σ

3 50 \qquad

 -

Effigies Repereñдi admodum viri Gohannis Yuilkins nuper Epifcopi Ceftriensis

Mathematical Magick: OR, THE WONDERS
 That may be performed by Mechanichal Geometry.

In Two BOOKS.
CONCERNING
Mechanical $\left\{\begin{array}{l}\text { Powers. } \\ \text { Motions. }\end{array}\right.$
Being one of the mont eafie, pleafant, ufful (and yet mort neglected) part of Mathematicks. Not before treated of in this Language.

By 7. Wilkins; late Ld Bp of Chefter.

Hansen

$$
L O N D O N:
$$

Printed for Edp. Gellibrand at the Golden Ball in St. Pawls Church-yard. 1680.

Bayerische enateblbHothek

To His Highnefs the Prince Elefor Palatine.

May it pleafe Your Highsefs!

IShould not thus have preferited my diverfions, where I owe my fuds and bufinefs, but that where all is due, a man may not jufly woithbold any part.

This following Difeourfe eoas compofed Tome years jince at my Jpare bours in the Tiniverfity. The Subject of it is mixed Mathematicks; mbich I did the rather at $\mathfrak{J u c h}$ times make choice of, as being for the pleafure of it, more proper for recreation, a and for the facility, more futable to. my abilities and leijure.
I Joould not, Sir, have been ambitious of any ρ_{0} Great ((I could not of any Better) Patronage, bad not my relation both eingaged and entboldned me to this Dedication.
They that know your Higbnefs bow. sreat ain encourager you are, and bow able $A 3$.

The Epiflee.
a 7 nudge in all kind of ingenious arts and literature, mule needs acknowledg your preffures and. Tow condition to be none of the leafs mifchiefs (amon gt those many other) under which *We Commonwealth of Learning does now Suffer.
It mould in many reflects munch conduce to the general advancement of religion and learning, if the reformed Churches, in whole cause and defence your family bath fo deeply suffered, were but effectually mindful of their engagements to it. And particularly, if the fe present unhappy differeuces of this Nation did not occafion too much forgetfulness of their former zeal and profelfions for the vindicating of your family, and the reftoring of your Highness; the kaftring and accomplish. ament of which, together with the increase of all heavenly bleffings upon your Highne $f s$, foal be the bearty daily prayer of

Your Highnefs
Molt humble and moot devoted fervent and Chaplain, JOHN WILKINS

$T 0$

THEREADER.

IT is related of Heraclitas, that when his Schollars had found him in a Tradefmans thop, whither they were afhamed to enter, He told them, Ryod neque tali loco dii defunt immortales, that the gods were as well converfant in fuch places as in others; Intimating that a divine power. and wifdome might be difcerned even in thofe common arts, which are fo much det fpifed; And though the manual exercife and practife of them be efteemed ignoble, yet the Itudy of their general caules and principles cannot be prejudical to any other (though the moft facred) profeffion.

It hath been my ufual cuftom in the courfe of my other ftudies, to propofe divers Mathematical or Philofophical inquiries, for the recreation of my leifure-hours; and as I could gather fatisfaction, to compofe them to fome form and method.

Some of thefe have been formerly publiA 4 thed,

To the Reader.

ated, and I hiave now ventured forth this difcourfe ; whererein befides the great delight and pleafure (which every rational Reader muft needs find in fuch notions as carry with them their own egidence and demonftration) there is alfo much real benefit to be learned; particularly for fuch Gentifmen as employ tícir Efater inithofe chargeable adventures of Drawning, Mines, Cole-pits,\&c. who may from hence learn the chief grounds and haturk of Engipes, "and thereby hoore eafly avobld the delufions of any cheatiag
 fert, as are weil skilled fin the practile of thefe arts, who may be müch advantaged by the riethe underftanding of their grounds and: Theofy:

Scbo.Matbim. $L 2$. !

Ranxis hath obferved, that the reafon why Gersmariy hidth been fo eminent for MetHanical inventions, is becaufe the'fe have been publick Lectures of this kind inftituted amongt them, and thofe not difly in the learned languages, but alfó in the vulgar tongue, 'for: the capacity of every unletter'd ingenious Artithcer:
This whole Difcourfe I call IWathematical eMagick, becaufe the art of fuch Me chanical inventions as are here chiefly infifted upon, Hath been formerly fo ty yted; and in allufion to vulgar opinion, which deth commonly attribute an fuch frange operations

To the Reader:

unte the power of Magick; For which reafon the Ancients did name this Art ©avuatoTountuxi, or Mirawdormm Effectrix.

The firit book is clalled Aichimedes bectufe he was the chiefet In difionrocing of Methanical powers.

The fecond is ftyled by the name of $D a-$ dalues, who is related to be one of the firft and moft famous amongt the Ancients for his skill in making e Automata, or felf-moving Engines: Bath thele being twa of the firft Autsors that did reduce Mathematical principles unta Mechanical experiments.
Other difcourfegen this kind, ate for the moft part large and voluminous, of great price and hardly gotten; and befides, there are not any of them (that Iknow of) in pur vulgar tongue, for which thefe Mechanical arts of all other are moft proper." Thefe inconveniences are here in fome meafure remedied, together with the addition (ifI miftake, not) of divers things very confiderable, and not infifted upon by others.

The

The Contents and Method of this following Difcourfe.

The firft Book

Chap.1. H_{H} excellency of thefe Arts. Why they were concealed

 by the Ancients. The Autbors that bave treated of them.Ch. 2. Concerning the name of this Art. That it may properly be fyled liberal. The Subject and nature of it.

Ch. 3. Of the firft Mechanical faculty, the Ballance.

Ch.4. Concerning the fecond Mecbanick faculty, the Leaver.

Ch. 5. How the natural motion of living creatures is conformable to theefe artificial rules.

The Contents.

Ch.6. Concerning the Wheel.
Ch. 7. Concerning the Pulley.
Ch. 8. Of the Wedg.
Ch.9. Of the Scregr.
Ch. İ. An inquiry into the magnificent pporks of the Ancients, pubich muchex. ceeding our later times may feem to infer a decay in thefe Mechanical arts.

Ch. 1 . That the Ancients bad diver motives and meanis for fuch vaft magnificent porks, which wee have not.

Ch. 12. Concerning the force of the Me chanick faculties; particularly, the Ballance and Leaver. Howo they may be contrived to move the wobole world, or any other conceivable poeight.

Ch. 13. Of the Wheel, by multiplication of which, it is eafie to move any imaginable weight.

The Contents.
Ch. 14. Concerning the infinite firength of Wheels ${ }_{2}$ Pulleys, and Screws; that it is poffible by the multiplication of the fee, to pull up any Oak by the roots with a hair, lift it up with a Straw; or blow it up with ones breath, or to perform the great ale labour worth the leafs power.

Ch. 15. Concerning the proportion of \because ptotinefs and Joifinefs in Mechanical remotions.
-Ch. 6 . That it is poffele to contrive - fuchs an artificial motto as Shall be of a fowinefs proportionable to the fouiftsefs i pf the heavens.

Ch. \boldsymbol{T} Of fwiftnefs, bon it maybe increafed to any hind of proportion. Concorning the great force of Archimedes bis Engines. Of the Ballifla.
Ch. 18. Concerning Catapult, or Erigizes for Arrows.

Ch. I9. A comparifon betwixt the fe ancient

The Contents.
ancient Engines; and the Gun-pporder inffruments nom inelufe.

Ch.20. That it is pofflble to conitrive fuch an artificial motion, as wians be equally fwift with the fuppofed motion of the heavens...

The ferond: Booki ${ }^{\prime}: .$.
Ch. 1. THE diverr kinds of AutomaI. ta, or Self-movers : Of Mills. Of the contrivance of \int everal motions by rarified air. A brief dignefremiooncerning Wind-guns.

Ch. 2. Of a failing Cburibt, that mesy zoithout barfes berdrivem on the land by the wind, as fhips are on the fea.

Ch. 3. Concersing the fixed Automata, Clocks, Spheres reprefenting tha bicavenly motions. The feveral éxcellencies, ithat are mon trammendable ian fucb kind of contrienricar.

The Cóntents.
Ch. 4. Of the movable and gradient Automata, reprefenting the motion of living creatures, various foünds, of birds; or beafts, and jome of them articulate.

Ch. 5. Concerving the poffibility of framing an Ark for Jubmarine Navigations. The Difficulties and Conveniencës of Juch a contrivatick.

Ch.6. Of the volant Automata;:Archytas bis Dove, and Regiomontanus bis Eagle. The polfibility and great zuffulnefs af fuch inventions:

Ch. 7. Concerning the Art of flying. The feveral ways whereby this bath béen; or may be attempted.

Ch. 8. A refolution of the tibo chief difficulties that feem to oppofe the polfibt. lity of a flying Cbariot:

Ch. 9. Of a perpetual motion: The feersing facility and real difficilty of any Juch contrivance. Tbe feveral. mays

The Contents.
sways mobereby it bath bees attempted; particularly by Chymiftry.
Ch. 10. Of fubterraneous Lamps; divers biftorical relations concerning their duration for many bund red years together.

Ch: 11. Several opinions concerning the nature and reason of the fe perpetual Lamps.

Chap. 12. The moot probable conjeEIre bow thee Lamps were framed.
Ch. 13. Concerning Several attempts of contriving a perpetual motion by magmetical virtues.

Chap. 14. The seeming probability of effecting a continual motion by solid weights in a hollow wheel or Sphere.

Ch. 15.

The Contents:
Ch. 1.5. Of compofing aperpetsual mation by fluid woeights.: Concerning' Archimedes his water-fcrew. The great probability of accomplifhing this inpuiry. by the belp of that; with the falliblemefs of it mpos experiment. \qquad
$\therefore 4$
\qquad
ARCHI:

archimedes,

OR,

Mechanical Powers.

Tbe firt Book.

снар. i .

The excellency of the e Arts. Why they were concealed by the Ancients. The Authors thát have treated of them.'

ALL thofe various ftudies ás bout which the fonsof men dơ bufie their endeavours; may begenerally comprifed under thefe three kinds:
\leq Divine.
Natural.
2 Aftificial:
B

Archimedes; or, Lib. I.

 To the firtt of thefe, is reducible, not only the Speculation of Theological truths, but alfo the practife of thore: viríues which may adyantagé our minds in the enquiry after their proper happinefs. And thefe arts alone may truly be ftyled liberal, Sen. Ep: Qua lbtrrum faciunt bominems guibus 88. cure virtus eft, (faith the divine Stoick) which fet a man at liberty from his lufts and paffions.To the fecond may be referred all that knowledg which concerns the frame of this great Üniverfe, or the ufual courfe of providence in the government of thefe created things.

To the laft do belong all thofe inventions, whereby nature is any way quickned or advanced in her defects: Thefe artificial experiments being (as it were) but fo many Effays, whereby men do naturally attempt to reftore themfelves from the firft general curfe inflicted upon their labours.

This following Difcourre, does 'properly appertainto this latter kind. Now

Cap. 1. Mechanical Powers.
Now Art may be faid, either to imitate nature, as in limming and pictares; or to belp nature, as in medicine; or to overcome and adrance nature, as in thefe Mechanical difeiplines, which in this refpect are by fo much to be preferred before the other, by how much their end and power is more excellent. Nor are they therefore to be efteemed lef; noble, becaufe more practical, fince our beft and moft divine knowledg is intended for action; and thofe may juftly be counted barren ftudies, which do not conduce to practife as their proper end.

But fo apt are we to contemn every thing which is common, that the encient Philofophers efteemed it a great part of wifdom, to conceal their learning from vulgar apprehenfion or ufe, thereby the better to maintain it in its due honour and ferpect. . And therefore did they generally vail all their Arts and Sciences, under fuch mytical exprefinons; as might excite the peoples wonden and reverence, fearing left a more eafie and familiar difcovery, might expofe them to contempt. Sic ipfa myteria fabularum cnniculis operiunSancrobins tur, fummatibus tantum viris, fapientia Scoms, interprete, veriarcani confciis; Content; Scip. L. It
c. 2 int
reliqui, ad venerationem, figuris defendentibus à vilitate fecretum, Gaith a Platonick.

Hence was it, that the ancient Mathematicians did place all their learning in abftracted fpeculations,refuling to debafe the principles of that noble profeffion unto Mechanical experiments. Infomuch, that thofe very Authors amongtt them, who were moft eminent for their inventions of this kind, and were willing by their own practife, to manifeft unto the world thofe artificial wonders that might be wrought by thefe arts, as Dadalus, Archytas, Arcbimedes, ©rc. were notwithftanding fo much infeCed with this blind fuperftition, as not to leaveany thing in writing concerning the grounds and manner cf thefe operations.

Cap. 1. Mechanical Porpers.

2xintilian Speaking to this pur- Quim L. 1 : pofe of Archimedes, faith thus: 2 nuam- c. 10 . vis tantum tamque Singularem Geometria ufum, Archimedes, jingularibusexemplis, © admirandis operibus oftenderit, propter qua non bumane fed divine frientio laudem Iit adeptus, bafit tamen in illa Platonis perfuafione, nec nillam Mechanicam literam prodere voluit.

By which means, pofterity hath unhappily loft, not only the benefit of thofe particular difcoveries, but alfo the proficiency of thofe arts in general. For when once thelearned men did forbid the reducing of them to particular ufe and vulgar experiment, othersdid thereupon refufe thefe ftudies themfelves, as being but empty and ufelefs fpeculations. Whence it came to pafs, that the fcience of Geometry was fo unip Pet. ramm verfally neglected, receiving little or scbol.mano addition for many hundred years ${ }^{\text {them. l. } 1}$ together.

Amonglt thefe Ancients, the divine Plato is oblerved to be one of the greateit ftickleis for this fond

$$
\text { B } 3 \text { opinion }
$$

Archimedes; or, Lib, I.

 opinion, feverely dehorting all his followers from proftituting Mathmetical principles, unto common apprehenfion or practice. Like the en-${ }^{P}{ }^{\text {linn. Nat. }}$ vitus Emperour Tiberius, who is rel.36.626. ported to have killed an Artificer for making glafs malleable, fearing left thereby the price of metals might be debated. So he, in his fuperftition to Philofophy, would rather chute to deprive the world of all thole utefut and excellent inventions which might be thence contrived, than to expose that profeffion unto the contempt of the ignorant vulgar.

But his Scholar Arifotle, (as in maArif. ny other particulars, fo likewife in this.) did juftly oppose him, and became himfelf one of the firth Author that bath writ any methodical Difoourfe concerning there, arts ; chafing rather a certain and general benefit, before the hazard that might accrue from the vain and groundless difrefpects of rome ignorant perfons. Being fo far from efteeming Geomerry difhonoured by the application

Cap. 1. Mechanical Powers. on of it to Mechanical practifes, that he rather thought it to be thereby adorned, as with curious variety, and to beexalted untoits natural end. And whereas the Mathematicians of thofe former ages, did poffefs all their learning, as coveteus men do their. wealth, only in thought and notion; the judicious Ariftotle, like a wife Steward, did lay it out to particular ufeand improvement, rightly preferring the reallity and fubftance of publick benefit, before the fhadows of fome retired fpeculation, or vulgar opinion.
Since him there have been divers other Authors, who have been eminent for their writings of this nature. Such were Hero Alexandrinus, Hero Mechanicus, Pappus Alexandrinus, Proclus Mathematicus, Virtuvius, Guidus Ubaldus, Henricus Monanthdlius,Galileus, Guevara, Merfeinnus, Bettinus, efo. Befides many others, that have treated largely of feveral engines, as Augufine Ramelli, Vittorio Zoncha, Facobus Befonius, Vegetius, Lipfius. .. B. 4 Molt

Arcbimeder; or; Lib. .
Moft of which Authors I have perufed, and thall willingly acknowledge my felf a debtor to them for many things in this following Difcourfe.

C A P. II.
Concerning the name of this Art. That it may properly be fyyled liberal. The fubject and nature of it,
$I_{y \text { pfimi }} \quad T \mathrm{He}$ word Mechanick isthought
 l. 1. Diar multum afccndere, pertingere: intima-

- log.3. ting the efficacy and force of fuch inThar's a ventions. Or elfe saed $\mu \bar{\eta}$ xaivar (faith (enffirs $\mathrm{E}-\mathrm{Eajftathius)}$ quia bijcere non finit, betymology caufe thefe arts are fo full of pleafant impofedby variety, that they admit not eqither of rome, Yxia floth or wearinefs.
inreleezus-
in $e i s m a-~ A c c o r d i n g ~ t o ~ o r d i n a ̀ r y ~ f i g n i f i c a t i-~$ cbefur, as on, the word is ufed in oppofition to if thefearts the liberal arts: whereas in propriety did profti- of feeech thofe employments alone duiterate may be ftyled illiberal, which rethe under- quire onely fome bodily exercife, as 4andipg manufactures, trades, थैc. And on the con-

Cap. 2. Mechanical Pomers.

contrary, that difcipline which difcovers the general caules', effects, and properties of things, may truly be eAteemed as a \int pecies of Philofophy.

But here it Thould be noted, that this art is ufually diftinguifhed into a twofold kind:
i. Rational.
2. Cheirurgical.

The Rational is that which treats Matbem. of thofe principles and fundamental notions, which may concern thefe Mechanical practifes.

The Cheirurgical or Manual, doth refer to the making of thefe inftrut ments, and the exercifing of fuch particular experiments. As in the works of Architecture, Fortifications, and the like.

The firft of there, is the fubject of this difcourfe, and may properly be titiled liberal, as juftly deferving the profecution of an ingenuous mind. For if we confider it according taits birth and original, we fhall find it to fpring from honourable parentage, being produced by Geometry, on the one fide, and natural Pbilofopby on the other. If according to its ufe and benefit, we may then difcern that to this Should be refèred all thofe arts and profeffions fo neceffary for humane fociety, whereby nature is not only directed in her ufualcourfe, but fometimes alfo commanded againft her own law. The particulars that concern Architecture, Navigation, Husbandry, Military affairs, \&c. are moft of them reducible to this art, both for their invention and ufe.

Thofe other difciplines of Logick, Rhetorick; \&c. do not more protect and adorn the mind, than thefe Mechanical powers do the body.

And therefore are they well worthy to be entertained with greater induftry and refpect, than they commonly meet with in thefe times; wherein there be very many that pretend to be mafters in all the liberal arts, who fearce underftand any thing in thefe particulars.

The fubject of this art is concerning the heavinefs of feveral bodies,

Cap. 2. Mechanical Powerre.

or the proportion that is required betwixt any weight, in relation to the power which may be able to move it. And fo it refers likewife to violent and artifical motion, as Philofophy doth to that which is natural.

The proper end for which this art is intended, is to teach how by underfanding the true difference betwixt the weight and the power, a man may add fuch a fitting fupplement to the ftrength of the power, that it fhall be able to move any conceivable weight, though it fhould never fo much exceed that force which the power is naturally endowed with.

The art it felf may be thus defcribed to be a Mathematical difcipline, which by the help of Geometrical principles doth teach to contrive fer' veral weights and powers, unto any kind, either of motion or reft, according as the Artificer fhall determine. Dav. RiIf it be doubted how this may be valtus If efteemed a Jpecies of Mathematicks, Archim. when as it treats of weights, and not de cenito of quantity; For fatisfaction to this, there are two particulars confiderable.

1. Matbematicks in its latitude is ufually divided into pure and mixed. And though the pure do bandle onely abftract quantity in the general, as Geometry, Arithmetick: yet that which is mixed doth confider the quantity of fome particular determinate fubject. So Afronomy handles the quantity of beavenly motions, Mufick of founds, and Mechanicks of weights\& powers.
2. Heavinefs or weight is not here confidered, as being fuch a natural quality, whereby condenfed bodies do of themfelves tend divonwards; but rather as being an affection, whereby they may be meafured. And in this Meteph L fenfe Arifotle himfelf refers it aro. c. 2. monght the other fpecies of quantity, as having the fame proper effence, which is to be compounded of integral parts. So a pound doth confift of ounces, drams, fcruples. Whence it is evident, that there is not any fuch repugnancy in the fubject of this art, as may hinderit from being a true $\int p e-$ cis of Matberinatick.- C AP.

Cap. 3. Mechanical Povers.

C A P. III.

Of the fir f Mechanical faculty, the Ballance.
$T^{H E}$ Mechanical faculties, by which the experiments of this nature muft be contrived, are ufaally reckoned to bethefe fix :

1. Libra.	1. The Ballance.
2. Vectis.	2. The Leaver.
3. Axis in	3. The Wheel.
Peritrochio.	(. The Pulleg.
4. Trochlea.	4. Th
5. Cuneus.	5. The Wedg.
6. Cochlea.	6. The Screw.

Unto fome of which, the force of all Mechanical inventions muft neceffarily be reduced. I hall fpeak of them feverally and in this order.

Firlt concerning the Ballance; this, and the Leaver are afually confounded together, asbeing but one faculty, becaufe the general grounds and proportions of either force is fo exactly the fame. But for better diftinction, and

14

 Archimedes; or, Lib. I. more clear difcovery of their natures, I hall treat of them feverally.The firft invention of the ballance is commonly attributed to Aftrea; who is therefore deified for the goddefs of Juftice; and that inftrument it felf advanced amonght the celeftial figns. .

The particulars concerning it are fo commonly known, and of fuch eafie experiment, that they will not need any large explication. The chief end and purpole of it, is for the diftinction of feveral ponderofities; For the underttanding of which, we mulf note, that if the length of the fides in the Ballance, and the weights at the ends of them, be both mutually equal; then the Beam will be in a horizontal fituation. But on the contrary, if either the weights alone be equal, and not their diftances, or the diftances alone, and not the weights, then the Bearn willaccording$1 y$ decline.

As in this following diagram.
Supo

Cape B: Mechanical Ropers 2

Suppose an equal weight at C, unto that at B, (which points are both equally diffant from the center A, it is evident that then the beam $B F$, will hang horizontally. But if the weight fuppofed at C, be unequal to that at B, or if there be an equal weight at $D E$, or any of the other unequal diftances; the Beam muff then peceffarily decline.
With this kind of Ballance, it is ufual by the help only of one weight, to meafure foundry different gravites, whether more or less than subrimb.an: that by which they are meafured. As by the example here defcribed, a man may with one pound alone, weigh any other body within ten pounds, because the heaviness of any weight doth

16 Archimedes; or, Lib: t.

 doth increafe proportionably to its diftance from the Center. Thusone pound at D; will equiponderate unto ${ }^{-}$ twb pounds at B, becaufe the diftance $A D$, is double unto $A B$. And for the fame reafon, one pound at E, will ej quiponderate to three pounds at ${ }^{\prime} B$ '; and one pound at F, unto ten at B, becaufe there isftill the fame difproportion betwist their feveral diftances.This kind of Ballance is ufuatly ftyled Romana, fatera. It feems to

Mecbas. Ca. 21. be of ancient ufe, and is mentioned by Arifotle under the name of $\operatorname{dd} \lambda \alpha y \xi$. Hence it is eafie to apprehend, how that fale ballance may be compofed, fo often condemned by the wife man;

Proveti.I ca. 16.ri. If the fides of the Beam be not eihem. cap. qually divided, as fuppófe one have 20.10 .23. Pappios. cone Matbem: L. 8. 10 parts, and the other 11 , then any two weights that differ according tơ this proportion, (the heavier being placed on the fhorter fide, and the lighter on the longer) will equiponderate. And yet both the fcales being empty, fhall hang in equilibrio,

Cip. 3. Methanical' Poindes. ad if they were exactly juft and true; 4sin thîs defcription.

Suppoife $A C$, to have ir füch parts, whereof $A B$, has but 10 , anid yet both of them to be in themfelves of edual weight; it is certain, that whethet the falesbe empty; or whether in the fale D,we pitt 11 pound, and at Ero poind; yet both of them Thall equiponderate; becaufethere is "juft fluch a difpropbrtit on in the length of thefides $A C$; being uhto $A B$, as II to to:
The frequency of fuch cozenages in there dayes; may be evident from cominon experience: and that they Were iffed alfo in former ages; fray e appedi

Archaimedefinuers: Libut to
euafion. appear from Ariftotles teftimony chnt. asechan. cerning the Merchantsin his time, Hop c. 2 .
Budew. the remedying of Guch abufes the AnHence the cientsdid appoint divers Officers ftyled proverb suyosdirau, who were to overlook the Zygofati-
c\& fides.

So great care was there amonget the Jews for the prefervation of commutative juftice from all abnure and falfification in this kind, that the publick ftandards and originals bt which all other meafures were to be tryed and allowed, were with much religion preferved in the Sanctuary, the care af them being committed ta, the Priefts and Levites, whole office,

- Chron it was to look unto all manner of mea23.29. Jures and jise. Hence is that frequent

Exod. 30. expreffion, According to the Bekel of
3. the Sandtuary; and that Law, All of hy,

Iev.27.25 eftimations' fsall be according to the; Jekel of the San wary, which dath. not refer to any weight or coin, diftinct from, and more than the vulgar, (as fome fondly conceive) but doth only oblige men in their deal.. ing and traffique to make nfe of fuch. juf

Oapty. Méchanical Pobers.

 itut meafures, as were agreeableuntothe publick flandayidsthat were kept in the Sanctary.The, manner how tuch deceitful ballances, may be difoovered, is by changing the weights into each other reale, and therf theinequalty will be manifef.

From the former qroupds rightly apprehended, it is eafie to conceive how a man miay find outthe jurk proportion of a weight, which in any pointgiven, Thall equiponderate to feveral weights given, hanging:in feveral places of the Beambis

Sbme, of thefo bailances the made fo exict, (thofe efpecially which the
 wiob the eightiathi pdit of a grain: which (:thoughr it may reen very frange) is nothing to what ** Capellws :indet telates of one at Sedar, : that wothild Greaves's turn with théfour buthdredtltypart of $a_{\text {foom }}$ Ram :" grain.

There are faveral conturances to deribues make ufe of ohefo on miexfuring the nutimity Weight-of blo the die forcoofispowder,

$$
\text { E } 2
$$

the fubftances, condenfed air, the diftinct proportion of feveral metals mixed together, the different gravity of divers bodies in the water, from what they have in the open air, with divers the like ingenious inquiries

CAP. IV.

Concerning the fecond Mechanick faculty; the Leaver.
THE fécond Mechanical faculty, is the Leaver; thefirftinvention of it is ufually afcribedto Nepture, and re$\mu^{\mu} x^{\lambda} \otimes$. prefented by his Trident, which in the arrfoole Greek are both catled by onename;and Quafl. are not very undike in form, being both Mecbay. of them fomewhat broader at oneend; app.4.
Archime
than in the other parts. Aresime The: There is one main principle con-quiponde- cerning it, which is (asis were) the yaut. I. x. very fum and epitome of this whole prtpp. yo

Cap! 4 Mechanical Powders, 21 is, as the weight's to an equivalent power, To is the diftance betwixt the weight and the center, unto the difrance betwixt the center and the power, and fo reciprocally. Or thus, the power that doth equiponderate with any weight, mut have' the Game proportion unto it, as there is betwixt their Several distances from the center or fulciment as in this, following figure.

Where fuppofe the Leaver to be $\#$ This α reprefented by the length $A B$, the rijback calk center or ${ }^{*}$ prop at the point C, the notes ${ }^{\text {cos- }}$
 that doth uphold it E.

Presto.
Now the meaning of the foresaid $\begin{aligned} & \text { Vubaldms }\end{aligned}$ principle doth import thus much, Fulciment. that the power at E, mut bear the Eerbaru: C 3.

Same proportion sonde weight D, as the france $C A$ anoint ta the offer C B3 which, because if is octuple in the prelent example, therefore if wit follow hat one round as B, or ϵ_{0} will equiponderate tonight pounds at A or D pas is exprefled in th figure. The ground of which maxine th this, beciut the point ca as huppofed to be the center of gravity, ar either. Gide of which, the parts are of enfult weight.

And this kind of proportion is not only to be oblerved when theporter dfateref example) but alto in the other facies of violent motion, as lifting, dr emp, aththelike. Thus if the prop offalciment were fuppofed to be at the extremity of the Leaver ${ }^{2}$,

Cap. 4. Aeckasical Pabpers.

As in this Biagram at A, then the weight B, wiould require fuch a diffes rence in the freingths or powers that did faftain it, as there is betwixt the feveral diftances $A C$, and $B C$. For ${ }^{\text {The righe. }}$ as the diftance $A B$, is tinto $A C$ fo underas the diftance $A B$, is uinto $A C$, fo fandingof is the power at C, to the weight at hisis dooh B; that is, the power at A, muft be muchcondouble to that at $\&$, becaufe the di- ducetofie
 Fr, whence it is eafie to conteive, Pulley. how any burden carried betwixt two perfons, may be proportioned according to their different fremgchs./ If the weinhtat'were imagaineds so hang. git the number 2 , then the posmer at C, would futain buci two of chofe parte, 'Jwhereof that at A,'dld wphold 36. If it be fuppofed at the figure (3) then the frengtb at \mathcal{C}, to that at 4, would be but 'as three to fifieen. that iffit were:fipxated at the figute (b) gheine eich of the extremities would participate of it'alike, becaufe that being the middle, both the diftances. are equal. If at the number (12) then the ftrength at C, is required to be C 4 double

24 Archimedes; or, Lib. I:

 double unto that at A. And in the like manner are we to conceive of the other intermediate divfions.Thus affa mult it be, if we fuppofe the power to be placed betwixt the fulciment and the weight, as in this example.

Where, as $A_{1} C$, isto $A B_{2}$ fois the powier at B, to the weight at C.
Hence likewife may we conceive the reafon why it is much harder to carty anylong fabftance, either onthe fhould ers, or in the hapd, if it be held by either of the extremes, than if it be fuftained by the middle of it, The Arength that muftequiponderateate the nearer end, fometimes increafing the weight almof double to. what it is in it felf

Inagine

Cap :4. Nechivical Inemors: in

Imagine the point A, to be the place where any long fubftance (as fuppore a Pike) is fuftained, it is evident from the former principle, that the frength at B, (which makes it lye level) mult be equal to all the length $A C$, which is almoft the whole Pike.

And as it is in the dépreffing, or elevating, fo likewife is it in the drawing of any weight, as a Coach, Plow, or the like.

Let

 -re Carriage on which the burden is harre, it each of its exuremities; and Ihert which; either harfer or oxerimat tici faftined, Now becaufe forepd, C , are equally diftinn from the middle B, therefore in this cafe the ftrength muft be equal on both fides; but if we fuppofe one of thefe fpring-trees to be faftned unto the points E, or F, then the ftrength reguired to draw on that fide, will be 16 much more, as the diftance $E B_{2}$. or $F B_{3}$ is lest than that of $A B$; that is, either as three or four, as $E B$, to
$B A$,

Cxtel4. Machasisal Ravers.

 $B A$, or as oneto two, as $F B$, to $B A$. So that the beaft Faftried at A, will net draw fo much by a quarter, as the othèr at E, and but half aq much as one at F.Whence it is eafie to conceive how.

 Sinp the labouse of drawigg'accord. ing ${ }_{7}$ tofit the femeal Arength of his prent
 be: reduced fondyy other inffruments chan. $c, 5$
 fteainn, mafts, \&c. accordingeto their Vie Gue(10) ver. Como fagff wherechy they give motion to wem.
 this head.
Thus likewife farshat engina, whereby Brewersend Dyers do camanooly Pet. cri-
 and others : Thallerom. This being toueflia the fime tind of tof be pijcipine
 C.A. P.

Arobimeder; on, Libido
$\because \mathbf{C A P} \mathbf{V}$
!ats
How the natural motion of luting creatures is conformable to the fe axtiffcial rules.

- He former Principle being aready explained, concerning artiff cal and dead motions, it will not be altogether impertinent, if in the next place, we apply it unto thole that are natural in living bodies, and examine whether the fe afr are not governed by the fame kind of pro-
- , r. portions:
aw - In all perfect living creatures, there is a twofold kind of motive inframints.
mane wiPrioiart, the mandes.
- 13 : 2 secondary, the meinbers.
\Rightarrow, mi The maces are naturally fitted
sis to beinfuiments of motion, by the
\therefore : manner of: their frame and compo-
\therefore sis fareguconfiting of'thelhas their chief
ma ct material, and befides of Nerves, E. Egatures, Veins, Arteries, and Memfrances

Cap. 5. Mechanical Pewters

 and langain in their motions. The. $V_{\text {eime }}$ for their nourifhment. The $A r$ teries for the fupplyiug of them with. Spirit, and natural vigor. The Membrances for the comprehenfion or in , clofure of all thefe together, and for the diftinction of one mufcle from another. There are befides divers fibne or hairy fubftances, which nature hath betowed for the farther corroborating of their motions; thefe being difperfed through every mufcle, do fo joyn together in the end of them, as to make intire nervous bodies, which are called Tentones, almoft like the grilles. Now this (faith Galen) may fitly be compared to the De Placit: broader part of the Leaver, that is ${ }_{\text {Hippoc. }} \mathcal{O}^{\circ}$ put under the weight, which, as it ${ }^{\text {Platoon.l.16 }}$ put under the weight, which, as it ${ }_{c a}$. Io. ought to be fo much the ftronger; by how much it is put to a greater force; fo likewife by this doth nature inable the murclet and nervesfor thote motions; whien otherwife would be too difficult of them:
Whence it may evideitly appear, that according to the opliffon of tiate eniminept Phylitian, the de rátiral motiobs are regulated by the like ground with the artificial.
2. Thus alfo is it th thofe fecont: dary inftruments of inotion, the membbers: amongt whieh; the hand is
 tizum, l. t. C. 2. fromientes (las Galen ftyles it); and as the foul of man doth bear in it the image of the ditine wifdorite and providente; fo this part of thebody Feems in fome fort to reprefent the Othipotency of God, whillt it 'is able to perform fuch various and twonderful effects by the help of this aft. But now for its own proper natural frength, in the lifting any great weight, this is always proportioned according to its extenfion from the bady; being of leaft force when it is fully ftretched out, or at arms end, (as we fay) becaufe thent the Choulder foynt is as the centet of

Capisl Meabaxifall Roxkrs.
理 its motion, from which, the hand in that pofture, being very remote, the weight of any thi"g it hofds muft be accordingly ugmented. Whereas the arm being drawn ip, the elbow-joynt doth then become its center, which will diminifh the weight proportionably, as thatpart is hearer unto itthan the other.

To this purpofe alfo, there is another fubti probleme propofed by Ariftotle, coucerinitg the poftures of fitting and ring yup. The quare is acechav: this, Why x man cannot rife up from his feat, unlefs he firt, either bend his body forwards on thrift his feet backward.

In the poture of fitting our legs are fuppofed to make a right angle : with our thighs, and they with our backs, as in this figure.

Where

Where let $A B$, repielent the back; $B C$, the thighs, $C D$, the legs. Now it is evident, that a man cannot rife from this pofture, unlefseither the back $A: B$, do firftincline unto F; to make an acute angle with the thighs $B C_{;}^{\text {; orelfe }}$ that the legs $C D$, do incline towards E, which may alfo make an acute angle with the thighs $B C$; or laftly, unlefs both of them do decline to the points G H_{2} where they may be included in the farme perpendicular:

For

Cap. 5. Mecbanical Powers.

For the refolution of which, the Philofopher propofes thefe two particulars.

1. A right angle (faith he) is a kind ofequality, and that being naturally the caufe of reft, mult needs be an impediment to the motion of rifing.
2. Becaufe when either of the parts are brought into an acute angle, the head being removed over the feet, or they under the head; in fuch a polture the whole man is much nearer difpofed to the form of ftanding, wherein all thefe parts are in one ftreight perpendicular line, than he is by the other of right angles, in which the back and legs are two parallels; or that of tutning thefe ftreight angles into obtufe, which would not make an greet pofture, but declining.

But neither of thefe particulars (as I conceive) doe fully fatisfie the prefent qürre, neither do the Commentators, Monantbolins, or Guevara; better refolve it. Rather fuppofe B C_{3} to be as a Vectis or Leaver, toal.

Archimedes; or, Lib. x.

 wards the middle of which is the place of the fulciment, $A B$, as the weight, $C D$, the power that is to raife it.Now the body being fituate in this reAtangular form, the weight $A B$, mult needs be augmented proportionably to its diftance from the fulciment, which is about half the thighs; whereas if we fufpofe either the weight to be inclined unto F, or the power to E, or both of them to $G H$, then there is nothing to be lifted upbut the bare weight it felf, which in this fituation is not at all increafed with any addition by diflance.
For in thefe conclufions concerning the Leaver, we muft always imagine that point which is touched by a perpendicular from the center of gravity, to be one of the terms. So that the diverfe elevation or depreffion of the inftrument, will infer a great alteration in the weight it felf, as may more clearly be difcerned by this following Diagram.

Where

Cap. 5. Mechanical Powers.

Where A, is fuppofed to be the place of the prop or fulciment, $B C$, a Leaver which flands horizontally, the power and the weight belonging unto it, being equal both in themfelves; and alfo in their diftances from the prop.

But now fuppofe this inftrument to be altered according to the fituation $\boldsymbol{D} E$, then the weight D, will be diminifined, by fo much, as the perpendicular from its center of gras D 2 vity vity $H I$, doth fall nearer to the prop or fulciment at A. And the power at E, will be fo much augmented, as the perpendied arfromifacenter($K E$) do's fall farther frometle point at A. And fo on the contrary in that other fituation of the Leaver $F G$; whence it is eafie to conceive the true reafon, why the inclining of the body, or the putting back of thèleg, thould fo much conduce to the facility of rifing.

From there grounds likewife may

Sir Fran Bacons Nat. Hift. Exp. 73r. thighs in defcending; which is becaufe the weightof the bodydoth bear mooft upon the knee-joynts, in raifing it felf up, and moft upon the mufcles of the thighs when it flays it felf in coming down.

There are divers other natural problemes to this purpofe, which I forbear to recite. We do not fo much as go, or fit, or rife, without the ufe of this Mechanical Geometry.

C A P. VI.
Concerning the Wheel.
7He third Mechanical faculty is Called commonly ftiled axis in peritro- likewifs chio. It confifts isf an axis or Cylin: obss Ariff. der, having a rundle about it, wherein c. $_{14}$ there are faltened divers fpokes, by which the whole may be turned round ${ }^{\prime}$; according to this figure.

D 3
Where

Where BC, does reprefent the Cylinder which is fuppofed to move upon a fmaller Axis at E, (this being all one in comparifon to the feveral proportions, as if it were a meer Mathematical line) $L G$, is the rimdle or wheel, $\boldsymbol{H} \boldsymbol{F} \boldsymbol{I} K$, feveral fpoles or handles that are faftned in it; D,
$\therefore:$ the place where the cord is faftned for the drawing or lifting up of any weight.

The force of this inftrument doth confift in that dif-proportion of difrance, which there 5 betwirt the Semidiameter of the Cylinder $A B$, and the Semidiameter of the rundle with the fpokes $F A_{1}$. For let us conceive the line FB, to be as a Leaver, wherein A, is the center or fulciment, B, the place of the weight, and F, of the power. Now it is evident frotn the former principles, that by how much, the diftance $F A$, is greater than $A B$, by fo much lefs need the power be at F, in refpect of the weight at B. Suppole $4 B$, to be as the tenth part of $A F$, then the pow-
er or ftrength: which is but as a hundred pound at F, will be equal to a thoufand pound at B.
For the clearer explication of this faculty, it will not be amifs to confider the form of it, as it will appear being more fully expofed to the view. Asin this other Diagram.

Suppole $A B$, for the Semidiameter of the Axis or Cylinder, and $A C$, for the Semidiameter of the rundle, with the fpokes. 3 then the power
 at C, which will be able to fupport the weight D, wult bear the fame proportion unto it, as $A B$, doth to $A \subset$: fo that by how much fhorter the diftance $A-B$, is in comparifon to the diftance $A C$, by fo much lefs need the power be at C, which may be able tofupport the weight D, hanging at B.

And fo likewtfe is it for the other fpokes or handles E-EGH, at either of which, if we conceive any power, which Chall move according to the fame citcumferienge whereitthefe handles are placed, then the ftrength of this power will be all one, as if it wereat C. But now fuppofing a dead weight hanging at-any of them, (as at E, then the difproportion will vary. The power being fo much lefs than that at c, by how much the line $A C$, is janger then A I. The weight K, being of the fame forceat E, as if it were hung at I, in which point the perpendicular of its gravity doth cut the Diameter.

The chief advantage which this
in-
inftrument doth beftow, above that of the Leaver, doth confift in this particular. In a Leaver, the motion can be continued only for fo fhort a fpace, as may be anfwerable to that little :diftance betwixt the fulciment and the weight : which is always by fo much leffer, as the difproportion betwixt the weight and the power is greater, and the motion it felf more eafie: But now in this invention, that inqonvegience is remedied; for by a frequent rotation of the axis, the weight may be moved for any height or length, as occafion Challirequire. Untothib faculty,may we sefer the force of all thofe engines which con-fift-of whetels with teeth in them.

Hencealfo may we difcern the reafon why fundry intruments in common ufe, are framed after the like form with the following figures.

All which are but feveral kinds of this third Mechanical faculty. "In which the points $A B C$, do reprefent the places of the power, the fulciment, and the weight. The power being in the fame proportion unto the weight, as $B C$ is unto $B A$.

CAP.

Cap. 7. Mecbanical Powers.

 which is of fuch ordinary ufe, that it needs not any particular defcription. The chief paptsof fare diverst ftle rundles, that are movable about their proper axes. Thefe are ufially di- Arijl. Me: vided according to their feveral fitu- chan, c.19. ations, into the upper and lower. If an engine havetwo of thefe rundles above and two below, it is ufually called simaro , if three relatas θ, if many, sodiumas?

The lower Pulleys only do give force to the motion. If we fuppore a weight to hang upon any of the upper rundles; it will then require a power, that in it felf fhall be fully equal for the fuftaining of it.

The

The Diameter $A C$, being as the beam of a ballance, of which B is the prop or center, Now the parts A, and C, being equally diftant from this center, therefore the power at E, mut be equal to the weight at D, it being all one as if the power and the weight. were fated by two feveral firings at the ends of the ballance $\boldsymbol{F} \boldsymbol{G}$.:

Now all the upper Pulleys being of the fame nature, it mut neceffarily follow, that none of them do in themfelves conduce to the ealing of the power, or lightning the weight, hut only for the greater convenien-

Cap. j. Mechanical Porvers.

cy of the motion, the cords by this means being more eafily moved than otherwife they would.
But now fuppofe the weight to be fuftained above the Pulley, as it is in all thofe of the lower fort $;$ and then the power which fupports it,need be but half as much asthe weight it felf.

Let $\mathcal{A} C$, reprefent the Dilmeter of a lower Pulley, on whofecenter at B. the weight is faftued-ane end of the cord beifg tyed to abook at D. Now it is dvident, that balf the weight is fuftained at $D ;$ fo that there is but the other half left to be [] Zfftained

Archimedes; or, Lib. I. futtained by the power at E. It being all one as if the weight were typed unto the middle of the ballance $\boldsymbol{F} \boldsymbol{G}$; whole ends were upheld by two fererall firings, $\mathcal{F} H$, and $G \boldsymbol{I}$.

And this fame fubduple proportion will fill remain, though we fuppofe an upper Pulley joyned to the lower, as in there two other figures.

Cap. 7. Mechanical Powers

Where the power at A, is equal to the weight at B : Now the weight at B, being but half the ponderofity C, therefore the power at A, notwithflanding the addition of the upper ruadle, muft be equivalent to half the weight; and as the upper Pulley alone doth notabate any thing of the weight, fo neither being joined with thelower, and the fame fubduple difference betwixt the power and the weigbs; which is caufed by the lower Pulley alone, doth ftill remain unaltered; though there be an upper Pulley added unto it.
Now as one of thefe under Pulleys doth abate half of that heavinefs which the weight hath in it felf, and caufe the power to be in a fubduple proportion unto it, fo two of them do abate half of that which remains, and caufe a fubquadruple proportion, betwist the weight and the power; three of them a fublextuple, four a fuboctuple: and fo for five, or fix, or as many as thall be required, they will all of them diminifh the weight according to this proportion.

Suppofe the weight init felf to be 1200 pound, the applying unto it one of thefe lower Pulleys, will make it but as 600 , two of them as 300 , three of them as $1.50, \& c$.

But now, if we conceive the firt part of the ftring to be faftened unto the lower Pulley, as in this other figure at F;

then

Capitiz Meshaütcal Reners.

then the power at A, will te in a fub triple propartion: to the weight F_{5} becaufe the eldivines wound be then equally divided unto the three points of the lowerDixmeterif; C, D, each

E of of them fupporting a like fhare of the burden. If unto this lower Pulley there were added another, then the power would be unto the weight in a fubquintuple proportion. If a third, a fubleptupta, and fo of the reft. For we phalf tote, that the cords ip this inffument are as fomany power, and the rundtes as fo many leavers, or ballances.

Hencgit s eafie to conceive, how the ftgength of the powermay be proporkond acoording to ant hect degree, as fhall be required and how any weight given, may be moved by any power $\boldsymbol{\$}$ iven.

Tis tot nateaial to the forb of this inftument, whetherthe ruidles of it be visor little, if hey be rade equal to fine another intheiferesseral orders; Bet it is moft converfient, that the upper fhould each of them increafe as ithey gide higher, tand the ochir at thag vared lowergobecenfe byithis
 amiglingart sif oun b b:tio wilu up

Caprifig Meabanibal Pouters. according to fundity different fituationus, riot only when'they are fabordic nate, wo in the former examples, but aldo' whiten they are placed collaterally:
From the former grounds it is eafic wocomerive a lad der,' by which a map may pull himfelf up unto any height; For the performance of this, there is required body and upper and a lower rundle:

To the uppermot of there at A; there: flould ber faftned ei/hrarp graple or : etamp of iron, which may be apt to: take hold of any place where it lights. This part being fiut caft up and fafttied, and the ftaff, $D E$, at the nether end, tieitig pat betwikt the legs, fo that a minn may forespon the other $R \mathcal{C}_{5}$ and take hold of the cord at F , its is evident that the weight of the: edtronn at E, will be buenqual to half fo much frength at Fif fo that a man may eafily pull hi for fop to the place required, by lea ${ }^{2}{ }^{2}$ 㘿 but little more than half of hible wn weight on the Aring F. 0 f f the Pulleys be multiplyed, this X 品eriment may then be wrought with efflabour.

THE fift Meclianical faculty is the Wedge, Whibsta known inftrument, commonly u fed in the clea-
ving

Cap.8. Mecbariomer 'Romers.

 frengutroof it may be refolved unto: thefe two particulars:I. The form of it.
2. The manner wherebyythe power is impreffed upon it, which is by the force of blows.

Each fide $A D_{2}$ and $A E$, being one the points $B C$, being inftead of feveral props or fulciments'; the weight to be moved, at A, and" the power that fhould move it, being applyed to the top $D E$, by the force of mecban, fome froak or blow, as Ariftotetec. 8. bath explained the feveral parts of this faculty.. But now, becaufe this inftrument may be fo ufed that the E 3 point
point of it fhall not touch the body to be moved, as in thefe other fie gures:

Therefore Ubaldus hath more exacty applied the feveral parts of it according to this form, that the point A, Chould be as the common fulcipent, in which both the fides do meet, and (as it were) uphold one another; the points B, and C, reprefenting that part of the Leavers where the weight is placed.

It is a general rule, that the more acute the angles of thefe wedges are py fo much more eafie will their mo fion be; the force being more eafity mpreffed, and the pace wherein the耳ody is moved, being fo mucts the fes

Cape 8 Megháyical Rowers.
The fecond particular whereby s this faculty hath its force is the man per whereby the power, is improff uponit, which is pya froke orthow i the efficacy of which doth much ex y ceded any other tureqgth. Far though we fuppofe a wedge being laid on 4 price of timber, to be preffed down with never of great a weight; nay. though we foould apply, unto, it, the power of thole other. Mechanical engines, the Pulley, Screws, \&o yet the effect would be farce conic derable in comparifon to that of a blow. The true seafon of which, is one of the gueatelt fubtileres in nap tare; nor is it fully rendered by any of thole who have undertaken the refolution of it. Arifiotle, Carding* scan. and Scaliger, do generally ascribe it subtile. unto the fwiftnefs of that motion $; E_{\text {xercit }}$ But there rems to he fomething 33 x . more in the matter than fo; for $0-$ therwife it mould: follow that? the quick freak of alight hammer, should be of greater efficacy, than any fofter and more gentle Ariking of a great E 4 edge
aledge. Or according to this, how Thould it come to paft, that the force of an arrow or builet diccharged near at hand (when the jmpreflion of that violence, ' whereby they are carried, is moft freth, and fo in probability the motion-at its fwifteff) is yet notwithfanding much lefs than it would be at a greater diftance? There is therefore farther coriffderable, the quality of that inftrument by which this motion is given, and alfo the convenieincy of diftance through which it paffes.

Unto this faculty is ufually redu: ced the force of files, faws, hatchets, Qe. "whith are as it were but fo ma: ny wedges faftned nito a Vectis on Leaver:

CAP." IX .
Of the Screm.
What which is ufually recited for L. sthe fixth and laft Mechanick faealty, sist the scerew, which is defertibed to be a kind of wedge that is multi-
plied

Cap: 9. Mechanical Ponoers.

plied, or continued by a helical revolution about a Cylinder, receiving its motion not from any ftroak, but from cappusi a Vectis at one end of it. It is tufu-makemeto ally diftinguifhed into two Reveral i ib. 8 . kinds: the male, which is meant in the former defcription $;$ and the female; which is of a concave fuperficies.

The former is noted in the figure with the letter A, the other with B. Ariftotle himfelf doth not fo much as mention this inftrument, which yet notwithftanding is of greater force and fubtilty, than any of the reft. It is chiefly applied to the fqueezing or prefling of things down- $\begin{array}{r}\text { wards, }\end{array}$ wards, as in the prefles for, Printing for wine oyl, and extracting the juice from other fruits. In the performance of : which,the ftrength of one man may be of greater force, than the weight of a heavy mountain: It is likewife ufed for the elevating or lifting up of weights.
The advantage of this faculty above the reft, doth mainly confifit in thist the other mimtumenss doe require fo much ferength for the fupporting of the weight to be moved, as may beequal unito i , befides that 0 ther fuper-added power whereby it is out-weighed atid moved; fo that in the operatiops by thefe, a man does always feend bimelf in a continued labour.
-Thus (for example) a weigher that is lifted up by a Wheel or Pulley, will of it felf defcend, if there be not an equal power to fuftion it But now in the coppofure of a Screw, this inconvenience is perfectly remedied; for fo much force as is come munigated unte this faculey, fram the power

Capib. Mecheraicel Roxpers.

power that is applied unto its, is ftilh retained by the very frame and nar ture of the inftrument it felf; fince the motion of it cannot poffibly return, but from the very fame place where it firft began. Whence it comes to pafs, that any weight lifted up, with the affiftance of this engine, may, fikewife be fuftained by it, without the help of any external power, and cannot again defend unto its former place, unlefs the handie of the Serew (where the mation firt began) be turned back: fo that all the ftrength of the power, may be imployed in the motion of the , weight, and tome feent in the fuftaining of it.

The chief imconvenitence of this inftrument is, that ine fort face it will be ferewed untoits full length, and then it camat be of any fur ther ufe for the continuanec of the motion, unlefs it be returned black, and undone again as at the firfh But thist is ufually remedied by another imention, commonly Ityled a pexpo \ldots tual tual frew, which hiath the motion of a wheel, and the force of a fcrew, being both infinite.

For the compofure of which, in-: ftead of the female, or concave frew, there muft be a little wheel, with fome notches in it, equivalent to teeth, by which the other may take

Ir is ufed infome Watches. hold of it, and turn it round, as in there otberfigures.

This latter engine does to far exceed all other contrivances to this purpofe, that it may juifly fexm a woonder why it is not of as ! common ufe

Cipurib. Mockanical: Ropers.
ufe in thefertinestand places' as any of the reft.an of: :\%:

GARX.
An enquiry into to me magnifoent pporths. of the Ancienits, molich 私uch exceeding our laten times,: mas feem to 1singer a decay in thafe Mechanical :is.a.s: siduts... 1 at $\because 2$: ant
or Hus haveribriefly treaged cons cerring the general pinciples of Méobaticks to together withoshe dis findot propartions bet wixty the weight and the powiri中 each Cexeral faculey of itis Shlene it is eafer to: concetive the trutbicand ground of thafe
 feem almoft ingredible to thefe fol$.21 .4^{2}$ lowing ages. And becaufe many of theminrecorded by Antiquity 5 : were af fiche vaft, labour and inagnife encen and fo mightily difproportiionablerto humane frength; it fhatl notherefore be impertinent unto the
 puypers I aithat, for to qecige tome of

of the moftremarkable amongft them, and to enquire into the means and: cccafion upon which they were firft attempted.

Amongt the Agyptians; we read of divers Pyramids, of ro valt a nage. nitude, as tine it felf in the fpace of fo many handred years hath not yet
2.2.5:178 devoured. i Hetrodowis mentions one of them, erected by Cleopes an Eggyptian King, wherein there was not any one fone lef that 30 foot long alk of thembeing fetched frominfrabia. fnd not mindat after, the fame Author zelates, How Amafornother Agypti an, made binfelf a houre of one ens tite Itone, which was 21 cubitsiong, I4 bradd, and 8 cubits high. atre
trim. L. 36. fatme' Amdfor is'reported to haver mude CR. 12. the fatue of a Spbins,i or Fegyptian Cat; all of one fingle fone, nhare 1ength 143 foot, its beight 62 foot, he compads! of thiso otatmes head containing 182 foot. In one Of the IEgyptian Texples confedrated P4ia. 1.37 to of upiter; there tis related worben

Capi. Io. Methinitul rovpers. $\quad 0$

or Etreralds; the whole is 40 cuibits high, 4 etibits bread at the boitom, and $t w d$ at the top: Sefoftris the King Dioder siof 佂矻t in a temple at Memphis; dec cul. sibit, dicated to Filcian, is reported to have otb. 1.15 erefied two fratues, one for himfiff; sea. in the ether for his wife; both confilting of two feveral ftones, each of which *ere 3o whbits hight, Antongt the Jewd we read in la- nio tred Whit of Solomons Temple, which :asirs for Its ftrate' and magnifictince mitht π_{c} nis have been juftly reckoried a mongit the ofher wonders of the wionld, Whereft befides the great preches of the materiats, there were works tob of
 cubites high, ind 2 cubits routdo crapor. t . great and conlly foftes for the ifoundation of it $;$ Fojephus' tells tis', that De bello fome of them were 40 cubits,' bthers Fudh. 46 . 43 cubits long. And in the fame ${ }^{6.6} 6$ Chapter me mentions the thred famotis Towers bailt by Herod, wherein' ${ }^{-}$ *eyy fonne being of white marble, Was tolcublis long 10 broad, and 5
 won-
aw Archimedes; ; pr, Lib. $\mathbf{1}$. wonder, the old wall it elf was itu, ated on a free rifing:ground and yet the hills:upon it, on the tops of which there Towers were placed, were about 30 cubits high, that is farce imaginas as able by what ftrength fo many topes of fuch great magnitude mould be compered to fo higheplace on, ruin 1. 36.' Among the Grecians we read of c. 14.
pencirol. the Depend. Diana, wherein there were $1: 971$ cozit. 32. lumps, made of fo many: feveral Atones each of them 60 foot high, being all taken gut of the quarries in fac. 'This fried alto of the brazen foloflus, or great Statye:in the is es a : Inland of Rhodes that it was 70 cuPisa, 1,34 , bits high. The thumbs of it being to. big that no man could graft one
wis of them about with both his arms; ar when it flood upright, a hip might have faffed betwixt, the legs of it, with all its fails fully y dir played thrown down by anearth-quake ${ }_{2}$; the brass of it did load goo Camels But above all ancient defigns to this punpole, that would have been mot wonder-

Cap. Io. Mechanical Powers. $\quad 65$

woinderful, which a Grecian Architect did propound unto Alexander, to Ditriv. ctit the Mountain Athos into the form ${ }^{\text {Arcbiti.ias }}$ of a ftatue, which in his right hand fhould hold a Town capable of ten thoufand men, and in his left a Veffet to receive all the water that flowed from the feteral forings in the Mountain. But whether Alexander in this ambition did fear that fuch an Idd fhould have more honour than the himfelf, or whether in his good husbandry, he thought that fuch a Microcosme (if I may fo flyle it) would have colt him almoft as much as the conquering of this great world, or what ever elfe was the reafon, he refufed to attempiti.. -

Amongt the Romans we read of a suet. ver. brazen Coloffus, inde at the command and charges of Nero, which twas 120 foot high; Marlial calls it Sydereus; or farry.

Hic ubi Sydereus proprius videt aftra Coloffis. And it is toried of M. Cuifio, pancirdel. that he erected two Theatert fuffici- Tit. iz
 ently capacious of people, contrived movable upon cextain hinges; Sometimes there were feveral plays and fhows in each of them, neither being any difturbance to theother; and fometimes they were both turned about, with the people in them, and the ends meeting together, did make a perfect Amphitheater: fo that the fpectatprs which were in either of them, might joyntly behold the fame feectacles.

There were befides at Rome fundry Obelisks, made of fo many intire fones, fome of them 40, fome 80, and others 90 cubits high. The chief of them werebrought out of Egypt, where they were dug out of divers quarries, and being wrought intofotre, were afterward (not without incredible labour, and infinité charges) conveyed unto Rome. In the year $\mathbf{5 8 6}$, there was erected an old Obelisk', which had been formerly dedicated unto 'the memory of Julius Cafar. It was one folid ftone, being an Ophite or kind of frotted Mapble. The height of it was 107 , foot, the breadth of it

Capli 耳o. Mechanical Roppers.

 at the bottopere was, 12 fgot, at the, top: 8. Its, whole weight is reckoned, to be 95644 pounds, befides the beaviners of, all, thofe thitruments that were ufed about it, which of is it sinthought, , could not amount to Refs then 1042824 pounds. It was trant phaced at theicharges of pepe Sixtuts the fifth, from the tegtifide of the bout a hundred foot of the bere now itfornds The moving of this Obelisk is celebrated hy, fhe writings of above 56 Ceveral Anthors, Giuth Monayt Commem: tholius) ali of them mentionitig it, not in Mectan: withoug much wonder, ind praife, Arifcc. 19 ; Now, if it feem fo trange and ghori; ous an attemprt to move this Obelisk for fo little rifruce, what hen max we think of the carriageo $\mathrm{F}_{\text {it }}$ oat of Egypt, an I divers other far greater works performed by Antiquity? This may feem to infer, that thefe Mechanical arts are now loft, and decayed amongt the many other ruins of timie; which yet notwithfanding cannot be granted, without much ingrratiF tude tude to thafe learned men, whoferabours in this kind we enjoy, and may. juftly boaft of. And therefore for our better underftanding of thefe particulars, it will not be amifs to enquire both moby, and hoom, fuch works fhotild be performed in thofe former and ruder ages, which are not, and fas it hould feem) cannot be effected in thefe later and more learned times. In the examination of which, we fhall find that it is not the want of art that difables us for them, fince thefe Mechanical dictoveries are altogether as perfeet, and (Ithink) much more exad now, than they were herétofore; but it is, becaule we have not either the fame motives to attempt fuch works, or the fame means to effect them as the Ancients hiad.

Cap. II. Mecbanical Papers.

C A P. XI.

That the Ancients bad divers motives and means for fuch vaft magnificent woorks, which we bave not.
$\rightarrow \mathrm{HE}$ motives by which they were excited to fuch magnficent attempts, we may conceive to be chief-: ly three.
$\left\{\begin{array}{l}\text { Religion. } \\ \text { Poling. } \\ \text { Ambition. }\end{array}\right.$

1. Religion. Hence was it that. moft of thefe fately buildings were inteaded for fome facred ufe, being either Temples or ${ }^{*}$ Tombs, all of ${ }_{* A s P y r i o}$ them dedicated to fome of their Dei- mids, O ties. It was an in-bred principle in belisks. thofe ancient Heathen, that they could not chufe but merit very much by being liberal in their outward fervices. And therefore we read of Crafins, that. being overcome in a battel, and taken Zerodas by Cyrus, he did revile the Gods of ingratitude, becaufe they had no better care of him, who bad fo frequently F 3 adored.

foे Ardatmedes; or, Libif.?

 adored them with coftly oblations. And as they did conceive themfelves bound to part with their lives in defence of ther religion: fo likewife to employ their utnoft power and eftate, about any fuch defign which might promote or advance it: Whepeas riow, the generality of' men, efpecially the wifeft fort amongtt them; are in this refpect of another opinion, counting fuch gieat and immenfe labours to be at the beft but glorious vanities. The Temiple of Soldmon indeed was tơ be a type and theréfore it was neceffary that rthould be for extraordinarily magaificent, otherwife perhaps a much cheaper fructure mightσ whave been as commendable and rerviceable.2. Policy, that by this means they: might find but imployment for the people, who of themfelves being not much civilized, might by idleners
. quickly grow to fuch a rudenefs and barbarifon, as not to be bounded with-: in any laws of government. Again. Plime l. 6. C. 12. by this means the riches of the King-' dom

Cap. 11. Mechanical Porkers: 25 dom did not lye idly in their kings: treafuries, but was always in motion, which could not but be a great advantage and improvement to the Com_{7} mon-wealth. And perhaps fome of them feared left if they hould leavetoa much money unto their fucceffors, it might be an occafion to inflare them in fuch idle and vain courfes as. would ruin their kingdoms. Whereas in thefe tater ages none of all thefe politick incitements can be of any force, becaufe now there is imployment enough for all, and money little enough for every one.
3. Ambition to be known unto pofrerity; and hence likewife arofe that incredible labour and care they befrowed to leave fuch monuments behind them, as might ${ }^{*}$ continue for e e $*$ Pral. 49 . ver, and make them famous unto all ${ }^{219}$ after ages: This was the realion of Abjaloms pillar fpoken of in Scrip-
 And doubterfs this too was the end which many others of the Ancients have aimed at, in thofe (as they F_{4} thought

But now theft later ages are much. more active and firing: fo that every ambitious man may find fo much bufinefs for the prefent, that he shall farce have any leifure to trouble himself about the future. And therefore in all thee refpects, there is a great difproportion bet wist the incite* mints of thole former and thole later times unto foch magnificent. attempts.

Again, as they differ much in their motives unto them, folikewife in the means of effecting them.

There was formerly more leifure and opportunity, both for the great men to undertake fuch works, and for the people to perfect them. Thole part ages were more quiet and peaceable, the Princes rather wanting imployment, than being over-preft with it, and therefore were willing to make choice of foch great defigns, about which to bufie themfelves: whereas now the world is grown more politick, and therefore more trouble-

Cap. II. Mfeclonical Powers.

 troublefome, every great man having. other private and neceffary bufinels about which to imploy both his time and means. And fo likewife for the common people, who then living more wildly without being confined to particular trades and profeffions, might be more cafily collected about fuch famous imployments; whereas now, if a Prince have any occafion for an Army, it is very hand for him to raife fo great a multitude, as were ufually imployed about thefe magnificent buildings. We read of 360000 men that were bufied for twenty years in making one of the Egyptian Pyramids. And Herodetus tells us of $1000000^{\text {Lib. } 20}$ men who were as long in building another of them. About the carriage of one ftone for Amafis the diftance of twenty days journey, there was for three years together imployed 2000 chofen men, Governours, befides many other under-labourers. 'Twas the opinion of * Fofepbins and Nazi-* amiq. anzen, that thefe Pyramids were built $i .2 . \cos x^{\prime}$ by foleph for granaries againft the years ratabimedencion; Lib. s. years of famine. Others think that: the brick made by the children of Ifyael, was inployed about the framing of them, beciufe we read that the Tower of Babel did conffif of brick or antificialfone, Geh. un.3. And if thefe were the labourers that werehufied about them, 'tis no wonder though they were of fo valt a magnitude; for we read that the children of Ifrael at their coming out of E $\mathrm{g} p \mathrm{tt}$: were numbred to be fix hundred, thoufand, and three thoufand, and five hundred and Gifty,men, Numb. I.46. fo many handfuls of earth would almoft make a mountain, and therefore\therefore we may eafily belieye that fo great 2 multitude in fo long a fpace as their hondage lafted, for above feur hundred years; might well enough accomplih fuch vaff defigns.
In the building of Solamons Tem-: ple, there were threefcore and ten thoufand that bare burdens, and fourfcore thoufand hewers in the mountains, 1 Kings 5.15.

The Ephefian Temple was built by:

Cap. II. Mechanicat Rowers.

 all Afa! joyning rogether, the :127 pillars were made by fo many Kings according to their feveral fucceffions; the whole wark being not finifhed. under the fpace of two bundred and fifteen years. Whereas the tranfla cing of that Obelisk at Reme by Sixtus the fift, (fpoken of before) was done in fome few days by five or fix hundred men; and as the work was. much lefs than many other recorded by Antiquity, fo the means by which it was wrought, was yet far lefs in this refpect than what is related of them.2. The abundance of wealth, which was then ingroffed in the poffeffion of fome few particular perfons, beingnow. diffufed amongtt a far greater number. There is now a greater equality amongft mankind, and the flourifhing of Arts and Sciences hath fo ftirred up the fparks of mens natural nobility, and made them of fuch active and induftrious Pirits, as to free themfelves in a great meafure from that lavery, which thofe former and wilder there was expended for the maintenance of the labourers with Radifh and Onyons, no lefs than eighteen hundred talents, which is reckoned to amount unto 1880000 Crowns, or thereabouts. And confidering the: cheapnefs of thefe things in thofe times and places, fo much money might go farther than a fum ten times greater could do in the maintenance: of fo many now.

In Solomons Temple we know how the extraordinary riches of that King, the general flourifhing of 'the whole State, and the liberality of the people did joyntly concur to the building of the Temple. Pecuniarnon copia \&oSudel.6. puli largitus, majora dictu conabatur, (faith Jofephus). The Rhodian Coloflus is reported to have coft three hundred talents the making. And fo were all thofe other famous Monuments of proportionable expence.

Pancirollus fpeaking of thofe Theaters that were erected at the charges.

Cap. IY. Mechanical Romers. 77:

 of fome private Roman Citizens, (aith thus: Noffra boc faculo vel Rex fatis Depord. Baberet tyend ageret edificio ejufxotodi eri- Tit. 18. gends; aned a titticafter upon the like occafion, Res mibherciule miraculofa; quae noftris temporthus dix à potentiflimo alique rege poljit extiberis:3. Add unto theitwio former confiderations that expeti nere and indefatigable iondijftry: which they beftowed in the raifing of thofe ftruckures: Thefe being the chief and only defiges or which many of them did imployiall their beft x boughts and wemoft endeavours. Cleapes an Egyptian King is reported to have heen fo defirous to finifh one of the Pyramids that having feent all about it he was worth, or could poffibly precure, he was forced as lafto proftitute his own daughter for neceffary maintenance. And we read of Ramifes another King plimh. 36 : of Egypt, how that he was fo careful c. $\%$ to erectaniObelisk; about which he had imployed 20000 men, that when he feared left through the negligence of the artificers, or weakneff of the en-
gine, gine, the flone might fall and break, be,
the tyed his own for tothe topof it; tbat; . 8 . fo the care of his fafety might make the workmenmorecircumfject ip their butinelf. And what ftrange matters may be effected by the meer. diligence and labour of great multitudes, we may cafity defferm from the wild In: dians, 'who havifig not the art or aid? vantage of Eitginines, did yet by their nnweariedinduftry removeftores of in mifor ind incredible greatiness. Acoffas relates 1.6.c. 14, that the 'himeltelf meafured one at Tiat trtanates, which wiasthirty eight foot long, eighteen sbroad, and fix thicks and 'he 'affirms that in their flatelieft Edifices, there were many other of much vafter magnitude :
$\%$ Erom anl which confiderations, it :may appear, that the frangenels of thofe ancient monuments above any

- ag, min: that are now effected, does not necef*: Sarily infer any defect off art in thefe later ages. And Itonceive, fit were as eafie to demonftrate the Mechanical Arts in thefe times to be fo far -beyond the knowledge of former

Capi in. Msechamicall: Padvers.

 ages, that had we bütthe fame mearis as the Ancients had, we might effect far greater matters than any theychttempted, and that too in a fhorter face, and wich lefs labaiur:

CAP. XII

Concerning the force of the Meiffatick faculties 'ppatitituatily the Baflance and Leaver. Hoto' they may be bontrived to move the chdole world, ot ank other - conceivable vereight:

ALL thefe magnificent works of the Ancients pefore ffecified, are fearee donfderable in refpet of att, if we compare then with the famods fpeeches and dets' of Mrchlyitedst: Of whom it is reported that he whis frequently wont to Kay, Hot that he could move, Dation pondyis.dim data potenfia: the greateft cortceivable weight with the leaft concerivable power: and that if he did but know where to ftafd and faften his itftrument, he could move the world, thl this this great Clobe of fea and land; which promifes, though they were altogether above the valgar apprehenfion or belief, yet becanfe his dafs: were fomewhat anfwerable thereunto, therefore the King of Syracufe did enact a law whereby every man was bound to believe what ever Archimedes would affirm.
'Tis eafie to demonftrate the Geometrical truth of thofe ftrange affertions, by examining them according to each of the forenamed Mechanick faculties, every one of which is of infinite power..
To begin with the two firt of them, the Ballance and the Leaver, (which I here joyn together, becaufe the pro. portipas of both are wholly alike)'tis certain, though thete fhould be the greateft imaginable weight, and the lealt imaginable power, (fuppore the whole world, and the ftrength of one man or infant) yet if we concerve the fame difproportion betwixt their fe veral diftances in the former faculties from the fulciment of center of gras

Cap. 12. Mechanical Poppers. 81

 vity, they would both equiponderate. And if the diftance of the power from the center, in comparifon to the diftance of the weight, were but any thing more than the heaviners of the weight is in refpect of the power, it may then be evident from the former principles, that the power would be of greater force than the weight, and confequently able to move it.

Thus if we fuppofe thisgreat globe at A, to G con-

Arebimedes; or, .Lib. 1.

contain 2400000000000000000000000 pounds, allowing a hundred pound for stutic.l.3. each eubical foot in it, (as-Sterinius prop. 20. hath calculated) yet a man or child at D, whofe ftrength perhaps is but equivalent to one hundred, or ten pounds weight, may be able to out * weigh and move it, if there be but a little greater difpropotion betwixt the two diftances $C D$, and $C B_{y}$ than there is betwixt the heavinefs of the weight, and the ftrength of the power ; that is, if the diftance $C \cdot D$, unto the other diftance $C B$, be any thing more than 2400000000000000000000000 unto 100 or 10 , every ordinaty inftrument doth include all thefe parts really, though not fenfibly diftingaiifhed.

Under this latter faculty I did before mention that engine by which Archimedes drew up the Roman flips,

Lipfium Poliorct.t.1. 1. Dialog. 6. at the fiege of Syracufe. This is ufually ftyled Tollenon, being of the fame form with that which is commonly ufed by Brewers and Dyers, for the drawing of water. It confifts of two

Cap. 12. Mechanical Powers.

 pofts, the one faftned perpendicularly' in the ground, the other being jointed on crofs to the top of it. At the end be faftned a ftrong hook or grapple of iron, which being let over the wall to the river, he would thereby take hold of the hhips, as they paffed under; and afterwards by applying fome weight, or perhaps the force of Screws to the other end, he would thereby lift them into the open air, where having fwinged them up and down till he had fhaked out the men and goods that were in them, he would then dafh the Veffels againft the rocks, or drown them in their fudden fall : infomuch that' Marcellus the Roman General was wont to fay, plututche in his lifé xumindi, That Archimedes made ufe of his fhips inftead of Buckets, todraw water with.

This faculty will be of the fame force, not only when it is continued in one, but allo when it is multiplied iñ divers inftruments, as may be conceived in this other form, which I G 2 do

Archimedes; or, Lib. I.

 do not mention as if it could be ferviceable for any motion (fince the fpace by which the weight would be moved, will be fo little as not to fall under fenfe) but only for the better explication of this Mechanick principle., and for the right underftanding of that force arifing from multiplication in the other faculties, which do all depend upon this. The Wheel, and Pulley, and Screw, being but as fo many Leavers of a circular form and motion, whofe ftrength may therefore be continued toa greater fpace.

Imagine the weight A, to be an hundred thoufand pounds, and the diftance of that point, wherein every Leaver touches either the weight or one another from the point where they touch the prop, to be but one fuch

Cap. 12. Mochanical . Powers.

fuch part, whereof the remainder contains ten, then according to the former grounds 10000 at B, willequiponderate to A, which is 100000, fo that the fecond Leaver hath but 10000 pounds to move. Now becaufe this obferves the fame proportions with the other in the diftances of its feveral points, therefore 1000 pounds at C, will be of equal weight to the former. And the weight at C, being but as a thoufand pound, that which is but as a hundred at D, will be anfwerable unto it; and fo ftill in the fame proportion, that which is but 10 at E, will be equal to roò at D; and that which is but one pound at F, willalfo be equal to ten at E. Whence it is manifeft, that 1 pound at F, is equal to 100000 at $A^{\prime} ;$ and the weight mult alwayes be diminifh. ed in the fame proportion as ten to one, becaufe in the multiplication of thefeLeavers, the diftance of the point, where the inftrument touches the weight, from that where it touches the prop, is but as one fuch G 3 part ten. But now if we imagine it to be as the thoufandth part, then muft the weight be diminifhed according to this proportion; and then in the fame multiplication of Leavers, I I will be equal to 1000000000000000 pounds :fo that though we fuppore the weight to be never foheavy, yet lett the difproportion of diftances be greater, or the Leavers more, and any little power may move it.

C A P. XIII.

Of the Wheel, by multiplication of which it is eafie to move any imaginable peight.

See the fo of the wheels or fpokes $A C$, and the gure:cap; Semidiameter of the axis $A B$, as there P38. is betwixt the weight of the world, and

Cap. 13. Mechanical Powers. 87

 and the ftrength of a man, it may then beevident, that this ftrength of one man, by the help of fuch an inftrument, will equiponderate tothe weight of the whole world. And if the Semidiameter of the wheel $A C$, be but any thing more in rcfpect of the Semidiameter of the axis $A B$, thenthe weight of the world fuppofed at D, is in comparifon to the ftrength of a man at C; it may then be manifelt from the fame grounds that this ftrength will be of fo much greater force than the weight, and confequently able to move it.The force of this faculty may be more conveniently underfood and ufed by the multiplication of feveral wheels, together with nuts belonging unto each of them; as it may be eafily experimented in the ordinary Jacks that are ufed for the roafting of meat, which commonly confift but of three wheels; and yet if we fuppofe a man tied in the place of the weight, it were eafie by a fingle hair faftned unto the fly or ballance of the

$$
\text { G } 4 \text { Jack }
$$

An engine
of may wheels is common. ly called Glofocomas. .
 How to pull 2 man above ground witha fingle hair.

88
Archimedes; or, Lib. I. Jack, to draw him up from the ground, as will be evident from this following figure.

Where fuppofe the length of the fly or ballance in comparifon to the breadth of its axis, to be as 10 to one, and fo for the three other wheels in refpect of the nuts that belong unto them; (though this difference be oftentimes lefs, as we may well allow it to be) withall fuppofe the weight (or a man tyed in the place of it) to be a hundred pounds: I fay, according to this fuppofition, it is evident that the power at the ballance, which fhall be equal to the weight, need be but as ito 10000 . For the firt axis is conceived to be but as the tenth part of its wheel, and therefore though the weight in it felf be as 10000 , yet unto a power that hath this advantage, it is but as 1000, and therefore this thoufand unto the like power at the fecond wheel, will be but as 100 , and this 100 at the third but as IO; and laftly, this ten at the - ballance but as one. But the weight was before fuppofed to be $\mathbf{1 0 0}$, which to the firt wheel will be but 10 , to the fecond as one, to the third as a decimal, mal, or one tenth, to the fails as one hundredth part: fo that if the hair be but ftrong enoughto lift ${ }_{10000}^{1}$ that is one ten thoufandth part of a man, or (which is all one) one hundreth part of a pound, it may as well ferve by the help of this inftrument for the drawing of him up. And though there be not altogether fo great a difproportion betwixt the feveral parts of a Jack, (as in many perhaps there is not); and though a man may be heavier than is here fuppofed, yet 'tis withall confiderable that the ftrength of a hair is able to bear much more than the hundredth part of a pound.

Coment.
in Gen.c.I. ข.Io.art.6. De'viribus motricibus I beor. 16.

Upon this ground Merfennus tells us out of Solomon de Cavet, that if there were an engine of 12 wheels each of them with teeth, as alfo the axes or nuts that belong unto them, if the Diameter of thefe wheels were unto each axis, as a hundred to one: and if we fuppofe thefe wheels to be fo placed, that the teeth of the one might take hold of the axis that belongs unto the next, and that the axis

Cap. 13. Mechanical Powers.

 of the handle may turn thefirft wheel, and the weight be tyed unto the axis of the laft, with fuch an engine as this, faith he, a child'(if he could ftand aany where without this earth) might with much eafe move it towards him.For according tothe former fuppofition, that this Globe of fea and land, did contain as many hundred pound, as it doth cubical feet, viz. 240000000000000000000000 , it may be evident that any ftrength, whofe force is but equivalent to 3 pounds, will by fuch an engine be able to move it.

Of this kind was that engine fo highly extolled by Stevinius, which he calls Pancration, or Omnipotent, pre-Destmice ferring it before the inventions of proxi. Archimedes. It confifted of wheels and nuts, as that before fpecified is fuppofed. Hither alfo fhould be referred the force of racks, which ferve for bending of the ftrongeft bows, as alfo that little pocket-engine where- pememin. with a man may break or wrench o- Fig x. 60 pen any dore, together with divers the like inftruments in common ufe.

C A P. XIV.

Concerning the infinite frength of. Wheels, Pulleys, and Screws. That it is poffible by the multiplication of thefe, to pall up any Oakby the roots witb a bair, lift it up with a fraw, or blowo it xp with ones breath, or to perform the greatefi labour with the leaft powser.

FRom what hath been before delivered concerning the nature of the Pulley, it is eafie to underftand, how this faculty alfo may be proportioned betwixt any weight, and any power, as being likewife of infinite Atrength.
'Tis reported of Arcbimedes, that with an engine of Pulleys, to which he applyed only his left hand, he lifted up * 5000 bunhels of corn at once, and drew a flitp with all its lading

Cap. 14. Mechanical Powers.

 ding upon dry land. This engine Zetzes calls Trijpatum, or Triipafinum, which fignifies only a threefold Pulley; But herein he doth evidently miftake; for 'tis not poffible that this alone fhould ferve for the motion of fo great a weight; becaufe fuch an engine can but make a fubfextuple, or at moft a fubleptuple proportion betwixt the weight and power, which is much too little to reconcile the ftrength of a man unto fo much heavinefs. Therefore $V_{\text {baldus }}$ doth more property fyle it Polyspafon, or an inftrumentiof many Pulleys: How many, were eafie to find out, if we did exadly know the weight of thofe ancient meafures; fuppofing them to be the fame with our buthel in England, which contains 64 pints or pounds, the whole would amount to 320000 pounds, half of which would be lightned by the help of one Pulley, three quarters by two Pulleys, and fo onward, according to this fubduple, fubquadruple, and fublextuple proportion: So that if we conceive the frength of the left hand to be equivalent unto 20 or 40 pounds, it is is eafie to find out how many Pulleys are required to inable it for the motion of fo great a weight.Comentri. zaceme.r. v:10.ati.6: us, that any little child with an engine of an hundred double Pulleys, might eafily move this great Globe of earth, though it were much heavier than it is. And in reference to this
praf. ad Mecbied. Arifocte.

Upon this ground Merfennus tells kind of engine (faith Monantholius) are we to underftand that affertion of Archimedes (as he more immediately intended it) concerning the poffibility of moving the world.

The Wedg was before demonftrated to be as a double Vectis or Leaver, and therefore it would be needlefs to explain particularly how this likewife may be contrived of infinite force,

The Screw is capable of multiplication, as well as any of the other faculties, and may perhaps be more ferviceable for fuch great weights, than any of the reft. Archimedes his engine

Cap. 土 4. Mechanical Powers. 95^{5}

 engine of greateft ftrength, caHed Charifion, is by fome thought to con- stevim. ie. fift of thefe. Axes habebat cum infinitis cocbleis. And that other engine of prixx. his called Helix (mentioned by ${ }^{*} A$ thenaus) wherewith he lifted Hiero's great fhip into the fea, without any fopbif. s. s: other help, is moft likely to be fra- Archimed med of perpetual fcrews, faith Rivaltus.Whence it may evidently appear, that each of thefe Mechanick faculties are of infinite power, and may be contrived proportionable unto any conceivable weight: And that no natural ftrength is any. way comparable unto thefe artificial inventions.,
'Tis reported of Sampfon, that he could carry the gates of a City upon Judg, 1 s his ftoulders, and that the ftrongeft bonds. were unto him but as flax burnt with fire, and yet his hair being thaved off, all his ftrength departed from him. We* read of Milo, that hecould *A. Get carry an Oxe upon his back, and yet Not. Ant when he tried to tear an Oak afun $1.15,6.16$ der

Archimedes; or, Lib. I:

 der that was fomewhat riven before; having drawn it to its utmoft, it fuddenly joyned together again, catching his hands in the cleft, and fo ftrongly manacled him, that he became a prey to the wild beafts.But now by thefe Mechanical contrivances, it were eafie to have made one of Sampfons hairs that was Chaved off, to have been of more ftrength than all of them when they were on. By the help of thefe arts it is poffible (as I fhall demonitrate) for any man to lift up the greateft Oak by the roots with aftraw, to pull it up with a hair, orto blow it up with his breath.

Suppofe the roots of an Oak to extend a thoufand foot fquare, (which is almoft a quarter of a mile) and forty foot deep, each cubical foot being a hundred pound weight; which though it be much beyond the extenfion of any tree, or the weight of the earth, the compafs of the roots in the ground (according to common opinion) not extending further than the branches of it in theair, and the depth

Cap. 14 4. Mechaskisth"Rowers.

 depth of it notabove ten foot, beyond which the greateft rain doth not penetrate (faith $*$ Seneci). Ego vinearum $*$ Na. 2 s$)$ diligens fofor affirmo nullam pluviam 1 1.3. 6 ? ? effe tam magnam, que terram ultra dén, cemp pedes in altitudinenk mandfuciat. And becaufe the root muft receive its nourifhent from the help of fhowers, therefore it is probable that it doth not go below them. So that (I fay) though the proportions fup. pofed do much exceed the real truth; yet it is confiderable that fome great overplus muft be allowed for that labour which there will be in the forcible divulfion or feparation of the parts of the earth which are continued.According to this fuppofition, the work of forcing up the Oak by the roots will be equivalent to the lifting up of 4000000000 pound weight, which by the advantage of fuch an engine, as is hére defrribed, may be eafily performed with the leaft conceivable power.

H
The

Cap. 14. Meabanical Poweris. doth confift in two double Pulleys ${ }_{j}^{3}$ twelve wheels, and a rail. One of thefe Pulleys at the bottoine will diminifh half of the weight, fo that it thall be but as 2000000000, and the other Pulley will abate three quar ters of it: fo that it fhall be but as 1000000000 . And becaufe the bet: ginining of the ftring being fatned unto the lower Pulley, makes the power to be in a fubquintuple proportion unto the weight, therefore a see chit t? power that ithall be as 1660000000 ; that is, a fubquadruple, will be for much fronger than the weight, and confequently able to move it: Now fuppofe the breadth of all the axes and nuts, to be unto the Diameters of the wheel as ten to one; and it will ther be evident, that to a power at the firft wheel, the weight is but as rooooóoco: Tồ the recond as ióocoood. To thé third as ro00000: To the fourth as 100000 . To the fifth as 10000 , To the fixth as 1000 To the feventhas a 100. Tö the eighth tenth as ${ }^{\frac{7}{2}}$. one decimal. To the eleventh as ino. To the twelfth as ${ }^{1}$.000. And the fails yet fefs, So that if the ftrength of the ftraw, or hair, of breath, be but equal to the weight of one thoufandth part of a pound, it may be of fufficient force to pull up the Oak,

If in this engine we fuppofe the difproportion betwixt the wheels and nuts to be as an hundred to one then it is very evidents that the fame ftrength of breath, or a hair, or aftraw, would be able to move the whole world, as will be eafily found by calt qulation: Let this, great Globe of fea and land be imagiped (as before) to weigh fo many hundmed pounds as it contains cubical feet; napary, $24090099 p 00000000090000$ pounds, This will be to the firft Pulley, r2000000000000000000000000. To the fe, cond lefs than 600000900000000000000000 . But for more eafie and convenient reckgning, let if be fuppofed to be

This

Cap--14. Meclianical Powers. rot.

 This to the firft wheel will be but asTo the fecond as 1000003000000600dbocoo,
To the third as 10000000000000000000 .
To the fourch as 10000000000000004 :
To the fifth 100006000000000.
To the fixth 1000000000000 .
To the fevent h) 100000000000.
To the eighth 106000006:
To the ninth robobob,
To the tenth 10000,
To the eleventh 100.
To the twelfth i.
To the fails as :
So that a power which is much lefs than the hundredth part of a pound, will be able to move the world.

It were needlefs to fet down any particular explication, how fuch Mechanical Atrength may be applyed unto all the kinds of local motion; fince this, in it felf, is fo facile and obviaus, that every ordinary artificer doth fufficiently underitand it.

The Species of local violent motion are by Ariftotle reckoned tobe thefe four.

H 3 P $P_{u l f i a}$

Rotr. 4 7: Arcbimedes; or, Lib, t:
$\left\{\begin{array}{l}\text { Pulfio. } \\ \text { Tradfio. } \\ \text { Vectio. } \\ \text { Vertigo. }\end{array}\right.$
Thruiting, Drawing, Carrying, Turning. Unto fome of which all thefe artificial operations muft neceffarily be redaced, the frength of any power being equally appliable unto all of them; So that there is $n o$ work impoffible to thefe contrivances, but there may be as much acted by this art, ascan be fancied by imagination.

CAP. XV.

 Concerning the proportion of Rownefsand foiftines in Mechanical motions.
T-Aving already difcourfed concerning the frength of thefe Mechanical Faculties: it femains for the more perfect difcovery of thèir natures, that we treat fomewhat concernping thófe two differences of artificial motion:": potion:

Slow:

Cppity. Mesbeudsel Raxkers. 193

 wh: Slownefs, acmaga an
Whthout the ringt underftanding of whieh, a maxishall be expofed to maty abfurd miffakies; milattempting of thofe: things which ard either in: themfelves impofible, or elfe not to . be performed with fuch means as are: applyed unto them. I may fafely af firms that manys - if hot moftmiftakes in thefe Mechanical defignss, do ar. rife frgm a mif apppehenfioci of that difference which there will:be betwixt the flospiefs or fwiftinfs of the weight and, power, in comparifon to the proportion of their feveral ftrengths.

Hence it is, that fo many engines invented for mines and water-works: do fo often fail in the performance of that for which they werd inten ded, becaufe the artificers many times. do forget to allow fo much time for the working of their engine, as may be proportionable to the difference bet wixt the weight and power that
$H_{4} \quad$ belong
belong unto them; , wherexic be that rightly underftands thedground of this art, may as eafily find inder tho differequiboffhadoe andgirme, recquitedNto the ntoting of the softeight and piotwer!? ash he may their ablifferne nitegths:3 and net only tell how roge poer hay novernny'' weight, imon alfo in what: a ppace of wize stimady inove any foace on difatince. 2 .n 1
 ass interaion; ${ }^{\text {a }}$, whenifol any cotide ivable weighu anday be wieved ricy any conceinable: powdt, ilborty whelle the fame quaidinefs and fpecd (astit is in-
 flirred by the hànd owith out the fiel 9 of any other inftrument) the works. of nature woukd berithen tod thuch fubjockemsto the power of atte aridmon mighe bel uthertby intebaraged. (wiensithe buildets diflBabet, or the rebel Qyants') to 症ch bold defigess as would not becorne a creảied beinguia And therafore the wildorn of Providence bath 0 eonfined the le hu-mane-Arts, that what any itreetrition mol:

Capudił. Machaniteal Pobers. 105

 hath in the frength of its motion, is abated in the תomonefs of is; and what it hath in the extraordinary qwicknefs. of its motion, mult be allowed for in the great frength that is required unto ir.For it is to be obferved as a general rule, that the fpace of time or place in which the weight is moved, in comparifor to that in which the power doth move, is in the fame proportion as they themfelves are unto one another.

So that if there beany great difference betwixt the ftrength of the weight and the power, the lame kind of dif-: feretce will there be in the paces of their motion.

To illuftrate this by an example;

Let the line $G A B$, reprefent bal lance or leaver, the weight being fuppofed at the point G, the fulchment at A, and the power fultanipg the weight at B. Suppofe the point G, unto which the weight is faftened, to be elevated unto F, and the oppofite point B, to be depreffed unto C; tis evident that the arch $F G$, or (which is all one) $D E$, dath thew the pace of the weight, and the arch $B C$, the motion of the power. Now both

Cap. it 5 . Meckgnical Rowers. both thele arches have the fame pro-

 portion unto one another, as there is betwist the weight and the power, or (which is all one) as there is betwixt their feveral diftances from the fulciment. Supppre A, unto $A B$ to be as one unto four, it may then be evident that $F G_{n}$ or $D E_{n}$, will , pe in the fame propgrtiopunio B. ... Foraq any two Semidiameters are winto one another, fo are the feveral circumferences defcribed by them, ás alo any proportional parts of the fame circumferences.And as the weight and power do thus differ in the phaces of theit motions, वि likewife in the flownels of it; the one moving the whole/ diflance $B C$, in the fame time, wherein the other paffesonly $G F$. So that the motion of the power from B to C, is four times fwifter then that of the weight from G to F. And thus will it be, if we fuppofe the difproportions toke fargreater, whether or no we conceive it, either by a, continuation of the fame inftrument and fa-

368

 \therefore Mrchimedes or, Libi faculty, as ith the former exatiple, of By a multiplicution of divers, as in Pulleys, Wheels, \&c. By how much the power is in it felf lefs than the weight, by fo itrich will the motion of the weight be dower that that of the power,To this purpofe I fall brieffy touch at one of the Diagrams expref fed before in the twelfth Chapter, conceriting the thultiplication of Leavers.

In which, as each inftrument doth diminifh the weight according to a decuple proportion, fo allo do they diminifh the $\int p a c e$ and foovneff of its motion. For if we chould conceive the firft Leaver B, to be depreffed unto its loweft ${ }^{\prime}$ ' fuppofe ten foot, yet the weight A_{2} would not be raifed

Cap n5. Mechanjical: Rrwers. rop: fed above one foot, but now the fecond Leaver at its utmof could mova but atenth part of the firft, and the third Leaver huta tenth part of the fecond, and foof the reft, So that the laft Leaver F, being depreffed, will pals a Jpace 100000 greater, and by a motion, 100009 fwifter than the weight at A.

Thus are we to conceive of all the other faculties, wherein there is conflantly the fame diffroportion betwixt the weight and power, in refpect of the Spaces and hownefs of their motions, as there is betwixt their feveral gravities If the power be untothe weight but as one unto a hundred, then the Space through which the weight moves, will be a hundred times lefs, and confequently the motion of the weight a hundred times flower than that of the power.

So that it is but a vain and impof fible fancy for any one tothink that he can move a great weight with a litule power ina little qaace; but:ip all thefre Mechanaical attemplts; ;hat: advantage

ITo 2 Archimedes; or, Lib. 1 .

 vantage which is gotten in the ftrength of the motion, muft be fill allowed forin the flownefs of it.Though thefe contrivances do fo extremely increafe the power, yet they do proportionably protract the time. That which by fuch helps one man may do in a hundred days, may be done by the immediate ftrength of a hundred men in one day.

CAP. XVI.

That it is polfible to contrive fuch an ar: tificial motion, as gall be of a flomnefs proportionable to the froiftnefs of the beavens.

T were a pretty fubtilty to enquire after, whether or no it be not poffible to contrive fuch an artificial motion, that fhould be infuch a proportion flow, as the heeavens are fuppofed to be fwift.

For the exact refolution of which, it would be requifite that we fhould firft pitch upon fore mediums or-in-diffe-

Cap- 6. Meibinital Powers.
different motion, by the diftance from which, we may judge of the proportions on either fide, whether flownefs or fwiftnefs. . Now becaufe there is not any frich natural medium, which may be abfolutely ftyled an indifferent motion, but that thefwiftnefs and llownefs of every thing, is Atill proportioned either to the quantity of bodies, in which they are, or fome other particular end for which they are defigned; therefore we muft take liberty to fuppofe fuch a motion, and this we may conceive to be about roco paces, or a mile in an hour.
: The ftarry heaven, or $8^{\text {th }}$ fphear is thought to move 42398437 miles in the lame face: So that if it may be demonftrated that it is poffible to contrive fuch a motion, which going on in a conftant direct courfe, fhall pas but the 42398437 part of a mile in an hour, it will then be evident, that an artificial motion may be flow, in the fame proportion as the heavens are fwift.
iv Archingedesi pr , Libst
Now it wás before manifetted that according to the difference betwixt the weight and power, to will the difference be botwizt the downels or fwiftuefs of ibeirmotions; whence it will follow, that in fuch an engine, wherein the weight fhall be 42398437 pounds; and the power that doth equiponderate it, but the 42398437 part of a pound (which is calie to contrive.) in this engine the power being fuppofed to move with fuch a fwittnefs, as may be anfiverable to a mile an hour, the weight will pas but the 42.398437 part of a mile in the fame fpace, and fo confequently will be proportionably low unto the fwifnels of the Heavens.
It is related by our Country-man Prfcacto 7 . Dee, that he and $C a r d a n$ being both Euclid. together in their travels, they did fee an inftrument which was at firf fold for 20 talents of gold, wherein there was one wheel, which conftantly moving round amongft the reft, did not finifione revolution under the farace of feven thoufand years.

Capit6. Meebanival Pomers. $\$ 13$
But if we farther confider fuch an infruitient of wheets as was mentioned before in the 14 chapter, with which the whole world might be eafily moved, we fhall then find that the motion of the weight by that, mult be much more flow, than the heavens are fwift. For though we fuppofe (faith Stevinus) the handle of fuctr anengine with 12 wheels tobe De fatat prat. ternet abott 4000 times in an hour, (Which is as often as a mans pulfe (foth beat) yet int ten years 'pace the Weight by this would not be moved aboved 24.040000000000000000 parts of one fbot, "thith is nothitg near fo mueh ts a hans breadth. And itcould not pafs an inchin 1000000 years faíth Merferinths.

Mecbai.
The truth of which we may more prop. ii. eafily conceive; if we confider the framte dind maitiet of this 12 wheeld engitte: Suppofe that in each axis or mite, there were ten téeth, and on exth wheet a thoufand: then the fails of thls engige trifft be tarned a hundred titass before the 'lift wheel (reckon-

1 ing ing downward) could be moved round once, and ten thoufand times before the fecond wheel can finih one revolution, and fo through the 12 wheels, according to, this multiplyed proportion.

So that befides the wonder which there is in the force of thefe Mechanical motions, the extreme flownefs of them is no lefs admirable; If ${ }_{j}$ a man confider that a body would remain in fuch a conftant diredt mo; tion, that there quald not be ons minute of time wherein it did notrid fome face, and pals on further, and yet that this body in many years, to gether fhould not move fo far as; a hairs breadth.

Which notwithltanding may evidently appear from the former inftance. For fince it is a natural pripciple, that there cap be no peneryation of bodies; and fince it is fuppofed, that each of the parts in thisengine do touch one another in theirfuperficies, therefore it muft neceflarily: follow, that the neight does begin

Cap. 16. Mecbanival lpuners. Ify:

 and continué to move with thé powert d and (however it is infenfible) yet'rec is cerrain there muft befuch a motiont! fo extremely flow, as is here'fpecified So full is this art of rate and inticredible fubtilties.I know it is the affertion of Cat be varie dan, Motus valde tardi, neceffario quiee- Zute ecrumin tes babent intermedias. Extreme flow $!9.9 .647:$ motions have neceffarily forme intert meditate ftops and refts: But this is only faid, not proved; and he fpeaks: it from renfible experiments, whicfy' in this cafe are fallible. Our fenfes: being very incompetent judges of the feveral proportions, whether greatnefs or Kittlenels, nownefs or fwiftnefs, which there, may be aj mongft things in nature. For ought we know, there may be fome Organical bodies, as much lefs thian ours, as the earth is bigger. We fee what ftrange difcoveries of extreme mintite bodies, (as lice, wheel-worms, mites, and the like) are made by the Microfcope, wherein their feveral parts' (which are altogether invifible to the
 bare eye) will diftinctly appear: and parhaps there may be other infects that lipe upon them as they do upon us. 'Tis certain that our fenfepare extremelyjidififroportioned for, comprehending the whole compars and latitude of athings. And becaufe there may be fuch difference in the motion as well as
\therefore in the magnitade of bodies; therefore though fuch extreme flownels may feem altogether impoffible to fenfe and. common apprehenfion, yet this can be no fufficient argument againft the reality of it.

CAP. XVII.

Of. Jwiftref s_{0} band it may be increafed. to any kind of proportion. Concerning the great fonce of Archimedes his Engines. Of the Ballifta.

BY that which hath been already of mation, we may the better underftand the nature of fwifteres, both of them (as is the nature of oppofites;

Cap. 17. Madamicat-Rupers. 147 , fites) being produced by contrary caufes. As the greatnefs of the weight in refpect of the power, and the great diftance of the power from the fulciment, in comparifon to that of the weight, does caufe a llow motidn: So the greatnefs of the power above the weight, andthe greafterdiftance of the weight from the center, in comparifon to that of the power, does capfe a fwift motion. And as it is poffible to contrive a motion unto any kind of flownefs, by finding out an anfwerable difproportion betwixt the weight and power: folikewife unto any kind of fwiftnefs. For f 9 much as the weight does exceed the power, by fo much will the motion of the weight be llower ; and fo much as the power does exceed the weight, by formch will the motion of the weight be fwifter.

I 3
In
.118 condebimimeders of, Cibs t.

In the Diagram ret down before,

* if we fuppore F to be the place of the power, and C of the weight, the point A being the fulciment or center,
* then in the fame face of time, wherein the power does move from F to G, the weight will pals from C to B. Thefe diftances having the fame dif. proportion unto one another, as there i_{6}, hetwixt $A F$, and $A C$, which is fuppofed to be quadruple. So that Inthisexample, the weight will move four

Cap. 17. Mechanical Powers. 1 19

 fourtimes fwifter than the power. And according as the power does exceed the weight in any greater difproportion, fo will the fwiftnefs of the weight be augmented.Hence may we conceive the reafon of that great force which there is in Slinge, which have fo much a greater fwiftnefs, than a fone thrown from the hand, by how much the end of the Sling is farther off from the fhoulder-joynt, which is the center of motion. The Sacred hiftory concerning Davids vittory over Goliah, isam, ry. may fufficiently evidence the force of 49: -1. thefe. Vegetius relates that it was u- Lipfius fual this way to ftrike a man dead, tior 1.4. and beat the foul out of hisbody, without fo much as breaking his armour, or fetching blood. Membris integris lathale tamen vulinis important, or \sqrt{i} ne invidia fanguinis, hoftis lápidis iču intereat.

In the ufe of thefe, many of the Ancients have been of very exquifite and admirable skill. We read of feven bundred Bënjamites left-kandsd, that could 14 fing

Archimedes; \boldsymbol{a}, Lib. I.
fling a ftone at a hairs breadth, and not miff. And there is the like ftoried of a whole Nation amongst the Indians, who from theirexcellency in this art were filed Baleares. They were fo

קaxisur.
Diodori.Sicull. Bibleotb .l. y. L.Florws rif. 1.3. 'cap. 8.
IFc. Bemas Anbanus demoribus centime: \& \} द. 2.2 .

2 2fifact 1.4 PE, cities 2. bitter. 35 cLi.2.c. 3 . d MarcelIns. " efiffor. near, are largely feet down by a Polyba-
 Strict in teaching this art unto their young ones, U_{t} cibum purr à metre no ur accipit, niff quem ipsus monfirante percuffit, That the mother would not give any meat to her child, till (being et at Come diftance) he could hit it with flinging.

For the farther illuftration of this fubject, concerning the froiftrigs of motion, I hall briefly Specific fame particulars concerning the engines of War unfed by the Ancients. Amongfe there, the mot famous and admirable were thole invented by Archi. modes, by which he did perform fuck flange exploits, as (were they not related by fo many and fuch judicionus Authors) would farce feet credible even to the fe more learned ages. The acts of that famous Engi- v

Cap. 17. Mechatical Papers. 121

 wy, and diwersothers. From the firft of whom alone, we may bave fufficient evidence for the truth of thore relations. For befides that he is an Author noted to be very grave and ferious in his difcourfe; and does fo- biftor. 1.4° lemnly promife inone place that he will juxta ini-: relate nothing but what either he himfelf was an eye-witnels of, or elfe what he had received from thofe that were fa; I fay, beqides all this, it is conflderable, that hẹhimfelf was boxn not abowe thirty years after the fiege of Syracufe. And afterwards. haying occafion to tarry fome weeks. in that City, when he travelled with Scipia, he might there perhaps fee thofe engines himfelf, or at leaft take his information from fuch as were eyewitnefles of their force: So that there can pe no colourable pretence for any one to diftruf the particulars related of them.In brief, the fum of their reports is this: When the Roman forces un-- der the conduct of Marcellus, had laid fiege unto that famous City, (of which

152 whrlbimeder; \boldsymbol{a}, Jib. \&. which both by their former if ucceffoes, and their prefeut strength, they could not chafe but promife themselves a speedy victory:); yet the arts of this one Mathernatician, notwithftanding all their policies and refoIutions; did til beat them back to their great difadvantage. s. Whether they weremear the wall ox farther from it, they were fill expoifed to the force

 of thole fines and "arrows, which he foot against then, was be ftyled

Cat. Rood. Ans. leal. 4, 2. C. 16 , Platens Tefudo. inatojixuf, or Briarelis. Those deferfive engities that were made by the Romans in the forfeit of Penthoufes for to cover the affaitants from the weapons of the belieged, the fe would he prefently batter in pieces with great ftones and blocks. Thole high towers erected in fame of the hips, out of which the Romans might more conveniently fight with the defendants on the wall, the fe alpo were

Cap. 17. Mechamical Powers. 123
fo broken by his engines, that noGannon or other inftrument of Gun- Sir walt: powder, (faith a learned man) bad Raceigbbthey been then in ufe, could have done jtor. L.s.c. 3 greater mifchief. In brief, he did fo set 16. moleft them with his frequent and prodigious batteries, that the commonfoddiers were utterly difcouraged from any hopes of fuccels.

What was the particular frame and manner of thefe engines, cannot: certainly be determineds: but tocontrive fuch as may perform the like ltrange effects, were nob very difficult to any one who is througbly verfed in the grounds of this art. Though perbiaps thofe of Archimedes, in refpeat of divers circumftances, 'were mush more exact and proper for the purpofes to which they wereintended, than the invention of others could be; He himfelf being fo extraordinarily fubtil and ingeniouis above the common fort of men.
'Tis probable that the general kind of thefe engines, were the fame with thofe that were ufed afterwards

124 Arabimedel; or rin 2 Lib. r.

 wards amongt the Romans and other Nations. Thefe were commonly divided into two forts: .fyled $\left\{\begin{array}{l}\text { Ballifta. } \\ \text { Catapulta. }\end{array}\right.$Vidnamdeum de Stud.Militar. 1.2 t tion Binary. called alfo
 $\pi 4 \tau_{5} 660$
 dibalus. Petreria.

Both which names are fometimes ufed promifcuoully, ; but tccording to their propriety t Ballifta does fignifie an engine for the thooting of ftones, and Catapulta for darts or arrows.

The former of thefe was fitted either to carry divers: leffer ftones, or elfe one greatef one. Some of thefe engines made for great ftones, have been proportioned to fo vart and immenfe a weighe, as may feem almoft incredible: which occafioned that in Lucians.
${ }^{1}$ t $^{\prime}$ yaxum quaries ingenti verberis itan Excutitir, qualis rupes quam vertice montis. idbcidit impulfu ventorum adjuia vetujtas, Fraugit cunta rumes i nec tantum corpora preffa Exanimaj, totos cum janguine diffipat artus:
With there, they could eafily batter down the walls and Towers of any Fort, So Ovid.

Cap. 17. Mechanical Powers. 12,

 2uam grave balliffie mania pulfat onas.And Statius-2uoturbine bellicaquondam.
Librati falimet portarum in clanfira: molares.
The ftones that were caft from thefe, were of any form, Exormes aj fepul- tiorceth. 3. chrales, Milftones or Tomb-ftones. Dial. 3, Sometimes for the farther annoyance and terror of any befieged place, they would by thefe throw into it dead bodies, either of men or horles, and fometimes only parts of them, as mens heads.

Athenaws mentions one of thefe Dripmas: Ballifte that was proportiond unto fophb.50 a ftone of three tailenics weight, each talent being 120 pounds (faith V_{i} truvius) fo that the whole will a Archit. L. truvius) (o that the whole will a- ro. co wite mount to 360 pounds. But it is foo- ditor doried of Archimedes, that he caft a fone natidar into one of Marcellus his thips, which ${ }_{P l u t . M u r-}^{\text {Toph }}$ was found to weighten talents. There cell. is fome difference amongle * Authors, ${ }^{*}$ Dav. Riconcerning what kind of talent this men in Aro flould be undertood, but it is cetain cbim, opers. that ${ }^{E} \times$. that in Plutarchs time, (from whom
Nrudaus de Studio. Milit. l_{0} 2. we have this relation) one talent did amount to I 20 pounds (faith Suidas): according to which account, the frone, it felf was of nolefs than twelve hundred pound weight. A weapon (one would think) big enough for thofe rebel Gyants that fought againft the gods. Now the greateft Cannon in ufe, does not carry above 64 pound weight, whichisfarfhort of the ftrength in thefe Mathematical contrivances. Amongft the Turks indeed, there have been fometimes ufed fuch powder. inftruments, as may equal the force

Destud. Mihit. 2:

 of thofe invented by Archimedes. Gab. Naudeus tells us of one bullet fhot from them at the liege of Conftantio nople, which was of above 1200 pound weight; 'This he affirms from the relation of an Archbifhop, who was then prefent and did fee it; the piece could not be drawn by lefs than a hundred and fifty yoàk of oxen, which might almoft have ferved to draw away the Town it felf.: But though there bath been perhaps fome
Cap. 7 - Mexbisnical गtowers. 18\%

 one or two Cannons of fuch a prodigious magnitude, yet it is certainthat the biggeft in commonufe, does come far fhort of that ftrength, which was ordinarily inthee Mechanical engines.There are divers figures of thefe Sec Rob: Ballifta, fet out by Vigetius; Lipfius, Valtecriand others; butbeing without any ex-. Militil.1o plication, it is not very faciltodifcover $c: 4$. in what their forces did confift.

I have here expreffed one of them moft eafie to be apprehended; from the underftanding of which, you may the better guefs at the nature of the reft.

128 indrchimedest or, Lib. 1 .

That great box or cavity at A, is fuppoled to be full of fome heavy weight, and is foreed up by the turning

Cap. 18. Mechanical Powers. 129

 ning of the axis and fookes $B C$. The ftone or bullet to be dilcharged being in a kind of lling at D, which when thegreater weight A, defcends, will be violently whirled upwards, till that end of the ling at E, coming to the top, will flye off, and difcharge the ftone as the skilful Artift fhould direct.it.
CAP. XVIII.

Concerning the Catapulte, or Engines for Arrows.

He other kind of engine was calls ed Catapulte, 边 \& fignifies a pear or datt, becaufe it was ufed for the fhooting of fuch weapons: fome of thefe wete proportioned unto $L_{\text {. }} g_{0}$ fpears of t welve cubits long; they did carry with fogreat a force; $u t$ interdum $i i_{0}$. $15 d$ nimio ardore fcintillant, (faith Ammianus) that the weapons difcharged Liffruspod from them were fometimes (if you can liorceth.fy Dinds: believe it) fet on fire by the fwiftnefs of their trotion:
其 The The

130
Diod.Sic. Bibl:otb. l. 14 . Sardus de Invert.Re_ rum. l. 2.

2 Chron. 26. 15.

Sir Frad Bacon Nat. Hijto Exp. 704.

The firf invention of thefe is commonly afcribed to Dionyfius the younger, who is faid to have made them: amongt his other preparations againft Cartbage. But we have good reafon. to think them of more ancient ufe, becaufe we read in Scripture that Unziab made in Ferufalem engines invented by cunning men to foot ar-: rows andgreat ftones woithall: though it is likely thefe inventions were much bettered by the experience of afterages.

The ufual form of thefe Catapuil$t e$, was much after the manner of great Bows placed on Carriages, and wound up by the ftrength of fereral perfons. And from that great force which we find in leffer Bows, we may eafily ghels at the greater power of thefe other engines. T is related of the Turkifh Bow, that it can flrike an arrow through a piece of fteel or brafs two inches thick; and being headed only with word, it pierces Timber of eight inches. Which though it may feem incredia.

Cap. 18. Mectianical Powers. 1 §

 ble, yet it is attefted by the experience of divers unqueftionable witneffes. Barclay in his Icon dnimorum, a man of fufficient credit, affirms, that he was an eye-witnels, how one of thefe Bows with a little arrow did pierce through a piece of fteel three fingers thick. And yet thefe Bows being fomewhat like the long Bows in ufe amongft us, were bent only by a mans immediate ftrength, without the help of any bender or rack that are ufed to others.Some Turkifh Bows are of that ftrength; as to pierce a plank of fix inches in thicknefs, (I fpeak what I have feen) faith M. Jo: Greaves in his Pytiamodographia. How thuch greéatep forte thetr may we conceive to be ittpreffed by the Catapaltit?

Thefe were formetimies framed for the difcharging of two or three artows together; fo that edch of theni thighit be directed unto a fevetal aim. But it Were as eafie to contrive them after the like manner for the cartiage of twenty artows, or more; to in this figute

$$
2 \text { Both }
$$

Whowas Both there kinds of engines when. before they were ufed at the fiege of any ftyled $p Q$ - City ${ }_{\text {a }}$ were commonly carried in a This kind great wooden Turret (firft invented of Turret by Demetrius). It was driven upon was firf four wheels at the bottom, each of ufedat the fiege of Cyprus, 8 is thus defcribed by Diodorus., sicul bib- battering and taking of Cities it is Lioth.l-2 20

Cap. 18. Mecbanical Pomers.

filed by the name of Helepolis.
He that would be informed in the nature of Bows, let him confult Merfewnus De Ballifica é Acontifmologia; where there are divers fubtil inquiries and demonftrations, concerning the ftrength required to the bending of them to any diftance. The force they have in the difcharge according to feveral bents; the ftrength requi. red to be in the ftringof them, the feveral proportions of fwiftnefs and diftance in an arrow fhot vertically, or borizontally, or tranfverfally.
Thofe ftrange effects of the Turkifh Bow (mentioned before) fomuch exceeding the force of others, which yet require far greater ftrength for the bending of them, may probably. be afcribed either to the natural caufe of attraction by fimilitude of fab fance (as the Lord Bacon conjectures); For in thefe experiments the head of the arrow fhould be of the fame fubftance (whether fteel or wood) with that which it pierces: Or $\in l /{ }^{-}$. to that juft praportion betwixt the

$$
\text { K } 3 \text { weight }
$$

$\$ 34$

 Ancbimsades; :or, Lib. T. weight of the arrow, and the ftrength of the bow, which muft needs much conduce to the force of it, and may perhaps be more exactly difcovered in thefe, then it is commonly in 0 . thers.
CAP. XIX.

A comparifona betwoixt thefe. anciext Engines, and the Gux-panoder inftruavents. now in ufe.

Thent not be altogether impertithe advańtages and difadvantages betwixt thofe Militay offenfive engines, ufed amongt the Ancients, and thofe of thefe later ages.

In which inquiry there are two particulars to be chiefly examineds
r. The force of thefe feveral contrivances, or the utmoft that may be done by them.
2. Their price, or the greatnefs of the charges required unto them.
I. As for the force of thefe anci-
ent

Cap.: 59. Meehanical Powers. 135 ent inventions, it may fufficiently ap. pear from thofe many credible relations mentioned before; to which De bello may be added that in fofephus, which fudaico.l. be fets down from his own eye-fight; 3.c.9. being himfelf a chief Captain at the Giege of Jotapata, where thefe events happened. He tells us that befides the multitude of perfons, who were flain by thefe Rousan Engimes, being not able to avoid their force, by reafon they wnere placed fo far off, and out of fight; befides this, they did alfo garry fuch great fones, with fo great a violence, that they did therewith batter down their wallo and Towers. A great-bellied woman walking about the City in dhe day-time, had her child ftruck out of her womb, and carrised half a furlong from her. A foldier ftanding by his Captain Jofepbus, on the wall, had his head ftruck off by another ftome fent from thefe Romun Engines, and his brains carried three furlongs off.
To this purpore Cardan relates devarict. out of Amoniamus Murcellinus, Janio 7. 12.c. s.̣.

K 4 impet, impetu fertur lapis ut uno vifo lapide quamvis intacti barbari fuerint $a b$ eo, deffiterunt à pugna é abierunt: Many foreign people being fo amazed at the frrange force of thefe Engines, that they durft not conteft with thofe who were mafters of fuch inventions. 'Tis frequently afferted, that bullets have been melted in the air, by that extremity of violent motion impreft from there flings.

Fundáque contorto tranfverberat aëra plumbo,
Et mediis liquide glandes in nubibus errant.
So Lucan, fpeaking of the fame Engines.

Inde fuces or Jax violant, fpatioque. Soluta:
Aëris or calide liquefacta pondere glandes.
Which relations, though they may feem fomewhat poctical end improbable, yet Ariftotle himfelf (De Calo, lib. 2.c. 7.) doth fuppofe them as unqueftionable. From whence it may be inferred, that the force of thefe Engines

Cap. 19. Mecbanical Powers. 137

 gines does rather exceed than come Thort of our Gun-powder inventions. Add to this that opinion of a learned man (which I cited before) that Sir Walt. Archimedes in the fiege of Syracule Raleigh did more michief with his Engines,,$c .3$. seat. than could have been wrought by a- 16. See ny Cannons, had they been then in Lipfins de ufe.In this perbaps there may be fome $\begin{aligned} & \text { Rom } \\ & l\end{aligned}$. difadvantage, becaufe thefe Mathematical Engines cannot be fo eafily and fpeedily wound up, and fo certainly. levelled as the other may.
2. As for the price or charges of both thefe, it may be confidered under' three particulars:
I. Their making.
2. Their carriage or conveyance.
3. Their charge and difcharging.

In all which refpects, the Cannons now in ufe, are of much greater coft than thefe other inventions.
I. The making or price of thefe Gunpowder inftrumentsisextremely expenfive, as may be eafily judged by the weight of their materials. A whole

Cannon weighing commonly 8000 L a half Cannon 5000, a Culverin 4500 , a Demiculverin 3000; which whether it be in iron or brafs, traft needs be very coftly, only for the matter of them; befides the farther chatges required for the form and making of them, which in the whole mult needs amount to feveral hundred pounds. Whereas thefe Mathematical inventions confifting chiefly of Timber, and Cords, may be mich more cheap:Is made; The feveral degrees of them which flall anfwer in proportion to the ftrength of thofe other, being at the leaft ten times cheaper; that is, ten Engines that fhall be of: equal force either to a Cannon or Demicannon, Culverin or Demiculverin, may be framed at the fame price that one of thefe will amount to: So that in this refpect there is agreat inequality.
2. As for the Carriage or conveyance; a whole Cannon does require at the leaft 90 men, or 16 horles, for the draught of it; ahalf Cannon 56.

Cap. 19. Merbitrical Powers. 139

 men, or 9 horfess. a Culverin 50 , men, or 8 horfes; a Demiculverin 36 men, or 7 horfes; Suppofing the way to be hard and plain, in' which notwithftanding the motion will bevery flow. But if the paffage prove rifing and fteep, orcotten and dirty, then they will require a much greater ftrengeth and charge for the conveyance of them. Whereas thefe other inventions are in themfetves more light (if there be occarion for the draught of them) being eafily taken afunder into feverals parts. And befides their materials are to be found every where, fo that they need not be carried up and down at all, but may be eafily made in the place where they are to be ufed:3. The materials required to the charging of thefe Gun-powder inftruments are very coftly. A whole Cannon requiring for every charge 40 pounds of powder, and a bullet of 64 pounds; ahalf Cannon 18 pounds of powder, and a bullet of 24 pounds; a Culverin i6 pounds of powder, and
4. Archimeded; or, Libicia a bullet of 19 pounds; a Demiculverin 9 pounds of powder, and a bullet: of 12 pounds: whereas thofe other Engines may be charged only -with ftones, or (which may ferve for terrour) with dead bodies, or any fuch materials as every: place will afford without any coft.

So then, put all thele together: If it be fo that thofe ancient inventions did not come fhort of thefe other in regard of force, and if they do fo much excel them in divers others relpects; It hould feem then, that they arcmueh more commodious than thefe latter inventions, and hould be preferred before them. But this enquiry cannot be fully determined without particular experience of both.

CAP.

Capizo. Mecbanical Powers. 14

CAP. XX.

That it is po $\sqrt{2} b l e$ to contrive fuch and artificial motion, as may be equally frift 2with the fuppofed motion of the beavens.
$H^{\text {OR the conclufion of this Dif- }}$ courfe. I hall briefly examine (as before concerning flownefs) whether it be poffible to contrive fuch an artificial motion, as may be equal unto the fuppofed fwiftnefs of the heavens. This queftion hath been formerly propofed and anfwered by Car- DeVariet: dan, where he applies it unto the fwift- Rerum l.g. nefs of the Moons Orb; but that Orb ${ }^{\text {c. 47. }}$ being the loweft of all, and confequently of a dull and fluggifh motion, in comparifon to the reft; therefore it will perhaps be more convenient to underftand the queftion concerning the eighth fohere or farry heaven.

For the true refolution of this, it thould be firft obferved, that a matcrial fubftance is altogether incapable

49 Arebimedes; ar, tib. t

 ble of fo great'a celerity, as is ufuallyThe earth 2 Planet, prop.g. fore the quæry is nottobe undertood for any real and experimental, but only notional and Geometrical contrivatice.

Now that the fwiftnefs of motion may be thus increafed, according to any conceivable proportion, will be manifeft from what hath been formerly delivered concerning the grounds and nature of flownefs and iwiftnefs. For according as we fhall fuppofe the power to exceed the weight; fo may the motion of the weight be fwifter than that of the power.

But to anfwer more particularly: Let us imagine every wheel in this following figure to have an hundred teeth in it, and every nut ten:

It may then be evident, that one revolution of the firt wheel, will turn the nut, and confequently the fecond wheel on the fame axis ten times; the third third wheel a hundred times，the fourth＇ 1000 times，the fifth 10000 ；＇ the fixth a hundred thousand times， the event I 1000000 times，the eight 10000000 times，the ninth 100000000 times，the Sails 1000000000 times； So that if we fuppole the compass of there Sails to be five foot；＇or one pace； and that the frit whee is turned about after the rate of one thoufand times in an hour t It wilt then be evident，that the fails final be turned 1000000000000 times，and consequently hall pals $100 c 0 c 600$ miles in the fame face． Whereas a far in the 压quator（ac－ cording to common Hypotbeffs）does move but 42398437 miles in an hour； and therefore it is evident that＇is poffible Geometrically to contrive foch an artificial motion，as shall be of greater fiviftnefs than the fuppofed if volutions of the heavens．

145
 D 压DALUS: OR,
 Meckanical.Motions.

The Second Book

CHAP. I:

The divers kind of Automata, or Self: movers. Of Mills, sand the contrivance of Several thootions by ratified air. A brief digreffön concerning 'pind-gkn's

AMong f the variety of artifical motions, thole are of molt use and pleafure, in which by the application of Come continued ftrength, there is beflowed a regular and lofting motion.

The fe we call the dutopuras or Selfmovers: which name in its ütmoft latitude, is Sometimes afcribed unto thole motions that are contrived from the frength of living creatures, as Chariots, Carts, \&c. But in its ftrictnels and propriety, it is only appliable unto much inventions, wherein the motioniscaufed either by fomthing

$$
\mathbf{L}
$$

that that belongs unto its own 'rame, or elfeby fome external inanimate agent. Whente thefe auroutria are eafily diftinguifhable into two forts: :
I. Thofe that are moved by fomething which is extrinfecal unto their own frame, as Mills by water or wind.
2. Thofe that receive their motion from fomething that does belong tothe frame it felf, as Clocks, Watches, by weights, frrings, or the like.
Of both which forts therehave been many excellent inventions: In the recital of them, I thall infift chiefly on fuch as are moft eminent for their ratity and fubtilty.

Amonglt the autónata that receive their motion from fome external agent, thole of hore common ufe areMills.
And firt, the Water mills, which are thought to be before the other, though nefther the firft Author, nor fo much is the time wherein they were invented is fully known. And therefore Deinvicnis Polydor Virgil refers them amongft Rerumil. 3 other fatherlefs inventions. Plity its-
c. 18 . Natr. Hijf. deed doth mention them, as being lis.c.io: commonly ufed in his ti me: and yet

Cap. 1. Mechanical Motions. $\quad \mathbf{1}_{47}$
others affirm, that Bellijarius in the reign of Juftinian, did firft invent them: Whence Pancirollus concludes, DeRepert: that it is likely their ufe was for fome Tit .22 : fpace intermitted, and being afterwards renewed again, they were then thought to be firft difcovered.

However 'tis certain, that this invention hath much abridged and adtrantaged the labours of men, who were before condemned unto this llavery, as now unto the Galleys: And Ad iflit:
as the force of waters hathbeenufeful num: for this,folikewife may it be contrived to divers other purpofes. Herein doth the skill of an artificer chiefly confift, in the application of thefe commoni motions unto various and beneficial ends; making them ferviceable not only for the grinding of corn, but for the preparing of ironor other oar, themaking of paper, the elevating of water, or the like.

To this purpofe allo are the Mills that are driven by wind, which are fo much more convenient than the bther; by how much their fituations L. 1 may

Dedalus; :-ok, \because Libcan,

 may be more eafie and common.. The motions of thefe may likewife be ac-. commodated to as various ufes as: the other, there being feare any ha: bour, to the performance of whjch: an ingenious artificer cannot apply: them. To the fawing of Timber, the: plowing of land, or any other the like fervice, which cannot:be difpatehed the ordinary way, without much toiland tedioufnefs. Andit is a wonder:ful thing to confider, how much mens: labours might be eafed and contracted: in fundry particulars, if fuch as were well skilled in the principles and practifes of thefe Mechanical experiments, would but thorowly apply their fudies unto the inlargement of: fuch inventions.There are fome other motions by wind or air, which (though they are not fo common as the other), yet may prove of excellent curiofity, and fingular ufe. Such was: that mufical inftrument invented by Gornelius: Dreble, which being fet in the fun-Ahine; Epijlt. ad
Fob.Erne- would of it felf render a foft and
flum
Maercell. Vrankbein. rip

Capil Mecbanical Motians. 149

 pleafant harmony, but being removed infto the fhade would prefently be- Like that comefflent. The reafon of it was this: flatue of thewarmth of the fun, working upon in $E_{S y p t r}$, fome moifture within it, and rarifying which the inward air unto fogreat an extenfion, that it mult needs feek for a vent or iflue, did thereby give feveral motionsunto the inftrument. makes a ftrange noirewhenever Somewhat of this nature are the EOlipites,: which are concave Veffels, con-on it. fifting of fome fuch material as may Tacit. Anindure the firc; having a fmall hole, nal. 2. at which they are filled with, wa- frrmsthat ter, and out of which (when the Vef- he had fels arelicated) the air doth ifluc forth both feen with a ftrong and lafting violence; and heard The fors it. Thefe are frequently ufed for the exciting and contracting of heat in the melting of glaffes or metals. Theymay alfo be contrived to be ferviceable for fundry other pleafant ules, as for the moving of fails in a chimuey corner, the motion of which fails may be applied to the turning of a fit, or the like.

But there is a better invention to
L 3
this. this purpofe mentioned in Cardan,
4 VAtiet.负ern娟, i.12.c.58. whereby a fpit may be turned (without the help of weights) by the motion of the air that afcends the Chimney; and it may be ufeful for the roafting of many or great joynts: for as the fire mult be increafed according to the quantity of meat, fo the force of the inftrument will be augmented proportionably to the fire. In which contrivance thete are thefe conyeniences above the Jacks of ordinary ufe.
I. It makes litte or no noife in the motion.
2. It needs no winding up, but will conftantly move of it felf, while there is any fire to rarifie the air.
2. It is much cheaper than the other inftruments that are commonly ufed to this pirrofe. There being required unto it only a pair of fails, which muft be placed in that part of the Chimney where it begins to be fraightned, and one wheel, to the axis of which the fpit line mult be faltned, according to this following Diagram.

The motion of thefe fails may likewite be ferviceable for fundry other purpofes, befides the turning of a (pit; for the chiming of bells or other mufical devioes; and there cannot be any more pleafant contrivance for

L 4
con-

152
 Dadalus; or, Lib. 2:

 continual and cheap mufick. It may be ufeful alfo for the reeling of yarn, the rocking of a cradle, with divers the like domeftick occafions. For (as was faid before) any conftant motion being given, it is eafie for aningenious artificer to apply it unto various fervices.Thefe fails will always move both day and night, if there is but any fire under them, and fometimes though there be none. For if the air without be much colder than that within the room, then muft this which is more warm and rarified, naturally afcend through the chimney, to give place unto the more condenfed and heavy, which does ufually blow in at every chinl or cranny, experience thews.

Unto this kind of motion may be reduced all thofe reprefentations of living ciedtures, u better birds, or Berfts, indented by Colefbius, which frete for the miof part performed by the" notion of air, beng forced up cth her by rapéfaction gunth fire, or che by tomperfion, thifugh the fall

Cap. i. Mechanical Motions. of fome heavier bedy, as water, which

 by poffeffing the place of the air, did thereby drive it to feek for fome ather vent.I cannothere omit (though it be not altogether fo pertinent) to mention that late ingenious invention of the winde-gun, which is charged by the forcible compreffion of air; being injected through a Syringe; the ftrife and diftention of the imprifoned air ferving by the help of little falls or fhuts within, to ftop and keep clofe the vents by which it was admitteed. The force of it in the difcharge is almof equal to oup powder-guns. I have found upon frequent trials (faith PbanomeMerfemous) that a leaden bullet thot ne preumfrom one of thele Guns againft a matica, Pre wall the foce of 24 paces fró prop. 32. rane wal, the pace of 24 pace from it, will be beater into a thin plate. It would be a confiderable addition to this experiment which the fame Author mentions a little after, whereby he will make the fame charge of aif to Cerve for the difcharge of leveral arrows or bullets after one another, much room, as may immediatly ferve to imprefs a violence in fending away the arrow or bullet, and then fcrewing it down again toits former confinement, to fit it for another fhooting. But againft this there may be many confiderable doubts, which 1 cannot fand todifcufs.

C A P. II.

Of a failing Cbariot, that meay moithont borJes be driven on the land by the winds as flips are on the Jea.

THE force of wind in the motion of fails may be applied alfo to the driving of a Chariot, by which a man may fail on the land as wellas by a fhip. on the water. The labour of horfes or other beafts, which are ufually applied tothis purpofe, beingartificially fupplied by the Arength of winds. *That fuch Chariots are commonly ufed in the Champion plains of Cbina, De incree is frequently affirmed by divers crediminato Ur-
$b_{i n n}, l$.I
ble Authors. Boterus mentions that c. 10: they have been tried alfo in Spain, though

Cap. 2. Mecbanical Motions.

 Specifie:Butaboveallotherexperiments to thispurpofe, that failing Chariot at Sceveling in Holland, is moreeminently remarkable. It was made by the direction of Stephinus, \& is celebrated by many Authors. * Walchiusaffirms it to * Pebulebe of fo great a fwiftnefs for itsmotion, rum decur, and yet of fogreat acapacity for itsburden. Ut in medio freto fecundisventiscommifas saves, velocitate multis parafangis. poft fe relinquat, \&r paucarum berarum Spatio, viginti aut triginta milliaria Germanica continuo curfu emetiatur, concredito of ${ }_{5}$ fibi plus minus vectiores fex aut decem, in petitum locum transferat, facillimo illius ad clavum qui Jedet nutu, quaqua verffure minimo labore velis :commifum, mirabile boc continenti currus navigiums dirigentis. That it did far exceed the Speed of any fhip, though we fhould fuppofe it to be carried in the open fea withneverfo profperouswind: andthat in fome few hours fpace it would convey 6 or 10 perfons 20 or 30 German miles, and all this with very little la. bour of him that fitteth at the Stern, who
156
 Dadatus ${ }^{5}$ or, EEBJ 2.

 who may eafily guide the courfe of it as he pleafeth.That eminent inquifitive man $P_{c i}$ reskius, having travelled to Sceveling for the figtt and experience of this Chariot would frequently after with - Mr * much wonder mention the extreme fwiftnefs of its motion. Commemörare
 ta Peiref- ventotran latus citatijfimo non perjentifkii, . . 2. cere tamèn, inempe tam citus erat quameen$t u s$. Though the wind were in it felf more fwift and ftrong; yet to paffengers in this Chariot it would not be at all difcernable, becaufe they did ge with an equal fwiftnefs to the wind it felf. Men that ran before it, feeming to go backwards; things which fecm at a great diftance being prefently over. taken and left behind. In two hours fpace it would pafs.from Sceveling to $P_{t t t e n,}$ which are diftarte from one another above 14 Honarit milliaria (faitith the fame Author) that is more than two and forty miles.
Grotius is very copious and elegant in the ceiebrating of this invention, and
the

Capici MeadanidaliMQtions.

 the Author of it, in divers Epigrams.> Ventivolam Tiphys deduxit in equora navim, Jupiter in fellas, atbereamque domum Interrefite folum virtus Stevinia, nam nec Tiphy tuum fuerat, nec Fovis ifud opus.
A nd in another place,
Impojuit plauftro vectantem carbafa, malum An potius navi, subdidit ille rotas?

- Scandit aquas navis currus ruit acre prono, Et merito dicas bic volat, illa natat.
Thefe relations did at the firft feem unto me, (and perhaps they will foto others) fomewhat ftrange and incredible. But upon farther enquiry I have heard them frequently attefted from the particular eye-fightand experience of fuch eminent perfons, whofe names I dare not cite in a bulinefs of this nature, which in thofe parts is fo very common, and little obferved.

I have not met with any Author whodoth treat particularly concerning the manner of framing this Chariot, though Grotius mentions an elegant Epig. 20. defcription of it in copper by one Gey- \mathcal{O}_{21}. mius : and Hondius in one of his large Maps of $A \int i a$, does give another conjectural defcription of the like Chariots, uled in Clina.

The form of it is related to be very fimpleand plain, after this manner:

158
Dedalus; or, Lib. ó:

Cap. 2. Mecbanical Motions., 159

The body of it being fomewhat like aboat, moving upon 4 wheels of an e qual bignefs, with two failslike thofe in a hip; there being fome contrivance to turn and fteer it by moving a rudder which is placed beyond the two hindmoft wheels: and for the ftopping of it this mult be done either by letting down the fail, or turning it from the wind: Of thiskind they have frequently in Holland other little Veffels for one or two perfons to go upon the ice, having fledges inftead of wheels,being driven with afail; the bodies of them like little boats, that if the ice fhould break; they might yet fafely carry a man upon the water, where the fail would be ftilf ufeful for the motion of it.
I have often thought that it wouls be worth the experiment to enquire, whether or no fuch a failing-Chariot might not be moreconveniently framed with moveable fails, whofe forcemay be impreft from their motion, equivalent to thofe in a wind-mill. Their foremoft wheels (as in other Chariots) for the greater facility, being fomewhat lower than the other, anfwerableto this figure.

Cap. ${ }^{3}$ Mebamical Motions. 16:

 In which the failis are foc conitrived, that the wind frotr "ariy Coaft wff have 'x' force upon them to turn thefif a b Botit, and the motion of thefe failsmuftneeds turn the whecls, and fonffquently carry on the Chariot It felf to any place (though füly thatinf the wind) whi ther it thaltbe directed:The chief ddube will be, whetther in fuch a conktidence" every hitte-ruggednefs or unevennefs of the ground, will not caufy fuch a jokting of tha Chariot as t9-hinder the motion of its fails. : Buit this perthaps (jf, it hould prove fo) is capable of feveral remes dies.
I have often wondred yhy nong of our Gentry who live near geteat Plains, and frooth Champions haye attempted any thing to this-furyofe. The experiments of this kind being very pleafanti and not cofly: what could be more delightful or better husbandry, than to make ufe of the wind (which cofts nothing and eaff nothing) infleaddof bayfers ? This bet ing very eafie to bo offeged iby thpref M the

Dedatus; ar; Lib. 2. the convenience of whofe habitations doth acqomondate them for fuch ex. periments.

C AP. III.
Concerning the foxed Automata, Clogks) Sphere., reprefentivg the heazenly ysetioses.: The jeferal excellencies that \because ave arogit commendeble: im. fuch kind of contrivatheés. M-HE fecond kind of aurfuata wete dercribed to be fuch Engines, as did receive a regular and latting motion from lomething belonging to their own frame, whether weights, or frings, 艮c:

They are ufually diftringuifhed into zürbuara.
$\{$ sàra, fixed and ftationary.
 3. 1. The fixed are fack as move only according to their feveral parts, and hot according to their whole frame; In which, though each wheel hath a diftind rotation, yet the whole doth ftill remain anmoved. The chiefeft kind

Cap. 3. Mecbanical Motions. 163 kind of thefe are the Clocks, and Watches in ordinary ufe, the framing of which is focomimonly known by every Mechanick; that İ thall not trouble the Reader with any explication of it. He that defires fuller fatif. faction, may fee them particularly defcribed by *Cardan, \dagger D. Flood, and others.

The firft invention of thefe (faith ${ }^{\text {c. }}+$ Trad. $_{\text {Tras. } 20}$ Pancirollus) was taken from that ex- parth 7. periment in the multiplication of cap 4. periment in the multiplication of Repert:Ito wheels mentioned in Vitruvius, where h f peaks of an inftrument whereby Arcblica: a man may know how many miles h to. 6.1% or paces he doth go in any pace of "" time, whether or no he da pals by water in a boat or thip, or by land in a Chariot or Coach; they have been contrived alfo intolittle poicketinftruments, by which after a mani hath walked a whole day together, he may eafily know bow many fteps he hath taken: I forbear to enter upon a larger explication of thefe kind of Engines, becaufe they are impertinent unto the chief bufinefs that M 2
*De Víriet.Rerl.a.: 10. The Reader may fee them more particularly deforibed in the above cited *subit:, place of Vitruvius, in *Cardan. + Bef. \dagger infearuim fonius, and others; I have here only ingirumen
torum.
mentioned them, as being the firft ocWreeger, de cafion of the chiefeft civiouare that are jecteen, 2., now in ufe.
ry:c:32, Of the fame kind with our Clocks and Watches (though perhaps more Mention- elaborate and fubtii) was that fphere ed by C_{-}^{2} invented by Archimedes; which did
revo rèto. Tuf:cul. Quaf. l. 1. item De nat. Deorum 1 . 2. reprefent the heavenly motions: the diurnal ' and annual courfes of the fun, the changes and afpects of the Moon, "c.". This is frequently celebrated in the writings of the Ancients, particularly in that known Epigram of Clàudian

Fupiter in paroo cum cernexet at thera vitro; Riftc; *öd Superos talid ditla dedit;

* The fe- Huccine erralis prograffa potentia cura? cret force from which the motion was im- Et tivmen certis motibus urget opus. prefled. .

Cap. 3. Mechanical Motions. 16.5

Percurrit proprium mentitus Signifer annum;
Et fimulata nova Cynthia men fe redit.
Jame ; fum volvens audax induftria nundum
Gaudet, of bumana fidera mente regis.
Quid falfo infontem tonitru Salmonea miror?
eAmula satara parvia reperta manus.
Excellently Tranllated by T. Randolph.

Jove raw the heavens fram'd in a little glass,
And laughing, to the gods there words did pars;
Comes then the power of mortal cares fo far ?
In brittle orbs my labours acted are.
The ftatutes of the Poles, the faith of things,
The laws of Gods, this Syracufian brings
Hither by art: Spirits inclos'd attend
Their feveral Spheres, and with fer motions bend
The living work: each year the feigned Sun,
Each month returns the counterfeited Moon.
And viewing now her world, bold industry
Grows proud, to knowthe heavens his fubjects be,
Believe, Salmoneus hath false thunders thrown,
For a poor hand is natures rival grown.
But that this Engine should be made of glass, is farce credible. Lactantius mentioning the relation of it, affirms it to confilt of brass, which is more likely. It may be the outride or cafe was glass, and the frame it full of brats. Callus Rhoduginus, freaking of . ai to. © the wondrous art in the contrivance i. ai. is.

Dadalus; or, Lib. 2. of this Sphere, breaks out into this

Gxid. ${ }^{2}$ Balduspraf adMecbain

Collea. Mathemo Pram, ad C. 8. quære, Nonne igitur miraculorum omnium maximum miraculum eft hono? He might have faid Mathematicus:" And another to this purpofe, Sic manus ejus naturam, ut naturaipfa manum imitataputetur. Pappustellsus, that Archimedes writa Book de Spheropcia concerning the manner of framing fuch Engines, and after him Pofidonius compofed another difcourfe on the fame fubject, though now either the ignorance or the envy of time hath deprived us of both thofe works. And yet the art it felf is not quite perifhed,
forwe read of divers thelike contrivances in there latter times. ' Agrippa affirms that he himfelf had feen fuch a Sphere, and Ramus tel's us how he beheld two of them in Paris, the one brought thither amongt other fpoils from Sicily, and the other out of Germany. And it is commonly reported, that there is yet fuch a fphere at Strafi.2. c. 10: burgh in Germany. * Rivalitus relates
fel. s.

* Devint how Marinus Burgefus a Norman made
Arcbime- two of them in France for the King. i.2. c. 10. burgh in Germany. $*$ Rivaltus relates
fed. s.
* Devit. how Marinus Burgefins a Norman made
Arcbime- two of them in France for the King. i.2. c. 10. burgh in Germany. $*$ Rivaltus relates
fed. s.
* Devit. how Marinus Burgefins a Norman made
Arcbime- two of them in France for the King.

De Kanit. Scient.cap. 22. Schol. Matb. l.1. So Cardan too;i. 17. Monambe: 4. Mec ${ }^{2}$. iArift.tom. C. I. ${ }^{\text {D. Hack- }}$ wel, 1 ipolseet.
\cdots.
Arce
ent. And i:s:

Cap. 3. Meabanicial Motions.

 And perhaps thefe latter (faith he) were more exact than the former, becaufe the heavenly revolutions are now much better underftood then before. And befides, it is queltionable, whether the ufe of fteel-fprings was known in thofe ancient timies; the application of which unto thefe kind of fpheres muft needs be much more convenient then weights.: UTTis related alfo of the Conful Boethius, that anonglt other Mathemacical contrivanies, (for which he was famous) he made a fehere to re- Beronix prefent the Sunsmotion, which was praf. at fo much admired, and talked of in Coriolate. thofe times, that Gundibaldus King of Burgundie, did purpófly fend over Embaffadors to Theodoricus the Em. perour, with intreaties that he would be a means to procure one of thefe Spheres from Boethiüs; the Emperor thinking bereby to make his kingdom more famous and terribleunto foreign Nations, doth write an Epifte to Boethius, perfwading him to fend this inftrument. Quoties non funt credituri $^{\mathrm{M}} 4 . \quad$ quod quod videryimt? Queties: hanc veritatem luforia foninia piutabunt? Et quan. do fuerint à ftupore converfi, non aude. bunt \int e eqquales nobis dicere, apud quos fciunt fapìentes talia cogitafe.. So much were all thefe kind of inventions admined in thofe ruder and darker times; whereas the inftruments that are now in ufe: mmonglt us (though not fo much extolled) yet do altogether equal (if pot exceed) the other both in ufefulnefs and fubtiley. The chriefPolyd, iz-eft of thefe former Engines receiving gil. de in their motion from weights, and not veatirerym from fprings, which (as I faid before) Li. 0.5 . care of later and more excellent inven Cardan subtilis. tion.

The particular circumftances for which the Automota of this kind, are moft eminent, may be reduced to thefe fopr.

1. The laftingnefs of their motion, without needing any new fupply; for which purpofe there : have been fome Watches contrived to continue with, gut winding up for a week together, or longer

2: The

Cap.3. Mechanical Motions.

2, The eafinefs and fimplicity of their compofition; Art it felf being but the facilitating and contracting of ordinary operations, therefore the more eafie and compendious fuch inventions are, the more artificial fhould they be efteemed. And the addition of any fuch unneceffary parts, as may be fupplied fome other way, is a fure fign of unskilfulnefs and ignorance. Thofe antiquated Engines that did confift of fuch a needlefs multitude of wheels, and fprings, and fcrews, (like the old bypotbefis of the ieavens) may be compared to the notions of a confufẹd knowledg, which are always full of perplexity and complications, and feldom in order; whereas the inventions of art are more regular, timple and perficuous, like the apprehenfions of a diftinct and thoroughly infotmed judgment. In this refpect the manner of framing the ordinary Automata, hath been much bettered in thefe latter times above the former, and thall hereafter perhaps be yet more adyantaged, Thefe

170 Dedalus; or, Eib. 2.

 Thefe kind of experiments (like all other humane arts) receiving additions from every days experiment.To this purpofe there is an invention confifting only of one hollow orb or wheel, whereby the hours may be as truly diftinguifhed, as by any ordinary clock or watch. This wheel thould be divided into feveral cavities, through each of which fucceffively either fand or water mufk be contrived to pals; the heavinefs of thefe bodies (being always in the afcending fide of the wheel) muft be counterpoifed by a plummet that may be faftned about the pulley on the axis: this plummet will leifurely defcend, according as the fand by running out of one cavity into the next, doth make the feveral parts of the wheel lighter or heavier, and fo confequently thereiwill be produced an equal and lafting motion, which may be eafily applied to the diftinction of hours.
3. The multitude and variety of thofe fervices for which they max

be

Cap. 3. Mechanical Motions. 171

 be ufeful. Unto this kind may we refer thofe Watches, by which a man may tell not only the hour of the day, but the minute of the hour, the day of the month, the age and afpects of the Moon, \&c. Of this na-' ture likewife was that larum mentioned by Walchius, which though it were but two or three inches big, yet would both wake a man, and of it felf light a candle for him at any fet hour of the night. And thofe weights or fprings which are of fo great force as toturn a mill, (as fome Remel.fis. have been contrived) may be eafily Fab.9: applied to more various and difficult labours.4. The littlenefs of their frame. Nunquam ars magis quam in misimis Jacks no nota eft (faith Aquinas). The fmatnefs bigger of the Engine doth much commend than 2 the skill of the Artificer; to this walnut, to purpofe there have been Watches con- joint of trived in the form and quantity of a mear. Jewel for the ear, where the friking of the minutes may conftantly whifper unto us, how our lives do Mide the finger, which did thew the hours, (non -folum fagitta, fed iafu) not only by the hand, but by the finger too (as I may fay) by pricking it every hour.

C A P. IV.

Of the movable and Gradient Automota, reprefenting the motions of living creatures, various founds, of birds, or beafts, and Some of them articulate.

Hus much of thofe Automata, ftationary.
The other kind to be enquired after, are thofe that are movable and tranfient, which are defcribeci to be fuch engines as move not only according to their feveral parts, but alfo according to their whole frames. Thefe are again diftinguifhable into two forts:

1. Gran

Cap. 4. Mechanical Motions.

1. Gradient.
2. Volant.
3. The Gradient or ambulatory, are phatin fuch as require fome bafis or bottom $\begin{gathered}\text { menome. } \\ \text { Arif. } P_{o} \text { : }\end{gathered}$ to uphold them in their motions. Such lit. Lixe. $\mathbf{1}$. were thofe ftrange inventions (commonly attributed to Dedalus) or felfmoving ftatues, which (unlefs they were violently detained) would of themfelves run away, * Ariftotle affirms that Dedalus did this by putting quick-filver into them. But this would have been too grofs a way for fo excellent an Artificer; it is more Ykely that he did it with wheels and weights. niadis: Of this kind likewife were Vilcans: Tripodes, celebrated by Homer, that There were made to move up and down the have been houfe, and fight with one another. He alfocharimight as well have contrived theminto Journey-men ftatues, each of which ots driten by the Jo. with a hammer in his hand fhould have fpring worked at the forge.

But amongft there fighting images, that in Cardan may deferve a men- De Variet. tion, which holding in its hand a gol- rerum. den apple,beaptified with many coftly 1. n2. cs? Jewels;

Jewels; if any man offered to take it, the ftatue prefently fhot him to death. The touching of this apple ferving to difcharge feveral fhort bows; or other the like inftruments that were fecretly couched within the body of the image. By fuch a treachery was King Cbennetus murdered (as Boetbius relates).

It is fo common an experiment in -,\cdots thefe times to reprefent the perfons and actions of ary fory by fuch felfmoving images, that I hall not need to explain the manner how the wheels There 90 and fpringe are contrived within $h_{\text {here been }}$ them.
other in- Ampuggt thefé, gradient Automaata; veations that iron Spider mentioned in Walto move chius, is more efpecially remarkable; onthe wa- which being but of an ordinary bigsanigiun nefs, befides the outward fimilitude; foonte mo: (which was very exact) had the fame buite, as, Semigit kind of motionswith a livingf pider, and autiorim, did creep upand dopnas if it had been faciaminul- alive. It muft needs argue a wonderLo negotio, full art, and acuratenels, to contrive fiaith sta. all the inftruments requifite for fucts trc. 326.

a

Cap. 4. Mecbenical Motions. 1 I 7. a motion in fo fmall a frame.

There hath been alfo other motions contrived from Magnetical qualities: which will hew the more wonderful becaufe there is no apparent reafon of their motion, there being not the lealt contiguity or dependance upon any other body that may occafion it; but: it is all one as if they fould move up and down in the open air. : Get-a glafs fphere, fill it with fuch liquons as may be clear of the fame colour, immixable, fuch as ane oyl of Tartar; and fpirit of wine : In which, it is eafie fo to poife a little globe or other ftatue, that it fhall fwim in the centet. Under this glaif. phere, there fhould be a loadftone conceated, by the motion of which, the ftatue (hat ving a needle touched within'it) winl move up and down, and may be contrived to thew the hour or fign. See feveral inventions of this kind in Kircher de arte Magnetica, l. 2.

There have bean fome artificial images, which befides their feveral poftures in walking up and down, have

176.

 have been made alfo to give feveral. fourids, whether of birds, as Larks, Cuckooes, 8 Xc . or beafts ${ }^{2}$ as Hares, Foxes: The voices of which creatures fhall be readered as clearly and diftinctily, by thefe artificial images, as they are by thofe natural living bodies; whichthey reprefent.There have been fome inventions alfo: which have been able for the utterance of articulate founds, as the fpeaking of certain words. Such are fome of the Egyptian idols related L.2.c. 17. to be. Suchí was the brazen head Maiolus colloq, made by Fryer: Bacon; and that ftatue in the framing of which Albertus:Mag: nus beftowed thirity years, broken by Aquinas, who came to fee it, purpofely that he might boaft, how in one minute he had ruined the labour of fo many years.

Now the ground and reafon how thefe founds were contrived, may bé worth our inquiry.

Firt then, for thofe of birds or beafts, they were made from fuch pipes or calls, as may exprefs the fe-

Cap: 4. Mechanical Motions. 17%

veral tones of thofe creatures which are reprefented : thefe calls are fo commonly known and ufed, that they need not any further explication. But now about articulate founds there is much greater difficulty. Wal- Fab. g\% chius thinks it poffible entirely to preferve the voice, or any words fpoken, in a hollow trunk, or pipe, and that this pipe being rightly opened, the words will come out of it in the fame order wherein they were fpoken. Somewhat like that cold Countrey; where the peoples difcourfe doth freeze in the air all winter, and may be heard in the next Summer, orat a great thaw. But this conjecture will need no refutation.

The more fubftantial way for fuchi a difcovery, is by marking how nature her felf doth imploy the feveral inftruments of fpeech, the tongue, lips, throat, teeth, \&c. Tothis purpofe the Hebrews have affigned each letter unto its proper inftrument. And befides, we fould obfirve what inarticulate lounds du relemule any of N
the
the particular letters. Thus we may note the trembling of water to be like the letter L, the quenching of hot things to the letter Z, the found of frings, unto the letter $N g$, the jirking of a fwitch the letter $2,8 x$. By an exact obfervation of thefe particulars, it is (perhaps) poffible to make a fatue feak fome words.

CAP. V.

> Concerning the poffibility of framing ans Ark for fubmarine Navigations. The difficulties and conveniences of fuch econtrivance.

Trate de Magnetis propriese: dibus.

TT will not be altogether impertinent unto the difcourfe of thefe gradient Automata, tomention what MerJemmes doth fo largely and pleafantly defcant upon, concerning the making of a thip wherein men may fafely fwim under water.

That fuch a contrivance is feafible and may be effected, is beyond all queftion, becaufe it hath been alrea-

Cap. 5. Mechanical Motions. 179

 dy experimented here in England by Cornelius Dreble; but how to improve it unto publick ufe and advantage, to as to be ferviceable for remote voyages; the carrying of any connfiderable number of men; with provifions and commodities; would be of fuch excellent ufe as may deferve fome further inquiry.Concerning which there are two things chiefly confiderable :

Smany difficulties with theit The $\left\{\begin{array}{l}\text { remedies. } \\ \text { great conveniences. }\end{array}\right.$

1. The difficulties aregenerally reducible to thefe three heads.
2. The letting out, or receiving in any thing, as there fhall be occalion, without the admiffion of water: If it have not fuch a convenience, thefe kind of voyages muft needs be very dangerous and uncomfortable, both by reafon of many noifome offenfive things, which fhould be thruft out; and many other needful things whim thould be received in. Now herein will confit the difficulty, how to con- trive the opening of this veffel fo, that any thing may be put in or out, and yet the water not rufh into it with much violence, as it dota'ufually in the leak of a thip.

In which cafe this may be a proper remedy; let there be certain leather bags made of feveral bigneffes, which for the matter of them fhould be both traclable for the ufe and managing of them, and frong to keep out the water; for the figure of them, being long and open at both ends. Anfwerable to there, let there be divers windows, or open places in the frame of the hip, round the fides of which one end of thefe bags may be fixed, the other end coming within the ohip being to open and thut as a purfe. Now if we fuppofe this bag thus faftned, to be tyed clole about towards the wine dow, then any thing that is to be fent put, may be fafely put into that end within the fhip, which being again Ghferfint, and the other end loofened, the thing may be fately fent out withputthe admiffion of any water.

Cap. 5. Mechanical Motions. 18 i

So again, when any thing is to be taken in, it mult be firft received in. to that part of the bag towards the window, which being (after the thing is within it) clofe tyed about, the other end may then be fafely operied. It is eafie to conceive, how by this means: any thing or perfon may be fent out, or received in, as there fhall be ccafion; how the water, which will per: haps by degreesleak into feveral parts, may be emptied out again, with divers the like advantages. Though if there fhould be any leak at the bot-: tom of the Velfel, yet very litle water would get in, becaufe no air could get out.
2. The fecond difficuliy in fucti an Ark will be the motion or fixing of it according to occafion; Thedireating of it to feveral places, as the voyage fhall be defigne1, without which it would be very ufelets, if it were to remain only in one place, or were to remove only blindfold, without any certain direction; And the contrivance of this may feem very diff:-

Deitalus ; or, Lib. 2. cult, becaufe thefe fubmarine Navigagators will want the ufual advantages of winds and tides for motion, and the fight of the heavensfor direction. But thefe difficulties may be thus remedied; As for the progrefive motion of it, this may be effected by the help of feveral Oars, which in the outward ends of them, fhall be like the fins of a fifi to contract and dilate. The paflage where they are admitted into the hip being tyed about with fuch leather bags (as were mentioned before) to keep out the water. It will nqt be convenient perhaps that the motion in thefe voyages fould be very fwift, becaufe of thole oblervations and difcoveries to be made at the bottom of the fee which in a little fpace may abundantly recompence the flownefs of is progrefs.

- If this Ark be fo ballaft as tobe of equal weight with the like magnitude of water, it will then be eafily movable in any part of it. :

Asfor the afcent of it, this may be ealily contrived, if there be fome great
weight

Cap. 5. Mecbanical Motions. weight at the bottom of the fhip (being part of its ballaft) which by fome cord within may be loofned from it; As this weight is let lower, fo will the fhip afcend from it (if need be) to the very furface of the water; andagain, as it is pulled clofeto the fhip, fo willit defeend.
For direction of this Ark, the Mariners needle may be uffeful in refpect of the latitude of places; and the courfe of this fhip being more regular than others; by reafon it is not fubjed to Tempefts or unequal winds, may more certainly guide them in judging of the longitude of places
3. But the greateft difficulty of all will be this, how the air may be fupplied for refpiration: How conftant fires may be kept in it for light, and the dreffing of food; how thole vicififitudes of rarefaction and condenfation may be maintained.
It is obferved, that a barrel or cap, whofe cavity will contain eight cur. bical feet of air, will not ferve a Urinator or Diver for refpiration, aN 4 bove
bove one quarter of an hour $;$ the breath which is often fucked in and out, being fo corrupted by the mixture of vapours, that nature rejects it as unferviceable. Now in an hour a man will need at leaft 360 refpirations, betwixt every one of which there fhall be rofecond minutes, and confequently a great change and fupply of air will be neceffary for many perons, and any long fpace.

And fo likewife for the keeping of fire; a clofe Veffel containing tencubical feet of air, will not fuffer a wax candle of an ounce to burn in it above an hour before it befuffocated, though this proportion (faith Merfennus) doth not equally increafe for feveral lights, becaufe four flames of an equal magnitude will be kept alive the face of 16 fecond minutes, though one of there flames alone in the fame Veffel will not laft above 25 , or at moft 20 feconds, which may be eafily tried in large glafs bottles, băying wax candleslighted in them, and With their mouths inverted in water.

Cap.5. Mechanical Motions.

 For the refolution of this dificulty, though I will uot fay that a man may by cuftome (which in other things doth produce fuch ftrange incredible effects) be inabled to live in the open water as the fifhes do, the infpiration and expiration of water ferving inftead of air, this being ufual with many fifhes that have lungs; yet it is certain that long ufe and cuftome may ftrengthen men againft many fuch incoveniences, of this kind, which to unexperienced perfons :may prove very hazardous: and fo it -will not perhaps be unto thefefo neceffary, to have the air for breathing fo pure and defecated as is required for others.But further, there are in this cate thefethree things confiderable.

1. That the Veffel it felf fnould be of a large capacity, that as the air in it is corrupted in one part, fo it may be purified and renewed in the other: or if the meer refrigeration of the air would fit it for breathing, this might be fomewhat helped with bellows.

Dadalus; or, Lib. a.

 bellows, which would cool it by motion.2.. It is not altogether improbable, that the lamps or fires in the middle of it, like the reflected beams in the firt Region, tarefying the air, and the circumambient coldnefs towards the fides of the Veffel, like the fecond Region, cooling and condenfing of it, would make fuch a viciffitude and change of air, as might fit it for all its proper ufes.
3. Orif neither of thefe conjectures will help, yet Merfennus tells us in another place, that there is in France oneBarricus a Diver, who hath lately found out another art, whereby a man might eafily continue under water for fix hours together; and whereas ten cubical feet of air will not ferve another Diver to breathe in, for half an hour, he by the help of a cavity, not above one or two foot at moft, will have breath erough for fix hours, and a lanthorn fearce above the ufual fize to keep a candle burning as long as a man pleafe, which

Cap.y. Mecbanical Motions.

 (if it be true, and were commonly known) might be a fufficient help againft this greateft difficulty.As for the many advantages and conveniences of fuch a contrivance, it is not eafie to recite them.

1. T'is private; a man may thas go to any coaft of the world invifibly' without being difcowered or prevented inhis joumey.
2. 'Tis fafe; from the uncertainey of Tides, and the violence of Tempefts, which do never move the fea above five or fix paces deep. From Pirates and Robbers which do fo infelt other voyages; From ice and great frofts, which do fo much endanger the paffages towards the Poles.
3. It may be of very great advantage againt a Navy of enemies, who by this means may be underminted in the water and blown up.
4. It may be of feecial ufe for the relief of any place that is befieged by water, to convey unto them invifible fupplies: and folikewife for the furprifal of any place that is acceffible by water.
5. lt
6. It may be of unfpeakable benefit for fubmarine experiments and difcoveries: as,

The reveral proportions of fwiftnefs betwixt the afcent of a bladder, cork, or any other light fubftance, in comparifon to the defcent of fones or lead. The deep caverns and fubterraneous paffages where the feawater in the courfe of its circulation, doth vent it felf into other places, and the like. The nature and kinds of fifhes, thereveral arts of catching them, by alluring them with lights, by placing divers nets about the fides of this Veffel, fhooting the greater fort of them with guns, which may be put out of the thip by the help of fuch bags as were mentioned before, with divers the like artifices and treacheries, which may be more fucceffively practifed by fuch wholive fo familiarly together. Thefe fifh may ferve not only for food, but for fewel likewife, in refpect of that oyl which may be extracted from them; the way of drefling meat by lamps, be-

Cap. 5. Mechanical Motions. 189

 ing in many refpects the moft convenient for fucha: voyage.The many frefh fprings that may probably be met with in the bottom of the fea, will ferve for the fupply of drink and other occafions.

But above all, the difcovery of fubmarine treafures is more efpecially confiderable, not only in regard of what hath been drowned by wrecks, but the feveral preciousthingsthat grow there, as Pearl, Coral Mines, with innumerable other things of great-value, which may be much more eafilyfound out, and fetcht up by the help of this, than by any other ufual way of the Urinators.

To which purpofe, this great Veffel may have fome leffer Cabins tyed about it, at various diftances, wherein feveral perfons, as Scouts, may be lodged for the taking of obfervations, according as the Admiral fhall direct them. Some of them being frequently fent up to the furface of the water, as there fhall be occaGon.

All kind of arts and manufactures may be exercifed in this Veffel. The oblervations made by.it, may be both written, and (if need were) printed here likewife. Several Colonies may thus inhabit, having their Childreni born and bred up without the knowledg of land, who could not chufebut be amazed with ftrange conceitsupon the difcovery of this upper world.
I am not able to judge what other advantages theremay be fuggefted, or whether experiment would fully anfwer to thefenotional conjectures. But however, becaufe the invention did untome feem ingeniousand new, being not impertinent to the prefent enquiry , therefore I thought it might be worth the mentioning.

CAP.

Cap, 6. Meçbanical Motions. 191

CAP. VI,

Of the epplant Automata, Archytas bis Dove, and Regiomontanus his Eagle. The polfibility and great weffulmefs of finch inventions.

THE volant or flying Automataare fuch Mechanical contrivances, as have a felf-motion, whereby they are carried aloft in the open air, like the flight of Birds. Such was that wooden Dove made by Archytas, a Citizen Diog.Laer. of Tarentum, and one of Plato's acquaintance. And that wooden Eagle framed by Regiomantanusat No- neff.discip. remberg, which by way of triumph, did fly out of the City to meet Cbarles Ramus the fift. This later Author is alfo re- Scbol.Ma-
 ported to have made an iron Ay, 2u. ex artifcis manu egreffa, convivas cir- Dubartas cumvolitavit, tandemque veluti defefla ${ }^{\text {ddays }} 2$ w. in Domini manus reverfa eft, which Preface te when he invited any of his friends, Euclia: would ly to each of them round the table, and at length (as being weary) return unto its Mafter.

Cardas

De Varies: rerram lib. [12. C. 58.

Cardan feems to doubt the poflibility of any fuch contrivance; his reafon is, becaufe the inftruments of it muft be firm, and ftrong, and confequently they will be too heavy to be carried by their own force; but yet (faith he) if it bea little helped in the firt rifing; and if there be any wind to affift it in the flight, then there is nothing to hinder, but that fuch motions may be poffible. So that he doth in effect grant as much as may be fufficient for the truth and credit of thofe ancient relations; and to diftruft them without a ftronger argus ment, muft needs argue a blind and perverfe incredulity. As for his objection concerning the heavinefs of the materials in fuch an invention, it may be anfwered, that it is eafie to contrive fuch fprings and other inftruments, whofe ftrength fhall much exceed their heavinefs. Nor can he fhew any caufe why thefe Mechanical motions may not be as ftrong, (though not fo lafting) as the natural ftrength of living creatures.

Scaliger

Cap. 6. Meclianical Motions. 193

Scaliger conceivesthe framing of fuch Subtil. volant Automata, to be very eafie. Exercit, Volantis columbe machinulam, cujus antorent Archytam fradiunt, vel facillize profiteri audeo. Thofe ancient motions not. At. Were thought to be contrived by the tica. i. io. force of rome included air: So Gellius, cip. iz. Ita erat fcilicet libramentis fulpenfum, , wher he thinssit aurad fpiritus inclusd atque occultat confl. fo frange tum, occ. As if there had been fome an invenlamp ${ }^{2}$ or other fire within it, which might produce - fuch a forcible rarefaction, as fhould give a motion to the whole frame.'

But this may be better performed by the ftrength of fome fuch fpring $i .2 . f a r .4$. as is commonly ufed in watches; this Foom: fring may be applied unto one doth prowheel, which fhall give an equal mife a whee, which an equal large dif motion to both the wings thefe courrs wings having unto each of them a- concerinother faller forting by which they ing there may be contracted and lifted up: So $\begin{aligned} & \text { inventions }\end{aligned}$ that being forcibly depreffed by the inanoties ftrength of the great and ftrofiger Treatifi fpring, and lifred up again by the σ - which hd ther two. According to this fuppor- dipus cef -
fition, it is eafie to conceive how the motion of flight may be performed and continued.

The wings may be made either of jeveral fubfances joyned, like the feathers in ordinary fowl, as Dedalus is feigned to contrive them, according to that in the Poet,
ovid. Me-- - Ignotas animum dimittit in artes, tam. 1.8. Natur amque novat, nam ponit in ordine pennas
A minimo cextas longam breviore Sequente,
F_{t} clivo crevife putes, Grc. Or elfe of one continuate fubfance, like thofe of Bats. In framing of both which, the beft guidance is to follow (as neer as may be) the direction of nature ; this being but an imitation of a natural work. Now in both thefe, the ftrength of each part is proportioned to the force of its imployment. But nothing in this kind canbe perfectly deter ined without a particular trial., Though the compofing of fuch motions may be a fufficient reward to any ones induftry in the fearching

Cap. 6. Mechanical Motions. 195

 after them, as being in themflees of excellent curiofity; yet there are fome other inventions depend upon them of more general benefit and greater importance. For if there be any fuctf artificial contrivances that can 'fly' in the air, (as is evident from the former telations, together with the ground's here Ipecified, and 1 doube not, may be eafily effected by a diligent. and ingenious artificer) then it will clearly follow, that it is "polfible alfo" for a man to fly himelfes It being edy fie from the fame grounds to frathe an inftruments, wherein any orie may fit, and give fuch a motion unto it as fhall convey him aloft through the air. Then which there is not any ima a ginable invention that could prove of greater benefis to the work, or gloty to the Author. And therefore it thay: juftly deferve their enquity's, who haveboth leifure and means for fuch expes: riments.But in thefe pratical fludies, trit lefs a man beable to go to the tyy al of thimgs, he will perform but: (2
little,

196 \therefore Dedalusingt Lib. 2 s
little. In fuch matters.
EHorace. -Studiviza fine divito veran. (as the Poet faith) a general fpectus lation, without particular experimetat maj' conjeeture at many things, but cap certainly effect notbing. And therefore I hall only propofe unta the world, the Theory ath general geounds that may conduce to the eafte. and more perfect difcovery of the fubs fed in queftion, for the encoluragement of thofe that have both minds and means for fuch experiments This fame Scholars faterniro ars
\because Res anguffa domi, and
\therefore-curta Kupellex.
is that which hinders the promoting of learning in fundry particulars, and robs the woyld of many excellent inwentions, Wre wad of Ariftotle, that he was athestory by his pupil Alexander 8op talants a year, for the paya: megt of Fiflers, Fowlers, and Huma ters, who were to bring him in feve-: ral creatures; that fo by his particulaxexperience of their parts and dif: pofitions, he might be mone fitly prepared

Cap. 6. Meebanicat Motions. 197

 pared to write of their natures. The reafon why the world hath not many Ariftotles. is, becaufe it hath le few Alexanders.Among f ie her impediments of anone of the meaneff difoouragements, that they are fo generally derided by common opinion, being éfteemed only as the dreams of a melancholy and ditempered fancy. Eusebius peaking With what neceffity every thing is confined by the laws of nature, and fut. l. i. the decrees of providence, fo that nothing can go out of that way, unto which naturally it is defined; as a fofl cannot refide on the land, nor a man in the water, or aloft in the air, infers, that therefore none will ventare upon any foch vain attempt, as
 arty nexrioor, unlefs his brain be a little crazed with the humour of meancoly; whereupon he advifes that we fhould not in any particular endedvour to tranfgrefs the bounds of na

198 Daedalus; or, Lib. 2.

 rally deftitute of wings, not to imitate the flight of Birds. That flying of the Poet,

Virgil. Inced. l. 6.

Demeans qua nimbos \& non imitabile fulmen, fro.
hath been an old cenfure applied unto fuck as ventured upon any ftrange or incredible attempt.

Hence may we conceive the rearon, why there is fo little intimation in the writings of antiquity, concerning the poffibility of any fuch inventon. The Ancients durft not fo much as mention the art of flying, but in a fable.
Dedalus, wt fam eff, fugiens Minoia regina,
Prapetibus pennis aufus fe credere colo, Infuetum per ter gelidas enavit ad ar: Clos, Orc.
It was the cuftom of thole former ages, in their overmuch gratitude, to advance the firs Authors of any useful difcovery, amongst the nomber of their gods. And Dedulus be$i^{\text {ing }}$ fo famous among ht them for foundry

Cap. 7. Mecbanical Mötions. 199

fundry Mechanical inventions (efpecially the fails of thips) though they did not for thefe place him in the heavens, yet they have promoted him as near as they could, feigning him to fly aloft in the air, when as he did but fly in a fwift fhip, as Diodorus relates the So EuseHiftorical truth, on which that fiction bius too. is grounded.

C A P. VII.

Concerning the Art of fying. The feveral woays whereby this bath bees or may be atternpted.

IHave formerly in two other * Dif *Worldin courfes mentioned the poffibility of the Moon, this art of flying, and intimated a cap.14. further inquiry unto it, which is a Mercury, kind of engagement to fome fuller or the eredifquifitions and conjectures to that fwift merpurpofe.

There are four feveral wayes whereby this flying in the air, hath been or may be attempted. Two of them by the ftrength of other things, and O_{4} two

200

 Dadulus a, or, Ifle: two of them by our own flrength. 1. By firits or Angels.2. By the help of fowls.
3. By wings faftned immediately to the body.
4. By a flying chariot.

2ancb.de. I. For the firtt we read of divers oper.patiji: that have paffed fwiftly in the air, by 1.4. the help of firits and Angels, whe* 2 kings ther good Angels, a*Elias was car2.11. ried into heaven in a fiery chariot : \dagger Acts 8 . as \dagger Pbilip was conveyed to Azotus, 39. and Habbacuck from Jewry to Babypan. A- lon, and back again immediately; poc. 39. Or by evil Angels, as our Saviour was carried by the Devil to the top of a high mountain, and to the pinaInke 4. cle of the Temple. Thus witches are Erafurus de Lamis. commonly related to pals unto their ufual meetings in fome remote place; and as they do fell windes unto Mariners, fo likewife are they fometimes hired to carry men fpeedily through the open air. Acafta affirms that fuch研 1 Inde kind of paffages afe ufual amongtt 4. s.c.26. divers Sorcerers with the Indians at this day.

Cap. 9. Mechanical Motions.

So Kepler in his Aftronomical dream doth fancy a Witch to be conveyed unto the Moon by her Familiar.

Simon Magus was fo eminent for miraculous forceries, that all the people in Samaria, from the leaft to the greateft, did efteem him as the great popper of.God. And fo famous was he at Rome, that the Emperour erected aftatueto him withthis Infcription, Simponi Deo Sanclo. 'Tis ftoried of this Magician, that having challenged Saint Peter to do miracles with him, be attempted to fly from the Capitol to the Aventine hill. But when he was in the midft of the way, Saint Peters prayers did avercome his forceries, and violently bring him to the ground, in which fall having broke his thigh, within a while after he died:

But none of all thefe relations may conduce to the difcovery of this experiment, as it is hereenquired after, upon natural and artificial grounds.
2. There are others who have con-
conjectured a poffibility of being conveyed through the air by the help of Fowls; to which purpofe that fiction of the Ganza's, is the molt pleafant and probable. They are fuppofed to be great fowl of a ftrong lafting flight, and eafily tamable. Divers of which may be fo brought up as to joyn together in carrying the weight of a man, fo as each of them fhall partake his proportionable fhare of the burden; and the perfon that is carried may by certain reins direct and fteer them in their courles. However this may feem aftrange propofal, yet it is not certainly more improbable, than many other arts, wherein the induftry of ingenious men hath inftructed thefe brute creatures. And I am very confident, that one whofe genius doth enable him for fuch kind of experiments, upon leifure, and the advantage of fuch helps as are requifite for various and frequent trials might effect fome ftrange thing by this kind of enquiry.
'Tis reported as a cultom amongft the

Cap. 7. Mechanical Motions. 203

 the Lencatians, that they were wont upon a fuperflition to precipitate a man from fome high cliffe into the Sea, tying about him with ftrings at fome diftance, many great fowls, and fixing unto his body divers feathers Nat. Hijf : fpread, to break the fall; which (faith the learned Bacon, if it were diligent- 896, ly and exactly contrived) would be able to hold up, and carry any proportionable weight; and therefore he advifes others to think further upon this experiment, as giving fome light to the invention of the art of flying:3. Tis the more obvious and common opinion that this may be effected by wings faftned immediately to the body, this coming neareft to the imitation of nature, which fhould be obferved in fuch attempts as thefe. This is that way which Fredericus Hermannus in his little difcourfe de Arte volandi, doth only mention and ingift upon. And if we may truft credible ftory, it hath been frequently attempted not without fome fucces.

> So the ancient $\mathrm{Bri-}$ tint $\mathrm{Bla-}$ duds. Rurgravum feffors time, that' he did by fuch

Pbyfico. Paltania. starmius inimat: lingua refolut.

Melancholy, Parto $2 \stackrel{c}{\text { in }}$ sed. i. Mcm. 30 wings fly from a Tower above a furlong $;$ and fo another from Saint Marks fteeple in Vénice; another at Norimberge; and Busbequius fpeaks of a Turk in Comfanitinople, who attempted fomething this way. Mr. Burtove mentioning this quotation, doth believe that fome new-fangled wit ('tis his Cynical phrafe) will fome time or other find out this art. Though the truth is, moft of thefe Attifts did unfortunately mifcarry by falling down and breaking their arme of legs, yet that may be imputed to their want of experience, and too much fear, which muft needs poffefs men in fuch dangerous and ftrange attempts. Thofe things that feem very difficult and fearful at the firf, may grow very facil after frequent trial and exercife. And therefore he that would effect any thing in this kind, muft be brought up to the conftant practife of it from his youth. . Trying

Capi.7. Meckunitial Motions.

ing firf only to ufe his wings in runhing on the ground, as an Eftrich or tame Geefe will do, touching the earth with his toes 3 and fo by degrees learnto rife higher, till he fhall attain uhto skill and conffidence. I have heard it from credible teftimony, that one of our own Nation hath proceeded fo far in this experiment, that he was able by the help of wrings in fuch a running pace, to ftep conftantly ten yands at a time.

It is not more incredible that frequent practife and cuftom fhould inablea man for this, then for many other things which we confirmed by experience. What ftrange agilityand activenefsdoour commontumblersand dancers on the rope atteain to by con- Maffane tinual exercife? :Tis related of cer- Hijl. had. tain Indime that they are able whis h. tain ludians that they are able when a horfe is running in his full career, to ftand upright on his back, to turnthemfelves round, to leap down, gethering up any thing from theground, and immediatly to leapupagain, to fhoot exaetly at any mark, the horfe not intermitting.

206 Dèdalus; or, Lib. g

 mitting his courfe. And fo upon two horfes together, the man fetting one of his feet upon each of them. Thefe things may feem impoffible to others; and it would be very dangerous for any one to attempt them, who hath not firt gradually attained to thefe arts, by long practife and trial ; and why may not fuch practife enable him as well for this other experiment, as for thefe. things?There are others who have inven* ted wayes, to walk upon the water, as regularly and as firmly upon the land. There are fome fo accuftomed: to this element, that it hath been als. moft as natural to them, as tothe fifh; men that could remain for above an hour together under water: Pontanus mentions one who could fwim above a hundred miles together, from one fhore to another, with great fpeed, Treatie and at all times of the year. And it of cuftom; is foried of a certain young man, a Sicilian by birth, and a Diver by profeffion, who had fo continually ufed himfelf to the water, that he could

Cap., 7. Mecbanical Motions. not enjoy his health out of it. If at

 any time he flaid with his friends on the land, he fhould be fo tormented with a pain in his ftomack, that he was forced for his health to return back again to Sea, wherein he kept his ufual refidence; and when he faw any Thips, his cuftom was to fwim to them for relief, which kind of life he continued till he was an old man, and dyed.I mention thefe things to thew the great power of practife and cuftom, which might more probably fucceed in this experiment of flying (if it were but regularly attempted) than in fuch Itrange effects as thefe.

It is a ufual practife in thefe times, for our Funambulones, or Dancers on the Rope, to attempt fomewhat like to llying, when they will with their heads forwards lide down a long cord extended; being faftried at one end on the top of fome high Tower, and the other at fome diftance on the ground, with wings fixed totheir Thoulders, by the thaking of which

208

they wiil break the force of their defcent. It would feem that fome at $=$ tempts of this kind were ufual amongtt.the Romans. To which that *De gube. expreflion in * Salviän may refer; Dei.1.6. where amongtt other publick fhews of the Theater, he mentions the PeAmoto in tamivariti: which word (faith fo: Brafsalivi. ficanus) is fearce to be found in any other Author, beihg not mentioned either in Julius Pollux, or Politian. 'T'is probably derived from the Greek word shra@Y, which fignifies to : ty; and may refer to fuch kind of Ropedancers.

But now becaufe the arms exterded, are but weak and eafily weatied; therefore the motions by them ate like to bebut thort and fow, anfoctable it may be to the flight of fuch domeftick fowl, as are moft converfatt on the ground, which of themfelves we fee are quickly weary, and therefore much more would the arm of a man, as being not naturally defigned tofuch a motion.

It wete therefore worth the inqui-

Gadi. Meckanitacl Motions.
ty to conafder whether this might not be more:probably effected by whe tabour of the feet, whict are natu-
 In which conirivance the wings flowid come down from the fhonk: Her's on each gide as in the other, but thie motion of themi flould be from the leges, being thenft out and drawn in again one after another, fo as each leg ofould move both wings, by which means a manifliould (as it were) walk. or Tclimb upinto the air t and then the hands and lams might be at leis, fute to help and idirect the motion) of foun any other fervice proportionabita to their ftrength. Which conjecture is not without good probability," and fome fpecial adyantages above the óther.

4 But the fourth and lanf way feems unto me altogether as probable, and much more ufeful than any of the reft : And that is by a flying chariot, which may be foeontrived as to cacry a man within it; andthóugh the ftrength of a fring might this engine', 'yet it were better to ,have it affifted by the labour of: fone inteltigent mover, as the: heavenly Orbs! are fuppofed to be turned. And therefore if it were: made big enough to carry fundry pierfons together; then each of them in their feveraliturns mighte fac: ceffively labour in the caufing of this motion; which thereby would bemagh more coritant and lafting, than itcould otherwife be, if it did wholly dependon the ftrength of the fame perion. This contrivance being as much to be preferred before any of the other, as fwimb ming in a hip before fwimming the the water.

C A P. VIII.

A refolution of the tro clizef difficulties that feem to oppofe the pollibility of a flying Cbariot.
> ${ }^{-} \mathrm{HE}$ chief difficulties againft the poffibility of any fuch contrivance, may be fully removed in the refolution

Cap. 8. Mechanical Motions. solution of thefetwo Queries.

1. Whether an engine of fuch cap pacity and weight, maybe fupported by, fo thin and light a body as the air?
air? Whether the frrength of the perfont within it, may be fyfficient for the motion of it?
I. Concerning the fifo when vitruvius
 Rhodes to take up that great Helepqt 10. c. 22 Lis, brought against them by Deme trims (as be had done before urfa? dome left, which he himflf had made) He answered, that it could not be done. Nomnuld anim font que iq so Remix exemplaribus uidentur linibila cam ant scobl.Maitem crefcere çpperunt, difabuntur. Dée, teem li cure tho fe things that appear probabble in lifer models when they are encreared to agreater.jppportign, do thereby exceed the rower of a kt For example, though a man may make an inftrument to bore a hole an inch wide, or half anipeh, and fo left; yet to bore hole of a foot wides or two foot is not 0 popper as to be Pr ore thought
thought of: Thus, though the air may Be able to uphold fome leffer bodies, as thiofe of birds.s yet when the quantity of them is encreafed to any great extenfion, it may juftly be doubted, whether they will not exceed the proportion that is inaturally tequired unto fuch kind of bodies.
 Ean' ńéver be too big or 'too heavy; if the fatce which it poffeffer in the air, and the thotive-faculfy in the infturment be arfferable to its weight. That laying of Callias was but a groundere's thift and evafion, whereby hie did endeavour tơ paffiate his own ignorance and difability": 'The utmoft truth "which reemse to be implied in if, is thisy y Phat there may be fome bodies of ro great a bignels, and gravity, that it is very difficult to apply fod much force unto any particular Inftiument ${ }^{5}$ as fliall 'beabste tó move them:
${ }^{6}$ Againft the example, it may be af Girtice and eafity proved, that it is equahy porible to bote a hode of any bignefs,

Cap. 8. Mechanical Motions. 213
bigness, as well great as little, if. we fuppofe the intrument; and the ftrength, and the application of this strength to bs proportionable; But be. cause of the difficulty of the fe concurref circumftanges in thofegreater and more unufuat operations, therefore do they wally feomtabe absolutely impof foibles ${ }^{\circ}, \ldots$ is 70

So. that the chief inference from this argument amd example doth in ply only thus much, that it is very difficult to contrive any Such motive power, as frat be anfur rattle to the greatness and weight of foch an infrumenty as is here difogurfed of which doth not ft all impair the truth to be maintained; For if the poffibile ty of fuck a motion be yeilded, we need not make any scruple of granting the difficulty of it 5 It is this mut add a glory the the invention; and yet this will no perhaps fem fo very difficult to any one who hath but diligently observed the flight of fome other birds, patticulaty of a Kite, how he will fin gm upapd dow h P 3

214 Dadalus; or, Lib: 2. in the air, formetimes at a great height, and prefently again lower, guiding himfelf by his train, with his wings extended without any: fenfible motion of them'; and aft this when there is only fome gentle breath of air firring, without the helf of any Atrong Forcible wind. Now I fay, if thas fowl (which is none of the lighteft) can fo very eafily move telf up and down in the air, wiffiout:fo much as tiring the wings of if; certainly then, it is hot, mprobable, but that when allthe due proportions tn fuch anemgine äre found dut, ' and wtien men by long practife have arrived to athy gkill and experience, they will be able in this (as well as in many other things) to come very neat untothe imitation of nature.
seme Nat. 2u.L 3: c.25.
'As it is in thofe bodies which are carried on the water, though they be néver fó big, or fo ponderdus? (fuppote, equat to a City or a whole Ifland) yet they will atways fwim on the top, if they be buf any thing tighter than fo much water

Cap:i8. Mecbanical Motions. 215

as is equal to them in bignefs: So likewife is it in the bodies that are carried in the air, It is not their greatnefs (though never fo immenfe) that can hinder their being fupported in that light element, if we fuppofe them to be extended unto a proportìpnable fpace of air. And as from the former experiments, Archimedes hath compofed a fubtil fcience in his Book, De infidentibus bumido, concerning the weight of any heavy body, in reference to the water wherein it is: So from the particular trial of thefe other experiments, that are here inquired after, it is poffible to raife a new fcience, concerning the extenfion of bodies, in comparifon to the air, and motive faculties by which they are to be carried.

We fee a great difference betwixt the feveral quantities of fuch bodies as are commonly upheld by the air; not only little gnats, and fies, but alfo the Eagle and other fowl of vafter magnitude. Cardan and Scaliger do $\begin{gathered}\text { Exubercil. } 10\end{gathered}$ unanimoully
affirm $_{2}$ that there is $\mathrm{a}_{23 \mathrm{I}}$.
P_{4} a bigness, that his beak is often afed to make a heath or fcabbaid for
bifilar.
Nato. Orb. l.4.c. .37. a ford. \therefore And Acoftatells us of afoul in Peru called Condones, which will of themielves kill and eat up a whole Calf at a time. Nor is there any reafon why any other body may not be fupported and carried by the air, though it Mould as much exceed the quantity of the fe fowl, as they do the quantity of a fly.

Marcus Polus mentions a fowl in Madagascar; which he calls a Ruck, the feathers of whole wings are 12 paes, or threefcore foot long, which can with as much cafe Sop up an Ellphant, "as our Kites do a Mouse. If this relation were any thing credible, it might ferve as an abundant prooffor the prefent query. But I conceive this to be already fo evident, that it needs not any fable for its further confirmation.
1 2. The other doubt was, whether the ftrength of the other perfons within it, will be fufficient for the moving

Cap. 82 Meobraical Wotions.

 moving of this engine? I anfwir? the main difficulty' and labour of it will be in the raifing of it fram ehe, ground; pear unto which, she earthspattractive vigor is of greateft efficacy. But for the better effecting of this, At mayy be helped by the finength of winds, and by taking its firft rife from fome monntain, or other bigh place. When once It is aloft in the air, the mation of it will be eafice, asitit is in the fligbtof all kind of birds; which being at any great diftance from the earth, are able to continue their motion for a long time and way; withlichite labour or wea: ritief. .:
Tis certain fiom cotrmon relation

 and experience, that many (bitrds do plinio io, crofs the feas for divers hundred miles 6.23 . together : fondry of them amonght us, which are of'a fhort wing and flight, as Blackbirds, Nightingales; Qe. do fly front us into Germany; and other remoter Countries. And Mariners do commonly affirm, that they have found fome fowl above fix hundred miles from any land. Now
218
 Dedaturtione. . Lib. 2.

Now if we thould fappore the fe birds to labour fo much th thole loing journeys, as they do when theyt fly. in our fight, and near the earth, it. were impoffible for any of theer to pafs fo far withont refting: And therefore it is probable, that they do mount unto fo high : a place in the: air, where the natural heavigefy of their bodies does prove but little or: no impediment to theivilight; Thoughperbaps either hunger, or the fight of thips, or the like accident; may fometimes occafion their defcending lower, as we may ghefs of thofe birds, which Mariners have thas behelds, and divers others, that have been drowned and caft up by the rea.:

Whence it may appear, that the motion of this Chatiot (though it may bedifficult at the firft) yet will ftill be calier, as : it affends bigher, till at length it hall become utterly devoid of gravity; when the leaft frength will be able to beftow upon it a fwift motion a as I have proved

Cap. 8. Mechanical Motions.

 more at large in another difcourfe. But then, (may fome object) If it be fuppofed that a man in the xthereal air does lofe his own heavinefs, how fhall he contribute any force towards the motion of this inftrument? • I anfwer, The frength of any living creature in thefe external motions, is fomething really diftinct: from, and fuperadded unto its: natumally gravity': as common experience may the on of blows or violent motions, as a River-hawk: will ftrike a fowl with a far greater force', than the meer defcent tor hervinefs of his body could poffibly, perform: But alfo in thofe adtions which are done without fuch help, as the pincting of the finger, the biting of the teeth, drc. all which are of much greater ftrength' than can proceed from the meer hepvinefs of thofe parts.As for the other particular doubts, concerning the extreme thinnefs and coldnefs: of this xthereal air, by reafon of which it may feem to be al- coirfe.
. The ufes of fuch a Chariot may be vaxiouse Befides the difcoveries which might be thereby made in the Lunäryworld; It would be ferviceable ahfo fors the conveyance of a man to any rentote place of this earth: as fuppofe to the Indier or Antipodes, For wher once it was celevated for forne few mites, fo asta be ahove that Orb of Magnetick virtue, which iscagrried about by the earths diurnal revolutir. on, it might then be very rafily and fpeedily directed toany particular place of this great Globe:
If the place which we intended were puder the fame patallel, why then the earths revolution once in twentyfaur hours, would bring it to be under uss fo that it would be but defeending in a ftraight line, and we might prefemidy:be there. If it were under any other parallel, it would then only fequire that we thoald directit in the fame Meridian, till we did come to that paral-

Cap. 8. Merbanical Motions. $22 t$

 parallel; and then (as before) a man might eafily defend uhto it.It would be one great advantage in this kind of travelling, that one fhould be perfectly freed from all inconveniences of ways or weather, not having any extrentity of heat,or cold, or Tempefts to molet him: This x thereal air being perpetually in an equal temper and calmnefs. Pars fuperior mundi ordinatior eff nee in nubem cogitur, nec sir tempeftattm inpel- summeto litur, ned werfatud 'sin'turbincm,' omni tumiltu caret, inffiriora fulminant. The upper parts of the wotld are atways, quiet and feteffe, no winds and bluftring theres they ate there fiwet cloudy regions that are Yofullfoftentpefts and combuttion.

As fot the manner how the force of a foring, or (inftead of that) the Itretigth of any living perfon, 'may be applied to the motion of there wings of the Chariot, it may eafily be apprehended from what was formerly delivered.

There are divers other particulars

As well toolong 25 too hhort, too broad 25 too narrow, may be animpediment to themocion, by making it more difficult,low and flag. ing. the perfecting of fuch a flying Chariot; as concerning the proportion of the wings both for their length and breadth, in comparifon to the weight which is to be carried by them, as allo concerning thofe fpecial contrivances, whereby the ftrength of thefe wings may be feverally ap plied either to alçent, defcent,: progreflive, or a turning motion; All which, and divers the like enquiries can only be refolved by particular experiments. We know the invention of failing in hips, doss continually receive fome newaddition from the experience of every age and hath been a long while growing up to that perfection, unto which it is now arrived. And fo muft it be expected for this likewife, which may at firlt perhaps feem perplexed witt many difficulties and inconveniencies; and yet upon the experience of frequent tryals, many things,may be fuggefted to make it more facil and commodious.

Cap:8. Mequanicäl Motions. 223

He that would regularly attempt any thing to this purpofe, fhould obferve this progrefs in his experiments, he Thould firf make enquiry what kind of wings would be moft ufeful to this end; thofe of a Bat being moof eafily imitable; and perhaps nature did by them purpofely intend fome intimation to direct us in fuch experiments ; that creature being not properly a bird, becaufe not amongft the Oviparias to imply that other kind of creatures are capable of flying as well as bixds s and if any fhould attempt it, that would be the beft pattern for imio tations

Afer this he might try what may be effected by the force of Springs in leffer models s; anfwerable unto $A r$ cbyfashis Dove, and Regiomoptanius his Eagle: In which he mult be careful to obferve the various proportions bet wixt the ftrength of the fpring, the heavinefs of the body, the breadth of the wings, the fwifnefs of the motion, \&c.
From thefe he may by degreesafcend to fome larger effays.

CA P: IX.
Of a perpetual motion The Seeming facility and real difficulty of any Such contrivance. Thee Several payee where By it bath been attempted, particularly by Cbyuziftry:

T T is the chief inconvenience of an the Anibmata before mentioned, that they need a frequent repair of new Itrength the causes whence theirnotion does proceed, being fubject to far and come to a period $;$ and therefore It would be worth our enquiry, to examine, whether or no there shay be trade any foch artificial contrivance, Which might have the principle of no $\dot{v i n g}$ frisim it fell; oo that the prevent motion ffould constantly be the cause of that which fucceeds.

This is that great Secret Art; which like the Phatofophers Stone it Nature, hath been the buffets and study of many Andre refined Wits, for divers ages together s and it tray well be queftioned; whether either

Cap. 9. Mectanital Motions. 225

of them as yet, hath ever been found out, though if this have, yet like the dether, itis not plainly treared of by any Author.

Not but that there are fundry difcoürfes concerriing this fubject, but they are tather conjedzures than expleriments. And though many inventions in thisk kind, may at firft view bear a great thew of probability, yet thicy will fail; being brought to trial, atid will not anifwer in pratife what they promifed in fpeculation. Any one who tart been verfed in thefe experidients muif needs acknowledge that he tiath been often deceeived in his ftrongeft confidence; when the imagination hath contrived the whole frame of fuch an inftrument, and conceives that the event muft fallibly atifwer iffi biopes's yet then does it flrangely deceive in the proof, and difcovers to uh fome defect, which we did not before take notice of

Hence it is, that you fhall fearte. talk with any one whö hath tidver

$226 \quad \therefore$ Daciair or, Lib, 20 willinftantly promife fuch a potions as being but an eafie atchievemente till further trial and experience hath taught him the difficulty of it. There bejing no enquiry that does more entice with the propability, añd decelive, -with the Jubtilty What one feakss, wittily concerning the Philofophers Stope, may be juftly applyed to this; that it is Cafta mergtrix, qhatie Whore ${ }_{2}$ Quia multos inzitat, neminem admit.: tif, becaufe it allures many, but admits роре.

- I Thall brielly recite the feveral. ways whereby this hath been attemp-. ted, or feems moft likely to be effe-: sted; thereby to contract and facilix: tate the enquiries of thofe who are addicted tathefe kind of experiments; for when they know the defects of o-: ther inventions, they may the more eafly avoid the fame, or the tike, in their own.

The ways whereby this hath been attempted, may be generally reduced to theferthree kinds:

1. By Chymical extraftions.
2. By

Gap.id. Merbathicdr Motions.

Bu By the mititalal affection of gravity.! 1
Win The difedudy of this that beent attempted by Chymiftry., Pairacelfius and this followers have bragded' that byether fepatitions and extrictions, they acan mitke a Hitlle world which ciond twith this Aticnocofine, tith the eporefentation of an Meteros's, Ftrm,
 in Its'ebts and ! ibiows, and the like $\frac{1}{3}$ Bite the mirte thours, prơmifes wouly tedoufe as great a fairh'to Bellive them. ds: a power to perform rhem: And though they ifteit talk of futh great matitets,
At. yufquam totox inter qui tiolia cu--ir frant,

Apparet ullus, qui re miracula tqunta \because Oämprabet -
sef we can neveritee them cornfirmed by: agy ted ${ }^{1}$ experiment and then Beldes, every particullat Aurhor in that hare, lath fuch a diftinctlanguage

Q. 2
of
of allegories and affected obfcurities) that 'tis very hard for any one (unters he be throughly verfed amongt them) to find out what they meanmuch more to try it.
EncuansOne of thefe ways (as I figd it chem ree fet down) is this. Mix five ounces creat:prob. 188. of 8 , with an equal weight of ψ; grind them together with ten ounces of fublimate, diffolve them in a Cellar upon fome marble for the Gpace of four dayes, till they become like oy-olive; diftil this with fire of chaff, or driving fire, and it will fublime into a dry fubftance: and fo by repeating of thefe diffolvings and diftillings; there will be at length produced divers fmall atomes, which being put into a glafs well luted, and kept dry, will have perpetual mocion.

I cannot fay any thing from experience agaiaft this; but methinks it does not feem very probable, becaufe things that are forced up to fuch a vigoroulnels and activity, as thefe ingrdients feem to be by their fro-

Cap i Mechandial Motions. 22g quent fublimatings and diftillings, are not likely to beof any duration; the more any thing is frretched beyond its ufual nature, whe lefs does it laft, violénce and parpettuity beingno companions: And then befides, fuppofe it trues yet fraeh a motrox pouldnot well be applied ta any ufe, which; mult needs take much from the delight of it.

Amongtt the Chymical experiments to this parpofe may be reckoned up that famous motion invented by Corivelims Dreble, and made for King fumes; wherein was meprefented the conftant revolutions of the Sun and Moon, \cdots and that without the help either of fpring or weights. Mircellus Vranckbain, fpeaking of the méans. whereby it was performed, he calts it: Scintillikla a nime magnetica maxudi; Sen Aforalis dr insfenfibitis, Jpi- Frrefum ritus; being that grand fecret; for de Lamp. The difeovery of which thofe Dica Fitra. the difeovery of which, thole Dicta-: tors of Philofophy, Demscritus, Py-: thagoraís, Plates did travel unto the: Gymnofophifts, and Indian Priefts. .

Epijl. at Thootuuitiou himfelf inin hisi idaldonofe: Jacobum: Regem. upbindt, does niot at all reveral thenthy? hofw tedwas perfotmeds T: Bututhe veris:
 likfogequdiatance of hhey and dillófuth! Pry Intauthis workst? (as be:pinfoffes)

 alogue. woith bis proper air, wobich. int tuoded! cap. 3.
 wheely bex do dellotaquarieth the other:

 anivor troh adin

 infitumetit (was 4 didequhedrdi) thathffodd ftill forthanyifeastr: It is here:

Capeg Mechanical Motions. 2 21.

 near the center of a whegl; and therefore though fúch a fpirit might of it felf have an agitation; yet "tis not eafly conceivable how th flould have ftagength enough to carry the wheels about with it. And then the abrurdity of the Authors citing this, would make ore mifturt his miftakeg hapures ix as a ftrong argúment agaibit Coperwhons, as if, beeaufe Dreble did this contrive in an Engine, the revolution of the heavens, and the immovableterls of the earth, thefefore it muft netds' follow', thal itis'sthe heavens which are cmoved, and not thee eatth. ff bis relaqibnt were no truer than' Ais corfequence'; 1 l hdd not'beer worth the chifg.

CA P. X.
Of: Subterrareous lamps : divers biffin, cal relations concerning their doration for many bored years togthen.

T No o this kind of Chymical ex. periments, we may molt probably: reduce thole perpetual lamps, which for many hundred years together have continued burning without any new fupply in the repulchres of the Ancients, and might (for ought we know) have remained to for ever. All fire, and especially flame, being of: ap active and firing nature, it can-: not therefore fubfilt without mothon; whence it may rem, that this great enquiry hath been this way accomplifhed: And therefore it will be worth our examination to fearch further into the particulars that concen' this experiment, Though it be not 'fo proper to' the chief purpose of this difcourfe, which concerns Mechanical Geometry, yet the fubitily and

Cap. 10. Mecbanical Motions, .233

 and curiofity of it, may abundantly requite the impertinency.There are fundry Apthors who treat of this Subjection the by, and in fome particular palfages, but none
that Iknow of (except Fortunius Licetus) that hath writ purpofely any fet and large difcourfe cancerning it:

Lih de reá conditis
amiquactan
lucermis. out of whom I thall borrow many of thofe relations and opinions, which may mof naturally canduce to the pre ent enquiry.

For our fuller underftanding of this, there are thefe particulars to beexplained:

S I, Vri, or quod fit.
22. siest $\left\{\begin{array}{l}\text { cur fit. } \\ \text { quomeda fit }\end{array}\right.$
r. Firft then, for the 3 at, or that there have been fuch lamps, it pay be, evident from fundry plain and undeniable teltimonies: Saint Auftin mentions one of them in a Temple De Civit, dedicated to Verws, which was always expofed to the open weather, and could never be confumed or extringuilhed. To him affents the judicious
 diblat Z mochy. Paticyrollis mintitions a
De operibun Dei part. 1. l.4.c. 12. Dedeperd. Fibor 35 Lamp found in his time, in'the 佔purcher of Tilliu, Citerp's dataghter, which had contured there fot about 1550 yedrs; butwas prefently extingut fhed uporn the ad mfitizon of nev tir? wan: Atrd "iscodmonily telated of Cedremis?
 ther burthitg lattp found in an old wh *Or Ami- ate eideffa, which thad rematnel fof for occh. Licetum above'sco yedts, there being a Cricilde Lucermis.l...... $\%$ fix placed by it whence it frodiff em that theidwere ir turialfo anongffome CHiffiatos.

But more efpecially remarkable 's that relation ceedeblated by tro hany Authors, concetthind ? Olybius his lamp, which hadd continuedrbfthing fors isoateaty mithe froty it thus:
 by? Patiz, he forfit in Urt or eatthen poers in whet there was sithothet
 binifing ; on eantigat bfile therewete

4. -7. C .

Capdid. Meebunical Motions. 235:

 modo vere potegteffe ars Cbjoinit) paturape": (Giath Maturanti ins, whothad ehte pofs feffion of thefe things afterthey we we takein up):-Ont the bigger of thete Urns there was chis mfferiptibn?:
rad bra
Rthitoni facrum mumus sic at trygite fures.:
Ignotume ef vobis hoc quod in orbe latex, ${ }^{1}$ Nabqqee' ilemienta gravi : blanifit digelta

- Vafe fab Boc diocg Masitulus ely-

 The beflee Urn was thas itifertbed to ow

Wis quad vultris, uefleis culint aculos:

 Donum boc Maximum, Maxiribst

Whence we may probably confic Cure that it was Cho Chy

236
Didalua: lope, Kibo x_{2}
cret, by which this was contrived.
Mage- N8tural.l.i2. c. w he. lamp burning in an old marble fepult. cher, belonging to fame of, the ancieft Romans, inclofedin a glass vial, found in his time, about the year: 1550, in the Il Nefos, which had been buried there before our Saviours comb: ing.

In the Tom of Pathos the drcadjar who was lain by Turner int the

Chron Mantis Fortiliect. - tavern. C 3. G. 180 Trojan war, these vas found añother burning lamp in the year of our Lord intone Whence r it Could feet; that it had continued there for above twothouffend and ix huadred years: and being taken out, it did remain burning not withtauding either wind or water, with which Come did five to quenchit; nor could it be extinguished till they had file the liquor stat was init.

Ludoricus Dives tells us of another
Noted Angus de civil. 1050 years, which was found a little , before his time.
4. 25.c.6. Such a lamp is likewise related ta be

 be feer in the Fepulther of Francis Rofictaf, as is-more largely expreffed in the confeflion of that fratertity.There is another relation of a certain man, who upon ociafien digging fomewhat deep in the ground, did meet with fomething like a dore, baving a wall on each hand of it; from which having deared the earth, he forceed openthe door; uponthis there was difeovered a fair Vauk, and towards the farther fide of it, the flatue of a man in Armour, fixing by a table; I Leaning upon his left azm, and holding a feepter in his right hand, with a lamp burning before hims the floor of mis Vault being focontrived, that upon the firft ftep into it, the fatue would ereč it felf fromits leaning poffure; upon the fecond flep it dididift up the feepter to frike, and before a man could approach near enough to take hold of the lamp, the ftatue did frike and break it to pieces; fuch care was there taken that it might not beftoln away, ordifcovered.

Our learned Cambden in his defrip- pas. s/h tion tionaf Youchbiers, fpeating of the fomb
 thefelater ij ears; mentions fuch a lamp to be fqund witbin it:-

Theresare fundry other relationsto De jure this puspefe. Quod ad hecermas attiz mexium l. net, ille in omnibus fere moinumexti 2. C. 32 . innuequizutur, (faith Gutbetixur): In moft of the ancient Monuments'there is fome king of lampo (chough of the ordinary fort); But thefe perfons who were of greatest notemen wifdom', did procure fiech as is laft without fupply is for fo many sges togethars De perdit. Pancirollus tells us, that is sms: whual Til. 62. for the Nobles amongt the-Eomxis; tootake Epeciat care in their laftowills', that they; might have a Tamp in their Mopuyperpts. And to this purpare they fid afuay give liberty untofome of theitilaveg anthis condition, that they floquld be watchfol in maintaining and prefervinglit: From all which relutionph;the fart pasticular of this enquiny, spreeming, the being or txit ftence of fuchllapps yy may: (uaticisudy
 n:

Capery. Megbanical Mptions. 239
CAP. XI.
Sequenat opixions eqhecrning the neture; and reafon of thefe perpectual Lapsops. :

FHere are two opinions to be an ritifered, which do utterly averthrow the chief, confequence, from. the fe relations.

1. Some think that there ligets fo: often difcoyered in the aricightombs, is : \therefore :were:not Gire on flame, bat ooty fome: of thofei btight bodies, whichsocafuat. ally fine in dark places. $-\quad: d x a d$

2, Otbers; grane them to be fife, but yet think thent ta be then furf enkindled by the adonishon of inere: air, whenthefe fepudeters: wer opel nẹd.
1.) Themara divero bodies (x ficth Arifotle) which flime mothe dack; as de animat rotten woad, the Geadesifi fome fingen, ftones, the gloweworn, et the djes of divers ereatures. Cued dawelds nsorif subtil. i.g:
 whofe whole body is very brighta gut his eyes almore equalstio 1te: lighteof a one may both write and read; By thefe thie Imdianis (faith he) ufe to eat their feafting Suppets.

It is commonly related and belie. ved, that a Carburicle does thitie in the dark like a burning coal, from - Cube *Whence it hath its* name. To which purpofe there is a fory in Atliant of a Stork; that by a certain woman shimed. Ls was cured of a broken thigh, ingriritude to whom, this fowl afterwards flying by her, did let fall into her lap a bright Carbuncle, which (Caith be) would in the night time fhine as, clear as a latipi. But this and the like old relations are now generally difbelieved and rejected by learned men: Doctij(imorum omarium confenfu, bajuf: modi gemmine sian imveniuntur, faith De tupid. Boetius de Boot) a matr very muchskilld owemmin. in, and inquifite after fuch matters; nor h.2. c. 8. is there any one of name that does from his own eye-fight or experience affirm the real exiftence of any gem fo qualified.

Some have thought that the light

in ancient tombs hath been occáfoned
from fome fuch bodies as thefe. For if there had been any poffibility to pre- ulcerikis ferve fire folong a face, 'tis likely then -that the Ifraelites would have known the way, who were to keep it perpeturally for their facrifices.'

But to this opinion it might be replyed, that none of thefe Nocischlai, or night-ffining bodies have been obferved in any of the Ancient fepultchres', and therefore this is a meer imaginary conjecture; And then bob fides, fome of thefe lamps have been taken out burning, and continued fo for a confiderable flace afterwards. As for the fuppoled conveniency: of them, for the perpetiating: of the choly fire afnongft the Jews; it anay as well be feared left thefe fhould have occajioned their idolatry, unoo which that Nation was fo fltrongly trddicted upon every illight occafion.; "nor may it feem ftrange, if the pe vidence of God hould rather permitt ithis fire fometimes to go outt, that fo by their earneft prayers; beingar R gain

Daedalus; or, Lib. 2.

* Levit. ${ }^{-1}$ gain renewed from heaven, (sit * rome240 2 Chron.

7. I.
x King. 18.
8.

Dejure Mani .l. $_{2}$.
C. 32 . times was) the peoples faith might be the better tired up and frrengthned by fuck frequent miracles.
2. It is the opinion of Gutberius, that there lamps , have not continued burning for fo long a face as they are fuppofed in the former relations; but that they were then frt enflamed by the admifion of new air, or such other occafion, when the fepulcores were opened: as we fee in thole fat earthy vapours of divers forts, which are oftentimes enkindled into a flame. And 'is fid, that there are Some Chymjgal ways, whereby iron may be fo heated, that being clofely looted in a glass, it fall conftantly retain the fare for any face of time, though it were for a thoufand years - or more; at the end of which, if the glads be opened, and the fret air admitted, the ron hall be as red hot ass if it were newly taken out of the fire.

- But for anfwer to this opinion, is
- confiderable ib st Pome Urpghave had inicrip-

Cap. 11. Mechanical Motions. infcriptions on them, expreffing that the lamps within them were burning, when they were firt buried. To which may be added the experience of thofe which have continued fo for a good fpace afterwards; whereas the inflamation of fat and vifcous vapours, does prefently vanifh. The lamp which was found in the Ifle $N_{e f i s}$, did burn clearly while it was inclofed in the glass; but that being broken, was preéently exttinguifhed. As for that Chymical relation, it may rather ferve to prove, that fire may continue fo many ages, without confuming any fuel.

So that notwithftanding the oppofite opinions, yet 'tis more probable that there have been fuch lamps as have remained burning, without any new fupply, for many hundred years together; which was the firlt particu ilar to be explained.
2. Concerning the reafon, why the Cur gimf. Ancients were fo careful in this particular; there are divers opinions. Some think it to be an exprefion of

$$
R_{2} \text { their }
$$

their belief, concering the fouls immortality, after its departure out of the body, a lamp amongft the Egyptians being the Hieroglyphick of life. And therefore they that could not procure fuch lamps, were yet careful to bave the image and reprefentation of them ingraved on their Tombs.

Others conceive thew to be by way of gratitude to thofe infernal Deities, who took the charge and cuftody of their dead bodies, remaining always with them in their Tombs, and were therefore called Dii manes.

Others are of opinion, that thefe lamps were only intended to make their fepulchres more pleafant and lightfome, that they might not feem to be imprifoned in a difmal and uncomfortale place. True indeed, the dead body cannot be fenfible of the light, no more could it of its want of burial; yet the fame inftinct which did excite it to the defire of one, didallo occafion the other.
De Iucer- Licetus concludes this ancient cuni, L. $3.6,68$ ftome to have a double end: 1. Por litick, were nobly born, in whofe Monuments only they were ufed. 2. Natural, to preferve the body and foul from darknefs; For it was a common opinion amongft them, that the fouls. allo were much converfant about thofe places where the bodies were buried.

C A P. XII.

Tlie most probable conjecture hom thefe lamps were framed.

THE greateft difficulty of this en- Quomode quiry doth confift in this laft par- Sint.
ticular, concerning the manner how, or by what pofiible means any fuch perpetual flame may be contrived.

For the difcovery of which, there are two things to be more efpecially. conffdered.

1. The fnuff or wiek, which muft adminifter unto the flare.
2. The oyl, which muft nourif is.

$$
\text { R } 3 \quad \text { For }
$$

Dedalus; or, Lib. 2.
For the firft, it is generally granted that there are divers fubftances which will retain fire without confuming: fuch is that Mineral which they call the Salamanders-wool, faith our learned * aatabijl. * Bacon. Ipfe expertus fum villos Sala. exper.774. mandra now canfumi, faith \dagger Foachimws t tib. ex- Fortius. And $*$ Wecker from his own "Desectee knowledg affirms the fame of plumeijs,l.3.c.2. alium, that being formed into the likenefs of a wiek, will adminifter to the flame, and yet not confume it felf. Of this nature likewife was that which the Ancients did call Linum

Pr Linum Carpafuum Plustarch, de oracul. defetu. vivum, or Asbeftinum: of this they were wont to make garments that were not deftroyed, but purified by fire ; and whereas the fpots or foulnefs of other cloaths are wafhed out, in thefe they were ufually burnt away. The bodies of the ancient Kings were wrapped in fuch garments when plin, wift, they were put in the funeral-pile, 4. 99. . 1. that their alhes might be therein preferved, without the mixture of any other. The materials of them were not from any herb or vegetable,

Cap. 12. Mechanical Motions. 247 ble, as other textils, but from a fone called Amiantus, which being bruifed by a hammer, and its earthy nature fhaken out, retains certain hairy fubftances, which may be fpun and woven as hemp or flax. Pliny fays. that for the precioufnefs of it, it did almoft equal the price of pearls. Pancirollus tells us, that it was very rare, and efteemed precious in ancient times.; Deperd. Tit. 4. but now is Ccarce found or known in any place, and therefore he reckons it amongft the things that are loff. But L. Vives affirms, that he hath often $I n_{n} A_{\text {ugufl }}$. feen wieks made of it at Paris, and the fame matter woven into a napkin at Lovaine, which was cleanfed by being burnt in the fire.
'Tis probable from thefe various relations, that there was - feveral forts of it, fome of a more precious, others of a bafer kind, that was found in Cyprus, the deferts of India, and a certain Province of Afa: this being common in fome parts of lta$l y$, but is fo fhort and brittle, that it cannot be fpun into a thred. And R 4 there- therefore is ufeful only for the wieks De lapid. of perpetual lamps, faith Boetius de Ó gempais, Boot. Some of this, or very likeit, 1 2.3 c.e204. have upon finquiry latcly procured and experimented. But whether it be the ftone Asbeftus, or only Plume= allum, I cannot certainly affirm. For It feems they are both fo very like, as to be commonly fold for one another (faith the fame Author). However, it does truly agree in this common quality afrribed unto both, of being incombuftible, and not confumable by fire: But yet there is this inconvenience, that it doth contract fo much fufiginous matter from the earthy parts of the oyl, (though it was tryed with Come of the purelt oyl, which is ordinary to be bought) that in a very few daycs it did choak and extinguifh the flame. There may poffibly be fome chymical way fotopurifie and defecate this oyl', that it fhall not feend inta a footy mattcr.
However if the liquor be of a ciore and gluṭinous confiftency, it may burn yithout any fnuff, as we fee

Cap.z. Mechanical Mptions:
in Camphire, and fome other bituminous fubitances. And it is probab. that moft of the ancient lamps were of this kind, becaufe the exactelt relations (to my remembrance) donot mention any that haye been found with fuch wieks.

But herein will confift the greateft difficulty, to find out what invention there might be for their duration. Concerning which there are fundry opinions.

Saint Auftin Speaking of that Lamp De civ: in one of the Heatien Temples; Deih2x: thinks that it might either be done by Magick, the Devil thinking thereby to promote the worthip and efteem of that idol to which it was dedicated ; or elfe that the art of man might make it of fome fuch material, as the fone Asbestus, which being once enkindled, will burn with- zancb.de out being confumed. As others (faith $\begin{aligned} & \text { operibus } \\ & \text { Dei,par..x }\end{aligned}$ he) have contrived as great a won- Dei, par.1. der in appearance, from the natural virtue of another ftone, making an iron-image feem to hang in the air, by

250

 Dadalus; or, Lib. 2: reafon of twoload-ftones, the one being placed in the Cieling, the other in the floor.Others are of opinion, that this may be effected in a hollow veffel, exactly luted or ftopped up in all the vents of it. And then, if a lamp be fuppofed to burn in it, but for the leaft moment of time, it muft continue fo always, or elfe there would be a Vacu$u m$, which nature is not capable of; If you ask, how it fhall be nourifhed, it is anfwered, that the oyl of it being turned into fmoakand vapours, will again be converted into its former nature; For otherwife, if it Chould remain rarified in fo thin a fubftance, then there would not be room enough for that fume which muft fucceed it; and fo on the other fide, there might be fome danger of the Penetration of bodies, which nature doth as much abhor. To prevent both which, as it is in the Chymical circulations, where the fame body is oftentimes turned from liquor into vapour, and from vapour into liquor again; fo'

Cap. 12. Mecbanical Motions. 25I

 in this experiment, the fame oyl fhall be turned into fume, and that fume fhall again convert into oyl. Always provided, that this oyl which nourifhes the lamp, be fuppofed of fo clofe and tenacious a fubitance, that may flowly evaporate, and fo there will be the more leifure for nature to perfect thefe circulations. According to which contrivance, the lamp within this veffel can never fail, being always fupplyed with fufficient nourifhment. That which was found in the Ifle Nefis, inclofed in a glafs vial; mentioned by Baptifta Porta, is thought to be made after fome fuch manner as this.Others conceive it poffible to extract fuch an oyl out of fome Minerals, which fhall for a long face ferve to nourifh the flame of a lamp with very little or no expence of its own fubftance. To which purpofe (fay they) if gold be diffolved into an unTrolpbang Latim, l 3. c. 18. Camb. Brit, p. 572. ctuous humour; or if the radical moifture of that metal were feparated, it might be contrived to burn (perhaps

252 Dadalus: or; Lib. 2.

 (perhaps for ever, or at leaft) for many ages together, without being confumed. For if gold it felf (asexperience fhews.) be fo untameable by the fire, that after many meltings'; and violent heats, it does fcarce diminifh; 'tis probable then, that being diffolved into an oylie fubftance, it might for many hundred years together continue burning.There is a little Chymical difcourfe, to prove that Vrim and Thumbim is to be made by art; the Author of this Treatife affirms that place, Gen. 6: 16. where God tells Noak, a window Jhalt thou make in the Ark, to be very unfitly rendered in our Tranflation a window, becaufe the Original word 7 fignifies properly fplendor or light; and then befides, the air being at that time fo extremely darkned with the clouds of that exceffive rain, a window could be but of very little ufe in regard of light, unlefs there were fome, other help for it ; from whence he conjectures that both this fplendor, and fo likewife the Urim and

Cap. 12. Mecbanical Motions. $\$ 3$

 and Thummim, were artificial Chymical preparations of light, anifwerable to thefe fubterraneous lamps, or in his own phrafe, it hath the univerfal/pirit; fixed in a tranjparent body:It is the opinion of Licetus (who De Iucery hath more axactly fearched into the ni, $c, 2 a$. fubtilties of this enquiry) that fire ${ }^{2 r}$. does nat need any humour for the nourifbment of it, but only to detain it from flying upwards. For being it felf one of the chief elements, (faith he out of Theophraftus) it were abfurd to think that it could not fubfift without fomething tofeed it. As for that fubftance which is confumed by it, this cannot be faid to foment or, preferve the fame fire, but only to generate new. For the better under-: ftanding of this, we muft obferve, that there may be a threcfold pro. portion betwixt fire, and the humour or matter of it. Either the humour. does exceed the ftrength of the fire, or the fire does exceed the humotit; and according to both thefe, the llame doth prefently vaniifh. Or elfa elfe laflly, they may be both equal in their virtues, (as it is betwixt the radical moifture and natural heat in living creatures) and then neither of them can overcome or deftroy the other.
Thofe ancient lamps of fuch, long duration, were of this later kind. But now, becaufe the qualities of heat or cold, drynefs or moifture in the ambient air, may alter this equality of proportion betwixt them, and make one frronger than the other ; therefore to prevent this, the Ancients did hide thefe lamps in fome caverns of the earth, or clofe monuments: And hence is it, that at the opening of thefe, the admiffion of new airun-: to the lamp does ufually caufe fo great an inequality betwixt the flame and the oyl, that it is prefently extinguifhed.

But ftill the greateft difficulty remains, how to make any fuch exad. proportion betwixt an unctuous hu: mour, and fuch an active quality, as the heat of fire; or this equality bee

Cap. 12. Mechanical Motions. ing made, it is yet a further difficulty, how it may be preferved. Ta which purpofe, Licetus thinks it poffible to extrad an inflameable oyl from the fone Asbeftus, Amiantus, or the metal Gold, which being of the fame pure and homogeneous nature with thofe bodies, hall be fo proportioned unto the heat of fire, that it cannot be confumed by it, but being once inflamed fhould continue for. many ages without any fenfible diminution.
If it be in the power of Chymiftry to perform fuch frange effeds as are commonly experimented in that which they call aurump falmizans, one feruple of which thall give a lowder blow, and be of greater force indefent, than half a pound of ordinary Gunpowder in afcent; why may is not be as feafible by the fame art to extract fuch an oyl as is here enquired after: fince it muft needs be more difficult to make a fire which of its own inclination fhall tend downwards, than to conrrive fuch an unctuous

256

 dtuous liquor, wherein fire thall be fnaintained for thany years without any new fapply?Thus have Ibriefly fet down the reIations and opinions of divers learned men concerning thefe perpetual lamps; of which, though there have been fo many fundry kinds; and feveral ways to make theq, (fome being able tọ refift any viotence of weathers; others being eafily extinguifhed by any little alteration of the air; fore being inclofed round about within gla $S_{\text {g }}$ others being open), yet now they are all of them utterly perithed amongft the ' α ther ruines of time; and'tiole whoare moft verfed in the fearch after them, have only recovered fuch dark conjectures, from which a man cannot clearly reduce any evideft principle that may encourage him to aparticular trial.
4.:. $\%$

Cap. 13. Mecbanical Motions. 25%

CAP. XIII.

Concerining feveral attempts of contriving a perpetual niotion by Magnetical virtues.

THE fecond way whereby the making of a perpetual motion hath been attempted, is by Magnetical virtues; which are not without fome Itrong probabilities of proving effeCtual to this purpofe: efpecially when we confider that the heavenly revolutions, (being as the firft pattern imitated and aimed at in thefe attempts) are all of them performed by the help of thefe qualities. This great Orb of earth, and all the other Planets being but as fo many Maga netical Globes endowed with fuch various and continual motions, as may be moft agreable to the purpofes for which they were intended. And therefore moft of the Authors who treat concerning this invention, do agree, that the likelieft way to effect it; is by thefe kind of qualities.

S It was the opinion of Pet. Peregrinus, Gilbert.de and there is an example pretended for Magnet. Calaus Pbilof.e 11).That aiMagnetical Globe or Terel$M_{a g n} I_{a}$, being rightly placed upon its poles, l. 4.c. ${ }^{20 .}$ would of it felf have a conftant rotation, like the diurnal motion of the earth; But this is commonly exploded, as being againft all experience. .
Atbansf. Others think it poffible, fo to conKircherde trive feveral pieces of fteel, and a Arte Magat.
ser. loadftone, that by their continual 2. prop.13. attraction and expulfion of one anop.4 ther, they may caufe a perpetual revolution of a wheel; Of this opini2 Trat. de on were ${ }^{2}$ Taifner ${ }^{\text {B }}$ Pet. Perégrimus, motuconti- and c Cardan, out of Antonius de' Fan-期10。 b De Rete tis. But D. Gillert, who was more perpetui efpecially verfed in Magnetical expemotrs. par. 2. c. 3. 2. c. 3. groundlefs fancy. riet.rerum l.9. c. $4^{8 .}$ De magmet. 1.2. C. 38 riments, concludes it to be a vain and

But amongft all thefe kind of inventions, that is moft likely, wherein a loadftone is fó difpofed, that it fhall draw unto it on a reclined plane, a Bullet of fteel; which Ateel ${ }^{2}$ as it afcends

Cap. 13. Mechanical Motions. 259

 feends near to the loadfoose, may be contrived to fall down through fome holle in the plane, and fo to return unito the place from whence at firft it began to riove'; and being there, the loadfone will again attrat it upwards, till coming to this holeit will fall down again $:$ and fo the motion hall be perpetual as may be more eafily conceivable by this Gis,

- 2 suppofé

260. .2: Dadatus; Lib? Suppofe the loadfane to be reprefented at $A B$, which though it have not ftrength epough to attract thebullet C, directly from the ground, yet': may do it by the help of the plane $E F$. Now when the bullet is come to the top of this plane, its own gravity, Which is fuppofed to exceed the. ffichgrh of the loadtone) will make if fall into that hole at $E:$ and the force it receives in this fall willcarry it with fuch a violence unto the other end of this arch, that it will open the paffage which is there made for it, and by its return will again fhut it ; fothat the bullet (as at the firt) is in the fame place whence it was attraCted, and confequently muft moove perpetually.

But however , this inveftion may feem to beof fich frong probability, yet there are fmodry particulars which may prove i-infüficient; ${ }^{4} \mathrm{Fbr}$,

1. This bullet of fteel muft firft be touched and have itsfeveral poles, or elfe there can be little or no attráction of it. Suppofe C in the feel

Capirin. Machanical Motions.

 to be anfworable unto A in the ftonse, and to B_{j} In the attraction; $C D$ mult atways bedinected anfwerable to $A B$ and for the miotion will be more diffcult, by peafon there con be norotatiantor turning tound of the buller, but it muft dide ap with the line $C D_{2}$ anfsperable to the axis $A B_{1}$ \therefore 2. In its fall from E to G, which is': motus elementaris ar and proceeds from its gravity, there mutt needs be 2 rotation of it, and fo 'tis odds but it happens wrongitim the rife, the poles in the bullet being not in the fame diredion to thofe in the magnets and if in this reflux it hould fo fall out, that D ghould be directed to: wards B, there fhould be rathera flight than an attraction, Ginge thofe two ends do repell:and not draw one another.- 3. If the loadfone A, have fo much ftrength that it can attract the bullet in F, when it is not turned round, but does only dide upon the plane, whereas its,own gravity would roulit downwards: then it is evident,
the fphere of its activity: and ftrength would be fo increafed wheh it approaches much nearer, that it would not need the affinatice of the plane, but would draw ite inmediately to it felf without that help, and fo the bullet would not fallown throughthe hole; but afcend to the fone, and confequent: ty ceafe its motion.: Eor if the loadftone be of force enough to draw the bullet on the plane, at the diftance $F B$, then muft the frength of it be fufi ficient to attract it immediatly unto it felf, when' it is fo mucb nearer as EB. And if the gravity of the bullet bet fuppofed fo muctr to exceed the ffrength of the Magnet, that it cannot draw it directly when it is fo near, then will it: not be able to attract the bullet up the plane, when it is fo much further off.
So that none of all thefe Magnetical exteriments, which have been as yet difoovered, are fufficient for the effecting of a perpetual motion, though the fe kind of qualities feem moft conducible unto it, and perhaps

Cap. 14 Mechanical Motions. 263

 haps hereafter it may be contrived from them.
CA P. XIV.

The feeming 'probability of effecting a continual motion by folid weeights in a bollow wheel or Jphere.

THE third way whereby the making of a perpetual motion hath been attempted, is by the natural 'affection of gravity; when the heavinefs of feveral bodies is fo contrived, that the fame motion which they give in their defcent, may be able to carry them up again.

But againft the poffibility of any fuch invention, it is thus objected by Cardan; All fublunary bodies have a subtil.t. direct motion either of afcent or defcent; which, becaufe it does refer to fome term, therefore cannot be perpetual, but muft needs ceafe when it is arrived at the place unto which it naturally tends.

I anfwer, though this may prove
S_{4} that there is no natural motion of any particular heavy body, which is perpetual; yet it doth not hinder but that is.is poflible from them to contrive fuch an artificial revolution as fhall conftantly be the caufe of it felf.

Thofe bodies which may be ferviceable to this purpofe, are diftinguifhable into two kinds.

1. Solid and confiftent, as weights of metal, or the like.
2. Fluid or fiding, as water, fand, 8 Bc.

Both thefe ways have beenattempted by many; though with very little or no fuccefs. Other mens conp. Flud jectures in this kind you may fee fet trati. 2.
part 7.t.20 down by divers Authors. It would be part 7. . .2. 6. 4.55 too tedious to repeat them over, or fet forth their draughts. I fhall only mention two news ones, which (if I am not over partial) feem altogether as probable as any of thefe kinds that have been yet invented; and till experience had difcovered their defect and infufficiency, I did cer$\operatorname{tain} y$

Cap. 14 Mechanical
 Motions.
 265

 tainly condude them to beinfallible.The firft of thefe contrivances was by folid weights. Being placed in fome hollow wheel or fphere, unto which they fhould give a perpetual revolution. For (as the Philofopher hath itrif.pouso largely proved) only a circular mo- $1.8 .8 \mathrm{~s}_{1}$. 12. tion can properly be perpetual.
But for the better conceiving of this inviention, it is requifite that ye rightly underłand fome principles in Trochilichs, or the art of Wheel-inAtruments; As chiefly, the relation betwixt the parts of a wheel, and thelfe of a Ballance; thefeveral proportions in the Semidiameter of a wheel, being anfwerable to thefides in a ballance, where the weight is multiplied according to its diftance from the cen-

Ariff.MC: сban. c. 2. De ratione libra ad circulum. ter.

Thus

Thus fuppofe the center to be at ' A, and the Diameter of the wheel $D C$, to be divided into equal parts (as is here expreffed) it is evident according to the former ground, that one pound at C, will equiponderate to five pound at B, becaufe there is fuch a proportion betwixt their feveral diftances from the Center. And it is not material whether or no thefe feveral weights be placed horizontally ; for though B do hang lower than

Cap. T4. Mechanicical Motions. 267

 than C, yet this does not at all concern the heavinefs, or though the plummet C were placed mach higher than it is at $E_{\text {; }}$:ot lower at F, yet would it gill retain the fame weight which it had at C, becaufe thefe plummets $($ tas is the nature of alltheavy bodies' ' do tend downwards by a atraight line : So that their feveral grayities are to be meafured by that part of the ho: rizontal-Semidiameter which is directly either below oraboye them. Thur when the plummet G; thall be moved either to G or H; it will lofe ;of its former hiskineifs, and be equally ponderous as iffit: were placed in the ballance at: the number $3 ;$ and if wefuppofe it to be fituated at I or K, then the weight of it will lie wholly upon the Center, and not at all conduce to the motion of the wheel on either fide. So that the ftraight lines which past through the divifions of the diameter, may ferve to meafure the heavinefs of any weight in its feveral tituations.Thefe thingss throughly confidered, it feems very polfible and cafie for a man to contrive the plummets of a wheel, that they may be always heavier in their fall, than in their afcent, and fo conequently that they fhould give a perpetual motion to the wheel it felf: Sinee it is impofible for that to remain unmoved, as long as ore fide in it is heavier than the other.

For the performance of this, the weights mult be fó ordered, I. That in their defeent they mayfall from the Center, and in their afcent may rife nearer to it. 2. That the fall of each plummet may begin the motion of that which fhould fucceed it. As in this following Diagram.

Where

Cap. 14. Mechanical Motions. 269

Where there are 16 plummets, 8 , in the inward circle, and as many ing: the outward, (the equality being. to arife from their fituation, it iss, therefore moft convenient that the , number of thembe even) The eight: inward plummets are fuppofed to be : in themfelves fo much heavier than the other, that in the wheel they may be of equal, weight with thofe above them, and then the fall of thefe: will be of fufficient force to bring down down the other. For example, if the outward be each of them 4 ounces, then the inward muft be 5 , becaufe the outward is, diftant from the center 5 of thofe parts, whereof the inward is but 4. Each pair of thefe weights Thould be joyned together by a little ftrịg or chain, which muft be faftned about the middle betwixt the bullet and the center of that plummet, which is to fall firft, and at the top of the other.

Whetr thefobpyllets in their defcent are 'at their furtheift diftance from the center of the wheet, then fhall they be flopped, and reft on the pins placed to that purpore $;$ and foin their rifing, there muft be other pins to keep them in a convenient "pofture aid diftance from the center, left approdching too near unto it, they thereby become' unfit to fall, when they thall come to the top of the deroending fide.
This may be otherwife contrived with fome different citcúfiftances; but they will all redound to the fame effect. ε.

Capur4. Mecbanicar Motions. effect: By fuch an engine it feems; very probable, that a man may pro-: duce a perpetual motion. Theidiftance, of the plummets from the center increafing their weight on: one fide $;$ and their being tyed to one another, caufing a conttant fucceffion in their falling.

But now, upon experience T have found this to be fallacious s : and the reafon may fufficiently appear by a calculation of the heavinefs of each plummet, according to its feveral fcituations; which may eafily bedone bys thofe perpendiculars that cut the diametera (as was before explained, and is here expreffed in five of the plummets on the defending fide \& From fuch a calculation is will: be evident, that both the of this wheel will

- equiponderate) and to conlequently that the fuppored inequality, whence the motion'Ghould froeeed, is but imaginary and groundlefs. On the defcending fide, the heavinefs of each plummet may be meafured according to thefe numbers, (fuppofing the div ameter
$27!$
Didalis' ; or;
Lib. 2.
meter of the wheel to be divided into
twenty parts, and each of thole furdivided into four).

The outward plummets.

$$
\left\{\begin{array}{ll}
7 & 0 \\
1 a & 0 \\
7 & 0
\end{array}\right\}
$$

\therefore The inward plummets.

$$
\left\{\begin{array}{ll}
1 & 0 \\
7 & 2 \\
7 & 2 \\
3 & 0
\end{array}\right\} \text { The fut } 19
$$

On the afcending file the weights are to be reckoned according to there degrees.

The fame of which lat mumberg is equal with the former, and therefore both the fides of fuch a wheel, in this fituation will equiponderate.

Cap. 14. Mechanical Motions.

If it be objected, that the plummet A fhould be contrived to puli down the other at B, and then the defending fide will be heavier than the other.

For anfwer to this, it is confideraBle;

1. That thefe bullets towards the top of the wheel, cannot defcend till they come to a certain kind of incllnation.
2. "That any lower bullet hanging upon the other above it,' to pull it down; mult be conceived; as if the weight of it were in that point where its ftring touches the upper; at which point this bullet will be of lefs heavinefs in refpect of the wheel, than if it did reft in its own place: So that both the fides of it in any kind of fituatioti may equiponderate.

T CAP

CAP. XV.

Of compofing a perpetual motion by fuid weights. Concerning Archimedes b bs water-fcrem. The great probability of accomplifbing this inquiry by the belp of that : woith the falliblenefs of it upon experiment.

Hat which I thall mention as the laft way, for the trial of this experiment, is by contriving it in fome water-inltrument; which may feem altogether $:$ as probable and eafie as any of the reft, becaufe that element by reafon of its fluid and fubtil nature (whereby of its own accord it fearches out the lower and more narrow paffages.) may be moft pliable to the mind of, the artificer. Now the ufual means for the afcent of water is eitherbySuckers or Forces, or fomething equivalent thereunto; Neither of which may be conveniently applied unto fuch a work as this, becaufe there is required untoeach of themfomuch or more ftrength, as may be anfwerable

Cap.15. Mechanical Motions.
ble to the full weight of the water: that is to be drawn up; and thenbefides; they move for the moft part by fits and faracteses, fo that in in not eafily conceivable, bow they: \{hould conduce unto fuch a motion which by reafon of its perpetuity maft the regular and equal.
But apongt all other ways to this purpofe, that inveation of Archimedes is incomparably thebefts; which is wfually called Cooblea, 'or the Watert fresp x being framed by the:Helical revolution of a cegvity sabparts a Cy linder. We have not/any difcourfe from the Authof himeleffconcerning it, nor is if centain whether he ever writ any thing to this purpofe. Butt if he did, yet as the injury of time. hath deprived us of many θ ther His excellent works, fo likewife of this, anongt the reft.
Athenaus feeakipg of that great fhip Ditrooppbs built by Hiero, in the framing of 1.5 : which there were 800 Garpenters employed fora a year togetber, befides many other hirelings for carriages,

296

 and fuch fervile works, thentions thrs inftrument as being inftead of a pump for that vaft Chip; by the helpof which; otie man might eafily and fpeedily drain out the water, though it were wery deep.sibliotb. - Diodorys Siculus fpeaking of this h. 1. engine, tells us, that Archimedes invented it when he was in Egypt, and that was ufed in that Count try for the draining thofe pits and lower grounds; whence the waters of Nibuscould not return. Фxnorixys
 fame Author). It being an engine fo ingenious and artificial, as cannot cadaa: be fufficiently expreffed or commensubt. Li. it ded. And fo (it fhould feem) the De fapient. Smith in Millain conceived it to be; who having without any teaching or information found it out, and therefore thinking himfelf to be the firft inventor, fell mad with the meer joy. of it.

The nature and manner of making Arcbitea. this, is more latgely handled by VF_{i-} Gio. cing truvius

TheFFigure of it isafter :this manners

Where yon feethere is a Cylinder $A: A$ and a Ppiral cavity or pipe twining about it, according to equal revolutions $B B$. The axis and centers of its motions ate at the points C C D_{2} upoia, which being turned, it will $\frac{1}{6}$ happen that the fame part of the pipe which was now lowermof, will prefently beconie higher, fo that the water doess afcend by defending; a-* feending in comparifon to the whole inftrument; and defcending in refpect

T 3
of of itt feverd pattsi ? This being oute of the ftrangeft wonders amongt thofe many, wherein there Mathematicical arts do abound, that a heavy body Mould rife by falling down; and the farthier it pafles by its own naturall 中otion of Alefent, by fo much higher fill hadlit afcend; whichthough it : item fo evidendy to contridiot all reafon and Philofoply is ye finthis infrtument it may be manitifetted both by demonftration and fenfe- $>$: 1 This pipe or cavity for the matter of it, cannot eafily be made of merate: by reafon of its often turaings $;$ but for trials; there might be fuch acavity, cut in a column of wood, and afterwards, copered over with tin plate.
For the form and manner of ma; king this frew, Vitruvius does preferibe thefe two rules:

1. That there mult be an equality obleryed betwixt the breadth of the pipe, and the diftance of itsfe: weral circumyolutions.
[^0]
Cap. 15- Mechanical Motions. 279

 portion betwixt the length of the inftrument, and its elevation, as is anfwerable to the Pythagorical Trigon. If the Hypotenufal, or Screw be's, the David Ri; valt. Com. in Archim. perpendicular or elevation muft be 3 , opera. exx and the bafis, 4 . term.However (with his leave) neither of thefe proportions are generally neceffary, but fhould be taried according to other cireumfences Asfor the breadth of the pipe in refpect of its,revolutions, i is Feft at liberty, and may be contrived according to the quantity of water whichit fhould contain. The chief thing to be conifidered is the obliquity or clofenefs of there circunvolutions. For the nearer they are unto one another, the higher may the inftrument be erected; there being no other guide for its truéelevation but this.

And becaufe the right underftand:ing of this particular is one of the principal matters that concern the ufe of this engine, therefore I hall endeavour with brevity and perfpicuity to explain it. The firft thing T 4 to
tobe inquired after, is what kind of in clination thefe Helical revolutions of the Cylinder have unto the Horizon; which may be thus found out.

Let $A B$ reprefent a Cylinderwith two perfect revolutions in it; unto which Cylinder the perpendicular line $C D$ is equal: the bafis $D E$ be: mg fuppofed to be double unto the compafs or circumference of the Cylinder. Now it is certain that the angle $C^{\prime} E D$, is the fame with that by which the revolutions on the Cy linder are framed; and that the line $E C$, in comparifon to the bafis $E D$, does fhew the inclination of thefi revolutions unto the Horizon. The grounds and demanitration of this, are more fully fet down by Guidus Wbaldus, in his Mechanicks, and that other

Cap. 15. Mechanical Motions.
 28:

 other Treatife De Cocblea, whichhe writ purpofely for the explication of this inftrument, where the fubtilties of it are largely and excellently hand-: led.Now if this Screw which was before perpendicular, be fuppofed to decline unto the Horizon by the angle $F B \quad G$, as in this fecond Figure;

then the inclination of the revolutions in it, will be increafed by the angle $E \cdot D \cdot H$, though thefe revolutions will ftill remain in a kind of afeent, fo that water cannot be turned through them.

But

But now if the Screw be placed fo faz dectining, that the angle of its inolinationt: $F B G$, be lefs than the atryle $E C D$, in the triangle, as in this other Diagram under the formed ; then the revolutions of it will defcent fo the Horizon, as does the line EiC, and inr fuctia a pofture, if the Screw be terfled toand, water will afcend through its cavity. Whence it is eafieto conceive the certain declination wherem any Screw mont be placed for its owniconveyance of water upwards. Any point betwixt H and $D_{\text {, }}$, being in defcent; ; but yet the more the Srew declines downwards towards D, by fo much the more water will becarried up by it.

If you would know the juft quantity of water which every revolution does contain and carry, according to any inclination of the Cylinder, this may be eafily found by afcribing on it an Ellipfis, parallel to the Horizon ${ }^{2}$ which Elipfiswill lhew how much of
See a further explication of this in \boldsymbol{v} baldus de Cocbler, 1. 2.propozs, full

The

Caplis. Mechanical Motions:

 tain: quantity of water. which every Helix does contains it it furthar confiderable; that the water by this in ftrument does afcend naturally of is fedf: without afy violenice of labour; and that thei heavinafs of it-doth lie chiefly upon; the centers or axis of the Gylizuder, both its fides, being of (it fhould feem) though we fuppore prop:4. each revolutiontol have anequal quantity bf water s iyet the Serew will nefiain with any parte upwards: (acdording as it flalll be fet \% : witheut: thouning it felf either way- And therefore the lealk firength being added to eifher of its fides, thould make it defcend, according to that conmon Maxime of Ancbimedes; any addition De EquiIll will make that which equiponde- pof. 3 . rates-with another, to tend downwards:

But now; becaufe the: weight of this inftrument, and the water in it;: does lean wholly upon the axis, hence
 hience init (fath Wbatidur.) that the gratitig and rubbing of thefe axes againft. the fockets wherein they are placed, will caule wome itieptitudeand refifteicy to thit Yotatiotriof the Cylindery which whald otherwife enfue upon the addition of the leaft weightito any: one fides: Bat (farthethe fame Author) any powte that is grisater than this. refiftendy which does arife: from the axis, Will ferve forlthid turniag of it round::

Thefertings conifidered together, io will hencee áppear, how a perpetual noo tion máy feem eafily contrivable : For: if there vere but fuch a water-wheel made onthis inftrument, upon which the ftream that is carried up, may fath, in its defcent it would turn the ferew round, and by that means convey as mach wateriar, as is required to move. an it ; fo that the motion mult needs be continual fince the fame weight: which in its fall does turn the wheel, is by the rarning of the wheel carried up again: :

Or if the water falling upon one whee!

wheel would not be forcible enough for this effect, why then there might be two or three, or more, according as the length and elevation of the infru- ment will admit ; By which means the weight of it may be fo multiplied in the fall, that it fhall be equivalent to twice or thrice that quantity of water which afcends. As may be more plainly difcerned by this following Diagram.

Where

Cap.15. Machanigal Motions.

 Where the figure $L \cdot M_{9}$: at the hootr tome does reprefent a waodon Cyliader with Helical cavities cut in ir, which at $A B$, is fuppofed to be covered over with tin plates, and three water-wheels upon it, $\boldsymbol{H} I K$. The lower ciftern which comtains the whater being CD. Now this Cylinder being turned round, all the water which from the cifternafcends through it, will fall into the veffel at E, and from that veffel being conveyed upon the water-wheel H, thall confequently give a circular motion to the whole Screw: Or if this alone fhould be too weak for the turning of it, then the fame water which falls from the wheel H, being received into the other veffel F, may from thence again defcend ron the wheel I; by: which means the force of it will be doubled. And if this be yet infufficient, then may the water which falls; on the fecond wheel I, be received into the outher veffel Thereis another like cons trivance. to this purpofein Pet:Beting Apiar. 4.Progm. I \}
Prop. 10. but with much lefif advantage than 'tis
 G, and from thenperagair defoend on the third wheel:at \mathcal{K}_{6} : and fo for ias
many other wheels, as the inftrument is capable of. So that befides the greater diftance of thefe three ftreanis from the center or axis, by which they are made fo much heavier; and befides, that the fall of this outward water is forcible and violent, whereas the afcent of that within, is natural; Befides all this, there is thrice as much water to turn the Screw, as is carried upby it.

But on the other fide; if all the water falling upon one wheel, would be able to turn it round, then half of it would ferve with two wheels; and the reft may be fodifpofed of in the fall, as to ferve unto fome other ufefuldelightful ends.

When I firf thought of this invention, I could fearce forbear with Archimedes to cry out tugnna ivenna; It feeming fo infallible a way for the effecting of a perpetual motion, that nothing could be fo much as probably objected againft it: But upon trial and experience I find it altogether infufficient for any fuch purpofe

Cap.15. Mechanical Motions. 289.

 purpofe, and that for thefe two rea: fons:1. The water that afeends will not make any confiderable ftream in the fall.
2. This fream (though multiplied) will not be of force enought to turn about the Screw.
3. The water afcends gently and by intermiffions, but it fafls continuately and with force; each of the three veffels being fuppofed full at the firf, that fo the weight of the water in them might add the gredter frrength and fwiftnefs to the ftreams that defcend from them. Now this fwiftnefs of morion will caufe fo great a difference betwixt them, that one of thefe little ftreans may f pend more water in the fall, than a ftreati fix times bigget in the afcent, though we fhould fappofe both of them to be continuate; How much more then, when as the afdending water is vented by fits and intermiffions, every circumvolution voiding only fo much as is contained ticular, one that is not verfed in thefe kind of experiments, may be eafily deceived.

But fecondly, though there were fo greata difproportion, yet notwithftanding the force of thefe outward ftreams, might well enough ferve for the turning of the Screw, if it were fo that both its fides would equiponderate, the water being in them (as Obaldus hathaffirmed). But now upon farther examination, we fhall find this affertion of his, to be utterly againft both reafon and experience. And herein does confift the chief miftake of, this contrivance. For the afcending fide of the Screw is made by the water contained in it fomuch heavier than the defcending fide, that thefe outward ftreams thus applyed, will not be of force enough to make them equiponderate, much lefs to move the whole. As may be more eafily difcerned by this figure.

Cap.i5. Mechanical Motions., 29F.

Where $A B$, 'repirefents a Screw covered over, $\mathcal{C} D E$ one Helix or revolution of it, $C D$ the afcending. fide; $E D$ the defcending fide, the point D the middle. The Horizon-' tal line $C F_{\text {, }}$, fhewing how much of the Helix is filled with water, viz. of the afcending fide, from C the begithing of the Helix to D the middle of it; and on the defcending fide, from D the middle, to the point G, where the Horizontal does cut the Helix. Now it is evident that this latter part $D G$, is nothing near fo much, and comfequently not fo heavy as the other $D C$. And thus is it in all the other revolutions, which as they are either mare, or larger, fo V 2 will will the difficulty of this motion be increafed, Whence it will appear, that the outward ftreams which defcend quift be of fo much force as to countervail alt that weight whereby the afcending fide inevery one of thefe revolutions does exceed the other; And though this may be effented by making the water-wheels larger, yet then the motion will be follow, that the Screw will not be able to fupply the outward freams.

There is another contrivance to this purpofe mentioned by Kircher de Magnete, L. 2. p. 4. depending upon the heat of the sum, and the force of winds, but it is liable to fuch abundance of exceptions, that it is fearce worth the mentioning, and does by na means deferve the confidence of any fngenious Artift.

Thus have I briefly explained the probabilities and defeds of thofe fub(il contriyances, whereby the making of a perpetual motion hath been atgempted, I would be foth to difcoutrie the enquiry of any ingenious Artificer,

Cap:15. Mecbanical Motions. 293

 Artificer, by denying the poffibility of effecting it with any of thefe Mechanical, helps; But yet (I conceive) of befored if thofe principles which concern the \underline{L}. flownes of the power in comparifon to the greatnels of the weight, were rightly undertood, and throughly confidered, they would make this experiment to feem (if not altogether impofible yet) mach more difficult than otherwife perhaps it will appear. However, the inquiring after it, cannot but deferve our endeayours, as being one of the mof noble amongt all thele Mechanical fubtilties. And (as it is in the fable of him who dug the, Vineyard for a hid treafure, though he-did not find the money, yet he thereby made the ground more fruitful, fo) though we do not attain to the effect- ing after it may difcover fo many other excellent fubtilties, as fhall abundantly recompence the labour of our enquiry.

And then befides, it may be another encouragement to confider the pleafure

294
 Diedatur; or, Lib, 2:

 pleafure of fuch fpeculations, which do ravilh and fublime the thoughts with more cledr angelical contentments. Archimedes was generally fo taken up in the delight of thefe Mathematical ftudies, of this familiar inxu'ds xy Siren, (as Plutareh ftiles them) that cuvoing he forgot both his meat and drink, and other neceffities of nature; nay, Plutarcb. Marcel. that he neglected the faving of hisFousoretel life, when that rude folder in the zes, Chib Hifl. 35 . Valer. pride and haft of victory, would Maximol. demonftration:-What a ravifhment E.c.7. was that, when having found out the 'way to meafure Hiero's Crown, he leaped out of the Bath, and (as if he were fudderily poffeft) ran naked up and down crying qusnua' "venxa! It is ftoried of Thales, that in his joy"ard gratitude for one of thefe Mathematical inventions, he went prefently to the Temple, and there offered up a folemn facrifice. And Pythagoras upon the like accafion is related to have facrificed a hundred oxen:- The juftice of providence ha:
ving

Cap.15. Mechanical Motions. ving fo contrived it, that the pleafure which there is in the fuccefs of fuch inventions, fhould be proportioned to the great difficulty and labour of their inquiry.

FINIS.

-

,

\checkmark
,

1

1

$$
x \times x \times x \times x \quad x \| 90
$$

[^0]: T. That there muft be fuch'a proportion

