bowl, or when a Trap- ftick ftriketh the Ball, the moving of the Ball is
 made in a right line, which is drawn from the Centre of the Bowl by the point of con? tingency.

Secondly, In all kind of fuch motion, wher a Ball or Bowl rebounds; be it either againft Wodd; a Wall, upon a Drum, a Pavernent, or upoh a Racket, the incident Angle is always equal to the Angle of reftection.
Now following thefe Maximes, it is eafe to conclude,
\because Firf, In what part of the wood or Wall one may make the Bowl of Ball go to reflect or res bound, to fuch a place as one would.

Secondly; How one may taft a Bowl upori ano ther, in fuch Port that the firf or the fecond hall go and meet with the third, keping the refle ction or Angle of incidence equal.

Thirdly How one may ruid a Bowl to fend it to what part one pleafeth: fuch and many other practicés may be done At the exercifes at Keyls there muft be taken heed that the motion Ilack or diminifh by little and little, and may be noted that the Maximes of Reflections cannot be exactly

124. m9athentaticalimecteation:

exactly obferved by local motion, as in the beams of light, and of other qualities, whereof is is neceffary to fupply it by induftry or by frength : otherwife one may be fruftrated in that refpect.

PROBLEM LXXII.

Of tbe Game of Square Forms.

N^{L}Umbers have an admirable fecrecy, diverly. applied, as before in part is thewed, and here I will fay fomething by way of Tranfmutation of Numbers.

It is reported that at a certain paffage of a fquare form, there were 4 Gates oppofite one to another; that is, one in the middle of each fide and that there were appointed 9 men to defend each front thereof, fome at the Gates, and the other at each corner or Angle, fo that each Angle ferved to affilt two Faces of the fquare, if need required: Now this fquare paffage being thus manned to have each fide 9 , it happened that 4 Souldiers coming by, defired of the Governour of the paffage, that they might be entertained into fervice, who told them he could not admit of more than 9 , upon each fide of the〔quare : then one of the Souldiers being verfed in the Art of Numbers, faid, that if he would take them into pay, they would eafily place themfelves amonght the reft, and yet keep ftill the order of 9; for each face of the fquare to defend the Angles
gles and Gates, to which the Governewr agreed, and thefe Souldiers being there fome few weeks, liked not their fervice, but indeavoured to remove themfelves,

$\left[\begin{array}{lll} 3 & 3 & 3 \\ 3 & -1 & 3 \end{array}\right]$	2	
333	2.5.2	4.
- 30	12	212
303	2 (G] 2	1
-	12	

It's anfwered thus: In the firft form the men were as the figure A, then each of thele 4 Soult diers placed themfelves at each Gate, and removing one man from each Angle to each Gate then would they be alfo 9 in each fide, according to the figure B. Laftly, thefe 4 Souldiers at the Gates rake away each one his Comrade, and placing 2 of thefe men which are at each Gate to each Angle, there will be fiill 9 for each fide of the fquare, according to the figure C. In like manner if there were 12 men, how might they be placed about a Square that the firf fide thall have 3 every way, then difordered, fo that they might be 4 every. way; and laftly, being tranfpofed might make 5 every way? And this is according to the Figures $F, G_{2} H$.

126 geatljernatitat zetetritiont.

PROBLEM LXXXII.

How to make the String of a Viol Senfibly fibake, without axy one touching $2 t$?

THis is a Miracle in Mufick, yet eafie to be experimented. Take a Viot or other InArument, and choole two Strings, to that there be one between them;, make thele two Strings agree in one and the fame tune: tlien thove the Viol-bowe upon the greater Strihg, and you hall fee a wonder: for in the fame time that that thakes which you play upon, the other will likewife fenfibly thake without any one touching it; and it is more admirable that the String Which is between them will not fhake at all :"and if you put the finft String to another tune or' note, and loofing the pin of the String, or ftopping it with your finger in any fret, the other String will not Thake: and the fame will happen if you take two Viols, and Arike upon a ftring of the one, the ftring of the other will fenfibly thake.

Now it may be demanded, hpw eomes this GhaRing? Is it in the occult fympathy, or is it in the fringsbeing wound up to tikenotes or tunes, that fo eafily the other may receive the impreffion of the Air, which is agitated or moved by the Thaking or the trembling of the other? And whence is it that the Viol-bowe moved upon the firft ftring, doth inftantly in the fame time move the third Atring, and not the fecond, if the caule

be not either in the firft or fecond? I leave to others to defcant on.

Cxamation:

INibis Examination we bave fomething elfeto ima gine tban the bare Jympathy of the Cords one to anotber: for firf there ougbt to be confidered the different effect tbat it producetb by extention upon one aved the farse Cord ix capacity: then rebat might be produced upou different Cords of length and bignefs to make themiaccurdin a Uwifone or Oltazo, or fome: Confort interneddiate : this being maturally examined, it saill be facil to. Lay open a woay to the kiondedge of the trus and immediate cause of this noble and admir rabte Phoenomeny. Nowo tbis wodll fexfibly appear vebeen tbe Cords are of equal Lengiband greatnefs, aud far to an Unifore; but woben the Cards differ frim their equality, it poill be lefs fenfible : bence in one and tbe fame Imfitrument, Cords at a Unijone frall excise or Shake more than that sobliob is at an Oftava, and more than thofe robich are of ans ixterneediate proportionsl Confort: as for the otber Conforts ibey are wot exemapted, thougb tbe effect be not $\int o$ finfible, yet mare in oxe than in another: and the Experiment will feeve more. - admirable in takivig toso Lates, Viols, \&ac. and ins Setting them to ore tune: for then in touching the Cord of the one, it will give a fenfible motion to the Card of tbe otber: and not only fo, but ulfo Harmony.

$128 \cdot$ s9atheratical Recteation:

FROBLEM LXXIV.

Of a Veffel robich eontains three feveral kinds of Liquor, all put in at one Bung-bole, and draion out at one Tap Jeverally woithout mixxture.

THe Veffel is thus made, it muft be divided into three Cells, for to contain the three Liquors, which admit to be Sack; Claret, and White-wine: Now in the Bungthole there is an Engine with theee Pipes, each excending to his proper Cell, into which there is put a Broach or Funnel pierced in three places, in fuch fort, that placing one of the holes right againf the pipe which anfwarethunto him; the other two pipds are ftopped; then when it is full, turn the Funnel, and then the former hole will be ftopped, and another open, to caft in other Wine without mixing it with the other.

Now to draw out allo without mixture, at the bottom of the Veffel there muft be placed a Pipe or Broach, which may have three Pipes; and a Cock pierced with three tholes fo artificialIs done, that turning the Cock, the hole which anfwereth to fach of the Pipes that is placed at the bottom may iffue forth fuch Wine as belongeth to that Pipe, and turning the Cock to another Pipe, the former hole will be ftopped; and
fo there will iffue forth another kind of. Wine without any mixtures; but the Cock may be fo ordered that there may come out by it two Wines together, of all three kinds at
 once: but it leems beft when that in one Veffel and at one Cock, a man may draw feveral kinds of Wine, and which he pleafeth to drink.

PROBLEM EXXV.

Of Burning-Glaffer

1N this infuing DifcourfeI will thew the invention of Prometbeus, how to fteal fire from Hear ven, and bring it down to thie Earth; this is done by a little round Glafs, or made of Steel, by whigh one may light a Candle, and make it flame, kin. dle Fire-brands to make themburn, melt Lead, Tin, Gold, and Silver, in a little time: With as great eafe as though it had been put into a Cryzet over a great fire.

Have you not read of Archimedes of Syricicu. $f a$, who when he could not come to the Ships of Marcellus which befieged that place, to hinder and impeach their approach, he flung hinge flones by his Engines to fink them into the Sea; K

136

and transformed himfelf inco fuppert, thundet? ing down from the higheft Towiers of the Town his Thunder-bolts of Lightning into she Shipss, caufing a terrible burning, in defpite of Nepstrie and his Watry. Ré
 gion: Z Znatarss witneffeth that Proclus 2 brave Mathematidi an ; burned in the fame mamier the Ships of Vitrulitun, which were come to béfieg Congtumtintoples and daily experience may let you fee great effects of burning: for a Bowl of Cryftal polifhed, or a Glafs thicker inthe middle than at the edges, will burn exceedingly; nay a Bottle full of Water expofed tathe Suan, will burn when the Sun thineth hot; and children ufe with a Glafs to burn Flies whith axe againft the Walls, and treir fellows Cloaths.

But this is nothing to the burning of thofe © laffes which are hillow, namely thofe which are of Steel well polified, aceording to a parabolical or oval fection. A fpherical Glafs, or that which is according to the fegment of a Sphere, burns vey effectually about the fourth part of the Diameter: notwithftanding the Parabolie and Eclipsick fections have a great effect: by which Glaffes there are alfodivers Figures reprefented forch tothe Eye.

The caule of this burning is the uniting of the beatus of the Stum, which heat mightily in the
point of concourfe or inflammation, which is cither by Tranfmiffinn or Reflection : Now it is pleafant to behold when one breatheth in the point of concourfe, or throweth fmall duft there, or frinkles vapours of hot Water in that place, by which the Pyramidal point, or point of inflammation is known. Now forme Authors promife to make Glaffes which fhall burn a great diftance off, but yet not feen vulgarly produced, of which if they were made, the Parabolie makes the greateft effect, and isgenerally held to be the invention of Archimedes or Proclus.

Maginus in the 5 Chap.of his Treatife of Sphesical Glaffes, thews how one may ferve himfelf with a concave Glafs; to light fire in the fhadow, or near fuch a plase where the Sian Chines not, which is by help of a flat Glars, by which may be made a percuffion of the beams of theSuninto the concave GlaIs, adding unto it that ir ferves to good ufe to put fire to a Mine, provided that the combuftible matter be well applied before the concave Glafs; in which he fays true: but becaufe all the eftect of the practice depends upon theplacing of the Gals and the Powder which te fpeaks not of: I will deliver here a Rule more general.
How one may place a Burning-glaß wexitb bis combwftible smatter, in Sucb fort, that at a convenient bour ef the day, the Sun fhining, it Joall take fire o burs.

1T is certain that the point of inflammation or burning, is changed as the Sun chiangeth phace, and no more nor lefs than the thadow turns

132 ghatbematiral Recreation.

about the Style of a Dyal; therefore have regard to the Suns motion and his height and place: a Bowl of Crynal in the fame place that the top of the Style is, and the Powder or other combultible matter under the Meridian, or hour of 12, $1,2,3,6 c$ c. or any other hour, and under the Suns Arch for that day: Now the Sun coming to the hour of 12 ; to $1,2,3$, fro. the Sun cafing his Beams through the Cryital Bowl, will fire the material or combuftible thing, which meets in the point of burning: The like may be obferved of other Burning-glaffes.

Cxamination.

IT is certain in the firft part of this Problem, that Conical, Concave, and Spherical Glaßes, of mbat matter foever, being placed to receive the beams of the Sun, woill excite beat, and tbat beat is So mucb the greater, by boxp mucb it is near the point of concourfe or inflammation. But tbat Archimedes or Proclus did fire or burn Sbips woith fuch Glaffes, the ancient Hiltories are filent, yea themfelves fay nothing: befides the great difficulty tbat doth oppofe it in remotenef, and the matter that tbe effect is to poork upon. Now by a common Glafs me fire things near at band, from wobich it Seems very facil to fuch wobich are lefs read, to do it at a far greater diftance, and fo by relation fome deliver to the World by fuppofition that wobich wows never done in aciion: tbis we fay the
rather, not to take away the moft excellent and admirable effects wobich are in Burning-glafes, but to Sbews the variety of Antiquity, and trutb of Hiltory: and as touching to burn at a great dittance, as is faid of Some, it is abolutely impoffible; and that the Paraboligal and Oval Glaffes were of Archimedes and Proclus invention is much uncertain: for befides the confiruction of Sucb Glafles, they are more difficult than the obtufe concave ones are; and furtber, they caft not a great beat but near at band; for if it be caft far off, the effect is little, and the beat roeak, or atberpoife fuch Glafes muft be greatly extended to contract many beams to ainafs a fufficient quantity of Beams in Parabolical and Conical Glafles, the point, of inflummation ougbt to concur in a point, pobich is very difficult to be done in a due proportion. Mareavier if the place be far remote, as is suppofed before, fuch a Glafs cannot be ufed but at a great inclination of the Sun, by robich the effect of burning is diminijhed by reafon of the rpeaknef's of the Sun-beams.

And bere may be noted in the laft part of this Problem, that by reason of obftacles if one plain Gla/s, be not fufficient, a fecond Glafs may be applied to belp it: that $\int o$ if by one simple reflection it cannot be done, yet by a double: reflection the Sun-beams may becaft into the Jaid Cavern or Mine, and thouigh the reflected Beams in tbis cafe be ropak, yet upon a fit sembugtible matter it woill not fail to do the effect.

134 q9athentatical Rectration.

PROBLEM LXXVI.

Containing many pleafant Quejtions by may of Aritbmetick.

IWill not infert in this Problem that which is drawn from the Greek Epigrams, But propofing the Queftion, immediately will give the Anfwer allo, without faying to thew the manner how they are anfwered; In this I will not be tied to the Greek Terms, which I account not proper for this place, neither to my purpofe. Let thofe that will read Diophanta Sebeubilius upon'Euclide and others, and they may be latisfied.

Of the As and the Mule.

T happened that the Mule and the Afs upon a day making a Voyage, each of then carried a Barrel full of Wine : now the lazy Afs feeling her felf over-loaden, complaired and bowed under her burthen; which the Mule feeing, faid unto her, being angry, (for it was in the time when Beafts fpake) Thou great Ais, wherifore complaineff thou? If I had but onely one meafure of that which thou carrieft, I Ihould be loaden twice as much as thou art; and if I hould give a meafure of my loading to thee, yet my burthen would beas muchas thine.

Dow how many meafures did each of them carry? Anfwer: The Mule did carry 7 meafures, and the Afs 5 meafures: For if the Mule had ane pf the meafures of the Affes loading, then the Mule would have 8 meafures, whiphis double to 4, and gixing one to the Als, each of them would hare equal burthens: to wir, 6 mealures apiece.

Of the Number of Souldiers that fought begore

 Old Troy:HOmer being asked by Hefiodus how many Grecian Souldiers came againit Trey 3 An* cwrexed him thus: The Grecians, faid.Homes, made 7 Fires, or had 9 Kirchins, and before eyce xy Fixe, or in every Kitchin there were 50 Broar ches turning to roaft a great quantity of Flefh; and each Broach had Meat suingh to fatisfie 900 men: Now judge how many men there might be. Answer: 31.5000; that is, three hundred and fifteen thouland men : which is clearby mul. tiplying 7 by 50_{2} and the produes by 000 makas theflaid 315000 .

Of the Numuber of Crumens that trwo Ideubad.

J
Obn and Peter had acertain muenber of crownos: Fabs faid to Peter, If yougive me 10 of your cuowns, Lhat have thrac dimes as mush as you kave : bur Peter faid to Fohn, If yougive one re of yourcrawns, Ifuad have stimes as mach as you hante : How apnchshad sach of shem? Ap-

136 و9atyenatical Recteation:

fwer, Foby had 15 crowns and 5 fevenths of a crown, and Peter had 18 crowns and 4 fevenths of a crown. For if you add io of Peters crowns to thoie of Fobns, then thould Fobn have 25 crowns and ς fevenths of a crown, which is triple to that of Peters, viz. 8, and 4 fevenths: and Fobingiving 10 to Peter, Reter fhould have then 28 crowns, and 4 fevenths of a crown, which is Quintupla, or 5 times as much as Fobn had left, zize. 5 crowns and 5 fevenths.

In like manner two Gamefters playing together, A and B, after play A faid to B, Give me 2 crowris of thy money, and I hall have twice as méch as thou haft : and B faid to A, Give me. 2 crowens of thy money, and I fhall have 4 times as intuch as thou haft: now how much had each? Anfwer, A had 3 and 5 fevenths, and B had 4 and 6 fevenths.

About tee bour of theday.

SOme one asked a Mathematician what a clock D it was; who anfwered that the reft of the day is four thirds of that which is paft : Now judge what a clock it is. Anfwer: If the day were according to the Jews and ancient Romans, which made it always tobe 12 hours, it was then the 5 hour, and one feventh of an hour, fothere temained of the whole day 6_{7}^{5}, that is, 6 hours, and 6 fevenths of an hour. Now if you take the $\frac{1}{5}$ of $5 \frac{1}{3}$, it is $\frac{x^{2}}{9}$, or 1 and $\frac{5}{3} 7$, which multiplied by 4 makes 6 and $\frac{5}{7}$, which is the remainder of the day, asibefore: but if the day had been 24 hours, then the hour had beemten of the clock by dividing re, or 24 by

There might have been added many curious Propofitions in this kind, but they would be too diffcult for the moft part of People : therefore \mathbb{I} have omitted them.

Of Pythagoras bis Schollars.

PYtbagoress being asked what number of Schollars he had, anfwered that half of them fudied Matbematicks; the fourth part Phyfick, the feventh part Rbetorick, and befide he had 3 Women: Now judge you, faith he, how many Scholars I have. Anfwer: He had in all 28, the half of which is 14, the quarter of which is 7 , and the feventh part of which is 4 , which 14,7 , and 4 , makes 25 , and the other 3 to make up the 2.8, were the 3 Women.

Of the Number of Apples given amongft the Graces and the Mufes.

T He Three Graces carrying Apples upon a day, the one as many as the other, met with the Nine Mufes, who asked of them fome of their Apples; fo each of the Graces gave to each of the Mufes alike, and the Diftribation being made, they found that the Graces and the Mules had one as many as the other: The quefion is, How many Apples each Grace had, and
how

138

 gatteratical wectrition:how many they gave to each Mufe? To anfwef the queftion, joyn the number of Graces and Mufes together, which makes 12, and fo many Apples had each Grace: Now may you take the double, tripple, evc. of 12, that is 24, 36, drc. conditionally, that if each Grace had bat 12, then may there be allotted to each Mufe but one onely; if 24, then to each 2 Apples, if 26 , then to each Mufe 3 Apples, and to the diftribution being made, they have a like number, that is, one as many as the other.

Of the Teftament or laft Frill of a dying Fictber.

ADying Father left a thoufand Crowns among his two Children, theone being legitimate, and the other a Baftard; conditionially; that the fifth part which his tegitimate Son thould have, thould exceed by 10 the fourth part of that which the Baftard thould have: What was each ones part? Anfwer: The legitimate Son had 577 crowins, and 7 , and the Baftard 422 crowns and $\frac{2}{3}$, now the fifth part of 577 and 7 ninths is 115 , and $\frac{5}{9}$, and the fourth part of 422 and ${ }_{3}^{2}$ is 105 and $\frac{5}{9}$, which is lefs than $115 \frac{5}{9}$ by 10, according to the will of the Tiffator.

Of the Cups of Crefus.

CRufus gave to the Temple of the Gods fix Cups of Gold, which weighed togother 600 Drams, but each Cup was heavier one than znother by one Dram: How much did each of them

 them therefore weigh? Aniwery : The firf weigha ed 102 Drams and a half, the fecond 701 Dramps and a half, the third roo Drams and a half of the fourth 9ρ and a helf, the fifth $\rho 8$ and a half, and the fixth Cup weighed 27. Dxams and a bilf; which together make $6 \oplus 0$ Drapms, 26 beforfe.
Of Cupid's Apples.

CUpid complained to his Mather that the Mules had taken away his Apples; Clio, Gid he, took from me the fith part, Eluterpe the twelfth part, Ibxalies the eighth part, Melpomene the twentieth part, Emates the feventh part, Teptch amenes the fourth part, Rolybymmisz took a whay 30, Uramia 120, and Caliope 300; fothere ware left me but 5 apples: How many had he in allat the firft t. I amaner 3360.

There are and infinite if fucherlike Queftigur a-

Of a Mons Age.

AMan was faid to prifs the lixtta partof his Life in Childhood, the fourth part in his Youth, the third part in Manhood, and 18 years befide in old Age: What might his Age be ? The Anfwer is, 72 years: which, and all others, is thus refolved: multiply $\frac{1}{6} \frac{1}{4}$ and $\frac{1}{3}$ together, that is, 6 by 4 makes 24, and that again by 3 makes

140 mathematical kecteationt.

72, then take the third part of 72, which is 24, the fourth part of it, which is 18 , and the fixth part of it, which is 12 , thefe added together make 54, which taken from 72 refts 18 , this divided by 18, (fpoken in the Queftion) gives 1 , which multiplied by the fum of the parts, viz.72, makes 72, the Anfwer as before.

Of the Lion of Bronze placed upon a Foustain with this Epigram :

OUt of my right Eye if I let Water pafs, I can fill the Ciftern in 2 days : if I let it pafs out of the left Eye, it will be filled in 3 days: if it pals out of my feet, the Ciftern will be 4 days a filling; but if I let the Water pafs out of my mouth, I can fill the Ciftern then in 6 hours : in what time fhould I fill it, if I pour forth the Wa. ter at all the paffages at once?

The Greeks (the greateft talkers in the world) varioufly apply this Queftion to divers Statues and Pipes of Fountains: and the Solution is by the Rule of Three, by a general Rule, or by ALgebra. They have alfo in their Antbology many other Queftions, but becaufe they are more proper to exercife than to recreate the Spirit, I pals them over (as before with filence.

quathematical Recteation.

PROBLEM LXXVII.

Divers. Excellent and Admirable Experiments upons Glafes.

T
Here is nathing in the world fo beautiful as Light: and nothing more recreative to the fight, than Glaffes which reflect: therefore I will now produce fome Experiments upon them, not that I will dive into their depth (that were to lay open a myfterious thing) but that which may delight and recreate the Spirits: Let us fuppofe therefore thefe Principles, upon which is built the demonftration of the apparances which are made in all forts of Glaffes.

Firft, That the Rays or Beams which reflect upon a Glafs, make the Angle of Incidence equal to the Angle of Reflection, by the firt Theo. of the Catoptick of Euc.

Secondly, That in all plain Glaffes, the Images are feen in the perpendicular Line to the Glafs, as far within the Glafs as the Object is without it.

Thirdly, In concave or convex Glaffes, the Images are feen in the right line which paffeth from the Object, and through the Centre in the Glass. Theo. 17 . and 18.

And here you are to underftand, that there is not meant onely thofe which are fimple Glaffes, or Glaffes of Steel, but all other Bodies, which may reprefent the vifible Image of things, by reafon

reafon of their reflection, as Water, Marble, Meral, or fuech like. Now take a Glafs in your hand, and make Experiment upon that which followeth.

Eaperiments upon fina and plain claffors.

FIrft, A man cannot fee any thing in thele Glaffes, if he be not directly and in experpendicular line before it, neither can he fee an Objeet in thefe challes, if it be not in fuch a place that makes the Angte of Incidence equal to the Angle of Reflection: therefore when a Glals fiands upright, that is, perpendicular so the Hoxikoh, you cunnot fee that which is above, ex cept the Glais be placed downilat: and to fee that on the right hagd, you mun be on the left hand, ofc.
*econdly, An Trage camat be fece in a chafs, If it be mot raifed aboee the furface of it ; or phace a Glafs upon a Wall, you fhall fet nothing which is upon the plain of the twall; and place atagon a Table or Fifrizontal Plain, youthallee prothing of that which is upeot the Table.

Thirdly, In a plain Glafs all thatis feen apu pears or feems to fink behind the Glafs; as thuch as the Image is before the Glafs, as before is stid.

Fourthly, (As in Water) a Glafs lying down mat or Horizontal, Towers, Trees, Men, or any height doth appear inverfed or upfice-down; and a Glafs placed upright, the right hand of the Ithage feems to be the left, and the left feems to be the right.

Fifthly,

gatymatital

Fifthly, will youfee in a Chatnber that which is done in the Street, without being feen? Theit i Glafs muft be fo difpofed, that the Line upon which the Ithages come on the Glais, make tht Angle of Ineidence equal to that Angle of Reflection.

Sixthly, An height; (as fuppofe $D E$) may be meafured by a plain Glafs, as let the Glafs be $G_{\text {; }}$ placed dowia uponthe grounds and let the Eye beat C, fo far remoWed fromat the Gliafs, that the Eye at C, sung lee the top of the Tower 玉ide: the, Angle or bdgeof che Glafs at A, but in the line of refieftioncera, then meafare the diednce between your frot B, and the point \boldsymbol{A}, innd alfo the dis fande betwsicen the Glafs A anind the foot
 of the Tower D, vis: AD. Notw ins offtn $2 s$ $\mathfrak{A} B \cdot$ is found in $A \mathcal{D}$, fo ofren doth the beight of the Tower F . contain the diftahce from your Eyecto the foot, vies. $C B$, for the Trifangles A, 承, \mathcal{C}, and A, D, \dot{E}, ameequal Triamples: theriefore is $B 24$ to $2 A$, , $\mathcal{O} C B$, to ED, or ahternately as Bxto de, Co AD to DE.

Seventhly, Prefent a Candle upon a plain Gafis, and look flarating apon it, To that the Candle and the Glafs be noar in tu right Lime, you

144 פ9athematical wecteation.

fhall fee $3,4,5$, 6 cc . Images, from one and the fame Candle

Eighthly, Take two plain Glaffes, and hold them one againf the other, you fhall alternately fee them oftentimes one within the other, yea within themfelves, again and again.

Ninthly, If you hold a plain Glafs behind your head, and another before your face, you may fee the hinder part of your head, in that Glafs which you hold before your face.

Tenthly, You may have a fine Experiment if you place two Glaffes together, that they make an acute Angle, and fo the leffer the Angle is, the more apparances you thall fee, the one direct, the other inverfed, the one approaching and the other retiring.

Eleventhly, It is a wouder and aftonifhment to fome, to fee within a Glafs an Image, without knowing from whence it came, and it may be done many ways: as place a Glafs higher than the Eye of the Beholder, and right againft it is fome Image; folicrefteth not upon the Beholder, but doth caft the Image upwards. Then place another objeet, To that it refleet, or caft the Image downward to the Eye of the Spectator, without perceiving it being hid behind fomething, for then the Glafs will reprefent a quite contrary thing, either that which is before the Glafs,or that which is about it, to wit, the other hidden object.
Twelfthly, If there be ingraved behind che backfide of a Glafs, or drawn any Image uponit, it will appear before as an Image, without any appearance or portraicture to be perceived.

©ramia

Southematical Recteatione
 145

Menmintation.

THis Tyoelfth Article of engraving an Image bebind the $G l i j \delta$, will be of no. great confequence, beeaufe the lineaments will feem fo. obfcure;', but if there zpere painted fome Image, and tben tbat covered according to tbe isfual covering of Glafes bebind, and So made up like an ordinary Looking?Glafs, baving an Image in the middle, in tbis refpect it woutld be Sufficiently pleajant : and that pobich woould admire tbeignorant, and able to exeercife the moof fubtilleft, and tbat principally if the Glaß be in ary obfoure place, and the Light mobicb is given to it be Jomezibat far off.

THirteenthly, Place a Glafs near the floor of a Chamber, and make a hole chrough the place under the Glafs, fo that thofe which are below may not perceive it, and difpofe a bright Image under the hole, fo that it may caft his fpecies upon the Glafs, and it will caufe admixation to thofe which are below that know not the caufe: The fame may be done by placing the Image in a Chamber adjogning, and fo make it to be feen upen the fide of a Wall.
Fourteenthly, In thefe Channel-Images which thew one fide-a DeathsHead, and another fide a fair Face, and right before fome other thing; it is 2 dining evident ${ }_{3}$ that fetting a plain Glats E fide:

146 Matbmuatical Fretwetimen:

fidewife to this Image, you thall fee it in a contrary thing, than that which was prefented before fidewife.

Fifteenthly, Ineith, It is a finefferet to prefent unto a plain Glals Writing with fuch induftry, that one may read it in the Glafs, and yet out of the Glats there is nothing to be known; which will thus happee, if the Writing be writ backward : but that which is morie ftrange, to hews a kind of Writing to a plain Glafs, it fhall appearanother kind of Writing both againff fente and form; as if there wete profented to the Glafs WEL, it would thew it MET; if it were written thus, MIV, and prefented to the Glaff, it would appear thus VIM; for in the firt, if the GlaIs lie flat, then the thisigss ane inverfedthatare perpendicelar to the.Glafs; if the Glafs and the Object be upright, then that on the right hand is turned to the left, as in the latter.

And here I ceare to f peak further of thefe plain Glaffes, either of the admirable multiplications, or appearances, which is made in a great numater of them; for to content the fight in ethispanticalar, one mult have recourfe to the Cabinets of Great Perforiages who inrich themfelves wisth moft beautiful ones.

Experiments upon Gibbow op Coxzex spperical

 Glafes.7 F they be in the form of a Bowl, or part of a great Globe of Glats, there is fingular conten tment to costemplate on enem.

פ9atbratical Recceration.

Firft, Becaufe they prefent the Objects lefs and more gracious, and by how much more the Imaget are feparaged fropsthe Glafs, by fo mich the more they diminifh in magnitude.

Secondly, They that thew the Images plaiting; or folding, which is very pleafant, efpecially when the Glofs is placed down, and behold in it fome blanching feeling, orc, The upper part of a Gallery, the pporch of a Hall, \&'c. for they willbe tepprefented as a great Voffel haviag more belly in the middle than at gheawo ends, and Poots and Joifs of Timber, will feem as Circles.

Thirdly, That which ravifireth the Spirits by the Eye, and which Chames the beft Perfpective Paincing that a Painter can make, is the beautiful contraction of the Images, that yppear within the fphericity of thefe finatl Glaffes: for prefent the Glafs to the lower end of a Gallery, or at , tha Conear of great Caust full of ixeaple, or topwaxds:a great Street, Church, Faxcification, an Axmy of Men, toa whole, City; all the fair Arshisciature pad appcarances will be feen contracte ad wiehin the circuif of the Glafs with, fuch variefy of Colours, and diftinctions in the leffor parts, shat knows not in the waild what is more agracable so she fight, and plealant to behold, in swhich you will not have ap exact proportion, but if zill he vaciable, accarding to che difance of the Object from the Glats:

s48 S9atbematical kectration.

Experiments upon bollow or concave ßpherical Glafes.

IHave heretofore fpoken how they may burn, being made of Glafs or Metal, it remains now that I deliver fome pleafant ules of them, which they reprefent unto our fight ; and fomuch - the more notable it will be, by how much the greater the Glafs is, and the Globe from whence it is extracted : for it mult in proportion as a legment of fome be made Circle or Orb. .

Eramination.

1N tbis ase may obferue that a Section of twoo, tbree, or four Inches in Diameter, may be Segments of Spberes, of tepo, thbrees or four foots nay of fo many fadum, for it is certain tbat among(t tbofe robich comprebend agreat portion of a leffer Spbere, and tbofe pobicib comprebend a dititle Segment of a great Spbere, wobether they be equal or not in. Jection, tbere woill happen an evident difference in one and the fame Experiment, in the number, fituation, quantity and figure of tbe Images of one or many different objects, and in burning there is a great differesce.

MAginus, in a little Tractate that he had upon thefe Glaffes, witneffeth of himfelf that he had caufed many to be polifhed for fun-
dry great Lords of Italy and Germany，which were fegments of Globes of two，three，and four foot diameter；and I wifh you had fome fuch－ like to fee the experiments of that which follow－ eth；it is not difficalt to have fach made，or bought here in Town，the cuntentment herein would bear with he coft．

Examinationt．

TOucbing Maginus be bath nothing aided us to the knowoledge of the truth by bis Extract out of Vitellius，but left it；expecting it from otbers， ratber than to be plunged in the Search of it bimfelf affecting ratber the forging of the matter，and com－ pofition of the Glaffes，than Geametrically to eftablifb their Effects．

FInf therefore in conciave Glaffes，the Images are fometimes feen upon the furtace of the Glaffes，fometimes as though they were within is and behind it，deeply funk into it，fometimes they are feen before，aud without the Glafs，fome－ times between the Object and the Glafs；fome－ times in the place of the Eye，fometimes farther from the Gla ${ }^{\text {s }}$ than the Object is：which comes to pals by reafon of the divers concourfe of the beams，and change of the place of the Images in the line of reflection．

L 3 巴 セami＝

Cxamtuationt.

THe relation of tbefe ajpjedrakees paf ourtent at mongft moft men, but becaufe the Curious may, not reeeiveprejuadice in tbrir Experiments, fomeititig ougbt to be Said thereof, to give it a morere lively touch: in the true caufer of thefe afpeatagcos, in the firf place it is impoflible that the Image can be upon the Jurface of the Glafs, and it is a principal point to. declare truly in rowith place thb fruage is feen in the Glals: thofe that are more lexryed in Optical knowsbedge affitim the doutraty, and Natare it felf gives at a certain plice acestding to tits pofition, being allutays fren in the lane of Refletion wabich Alhazen, Vitellisis, add otbers folltof great knowiedge, bave coinfirmis ed by their Writings: but in their particuldr tbey zvere too much occupied by the Autberity of the Anrients, wolbo were not foffictenitly ditcommpert in experience, upon wibich tbe priaciples of this fibjeai ought so be built, and fearched not fulli) into the true carts of thefe appeciranies, feeing they leave winto Poflerieies many falfities in their Wrivings, as ebofe that folloropd them for the onote part fell into the tike etrors:

As for the Images tot ide in the Eye, it canntot be, but is impertinerit aud abfucid; but it followetb that by bow murch nearet the Objett approarletto to the Glafs, by fo moch whe nore the usprearatutes feem to cume to the Eye: and if: the Eye be withowt the point of concowre, and the Object allo; us long as the Ob-
ject approacheth thereto, the reprefentation of the Image cameth neare the Eya, but. paling the point of concaur fa, it goes back again: Thefe appearances thus approadbingi, da not a little aftonith tb fe robi b are igmortsto of the a aufe: they are inverfed, if the Eye be prithouts the plaint of concqurfe until tbe Object be mithin, but cautraxily if the Eye be between tbe poist of concomp fe and the Glals, then the Images are direct : and if the Eye or the Object be int tbe point of cancaurf est the Glafs mill be enligbtexed, and the lma. ges confufed, and if there were but a park of fire ins the faid point of concourfe, all tbe Glafs noould feem a burning fire-brand, and poe dare fay it roould occur without cbance, and in the night be the moft certain and fubtileft light that can be, if a candle weere placed there. And robofoever fhall exter into the Search of the trutlo of nese Experiments in this Jubject, woithout doubt be will confirm wobat wee bere fpeak of, and will find wew Ligbts with a conveniable pofition ta tbe Glafs, be maill bave reflection of quantifies of Trutb, and fine Secrets in Nature, yet not known, rebich be may eafily comprebend if be bave but an indifferent fight, and may alfure bimfelf that the Images cannot exceed the fight, wer trouble it, a tbing too much abfurd to Nature.

Aud it is an abfolute verity in this Science, that the Eye being once placed in the line of Reflection of any Object, and moved in the Same line: the Object is feen in one and the fame plase immutable; or if the Image and the Eye move in their aman lines, the reprefentation in the Glaßfeems to invelt it felf continually with a different figure.

152 و9atberatical Recteation:

NOw the Image coming thus to the Eje, thofe which know not the fecret, draw their Sword when they fee an Image thus to iffue out of the Glafs, or a Piftol which forme one holds behind: and fome Glaffes will thew a Sword wholly drawn out, feparated from the Glafs, as though it were in the Air: and it is daily exercifed, that a man may touch the Image of his hand or his face out of the Glars, which comes out the farther, by how much the Glafs is great, and the Centre remote.

Examanation.

NOov that a Piftol being prefented to a Glaßß.bebind a man, 乃hould come out of the Glafs, and snake him afraid tbat Atands before, Jeeming to §bot at bim, this cannot be: for no Object nobatgevere prefented to a concave Glafs, if it be not nearer to the Glafs than the Eye is, it comes not out to the fight of the party; therefare be needs not fear that robich is faid to be bebind bis back, and comes out of the Glafs; for if it doth come out, it muft ther neceffarily be befare bis face, Jo in a concave Glafs mobofe Centre is far remote, if a Sword, Stick, or Sucb-like, be prefented ta tbe Glafs, it Ball totally feem to come forth

- if tbeglafs, and all the band tbat bolds it. And bere generally note, thitit if an Image bc feen toiffue out of the Glafto come toppards the face of any one
that fands by, the Object faall be likeroife feen to thruft tovardds tbat facce in tbe Glafs, and may eafily be known to all the flanders by: 0 o, many perfons flavding before a Glafs, if one of the company take a Swoord, and roould make it ifue fortb towards. any otber that fands there, let bim cbufe bis Image in the Glafs, axd carry tbe Sword rigbt toxpords it, and the effect poill follown. In like manner oues band being prefented to the Glafs as it is tbruff tovards the Centre, So tbe reprefentation of it comes tevards it, and $\int o$ the bands woill feem to be united, or to toucb one anotber.

FRom which may be concluded, iffuch a Glafs be placed at the feeling or planching of a Hall, fo that the face be Horizontal, and look downward; one may fee under it as it were a man thanging by the feet, and if there were many placed fo, one could not enter into that place without great fear or fcaring: for one fhould fee many men in the Air as if they were hanging by the feet.

Examination.

TOuching a Glafs tied at a Seeling or Plarching, that one may fee a man bang by the Feet in the Air, and fo many Glafles, fo many Men may be feen : woitbout caution tbis is very abfurd, for if the Glafs or Glaffes be not fo great that the Centre of the Sphere upon wobich it wos made, extend not near to the Head of bim tbut is under it, it
will not pleafontly appear; and tbough the Glals floutd be of that cuppuoity that tbe Centre did externd fo far, yet will rot the Iranges be feex to theme molich are frum the Glaff, but onely to thoofe pobich sere unden it or near meto it : and to them it mill notably appeas. And it roould be moft adonirable to bave a Gallpery wamled over mitb fuch Glaffer, pobich would mendeyfully altaniffo any out tbat enters into it: for all the things in the Gallery mould be feen to hang in the Air, and you cauld not math mitboust encounstering Airy Apparitions.

SEcondly, In flat or plain Glaffes the Image is teen equal to his Object, and to reprefent a whole man, there ought to be a Glafs as great as The Image is: In convex Glaffes the Images are feen always lefs, in concave Glaffes they may be feen greater or leffer, but not truly proportion. able, by reafon of the divers seflections which contracts or entangeth the Species: when the eye is between the Centre and the furface of the Glafs, the Image appears fometimes very great and deformed; and thofe which have but the appearance of the beginning of a Beard on their Chin, may chear up themelves to fee chey have a great Beard; thole that feem to be fair, will thruft away the Glaff with defpight, becaufe it will transform their beauty: thofe that put their hand to the Glafs, will feem to have the fiand of a Giant, and if one puts his finger to the Glass, it will be feen as a great Pyramide of Flefh, inverfed againf his finger.

Thirdly,

: Thirdly, It is a thing adminable that the Eye being approachied to the point of concourfe of the Glafis, there will be feen nothing bat an inbermixtaite or comfufion: but retiring back a litthe from that point cbecaufe the Rays do theri meet) he fhall fee his Image inverfed, having his Head belows, ard his Fect above.
Fourthly, The divers' appearances caufed by the motion of Objects, either retiring or apt proaching : whether they turn to the right hand of to the left hand, whether the Glaifs be hung againft a wall, or whether it be placed upon a Pavement, as alfo what may be repreiented by the mutual afpect of Concave Glaffess with plaim and Convex Glaffes: but Pwill with filence pafs them ovex, orlly fay fomething of two rare Experiments more as followeth.

Thefirf is to repriefent by help of the Sun fuch fertefs as one would upon the front of a houre, fo that one may read them: Maginus doth deliver the way thus: Write the Letters, faith he, fufficiently big, but inverfed upon the furface of the Glafs, with fome kind of colour, or thefe Letters may be written with Wax, (the eafier to be taken outagain) for then placing the Glafs to the Sun, the Letters which are written there will be reverberated or reflected upon the Wall: hence

- it was perhaps that Pytbageres did promife with this invention to write upon the Mcon.

In the fecond place, how a man may fundry ways help himfilf with fucha Glaff, with a lighted Torthi or Candle, placed in the point of consourfe or inflammation, which is near the fourth

156 gatberuatical Becteation.

part of the Diameter : for by this means the light of the Candle will be reverberated into the Glafs, and will be caft back again very far by pasallel lines, making fogreat a light that one may -clearly fee that which is done far off, yea in the camp of an Enemy: and thofe which Thall fee the Glafs afar off, will think they feea Silver Ba: fin inlightened, or a fire more refplendent then the Torch. It is this way that there are made certain Lanthorns which dazel the Eyes of thofe which come againft them ; yet it ferves fingulat: well to enlighten thofe which carry them, accommodating a Capdle with a little hollow Glas, fo that it may fucceffively be applied to the point of inflammation.

In tike manner by this reffected Lightone may read far off, provided that the Letters be indifferent great, as an Epitaph placed high, or in a place obfcure; or the Letter of a Friend which dares not approach without peril or fufpition.

Examination.

THis will be farce fenfible upon a Waall remote from the $G l a f$ s, and but indifferently feen ap-a on a Wall rabich is near the Glafs, and withal it mult te in abf curity or fosdowed, or elfe it sill not be feen. To caff Ligbt in the night to a place remote, nuith a Candle placed in the point of oencourfe.or inflummasion, is one of the mofit notableft proferties pobich cals

matyematical 良ctication:

be fieron in a concave Glafs: for if in the point of inflammation of a Parabolical Settion, a Caindle be placed, the Ligbt will be reflected by Parallel Lines, as a Column or Cylinder; but in the Spberical Section it is defective in part t_{2} the beams being not united in one point, but fomerobat fcattering : notwitbjlan= ding it cafteth a very great beartiful Ligft.

LAftly, Thofe which fear to hurt their fight by the approach of Lamps or Candles, may by this artifice place at fome corner of a Chamber a Lamp with a hollow Glass behind it, which will commodiounly reflect the Light upon a Table, or to a place affigned : fo that the Glafs be fomewhat raifed to make the Light to ftreek upon the Table with tharp Angles, as the Sun doth when it is but a little elevated above the Horizon; for this Light fhall exceed the Light of many Candles placed in the Room, and be more pleafant to the fightof him that ufethit:

Of otber Glafes of Pleafure.

FIrf, The Columnary and Pyramidal Glaffes that are contained under right lines, do reprefent the Images as plain Glaffes do, and if they bebowing, then they reprefent the Image as the concave and convex Glaffes do.

Secondly, Thofe Glaffes which are plain, but have afcents of Angles in the middle, will thew one to have four Eyes, two Mouths, two Noles, duc.

Exami-

cxasinuation.

THefe Experiments poin be fownd diffarents according to tbs diverfe meeting of the Glaffes, opbich commoorly arre mande Scuing-mijf at ibe end, by monichathere will be two divers fupperficies in the Glaß, making the exterione Angle fomerrbut raifed, at the insteripur onelyy oxe funperyicies, mobicb nsay. be covered accarding no ordituary Glaffes to counfe a ver flacition, and fo it witll be but ones Glasf, mabicd by nefraction acconding to the different thicknefs of the Glafs, and differewt Augles of the fouing forms, do differently prefent dbe Ilatages to the Eye, as former Eyer, tavo Maxithr, tano Nofers; fareetiames, tbree Eyer, ame Mouth, and one Noje, the one large, aud the otber long, Sometimes thano Eyys arely, moitb $\ddagger b e M$ Mouth and the Nofe deformed, robich the Glafs (impenitrable) woill not Jhems. And if there ibe an interiour folid Angle, according to the difference of it, (as if it be mpre Jhanpi) there anill bee reprefented ipop diftinct
 Angle is open, by fo momabsthe mene: the dosubie Images will nercuite, aich enter oxemaitbin aivothar, robida woill prefent Sometiones a abole: Di Jage extesched at
 and by moving the Glafs stbe Augle mill vanifl, asd Sa, the two fuperficierswill de turned inato oue, and the duplicity of Images roill alfo vanifh, and appearbue one onely: and this is eafily experimented with twis
little

THirdly, There are Glaffes which make men feem pale,red, and coloured in divers manners 2 which is caufed by the dye of the Glafs, or the diverfe refraction of the Species: and thofè which are made of Silver, Latin, Steel, frc. do give the Images a diverfe colour alfo. In which one may fee that the appearances by fome are made fairer, younger, or older than they are; and contrarily others will make them foul and deformed, and give them a contrary vifage: for if a Glafs be cut as it may be, or if maxy pieces of Glafs be placed together to make a cano venizble reffection: there might be made of a Mole (as it were) a Mountain, of one Hair a Tree, 2 Fig to be as an Elephant, but I Thould be too long if I hould fay all that which might be faid upon the property of Glaffes. I will therefore cenclude this Difcourfe of the properties of thefe Glaffes, with thefe four recreative Problems fol--lowing.

PRO-

PROBLEM LXXVIII.

How to Bew to one that is supitions mbat is done in another Chamber or Room, notwitbftanding the interpofition of the Wall.

FOt the performance of this, there muif be placed three Glaffes in the two Chambers; of which one of them thall be tied to the planching or feeling, that it may be common to communicate the Species to each Glafs by reflection, there being left fome hole at the top of the Wall againft the Glals to this end : the two other Glalfes muft be placed againft the two Walls at right Angles, as the figute bere llieweth at B. and C.

Thenthe fight at E by the line of incidence $F E$, thall fall upon the Glafs $B A$, and reflect upon the fuperticies of the Glafs BC, in the point on fo that if
 the Eye be at G, it thould fee E, and E would reflect upon the third Glats in the point H, and the Eye that is at L will lee the Image that is at E in the point of the Catbeti:which Image flat

وpathematical Recteation: 16t

thall come to the eye of the fufpicious, viz at L. by helpof the third Glafs, upon which is made the fecond reflection, and fo brings unto the eye the object, though a wall be between it.

COROLARXI.

BY this invention of Reflections the befiegers of a-Town may be feen upon the Rampart : notwithftanding the Parapet, which the befieged may do, by placing a Glafs in the hollow of the Ditch, and placing another upon the top of the Wall, fo that the Line of Incidence coming to the bottom of the Ditch, make an Angle equal to the Angle of Reflection, then by this fituation and reflection, the Image of the befiegement will be feen to himis upon the Rampart.

COROLART2.

BI which alfo may be inferred, that the fame Reflectionsmay be feen in a Regular Polygon, and placing as itrany Glaffes as there are fides, counting two for one; for then the object being fet to one of the Glaffes, and the eye in the other, the Image will be feen eafily.

COROLART3.

FArther, notwithftanding the interpofition of many Walls, Chambers, or Cabinets, one may fee that which paffeth through the moft remoteft of them, by placing of many Ghaffes,

as there are openings in the Wialls ρ making them toreceive the incident Angles equal that is, placing them in fuch for by fome Geonetrical affiftant, that the incident points may meet in the middle of the Glaffes: but here all the defect will be, that the Images paffing by fo many reflection; will be very weak, and fcarce obfervable.

PROBLEM EXXIX

- Howa rosith a Muskgt to firike a marki not looking, towards $i t$, as cexalit as one aiming at it.

ASlet the Eye be at O, and the mark C_{3} place a plain. Glafsperpendicuatar as: A By fothe mark C Chall be feen in Catbeti C, viz. in D, atndthe Line of Re-
 flection is D, now let the Musket FE, uponatef, be moved to and fro, until it befreen in the dine $O D_{i}$ whichadmitito beHGxG givingfire to the Musket, it fhall undoubtedly frike the Mark.

CQROLARIES.

From wobich may be gatbered, that one may exacily Apeot out of a Musket to a place wobich is not Seens, being bindered by fome Obfacle, or otber interpó Sfition.

A
S let the Eye beat M, the mark C, and the 1. Wall which keeps it from being feen, adx mit to be $2 R$, then
Cet up a plain Glạs, as $A B$, and let the Musket be $\mathrm{G} \mathrm{H}_{3}$ placed upon his reft B 0. Now becaufe the mark' C is feen at D, move the Musket to and fro, untilit doth
 agree with the Line of Reflection $M B_{3}$ which fappofe at $L I_{2}$ fo. fball it be truly placed, and giving fire to the Musket, it fhall not fail to frike thefaid mark at C.

- RRBBLMEXXX

Howd to make an Image to be feen hanging in t'se air, it bazeing bis Hsad domuroard.
: Dake two Glaffes, and place them at right Angles one unto the other, as admit $A B$, and C_{3} of which admit $C B$ Horizontal 2 gnd

164 geathematicat kerctration:

let the Eye be at H, and the Object or Image to
 be $\mathcal{D} E$; fo \mathcal{D} will be reflected at F, fo to N, fo to $H E$: then at G, fo to M, and then to H, and by a double reflection E D will feem in $2 R$, the higheft point D in R, and the point E in 2 inverfed as was faid, taking D for the head, and E for the feet ; fo it will be a man inverfed, which will feem to be flying in the air, if the Image had wings untoit, and had fecretly fomemotion: and if the Glafs were big enough to receive many Reflefions, it would deceive the fight the more by admiring the changing of colours that would be feen by that motion.

PROBLEM LXXXI.

Hows to make a Conspany of reprefentative Souldiers feem to be a Regiment, or boiop fiow in number may be multiplied to feem to be many ix number.

TO make the Experiment apon men, there muft be prepared two great Glaffes; but in ftead of it we will fuppofe 2 leffer, as $G H_{3} \& F I_{3}$ one placed right againft another perpendicular to the Horizon, upon a plain level Table: between which

29athematical Recreation.

which Glaffes let there be ranged in Battalia-wife upon the lame Table a number of fmall 'men according to the Square G, H, I, F, or in any other form or
 polture: then may you evidently fee how the faid Battel will be multiplied and feem far bigger in the appearance, than it is in effect.

COROLAR T .

BY this invention you may make a little Cabinet of four foot long, and two foot large, (more or lefs) which being filled with Rocks or fuch-like things, or there being put into it Silver, Gold, Stones of luftre, Jewels, erc. and the Walls of the faid Cabinet being all covered, or hung with plain Glais; thefe vifibles will appear manifoldly increafed, by reafon of the multiplicity of reflections; and at the opening of the faid Cabinet, having fet fomething which might hide them from being feen, thofe that look into it will, be aftonithed to fee fo few in numbër, which beFore feemed to be fo many.

166 פadturatital Rerteatiort

PROBLEM LXXXII.

Of fine and pleafaint Dyals.

COuld you choofe a more xidiculous one than the natural Dyal written amonight the Greck Epigrams, upon which fome Tound Poet madé vcres, fhewing that a man carrieth about him always a Dyal in his Face by means of the Nofe and Teeth? And is not this a jolly Dyal? For he need not but open the Mouth, the Lines fhall be all the Teeth, and the Nofe fhall ferve for the Style.
of a Dyal of Herbr.

CAn you hávea finer thing in a Garden, or in the middle of a Compartment, than to fee the Lines and the number of Hoyrs reprefented with little bufhic Herbs, as of Hyfop, or fuch, which is proper to be cut in the borderss, and at the top of the Style to have a Fan to hew which way the wind bloweth? This is very pleafant and ufeful.

Of the Dyal upon tbe Fingers and the Hand.

1Sit not a commodity very agreeable, when one is in the field or infome village, without any other Dyal, to fee onely by the hand what of the clock

clock it is? which gives it very near; and may be praqtifed by the left hand, in chis manner
Take a Straw or like thing of the length of the Index; or the fecond finger; hold this Straw very right betwean the Thumb and the fore Finger, then fratch forth the hand, and turn your back and the palm of your hand towards the Sun; fo that the thadow of the mufcle which is under the Thumb touch the Line of Life, which is between the middle of the two other great Lines, which is feen in the palm of the hand, this done, the end of the fhadow will hew what: of the clock it is: for at the end of the firt Finger it is 7 in the morning, or 5 in the evening, at the end of the Ring-Finger it is 8 in the morning or 4 in the evening; at f he end of the Litthe Finger or fifit Joynt, it is 9 in the morying or 3 in the atternoon, 10 and 2 at the lecond Joynt, is and is at the third Joyqt, and mideday: in the Line following, which comes from the. end of the Indext.

Of a Diyql mbich:tpes: about an Obelisk at Reme.

WAs not this a pretty fetch upon a Pavement, to choofe an Obelisk for a Dyal, having rob feot in height, wethbut removing the Bafis of it? Pliny affures us in his 26 Book and 8. Chap that the Emperour. Augufius having accommodated in the: Fjeld, of Mars an. Qbelisk of thisheights hemade about it a Pavement, and by the induffy of indauiliur the Mathematician,there were enchaced maske of Copper upon the Paver

168: Mgatbenatical Mecteation:

ment; and placed alTo an Apple of Gold upon the top of the faid Obelijk;ito know the hour and the courfe of the Sun, with the increafe and decreafe of days by the fame fhadow : and in the fame maniner do fome by the fhadow of their head or other Style,' make the like Experiments in Aftroitomy.

Of Dyals pitb Glaffes.

PTolomy writes, as Cardanus reports, that long a-- go there were Glaffes which ferved for Dyals, and prefented the face of the beholder as many times as the hour ought to be; 2 if it were 2 of theclbck, 9 ifit were' ϕ, , $\otimes c$. But this was thought to be done by the help of water, \& not by Glaffes, which did leak by little and little out of the veffel, diffobering firft I Glafs, then 2 Glaffes, then $3,4!$ 5 Glaffes, ©r. to thew fo many faces as there were hours', which was onely by leaking of water.

Of a Dyalwbicb batba Glafs in place of the Style.

WHat will you fay of theinvention of Maithematicians, which find out daily fo many fine and curious Novelties? They have now a way to make Dyalsupon the Wainfcot or Seeling of a Chamber, and there wherethe Sun cain nevet

و9atidematical Recteation:

Thine, or the beams of the Sun cannot directly ftrike : and this is done in placing of a little Glafs in the place of the Style, which reflecteth the light with the fame condition that the fhadow of the Style fheweth the hour: and it is eafie to make experiment upon a common Dyal, changing only the difpofition of the Dyal, and tying to the end of the Style a piece of plain Glafs. The Almains ufe it much, who by this way have no greater trouble, but to put their Nofes out of their Beds aud fee what a clock it is, which is reflected by a little hole in the Window upon the Wall or Sieling of the Chamber.

Examination.

IN this there are troo Experiments confiderable, the firft is with a very little Glafs placed. So that it may be open to the Beams of the Sun, the otber batb repect to a jacious or great Glafs placed to a very little. bole, So that tbe Sun may Jine on it, for then the Badown robich is caft upon the Dyal is converted into beams of the Suns, and roill reflect and be caft upon a plain oppofite: and in tbe other it is a bole in the Window, or fucb-like, by robich may pafs the Beams of the Sun, wobich reprefent the extremity of the Styte, and the Glafs reprefentetl the plain of the Dyal, upon which the beams being in manner of Sbadows reflect caft upon a plain oppofite: and it is ncedful tbat in this fecond way the Glafs miay be 乃pacious; as before, to reccive the delineaments of the Dyal.

170

Otbernoife you may dramo thie Linezinests of a Dy al upon any plain Lookivig-Glafs mbich reflectetbutha San-beams, for the applying: Stylsior a Peart at: ther: extremity of it; and placed to the Sun; the reflection will be anfooerable to the delineanments on the Glafs: but bere note, that the Ghafs ought torbe greats, and fa tbe delineaments tbercon:

But that rohicb is moft Noble, is to draws boure lines upon the out-fide of the Glafs of a Windows: and placing a Style thereto upon the out-fide, the fbadow of the Style roill be feen moithin, and so yoks bave-the bour more certain, woitbous any difficulify:

Of Dyals with Water.

SUch kind of Dyals were made in ancient times, andwle thofe of Sand: before they had skill to make Sun-Dyals, or Dyals with Wheels : for they ufed to filla Veffel with Whater, and having experience by trial that it would rum out all in a day; they did mank widhin thes Veffel the houks noted by the runningof the Wrat ter; and fome did fet a piece of lighe bbard in: the Veffel to Cwim upon the top of the Whatrit: carrying a little Statue, which widh a fmall-ficsk did point out che hour upona Columnor-Wall, figured with hourinotes, as the:Veffel was figured within.

Vitruvius wrtites of another manmer of Water.
 his Natural Secrets, delivers this Invention following: Take a VEffel full of Waterlike a Caldron, and another:Veffel of Gals like unto a Bell.

 (with which fome accuftom to cover Melons) and

 let this Veffer of-Glats be atmont asgreat as the Caldron, having afmall hole aththebt-
tom, then when it is
placed upon the what lititle anid little: by this one" may" "mayk the hours on the furface of the Glafs to ferve another time. But if at the beginning one had dra whithe wàter with lin the pame verfle of Glafs' in fucking by the little hole the water would nor fill outt, bat as fafras the ar would
 contrarily hé hours may be diffth ufficd by dif: minhtion of water or by aughentation
Now it feeths a rafer way that the whate prat out by droptand dropo, and dropintóacylthaticar Glars by help of a Pipe: for havilig marked
 nofes, the wate it felt whith athswith 4 ct मif fliew'what of the "clock if is' 'fir bettee than the running of Sand for by the thay yout hage
 nitonty by Sand is not had a didtd whith may be added the hours of oflice Countives with greater
 out of one of the Gtaffes, you ithay tuth it ouja
 run anew.

PRO-

172 geathenratical Recteation.

PROBLEM LXXXIII.

Of Cannous or great Antillery.

Souldiers and otbers would wililingly fee tbis Problem, whicb contains 3 or 4 fubtile Quefions.

> I.

The firf is, Hown to cbarge a Cankon wiitbout Powder:

THis might be done with air and water only, having thrown cold water into the Cannon, which might be quirted forceably in by the clofure of the mouth of the Piece, that fo by this preffure the air might more condenfe ; then having a round piece of Wood very juft, and eiled well, for the better to llide, and thruft the Bullet whenit fhall betime: This piece of Wood may be held faft with fome Pole, for fear it be not thruft out before his time : then let fire be made about the Irumion or hinder part of the Piece to heat the air and water, and then when one would thootit, let the pole be quickly loofened, for then the air fearching a greater place, and having way now offered, will chrult out the Wood and the Bullet very quick : The Experiment which we have in long Trunks thooting out pellats with air only, theweth the verity of this Problem.

ற9athematical Rectration: 173

In the Second Queftion it may be demanded; How mucb time dotb the Bullet of a Cannon Bend in the air before it falls to the ground?

THe Refolution of this Queftion depends upon the goodnets of the Piece and Charge thereof, feeing in each there is great difference. It is reported that Ticbo Brabe, and the Land dgrave did make an Experiment upon a Cannon in Germany, which being charged and thot off, the Bullet fpent 2 min of time in the air before it fell: and the diffance was'a German mile, which diftance.proportionated to an hours time, makes ± 20 Italian miles.

$$
30
$$

In the third Queftion it may be asked, How it comes io pafs, that a Cannon fhooting uproard, the Bullet \therefore flies with more violence than being shot point-
\therefore blank, or fhooting downward ?

TFwe regard the effect of a Cannon when it is to batter a Wall, the Queftion is fale, feeing it is moft evident that the blows which fall

Per.

Perpendicular upon a Wall, are more violent than thofe which ftrike byas-wife or glancingly.

But confidering the ttrength of the blow only, the Queftion is mont true, and often exprimented to be found trie: a Piece mounted at the beft of the Randon, which is near half of the right, conveys her Bullet with a far greater violence thap that whifl is fhot at paing blank, or mouqted parallel to, the Horizon. The common reanomis, that dooting high the fire carries the -bowl a longer time in the air, apd the air mayes more fasiluppards thandownwards, becaule that the airy circles that the motion of the Bullet makes, are fooneft broken. How fover this be the general Tenet, it is curious to find out the inequality of moving of the air; whether the Bullet fy upward, downward, or, ripht forward, to produce a fenfible difference of,motion ; apd Tome think that the Cannon being mpunted, the Bullet prefing the powder maketh a greater refiflance, and fo caufeth all the popder, $t 9$ be ip Ha med before the Bullet is thrown cut, which makes it to be more violent than otherwife it would be. When the Cannon is otherwife difpofed, the contrary arrives, the fire leaves' the Bullet, and the Bull cto rolling from the Powder refifts:hef; and it is ufually Ren, that hooting ouf of a Musket clarged onely with Powder, to foros to a mark of Paper placed point blank, that there arefeen many fmall holes in the Paper, which cannot be zi Prhery than the grains of Apwder which did - noftake tre but this latter accident may haplinep from the ozercharging of thes Piece, or the -12 length
-length if its.opwindy, or dampnefs of the Powder.
Erom which fome may think that a Cannon - pointed sight to the Zenith, (hould Moot with

- geater violence than in any othermopnt on form
whatfoever :i and by fome it, bath beenimagined - that a Bullet fuot in this falhion hath been canfumed; malted, and loftin the airs hy reafon of the violence of thelatows and the activity of the fire, and that fundry Experiments have been made in : this nature, and the Bullet never found. :But it is hard to believe thas affertion : it may rathesbe r. fuppofed that the Bulle falling far from the Piece cannotbedifeenned where it fallis and focmes to be lloft.

176 פ9atbentatical Brecteation.

taking Cannons of the fame bore, but of diverfity of length from 8 foot to 12, that the Cannon of 9 foot long hath more force than that of 8 foos long, and 10 more than that of 9 , and fo unto 12 foot of length. Now the ufual Cannon carxies 600 Paces, fome monse, fome lefs, yea fome but 200 Paces from the Piece, and may thoot into foft earth Γ_{5} or 17 foot, into fand or earth which is loole, 22 or 24 foot, and in firm ground, about 10 or 12 foot, ${ }^{\text {brc. }}$

It hath beenfeen lately in Germany, where there were madePiecesfrom 8 foot long to 17 foot of like bore, that fhooting out of any piece which was longer than 12 foot; the force was diminifhed, and the more in length the Piece increafech, the lefs his force was: therefore the length ought to be in a mean meafure, and it is often feen the greater the Cannon is, by fo much the Cervice is greater : but to have it too long or too fhdrt, is not convenient, but a mean proportion of length to be taken, otherwife the flame of the fire vvillbe overpreffed vvith Air, vvhich hinders the motion in refpeCt of fubffance, and diffance of getting out.

gsatbematical Rectration:

PROBLEM LXXXIV.

Of prodigious Progrefion and Multiplication of Creatures, Plants, Fruits, Numbers, Gold, Silver, \&c. moben they are alpoays augmented by certain proportion:

HEre we thall thew things no lefs admirable than recreative, and yet to certain and eafie to be demonftrated, that there needs not but Multiplication onely, to try each particular: and firft,

Of Grains of Muftard-feed-

FIrf, Therefore it is certain that the increale of one grain of Muftard feed for 20 years fpace, cannot be contained within the vifible World, nay if it were an hundred times greater than it is: and holding nothing befides from the Centre of the Earth even unto the Firmament, but onely fmall Grains of Muftard-feed: Now becaufe this feems but words, it muft be proved by Art, as may be done in this wife: As fuppofe one Mufard-feed fowerf to bring forth a Tree or Branch, in each extendure of which might be a thoufand grains: but we will fuppofe onely a thoufand in the whole Tree, and let us proceed to 20 years, every Seed to bring forth yearly a thoufand grains s now mulciply-

178 matbematical Recteation. ing always by a thoufand, in lefs than 17 years, you thall have fo many grains which will furpals the fands, which are able to fill the whole Firmament: for following the fuppofition of Arcbimedes, $\&$ the moft probable opinion of the greatnels of the Firmament which Ticho Brabe hath left us; the number of grains of Sand will be fufficiently expreffed with 49 Cyphers, but the number of grains of Muftard-feed at the end of 17 years will have 52 Cyphers: and moreover, grains of Muftard-feed are far greater than thefe of the Sands: It is therefore evident that at the feventeenth year, all the grains of Muftard-feed which thall fucceffively (pring from one grain onely, cannot be contained within the limits of the whole Firmament; what Ihould it be then, if it fhould be multiplied again by a thoufand for the eighteenth year, and that again by a thoufand for every years increafe, until you come to the twen'tieth year? It's a thing as clear as the day, that fuch a heap of Muftard-feed would be an hundred thoufand times greater than the Earth: and bring onely but the increafe of one grain in twentry years.

Of Pigs.

SEcondly, Is it not a ftrange Propofition, to Cay, That the Great Turk with all his Revenues, is not able to maintain for one years time all the Pigs that a Sow may pig with all hex Race, that is, the increafe with the increafe, unto 12 years: this feemsimpoffible, yet it is moft true,

gedtimatical Rectcation:

for let us fuppofe and put the cafe, that a Sow bring forth but 6,2 Males and 4 Females, and that each Female fhall bring forth as many every year, during the fpace of 12 years, at the end of the time there will be fuund above 33 millions of Pigs: Now allowing a crown for the maintenance of each Pig for a year, (which is as little as may be, being but near an half of a farthing allowance for each day) there mult be at leaft fo many crowns to maintain them one year, viz. 33 millions, which exceeds the Turks Revenue by much.

Of Grains of Corr.

THirdly, It wiit make one aftonifhed to think that a Grain of Corn with his increafe fucceffively, for the fpace of 12 years will produce in Graips 244140625000000000000 , which is able to load almoft all the Creatures in the World.

To open which, let it be fuppofed that the firft year one grain being fowed brings forth 50 , (but fometimes there is feen 70, fometimes 500 fold) which grains fowen the next year, every one to produce 50 , and fo confequently the whole and increafe to be fowen every year, until 12 years be expired, there will be of increafe the aforefaid prodigious fum of grains, viz. 24414062500000000000 , which will make a Cubical Heap of 6258522 Grains every way, which is coore than a Cubical Body of 31 miles cvery way: for allowing 40 grains in leagth to

180 MGatbematical Recteation.
each foot, the Cube would be 156463 foot every way: from which it is evident that if there were two hundred thoufand Cities as great as London, allowing to each 3 miles fquare every way, and 100 foot in height, there would not be fufficient room to contain the aforefaid quantity of Corn : and fuppofe a Buthel of Corn were equal unto two cubick feet, which might contain twenty hundred thoufand grains, then would there be 12207046 2500000 bufhels, and allowing 30 bufhels to a Tun, it would be able to load 8138030833 Veffels, which is more than eight thoufand one hundred and thirty eight millions, thip loadings of 500 Tun to each Ship: a quantity fo great, that the Sea is fcarce able to bear, or the Univerfal World able to find Veffels to carry it. And if this Corn fhould be valued at half a Crown the bufhel, it would amount to 15258807812500 pounds Sterling, which I think exceeds all the Treafures of all the Princes, and of other particular men in the whole World : And is not this good Husbandry to fow one grain of Corn, and to continue it in fowing the increafe onely for 12 years, to have fo great a profit ?

Of the Increafe of Sbeep.

FOurthly, Thofe that have great flocks of fheep may be quickly rich, if they would preferve their Sheep without killing or felling of them: fo that every Sheep produce one each year, for at the end of 16 years 100 Sheep will multiply and
increale $i_{\text {ncreafe unto }} 6553600$, which is above fix mil$l_{\text {ions, }}$ five hundred fifty three thoufand Sheep: Now fuppofing them worth but a crown a piece, it would amount unto 1638400 pounds Sterling, which is above i million 6 hundred 38 thoufand pounds. A fair increafe of one Sheep, and a large portion for a Child, if it thould be allotted.

Of the increafe of Cod-fiff, Carps, \&cc.

FIfthly, If there be any creatures in the world that do abound with increafe or fertility, it may be rightly attributed to fifh; for they in their kinds produce fuch a great multitude of Eggs, and bring forth fo many little ones, that if a great part were not deftroyed continually, within a little while they would fill all the Sea, Ponds, and Rivers in the World; and it is ealie to fhew how it would fo come to pafs, onely by fuppofing them to increafe without taking or deftroying them for the fpace of 10 or 12 years: having regard to the folidity of the Waters, which are allotted for to lodge and contain thefe Creatures, as their bounds and place of reft to live in.

Of the increafe and multiplication of Men.

SIxthly, There are fome that cannot conceive how it can be that from eight perfons (which were faved after the Deluge: or Noabs Flood) thould fpripg fuch a World of People to begir

182 g9athematical Recteationt:

a Monarchy under Nimrod, being but 200 years after the Flood, and that amongft them fhould be raifed an Army of 200000 fighting men: But it is eafily proved if we take but one of the Children of Noab, and fuppofe that a new Generation of People begun at every 30 years, and that it be continued to the feventh Generation, which is 200 years; for then of one only Family there would be produced it 1000 Souls, 305 to begin the World : though in that time men lived longer, and were more capable of multiplication and increafe: which number fpringing onely from a fimple production of one yearly, would be far greater if one-Man thould have many Wives, which in ancient times they had: from which it is alfo that the Children of 1 rael, who came into Egyptbut only 70 Souls, yet after 210 years captivity, they came forth with their Hofts, that there were told 600000 fighting men, befides old People, Women, and Children; and he that fhall feparate but one of the Families of Fofeph, it would be fufficient to make up that number: How much more fhould it be then, if wefhould joyn many Families together ?

Of the Increafe of Numbers.

SEventhly, What fum of money fhall the City of London be worth, if it fhould be fold, and the money be paid in a year after this manner: The firft week to pay a Pin, the fecond week 2 Pins, the third week 4 Pins, the foutth week 8

Pins,

gathematical Rectration:

Pins, the fifth week 16 Pins, and fo doubling until the 52 Weeks, or the year be expired?

Here one would think that the value of the Pins would amount but to a fmall matter, in comparifon of the Treafures or Riches of the whole City : Yet it is moft probable that the number of Pins would amount unto the fum of 4519599^{6} 28681215, and if we fhould allow untoa quarter a hundred thoufand Pins, the vvhole vvould contain ninety eight millions, four hundred thoufand Tun: vvhich is able to load 45930 Ships of a thoufand Tun apiece: And if vve fhould allow 1000 Pins for a Penny, the fum of money vvould amount unto above eighteen thoufand tight hundred and thirty millions of pounds fterling : An high Price to fell a City at, yet certain, according to that firf propofed.

So if 40 Towns were fold upon condition to give for the firft a penny, for the fecond 2 pence, for the third 4 pence, orc. by doubling all the reft unto the laft, it would amount unto this number of pence 1099511627776 , which in pounds is $45^{81298444 \text {, that is, four thoufand }}$ five hundred, and fourfore millions of pounds, and more.

184 פ9atbenatical inecteation,

Of a man tbat gatbered up Apples, Stones, or fucblike, upon a condition:

EIghtly, Admit there were 100 Apples, Stones, or fuch-like things, that were plac'd in a fraight line or right form, a Pace one from another, and a basket being placed a Pace from the firft : how many Paces would there be made to put all thefe Stones into the Basket, by fetching one by one? This would require neapr halfa day to do it, for there would be made 10092 paces before he fhould gather them all up.
Of Changes in Bells, in Mufical Infriments, Tranf: mutation of places in Numbers, Letters, Men, or fucb-like.

NInthly, Is it not an admirable thing to confider how the Skill of Numbers doth eafily furnifh us with the knowledge of myfterious and hidden things? which fimply look'd into by others that are not verfed in Arithmetick, do prefent unto them a world of confufion and difficulty.

As in the firft place it is often debated amongft our common Ringers, what number 0 f Changes there might be made in five, fix, feven, eight, or more Bells : who fpend much time to anfwer their own doubts, entering oftè into a Labyrinth in the fearch thereof: or if there were yo Voices, how many féveral notes might theré be? Thefe are propofitions of fuch facility, that a Child which can but multiply one number by another, may eafily refolve it, which is but onely

gaxthmatical Recteation.

to multiply every number from the unite fuccerfively in each others product, unto the term affigned : fo the 6 number that is againft 6 in the Table, is 720 , and fo many Changes may be made upon 6 Bells, upon 5 there are 120 , erc.

1	a	1
2	b	2
3	\mathfrak{c}	6
4	0	24
5	1	120
6	f	720
7	g	5040
8	b	40320
9	i	362880
Io	\%	3628800
11	1	39916800 …
12	\mathfrak{m}	479001600
13	\mathfrak{n}	6227020800
14	0	87178291200
15	p	1307674368000
16	q	20922789888000
17	1	355687537996000
18	1	6402375683928000
19	t	121645137994632000
20	u	2432902759892640000
21	to	510909579.57745440000
22	1	112400107.5070399680000
23	1	$25^{8} 52024726619192640000$
24	3	620448593438860623360000

In like manner againft io in the Table is 3628800, that is, three millions, fix hundred
twenty

186 (2atbruatical Rercteation:

twenty eight thoufand, eight hundred ; which fhews that io Voives may have fo many Conforts, each man keeping his own note, but onely altering his place; and fo of fringed Infruiments, and the Gamat may be varied according to which, anfwerable to the number that is againft \mathfrak{I}, viz. 1124001075070399680000 Notes.

From which may be drawn this or the like Propofition :

Suppofe that 7 Schollars were taken out of a Free School to be fent to an Univerfity, there to be entertained in fome Colledge at Commons for a certain fum of money, fo that each of them have two meals daily, and no longer to continue there, then that fitting all together upon one Bench or Form at every Meal, there might be a divers tranfmutation of place of account in fome one of them, in comparifon of another, and never the whole company to be twice alike in fituation: How long may the Steward entertain them? (who being not skilled in this fetch, may anfwer unadvifedly.). It is moft certain that there will be five thoyfand and forty feveral pofitions or changings in the featings, which makes fourteen years time, wanting ten weeks and three days.
Hence from this mutability of tranfmutation, it is no marvel that by 24 Letters there arifeth and is made fuch variety of Languages in the World, and fuch infinitenumber of words in each Language; feeing the diverity of Syllables produceth that effee, and alfo by the interchanging and placing of Letters amongfthe Vowels, and amonglt

matbematical kertration:

amongt themfelves maketh thefe fyllables, which Alphabet of 24 Letters may be varied to many times, viz. 620448593438860623360000, which is fix hundred twenty thouland, four hundred forty eight millions of millions of millions five hundred ninety three thoufand, four hundred thirty eight millions of millions, and more.

Now allowing that a man may read or fpeak one hundred thoufand words in an hour, which is twice more words than there are containtd in the Pralms of David, (a Task too great for any man to do in fo thort a time) and if there were four thoufand fix hundred and fifty thoufand millions of men, they could not fpeak thefe words (according to the hourly proportion aforefaid) in threefcore and ten thoufand years; which variation and tranfmutation of Letters, if they thould be written in Books, allowing to each Leaf 28000 words, (which is as many as pofibly could be inferted) and to each Book a Ream or 20 Quire of the largeft and thinneft PrintingPaper, fo that each Book being about 15 inches long, 12 broad, and 6 thick : The Books that would be made of the tranfmutation of the twenty four Letters aforefaid, would be at the lealt 3877803789928788 : And if a Library of a mile fquare every way, of 50 foot high, were made to contain 250 Galleries of 20 foot broad apiece, it would contain four hundred millions of the faid Books: Co there muft be to contain the reft no lefs than $969+5092$ fuch Libraries; and if the Books were extended over the furface of the

188 פgathematical Recteation.

the Globe of the Earth, it would be a decuple covering unto it, a thing feeming moft incredible, that 24 Letters in their tranfmutation fhould produce fuch a prodigious number, yet moft certain and infallible in computation.

Of a Servant bived upon certain conditions,

AServant faid unto his Mafter, that he would dwell with him all his life-time, if he would but only lend him land to fow one grain of Corn with all his increafe for 8 years time; how think you of this bargain? For if he had but a quarter of an inch of ground for each grain, and each grain to bring forth yearly an increafe of 40 grains the whole fum would amount unto, at the term aforefaid, 6553600000000 grains : and feeing that 3 thoufand and 6 hundred millions of inches do but make one mile fquare in the fuperficies, it fhall be able to receive 14 thoufand and 4 hundred millions of grains, which is 14400000000 , thus dividing the aforefaid 6553600000000 , the Quotient will be 455 , and fo many fquare miles of land muft there be to fow the increafe of one grain of Corn for 8 years, which makes at the leaft 420000 Acres of Lind, which rated but at five fhillings the Acre per Avnum, amounts unto 100000 pound; which is 12500 pound a year, to be continued for 8 years: a pretty pay for a Mafters Servant 8 years fervice.

\$gatbematical Rectration.
 189

PROBLEM LXXXV. .

Of Fountains, Hydriatiques, Macbineck, and otber Experiments upon Water or otber Liquer: :

I.

Firft bows to make Water at the Foot of a Mountais to afcend to the Top of $i t$, and Jo to defcend on the other fide.

TO' do this there muft be a Pipe of Lead, which may come from the Fountain A, to the top of the Mountain B; and fo to defcend on the other fide, a little lower than the Fouttain, as at \dot{C}, then make a hole in the Pipe, at the top of the Mountain, as at B, and ftop the end of the Pipe at A and C; and fill this Pipe at B with Water, and clofe it very carefully agaip at B, that no Airget in: then unftop the end at A,
 and at C; then will the Water perpetually run up the Hill, 'and'defcend on the other fide, which is an inventiofi of great confequence to furnifh Villages that want Water.
2. Secondly,

190' Ganthematical Mecteation.

2.

Secondly, Hows to knows motat Erine or atber Liquor there is in a Veffel, woitbout opening the Bungbole, and without making any ather bole than that by wobich it runs out at the top.

$T$$\mathbf{N}$ this Problem there is nothing but to take a bowed Pipe of Glafs, and put it into the faucets hole, and fopping it clofe about : for then you thall fee the Wine or Liquor to alcend in this Pipe, until it be juft even with the Liquor in the Veffel: by which a man may fill the Veffel, or put more into it: and fo if need were, one may empty one Veffel into another, without opening the Bung-hole.

Thirdly, How is it that it is faid that a Veffel bolds more Water, being placed at the foot of a Mourtain, than flanding upon the top of it?

THis is a thing moft certain, becaufe that ${ }^{7}$ water and allother Liquor difpofeth it Colf fpherically about the Centre of the Earth; and by how much the Veffel is nearen the Centre, by fo much the moxe the fuxface of the Water makes T leffer fphere, and therefore every part more gibbous or fwelling than the like part in a greater

Sphere 8

fphere: and therefore when the fame Veffel is farther from the Centre of the Earth, the furface of the water makes a greater fphere, and therefore lefs gibbous or fwelling over the Veffel: from whence it is evident that a Veffel near the Centre of the Earth holds more Water than that which is farther remote fromit; and fo confequently a Veffel placed at the bottom of the Mountain holds more Water, than being placed on the top of the Mountain.

Firft, Therefore one may conclude, thar one and the fame Veffel will always hold more, by how much it is nearer the Centre of the Earth.

Secondly, If a Veffel be very near the Centre of the Earth, there will be
 more Water above the brims of it, than there is within the Veffel.

Thirdly, a Veffel full of Water coming to, the Centre will fpherically increafe, and by little and little leave the Veffel; and paffing the Centre, the Veffel will be allemptied.

Eourthly, One cannot carry a Fail of Water from alow place to a higher, but it will moreand more run out and over; becaufe that in afcending it lies more level, but defcending it fwells; and becomes moxe gibbous.
4. Fourtbly,

192 smathematical Recteation:
4.

Fourtbly, To conduct from the top of one Monetain, to the top of asotber.

AS admit on the top of a Mountain there is a Spring, and at the top of the other Mountain there are Inhabitants which.want Water: Now to make a Bridge from one Mountain to another, were difficult, and too great a charge; by way of Pipes it is eafie, and of no great price: for if at the Spring on the top of the Mountain be placed a Pipe to defcend into the Valley, and afcend to the other Mountain, the Water will run naturally, and continually, provided that the Spring be fomewhat higher than the paffage of the Water at the Inhabitants:
5.

Fifthly, Of a fine Foustain wobich spouts Water very bigb, and woith great violence, by turning of a Cock.

LEt there be a Veffel as $A B$, made clofe in all his parts, in the middle of which let $C D$ be a Pipe open at D near the bottom, and then with a Squirt quirt in the Water at C, ftopped above by the Cock or Faucet C, with as great violence as poffible you can; and turn the Cock imme-

s9athematical Recteation.

immediately. Now there betng an indifferent quantity of Water and Air in the Veffel, the Water keeps it felf in the bottom, and the Air. which was greatly
 preffed, feeks for more place, that turning the Cock, the Water iffueth forth at the Pipe, and fies very high, and that efpecially if the Veffel bea little-heated. Some makeufe of this for an Ewer to wafh hands withall, and therefore putting a moveable Pipe above C, fuch as the Figure theweth: which the'Water will caufe to turn very quicks, pleafurable to behold.

Sixtbly, Of Archimedes's Screen, mbich makes Water afcend by defcending.

THis is nothing elfe but a Cylinder, about the which isa Pipe in form of a Screw; and when one turns it, the Water defcends always in refpect of the Pipe: for it paffeth from one part which is higher to that which is lower, and at the end of the Engine the Water is found higher than it was at the Spring. This great Enigineer, admirable in all Mathematical Arts, invented this Inftrument to wafh King Hieroies

294 99atbentaticult incteatiof:

 great Veffels, as fomd Althors fay, alfo to water the fields of Egypt 1 as Diodorus witneffeth: and Caro danus reporteth that 2: Citizen of Milan having made the like Engine ${ }_{2}$. thinking himfelf to be the firf inventer, conceived fuch exceeding joy, that he became mad Fol. 2. Again, A thing may afcend by defcending, if a f piral Line be made, having many circulations or revolutions; the laft being always leffer than the firft, yet higher than the Plam fuppofed: It is mot certain that then putting a Ball into it, and turning the firal Line fo, that the firft circulartion may be perpendicular, or touch always the fuppoled Plain, the Ball fhall in defeending continually afcend, until at laft it come to the higheft part of the fpiral Line, and fo fall out. And Here efpecially may be noted, That a moving Body, as Water, or a Bullet, or fuch-like, will never afcend, if the Helical Revolution of the Screw be sot inclining to the Horizon : fo that accord-岛g to this Inclination the Ball or Liquormay defeend always-by a continual motion and revolution. And this Experimentmay be more ufefal Haturally made: with a Threade of Io on or Latine, turned or bowed Helically about a Cylinder, with fome diftinction of diffancesbetween the Helioes, for them having drawn out the Cylinder, orhaving haing or tried fome weightet it; in fuch

D9athentatical wetteationt: 195

fort that the Water may eafily dropif one lift up the Said Thread : thefe Helices or Revolutions not twithftanding will remain inclining to the Horizon, and then turning it about forward, the faid weight will afcend, but backward, it will defcend. Now if the Revolutions be alilie, and of equality among fi themfelves; and the whirling or turning motion be quick, the fight will be fo deceived, that producing the altion it will feem to the ignotant no lefs than a Miracle.

$$
7
$$

Seventbly, Of anotber fine Fountain of Rleafuipe

THis is an Engine which hath two wheels with Cogges or Teeth, as $A: B$, which are placed within an Oval $C D$, in luch fort, that the Teeth of the one may eniter into the Notches of the other; but fo juft, that neither Air nor Water may enter into the Oval Coffer, either by the finidde, or by the fides, for the whel mult joy fo near to the fides of the Coffer, that therebeno vacuity: To this there is an Axletree with a handie to each wheel, fo that they may be turned, 'and A being turned, that turneth the other Wheel that is oppofite: by whith motion the air that is in E, and the watter that is carried by

196 Satbematical Recreation:

the hollow of the wheels of each fide, by continual motion, is conftrained to mount and flie out by the Funnel F. Now to make the Water ran what way one would have it, there may be applied upon the top of the Pipe F, two other moveable Pipes inferted one within another; as the Figure Cheweth. But here note that there may acrue fome inconveniency in this Machine; feeng that by quick turning the Cogs or Teeth of the Wheels running one againtt another, may near break them, and lo give way to the Air to enter in, which being violently inclofed will eccape to occupy the place of the Water, whofe weight makes it fo quick : howfoever, ifthis Machine be curioufly made as an able Workman may eafily do, it is a moft foveraign Engine, to caft Water high and far off for to quench fires. And to have it to rain to a place affigned, accommodate a Socket having a Pipe at the middle, which may point towards the place, being fet at the top thereof, and fo having great difcretion in turning the Axis of the Wheel, it may work exceeding well, and continue long.

8.

Eigbtly, Of a fine Watering-Pot for Gardens.

THis may be made in form of a Bottle, according to the laft figure, or fuch-like, having at the bottom many fmall holes, and at the neck of it another hole fomewhat greater than thole
thofe at the bottom, which hole at the top you muft unftop when you would fill this WateringPot, for then it is nothing but putting the lower end into a Pail of Water; for fo it will fill it felf by degrees: and being full, put your Thumbon the hole at the Neck to fop it, for then may you carry it from place to place; and it will not Cenfibly run out; fomething it will, and all in time, (if it were neverfo clofe ftopped) contrary to the ancient Tenet in Philo!̣phy, That Air will not penetrate.

9.

Nintbly, Hors eafily to take Wine out of a Veffel at the Bung-bole, moitbout piercing of a bole in the V effel.

I\mathbf{N} this there is no need but to have a Cane ox Pipe of Glafs, or fuch-like, one of the ends of which may be clofed up almoft, leaving fome fmall hole at the end; for then if that end be Set into the Veffel at the Bung-hole, the whole Cane or Pipe will be filled by little and little; and once being fall, ftop the other end which is without, and then pull out the Cane or Pipe, fo will it be full of Wine, then opening a little the top above, you may fill a Glafs or other
 Pot with it, for as the Wine iffietti out, the air comethinto the Cane on Ripe, id fupply vacuitya

$$
\mathrm{O}_{3} \quad 10 . \text { Tenthly? }
$$

398 \$9athentatical Rectration:

T'entbly, Howo to meafure irregular Bodies by belp of Water.

SOme throw in the Body or Magnitude into a Veffel, and keep that which floweth out over, Gaying it is always equal to the thing caft into the Water: But it is more neater this"way, to pour into a Veffel fuch a quantity of Water, which may be thought fufficient to cover the Body or Magnitude, and make a mark how high the Water is in the Veffel, then pour out all this Water into another Veffel, and let the Body or Magnitude be placed into the firft Veffel; then pour in Water from the fecond Veffel until it afcend unto the former mark made in the firt Veffel, fo the Water which remains in the fecond Veffel, is equal to the Body or Magnitude put into the Water: But here note that this is not exact or free from error, yet nearer the Truth than any Geometrician can otherwife pofibly meafure; and thefe Bodies that are not fo full of pores, are more tru. ly meafured this wayp than others are.

1I.
$\stackrel{4}{ }$
To find the Weight of Water.

SEeing that ${ }_{x}{ }^{5} \frac{7}{0} \frac{4}{0}$ part of an ounce weight, makes a Cubical Indli of Water, and every pound wetghe Haverdifpois makes 27 Cubical Inches

Inches, and, $\%$ fere, and that 9 Gallons and a half Wine-meafure makes a foot Cubical, it is eafie by inverfion, that knowing the quantity of a Veffel in Gallons to find his content in Cubical feet or weight : and that late famous Geometrician Matter Brigs found a Cubical Foot of Water to weigh near 62 pound weight FIfreerdupaike But the late Learned Siman Stevin faund a Cubi-cal Eoot of Water to weigh 65 pound; which difference may arife from the inequality of Water; for fome Waters are more ponderous than others; and fome difference may be from the weight of a pound, and the meafure of a Foot. Thus the weight and quantity of a folid foot fetled, it is eafie for Arithmeticians to give the contents of Veffels or Bodies which contain Liquids.
12.

To find the Charge that a Veffel may carry, as Ships, Boats, or \{ucb-like.

THis is generally conceived, that a Veffel may carry as much weight as that Water weigheth which is equal unto the Veffel in bignefs, in abating only the weight of the Voffel: We fee that a Barrel of Wine or Water calt into. the Water, will not fink to the bottom, but fwim eafily; and if a Ship had not Iron and other ponderofities in It, it might fwim full of Water without finking: In the fame manner if the Veffel were loaden witheead, fo much hould the Wa-

200 \$9atbematical Rectration:

ter weigh: Hence it is that Marinerscall Ships of 50000 Tuns, becaufe they may contain one or 2000 Tun, and fo confequently carry as much. *

I3.

How comes it that a Sbip baving Safely failed in the vaft Ocean; and being come into the Port or Harbour, zoithout any tempeft woill fink doron right?

THe caufe of this is, That a Veffel may carry more upon fome kind of Water than upon other; now the Water of the Sea is thicker and heavier than that of Rivers, Wells, or Fountains ; therefore the loading of a Veffel which is accounted fufficient in the Sea, becomes too great in the Harbour, or Sweet Water. Now fome think that it is thedepth of the Water that makes Veffels more eafie to fwim, but it is an abufe: for if the loading of a Ship be no heavier than the Water that would occupy that place, the Ship fhould as eafily fwim upon that Water, as if it did fwim upon a thoufand fathom deep of Xater; and if the Water be no thicker than, leaf of Paper, and weigheth but an ounce under a heavy body, it will fupport it, as well as if the Water under it weighed ten thoufand pound weight: Hence it is, if there be a Veffel capable of a little more than a thoufand pound weight of, Water, you may put into this Veffel a piece of Wood which Thall weigh a thoufand pound weight; (but lighter in his kind than the like magnitude of water)

@gatbentatical Recteation: 201

for then pouring in but a quart of Water, or a very little quantity of Water, the Wood will fwim on the top of it, (provided that the Wood touch not the fides of the Veffel) which is a fine Experiment, and feems admirable in the performance.

14.

Hono a grof Body of Metal may froim upox the Water.

THis is done by extending the Metal into a thin Plate, to make it hollow in form of a Veffel; fo that the greatnefs of the Veffel which the air with it containeth, be equal to the magnitude of the Water, which weighs as much as it, for all Bodies may fwim without finking, if they occupy the place of Water equal in weight unto them, as if it weighed 12 pound, it muft have the place of 12 pound of Water : Hence it is that we feefloating upon the Water great Veffels of Copper or Brafs, when they are hollow in form of a Caldron. And how can it be otherwife conceived of Illands in the Séa, that fwim and float? Is it not that they are hollow and fome part like unto a Boat, or that their Earth is very light and fpongeous, or having many Concavities in the Body of it, or much Wood within it.

And it would be a pretty propofition to thew how much every kind of Metal Thould be inlarged to make it fwim upon the Water: which

202 seatyematical æefreation.

which doth depend upon the proportion that is between the weight of the Water and each Metal. Now the proportion that is between Metals and Water of equal magnitude, according to fome Authors, is as followeth:
A magnitude of 10 pound
weight of Water will
require for the like mag
nitude of $\begin{cases}\text { GOLD } & 1874 \\ \text { LEAD } & 16 \frac{1}{2} \\ \text { SILVER } & 164 \\ \text { COPPER } & 91 \\ \text { IRON } & 8 \mathbf{1} \\ \text { TINNE } & 75\end{cases}$

From which is inferred, That to make a piece of Copper of 10 pound weight to fwim, it mult be made fo hollow that it may hold 9 times that weight of Water, and fomewhat, more, that is to fay 9 pound: Seeing that Copper and VVater of like magnitades in their ponderofities, are as before, as roto 9 I.

15.

How to weigh tbe lightreeß of the Air.

PLace a Ballance of wood turned upfide down into the water, that fo it may fwim, then let water be inclofed within fome body, as within a Bladder or fuch-like, and fuppofe that fuch a quantity of Air hould weigh one pound, place It under one of the Ballances, and place under the other as much weight of lightnefs as may counter-ballance and keep the other Ballance that

gatirnatical Recteation.

it rife not out of the water : by which you thall fee how much the lightnefsis.

But without any
Ballance do this : Take a Cubical hollow Veffel, or that which is Cylindrical, which may fwim on the water, and as it finketh by placing
 of weights upon it, mark how much, forthen if you would examine the weight of any body, you have nothing to do but to put it into this Veffel, and mark how deep it finks; for fo many pound it weighs as the weights put in do make it fo to fink.
16.

A Body being given, to mark it about, cud feero boro much of it poill fink in the Water, or fwim above the Water.

THis is done by knowing the weight of the Body which is given, and the quantity: of Water, which weighs as much as that body ; for then certainly it will fink fo deep, until it occupieth the place of that quantity of Water:

204. ©athematical Recteation:

$$
17 .
$$

> To find bose mucb feveral Metals or other Bodies do reeigh lefs in the Water than in the Air.

TAke a Ballance, and weigh (as for example) 9 pound of Gold, Silver, Lead, or Stone, in the Air, fo it hang in aquilibrio; then coming to the Water, take the fame quantity of Gold, , vilver, Lead or Stone, and let it foftly down into it, and you thall fee that you thall need a lefs Counterpoife in the other Ballance to counter-ballance it: Wherefore all Solids or Bodies weigh lefs in the Water than in the Air, aud fo much the lefs it will be, by how much the Water is grofs and thick becaule the weight finds a greater refiftance, and therefore the Water fupports more than Air; and further becaufe the Water by the ponderofity is difpleafed, and fo ftrives to be there again, preffing to it, by reaion of the other Waters that are about it, according to the proportion of his weight. Archimedes demonftrateth, that all Bodies weigh lefs in the VVater (or in like Liquor) by how much they occupy place : and if the VVater weigh a pound weight, the magnitude in the VVater fhall weigh a pound lefs than in the Air.

Now by knowing the proportion of water and Metals, it is found that Gold lofeth in the Water the 19 part of his weight, Copper the 9 part, Quickfilver the 15 part, Lead the 12 part, Silver the 10 part, Iron the 8 part, Tin the 7 part and
and a little more : wherefore in material and $a b$ folute weight, Gold in refpect of the Water that it occupieth weigheth 18 and $\frac{3}{4}$ times heavier than the like quantity of Water, that is, as $18 \frac{3}{4}$ to the Quickfilver 15 times, Lead 1 I and $\frac{3}{5}$, Silver 10 and $\frac{2}{3}$, Copper 9 and $\frac{1}{10}$, Iron 8 and $\frac{1}{2}$; and Tin 8 and $\frac{1}{3}$. Contrarily in refpect of greatnefs, if the Water be as heavy as the fold, then is the Water almoft 19 times greater than the magnitude of the Gold, and to youmay judge of the reft.

18.

Howe is it that a Ballance baving like weight in each Scale, and banging in æquilibrio in the Air, being placed in another place, (woitbout removing any woeigbt) it (Ball cea/e to bang in æquilibrio fenfibly, yea by a great difference of weigbt?

THis is eafie to be refolved by confidering different Metals, which though they weigh equal in the Air, yet in the Water there will be an apparent difference ; as fuppofe fo that in the Scale of each Ballance be placed eighteen pound weight of feveral Metals, the one Gold, and the other Copper, which being in aquilibrio in the Air, placed in the Water will not hang fo, becaufe that the Gold lofeth near the eighteenth part of his weight, which is about one pound, and the Copper lofeth but his ninth part, which is two pound : wherefore the Gold in the

206 Mathentatical Rectceation.

water weigherh but 37 pound, and the Copper I6 pound, which is a difference moft fenfible to confirm that point.

19.

Io Shers on Waters are beavier one than anotber, and bow much.

PHyficians have an efpecial refpect unto this, judging that water which is lighteft is moft healthful and medicinal for the Body, and 'Seamen know that the heavieft waters do bear moft. dind it is known which water is heavieft thus: Take a piece of Wax, and faften Lead unto it; pr fome fuch-like thing, that it may but precifely Wim, for then it is equal to the like magnitade of water, then put it into another Veffel which hath contrary water, and if it fink, then is that water lighter than the other : But if it fink not fo deep, then it arguech the water to be heavier or more groffer than the firft water; or one may take a piece of Wood, and mark the quantity of finkjing of it into feveral waters, by which you may judge which is lighteft or heavieft, for in that which it finks moft, that is infallibly the lighteft, und fo contrarily.

Hovo to make a pound of Water woeigh as mucb as $10,20,30$, or 100 pound of Lead ; nay as much as 1000 or 10000 pound rpeigbt.

THis Propofition leems very impoffible, yet Water inclofed in a Veffet, being conftrained to dilate it felf, doth weigh for much as though there were in the concavity of it a folid body of Water.

There are many ways to experiment this Propolition, but to verifie it, it may be fufficient to produce two excellent ones onely: which had they not been really acted, little credit might have been given unto it.

The firf way is thus: Take a Magnitude which takes up as much place as 100 or 1000 pound of Water, and fuppofe that it were tied to fomething that it may hang in the Air; then make a Ballance that one of the Scales may inviron it, yet fo that it touch not the fides of it, but leave fpace enough for one pound of Water: Then having placed 100 pound weight in the other Scale; throw in the Water about the Magnitude, fothat one pound of Water thall weigh down the 100 pound in the other Ballance.

The fecond way is yet more admirable: Take a common Ballance that is capable to receive 10 or 20 pound of Water, then put into it a magnitude which may take up the place of 9 or of pound

208. Seatbenaticaliarcteation.?

of water, which muft be hungat fome Iron or beam which is placed in a wall; fo that it hang quiet : (now it is not material whether the magnitude be hollow or maffie) fo that it touch not the Balance in which it is putfor then having put the Lead or Weight into the other Ballance, pour in a pound of.Water into the Ballance where the Magnitude is, and you thall fee that this one pound of Water fhall counterpoife the 10 or 20 pound of Lead which is fet in the other Ballance ${ }^{\circ} . .$.

PROBLEM LXXXVI.

Of fundry Queftions in $A R I T H M E T I C K$

And firft of tbe Number of Sawds.

ITmay be faid incontinent, that to undertake this were impoffible, either to number the Sands of Lybia, or the Sands of the Sea; and it was this that the Poets fung, and that vvhich the Vulgar believes; nay, that vuhich long ago certain Philofopkers to Gelon King of Sicily reported, that the grains of Sand vvere innumerable a But I anfverer vvith Arcbimedes, that not onely.
one may nuber thofe which are at the border, and about the Sea, but thofe which ate able to fill the whole world, if there were nothing elfe but Sand, and the grains of Sands admitted to be fo fmall, that 10 may make but one grain of Poppy: for at the end of the account there need not to exprefs them but this number 30840979456, and 35 Cyphets at the end of it. Clavius and Arcbimedes make it fomewhat more, becaufe they make a greater Firmament than Ticho Brabe doth; and if they augment the univerfe, it is ealie for us to augment the number, and declare affuredly how many grains of Sand there are requifite to fill another World, in comparifon that our vifible World wete but as one grain of Sand, an atom, or a point; for there is nothing to do but to multiply the number by it felf, which will amount to 90 places, whereof twenty are thefe: 95143798134910955936 , and 70 Cyphers at the end of it, which amounts to a molt prodigious number, and is eafily fupputated: for fuppofing that a grain of Poppy doth contain 10 grains of Sand, there is nothing but to compare that little bowl of a grain of Poppy; with a bowl of an inch or of a foot, and that to be compared with that of the Earth, and then that of the Earth with that of the Fizmament, and fo of the reft.

Divers Metals being melted together in one body, to find the mixture of them.

THis was a notable Invention of Archimedes, related by Vitruzius in his Architecture, where he reporteth that the Goldfmith which King Hiero imployed for the making of the Golden Crown which was to be dedicated to the Gods, had ftolen part of it, and mixed Silver in the place of it: The King fufpicious of the work propofed it to Arebimedes, if by Art he could dif: cover without breaking of the Crown, if there had been made mixture of any-other Metal with the Gold. The way which he found out was by bathing himfelf; for as he entred into the Veffel of Water (in which he bathed himself) fo the Water afcended or flew out overit; and as he pulled outhis Bedy; the Water defcended: from which he gathered that if a Bowl of pare cold, Silver, or other Metal, were caft into a Veffel of Water, the water proportionally, according to the thing caft din, would afcend; and fo by way of Arithmetick the Queftion lay open to be refolved: who being fo intenfively taken with the Invention, leaps out of the Bath all naked, crying as a man tranfported, I bave found, I bave found, and fo difcovered it.

Now fome fay that he took two Maffes, the one of pure Gold, and the other of pure Silver; each eqwial to the weight of the Crown, and therefore unequal in magnitude or greatnefs ; and then knowing
krowing the feveral quantities of water which was anfwerable to the Crown, and the feveral Mafles, he fabtilly collected, that if the Crown occupied more place within the water than the Mais of Gold did, it appeared that there was Silver or other Metal melted with it. Now by the Rule of Pofition, Suppofe that each of the three Maffes weighed 18 pound apiece, and that the Mafs of Gold did occupy the place of one pound of water, that of Silvera pound and a half, and the Crown one pound and a quarter onely: Then thus he might operate: The Mars of Sitver which weighed 18 pounds, caft into the Water, did caft out half a pound of water more than the Mafs of Gold which weighed ' 8 pound; and the Crown which weighed alfo is pound, being put into a Veffel full of wateg, threw out more water than the Mafs of Gold bu a quarter of a pound, (becaufe of mixt Metal which was in itt) therefore by the Rule of Proportion, If half a pound of water (the Excefs) be an(wierable to is pound of Silver, one quater of a pound of Excefs fhall be anfwerable to 9 pound of Silver, and fo much was mixed in the Crowns

Some judgethe way to be more facil by weighing the Crown firf in the air, then in the water; in the air it weighed 18 pound, and if it were pure Gold, in the water it would weigh but 17 pound; if it were Copper it would weigh but 16 pound; but becaufe we will fuppofe that Gold and Copper is mixed together, it will weigh lefs than 17 pound, yet more than 16 pound, and that according to the proportion mixed : let it then be fup-

212 satbentatical frefteation.

pofed that it weighed in the water 16 pound and 3 quarters, then might one fay by proportion, If the difference of one pound of lofs (which isbetween 16 and 17) be anfwerable to 18 pound, to what thall one quarter of difference be anfwerable to, which is between 17 and 16^{2}, and it will be 4 pound and a half, aird fo much Copper was mixed with the Gold.

Many men have delivered fundry ways to refolve this propofition, fince Arcbimedes invention, and it were tedious to relate the diverfities.

Baptijta Beredicitus, amongft his Arithmetical Theorems, delivers his way thus: if a Mafs of Gold of equal bignefs to the Crown, did weigh z'o pound, and another of Silver, at a capacity or bignefs at pleafure, as fuppofe did weigh 12 pound, the Grewn or the mixt body would weigh more than the Silver, and leffer than the Gold: Suppofeit weighed 16 pound, which is 4 pound lefs than the Gold by 8 pound; then one may fay, If 8 pound of difference come from 12 pound of Silver, from whence comes 4 pound, which wlll be 6 pound, and fo much Silver was mixed in it, or.
3.

Three men bought a quantity of Wine, each paid alike, and each woss to bave alike, ; it bappened at the laft partition that there wpere 21 Barrels, of wobich 7 were full, 7 weere balffull, and 7 empty, hows mult they fhare tbe Wine and V 'effels, zbat eacl bave as many Veffels one as another, and as. mucb Wine owe as anotber?

THis may be anfwered two ways as followeth, and rhere numbers, 2, 2,3 , or $3,3,1$, may ferve for direction, and fignities that the firft perfon ought to have 3 Barrels fulland as many empty ones, and one which is half full; fo he thall have 7 Veffels, and 3 Barrels and an half of Li quor; and one of the other thall in like manner have as much, fothere will remain for the third man i Barrel full, 5 which are half full, and I empty, and fo every one thall have alike both in Veffels and Wine. And generally to anfwer fuch Queftions, divide the number of Veffels by the number of perfons, and if the Quotient be not an intire number, the Queftion is impolible; but - when it is an intire number, there mult be made as many parts as there are 3 perfons, feeing that each part is lefs than the half of the faid Quotient: as dividing 21 by 3 there comes 7 for the Quotient, which may be parted in thefe 3 parts, $2,4,3$, or $3,3,1$, each of which being lefs than half of 7

$4 \cdot$

There is a Ladder mbicb Itands uprigbt againft a Wall of 10 foo big , the foot of it is pulled out \bar{B} foot from the Wa ll apon the Pavement: How thucb Bath the top of the Laider defcended?
T Heanfwer is, 2 foot : for by Pytbagaras Rule the fquare of $D B$, the H jpotbenujal is equal
 to the fquare of $D A$ 6, and AB 10. Now If D A be' 6 foot, and $A B$ to foot, the Tquares are 36, and 100, which 36 taken from ioo, refts 64, whorérobt-quadrate is 8 , fo the foot of the Ladderbeing now at D, the top will be at C, two foot lower than it was when it was at B.

FR OBLEM LXXXII.

Witty Suits or De bates betiveen Caius añid Sémpronus, upon tbe forme of Fry tricians call Ifoperimetcis, bo dquat on circhit or compafs.

MArvel not at it, if Foakec the Mathematicks take place at the Bar, and if in et - forth' here Bartoleus, 'who witneffeth of himfelf, Google
that being then an ancient Doctor in the Wawn, he himfelf took upon him to learn the Elements and Principles of Geometry, by which he might fet forch certain Laws touching the divilions of Fields, Waters, Illands, and other incident places: Now this hall be to thew in paffing by, that thefe Sciences are profitable and behoveful for Judges, Counfellors, or fuch, to explain many things which fall out in Laws, to a avoid ambigquities, contentions, and fuits often,

Tho firf Incident.

CAius had a Field which was directly fquare, having 24 meafures in circcuit, that was: 6 on each fide: Sempronius defiring to fit himfelf, prayed Caius to change with him for a field which Thould be equivalent unto his, and the bargain being concluded, he gave him for Counter-change a piece of Ground which had juft as much in circuit as
 his had, but it was not fquare, yet Quadraugular and Rectaugled, having 9 meafures in length for each of the two longeft tides, and 3 in breadth for each fhorter fide: Now Caius-which was not the moff fubtilleft nor wifeft in the world, accepted his bargain at the firft, but afterwards having conferred with a Land-meafiuxer and Mathermatician, found that

216 mathenatical Recteation.

he was over-reached in his bargain, and that his Field contamed 36 fquare meafures, and the qther Field had but 27 meafures, (a thing eafe to be known by multiplying the length by the breadth) Sempronius contefted with him in fuit of Law, and argued that Figures which have equal Pcrimeter, or Circuit, are equal amongft themfelves: My Field, faith he, hath equal circuit with yours, therefore it isequal unto it in quantity. Now this was fufficient to delude a Judge which was ignorant in Geometrical Proportions, but a Mathematician will eatily declare the deceit, being affured that figures which are Ifoperemiter, or equal in circuit, have not always equal capacity or quantity : feeing that with the fame circuit there may be infinite figures made, which thall be more and more capable; by how much they have more Angles, equal fides, and approach nearer unto a Circle, (which is the moft capableft Figure of all) becaule that all his parts are exterided one from another, and from the middle orcentre as much as may be: fowe fee by an infallible Rule of Experience, that a Square is more capable of quantity, than a Triangle of the fame circuit, and a Pentagone more than a Square, and foo others, fo that they be regular Figures that have their fides equal ; otherwife there might be that a reffular Triangle having 24 meafures in circuit, might have more capacity than a reetangled Pa ralellogram, which had alfo 24 meafures of circuit, as if it were $I I$ in length, and I in breadth, the circuit is fill 24, yet the quantity is but in; and if it had 6 every way, it gives the fame

Sgathematical Recteation:

217
Perimeter, viz. 24, but aquantity of 36 , as before.

The Second Incident.

Empronius having borrowed of Caius a Sack of S Corn, which was 6 foot high, and 2 foot broad, and when there was queftion made to repay it, Sempronius gave Caius back two Sacks full of Corn which had each of them 6 foot high,and Ifoot broad : who believed that if the Sacks were full, he was repaid; and it feems to have an appearance of truth, barely looked on. But it is moft evident in demonftration, that the 2 Sacks of Corn paid by Sempronius to Caiius, is but half of that one Sack which he lewt him: for a Cy linder or Sack having one foot of diameter and 6 foot of length, is but the fourth part of another Cylinder, whofe length is 6 foot, and his diameter is 2 foot : therefore two of the leffer Cylinders or Sacks is but half of the greater; and fo Caius was deceived in half his Corn.

The Third Incident.

SOme one from a common Fountain of a City hath a Pipe of Water of an inch diameter; to have it more commodious he hath leave to take as much more water; whereupon he gives order that a Pipe be made of two inches diameter. Now you will fay prefently, that it is realon to be fo big, to have jult twice as much

2.8 Smathentatical Mescterationt.

 much water as he had before: but if the Magiftrate of the City underftood Geometrical Proportions, he would foon caufe it to be amended, and thew that he hath not onely taken twice as much water as he had before, but four times as much: for a circular hole which is two inches diameter, is four times greater than that of one inch, and therefore will caft out four times as much water as that of one inch, and fo the deceit is double alfo in this.

Moreover, if there were a heap of Corn of 20 foot every way, which was borrowed to be paid next year : the party having his Corn in heaps of 12 foot every way, and of iafoot every way, proffers him 4 heaps of the greater, or 7 heaps of the leffer, for his own heap of 20 every way, which was lent : Here it feems that the proffer is fair, nay with advantage, yet the lols would be near 1000 foot. Infinite of fuch cau-' fes do arife from Geometrical Figures, which areable to deceive a Judge or Magiftrate, which is not fomewhat feen in Matbematical Doouments.

PR OBLEM LXXXVIII.

Containing Jundry Quetions in mattor of Cofrrograpby.

FIrf, It may be demanded where is the middle of the World ?'I fpeak nothere Mathematically, but as the vulgar People, who ask, Where is the middle of the World? In this fence to fpeak abfolutely there is no point which may be faid to be the middle of the furface;for the middle of a Globe is every where : notwithfanding the Holy Scriptuxes fpeak refpectively, andmaze mention of the middle of the Earth, and theImterpreters apply it to the City of Ferufalem, placed in the middle of Paleftina, and the habitable world, that in effect taking a Mapof the World, and placing one foot of the Compaffes upon Fe_{-} rufalem, and extending the other foot to the extremity of Europe, Affa, and Africa, you thall fee that the City of ferufalem is as a Centre to that Circle.

How much is the depth of the Earth, the beighe of the Heavess, and the compafs of the World?

FRom the furface of the Earth unto the Centre according to ancient traditions, is 3,436 miles, fo the whole thicknefs is 6872 miles, of which the

220 פ@athematical Reccration.

the whole compafs or circuit of the Earth is 21600 miles.
From the Centre of the Earth to the Moon there is near 56 Semidiameters of the Earth, which is about 192416 miles : unto the Sun there is 1142 Semidiameters of the Earth, that is in miles 3924912 ; from the flarry firmament to the Centre of the Earth there is 14000 Semidiameters, that is, 48184000 miles, according to the opinion and obfervation of that learned 7 Icloo Brabe.

From thefe meafures one may colleet by Arithmetical fupputations, many pleafant propofitions in this manner :

Firt, If you imagine there were a hole through the Earth, and that a Mill-ftone Thould be let fall down into this hole, and to move a mile in each minute of time, it would be more than two days and a half before it would come to the Centre, and being there it would hang in the Air.

Secondly, If a man thould go every day 20 miles, it would be three years wanting but a fortnight, before he could go once about the Earth; and if a Bird fhould fly round about it in two days, then muft the motion be 450 miles in an hour.

Thirdly, The Moon runs a greater compas each hour, than if in the fame time the thould sun twice the Circumference of the whole Earth.

Fourthly, Admit it be fuppofed that one fhould go twenty miles in afcending towards the Hea-
vens every day, he fhould be above fifteen years, before he could attain to the Orb of the Moon.

Fifthly, The Sun makes a greater way in one day than the Moon doth in 20 days, becaufe that the Orb of the Suns Circumference is at the leaft twenty times greater than the Orb of the Moon.

Sixthly, If a Mill-ftone fhould defcend from the place of the Sun a thoufand miles every hour, which is above 15 miles in a minute, far beyond the proportion of motion) it would be above 163 days before it would fall down to the Earth.

Seventhly, The Sun in his proper Sphere moves more than feven thoufand five hundred and feventy miles in one minute of time : now there is no Bullet of a Cannon, Arrow, Thunderbolt, or Tempeft of Wind that moves with fuch quicknefs.

Eighthly, It is of a far higher nature to confider the exceeding and unmoveable quicknefs of the ftarry firmament, for a Starbeing in the压quator, (which is juft between the Poles of the World) makes 12598666 miles in one hour, which is two hundred nine thoufand nine hundred and feventy four miles in one minute of time: and if a Horfeman thould ride every day 40 miles, he could not ride fuch a compafs in a Thoufand Years, as the Starry Firmament moves in one hour, which is more than if one thould move about the Earth a thoufand times in one hour, and quicker than poffible thoughe

221 פ9athentatical izectratione'
can be imagined : and if a Star fhould fly in the Air about the Earth with fuch a prodigious quicknefs, it would burn and confume all the World here below. Behold therefore how time pafféth, and death hafteth on: This made Copernicus not unadvifedly to attribute this motion of Primum mobite to the Earth, and not to the farry Firmament; for it is beyond humane fenfe to apprehend or conctive the rapture and violence of that motion, being quicker than thought; and the Word of God teftifieth that the Lord made all things in Number, Meafure, Weigbt, and Time.

PROBLEM XCII.

Ta find the Biffextile-Year, the Dominical-Letter, and the Letters of the Month.

LEt 123, or 124, or 125 , or 26 , or 27 , (which is the remainder of 1500 , or 1600) be divided by 4 , which is the number of the Leap-year, and that which remains of the divifion thews the Leap-year; as if one remain, it thews that it is the firft year fince the Biffextil or Leap year; if two, it is the fecond year, etc. and if nothing remain, then it is the Biffextile or Leap-year: and the Quotient fhews you how many Biffextiles or Leap-years, there are contained info many yearso

To find the Circle of the Sun by the Fingers.

LEt 123, 24, 25, 26, or 27, be divided by 28, (which is the Circle of the Sun, or whole revolution of the Dominical Letters) and that which remains is the number of Joynts which is to be accounted upon the Fingers, by Filizs efto Dei, calum bonus accipe gratio : and where the number ends, that Finger fheweth the year which is prefent, and the words of the Verfe thew the Dominical Letter.

Example.

DIvide 123 by 28 for the year (and fo of other years) and the Quotient is 4 , and there remaineth 11 , for which you maft account in words: Filius efto Dei, bcc. upon the Joynts, beginning from the firft joynt of the Index, and you thall have the anfwer.

For the prefent to know the Dominical Letter for each month, account from fanmary unto the month tequired, including Fanuary, and if there be $8,9,7$, or 5 , you muft begin upon the end of the Finger from the Thumb, and account, Adam degebat, evc. as many words as, there are months, for then ore fhall have the J'etter which begins the month; then to know what day of themonth it is, fee how many times 7 is comprehended in the number of days, and take the reft, Cuppofe 4, account upon the firft finger within and without by the joynts, unto the number of 4 , which ends

224 gBathematical 及ecteation.
at the end of the Finger : from whence it may be inferred that the day required was Wedneflay, Sunday being attributed to the firft Joynt of the firft Finger or Index: and fo you have the prefent year, the Dominical Letter, the Letter which begins the Month, and all the days of the Month.

PROBLEM XCIIII.

To find tbe New and Full Moon ineach Montb.

ADd to the Epact for the year the Month from Marck, then fubtract that furplufs from 30, and the reft is the day of the Month that it will be New Moon, and adding unto it 14, you fhall have that Full Moon.

Note.

THat the Epact is made always by adding II unto 30 , and if it pafs 30 , fubtract 30, and adde 11 to the remainder, and fo ad ingnitum: as if the Epact were 12, add II to it, makes 23 for the Epact next year, to whichadd 11 makes 34, fubtract 30, refts 4 the Eipatt for the year after, and 15 for the year following that, and 26 for the next, and 7 for the next, foc.

PROBLEM XCIV.

To find the Latitude of a Countrey.

IHofe that dwell between the North-Pole and the Iropick of Cancer, have their Spring and Summer between the 10 of Marcb and the 13 of September: and therefore in any day between that time, get the Suns diftance by inffrumental obfervation from the Zenith at noon, and add the declination of the Sun for that day to it : So the Aggregate theweth fuch is the latitude orPoles height of that Countrey. Now the declination of the Sun for any day is found out by Tables calculated to that end : or Mechanically by the Globe, or by Inftrument it may be indifferently had. And here note, that if the day be between the 13 of September and the Io of March, then the Suns declination for that day muft be taken out of the diftance of the Sun from the Zenith at noon.: fo fhall you have the Latitude, as before.

PROB $\dot{L} E M$ XCV.

Of the Climates of Countreys, and to find woibat Cliz mate any Countrey is under.

CLimates as they are taken Geographically fignifie nothing elfe but when the length of the ngelt day of any place, is half an hour

226 Mathermaticat ircteation.

longer or fhorter than it is in another place, (and fo of the fhorteft day) and this account to begin from the Equinoctial Circle, feeing all Countreys under it have the Chorteft and longeft day that can be but 12 hours; But all other Countreys that are from the Equinoctial Circle either towards the North or South of it unto the Poles themfelves, are faid to be in fome one Climate or other; from the Equinoctial to either of the Poles Circles, (which are in the Latitude of 66 deg. 30 min.) between each of which Polar Circles and the Equinoctial Circle there is accounted 24 Cli mates, which differ one from another by half an hours time : then from each Polar Circle teagh Pole there are reckoned 6 other Climates which differ one fromanother by a monthstime: fothe whole Earth is divided into 60 Climates, 30 be. ing allotted to the Northern Hemilphere, and ge to the Southern Hemifphere. And here note, that though thefe Climats which arebetyrean the Equinoctial and the Polar Circles are equal one unto the other in refpect of time, to wit, by half an hour ; yet the Latitude, breadth, or intermal, contained between Climate and Climate, is not equal: and by how much any Climate is farther from the Equinoctial than anpther Climate, by fo much the leffer is the internal between that Climate and the next: fo thofe that are nearef the Equinoctial are largeft, and thofe which are fartheft off moft contracted: and to find what Climate any Country is under, fubtract the length of an Equinoctial day, to wit, ie hours,from the length of the longeft day of that Countrey, the remain.
rettlainder betiag doubled thews the Clinate: So at'London the longeft day is near 36 hours and a half; 72 takenfromit, there remairis 4 hours and a half, which donbled makes q half hours, that is, 9 Climates; fo London is in the 9 Clinate.
; PROBLEM XCVI.
Of Longitude and Latitude of the Tartb, and of the Stars.

LOngitude of a Countrey or place, is an Arck of the 开quator contained between the Meridian of the Azores, and the Meridian of the place, and the greateft Longitude that can be is 360 degrees.

Note, That the firt Meridian may be talken at pleafure upon the Terreftrial Globe or Map, for that fome of the ancient Aftronomers'sould have it at Hercules Pillars, which is at the ftraights at Gibraltar: Ptolomry placed it at the Canary IMands, but now in thefe latter times it is held to be near the Azores. But why it was fifft placed by ftolon my at the Cakary IJlands; was, besaufe that in his. rime thefe Iflands were the fartheft Weftern parts of the World hat was then difcovered. And why it retains his place now at St. Micbaels near the Azores, is that becaufe of many accurate obfervations made of late by many expert Navigators and Mathematicians, they have found the Needle there to have no vatiation, but to point North and South: that is, to each Pole of the

228 Sadthematical Rectration.
World: And why the Longitude from thenceis accounted Eaftward, is from the mation of the Sun Eaftward; or that Ptolemy and others did hold it more conyenient to begin froth the Weftern part of the world, and fo account the Longitude Eaftward from Country to Country that Was then known, till they came to the Eaftern part of Afia, rather than to make a beginning upon that which was unknown: and having made up their account of reckoning the Longitude from theWeftern part to the Eaftern part of the world known, they fuppofed the reft to be all Sea, which fince their deaths hath been found almoft to be another habitable World.

To find the Longitude of a Countrey.

IFit be upon the Globe, bring the Countrey to the Brafen Meridian, and whatfoever degree that Meridian cuts in the Equinoctial, that degree is the Longitude of that Place. If it be in a Map, then mark what Meridian paffech overit, fo have you the Longitude thereof; if no Meridian pafs overit, then take a pair of Compaffes, and meafure the diftance between the Place and the next-Meridian, and apply it to the divided Parallel or Etquator, fo have you the Longitude required.

Of the Latitude of Countreys.

LAtitude of a Countrey is the diftance of a Countrey from the Equinoctial, or it is an Ark of the Meridian contained between the Ze nith of the place and the 压quator, which is twofold, viz. either North-Latitude, or South-Lati-
tude, either of which extendeth from the Equinoctial to either Pole; fo the greateft Latitude that can be is but 90 degrees. If any Northern Couintrey have the Artick Circle vertical, which is in the Latitude of 66 gr .30 m . the Sun wills touch the Horizon in the North part thereof, and the longeft day will be there then 24 hours: If the Countrey have lefs Latitude than 66 gi. 30 m. the Sun will rife and fet, but if it have more Latitude than
 66 gr. 30 m . it will be vifible for many days. And if the Countrey be under the Pole, the Sun will make a circular motion above the Earth, and be vifible for half a year: fo under the Pole there will be but one day and one night in the whole year.

Io find the Latitude of Countreys.

IF it be upon a Globe, bring the place to the Bra fen Meridian, and the namber of degrees which meeteth therewith, is the Latitude of the place: Or with a pair of Compaffes take. the diftance between the Countrey and the Equinoctial, which applied unto the Equi-

Q3 noctial

noctial will lhew the Latitude of thatigountroy, which is equal to the Poles heighto. If it be upan a Map, then mark what Parahel paffeth overthe Countrey, and where it creffeth the Mexidian, that thall be the Latitude: But if no Parallel paf: feth over it, then take the diftance between the place and the next Parallel, which applied so the divided Meridian from that Parallel will Thew the Latitude of that place.

To find the diftance of placer.

1F it be upon a Globe, then with a pair of Come paffes take the diftance between the two Places, and apply it to the divided Meridian or 在quator, and the number of degtees thall thew the diflance, each degree being 60 miles. 'If it be in a Map (according ta Wrizetts projection) take the tiflasce with a paid of Compafles between the two places, and apply this diftante to the divided Meridian on the Map, right againft the two places; fo as many degrees as is contained between the feet of the Compaffes, fo muchlit the diftance hee tween the twa places. If the diffacie of two pla ces be required in a particular Mepor, then withthe Compaffes take the diftance betveen the two plai:ces, and apply itto the Scale of intites,fo, have youm the diftance eft the Scale be woo thort, take the Scale betwectrtheepinpaffes, and apply that to the two places as often as youram, fo have yout the diffance required.

Of the Longitude, Latitude, Declination, and Difance of the Stars.

THeDeclination of a Star is the neareft diftance of a Staz from the © guator; the Latitude of a Star is the nearelt diftance of a Star from the Ecliztick: the Longitude of a Star is an Ark of the Ecliptick contained between the beginning of Aries, and the Circle of the Stars Latitude, which is a Circle drawn from the Pole of the Ecliptick unto the Star, and fo to the Ecliptick. The diffance between two Stars in Heaven is taken by a Crofs-Staff, or other lnftrument; and upon a Glabe it is done by taking between the feet of the Compaffes the two Stars, and applying it to the Equator, fo have you the diftance between thofe two Stars.

Howo is it that twoo Horfes or otber Creatures being faaled or brought fortb into the World at one and the fame time, that after certain days travel, the one lived more days than tbe otber, notroitbffanding they died togetber in one and the Same moment aljo?

THis is eafie to be anfwered: Let one of them travel toward the Weft ${ }_{2}$ and the other towards the Eaft : then that which goes towards the Weft followeth the Sun, and therefore fhall have the day lomewhat longer than if there had been no travel made; and that which goes Eaft, by going againft the Sun thall have the day fhort-

Q4
er,

232 GDathematical Recteation:

er, and fo in refipect of travel, though they die at one and the felf fame hoar and moment of time, the one fhall be older than the other.
From which confideration may be inferred, That a Cbrijfian, a $\mathcal{f c o p}$, and a Saracen may have their Sabbaths all upon one and the fame day, though notwithftanding the Saracen holds his Sabbath upon the Friday, the ferm upon the Saturday, and the Cbritizan upon the Sunday: For being all three refident in one place, if the Saracen and the Cbriftian begin their travel upon the Saturday, the Cbriftian going Weff, and the Saracen Eaftwards, hall compals the Globe of the Earth; thus the Cbriffian at the conclufion Ihall gain a day, and the Saracen thall lofe a day, and fo meet with the Jene feery one upon his own Sabbath,

Certain fine Obfervations.

${ }^{1}$ UNder the Equinoctial the Needle hangs in aquilibrio, but in thefe parts it inclines under the Horizon; and being under the Pole it is thought it will hang vertical.
II. In thefe Countreys which are without the Tropical Circles, the Sun comes Eaft and Weft every day for a half year; but being under the Equinoctial the Sun is never Eaft nor Weft, but twice in the year, to wit, the 10 of March, and the 13 of September.
III. If Shiphe in the Latitude of 23 gr .30 m . that is, if it hath either of the Tropicks vertical; then at what time the Suns Altirude is equal to his diftance from any of the Equirioctial points, then the Sun is due Eaft or Weft.
IV. If a Ship be between the Equinoctial and either of the Tropicks, the Sun will come twice to one point of the Compafs in the fore-noon, that is in one and the fame pofition.
V. Under the Equinoctial near Guinea there is, but two forts of Winds all the year, 6 months a Northerly wind, and 6 months 4 .Soqtherly wind, and the flux of the Sea is accordingly.
VI. If two Ships under the. Equino ctial be 100 leagues afunder, and Ihould fail Northerly until they were come under the Artick Circle, they Thould then be but so leagues afinder.
VII. Thofe which have the Artiok circle vertical, when the Sun is in the Tropick of Cancer, the Sun fetteth not, but toucheth the weffern part of the Horizon.
VIII. If the complement of the Suns height at noon be found equal to the stm- Declination for that day, then the Equinotefit is vertical; ora Ship making fuch an obfervation, the Equinoctial is in the Zenith, or direct over them, by which; Navigators know when they crofs the Line, IR their travels to the Indies, or other parts.
IX. The Sun being in the Equinoctial, the extremity of the Style in any Sun-Dyal upon a Plain maketh a right Line, otherwife it is Ecliptical, Hyperbolical, ơq.
X. When the Chadow of a man, or other thing upona Horizontal Plain, is equal unto it in length then is the Sun in the middle point between the Horizon and the Zenith, that is 45 degrees high.

PRO.

234 9patbematical Rectration

PROBLEM XCVII.

Tomake a Triangle tbat fball bave three rigbt Augles.

OPen the Compaffes at pleafure, and upon \boldsymbol{A} defcribe an ark B C, then at thefame opening place one of the feet in B, and deferibe the Ark AC. Laftly, Place one of the feet of the Compaffes in C, and defcribe the Ark AB. So thall you
 have the Spherical Fquilateral Triangle $A B C$, right angled at A, at B, and at C, that is, each angle comprehended 90 degrees: which can never be in any plain Triangle, whether it be Atquilaterat, 'Ifocelfe, Scaleve, Ortbogonal, or Opigonal.

PROBLEM XCVIII

> To divide a Line in as many equal parts as one nill, witbout Compafes, or witbout feiing of it.

THis Propofition hath a fallacy in it, and cannot be practifed but uponia Maincordion : for the Mathematical Line which proceeds from the flux of a point, cannot be divided in that wife:

One may have therefore an Inftrument which is called Maincordion, becaufe there is but one cord: and if you defire to divide yours line into 3 parts, run your finger upon the frets until you found a third in Muffick: If you would have the foarth part of the Line, then find the fourth found, a fifth, ecc. fo fhall you have the anfwer.

PROBLEM XCX:

 yeis never meet, akajust who iAxiunve of Parallelo.
${ }^{T}$ His is done by helpof a Conocideline, pros duced bya a righe line upon one and the fame plain, held ingreat account amongft the Ancients, and it is drawwadfer this manyer.

Draw a right line infinitely, and upon come end of it, as at I, draw a perpendicular Line I 4, augment if te H_{2}, then from A draw Eines at pleffura tó interfeat the Lide 1 M, in eack of which Eines from the pight Lime $I M$, danisfer $\mathbf{I H}$, viz: AB,LC,
 OD, PE, QD, MAG, then from thofe points draw the line $H B, C D$, E, F, G, which will not meet with the Line $I M$, and yet incline nearer and nearer unto it.

236. M9athematical Lifecteation.

PROBLEM.C.

To obferve the variation of the Compafles, or Needle; is any places.

FIrft defcribea circle upon a plain, fo that the Sun may thine on it both before noon and after noon; in the centre of which circle place a Gnomon or Wire perpendicular, as AB, and an hour before noon mark the extremity of the fhadow of $A B$, which fuppofe it be at C, defcribe a circle at that femidiameter CDF; then after noon mark when the top of the fhadow of AB
 toucheth the circle, which admit in D ; divide the diftance \mathbf{C} D into two equal parts, which fappole at E , draw the line EAF, which is the Mexidian Line, or Line of North and South: Now if the Atk of the circle C.D be divided into degrees, place a Needle' G H upon a plain fet up in the cehtre, and mays how many degrees the point of the Needle G is from E; fo. much doth the Needle vary from the North in that place.

PROBLEM CI.

Hon to find at any time wobich way the Wind is wis ones Cbamber, woitbout going abroad.

UPon the Planking or Floor of a Chamber, Parlor, or Hall where you intend to have this device, let there come down from the top of the Houfe a hollow Poft, in which place an Iron Rod, that it afcend above the Houfe ten or fix foot with a Vane or Scouchen at it to thew the winds without : ànd at the lower end of this rod of iron, place a Dart which may by the moving of the Vane with the Wind without, turn this

Dart which is within : about which upon the Plaifter muft be defcribed a circle divided into the 32 points of the Mariners Compafs, pointed and diftinguihed to that end; then may it be marked by placing the Compals by it: for having noted the North point, the Eaft, erc. it is eafie to note all the reft of the points : and fo at any time coming into this room, you have nothing to do but tolobk up to the Dart, which will point you out what way the Wind bloweth at that inftanta.

PROBLEM Cff.

FIrft draw an obfcure line $G F$, in the middle of it make two points, $A B_{3}$ (which Serves for Centres) then place one foot of the Compaffes in B, and extend the other foot to A, and defribe the Semicircle AC; then place one foot of the Compaffes in A, and extend the other foot to $C_{\text {, }}$ and defcribe the Semicircle CD. Now place the Compaffes in B, and extend the other foot unto D, and defrribe the Semicircle DE, and fo ad infinitum; which being done neatly, that there be
 no right line feen, nor where the Compaffes were placed, will fem very frange. how poffibly it could be drawn with fuch exactnefs, to fuch which are ignorant of that wait.

PROBLEM CILL

To meafure an inacceffible diffance, as tbe breadtb of a River misb tbe help of owes Hat anely.
THe way of this is eafie: for having ones Hat uporrhis Head, come near to the Bank of the River, and holding your Head upright, which

(20athematital netcration:

(which may be by piutting a fmall ftick to fome one of your Buittons to prop up the Chin) pluck down the brim or edge of your Hat until you may but free the: other fide of the water, thentum about the body in the fame pofture that it was before towards fome Plain, and mark where the fight by the brim of the Hat glaunceth on the ground; for the diftance from that place toyour ftanding, is the breadth of the Ríver required.

PROBLEM CIV.

How to meafure a beigbt woitb two Strapos, or two Small Sticks.

TAke ewo Straws or two Sticko,which are one as long as another, and place them at right Angles one to the other, as $A B_{2}$ and $A C_{i}$ then holding $A B$ parallel to the ground, placet the end A to the Eye at A, and looking to the other top B Cat C, by going backward or forward until you may foc the top of the Tower or Tree, which fuppofa at. E. So the diflance from your fanding to the Tower or Tree, is equinal to the height thereof above the leve of of the: Eye: 40 which if you add your own height, you liave the whole: heightasi.

 or other :Workmen ufe; asiza K: L, and placingif to the Eye To that. HK be level, go back, or come nearer, $;$ until that by it you may fee the top M_{I}; for then the diftance from you to the height, is equal to the height.

PROBLEM CV.
Hoow to make Statues, Letters; Bands, oro otberthings ti wobbich are placedidin tbe fide of 'a bigh: Building, to n: be feen belors of ani equal bignefs.

T: Et $B C$ bea Pillar 7 yardshigh, and let it be 1-2. required that 3 yards above the level of the Eye A, ziz. at B. be placed a Globe; and g yards
 above B be placed anothersand 22 yards above that be placed another G bobe: how: much fiall the Diameter of thefe Globes be, that tat the Eyeat A_{3}; they timay alliappear tolle of one and the fame magnitude? It is thus done: Firf draw a - \%i!
line,
line, asAK, and upon K ereCt a perpendicular, KX ; divide this line into ${ }^{2} 7$ parts, $\&$ according to $A K$, defcribe an Ark $K Y_{;}$then from K in the perpendicular KX account 3 parts, viz. at L , which fhall reprefent the former 3 yards, and draw the line L A from L , in the faid perpendicular reckon the diameter of the leffer Globe of what magnitude it is intended to be: Suppofe $\mathbf{S L}$, and draw the line $\mathbf{S A}$, catting the Ark $\mathbf{u K}$, in \mathbf{N}, then from K in the perpendicular account 9 yards, which admit at T, draw $T A$, cutting $Y \mathrm{~K}$ in O , transfer the Ark MN, from A to P, and draw AP, which will cut the perpendicular in \mathbf{u}, fo a line drawn from the middle of $\mathbf{U F}$, unto the vifualLine's $A I$, and $A U$, thall be the diameter of the next Globe: Laftly; Account from K in the perpendicular $\times \mathbb{K} 22$ patts, and draw the line $W \mathrm{~A}$, cutting Y \& in Q, then take the Ark M N, and transfer it from Q to R, and draw AR, which will cut the perpendicular in X , fo the line which paffeth by the middle of X.W perpendicular to the vifual line A \mathbf{W}, and A X be the Diameter of the third Globe, to wit 5,6 , which meafures transferred in the Pillar BC, which theweth the true magnitude of the Globes $\mathbf{r}, \mathbf{2}, \mathbf{3}$. From this an Architector doth proportion his Images, and the foldings of the Robes which are moft deformed at the Eye below in the making, yet moft perfect when it is fet in his true height above the Eye;

s.42 \$9atbematical 2Recueationt:

PROBLEM CVI.

Hoto to dijfurife or diafigure an Image, as a Head, un Arm, a aboole Body, \&c. So tjat it hath noproport
 a Swan, the Mouth as a Coacbes entrance, \&c. yei the Eye placed at a certain point nill be feen in a direct and exact proportion.

IWill mot ftrive to fet a Geometrical Figure here, for fear it may feetn roo difficult to underftand, but I will endeavourby difcourfe, how mechanically with a Candle you may perceive it fanfible: firf there mudt be made a figure upon $P a$. per, fach as you pleare, according to his juft proportion, and paint it as a Pioture (which Painters know well eroutsh to do) afterwards put a Candle upon the Table, and interpofe this figure obIquely, between the faid Candle and the Books of Paper, where you defire to have the figure difguifed in fuch fort that the height pafs athwart the hole of the Picture, then will it carry all the form of the Picture upon the Paper, but with deformity; follow thele tracts, and mark out the light with a coals black head or Ink, and you have your defire,

To find now the point where the eye mult fee it in his natural form: it is accuftomed according to the order of Perfpective, to place this point in the line drawn in height, equal to the largenefs of the narroweft fide of the deformed Gquare, and it is by this way that it is performed.

- \quad gathenatical wracationt:

FROBLEM CVII.

How a Cainhow after tbatitit batb Abat, may be coveriad from the battery af the Enemy.

L
Et the mouth of a Cannon be I, the Cannon M, his chaige $\mathcal{N} O$, the Wheel L the $A x k$ tree $P \cdot B_{3}$, upon which the Capnon is placed, at which end towards B_{2} is placed a Pillar A E, fupported with Pr甲ps, $D_{2} C_{2}, E, F G_{2}$ about which the Axdetree tutneth: Now the Cannon being to hoot, it retires to fH, which campot be dicacly; कegakle of the Axletreé, but magkes a fegment of a circle; and hides bimfelf beWind he Wall $2 R$, and 9 preferves it Self from the Ene:
 maies battesy, by which means que may avoid wapy incons chieqces which might axife - and moreower, onepann may morè eafily replace, ic again for another fhot, by helpor Poles tied to the Wall, or other help which may multiply the ftrength.

R 2
$\ddot{P} \mathrm{O}$

244 matbematical Bectration.

PROBLEM CVIII.

Lelow to make a Lever, by wobich one man may alone place a Cannon upon bis Carrigge, or raife what otber meight be scould.

FIrft place two thick boards upright, as the figure fheweth, pierced with holes, alike oppofite one unto another, as $C D$ and $E F$, and let L and M be the two Bars of Iron which pals through the holes, GH and FK he 2 fupports, or
 props, AB the Cannon, OP the Lever, RS the two Notches in the Lever, and \mathbf{Q} the Hook which the Burthen or Cannon is tied to. The reft of the operation is facil, that the youngef Schollars or Learners cannot fail to perform it: to teach Minerva were in vain, and it were to Mathematiciansinjury in the fucceeding Ages.

وatbematical Rectration:

PROBLEM CIX. .

How to make a Clock pithb one onely Wheel.

MAke the body of an ordinary Dyal, and divide the hour in the Circle into 12 parts: make a great wheel in height abpoe the Axletree, to the which you thall place the Cord of your counterpoize, fo that it may defcend, that in 12 hours of time your Index or Needlemay make one Revolution, Which may be known by a Watch which you may have by you: 'then put a Ballance which may

- Aop the courfe of the

 Wheel, and give it a regular motion, and you thall fee an effect as juft from this, as from a Clock with many Wheels.

PROBLEM CX

Hox by belp of two Wheels to máke a CBild to draxo up alone a Hoghead of Water at atime; and being drawn up, fhall caft out it felf into anotbes Veffel, as one roould bave it.

LEt R be the Pit from whence Water is to be drawn, P the Hook to throw out the Watcr when it is brought up, (this Hook muft be R 3
move-

moveable) let $A B$ be the Axis of the wheel $S F$, which wheel hath divers forks of Iron made at G, equally faffened at the whel ; let I be a Cord which isdrawn by K, to make the wheel S to turn, which Wheel S bears proportion to the Wheel T, as 8 to 2 , let N be a Chain of Iron to which is tied the Veffel O, and the other which is in the Pit EF is a piece of wood which hath a mortes in 1 , and 2, by which the Cord I paffeth, tied at the Wall as $K \mathrm{H}$, and the other picce of Timber of the little wheel, as $M A$, mortifed in likewife for the Chain to pals through: Draw the $\operatorname{Cord} I$, by K, and the wheel will turn, and f_{0} confequently the wheel T, which will caufe the
 veffel O to raife; which being empty, draw the Cord again by T, and the other Veffel which is in the Pit will come out by the fame reafon.This is an invention which will fave labour if practiled; but here is to be noted that the Pit muff be latge enough, to the end that it contain two great Veffels to pars up and down one by another.

gathematical decceation.

PROBLEM CXI.

To make a Ladder of Cords wobich may be carried in ones Pocket, by wobich oxe may eafly mount up a Wrall or Iree alones

TAke two Pullies, A and D, unto that of A ket there be faftened a Cramp of Iron, $^{\text {as }} B$, and at D let there be faftened a Staff of a foot and an half long; as F, then the Pully A : place a hand of Iron, as E, to which tie a cord of an half inch thick, (which may be of Silk beçafe it is for the pocket) then ftrive to make faft the Pully A, by the help of the Cramp of Iron B, to the place that you intend to fcale; and the Staff F being tied at the Pully D, put it between your legs as though you would fit upon it : then holding the cord C in your hand, you may guide your felf to the place required: wch may be made more facil by the multiplying of Pullies. This fecret is moft excellentin War,and for Lovers; its fup-
 portablenefs avoids iuficion.
R_{4} - PRO.

248 @athematical Recteation:

PROBLEM CXII.

How to make a Pump whofeftrength is marvellous by reafon of the great poeight of Water that it is able to bring up at once, and fo by continuance.

LFt $\alpha \beta y \delta$ be the height of the cafe about 2 or 3 foot high, and broader according to difcretion : the reft of the cafe or concavity let be O, let the Sucker of the Pump which is made be juft for the cafe or Pump's head, $\alpha \beta y \delta$, and may be made of Wood or Brafs of 4 inches thick, having a hole at E, which defcending raifeth up the cover P, by which iffueth forth the water, and afcending or raifing up, it fhuts it or makes it clofe:

$R S$ is the handle of the Sucker, tied to the handleTX, which works in the poft V Z : Let A, B, C, D, be a pieçe of $B r a f s, G$ the piece which enters into the hole to F, to keep out the Air; H, I, K, L, the piece tied at the funnel or pipe: in which plays the Iron Rod or Axis G, fo that it pals through the other piece $M N$, which is tied with the end of the Pipe of Brafs.

Note, That the lower end of the Ciftern ought to be refted upon a Gridiron or Iron Grate, which may be tied in the Pit, by which means lifting up and putting down the handle, you may draw ten times more water thap otherwife you cold.

matbematical Rectuation:

PROBLEM CXIII.

How by means of a Ciffern to make Water of a Pit continually to afcend roitbout ftrength, or the alf §̧ance of any otber Pump.

LEt $I L$ be the Pit where one would caufe water to afcend continually to each office of a houfe, or the places which are feparated from it: let there be made a Receiver, as A, well clofed up with Lead or other matter, that Air enter not in, to which faften a Pipe of Lead, as at E, which may have vent at pleafure, then let there be made a $\mathrm{Ci}-$ ftern, as B, which may be communicative to A, by help of the pipe G, from which Ciftern B, may iffue the water of Pipe \boldsymbol{D}, which may defcend to H, which is a Iittle be- ${ }^{T}$ low the level of the water of the pit, as much as is $G H$, to the end of which fhall be foldered clofe a cock which hall caft out the water by $K H$.
 Now to make ufe of it, let B be filled full of water, and when you would have it run, turn the Cock, for then the water in B will defcend by K, and for fear that there fhould be vacuity, Nature which abhors it, will labour to furnifh and fupply that emptinefs out of the Spring F, and that the Pit dry not, the Pipe ought. to be fmall, of an indifferent capacity, according to the greatnefs or fmallnefs of the Spring.

PROBLEM CXIV.

How out of a Foustain to caft the Water very bigb, - deffererist frem a Problem formerly delizered.
F. Et the Fountain be BD, of a round form, (feeing it is the moft capable and moft perfaet figuxe) place into it two Pipes conjoyned, as EA, and $H E$, fo that no air may enter in at the place of joyning: let each of the Bipes have a
 cock, G and I, the cock at G being clofed, open that at I, and fowith a Squirt force the Water through the hole at H, then clofe the cock at A, and draw out the Squirt, and open the cock at G, the air being before rarified will extend his dimenfions, and force the Water with fuch violence, that it will mount above the height of one or two Pipes; and fo much the ninexe, by how much the Machine is great : this viokence will taft but a little whide, if the Pipe have too great an opening; for as the Air approadned to nis natural place, fo the force will diminifl.

 25

PROBLEM CXV.

How to empty the Water of a Cifteru by a Ripe which Spall bave a motion of it felf.

LEt $A B$ be the Veffel, $C D E$ the Pipe; HG a little Veffel under the greater, in which one end of the Pipe is, viz. C, and let the othes end of the Pipe E, paffing through , the bottom of the \forall Veflel at F, then as the Veffel filleth, fo will the Pipe; and when the Veffel Thall be full as far as $P O_{2}$ the Pipe will begin to run at E of his own accord, and never
 ceafe until the Veffel be wholly empty.

PROBLEM CXVI.

How to Squirt or . . out out a great beight, fo that one Pot of Water 乌hall laft a long tivie.

LEt there be prepared two velfels of Brafs, Leadsor of other matter of equal fupftance,as are the two Veffels $A B$ and $B D$, and let chem be joyned together by the two Pillars MN and EF; then let there be a Pipe HG, which may pafs thorow the cover of the Veffel $C D$, and pafs through $A B$ into G, making a little bunch or rifing in the cover of the Veffel $A B$, fo that the Pipe touch it

252 29athematical Recteation:

not at the bottom ; then let there be foldered faft amother Pipe IL, which may be feparated from the bottom of the Veffel, and may have his bunchy fwelling as the former, without touching the bottom : as is reprefented in L, \& paffing through the bottom of $A B$, may be continued unto I , that
 is to fay, to make an opening to the cover of the veffel $A B$, and let it have a little mouth as aT rumpet, to that end ro receive the water:then there mult further be added a very fmall pipe which may pafs through the bottom of the Veffel $A B$, as let it be OP , and let there be a bunch or fwelling over it, as at \mathbf{P}, fo that it touch not alfo the bottom: let there be further made to this leffer Veffel an edge in form of a Bafin to receive the water, which being done, pour water into the Pipe IL, until the Veffel CD be full, then turn the whole Machine up-fide-down, that the Veffel $C D$ may beuppermoft, and $A B$ undermoft; fo by help of the Pipe G H, the water of the Veffel $C D$ will run into the Veffel $A B$, to have paffage by the Pipe PO. This motion is pleafant at a feaft in filling the faid veffel with Wine, which will fpout it out, as though it were from a boiling Fountain in the form of a Thread, very pleafant tobehold.

PROBLEM CXVII.

How to pradtife excellently the re-animation of Simples, in cafe the Plants may not be tranforited to be re-planted by reafon of diftance of places.

TAke what Simple you pleafe, burnit, and take the Afhes of it, and let it be calcinated 2 hours setween 2 Creufets well luted, and extract the Salt : that is, to put water into it in moving of it; then let it fettle, and do it two or three times: afterwards evaporate it, that is, let the water be boiled in fome Veffel, untilit be all confumed: then there will remain a Salt at the bottom, which you hhall afterwards fow in good ground well prepared, fuch as the Theatre of Husbandry fheweth, and you thall have your defire.

PROBLEM CXVIII.

How to make an infsllible perpetual motion.

MIx 5 or 6 ounces of Mercury with his equal weight of fupiter, grind it together with ten or twelve ounces of Sublimate diffolved in a Cellar upon a Marble the fpace of four days, and it will become like Oil-Olive, which diftil with fire of chaff; or driving fire, and it will fublime dry fubftance, then put water upon the Earth (in form of Lye) which will be at the bottom of the Limbeck, and diffolve that which you can; filter it, then diftil it, and there will be produced very fubtil Atomes, which put into a bot-

254 Wathethatiral Rectrationi

a bottle clofe fopped, and keep it dry, and you thall have your defire, with aftonifhment to all the World, and efpecially to thofe which have travelled herein without fruit.

PROBLEM CXIX.

Of the admarable Invention of makieng the Pbilofophers Tree, whiteb one may fee witb bis Eye mi grovo by lititle and little:

TAke two ounces of Aqua-fortis, and diffolve in it half an ounce of fine Silver refined ind a Cappel : then take an ounce of Aqua-fortis, and two drams of Quick-filver, which put in it, and mix thefe two diffolved things together, then calt into it a Vial of half a poundiof Water, whichmay be well ftopped; for then every day you may lee it grow both in the Tree and in the branch. This Liquid fervestoblack hair which is fed or white, without fading untill they fall: But here is to be noted that great cate ought to be had in anointing the hair, for fear of touching the flefh : for this compofition is very corrofive or feaxching, that as foon as it toucheth the flefh it maifeth blizters and bladders very painful.

RROBLEM CXX.

How to make the neprefentation of the Great Warld.

DRaw Sal Nitre out of Satt raxth which is found along she Riverofide; and at the foro of Mourtains, wheree efpecially.are Nimerals of Gold

matbruaffical hritration. 253

Gold and Silver : mix that Nitre well cleanfed with ψ, then calcinate it hermetically; then put it in a Limbeck, and let the Receiver be of Glafs well luted, and always in which let there be placed Leaves of Gold at the bottom, then put fire under the Limbeck until vapours arife which will cleave unto the Golds augment your fire until there afcend no more then take away your Receiver, and clofe it hermetically, and
 make a Lamp fire under it, until you fee prelented in it that which Nature affords us, as Floweds, Trees, Fruits, Foocntains, Sún, Moon, Sturs, ©̌c. Behold here the form of the Limbeck, and the Receiver : A reprefents the Limbeck, B ftands for the Receiver.

PROBLEM CXXI.

How to make a Coneor Pyramidal छody move wopoin to Table, poitbout[prings or otber artificial meanst; fo that it Jall move by the edge of the Tabie moitbout falling.

THis Propofition is not fo thorny and fubtile as it feeros to be, for putting under a Cone of Paper a Beetle or fuch-like Creature, you thall have pleafure, with aftonifhment and admiration to thofe which areignorantin the caufe: for this Animal

256 פ9athematical Recteation.

Animal will frive always to free herfelf from the capti: vity in which fie is by the imprifonment of the Cone: for coming near the edge of the Table fhe will return to the other fide, for foar of falling.

FROBLEM CXXII.

To cleave an Anvil with the blowe of a Piftal.

THis is proper to a warrier, and to perform it, let the Anvil be heated red hot as one can poffible, in fuck fort that all the folidity of the body be foftened by the fire: then charge the Piftol with a Bullet of Silver, and fo have you in: fallibly the Experiment.

PROBLEM CXXIII.

Hoxp to roft a Capon carried in a Buidget at a Saddles Bors, in tbe β Face of riding 5 or 6 miles.
-Aving made it teady and larded it, fulf if with Butter, then heat a piece of Steel, which may be formed round according to the length of the Capon; and big enough to fill the Belly of it, and then flop it with Butter; then wrap it up well, and inclofe it in a Box in the Budget, and you thall have your defire : It is

\$gathematical Rectration,

Count Mansfield fèved himfelf with no others, but fuch as were thus made ready, for that it lofeth none of its fubftance, and it is dreffed very equally.

PROBLEM CXXIV.

How to make a Candle burn and continuie threc times as long as otberroife it would.

UNto the end of a Candle half burned fickia farthing, lefs or more, to make it hang perpendicular in, a Veffel of water, fo that it fwim above the water ; then light it, and it will fuftain it felf, and float in this manner, and being placed into a Fountain, Pond; or Lake that runs flowly, where many people affemble, it will caufe añ extreme fear to thofe which come therein in the night, knowing not

PROBLEM CXXV.

Hoxp out of a quantity of Wince to extracit that wobich in mof woindy and evil, that it burt not a fock Rerfon:

TAke is vials in fuch fort that they be of like greatnefs both in the belly and the neck, fill ond of them of wime, and the other of water: let she mouth of

Google

258 matbematical mecteation:

that which hath the water be placed into the mouth of that which hath the wine, fo the water. Thaltbe uppermoft: now becaufe the water is heaVier than the wine, it will defcend into the other Vial; and the wine which is lowef, becaufe it is lighteft will afcend above, to fupply the place of the water, \& fo there will be a mutual interchange of liquids, and by this penetration the wine will lofe her vapors in paffing through.the water.

PROBLEM CXXVI.

Hopr to make tupo Marmouzeets, ane of robichbhball light a Candle, and the otber put it.ont.

UPon the fide of a Wall make the figure of a Maxmonzet, or other Animal or form, and right againft it on the other wall make another ; in the mouth of each put a pipe or quill fo artificially that it be not perceived; in one of which place Salt-peter very fine, and dry, and pulverifed; and at the end fet a little match of paper, in the other place Sulphur beaten fmall, then holding a candle lighted in your band fay to one of theff Images by way of command, Blow out the Candle; then lighting the paper with the candle, the Salt-peter will blow out the candle irntriediately; and going to the other Image (before the match of the candle be out) touch the Sulphur with it ${ }_{5}$ andffay, Light the Candle, and it will immediately be lighted; which will caule an admiration to thofewhich. fee the action, if it be well dons; withe adecret dexterity.

gathernatital nectation.

PROBLEM CXXVII.

How to keep Wine frefh as if it mere in a Cellar, ify the beat of Summer, and noitoout Ite or Snow, yed ibougb it neere carried at a lSatdle-bow, and expofed to the Sum alt the diay.
Et your wine ipá vial of Θ laffyand placeit ina Box made of wood, leathefs ar fuch like, aboixt which vial place Salt-peter, and if will preferverid and keep it very freff : this experimentia not aliti tle commodious for thofe which arenot near frefh waters, 8 whefe druellings aree espofifd to the Sun.

PROBLEM CXX ${ }^{\text {WIII }}$

 aip © mpater, mithout dif foyining or uncementizing. 7 Ake a quantify of frong and gluing Morter well beaten, mix with this as much new-flaked lime, α on it cart Oil-Olive or Linffed-Oil, and it will behard as Marble,being applied in time.

PROBLEM CXXXX.

How ta melt Metal very quickly, yee in a Sbell upon á Iittle Fire:

MAke abod upon a bed of Metal with pouder of Sylphar, of Salc-peter, $8 s$ Saw-duffalike; theer pust five to the faid pouder with a burning Clazsoad, and you fhall fee that the metal will difGglve incontinent, and be in a mafs. This fecret is wiff excellent, ochach been practifed by the revenishd Father Mencamo of the Order of the Minims:$S_{2} \quad P R O-$

How to make Iron or Steel exceeding bard.

QUench your Blade or other Inftrument feven times in the blood of a male hog mixt with Goofe-greale, and at each time dry it at the fire before you wet it, and it will become exceeding hard and not brittle, which is not ordinary according to other temperings and quenchings of Iron: an experiment of fmall coft, often proved, and of great coinfequence for Armory, \& warlike Negotiations

PROBLEM CXXXI.

> Topreferve Fire as long as you woill, imitating the int extinguißhable. Fireof Veffals.

AFter you hà the Salt of ψ, tyi the degrees of fire, as is required according to the Art of Cbymiftry, the fire being kindled of it felf, break the Limbeck, \& the Irons which are found at the bottom will flame \& appear as burning coals, as foon as they feel the air; which if you promptly inclofe in a vial of Glafs, 8 z that you ftop it exactly with fome good lute; or to be more affured, it may be clofed up with Herme's wax, for fear the air get in. Then will it keep more than 1000 years (as a man may fay) yea at the bottom of the Sea; and opening if at the end of the time, as foon as it feels the air it takes fire, with which you may light a Match. This Secret merits to be travelled after, and put in practice, for that it is not common, \& full of attonifhment, feeing all kind of fire lafteth but as long as his matter lafteth, and there is no marter to be found ${ }^{2}$ that will fo long indure.

©Artificial Five-Works:

Or the manner of making

ROCKETS and BALLS of FIRE;

As well for the Water as the Air.

With the Compofition of Stars, Golden-Rain, Serpents, Lances; wheels of Fire, and fuch\therefore like, Plealantand Recreative.

Of the Compofition for Rockets.
 N the making of Rockets, the chiefeft thing to be regarded is the compofition that they pught to be filled with; forafmuch: as that which is proper to Rockets which are of a lefs fort, is very improper to thofe which are of a more greater form; for the fire being lighted in a great concave, which is filled with a quick Compofition, burns with great violence $;$ contrarily, a weak compofition being in afmall concave, makes no effect. Therefore we thall here deliver in the firt place Rules and Directions which may ferve for the true compofition or matter with which you may charge any Rocket, from Rockets which S_{3} are

are charged but with one ounce of Powder, unto gifeat Rockets which require for their charge 10 pound of Powder, as followeth:

For Rockets of one ounce.

Unto esch pound of good Masket Powder fmall beaten, put tivo ounces of Small-coal-duft, and with this coimpofition charge the Rocket.

For Rockets of 2 or 3 onazces.
Unto every four ounces and a half of Powderduft, add an ounce of Salc-potet, or to every four ounces of Powder-duft, adde an ounce of Coal-duft.

For Rockets of 4 ounses.

Unto every pound of Powder-duf, add four ounces of Salt-peter, and one ounce of Coalduff: but to have it more flöw, uñtō every ten ounces of good powder-duft, add 3 ounces of Salt-peter, and 3 ounces of Coal-durt.

Far Rockgts of sor 6 pancer.
Unto every pouipd of Powder-duft add three outices and an halfor Salt-peter, and two ounces and an falf of Coal-duft, as allb an ounce of Sulphiar, and an ounce of File-duft.

For Rockets of 7 or 8 annces.
Unto every pound of Powder-doft add 4 ounces of Salt-peter, and 3 ounces of Sulphur. Of Rockets of 10 or 12 ourceas.
unto the precedent compofition add half an ounce of Sulphur, and it will be fufficient. For Kockets of 14 or 15 gances.
Unto every pound of Powder-duft add four ounces of Salt-peter, or Coal-duft $2 \frac{1}{4}$ ounces, of Stulphiur and File-duft $1 \frac{1}{4}$ of an ounce.

For Rocket's of 1 pound.
Unto every pound of Powder-duft add 3 ounces of Coal-duft, and rounce of Sulphur.

For Rockets nf 2 pound.
Unto every pound of Powder-dult add $9^{\frac{3}{2}}$ ounces of Sali-peter, of Coal-duft $2 \frac{1}{2}$ ounces, of File-dult $1 \frac{3}{2}$ ounce, and of Sulphur $\frac{3}{4}$ of an ounce.

For Rockets of 3 pound.
Unto every pound of Salt-peter add 6 ounces of Coal-duft, and of Sulphur 4 ounces.

For Rockets of 4, 5, 6, or 7 pound.
Unto every pound of Salt-peter add 5 ounces of Cole-duft, and $2 \frac{1}{2}$ ounces of Sulphur.

For Rockets of 8,9, or 10 pound.
Unto every pound of Salt-peter add $5^{\frac{1}{2}}$ ounces of Coal-duft, and of Sulphur $2 \frac{1}{2}$ ounces.

Here note, That in all great Rockets there is no Powder put, becaufe of the greatnefs of the fire which is lighted at once, which caufeth too great a violence,therefore ought to be filled with a more weak compofition.

OS the making of Rockets, and otber Fire-woorks.

TOr the making of Rockets of fundry kinds, divers moulds are to be made; with their Fofiling-pins, Breaths, Chargers, ©c. as may be feen here in the figure. And having rolled a Care of Paper upon the Rolling-pin for your mould, fill it with the compofition belonging to that trotild, as before is delivered: now may you load it on the top with Serpents, Reports, Stars, or

264 Grtifictal Jitexdoters.

Golden Rain: The Serpents are made about the bignefs of ones fittle finger, by rolling a little paper upon a fmall Stick, and then tying one end of it, and filling it with the mixt compofition fomewhat clofe, and then tying the other end. The Reports are made in their Paper-Cafes, as the Serpents, but the Paper fomewhat thicker to give the greater report. Thefe are filled with grains

Powder, or half-Powder and half'Compofition, and tying both ends clofe, they are finithed. The beft kind of Stars are made with this mixture following : anto every 4 .ounces of Salt-peter add 2 ounces of Sulphur, and to it put one ounce of Powder-duft, anid of this compolition make your Stars, by putting a little of it within a fmall quantify

antificial Fite=aluliks.

 rity of Towe; and then tying it up in the form of a Ball as great as an Hafel-Nut or a little WalNut, through which there muft be drawn a little Primer to make it take fire. Touching the making of the Golden-Rain, that is nothing but filling of Quills with the compofition of your Rockets fomewhat hard. Now if the head of a

Rocket be loaded wish a thoufand of thole Quiills; its a goodly fight to fee how pleafantly they Ipread themfelves in the Air, and come down like ftreams of Gold much like the falling down of Snow, being agitated by fome turbulent wind.

Of Recreative FIRES.

"pHilofotrates faith, That if Winé in a Platterbe placed upon a Receiver of burning Coals, to exhale the foirit of $1 t$, and be inclored within a Cupboard or fuch-like place, to that the Air may not go in nor out, and fo being fhut up. for 30 years, he that fhall open it, having a Wax Candle lighted, and thall put it into the Cupboard, there will appear unto him the figure of many clear Stars.
2. If Aqua-vita have Camphire diffolved in it, and be evaporated in a clofe Chamber, where there is but a Charcoal fire, the firft that enters into the Chamber with a Candle lighted, will be extreamly aftonifhed, for all the Chamber will Ceem to be full of Fire very fubtile, but it will be of little continuance.
3. Candles which are deceitful are made of half Powder, covered over with Tallow, and the other half is made of clean Tallow or Wax, with an ordinary Week; this Candle being lighfed, and the apper half confumed, the Powder will take fire, not without great noife and aftbnilhment to thofe which are ignorant of the caufe.
4. A dozen or twenty fmall Serpents placed feçretly under a Candleftick that is indifferent big, which may have a hole pals through the Sothet of it to the Candle, through which a piece of Primer may be placed, and fetting a fmall Candle in the Socket to burn according to a time
limited;

attificial liteceadozks.

Himited; which Candleftick may bette on a fideTable without fufpition to any; then when the Candle is barthed, that it fires the Primer, that immediately will fire all the Serpents, whith overthrowing the Candleftick will ty here and there, intermixing themfelves, fometimes in the Air, fometimes in the Planching, one amongft another, like the crawling of Serpents, continuing for a pretty while in this pofture, and in extinguifhing every one will give his Report like a Piftol: This will not a little aftonifh fome, thinking the houfe will be fired, though the whole powder together makes not an ounce, and hath no ftrength to do fuch an effect.

How to make fire run up and doron, formard and backward.

TAke fmall Rockets, and place the tail of one to the head of the other upona Cord, according to your fancy; as admit the Cord to be A, B, C, D, E, F, G; give fire to the Rocket at A, which will fly to B, which will come back again to A_{r} and fire another at C_{2} that will flie at D_{3} which will fire another thete, and fly to E, and that to F, and fo from F to G, und at G thay be placed a pot of Fire, viz. GH, which fired will make good fpott, becaule the Serpents which äré in it will varioufly intermix themélves in the air and upon the ground, and every one will extiigruifh with a report : and here may you note that upon the Rockets may be placed Fiery Drağons, Com-

268 -attificial 羊itequtorks.

Combatants, or, fuch-like, to meet dne another, having Lights placed in the Concavity of their Bodies, whieh will give great grace to the Action.

Hoos to make Wheels of Fire

T. Ake a Hoop, and place two Lath sacrofs one the other; upon the croffug of which make ahole, fo that it may be placed upon a.pin to turn eafily, as the figure Q theweth, upon the fides of which Hoop or round Circle place your Rockets, to which you may place Lances of Fire between each Rocket: let this wheel be placed up on a Standard, as is here reprefented, and place a piece

artiaitial firs=ertozks.

piece of Primer from one Lance to another, then give fire at G, which will fire F, that E, that will fire D, that C, and that will fire the Rocket at A;' then inmediately the Wheel will begin to move,:

and reprefent unto the Spectatois a Circle of changable Fire, and if Pots of Fire be tied to it, you will have fine fport in the turning of the Wheel, and cafting out of the Serpents.

Of Night-Combatants.

CLubs, Targets, Faulchons, and Maces, charged with feveral Fires, do make your NightCombatants, or are ufed to make place amongt a throng of People. The Clubs at the Ends are made like a round Pannier with fmall ticks filled with little Rockets in a firal form, glued and fo placed that they fire but one after a nother. The Maces are of divers fafhions, fome made oblong
at the end : fome made of af fixual foxer, but alh made hiollows to pat in feveral compafitions, and are boared in diverss plases, which art for fun dry Rockets and Lances of weatic cosiapofition to. be fired at pleafure. The Faulchons are made of wood in a bowing form, like the figure A, having their backs large to receive mary Rockets, the head of one near the neck of another, glued and faftend well togethei, fo that one being fent; another may be fired. The Targets are made of wooden thinboards, which are channeled in Cpital Lines to contain Primer to fire the Rockets

ane after another, which is all covered with than. covering of, wood or paftboard, bored with holes, Sprally allo: which Rockets muft be glued and made falt to the place of the Channel. Now if two.

attificial fite=actize

men, the one having a Target in his hand, and the other a Faulchon or Mace of Fire, Thall begioto fight, it will appear very pleafant to the $S p e d a-$ tors: for by the motion of fighting, the place will, feem to be full of ftreams of Fire: and theremay, be adjoyned toeach Target a Sun or a burnigg. Comet with Lances of fire, which will make them more beautiful and refplendent in that actione

Of fanding Fires:

Such as are ufed for Recreation, are Collofyus; 1 Statues, Arches, Pyramides, Chariots, Cbaiss of Trizumph, and fuch-like, which may be accom-

modated with Rockets of Fire, and beautified with fundry other artificial Fires, as Pots qt Fire for the Air, which may caff forth feveral figures, Scutchions, Rockets of divers forts, Stars, Crowns; Letters,

Letters, and fuch-like, the borders of which may be armed with fundry Lances of Fire, of fmall flying Rockets, with reports, flames, of finall Birds of Cypres, Lanthorns of Fire, Candles of divers ufes, and colours in burning, and whatfoever the fancy of an ingenioushead may allude unto.

Of Pots of Fire for the Air, wobicb are thrown out of one CaSe one after anotber, of a long continuance.

MAke a long Trunk, as $A G$, and by the fide $A H$ let there be a Channel which may be fiered with flow primer or compofition; then
 having charged the Trunk $A G$, with the Pots of Fire for the Air, at IGEC, and make the Trunk $A G$ very faft unto a poft, as $I K$, give fire at the top, as at A, which bürning downwards will give fire to $C, \&$ fo. throw out that Pot in the Air, which being fpent, in the mean time the fire will burn from B to D_{s} and fo fire $-E$, and throw it out alfo into the Air, and oo al the reft one after another will be thrown out :and if the Pots of Fire for the Air which are caft out,be filled with diversFire-works

attificial Fite=CuIorks.

they will be fo much the more pleafant to the Beholders. Thefe Trunks of Fire do greatly adorn a Fire-work, and may conveniently be placed at each Angle of the whole Work.

Of Pots of Fire for the Ground.

MAny Pots of Fire being fired together, do give a fine reprefentation and recreation to the Spectators, and caule a wonderfal fhout amongft the common people wch are ftanders by; for thofe Pots being filled with Balls of Fire and flying Serpents for the Air, they will
 fo intermix one within another, in flying here and there a little above the ground, and giving fuch a volley of reports that the Air will rebound with their Noife, and the whole place be filled with fundry ftreams of pleafant fire; which Serpents will much occupy thofe about the place to defend themfelves in their upper patts, when they will no lefs be bufied by the Balls of Fire which feem to annoy their Feet.

Of Balls of Fire.

THefe are very various, according to a mans fancy; fome of which are made with very (mall Rockets, the head of one tied to the neck of

274 Grificial fite=alorks.

another: The Ball being made, may be covered over with Pitch, except the hole to give fire to it; this Ball will make fine fport amongtt the ftanders by, which will take all a fire, and roll fometimes this way, fometimes that way, between the legs of thofe that are ftanders by, if they take not heed, for the motion will be very irregular;
 and in the motion will caft forth feveral fires with reports. In the fecond kind there may be a Channel of Iron placed in divers places in fpi ral manner, againft which may be placed as many fmall Petards of Paper as poffible may be, the Channel muft be full of flow compolition, and may be covered as the former, and made fit with his Rockets in the middle: This Ball may be fhot out of a Mortar-Piece, or charged on the top of a Rocket: for in its motion it will fly here and there, and give many reports in the Air, becaule of the difcharge of the Petards.

Of Fire upon the Water.

PLaces which are fituated upon Rivers or great Ponds, are proper to make Recreative Fires on: and if it be required to make fome of confequence, fuch may conveniently be made upon two Boats, upon which may be built two Beafts, Turrets, Pageants, Caftles, or fuch-like, to re-

grtificial fite=UCCODozs:

ceive or hold the diverfity of Fire-Works that triay be made within it, in which may play divers Fires, Petards, G c. and caft out many fimple Granadoes, Balls of Fire to burn in the Water, Serpents, and other things; and often times thefe Boats in their incounters may hang one in another, that fo the Combatants with the Targets and Maces may fight; which willgive great content to the Eyes of thofe which are Lookers on, and in the conclufinn fire one another, (for which end they were made : by which the dexterity of the one may be known in refpect of the other, and the triumph and victorz of the fight gotten.

Of Balls of Fire wobich move upon the Water:
THefe may be made in form of a Ball fuffed with other little Balls; glued round abouts, and filled with compofition for the Water, which

276. Antifitial Fitc= $\mathbb{C l}$

fiered will produce marvellous and admirable effects, for which there mult be had little Cannons of white Iron, as the ends of fomall funnels ${ }^{\prime}$ thefe Iron Cannons may be pierced in fundry places, to which holes, may be fet fmall Balls full of compofition, for the Water; which fmall Balls muft be pierced deep and large, and covered with Pitch except the hole: in which hole muft be firft pla-
 ced a little quantity of grain-powder,and the reft of the hole filled up with com. pofition; and note further, that thefe Iron Cannons muift be filled with a flow compofition, but fuch which is proper to burn in the Water: then muft taefe Cannons with their fmall Balls be put/ fo togetner that it may make a Globe, and the holes in the Cannons be anfwerable to the hollow Balls, and all covered over with Pitch and Tallow; afterwaids pierce this Ball againft the greateft Cannon (to which all the leffer thould anfwer) unto the compolition, then fire it, and when it begins to blow, throw it into the Water, fo the fire coming to the holes will fire the grain-Powder, the which will caufe the Balls to feparate, and fly here and there, fometimes two at a time, fomerimes three, fometime more, which will burn. within the Water, with great aftonifhment and content to thofe which fee it.

Of Lances of Fire.

STanding Lances of Fire are made commonly with hollow wood to contain fundry P Ptards or Rockets, as the figure here fheweth, by which it is eafie to invent others, according to ones fancy. Thefe Lances have wooden handles that fo they may be faftened at fome Poff, fo that they be not overthrown in the flying out of the Rockets or Petards: There are leffer forts of Lances whofe cafes are of three or four foldings of Pa per of a foot long, and about the bignefs of ones finger, which are filled with a compofition for Lances. But if thefe Lances be filled with a compofition, then (unto every 4 ounces of powder add 2 ounces of Salt-peter, and unto that add I
 ounce of Sulphur) it will make aBrick fire red before it be half Spent, if the Lance be fiered and held to it : and if 20 fuch Lances were placed about agreat Rocket, and thot to a Houfe or Ship, it would produce a mifchievous effect.

How to fhoot a Rocket Horizoytal, or otbervife.

UNto the end of the Rocket place an Arrow which may not be too heavy, but inftead of the feathers let that be of thin white Tin plate, T3
and

278. Gltitcial Jiteratioflas.

and place it upon a reft, as here you may fee by the Figure, then give fire unto it, and you may fee how ferviceable it miay be. To the head of fuch Rockets may be placed Petards, Balls of Fire, Granadoes, etci and fo may be applied to War-likeaffairs

How a Rocket burving in tbe Water for a cerraik: time, at laff faall fy up inthe Air noitb an exceediing quickuess.

T
Odo this, take two Rockets, the one equal to the other, and joyn them one unto another in the midde at C, in fuch fort that the fire may eafily pafs from one to another:- it being. thus dome, tie the two Rockets àt a Stick in D, and let it be folong and gireat, that it may make the Rockets in the water hang, or lie upright, then take a packthread, and tie it at G_{2}^{\prime} aind het it come double about the fick DAFAt EHsand at that point hang a Bullet of fome weight, as \boldsymbol{R}, for then givine fire at A, it will buxn to B, by a frnall Serpenitefled there, and tied at
the end, and covered fo that the Water injure ${ }^{t}$ not, which will fire the Rocket $B D$, and fo mounting quick out of the Water by the loofe tying at C, and the Bullet at the pack-thread will leave the other Rocket in the Water, and fo atcend like a Rocket in the Air, to the admiration of fuch as know not the fecrecy.

Of the framing of tbe Parts of a Fire-Work togetber, that the feveral Works may fire one after another.

CAufe a Frame to be made, as A B C D, of two foot fquare every way, or thereabouts, (according to the quantity of your feveral works) then may you at each angle have a great Lance of Fire to ftand, which may calt out Pots of Fire, as they confume: Upon the ledges $A B, B C$, and $C D$, may be placed fmall Lances of Fire, about the number of 30 or 60 , fome fide-wife, and others upright; between thefe Lances may be placed Pots of Fire floping outwards, but made very faft, and covered very clofe, that they chance not to fire before they thould; then upon the ledges RE, FG, HI, and AD, may be placed your Soucifons, and behind all the Work may be fet your Boxes of Rockets, in each of which you may place $6,9,12$, or 20 fmall Rockets : Now give fire at A, (by help of a piece of Primergoing from one Lance to another) all the Lances will inftantly at once be lighted, and as foon as the Lance at A is confumed, it will fire the Chamel which is made in the ledge of the frame, which runs under the Pots of Fire, and as the Fire goes along T $_{4}$ burn- of Pots upon the fides of the frame $A B, B C$, and $C D$, being fpent, the Soucifons will begin to play, being fiered alfo by a Chamnel which runs under them, upon the ledges $A D, H I, F G$, and $R E$, then when the Soucifons are fpent upon the laft ledge, $R E$, there may be a fecret channel in the ledge $C D$, which may tire the Box of Rockets at $K, \&$ may fire all the reft one after another; which Boxes may be all charged with feveral Fire-works: for the Rockets of the firft'Box may be loaden with Serpents, the fecond with Stars, the third with Reports, the fourth with Golden-Rain, and the fifth with fmall flying Serpents; thefe mounting one after another, and flying to and fro, will much inlighten the Air in their afcending; but when thefe Rockets difcharge themfelves above, then will there be a moft pleafant reprefentation : for thefe Fires will dilate themfelves in divers beautiful forms, fome like the branching of Trees,others like Fountains of Water gliding in the Air, others like flafhes of Lightning, others like the glittering of Starss giving great contentment and delight to thofe which behold them: But if the work be furnifhed alfo with Balons, (which is the chiefeft in recreative Fire-works) then fhall you fee afcending in the air but as it were only a quill of Fire, but once the Balon taking fire, the Air will feem more than 100 foot \{quare full of crawling and flying Serpents, which will extinguifh with a volley of more than 500 reports, and fo fill the Air and Firmament with their rebounding clamour.

282 attificial fitte

The making of which ${ }^{\text {' with many other rare }}$ and excellent Fire-Works, and other practifes, not onely for Recreation, but alfo for Service; you may find in a Book intituled Irtificial Jfire= rad ozk Knowledge) and are to be fold by William Leak, and Fobn Leak, at the Crown in Fleetfreet, between the Two Temple-Gates.

concluaion:

$I$$N$ this Book wve bave omitted notbing that was material in the Original, but bave abundantly augmented it in fundry Experiments. And tbougb the Examinations are. not fo full and manifold, yet (by roay of Brevity) woe bave expreffed fully tbeir Subftance, to avoid Prolixity, and fo paft by tbings reiterated.

F I N I S. 10 MA 65

